

### Appendix I: WP10 – Stock modelling

Prepared by UCL, EI

**BEIS Research Paper Number: 2021/017** 

Authors: Ian Hamilton, Shih-Che Hsu, Alberto Carron

#### **Section Contents**

| 1. \$  | Stock modelling                                         | 2  |
|--------|---------------------------------------------------------|----|
| 1.1    | Scope of WP10                                           | 2  |
| 1.2    | Methodology                                             | 2  |
| 1.2.   | .1 Predicting exposed brick cavity walls                | 2  |
| 1.2.   | .2 Mapping dwellings in high moisture exposure zones    | 4  |
| 1.3    | Results and discussion                                  | 6  |
| 1.3.   | .1 Predicting dwellings with exposed brick cavity walls | 6  |
| 1.3.   | .2 Dwellings in high moisture exposure zones            | 11 |
| 1.4    | Conclusions                                             | 13 |
| Refere | nces                                                    | 14 |
| Appen  | dix                                                     | 14 |

### Stock modelling

#### 1.1 Scope of WP10

The scope of this work package is to a) evaluate the building stock and the number of properties that had untreated, brick faced cavity walls in exposed areas, and b) to estimate the impact of treating those properties in terms of energy and carbon savings.

This scope reflects the concern from BEIS that there were significant challenges in understanding the number of properties with exposed brick cavity walls and how to better evaluate the "700,000 question". In consultation with the project team, it was highlighted that there was a lack of data at any meaningful scale to forecast the actual number of properties that had untreated, brick faced cavity walls in exposed areas. The scope of WP10 was oriented towards the investigation of alternate methods of estimating the number of dwellings with exposed brick cavity walls.

#### 1.2 Methodology

The stock analysis comprised two parts: a) the use of a detailed survey of English dwellings to estimate dwelling features that can predict the probability of having an exposed brick cavity wall; and, b) mapping dwellings in high moisture exposure zones across Great Britain.

### 1.2.1 Predicting exposed brick cavity walls

Across the stock, lacking direct observations of all dwelling wall types, there is a need to predict the probability of a dwelling having an exposed brick cavity wall (insulated or not). Further, it is important to be able to do this across a geographic scale that allows those dwellings to be allocated to appropriate exposure zones and therefore their risk of requiring specialized treatment when insulating the cavity.

The currently available 'big data' of buildings across the UK are contained within the National Energy Efficiency Data-framework (NEED) and the Energy Performance Certificates (EPC) bulk access database.

NEED, in its published format, is aggregated and anonymised, but the information includes several data points that would be useful for applying a predictive model, relating to the EPC band of the property (EE\_BAND), the wall construction (WALL\_CON), the presence of Cavity Wall Insulation (CWI) and the year of its installation where known (CWI\_YEAR). The full NEED data set held by BEIS goes down to individual property address and postcode details to which a classifier model of exposed brick cavity walls could be applied.

The EPC dataset represents an alternate, and accessible dataset that contains both the property location combined with limited information on the construction of the walls of that dwelling (similar to those in NEED, which assumes this database).

There are limits of the EPC dataset that are important to note, which include the quality of the data when calculating the EPC and the coverage of the data. While there are presently over 7 million EPCs registered, many of these are multiple EPC for the same property. It is estimated there are approximately 2.5 million dwellings with one or more EPCs within the registry. This means that of the 23 million dwellings across England, a little over 10% of dwellings have an EPC. This means that the dataset is limited in terms of its coverage across the country.

However, because the above datasets to not include information as to the nature of the wall type, beyond its insulation, these resources can only provide a base upon which to apply a predictive model. Such a model, however, would need to be able to make use of this available information as input to the prediction of having an exposed cavity wall.

Therefore, this section of the stock modelling focuses on using the English Housing Survey as an existing detailed survey of residential building energy performance and physical characteristics, including wall construction and wall

covering, to develop a classifier model for predicting the probability of exposed brick cavity walls. The model construction focuses on using the variables in the NEED and EPC data.

