Department for Environment, Food and Rural Affairs

Part B: Information about the release application to be included on the public register

B1 The name and address of the applicant

Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ UK

B2 A general description of the genetically modified organisms in relation to which the application is being made

The genetically modified plants to be studied in the field trial are wheat (*Triticum aestivum*), variety Cadenza, in which one or more copies of an asparagine synthetase gene, *TaASN2*, has been rendered dysfunctional using the CRISPR/Cas9 system for genome editing. The editing process involved the transformation of the wheat with plasmids containing a gene encoding the guide RNAs for the CRISPR/Cas9 system and a gene encoding the Cas9 nuclease, as well as a selectable marker gene (*bar*) that imparts tolerance to herbicides based on phosphinothrycin. These transgenes are no longer required and are being removed by genetic segregation. Nevertheless, the plants in the first year of the trial will contain one or more of these transgenes, as well as the CRISPR/Cas9-induced 'edits' to the *TaASN2* genes. It is anticipated that by the third year of the trial the plants will be transgene-free. Plants carrying edits in the *TaASN2* gene have reduced concentrations of free (soluble, non-protein) asparagine in the grain. Free asparagine is an amino acid that can be converted to acrylamide, a carcinogenic contaminant, during baking and toasting.

B3 The location at which the genetically modified organisms are proposed to be released

The field trial will be sited within the GM field trial site at Rothamsted Research, Harpenden, UK, grid reference TL1213.

B4 The purpose for which the genetically modified organisms are proposed to be released (including any future use to which they are intended to be put).

This is a research trial to investigate the effect of knocking out the *TaASN2* gene on free asparagine accumulation in wheat grain in the field, and the effect of low grain asparagine concentration on grain yield, grain size (thousand grain weight), grain protein content and quality, the concentrations of other free amino acids, total seed nitrogen and sulphur, Hagberg Falling Number, starch and sugar content. The formation of acrylamide in heated flour produced from grain harvested from the trial

will also be assessed. The number of plants that can be grown in the field as opposed to a glasshouse will also facilitate the identification of plants in which the transgenes have segregated away. At this stage it is not known whether plants carrying the very low asparagine trait would be suitable for commercial cultivation, and there is still uncertainty over how genome edited plants will be regulated in the UK. Decisions on whether the genome edited plants should be made available to breeders for incorporation into commercial breeding lines will therefore be taken at the end of the trial.

B5 The intended dates of the release.

The trial will run for five seasons, from autumn 2021 to summer 2026. The plants will be sown in September/October and harvested in August/September each year.

B6 The environmental risk assessment.

Risk assessment

Conclusions on the Potential Environmental Impact from the Release or the Placing on the Market of GMOs

i. Likelihood of the genetically modified higher plant (GMHP) becoming more persistent than the recipient or parental plants in agricultural habitats or more invasive in natural habitats.

Plants in which the *bar* gene is still present will be resistant to control by herbicides based on phosphinothrycin. However, control by herbicides based on other active ingredients will not be affected. The major trait in the plants is reduced accumulation of free asparagine in the grain. This appears to have a negative effect on germination, and there is some evidence of increased seed size in some of the edited lines. Otherwise the phenotype of the edited lines, including morphology, pollination and seed-set, do not appear to differ from control wheat cv. Cadenza plants. We therefore expect dissemination of pollen and seeds to be the same as for non-transgenic wheat plants, and the survivability of the plants in unmanaged systems to be reduced due to the germination effect.

ii. Any selective advantage or disadvantage conferred to the GMHP.

As stated above, germination of the low asparagine lines is poor, and this is likely to confer a selective disadvantage.

iii. Potential for gene transfer to the same or other sexually compatible plant species under conditions of planting the GMHP and any selective advantage or disadvantage conferred to those plant species. Wheat is a self-pollinating crop with very low rates of cross-pollination with other wheat plants. It can be forced, using laboratory techniques, to cross with rye, Triticale and a limited number of other cereals but spontaneous crossing in the field is extremely rare if it occurs at all.

