This paper outlines the measures that will be put in place to control ground-borne noise and vibration from the operation of the Proposed Scheme’s temporary and permanent railways.

It will be of particular interest to those potentially affected by the Government’s proposals for high speed rail.

This paper was prepared in relation to the promotion of the High Speed Rail (West Midlands-Crewe) Bill which is now enacted. It was finalised at Royal Assent and no further changes will be made.

If you have any queries about this paper or about how it might apply to you, please contact the HS2 Helpdesk in the first instance.

The Helpdesk can be contacted:

by email: HS2enquiries@hs2.org.uk
by phone (24hrs): 08081 434 434
 08081 456 472 (minicom)
or by post: High Speed Two (HS2) Limited
 2 Snowhill, Queensway
 Birmingham
 B4 6GA
1. Introduction

1.1. High Speed Two (HS2) is the Government’s proposal for a new, high speed north-south railway. The proposal is being taken forward in phases: Phase One will connect London with Birmingham and the West Midlands. Phase 2a will extend the route to Crewe. Phase 2b will extend the route to Manchester, Leeds and beyond. The construction and operation of Phase One of HS2 is authorised by the High Speed Rail (London – West Midlands) Act 2017.

1.2. HS2 Ltd is the non-departmental public body responsible for developing and promoting these proposals. The company works to a Development Agreement made with the Secretary of State for Transport.

1.3. In July 2017, the Government introduced a hybrid Bill to Parliament to seek powers for the construction and operation of Phase 2a of HS2 (the Proposed Scheme). The Proposed Scheme is a railway starting at Fradley at its southern end. At the northern end it connects with the West Coast Main Line (WCML) south of Crewe to allow HS2 services to join the WCML and call at Crewe Station. North of this junction with the WCML, the Proposed Scheme continues to a tunnel portal south of Crewe.

1.4. The work to produce the Bill includes an Environmental Impact Assessment (EIA), the results of which are reported in an Environmental Statement (ES) submitted alongside the Bill. The Secretary of State has also published draft Environmental Minimum Requirements (EMRs), which set out the environmental and sustainability commitments that will be observed in the construction of the Proposed Scheme.

1.5. The Secretary of State for Transport is the Promoter of the Bill through Parliament. The Promoter will also appoint a body responsible for delivering the Proposed Scheme under the powers granted by the Bill. This body is known as the ‘nominated undertaker’. The nominated undertaker will be bound by the obligations contained in the Bill and the policies established in the EMRs. There may be more than one nominated undertaker.

1.6. These information papers have been produced to explain the commitments made in the Bill and the EMRs and how they will be applied to the design and construction of the Proposed Scheme. They also provide information about the
Proposed Scheme itself, the powers contained in the Bill and how particular decisions about the Proposed Scheme have been reached.

2. Overview

2.1. This Information Paper describes the application of the aims set out in the Noise Policy Statement for England that relate to ground-borne noise and vibration from the operation of both the temporary and permanent railways. It outlines the measures that will be put in place to control the effects of ground-borne noise and vibration that might otherwise arise from the operation of the temporary and permanent railways.

2.2. Vibration from the temporary and permanent railways may propagate through the ground to surrounding buildings where it might result in the vibration of floors, walls and ceilings, which could also be heard as a low frequency ‘rumbling’ sound; the latter is referred to as ground-borne noise.

3. Objectives

3.1. The nominated undertaker will design the temporary3 and permanent railways such that the level of ground-borne noise and vibration predicted in all reasonably foreseeable circumstances does not exceed the significant observed adverse effect levels given in Table 1 in Appendix B.

3.2. The nominated undertaker will take all reasonably practicable steps to construct, operate and maintain the temporary and permanent railways so that the design objective stated in paragraph 3.1 is fulfilled.

3.3. In addition, the nominated undertaker will take all reasonable steps to design, construct, operate and maintain the temporary and permanent railways such that, in all reasonably foreseeable circumstances, ground-borne noise and vibration does not exceed the lowest observed adverse effect levels given in Table 1 in Appendix B.

3.4. The nominated undertaker will reduce ground-borne noise and vibration from the temporary and permanent railways as far as is reasonably practicable.

3.5. In addition to the effects on people inside residential dwellings, it is recognised that impacts can also occur on people and activities in noise sensitive non-residential locations.

3.6. The nominated undertaker will design the temporary and permanent railways such that the level of ground-borne noise and vibration predicted in all reasonably foreseeable circumstances does not exceed the impact levels given in Tables 2 and 3 in Appendix B. The nominated undertaker will take all reasonably practicable steps to construct, operate and maintain the temporary and permanent railways so that this design objective is fulfilled.