The steps in the analysis were:

- 1. Compile the English Housing Survey derived datasets (general, physical and interview) for a given survey year (2014/15 in this analysis);
- 2. Select variables that are likely accessible within NEED and the EPC data for testing (Table 1 below);
- 3. Sub-select all dwellings with Cavity Wall using the *<construction type>* variable;
- 4. Develop a variable *<Masonry Type>* for describing the exposure of the wall type, using the *<Predominant* type of wall finish> variable, where all dwellings with [masonry pointing] as exposed, and anything else as [other wall finish]
- 5. Use appropriate statistical models to train a model using several different methods for predicting the probability of a cavity wall constructed dwelling in the EHS as having masonry pointing (i.e. exposed).

| Tenure 2                                        |
|-------------------------------------------------|
| Dwelling type 3                                 |
| Dwelling age 3                                  |
| Useable floor area - original EHS definition    |
| Construction type                               |
| Predominant type of roof covering               |
| Predominant type of wall structure              |
| Predominant type of wall finish                 |
| Extent of double glazing                        |
| Main heating system                             |
| Main heating fuel                               |
| Loft insulation thickness 3                     |
| Energy efficiency rating band (SAP 2012)        |
| Government Office Region EHS version            |
| Rurality classification - morphology (2011 COA) |
| Nature of area                                  |

Table 1 - EHS variables used in modelling

The modelling method used the SAS 9.2 system to test a selection of model types, these included:

- 1. Logistic regression to estimate the probability of <Masonry\_type> (0=[*masonry pointed*],1=[*Other*]) using all available variables and then a selection of variables with an optimised significance level and AIC.
- Using GLM regression and LASSO (least absolute shrinkage and selection operator) selection to identify variables and classes with the highest predictive capability to identify dwellings with a higher probability of having masonry pointed walls. LASSO is suitable for modelling where there are high levels of multicollinearity or when seeking variable selection/parameter elimination.

### 1.2.2 Mapping dwellings in high moisture exposure zones

A missing component of the stock assessment is the number of properties that are within the different exposure zones (as defined in BS8104:1992) across Great Britain. To address this, GIS was used to construct a layer of those zones and to calculate the number of dwellings using mapped dwelling attribute data for across the country.

There are two parts to this process: (1) creating a projected shapefile (2) calculating the basic residential building information in the four exposure zones of wind-driven rain.

### 1.2.2.1 Creating a projected shapefile:

The wind-driven rain map derived from a pdf file of BS8104:1992 is a vector image, which was transferred to a shapefile, the commonly used format in the geographic information system (GIS). ArcGIS and QGIS geographic information systems were used to create the wind-driven rain shapefile and conduct the basic statistics. ArcGIS. ArcGIS and QGIS have their own strengths, so we used them according to our tasks.

Both ArcGIS and QGIS have only a limited process that transfers a vector pdf map to raster image, which would lose the precision of a projected mapping, especially on the edge of an image. Therefore, the creation of a projected map from the BS8104:1992 map (Figure 1 A below) used the online transferring system GeoConverter (<u>https://geoconverter.hsr.ch/vector</u>) to directly transfer the pdf format to a shapefile format.

Before transferring, the wind-driven rain map was separated in Adobe Illustrator to make sure there was no overlap in the image. Texts and points were removed from the original pdf image and the vector image was then taken apart into the islands of Great Britain and Northern Ireland and other smaller islands. These parts were then converted to four zones labelled in different colours in the (Figure 1 B).



Figure 1 (A) original pdf map from BS8104:1992; and (B) Vectorized map from GeoConverter

Because the original pdf file was not in GeoPDF format it held no projection and coordinates information that could be used when transferred to a .shp file format. Therefore, in order to match the map with the real UK map for the

subsequent statistical analysis we adopted the OpenStreetMap (<u>https://www.openstreetmap.org</u>) as the base map to process the georeferencing.

The steps of georeferencing in ArcGIS include using the referencing points to match the image border and resize the area part by part, defining the projection to the WGS84 datum, which is the same with the open street map coordinates system, editing the attribute table for exposure zones and merging all parts.