The only wild relatives of wheat commonly found in the UK are in the genera *Elymus* and *Elytrigia* (formerly known as *Agropyron*) and there are no reports of cross-hybridisation between wheat and these genera. The two most common inland species are common couch (*Elytrigia repens* (= *Agropyron repens*)) and bearded couch (*Elymus caninus* (= *Agropyron caninum*)). Other related species, such as sand couch (*Elytrigia juncea* (= *Agropyron junceum*)), sea couch (*Elytrigia atherica* (= *Agropyron pycnanthum*)) and hybrids are largely confined to coastal habitats.

Common couch is quite widespread on the Rothamsted estate whereas bearded couch is confined to woods and hedgerows. Common couch propagates primarily by vegetative reproduction (rhizomes), rather than by sexual reproduction, and in any case, no reports of wheat \times couch spontaneous hybrids have been reported.

Nevertheless, the outer edge of the trial will have a 3 m barrier of non-GM wheat to function as a pollen barrier, and no wheat or other cereals will be cultivated within 20 m of the trial. Common couch and other grasses will be controlled along with other weeds in and around the trial site using standard farm practices, and will not be allowed to grow within 20 m of the trial.

iv. Potential immediate and/or delayed environmental impact resulting from direct and indirect interactions between the GMHP and target organisms, such as predators, parasitoids and pathogens (if applicable).

Not applicable: There are no target organisms.

v. Possible immediate and/or delayed environmental impact resulting from direct and indirect interactions of the GMHP with non-target organisms, (also taking into account organisms which interact with target organisms), including impact on population levels of competitors, herbivores, symbionts (where applicable), parasites and pathogens.

Wheat plants have a range of pests and fungal pathogens. The main insect pests in the UK are the bird cherry-oat aphid (*Rhopalosiphum padi*), the grain aphid (*Sitobion avenae*) and the rose grain aphid (*Metopolophium dirhodum*), as well as the orange wheat blossom midge (*Sitodiplosis mosellana*) and the wheat bulb fly (*Delia coarctata*). Wheat also interacts with beneficial insects that attack aphid pests, such as *Aphidius rhopalosiphi*.

Wheat can become infected by several fungal pathogens in the UK, including

Septoria tritici (Mycosphaerella graminicola), yellow rust (Puccinia striiformis) and brown rust (Puccinia triticina), as well as take-all disease (Gaeumannomyces graminis var. tritici). Good phytosanitary practice has been shown to be important in preventing the accumulation of high concentrations of free asparagine in the grain, but the relationship between pathogen infection and asparagine metabolism requires further research if the mechanisms underpinning this observation are to be understood. Even so, we consider it extremely unlikely that reduced free asparagine concentration in the grain will make the wheat more resistant to fungal pathogens.

Wheat also interacts with multiple fungi, bacteria and protists in the rhizospere, but these interactions are not expected to be affected in any way by the traits carried by the plants.

vi. Possible immediate and/or delayed effects on human health resulting from potential direct and indirect interactions of the GMHP and persons working with, coming into direct contact with, or in the vicinity of the GMHP release(s).

The *gRNA*, *Cas9* and *bar* genes are not expected to result in the synthesis of products that are harmful to human health. The primary trait of reduced free asparagine concentration in the grain will have no effect on human health. Any unknown hazards arising from the expression and ingestion of foreign proteins will not be realised because the wheat plants will not be consumed by humans.

vii. Possible immediate and/or delayed effects on animal health and consequences for the food/feed chain resulting from consumption of the GMO and any products derived from it if it is intended to be used as animal feed.