3 Temporary railway is required for tunnelling activities during construction.
4. Control Measures

4.1. The likely ground-borne noise and vibration impact of the temporary and permanent railways has been assessed and the findings reported in the Environmental Statement.

4.2. Ground-borne noise and vibration from the temporary and permanent railways will be controlled by the design and maintenance of the train and track.

4.3. To control ground-borne noise and vibration from the temporary and permanent railways, the nominated undertaker will be required to do the following in relation to the track systems:

- at design stage, predict, through the use of appropriate modelling, the engineering requirements of the track system that will fulfil the objectives;
- design a standard track form with the objective of meeting as many of those engineering requirements identified in the previous bullet as can reasonably be achieved by such a standard track system;
- design an enhanced track form for locations where it is predicted that the standard track system will not meet the engineering requirements or to discharge other project commitments and undertakings;
- translate the engineering requirements into contract specifications for the track systems; and
- procure, install and maintain the track systems to meet the contract specifications established above.

4.4. To ensure that the measures to control ground-borne noise and vibration are reasonable, the nominated undertaker will take account of the set of shared UK principles that underpin the Government’s sustainable development strategy\(^4\).

5. More information

5.1. More detail on the Bill and related documents can be found at: www.gov.uk/HS2

\(^4\) TSO (The Stationery Office) (2005), Securing the future: delivering UK sustainable development strategy, London.
Appendix A

The Proposed Scheme’s Operational Ground-borne Noise and Vibration Policy

1. The aims set out in the Noise Policy Statement for England (NPSE) apply to the design, construction and operation of the Proposed Scheme.

 Noise Policy Aims
 Through the effective management and control of environmental, neighbour and neighbourhood noise within the context of Government policy on sustainable development:
 - avoid significant adverse impacts on health and quality of life;
 - mitigate and minimise adverse impacts on health and quality of life; and
 - where possible, contribute to the improvement of health and quality of life.

2. Government’s guiding principles of sustainable development include: ensuring a strong, healthy and just society; using sound science responsibly; living within environmental limits; achieving a sustainable economy; and promoting good governance.

3. There is a need to integrate consideration of the economic and social benefit of the activity or policy under examination with proper consideration of the adverse environmental effects, including the impact of noise on health and quality of life. This should avoid noise being treated in isolation in any particular situation.

4. The first two aims of the NPSE follow established concepts from toxicology that are applied to noise impacts, for example, by the World Health Organisation. They are:
 - NOEL – No Observed Effect Level - the level below which no effect can be detected. In simple terms, below this level, there is no detectable effect on health and quality of life due to the noise; and
 - LOAEL – Lowest Observed Adverse Effect Level - the level above which adverse effects on health and quality of life can be detected.

5. The NPSE extends these to the concept of a significant observed adverse effect level.

5 It is important to note that as defined in the Control of Pollution Act and Environmental Protection Act, noise as considered in Government legislation and policy includes vibration.
6. The NPSE notes "It is not possible to have a single objective noise-based measure that defines SOAEL that is applicable to all sources of noise in all situations. Consequently, the SOAEL is likely to be different for different noise sources, for different receptors and at different times".

Planning Practice Guidance - Noise (2014)

7. Government's Planning Practice Guidance on noise (PPG) provides guidance on the effects of noise exposure, relating these to people's perception of noise, and linking them to the NOEL and, as exposure increases, the LOAEL and SOAEL.

8. As exposure increases above the LOAEL, the noise begins to have an adverse effect and consideration needs to be given to mitigating and minimising those effects, taking account of the economic and social benefits being derived from the activity causing the noise. As the noise exposure increases, it will then at some point cross the SOAEL boundary.

9. The LOAEL is described in PPG as the level at which "noise starts to cause small changes in behaviour and/or attitude, e.g. turning up volume of television; speaking more loudly; where there is no alternative ventilation, having to close windows for some of the time because of the noise. Potential for some reported sleep disturbance. Affects the acoustic character of the area such that there is a perceived change in the quality of life".

10. PPG identifies the SOAEL as the level above which "noise causes a material change in behaviour and/or attitude, e.g. avoiding certain activities during periods of intrusion; where there is no alternative ventilation, having to keep windows closed most of the time because of the noise. Potential for sleep disturbance resulting in difficulty in getting to sleep, premature awakening and difficulty in getting back to sleep. Quality of life diminished due to change in acoustic character of the area".

HS2 Environmental Policy (2019)

11. The HS2 environmental policy sets out HS2 Ltd's commitment to be an exemplar project. It further states that we will seek to minimise the impact of HS2 construction and operation on people and the environment including effects from air pollution, flooding and noise & vibration.