When creating a projected shapefile image, there is an issue about accuracy that should be mentioned. Because the original image in the pdf file is only a sketch map (i.e. a rough map) the edge of the map features cannot be matched precisely. In addition, the sketch map is not proportional to the real map (i.e. features, topography and curvature are not accounted for), which means we have to cut the map into several sections along with the latitude when matching border and area. This means the image we created would not be 100% the same with the original image in the pdf file.

In order to solve the problem of edge matching, we used the real UK map downloaded from the GADM (<u>https://gadm.org/index.html</u>) to overlay and re-project the image. In Figure 2 (A), which we called the 'real' exposure map, the white area is the area the sketch map cannot match with the real UK map after overlapping two maps. While Figure 2 (B), which we call the simulated exposure map, presents the map after we assign the white area to the closest exposure zone in QGIS using the digitalising tools to cut off the edges and assign them to an exposure zone. The overall effect of this processes is to ensure that all edges and topographic boundary areas (e.g. shorelines and islands) are allocated to their appropriate exposure zone.



Figure 2 - (A) the calculated exposure map; (B) the simulated exposure map

#### 1.2.2.2 Mapping underlying building stock

The projected exposure map of wind-driven rain shapefiles layers can easily be overlaid to a geo-referenced version of NEED. For illustration in this reporting, we overlapped this map with the OpenStreetMap shapefiles of the UK downloaded from the Geofabrik, which contains building type information (https://www.geofabrik.de/data/shapefiles.html).

### 1.3 Results and discussion

The following provides results of the stock modelling that focused on using readily available features from NEED and EPCs to predict the probability of having exposed brick cavity walls. It also presents the findings focused on mapping the moisture exposure zones that can subsequently be applied to NEED or EPC data to identify dwellings within high moisture exposure risk.

### 1.3.1 Predicting dwellings with exposed brick cavity walls

The modelling to predict the probability of dwellings with cavity walls having an exposed masonry used the selection of EHS variables within two main statistical models, standard logistic regression and GLM regression.

#### 1.3.1.1 Method 1: Logistic regression

The logistic regression modelling using the full selection of variables (Table 1) were found to have many variables with low predictive capability. Therefore, using that model, only those variables that had a Pearson Chi-Square value of <0.0001 were retained in selected variables model.

The selected model included:

P(masonry\_type) = dwelling\_age3, government region

The results shown in Table 2 of the model show that dwelling age and government office region are the only variables that are shown to have any predictive power when fitting a logistic model to estimate the probability of a cavity wall construction having a masonry pointed exposed wall.

Table 2 - Logistic regression model fit and results for all cavity walled dwellings and select variables

| Model Fit Statistics |           |               |  |  |  |  |
|----------------------|-----------|---------------|--|--|--|--|
|                      | Intercept | Intercept and |  |  |  |  |
| Criterion            | Only      | Covariates    |  |  |  |  |
| AIC                  | 6534.624  | 5754.636      |  |  |  |  |
| SC                   | 6541.602  | 5852.329      |  |  |  |  |
| -2 Log L             | 6532.624  | 5726.636      |  |  |  |  |

| Testing Global Null Hypothesis: BETA=0 |            |    |            |  |  |  |  |
|----------------------------------------|------------|----|------------|--|--|--|--|
| Test                                   | Chi-Square | DF | Pr > ChiSq |  |  |  |  |
| Likelihood Ratio                       | 805.9882   | 13 | <.0001     |  |  |  |  |
| Score                                  | 906.0259   | 13 | <.0001     |  |  |  |  |
| Wald                                   | 715.7412   | 13 | <.0001     |  |  |  |  |

| Type 3 Analysis of Effects |    |                 |            |  |  |
|----------------------------|----|-----------------|------------|--|--|
| Effect                     | DF | Wald Chi-Square | Pr > ChiSq |  |  |
| Dwelling age               | 5  | 399.9076        | <.0001     |  |  |
| Government Office Region   | 8  | 457.0777        | <.0001     |  |  |