The *gRNA*, *Cas9* and *bar* genes are not expected to result in the synthesis of products that are harmful to animal health. The primary trait of reduced free asparagine concentration in the grain will have no effect on animal health. Any unknown hazards arising from the expression and ingestion of foreign proteins by domestic or farm animals will not be realised because the wheat plants will not be used for animal feed. The site is enclosed by a fence to deter entry by rabbits or other large mammals, and bird scaring devices including gas guns and hawk kites will be used to keep out birds.

viii. Possible immediate and/or delayed effects on biogeochemical processes resulting from potential direct and indirect interactions of the GMO and target and non-target organisms in the vicinity of the GMO release(s).

Biogeochemical processes are not expected to be affected by the cultivation of the genetically modified plants.

ix. Possible immediate and/or delayed, direct and indirect environmental impacts of the specific cultivation, management and harvesting techniques used for the GMHP where these are different from those used for non-GMHPs.

The site will be prepared according to standard agronomic practices for winter wheat cultivation. At harvest, a sample of plants may be hand-harvested, conditioned and threshed to supply seeds for research purposes. All such small samples removed from the trial site will be stored in containment prior to use and will eventually be autoclaved before disposal. The remainder of the site will be harvested by the plot combine. Grain that is not required for analysis or to provide seed for future trials will be disposed of by incineration, autoclaving or deep burial at a local authority-approved landfill site by an approved contractor, while any material remaining after analysis will be autoclaved before disposal. All straw will be chopped and left on site. The combine will be cleaned prior to leaving the site so that all traces of plant material from the trial will remain in the trial area. All transport of material will be logged.

Once the trial is concluded, or when the site is moved from one year to the next (Part A1, Section 36), the trial area will remain in stubble for the following two years to enable monitoring of volunteers and a broad spectrum herbicide such as glyphosate will be applied as required.

Any environmental effects resulting from these procedures will be negligible.

	Step1: Potential	Step 2: Evaluation of	Step 3: Evaluation of the	Step 4: Estimation of how	Step 5: Modification of	Step 6: Overall
	hazards which may	how each hazard	magnitude of harm caused	likely/often each hazard will	management strategies to	estimate of risk
	be caused by the	could be realised in	by each hazard if realised	be realised as harm	obtain lowest possible	of harm caused
	characteristics of	the receiving			risks from the deliberate	by the release
	the novel plant	environments			release	for each hazard
а	Increased	Increased	Wheat is an annual species	It is highly unlikely that	Harvested seeds will be	Overall risk is
	invasiveness in	invasiveness may	that requires active	intended or unintended	transported from the site in	negligible.
	natural habitats or	arise from intended or	management to out-compete	effects of the genetic	sealed containers.	
	persistence in	unintended effects of	weedier plants. Left	modification will result in	Machinery will be cleaned	
	agricultural habitats.	the genetic	unmanaged, wheat does not	major changes in	thoroughly prior to removal	
		modification that result	establish and survive in nature	invasiveness or persistence.	from the site. The large	
		in wheat plants with a	and thus has a low base line	If it were to occur, this hazard	buffer zone will minimize the	
		more 'weedy' habit	of invasiveness and	would be realised only if	spread of pollen.	
		that are better able to	persistence. Even if intended	seeds or pollen possessing	Surrounding the trial site is a	
		establish and thrive in	or unintended effects of the	genes encoding these traits	20 metre area in which no	
		uncultivated	genetic modification resulted	were to spread from the trial	cereals or wild grasses will	
		environments or to	in major changes in	site and become established	be allowed to grow.	
		persist in agricultural	invasiveness or persistence, it	elsewhere. This is very	Appropriate physical barriers	
		habitats.	is considered that this would	unlikely as wheat pollen is	and/or deterrents will be	
			not result in significant	relatively heavy so does not	employed to minimise access	
			environmental harm for	travel far, and it has a short	by large mammals and birds.	
			agricultural or unmanaged	half-life. Cereals and grasses	Phosphinothrycin-based	
			ecosystems. Wheat is a	will not be allowed to grow	herbicides will not be used	
			benign plant that can be easily	within 20 m of the trial site,	on the trial site.	
			managed by cultivation or	and spontaneous crossing		
			herbicides.	between wheat and its		
				closest wild relatives in the		
			The magnitude of harm if the	UK has not been observed.		
			hazard were realised is,	Seed removal from the site		
				will be rigorously managed.		
				The chances of modified		

