Intraocular Lens Opacification with Recombinant Tissue Plasminogen Activator after Cataract Surgery

Dawn Sim1, Simon Fung1, Niaz Islam 2, Dipak Parmar1
1 Whips Cross University Hospital, London, UK 2 Queen’s University Hospital, Greater London, UK

Introduction: Fibrous uveitis in uneventful cataract surgery and intraocular lens (IOL) implantation occurs in less than 3% of cases. Dramatic fibrinolytic activity has been observed with intracameral injection of recombinant tissue plasminogen activator (r-tPA), a highly potent fibrinolytic protein usually used for coronary thrombolysis. Reported complications of r-tPA include corneal oedema, band keratopathy, anterior chamber turbidity, and hyphaema. They are uncommon and the general consensus of previous work is that r-tPA is well tolerated in the anterior chamber.

Purpose: To report 5 cases of intraocular lens (IOL) opacification following treatment of fibrous uveitis with recombinant tissue plasminogen activator (r-tPA) after cataract surgery.

Methods: 5 consecutive patients who developed intraocular lens opacification at Whips Cross University Hospital, London, between February 2008 and August 2009. All patients underwent uncomplicated cataract surgery and IOL implantation in the capsular bag. Fibrinolytic membranes developed between 1 to 4 weeks of surgery and were treated with intracameral injection of 10-25 micrograms of recombinant tissue plasminogen activator (r-tPA). Resolution of fibrin plaques occurred in all cases within 24 hours. IOL opacification was noted between 5 months to 7 years after r-tPA treatment with reduced visual acuity.

Results
- Uneventful IOL exchange was carried out in 4 patients with a mean final visual acuity of 6/9.
- In vivo OCT imaging demonstrated a central band shaped of echogenic deposits centrally located on the non-echogenic convex anterior IOL surface (Figure 1).
- This corresponded to a band-shaped fine granular whitish material was observed in the central part of all explanted IOL optics (Figure 2).
- Light microscopic evaluation further revealed diffuse fine granular deposits, on the anterior surface of the optic and a parallel, linear granular layer, just below the anterior surface of the optic which diminished towards the periphery of the IOL optic (Figure 3).
- Both granular deposit layers stained positive with special stains for calcium (von Kossa and alizarin red).
- The granular material was not observed or detected on the posterior region of the cut section, the haptics and the edge of the IOL.

Discussion:
Calcification of IOLs is an uncommon complication of IOL implantation, resulting in symptoms of visual loss or glare, and usually necessitating IOL explantation and exchange.

IOL calcification, first reported in 1994 by Jansen et al, was initially thought to be associated Sodium Hyaluronate 1.4% (Healon GV) 28. It was hypothesized that the phosphate component in the viscoelastic preparation reacted with calcium in the irrigating solution and aqueous, to cause precipitation on the IOL surface.

The calcium-phosphate reaction theory was further supported by the Bush et al in 1996 who described a case of dystrophic calcification of the IOL and panuveitis in a 60-year-old woman with chronic lymphatic leukemia. Deposition of calcium hydroxyapatite in the aqueous as a result of systemic disease, intracocular surgery, inflammation or drug administration can and has been associated with dystrophic calcification, and furthermore, band keratopathy was observed in one of our cases.

In our series, all patients had fibrous uveitis and successful treatment with r-tPA within the first 24 hours. This increased cell lysis and release of lysed calcium. The anterior chamber becomes saturated with both cellular aggregates and inflammatory debris, in ensuing weeks, thereby creating an ideal environment for binding of free calcium and precipitation of calcium salts. The scaffold, which has been formed by the network of fibres on the anterior surface of the IOL, provides the site for initial calcium accumulation. This hypothesis is supported by our finding of calcium only involving the optic anterior surface.

Conclusion: Intracameral r-tPA, though rapidly effective in the treatment of fibrous membranes, may cause IOL opacification.

References:

1. Issued: 21 January 2010 at 15:00
2. Ref: MDA/2010/008

Medicines and Healthcare products Regulatory Agency Page 5 of 5