| Analysis of Maximum Likelihood Estimates |               |    |          |          |            |            |
|------------------------------------------|---------------|----|----------|----------|------------|------------|
|                                          |               |    |          | Standard | Wald       |            |
| Parameter                                | Level         | DF | Estimate | Error    | Chi-Square | Pr > ChiSq |
| Intercept                                |               | 1  | 1.9349   | 0.0483   | 1602.0404  | <.0001     |
| Dwelling age                             | 1945 to 1964  | 1  | -0.1941  | 0.0666   | 8.4825     | 0.0036     |
| Dwelling age                             | 1965 to 1980  | 1  | 0.5335   | 0.0755   | 49.8859    | <.0001     |
| Dwelling age                             | 1981 to 1990  | 1  | 0.8470   | 0.1128   | 56.4103    | <.0001     |
| Dwelling age                             | post 1990     | 1  | 0.6359   | 0.0882   | 52.0416    | <.0001     |
| Dwelling age                             | pre 1919      | 1  | -0.6462  | 0.1431   | 20.3801    | <.0001     |
| Government Region                        | East          | 1  | 0.00061  | 0.0996   | 0.0000     | 0.9951     |
| Government Region                        | East Midlands | 1  | 0.5492   | 0.1349   | 16.5701    | <.0001     |

| Analysis of Maximum Likelihood Estimates |                          |    |          |          |            |            |
|------------------------------------------|--------------------------|----|----------|----------|------------|------------|
|                                          |                          |    |          | Standard | Wald       |            |
| Parameter                                | Level                    | DF | Estimate | Error    | Chi-Square | Pr > ChiSq |
| Government Region                        | London                   | 1  | -0.2158  | 0.1239   | 3.0355     | 0.0815     |
| Government Region                        | North East               | 1  | 0.4530   | 0.1302   | 12.0945    | 0.0005     |
| Government Region                        | North West               | 1  | -0.0483  | 0.0829   | 0.3400     | 0.5599     |
| Government Region                        | South East               | 1  | -0.2468  | 0.0781   | 9.9790     | 0.0016     |
| Government Region                        | West Midlands            | 1  | 0.6536   | 0.1314   | 24.7558    | <.0001     |
| Government Region                        | Yorkshire and the Humber | 1  | 0.5097   | 0.1135   | 20.1503    | <.0001     |

The above table includes the log parameter estimates for the selected dwelling age and region. Dwellings with cavity walls built between 1965 and 1990 are less likely to have masonry pointed exposed walls compared to dwellings built between 1919 to 1944, with this further decreasing among more newly constructed dwellings. The model also shows that dwellings constructed in London, South East and North West were more likely than dwellings in the South West to have exposed walls. This is illustrated using the odds ratios shown in Figure 3.



### Odds Ratios with 95% Profile-Likelihood Confidence Limits

Figure 3 - Logistic regression select model odds ratio results

It is recognized that dwellings in the South West are most likely to already have some form of covering on their walls, and this may also be true for other areas of the 'very severe' and 'severe' exposure zones. Therefore, a variation of the modelling was to concentrate on only those zones where there existed a high moisture exposure, i.e. the South West, West Midlands and the North West.

Table 3 below shows the logistics regression for only the Western Regions, note that for this analysis, energy performance certificate was retained as an additional feature for the model to fit. The results show that as dwelling age increased, so did the probability of a cavity wall being exposure masonry pointed – compared to 1919-1944 dwellings, and dwellings in the performance bands of C-E had higher probability than those in Level F.