LOAELs for ground-borne noise and vibration

12. An indoor sound level of 35 dB L_{pASmax} in any habitable room, is considered the LOAEL for ground-borne noise.

13. A low level of annoyance would be expected at ground-borne noise levels at or below 35 dB L_{pASmax}.

14. Vibration (indoors, near the centre of any dwelling room on the ground floor) of 0.2 VDV m/s$^{1.75}$ daytime (0700-2300) and/or 0.1 VDV m/s$^{1.75}$ night time (2300 – 0700) are considered the LOAELs for ground-borne vibration.
At these values, the relevant British Standard on human exposure to vibration in buildings suggest a low probability of adverse comment.

SOAEf for ground-borne noise and vibration

An indoor sound level of $45 \text{ dB } L_{	ext{pASMax}}$, in any habitable room, is considered the SOAEL for ground-borne noise.

A significant number of people would be expected to be seriously annoyed at or above ground-borne noise levels of $45 \text{ dB } L_{	ext{pASMax}}$.

Vibration (indoors, near the centre of any dwelling room on the ground floor) of $0.8 \text{ VDV m/s}^{\text{~2.75}}$ daytime (0700-2300) and/or $0.4 \text{ VDV m/s}^{\text{~2.75}}$ night time (2300 – 0700) are considered the SOAEf for ground-borne vibration.

At these levels, relevant British Standard on human exposure to vibration in buildings suggest that adverse comment is probable.
Appendix B

Ground-borne noise and vibration impact and effect levels from the operational railway

<table>
<thead>
<tr>
<th>Ground-borne noise</th>
<th>Lowest Observed Adverse Effect Level</th>
<th>(L_{\text{pASMax}}) [dB]</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant Observed Adverse Effect Level</td>
<td>(L_{\text{pASMax}}) [dB]</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>Lowest Observed Adverse Effect Level</td>
<td>(\text{VDV}_{\text{day}}) [m/s^{1.75}]</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{VDV}_{\text{night}}) [m/s^{1.75}]</td>
<td>0.1</td>
</tr>
<tr>
<td>Significant Observed Adverse Effect Level</td>
<td>(\text{VDV}_{\text{day}}) [m/s^{1.75}]</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{VDV}_{\text{night}}) [m/s^{1.75}]</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 2 - Ground-borne noise impact levels for non-residential buildings

<table>
<thead>
<tr>
<th>Examples</th>
<th>(L_{\text{pASMax}}) [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large auditoria; and concert halls</td>
<td>25</td>
</tr>
<tr>
<td>Sound recording & broadcast studios; theatres, and small auditoria</td>
<td>30</td>
</tr>
<tr>
<td>Places of meeting for religious worship; courts; cinemas; lecture theatres; museums; and small auditoria or halls</td>
<td>35</td>
</tr>
<tr>
<td>Offices; schools; colleges; hospitals; hotels; and libraries</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 3 - Ground-borne vibration impact levels for non-residential buildings

<table>
<thead>
<tr>
<th>Examples</th>
<th>(\text{VDV}_{\text{day}}) [m/s^{1.75}]</th>
<th>(\text{VDV}_{\text{night}}) [m/s^{1.75}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotels; hospital wards; and education dormitories</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Offices; Schools; and Places of Worship</td>
<td>0.4</td>
<td>n/a</td>
</tr>
<tr>
<td>Workshops</td>
<td>0.8</td>
<td>n/a</td>
</tr>
<tr>
<td>Vibration sensitive research and manufacturing (e.g. computer chip manufacture); hospitals with vibration sensitive equipment / operations; universities with vibration sensitive research equipment / operations</td>
<td>Risk assessment will be undertaken based on the information currently available for the relevant equipment / process, or where information provided by the building owner or equipment manufacturer.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C

Glossary

Decibel (dB) - Between the quietest audible sound and the loudest tolerable sound there is a ten million to one ratio in sound pressure (measured in Pascal (Pa)). Because of this wide range, a level scale called the decibel (dB) scale, based on a logarithmic ratio, is used in sound measurement. Audible sound covers a range of approximately 0-140 dB.

dB(A) - The human ear system does not respond uniformly to sound across the detectable frequency range and consequently instrumentation used to measure sound is weighted to represent the performance of the ear. This is known as the 'A weighting' and is written as 'dB(A)'.

L_{pASMax} - the maximum A-weighted sound pressure level attained during a given time interval, T (30 seconds, 5 minutes etc) measured using a noise meter's slow (S) time weighting setting. It is used internationally in the measurement and assessment of ground-borne noise from railways.

Permanent railway – the railway infrastructure used to carry operational train services.

Temporary railway - railway laid inside a tunnel to transport material, personnel and equipment to and from the tunnel boring machine (TBM) during the tunnel's construction.

Vibration Dose Value (VDV) - measure used to estimate the probability of adverse comment which might be expected from human beings experiencing vibration in buildings.