			therefore, considered to be very small.	wheat plants establishing themselves outside the trial site are considered to be negligible.		
	b Selective advantage or disadvantage conferred to sexually compatible plant species	Selective advantage or disadvantage may result from intended or unintended effects of the genetic modification. This hazard could be realised in the receiving environment <i>via</i> out-crossing to sexually-compatible species outside the trial site.	The trait of low asparagine concentration in the grain is associated with poor germination and would therefore be likely to confer a selective disadvantage. The genetic modification resulting in increased tolerance to phosphinothrycin-based herbicides has the potential to confer a major selective advantage in agricultural systems where those herbicides are used routinely but will have no substantial effect on a plant's ability to survive in unmanaged ecosystems.	This hazard would be realised only if pollen possessing genes encoding these traits were to spread from the trial site and become established. This is very unlikely as wheat pollen is relatively heavy so does not travel long distances, and it has a short half-life. Cereals and grasses will not be allowed to grow within 20m of the trial site, and spontaneous crossing between wheat and its closest wild relatives in the UK has not been observed. The likelihood of this hazard resulting in environmental harm is, therefore, considered to be extremely low.	There is a large buffer zone to minimize the spread of pollen. Surrounding the trial site is a 20 metre area in which no cereals or grasses will be allowed to grow. Appropriate physical barriers and/or deterrents will be employed to minimise access by large mammals and birds. Phosphinothrycin-based herbicides will not be used on the trial site.	Overall risk is extremely low.
•	c Potential environmental impact due to interactions between the novel	This hazard could not be realised because there are no target organisms.				No risk.

	plant and target					
	organisms					
d	Potential	Changes in the plants'	Wheat plants have a range of	Impacts of this hazard on the	Harvested seeds will be	Overall risk is
	environmental	interactions with non-	pests and fungal pathogens.	environment would only	transported from the site in	extremely low.
	impact due to	target organisms could	The main insect pests in the	occur if seeds or pollen from	sealed containers.	
	interactions	result from intended or	UK are the bird cherry-oat	the GM plants were to spread	Machinery will be cleaned	
	between the novel	unintended effects of	aphid (<i>Rhopalosiphum padi</i>),	from the trial site and become	thoroughly prior to removal	
	plant and non-target	the genetic	the grain aphid (Sitobion	established. Pollen spread is	from the site. There is a large	
	organisms	modification. This	avenae) and the rose grain	very unlikely because wheat	buffer zone to minimize the	
		could have an	aphid (<i>Metopolophium</i>	pollen is relatively heavy and	spread of pollen.	
		environmental impact	<i>dirhodum</i>), as well as the	does not travel long	Surrounding the trial site is a	
		if changes in	orange wheat blossom midge	distances, and it has a short	20 metre area in which no	
		interactions with non-	(Sitodiplosis mosellana) and	half-life. Cereals and grasses	cereals or grasses will be	
		target organisms	the wheat bulb fly (Delia	will not be allowed to grow	allowed to grow. Appropriate	
		resulted in the plants	coarctata). Wheat also	within 20 m of the trial site,	physical barriers and/or	
		being better able to	interacts with beneficial	and spontaneous crossing	deterrents will be employed	
		thrive in uncultivated	insects that attack aphid pests,	between wheat and its	to minimise access by large	
		environments or to	such as Aphidius rhopalosiphi.	closest wild relatives in the	mammals and birds, to	
		persist in agricultural	We consider it extremely	UK has not been observed.	prevent them spreading	
		habitats.	unlikely that the genetic	Seed removal from the site	seeds. Phosphinothrycin-	
			modification will affect these	will be rigorously managed.	based herbicides will not be	
			non-target organisms in any	The likelihood of this hazard	used on the trial site.	
			way.	resulting in environmental		
				harm is considered to be		
			Wheat can become infected	extremely low.		
			by several fungal pathogens in			
			the UK, including Septoria			
			tritici (Mycosphaerella			
			graminicola), yellow rust			
			(Puccinia striiformis) and			
			brown rust (Puccinia triticina),			
			as well as take-all disease			
			(Gaeumannomyces graminis			

			var tritici) Good phytosanitary			
			practice has been shown to be			
			important in preventing the			
			accumulation of high			
			concentrations of free			
			concentrations of free			
			the mechanisme underninging			
			the mechanisms underpinning			
			research. Even so, we			
			consider it extremely unlikely			
			that reduced free asparagine			
			concentration in the grain will			
			make the wheat more resistant			
			to fungal pathogens.			
			Wheat also interacts with			
			multiple fungi bacteria and			
			protists in the rhizospere, but			
			these interactions are not			
			expected to be affected in any			
			way by the traits carried by the			
			plants			
			plante.			
е	Potential effect on	By contact or indestion	The gRNA. Cas9 and bar	Some contact between the	No plant material from the	Overall risk is
	human or animal	of GM plant material.	genes are not expected to	GM plants and humans is	trial will enter the food or	extremely low.
	health due to the		result in the synthesis of	inevitable. People operating	animal feed chain.	,
	introduced genes		products that are harmful to	farm machinery and		
			human health. The primary	scientists working in the trial		
			trait of reduced free	site will come into physical		
			asparagine concentration in	contact with the plants.		
			the grain will have no effect on	However, it is extremely		
			human or animal health. Anv	unlikely that they will ingest		
			unknown hazards with respect	any plant material. It is more		
			to human health arising from	likely that small mammals		

				the expression and ingestion of foreign proteins will not be realised because the wheat plants will not be consumed by	such as mice, invertebrates and birds may come into contact and/or ingest plant material.		
1	f	Potential effects on biogeochemical processes (changes in soil decomposition of organic material)	Changes in biogeochemical processes may result from unintended changes in the modified plants or from unintended changes in soil microbes due to horizontal transfer of DNA.	The magnitude of harm is estimated to be extremely low. Biogeochemical processes are not expected to be affected by the cultivation of the GM plants.	The likelihood of changes to biogeochemical processes is considered to be very low. The area proposed to be planted with GMOs is small (a total of 50 $1.8 \times 6m$ plots) and temporary (lasting 10-12 months in each year of the five growing seasons of the trial).	No specific management strategies are planned to address this risk.	Overall risk is extremely low.
9	g	Possible environmental impact due to changes in cultivation practice	The cultivation practices applied to the trial are likely to have negligible environmental impact.	The magnitude of any effects arising from changes in cultivation practice will be negligible.	The frequency that this hazard may be realised is low. The trial comprises only $50 \times (6 \times 1.8m)$ plots, and will be sown for only five growing seasons.	None.	Overall risk is extremely low.

B7 The methods and plans for monitoring the genetically modified organisms and for responding to an emergency.

The site will be monitored regularly (at least weekly) during the growing period (September/October to August/September) and after the termination of the trial during the following two years. Records will be kept of each visit. The GM plants can be identified by polymerase chain reaction using primers specific for the *Cas9*, *gRNA* and *bar* genes. Primers have also been developed to detect the presence of the edited *TaASN2* genes. This will become important when the plants are transgene-free.

In the unlikely event that the integrity of the site is seriously compromised, the trial will be terminated and all plants (including GM and control wheat plots, and pollen barrier rows) will be destroyed using a suitable herbicide or by harvesting as deemed appropriate. All harvested material will be removed from the site and disposed of by incineration, autoclaving or deep burial at a local authority-approved landfill site by an approved contractor. Transportation of waste materials will be in secure containers and all transport of material will be logged. The phone numbers of all key staff will be available to site security and farm.