Table 3 - Logistic regression model fit and results for all cavity walled dwellings in English western regions and select variables

| Model Fit Statistics |           |               |  |  |  |  |
|----------------------|-----------|---------------|--|--|--|--|
|                      | Intercept | Intercept and |  |  |  |  |
| Criterion            | Only      | Covariates    |  |  |  |  |
| AIC                  | 2794.091  | 2436.375      |  |  |  |  |
| SC                   | 2800.043  | 2513.750      |  |  |  |  |
| -2 Log L             | 2792.091  | 2410.375      |  |  |  |  |

| Testing Global Null Hypothesis: BETA=0 |            |    |            |  |  |  |  |
|----------------------------------------|------------|----|------------|--|--|--|--|
| Test                                   | Chi-Square | DF | Pr > ChiSq |  |  |  |  |
| Likelihood Ratio                       | 805.9882   | 13 | <.0001     |  |  |  |  |
| Score                                  | 906.0259   | 13 | <.0001     |  |  |  |  |
| Wald                                   | 715.7412   | 13 | <.0001     |  |  |  |  |

| Type 3 Analysis of Effects     |    |                 |            |  |  |  |
|--------------------------------|----|-----------------|------------|--|--|--|
| Effect                         | DF | Wald Chi-Square | Pr > ChiSq |  |  |  |
| Dwelling age                   | 5  | 399.9076        | <.0001     |  |  |  |
| Government Office Region       | 8  | 457.0777        | <.0001     |  |  |  |
| Energy Performance Certificate |    | 13.7710         | 0.0171     |  |  |  |

| Analysis of Maximum Likelihood Estimates |               |    |          |          |            |            |
|------------------------------------------|---------------|----|----------|----------|------------|------------|
|                                          |               |    |          | Standard | Wald       |            |
| Parameter                                | Level         | DF | Estimate | Error    | Chi-Square | Pr > ChiSq |
| Intercept                                |               | 1  | 1.2670   | 0.2052   | 38.1073    | <.0001     |
| Dwelling age                             | pre 1919      | 1  | -0.1076  | 0.2290   | 0.2206     | 0.6386     |
| Dwelling age                             | 1945 to 1964  | 1  | -0.2962  | 0.1036   | 8.1758     | 0.0042     |
| Dwelling age                             | 1965 to 1980  | 1  | 0.2782   | 0.1082   | 6.6088     | 0.0101     |
| Dwelling age                             | 1981 to 1990  | 1  | 0.5277   | 0.1566   | 11.3498    | 0.0008     |
| Dwelling age                             | post 1990     | 1  | 0.4645   | 0.1351   | 11.8260    | 0.0006     |
| Region                                   | North West    | 1  | 0.2127   | 0.0778   | 7.4655     | 0.0063     |
| Region                                   | West Midlands | 1  | 1.0293   | 0.1021   | 101.5331   | <.0001     |
| EPC                                      | В             | 1  | -0.3166  | 0.4905   | 0.4167     | 0.5186     |
| EPC                                      | С             | 1  | 0.5573   | 0.2181   | 6.5291     | 0.0106     |
| EPC                                      | D             | 1  | 0.3571   | 0.2110   | 2.8631     | 0.0906     |
| EPC                                      | E             | 1  | 0.1117   | 0.2430   | 0.2113     | 0.6457     |
| EPC                                      | G             | 1  | -0.2185  | 0.8504   | 0.0660     | 0.7972     |

#### 1.3.1.2 Method 2: GLM regression

The GLM regression using LASSO selection, which included the input of all the available variables (Table 1) were found to have a slightly improved statistical fit (compared to the logistic regression), but more importantly to help identify variables and classes that have explanatory power when estimating the probability of having an exposed brick cavity wall.

The LASSO method works by entering each variable with the aim of shrinking (i.e. reducing) the least absolute coefficient values being evaluated. Figure 4 below shows how the variables are entered with the aim of minimizing the parameters to the point of excluding variables that have no benefit to the estimate and therefore reduces the variance of the model.

The results of the modelling in Figure 4 and Table 4 show that the variable classes of Government Office Region: South West and Dwelling Age: 1919-1944 and pre-1919 had the highest coefficients for dwellings to have nonexposed walls. The other coefficients, dwelling ages built after 1965 and in mid, northern eastern government regions tended to have increased likelihood of exposed brick masonry pointing walls.



Figure 4 - LASSO regression model variable coefficient tests

Table 4 - GLM Lasso Regression model fit and results for all cavity walled dwellings

| Effects: | Intercept                                                                                  |
|----------|--------------------------------------------------------------------------------------------|
|          | Dwelling age 3: pre 1919, 1919 to 1944, 1945 to 1964, 1981 to 1990                         |
|          | EPC Band: C, E                                                                             |
|          | Region: East Midlands, London North East, South East, South West, West Midlands, Yorkshire |
|          | and the Humber                                                                             |
|          | Loft insulation thickness: none                                                            |
|          | Rurality classification: hamlets and isolated dwellings, urban > 10k                       |
|          | Useable floor area: 110 sqm or more                                                        |

| Analysis of Variance |      |           |         |         |  |  |  |  |
|----------------------|------|-----------|---------|---------|--|--|--|--|
| Sum of Mean          |      |           |         |         |  |  |  |  |
| Source               | DF   | Squares   | Square  | F Value |  |  |  |  |
| Model                | 17   | 111.84227 | 6.57896 | 60.16   |  |  |  |  |
| Error                | 7909 | 864.92397 | 0.10936 |         |  |  |  |  |
| Corrected Total      | 7926 | 976.76624 |         |         |  |  |  |  |

| Root MSE       | 0.33070 |
|----------------|---------|
| Dependent Mean | 0.14394 |
| R-Square       | 0.1145  |
| Adj R-Sq       | 0.1126  |

| AIC  | -9596.38324 |
|------|-------------|
| AICC | -9596.28712 |
| SBC  | -17400      |

| Parameter Estimates                                     |    |           |
|---------------------------------------------------------|----|-----------|
| Parameter                                               | DF | Estimate  |
| Intercept                                               | 1  | 0.899544  |
| Dwelling age: pre 1919                                  | 1  | -0.095126 |
| Dwelling age: 1919 to 1944                              | 1  | -0.211071 |
| Dwelling age: 1945 to 1964                              | 1  | -0.051496 |
| Dwelling age: 1981 to 1990                              | 1  | 0.009805  |
| EPC Band: C                                             | 1  | 0.010555  |
| EPC Band: E                                             | 1  | -0.011666 |
| Region: East Midlands                                   | 1  | 0.025565  |
| Region: London                                          | 1  | -0.003346 |
| Region: North East                                      | 1  | 0.015018  |
| Region: South East                                      | 1  | -0.012326 |
| Region: South West                                      | 1  | -0.237106 |
| Region: West Midlands                                   | 1  | 0.030460  |
| Region: Yorkshire and the Humber                        | 1  | 0.024372  |
| Loft insulation thickness: none                         | 1  | -0.031238 |
| Rurality classification: hamlets and isolated dwellings | 1  | -0.020556 |
| Rurality classification: urban > 10k                    | 1  | 0.020398  |
| Useable floor area: 110 sqm or more                     | 1  | -0.021149 |

N.B. green colours indicate a decrease in estimate for having a exposed brick wall, while orange denotes an increase

As above, the following model applied the GLM LASSO regression to only those regions in the South West, West Midlands and the North West, in order to identify dwelling features that increased the explanatory power of having exposed brick masonry pointed walls.

Table 5 below shows the GLM Lasso regression for only the Western Regions. The results show that dwellings built post-1990, having an EPC level C, in the West Midlands were shown, and in urban areas >10k. Conversely, the chances of having exposed brick cavity walls was reduced among properties built before 1964 and in the South West.

| Table 5 - GLM Lasso | Regression | model fi | t and | results | for al | l cavity | walled | dwellings |
|---------------------|------------|----------|-------|---------|--------|----------|--------|-----------|
|---------------------|------------|----------|-------|---------|--------|----------|--------|-----------|

| Effects: | Intercept                                           |
|----------|-----------------------------------------------------|
|          | Dwelling age: 1919 to 1944, 1945 to 1964, post-1990 |
|          | EPC Band: C                                         |
|          | Region: South West, West Midlands                   |
|          | Loft insulation thickness: none                     |
|          | Rurality classification: urban > 10k                |

| Analysis of Variance |      |           |         |         |  |  |  |  |
|----------------------|------|-----------|---------|---------|--|--|--|--|
|                      |      | Sum of    | Mean    |         |  |  |  |  |
| Source               | DF   | Squares   | Square  | F Value |  |  |  |  |
| Model                | 7    | 62.40278  | 8.91468 | 66.27   |  |  |  |  |
| Error                | 2833 | 381.12063 | 0.13453 |         |  |  |  |  |
| Corrected Total      | 2840 | 443.52341 |         |         |  |  |  |  |

| Root MSE       | 0.36678     |
|----------------|-------------|
| Dependent Mean | 0.80641     |
| R-Square       | 0.1407      |
| Adj R-Sq       | 0.1386      |
| AIC            | -2847.98786 |

| AICC | -2847.92428 |
|------|-------------|
| SBC  | -5643.37257 |

| Parameter Estimates                  |    |           |
|--------------------------------------|----|-----------|
| Parameter                            | DF | Estimate  |
| Intercept                            | 1  | 0.765399  |
| Dwelling age: 1919 to 1944           | 1  | -0.139957 |
| Dwelling age: 1945 to 1964           | 1  | -0.030373 |
| Dwelling age: post 1990              | 1  | 0.006676  |
| EPC Level: C                         | 1  | 0.012046  |
| Region: South West                   | 1  | -0.191134 |
| Region: West Midlands                | 1  | 0.053854  |
| Rurality classification: urban > 10k | 1  | 0.119626  |

N.B. green colours indicate a decrease in estimate for having a exposed brick wall, while orange denotes an increase

### **1.3.2 Dwellings in high moisture exposure zones**

Using QGIS, we allocated the area of the UK into the four exposure zones and the underlying building stock. Using the intersection tool and summarise function of the attribute table in ArcGIS a summary table is created for reference.

Figure 6 shows the England buildings located in the exposure zone 2 (i.e. Moderate) of wind-driven rain and the Table 6 - Part of the summary table of building types (ordered by count) in exposure zone 2 of England shows a part of the summary table of building types in exposure zone 2 of England. If we take a closer look in the exposure zone 2 of England, we chose the place near Sutton train station showed in figure 6 and labelled the residential and house categories of buildings in red.



Figure 5 - England buildings (in grey) located in the exposure zone 2

Table 6 and Figure 6 below illustrate how the GIS mapping layer is used to map buildings within the exposure zones. Table 3 shows all building polygons within the Geofabrik and OpenStreetMap database.

#### Table 6 - Part of the summary table of building types (ordered by count) in exposure zone 2 of England

| Туре               | Count   | Туре         | Count | Type        | Count | Туре         | Count | Туре         | Count |
|--------------------|---------|--------------|-------|-------------|-------|--------------|-------|--------------|-------|
|                    | 1217105 | conservato   | 1742  | manufactu   | 167   | transportat  | 52    | bridge       | 29    |
| residential        | 897181  | greenhouse   | 1741  | ruins       | 162   | military     | 49    | residential  | 29    |
| house              | 659565  | warehouse    | 1564  | supermark   | 158   | farmhouse    | 48    | family       | 28    |
| garage             | 74030   | hut          | 1487  | offices     | 157   | tower        | 48    | store        | 28    |
| terrace            | 40686   | pub          | 1416  | hall        | 144   | stadium      | 47    | village_ha   | 27    |
| industrial         | 24185   | semi-detac   | 1367  | factory     | 132   | car_port     | 46    | cinema       | 26    |
| retail             | 19685   | hospital     | 1208  | silo        | 130   | club_hous    | 46    | maisonette   | 26    |
| detached           | 18281   | tank         | 827   | maisonette  | 127   | sports_cen   | 46    | annex        | 24    |
| semidetached_house | 13597   | public       | 684   | houses      | 123   | substation   | 46    | restaurant   | 24    |
| school             | 13273   | flats        | 637   | prison      | 123   | derelict     | 45    | Y            | 24    |
| garages            | 12199   | college      | 584   | terraced_h  | 122   | library      | 45    | boathouse    | 23    |
| semi               | 12011   | train_statio | 560   | clubhouse   | 121   | mosque       | 44    | brewery      | 23    |
| apartments         | 10464   | stable       | 554   | bunker      | 114   | works        | 44    | part         | 23    |
| commercial         | 9945    | storage_tai  | 548   | beach_hut   | 100   | tower_blo    | 43    | townhouse    | 23    |
| bungalow           | 7774    | hotel        | 483   | cabin       | 96    | carport      | 42    | block        | 22    |
| barn               | 7286    | constructio  | 349   | utility     | 95    | place_of_v   | 40    | collapsed    | 22    |
| church             | 5185    | chapel       | 312   | kindergarte | 90    | Sheltered .  | 40    | fire_station | 22    |
| agricultural       | 4054    | dormitory    | 303   | mobile_ho   | 89    | leisure      | 38    | chimney      | 21    |
| static_caravan     | 3653    | civic        | 288   | grandstand  | 82    | retail_outle | 37    | conveyor     | 21    |
| farm_auxiliary     | 3634    | pavilion     | 283   | university  | 76    | bus_shelte   | 36    | cottage      | 21    |
| farm               | 3189    | service      | 281   | canopy      | 75    | heritage     | 36    | governme     | 21    |
| shed               | 2874    | airport      | 257   | shelter     | 75    | 1            | 33    | railway      | 20    |
| office             | 2310    | hangar       | 257   | chalet      | 73    | parking      | 32    | semidetacl   | 20    |
| shop               | 2176    | no           | 222   | semi-detac  | 63    | grain_silo   | 31    | depot        | 19    |
| roof               | 2089    | glasshouse   | 215   | bandstand   | 62    | temple       | 30    | kiosk        | 19    |
| university         | 2006    | stables      | 169   | amenity     | 57    | toilets      | 30    | museum       | 19    |



Figure 6 – All types of buildings located near Sutton train station with residential categories of buildings in red

### 1.4 Conclusions

The resulting outcome of the predictive modelling is that the likely available variables from NEED and EPCs for predicting the probability of a cavity walled dwelling having exposed brick walls (i.e. masonry pointing) will offer only limited power for predicting a dwelling having exposed brick cavity walls.

The models are designed to identify the 'probability' of dwellings having an unfilled cavity exposed brick wall. As the predictive probability of the models are low, they will need to be used to identify neighbourhood areas of 'risk' as compared to predicting any given dwelling's wall composition.

Despite the low predictive power, however, the analysis did identify those variables for data within NEED with the greatest explanatory power and these are related to dwelling location and dwelling age. This means that it would be possible to apply the above logistic or GLM Lasso models to NEED, for example, to identify properties with risk attributes within the severe exposure zones (i.e. zone 4) that might require extra consideration for hygrothermal treatment when filling the cavity with insulation.

When restricting the statistical modelling to only regions in the 'very severe' and 'severe' exposure zones for Wind Driven Rain, which comprise the western regions in England (Scotland and Wales were not modelled in this analysis), those results show a very similar picture to the whole of England in terms of features of the buildings that increase the probability or likelihood of having exposed brick facades. However, in the GLM regression with LASSO selection, the analysis identifies newer dwellings with an EPC C and in urban areas as having a higher likelihood of exposed brick facades.

The mapping of the moisture exposure zones in the form of a GIS shapefile provides an ability to BEIS to geospatially identify all the dwellings in NEED that might be within the moisture risk zones. BEIS can then use the statistical modelling to select dwelling attributes that have a greater/lower probability or coefficients of exposed brick cavity walls.

### References

Open Street Map, 2019. https://www.openstreetmap.org/

Geofabrik, 2019. https://www.geofabrik.de/data/shapefiles.html

GADM, 2019. https://gadm.org/index.html

GeoConverter, 2019. https://geoconverter.hsr.ch/vector

### **Appendix**

Exposure map shapefile:

ukexposure\_simulat ion\_map.zip

Exposure mapping building data table:

