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Machine learning offers Defence significant benefits, such as increasing the amount of data 
that can be analysed and reducing the load on human analysts. State-of-the-art approaches 
for machine learning, such as deep learning, can achieve high accuracy on a wide range of 
problems if sufficient training data is available. 

Whilst there are a large number of problems in Defence which could benefit from machine 
learning, for many of these, state-of-the-art machine learning models cannot be applied 
due to a lack of training data or because of the expense and time required to label  
sufficient examples. 

Machine learning is a data driven approach, with deep learning models usually requiring 
thousands of examples per class. In a limited data problem, there is not the large amount 
of data in the problem of interest needed to train a model, so we must use limited data 
approaches which generally utilise large labelled datasets with similar distributions or 
human knowledge to allow it to adapt rapidly to a small dataset. Whilst limited data 
machine learning approaches all improve over classical machine learning approaches for 
problems with a small amount of data, the best way to improve machine learning in limited 
data scenarios is to collect and label more data. In Defence there are a large number of 
problems where collection of further data is not possible or cost effective.  

This handbook looks to provide a guide to the landscape of machine learning techniques 
for limited data problems in 2020. It is designed to inform and guide machine learning 
practitioners on the limited data machine learning approaches currently possible.  
This captures some of the knowledge gained from Dstl research into low-shot learning 
carried out by the Future of AI for Defence project, part of the Autonomy programme. 
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How much data is required?

002 Machine Learning with Limited Data

As a data driven approach, machine 
learning is heavily reliant on the availability 
of training data. The amount of labelled 
data required to train a machine learning 
model depends on the dataset and machine 
learning model, with complex datasets and 
deeper models typically requiring more 
data for training. 

Deep neural networks are currently the 
state-of-the-art machine learning approach 
for most problems. Deep neural networks 
allow far more generalisation than shallow 
neural networks and traditional machine 
learning approaches, and therefore achieve 
significantly better accuracy. The key 
challenge with applying deep learning 
to a problem is the large amount of data 
required to train deep learning models. 

When the amount of data is limited, 
machine learning models tend to overfit. 
This is when the model is over optimised  
to the training data. Overfitting will 
mean that the model will not be able to 
generalise to unseen examples, resulting  
in poor performance.

Heuristically the training of deep neural 
networks requires thousands of examples 
per class. When there are problems with 
tens or hundreds of examples per class,  
we should consider limited data  
learning approaches. 

The learning with limited data approaches 
considered in this guide look to use the 
power of deep neural networks on problems 
where there is insufficient data to train 
them classically.

A comparison of the performance of  
traditional machine learning and neural 
networks when training data is limited.

Deep neural network

Shallow neural network

Traditional machine learning

Data

Pe
rf

or
m

an
ce

An example of the performance of  
a deep neural network when training  
data is limited.
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Human ability to learn with limited data
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Most humans are able to learn new objects 
when given only a couple of examples. 
There are a number of different ways that 
humans approach learning with limited 
data, such as using prior experience, 
comparing known and unlabelled examples 
and the ability to internalise semantic 
descriptions of the object of interest. 

The learning process of babies is of 
particular interest for machine learning as 
initially a machine learning model has no 
prior experience to exploit. If we can start 
to train machine models in a similar manner 
to how babies learn, machine learning 
models may be able to get closer to the 
human ability at learning with limited data.

Many of the machine learning approaches 
for limited data problems are inspired 
by the human approach to these tasks. 
Data driven approaches look to use prior 
experience for low-shot problems, or learn 
how to learn tasks. 

Approaches to machine learning with 
limited data also look to leverage the 
human ability at recognising objects with 
only a few examples, through human 
labelling of examples or semantically 
describing objects to aid classification.

6 Lessons from Babies (Smith et al. 2005):

1	 �Babies’ experience of the world is 
profoundly multimodal. 

2	� Babies develop incrementally, and they 
are not smart at the start. 

3	� Babies live in a physical world, full of rich 
regularities that organise perception, 
action, and ultimately thought. 

4	� Babies explore – they move and act in 
highly variable and playful ways that 
are not goal-oriented and are seemingly 
random. 

5	� Babies act and learn in a social world 
in which more mature partners guide 
learning and add supporting structures 
to that learning.

6	� Babies learn a language, a shared 
communicative system that is symbolic. 

A limited data problem from the  
Anglo Saxon alphabet (Lake et al. 2015).  
When given a single example of an  
unseen character (red), most humans  
are able to find all other examples (blue).

Machine Learning with Limited Data



Limited data problems
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Types of problem
Classification 
Determining the class of the example.

Regression 
Approximating the value of a function.

Object detection 
Localising and classifying objects.

Event detection 
�Detecting and classifying events in 
temporal data for example time series, 
audio or video.

Segmentation 
Partitioning the pixels of an image into 
multiple segments representing classes.

Reinforcement learning 
Teaching an agent to take the best  
actions to achieve a goal.

Machine learning  
problems in datasets
Imagery 
Object detection, segmentation and 
classification of overhead or natural images.

Time series 
Classification and event detection in single 
and multi-dimensional time series.

Text 
Natural language processing, generation 
and question answering.

Video 
Object detection and event detection.

Audio 
Event detection and classification.

Structured data 
Regression or classification for tabular data.

Machine learning with limited data can 
be required in all types of problem and 
dataset. Most of the academic research  
on learning with limited data has centred 
on image classification problems but  
many of these techniques should  

apply directly to any machine learning 
problem or dataset. 

Some examples of problems and datasets 
that machine learning with limited data 
have been applied to are:

Machine Learning with Limited Data



Selecting the approach
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Small amount of data Large amount of data

Mostly
unlabelled

Mostly
labelled

Machine Learning with Limited Data

Large amount of data, 
mostly unlabelled

◼	 Semi-supervised learning
◼	 Active learning
◼	 Unsupervised learning 
◼	 Self-supervised learning

See Page 020

Large amount of data, 
mostly labelled

◼	 Deep learning

Small amount of data, 
mostly unlabelled

◼	� Zero-shot learning
◼	 Manual labelling

See Page 006

Small amount of data, 
mostly labelled

◼	� Traditional machine 
learning

◼	 Meta-learning
◼	 Knowledge reasoning

See Page 008

Model refinement

See Page 025



For some Defence problems we may not have any labelled examples of the event or object 
of interest, but we may have unlabelled examples or information from other sources, such 
as text or semantic descriptions. This section considers approaches which leverage semantic 
descriptions of the event or object of interest to train the model. 

Whilst these approaches can be powerful for some problems, if there is unlabelled data 
available one would expect the best performance by manually labelling the data and 
considering the approaches for a small amount of data which is mostly labelled.

Small amount of data, 
mostly unlabelled

006 Machine Learning with Limited Data

Small amount of data, mostly unlabelled

Yes

Manually label the data 
and apply techniques  
for small amount of  
data, mostly labelled

See Page 008

Zero-shot learning
See Page 007

Is there data available which 
could be labelled?

No
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Zero-shot learning looks to apply deep 
learning techniques to problems where 
there is no training data available. Instead 
zero-shot learning uses descriptions of 
concepts to train the model. 

Zero-shot learning approaches
User-defined attributes – Attributes 
defined by human experts or concept 
ontology.
Relative attributes – Measuring attributes 
relative to other examples.
Data-driven attributes – Augmenting  
user-defined approaches by learning  
further attributes from data. 
Concept ontology – Combining 
embeddings of data and ontologies, such 
as WordNet, and leveraging the ontology 
structure to classify.
Semantic word embedding – Utilising  
a semantic word vector space learned  
from linguistic knowledge bases. 

Most zero-shot learning approaches take 
an embedding approach, where the data 
is embedded into a vector space alongside 
an embedding of the attribute information. 
Examples are then classified using the 
mutual embeddings.

Datatypes – Zero-shot learning is generally 
applied to classification in image or video 
datasets. Recently a few applications of zero-
shot learning for semantic segmentation  
and object detection have been published.

 

Implementations – Many of the recent 
zero-shot learning models have code 
available on GitHub.

Performance – State-of-the-art zero-
shot learning approaches have achieved 
over 80% accuracy on the Animals with 
Attributes dataset (Lampert et al. 2009) 
and over 60% accuracy on the SUN scene 
understanding dataset (Xiao 2010). These 
are both standard research datasets.

Challenges:
◼	� Generating a suitably labelled 

training set. The labelling required 
is significantly more detailed than is 
available in most research datasets.

Requirements:
◼	� A large dataset with relevant 

attributes labelled for base training.

Zero-shot learning

An image of a tank and corresponding  
example description. 

MetalTracksGun3D Camouflage

Tank

Vehicle

Small amount of data, mostly unlabelled

TRL: 2

Machine Learning with Limited Data



008

Defence is typically interested in rare 
events, whether that is to identify unusual 
or unexpected objects, or events that have 
not previously occurred. In these scenarios 
we may only have a small number of 
examples of events or objects of interest, 
but a large amount of data to find other 
examples of these events or objects in. 
Computers are very effective at searching 
large amounts of data, so if we can apply 
machine learning to problems with only  
a few examples, we can significantly  
reduce the load on analysts.

A number of approaches have been 
developed to train machine learning models 
on small amounts of labelled data. In the 
absence of sufficient data to train classical 
machine learning models in the problem of 
interest, these models look to utilise prior 
experience learned from similar datasets with 
large amounts of labelled data, or use human 
knowledge to reduce the training required.

Collecting and labelling more data,  
if possible, is the best way to improve the 
accuracy achieved by machine learning  
on limited data problems.

Machine Learning with Limited Data

Small amount of data, 
mostly labelled

Traditional machine learning
See Page 009

Knowledge enhanced machine learning
See Page 017

Small amount of data, mostly labelled

No

Yes

Yes

Meta-learning
See Page 010

Could the class be 
described semantically?

Is there a large amount of data in a similar domain?

No



Traditional machine learning

Small amount of data, mostly labelled

009

Whilst deep learning approaches are the 
state-of-the-art machine learning models, 
they require large amounts of data to be 
trained. Shallower neural networks and 
traditional machine learning require less 
data to train and can outperform deep 
neural networks in limited data scenarios. 

Traditional machine learning 
approaches
Support Vector Machines – Learn a 
hyperplane to separate the space into  
two-regions for two-way classification. 
Kernels can be used to map the space in 
order to apply SVMs to problems which  
are not linearly-separable.
Decision Trees – Learning the structure and 
rules of a decision tree to classify examples. 
Ensembles of decision trees, known as 
random forests, are often used to reduce 
the overfitting of decision trees. 
Multi-Layer Perceptrons – An artificial 
neural network approach consisting of 
multiple layers of perceptrons. A perceptron 
is a model of a neuron, which outputs  
a linear combination of the inputs. MLPs  
are then trained via backpropagation.

Datatypes – Traditional machine learning 
methods generally take a vector input,  
so for the complex data structures of 
interest to Defence, such as imagery, 
feature extraction is generally required. 

Implementations – The Scikit-learn 
python library implements most traditional 
machine learning approaches.

Performance – For simple problems, 
traditional machine learning approaches 
can achieve high accuracy. The training of 
traditional machine learning approaches 
still needs a number of examples per class, 
typically hundreds. 

Challenges:
◼	� Suitable pre-processing to  

effectively train these models  
on complex datasets.

Requirements:
◼	� Hundreds of examples per class.

TRL: 6

Machine Learning with Limited Data

A comparison of the performance of  
traditional machine learning and neural 
networks when training data is limited.

Deep neural network

Shallow neural network

Traditional machine learning
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The goal of meta-learning is to learn  
how a machine learning model learns  
and leverage this to train the model  
more quickly. A meta-learner is trained  
on a number of similar learning tasks.  
This allows it to learn the optimal way 
to learn an unseen task. For limited data 
problems, meta-learning can be used  
to learn how to train a task when given  
only a few examples, rapidly adapt  

Meta-learning

Small amount of data, mostly labelled

010

Types of Meta-learning

Learning from memory
Augmenting a neural network with an 
external memory source to remember 
examples seen previously.

Learning as optimisation
Expressing meta-learning as an 
optimisation problem, either using a second 
network to predict parameters or learning 
an initialisation for the neural network.

0 0*1

0*2
0*3

Meta-learning Task-learning

to a new environment and generalise  
to unseen tasks. 

Meta-learning is a data driven approach,  
so it requires a large number of tasks from 
a similar dataset for meta-training. Once 
the meta-model is trained, it can be applied 
to learn an unseen task with limited data. 
Meta-learning also supports life-long 
learning so the model can be improving  
as it is being used.

TRL: 1-3

Machine Learning with Limited Data
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Learning to compare
Leveraging similar features in the examples, 
these approaches embed examples into a 
vector space and then use a metric to classify.

Learning by task inference
Using prior knowledge of the structure of 
naturally occurring tasks to improve model 
performance.

Machine Learning with Limited Data

Small amount of data, mostly labelled
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Few-shot learning is an approach to 
classification when there are a small 
number of examples per class. Few-shot 
learning considers N-way k-shot problems, 
in which we have N classes and each class 
has k labelled examples.  

Few-shot learning uses meta-learning 
across a range of classification tasks to 
adapt rapidly to a new task. The meta-
learning model is trained on a large set of 
N-way k-shot tasks from a similar dataset.  

Learning to compare:
◼	� Matching Networks (Vinyals et al. 2016).
◼	� Prototypical Networks (Snell et al. 2017). 
◼	� Relation Networks (Sung et al. 2018)

Learning as optimisation:
◼	� MAML (Finn et al. 2017).
◼	� �Meta Networks (Munkhdalai and Yu 

2017).
◼	� SNAIL (Mishra et al. 2018).

Few-shot learning

Small amount of data, mostly labelled – Meta-learning

?

Dog

Cat

Tiger

Tortoise

Lion

A 5-way 4-shot problem. 

TRL: 3
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Datatypes – The approaches to few-shot 
learning from literature focus on image 
classification, with only a few examples 
considering other datasets, such as  
time-series. Many of the few-shot learning 
approaches for image classification could 
be adapted for other datasets by replacing 
the embedding neural network, or are 
model agnostic so could be applied to  
any model.

Implementations – Most recent papers  
on few-shot learning have made their code 
available on GitHub. These implementations 
are typically specific to the datasets tested 
in the paper so require adapting to new 
datasets. Dstl have modified some of these 
models to apply to Defence and more 
general datasets.

Performance – On the miniImageNet 
dataset (Vinyals et al. 2016) the current  
best performing models achieving around 
80% accuracy on 5-way 5-shot tasks and 
60% accuracy on 5-way 1-shot tasks.

Challenges:
◼	� Few-shot learning requires the  

task to be structured as a N-way 
k-shot problem.

◼	� Hyper-parameter optimisation  
can be difficult.

Requirements:
◼	� A large dataset from a similar 

distribution.
◼	�� Access to high performance 

compute to train the meta-learner.

013

Meta-learning – Small amount of data, mostly labelled
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Few-shot segmentation  
and object detection

Many of the approaches to few-shot 
learning and meta-learning can also be 
applied to image segmentation and  
object detection problems.

In few-shot segmentation we look to 
classify the pixels of the image into N 
classes where we have k examples for 

each of the N classes. In few-shot object 
detection we look to detect N classes of 
object using k examples per class. These 
problem structures mirror the N-way k-shot 
problems used for few-shot classification.

An example of segmentation and object detection 
on overhead imagery (Tanner et al 2009).

TRL: 2

Machine Learning with Limited Data

Small amount of data, mostly labelled – Meta-learning



Challenges:
◼	� Few-shot segmentation and object 

detection are immature and have 
only been applied to relatively 
simple research datasets.

◼	� Segmentation models are complex 
which makes training meta-learners 
difficult and computationally 
expensive.

◼	� Hyper-parameter optimisation  
can be difficult.

Requirements:
◼	� A large dataset of similar problems.
◼	� Access to high performance 

compute to train the meta-learner.

Datatypes – Few-shot segmentation and 
object detection have currently only been 
applied to research datasets such as PASCAL 
VOC (Everingham et al. 2010) and FSS-1000 
(Li et al. 2020).

Implementations – Some of these 
approaches have code available on GitHub. 
At Dstl we have implemented some 
of the base meta-learning techniques 
using standard segmentation and object 
detection models. 

Performance – State-of-the-art few-shot 
segmentation and object detection models 
demonstrate a significant improvement in 
mean IOU (Intersection over Union) over 
fine-tuning approaches.

The improvement in mean IOU compared to 
fine-tuning (MetaSegNet from Tian et al 2020).

015Machine Learning with Limited Data

Meta-learning – Small amount of data, mostly labelled
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Challenges:
◼	� Meta-reinforcement learning has 

only been applied to bounded 
challenges, such as research 
datasets and simple robots.

Requirements:
◼	� A task where the goal can be 

randomly generated.
◼	� Access to high performance 

compute to train the meta-learner.

In reinforcement learning, limited data 
problems occur when a model is required 
to adapt quickly to a new scenario or 
reinforcement learning is used to train 
a real-world agent, such as a robot, and 
extensive training is not possible. Meta-
learning is able to train reinforcement 
learning models to adapt rapidly to new 
environments.

A common approach to meta-
reinforcement learning is learning an 
initial state of the agent, such that it can 
be updated in a few training runs. This 
approach was introduced in the MAML 
model (Finn et al. 2017) and there has  
been a large number of papers developing 
meta-reinforcement learning recently.

Meta-reinforcement learning can also 
help to train real-world agents through 
simulation, such that they can better 
handle the uncertainty present in the  
real-world. This has recently been applied  
to train a robot hand to solve a Rubik’s 
cube through simulation (Akkaya et  
al. 2019).

Datatypes – Meta-reinforcement learning 
can be applied to any reinforcement 
learning environment where there are a 
large number of similar tasks to the target 
task, or where the agent needs to adapt 
quickly to the environment.

Implementations – Many of the recent 
meta-reinforcement learning models have 
code available on GitHub.

Meta-reinforcement learning

The reinforcement learning process.

Performance – Meta-reinforcement 
learning has been able to learn research 
tasks in a few simulated runs where classical 
reinforcement learning approaches require 
thousands of runs.

Ac
tio

n

Environment

Agent

Interpreter
State

Reward

TRL: 2
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Machine learning is heavily dependent 
on the availability of data. Knowledge 
enhanced machine learning looks to use 
the innate human ability to learn with 
limited data and reason over the data 
available. These approaches therefore look 
to combine human knowledge, expressed 
in a structured manner, with the available 
training data to produce a machine 
learning model which can be trained  
with limited data. 

Ontological approaches are an effective 
way of representing and reasoning over 
knowledge, but are not able to learn 
new objects. On the other hand machine 
learning has proved effective at learning 
new objects, but requires a large amount 
of training data and does not allow 
explainability and the injection of human 
knowledge to improve prediction. The 
approaches to knowledge enhanced 
machine learning look to bridge these two 
fields, by allowing human knowledge to be 
represented and utilised by the machine 
learning model and reducing the amount  
of training data required.

Small amount of data, mostly labelled
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Zero-shot learning (considered in section 
“Small amount of data, mostly unlabelled”) 
uses some of the knowledge enhanced 
embedding approaches to train a classifier 
using only a semantic description. In this 
section we instead look at augmenting the 
training data with expert knowledge. 

Approaches
◼	� Symbolic models – Fusing a 

representation of contextual knowledge 
into machine learning algorithms to 
improve algorithm performance.

◼	� Hierarchical learning – Using a 
taxonomy representing the relationship 
between objects and higher level classes.

◼	 �Zero-shot learning – Leveraging 
descriptions of objects in terms of 
known attributes when there are no 
examples available for training. This was 
considered in the section on problems 
with a small amount of data, mostly 
unlabelled.

TRL: 1-4Knowledge enhanced  
machine learning

Machine Learning with Limited Data
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Challenges:
◼	� This is a very low TRL technique with 

significant research required before 
symbolic model approaches can 
be effectively applied to real-world 
problems.

Requirements:
◼	� A representation of knowledge, 

generated by the operator or from 
a common ontology or taxonomy, 
that can effectively describe the 
classes.

◼	� Training data in a similar domain 
to train the model to use the 
representation.

As humans, we use our understanding of 
the world to help us perform limited data 
learning tasks. This could be identifying 
known features of the class of interest,  
or decomposing it into common parts.

Some zero-shot learning approaches 
use attributes to classify unseen classes, 
given only a description in terms of these 
attributes. Symbolic models look to exploit 
similar approaches when there is some 
training data available.  

Symbolic model machine learning 
algorithms use some representation of 
knowledge, generally human curated, 
such as ontology, database or contextual 
information. One can consider a traditional 
machine learning algorithm as learning 
a representation of the features in the 
classes, this approach looks to reduce the 
amount of data by introducing a human 
constructed representation. 

Datatypes – Symbolic models could in 
theory be applied to any machine learning 
model. In most research to date, these 
models have been applied to image 
classification problems. The knowledge 
representation could be a common 
ontology (e.g. WordNet (Miller 1998)),  
a database of object specifications (e.g. 
Janes.com) or a custom representation 
curated for the task by a human operator.

Symbolic models

Implementations – Symbolic models 
for machine learning are a very low 
TRL technique so there are only a few 
implementations available on GitHub.

An example of a decomposition of a Foxhound 
vehicle into its constituent parts. 

Small amount of data, mostly labelled – Knowledge enhanced machine learning

TRL: 1

Machine Learning with Limited Data
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As humans we categorise objects in 
hierarchical taxonomies. For example  
a tank is a type of vehicle, and a  
Challenger 2 is a type of tank. For  
limited data problems, we can exploit  
this hierarchical taxonomy to train 
classifiers for the higher level classes,  
which have more data available. 

Hierarchical learning also gives a way 
to manage the uncertainty inherent in 
limited data problems, by being able to 
express confidence in higher level classes, 
while having less confidence in the lower 
level classes. For example with hierarchical 
learning we can express that an object is 
a tank, but the model is uncertain about 
what model of tank.

In fact this hierarchy is a simplification of 
the way humans understand taxonomies 
and poly-hierarchy gives a more accurate 
representation. For example a tank is a 
military vehicle, but is also a tracked vehicle 
and an armoured vehicle. These classes 
are distinct, but overlapping so cannot 
be represented in a standard hierarchy. 
Ontology is a common way of expressing 
semantic poly-hierarchies which could be 
exploited by hierarchical learning.

Datatypes – Hierarchical learning is 
typically applied to classification problems, 
with most examples using imagery  
datasets.

Hierarchical learning

Knowledge enhanced machine learning – Small amount of data, mostly labelled

Implementations – Hierarchical  
learning can be easily implemented for 
the simple hierarchy by training different 
models for each layer in the taxonomy.  
The poly-hierarchical and ontological 
approaches to learning are less developed 
and more of an academic topic. There 
are some implementations on GitHub 
accompanying recent papers on the topic.

Challenges:
◼	� Hierarchical learning requires the 

training of many different models for 
different levels of the hierarchy.

Requirements:
◼	� A (poly-)hierarchical taxonomy to 

describe the objects of interest.
◼	� Data for other classes within the 

taxonomy.

A hierarchy for  
military aircraft.

Fixed wing  
aircraft

Bomber  
aircraft

Reconnaissance  
aircraft

Fighter  
aircraft

F-22 F-35Typhoon

Rotary wing  
aircraft

Military aircraft

TRL: 2-4

Machine Learning with Limited Data
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Defence has access to large amounts 
of data, but most of this does not have 
suitable labelling for applying machine 
learning. To be able to apply machine 
learning to this data, human labelling is 
required. Human labelling of data is a time 
consuming and expensive process. 

To apply machine learning to such 
problems, inherent features in the data can 
be used to classify the examples through 
semi, self and unsupervised learning. 
The human labelling of data can also 
be made more efficient by selecting the 
most informative examples through active 
learning.

Machine Learning with Limited Data

Large amount of data, 
mostly unlabelled

Self-supervised 
learning

See Page 24

Active
 learning

See Page 22

Unsupervised
learning

See Page 23

Semi-supervised
learning

See Page 21

Large amount of data, mostly unlabelled

Yes Yes

Yes

No No

Could more examples  
be labelled?

Is there a relevant  
self-supervised objective?

No

Is any of the data labelled?
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Semi-supervised learning looks to  
utilise both labelled and unlabelled data 
to train machine learning models. For 
semi-supervised learning to be effective, 
the data must satisfy one of the following 
assumptions:
◼	� Data points that are close to each other 

are more likely to share a label.
◼	� The data forms clusters and points in  

the same cluster are more likely to share 
a label.

◼	� The data points lie approximately on  
a manifold of much lower dimension 
than the input space.

If one of these assumptions are satisfied,  
a semi-supervised algorithm can assign  
a label to unlabelled examples using their 
proximity to known labelled examples. 
This produces extra labelled data for the 
machine learning model to be trained on.  

Datatypes – Semi-supervised learning  
can be applied to any datatype, as long  
as there is a suitable embedding into  
a vector space which satisfies one of the 
assumptions above.

Implementations – The Scikit-learn python 
library implements an approach to label 
propagation for semi-supervised learning. 
For more complex approaches, many of the 
semi-supervised papers in literature have 
accompanying code available on GitHub.

Performance – Although semi-supervised 
learning approaches will not perform as 
well as if the whole dataset was human 

Semi-supervised learning

Large amount of data, mostly unlabelled 

labelled, semi-supervised approaches 
can achieve an accuracy close to this 
performance with a fraction of the labelled 
data. Semi-supervised will not always 
improve the performance over using just 
the labelled examples, such as when neither 
of the assumptions above hold.

Challenges:
◼	� Semi-supervised learning will not 

perform as well as if all data points 
were labelled.

Requirements:
◼	� The data must satisfy one of the 

assumptions listed above. 

The influence of unlabelled examples  
in training.
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Active learning looks to reduce the amount 
of data required for human labelling. An 
active learning model uses a query strategy 
to select examples for a human operator 
to label, with the aim of selecting the most 
informative examples.

Types of query strategy
◼	 �Uncertainty
◼	 Query-by-committee
◼	 Expected model change
◼	 Expected error or variance minimisation
◼	 Information gain 
◼	 Meta-learning

Given a small number of seed labelled 
examples, a machine learning model is 
trained initially on these examples. The 
query strategy is then used to select 
unlabelled examples for human labelling. 
Once these have been labelled, the machine 
learning model is updated using the new 
labelled examples and this process is 
repeated to train the model.

Datatypes – Active learning is a training 
strategy rather than a model, so can be 
applied to any machine learning model. 
Active learning has been applied to 
classification, detection, segmentation and 
regression problems.

Implementations – There are a number 
of open source python libraries (ModAl, 
Libact, AliPy) implementing active learning 
frameworks with common query strategies. 
Many recent developments are not 

Active learning

Large amount of data, mostly unlabelled 

Challenges:
◼	� For deep models or complex 

datasets, hyper-parameter 
refinement is required for active 
learning to outperform arbitrary 
labelling. 

Requirements:
◼	� A human operator to label 

the selected examples for the 
algorithm.

The improvement in accuracy that active 
learning can bring over arbitrary data 
labelling.

implemented in these libraries but have 
code available on GitHub.  

Performance – Active learning has been 
shown to improve the rate of training for 
a number of academic datasets. Active 
learning has also been applied effectively to 
remote sensing problems.

TRL: 3
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Unsupervised learning

Large amount of data, mostly unlabelled 
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Unsupervised learning is a machine learning 
approach which looks to learn patterns 
in data without labels. The unsupervised 
learning models therefore have to learn the 
structure of the input data based on features. 
Often the characteristic features of a 
dataset are not obvious from the raw data, 
and therefore performing feature extraction 
on the input data can significantly improve 
the performance of some unsupervised 
learning approaches.

Unsupervised learning approaches
Clustering – Clustering techniques look  
to group data points based on features in 
the data. 
�Anomaly detection – Anomaly detection 
techniques look to identify whether a data 
point lies in the same distribution as the 
existing examples.
Neural network – Neural network 
approaches look to embed the data in a 
lower dimensional space, whilst retaining 
the characteristic properties. Manifold 
learning is one of the main unsupervised 
neural network approaches.
�Latent variables – These are techniques for 
reducing complexity of the data by learning 
latent variables. This includes Principal 
Component Analysis and the Method of 
Moments.

Datatypes – Unsupervised learning can be 
applied to any dataset. Some unsupervised 
learning approaches, such as clustering, 
benefit from pre-processing the data with  
a feature extractor. 

Challenges:
◼	� Unsupervised learning approaches 

perform significantly worse than 
supervised learning approaches.

Requirements:
◼	 Feature extractor for data.
◼	� Human interaction with the 

algorithms to ensure the outputs 
are relevant to the problem of 
interest.

Unsupervised dimension reduction  
and clustering on the MNIST dataset  
(LeCun et al. 1998).

Implementations – The Scikit-learn python 
library implements many unsupervised 
learning algorithms.

Performance – Unsupervised learning 
approaches perform significantly worse 
than supervised and semi-supervised 
approaches because the algorithm does not 
know the goal it is being tested against in 
unsupervised learning. 
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Self-supervised learning

Large amount of data, mostly unlabelled 
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Self-supervised learning is a type of 
unsupervised learning where the data is 
autonomously labelled to provide the 
supervision. Self-supervised learning uses 
learning objectives in a special form to 
predict only a subset of information using 
the rest. 

By training with the self-supervised learning 
objective, the model will learn a good 
representation of the dataset which can 
be used for other tasks. The self-supervised 
task therefore doesn’t need to be related  
to the task we want to train against.

Self-supervised tasks
◼	� Relative position in images  

(Doersch et al. 2015).
◼	� Image patch prediction  

(Pathak et al 2016).
◼	� Pixel colour from monochrome input 

(Zhang et al. 2016).
◼	� Video frame sequence ordering  

(Misra et al. 2016).
◼	� Audio-Visual co-supervision  

(Relja and Zisserman, 2018).
◼	� Prediction of next word in a sentence 

(Zhenzhong Lan, et al 2019).

Datatypes – Self-supervised learning has 
mainly been applied to image, video and 
text datasets. It could be applied to any 
dataset given a suitable self-supervised 
learning objective.

Implementations – Self-supervised learning 
is a very low TRL technique and therefore 
there are only a few implementations 
available on GitHub.

Challenges:
◼	� Self-supervised learning is a very 

low TRL technique so has not been 
applied to real-world datasets or 
problems.

Requirements:
◼	� A large amount of unlabelled data.
◼	� A relevant self-supervised learning 

objective.

A relative positional self-supervised learning 
objective (Doersch et al. 2015). 
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Whilst the approaches to learning with 
limited data presented in this guide 
improve on classical approaches to  
machine learning, these models cannot 
achieve the accuracy of a deep neural 
network trained with a large amount 
of data. There are a number of model 
refinement techniques which could 
improve the accuracy and allow effective 
deployment of limited data machine 
learning models. Whilst all of these 
techniques are not specific to machine 
learning with limited data, they are likely 
to be particularly powerful and relevant to 
limited data problems.

Approaches
◼	 �Transfer learning – Using datasets with 

a similar distribution to initially train the 
dataset, or pretrained models, then fine 
tune on the dataset of interest.

◼	 �Uncertainty – Modelling the uncertainty 
in the problem to know when the model 
can be trusted.

◼	 �Context injection – Using contextual 
information to improve the performance 
of machine learning models.

◼	 �Data augmentation – Generating more 
data through transformations on the 
existing dataset.

◼	 �Generated data – Generating more data 
for use in training.

025Machine Learning with Limited Data

Model
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When training machine learning models, 
part of the training effort is to learn how 
to extract features from the data. For 
problems on similar datasets, the feature 
extraction part of the neural network will 
be very similar. Transfer learning looks 
to reduce the amount of training data 
required to learn a task, by reusing the 
feature extraction layers learned on other 
datasets. Transfer learning can be used 
in conjunction with the approaches to 
learning with limited data to boost the 
performance of these models. 

One approach to transfer learning is to take 
a deep learning model trained on a large 
dataset, with a similar distribution to the 
problem of interest and fine tune or replace 
and train the final few layers of the neural 
network on the new problem. It is generally 
understood that the first layers of a neural 
network are performing general feature 
extraction and the final layers are problem 
specific. The number of layers to fine-tune 
or retrain is generally chosen by heuristics 
and guesswork. There has been an effort to 
quantify the generality of layers for transfer 
learning (including Yosinski et al. 2014).

Transfer learning

Model refinement

One type of transfer learning which has 
been well studied is that of Domain 
Adaptation. Domain adaptation refers 
to transfer learning when the sample 
and label spaces are unchanged, but the 
examples come from different probability 
distributions. In Defence, we may be able to 
train a vehicle classifier using imagery from 
a ground based camera, and use domain 
adaptation to transfer this classifier to 
overhead imagery. 

Performance – Transfer learning has been 
demonstrated to be an effective approach 
to improving performance of machine 
learning models on limited data problems 
when there is a large dataset available 
which is similar to the task problem. For 
some problems, transfer learning can 
outperform limited data machine learning 
approaches, such as few-shot learning.  

Implementations – Transfer learning can 
be easily applied in most machine learning 
libraries. A number of pre-trained models 
have been released to allow transfer 
learning such as Google’s Big Transfer 
model (Kolesnikov et al. 2019).

TRL: 3-6
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In machine learning there are many sources 
of uncertainty, but classical machine 
learning does not model the uncertainty 
in the model. The uncertainty in machine 
learning can be split into two types:

Aleatoric uncertainty – The inherent 
variation in a physical system or 
environment. Otherwise known as statistical 
or stochastic uncertainty.

Epistemic uncertainty – The uncertainty 
due to a lack of knowledge of the system or 
environment.

For limited data problems, the epistemic 
uncertainty will be high. To be able to 
effectively apply limited data machine 
learning approaches to real-world problems, 
approaches to handle the uncertainty need 
to be considered.

Confidence estimation – A softmax layer 
will turn the output of the neural network 
into a probability distribution. This gives 
a representation of the uncertainty of the 
prediction. 

�Dirichlet loss – Learning an uncertainty 
measure through a loss function based on 
the Dirichlet distribution (Sensoy et al 2018).

Bayesian machine learning – Bayesian 
neural networks take distributions for 
the weights, rather than values used in 
standard neural networks. This allows the 
neural network to represent and learn the 
uncertainty in prediction. Bayesian neural 
networks are trained using Bayes theorem. 

Uncertainty

Model refinement

�Dropout as Bayesian approximation 
– Training Bayesian neural networks is 
difficult and deep networks can become 
intractable. Instead Bayesian neural 
networks can be approximated using 
dropout (Gal 2016).

Prediction of a neural network as a digit 1 is 
rotated, and the Dirichelt loss uncertainty 
(BAE, 2019).
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In many machine learning problems, there 
is metadata or contextual information 
available. With typical machine learning 
models, this context is thrown away, but 
incorporating this metadata or context into 
the machine learning model can improve 
the accuracy of the model on the problem 
of interest. Context injection approaches 
look to augment typical machine learning 
models with the contextual information.

Examples of contextual 
information
Temporal information – Time of day, 
Season.

Spatial information – Region, Latitude  
and Longitude.

Collection information – Nadir angle.

There are a number of different ways 
context can be included in a machine 
learning model. Including context in a 
machine learning model can be trained 
from scratch, with end-to-end approaches, 
or can augment an already trained model 
by combining the prediction and context 
distributions to make a final prediction. 

Datatypes – Context injection has 
largely been applied to imagery data for 
classification or detection problems. At Dstl 
we have done research to demonstrate that 
context injection can also be effectively 
applied to audio classification.

Context injection

Model refinement

Implementations – There are a number 
of context injection models available on 
GitHub from recent papers and successful 
contestants in the SpaceNet 4 challenge. 

Performance – Context injection has been 
demonstrated to improve the performance 
on a number of problems. For overhead 
imagery, a model including the nadir angle 
as context achieved the best performance 
on the SpaceNet 4 challenge. We have 
demonstrated up to 7x improvement in 
classification accuracy by including context 
in an audio classification problem.

An example of off-nadir imagery from  
the SpaceNet-4 dataset (SpaceNet 2018). 
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Data augmentation is a technique widely 
employed in machine learning, not just 
for limited data problems, to increase the 
variation in the dataset. Data augmentation 
exploits invariances in the dataset to 
generate new examples from the available 
dataset. 

For larger datasets, simple transformations 
such as reflection, rotation and translation 
are effective. There are also more complex 
approaches to data augmentation such 
as Generative Adversarial Networks and 
Style Transfer Networks. In the limited data 
scenario, data augmentation needs to be 

Data augmentation 

Model refinement

applied more carefully in order to avoid 
reinforcing the biases in the limited amount 
of data.

Implementations – There are a number 
of common implementations of simple 
transformations. The standard machine 
learning libraries like TensorFlow and 
PyTorch have simple augmentations built 
in, and a wider range of transformations  
are available in python libraries such  
as ImgAug. For the deep learning 
approaches, many of the models have 
GitHub repositories containing code for  
the approaches.

A taxonomy of data augmentation approaches from (Shorten and Khoshgoftaar, 2019).
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When training data is limited, data 
augmentation may not be sufficient to 
effectively train machine learning models. 
In particular, data augmentation often 
cannot generate the variation required 
to represent the full task distribution and 
therefore cause overfitting of the model. 
Generating similar data can increase the 
variation in the training data to ensure 
more of the task distribution can be 
represented.

Simulated data – Simulating data in 
artificial environments, such as game 
engines, can be an effective way to 
generate more data for training. For 
simulated imagery, game engines such as 
Unity and Unreal can be used to generate 
realistic imagery.

Generative neural networks – Generative 
Adversarial Networks (GANs) have become 
an effective way to generate data based 
off existing datasets. GANs are trained 
adversarially to generate more realistic data 
and, depending on structure, can be seeded 
by existing examples or random noise to 
generate new data. There are many variants 
of GANs which have been developed for 
different applications, many of these have 
code available on GitHub. Generative  
neural network approaches require a large 
amount of training data, but there have 
been some GAN approaches developed  
for data generation when data is limited, 
such as DAGAN (Antoniou et al. 2017).

Generated data

Model refinement

There are also non-GAN approaches to 
data generation for limited data problems, 
such as the Delta-Encoder (Schwartz et al. 
2018), which learns to apply translations 
in populous classes and apply these 
translations to under-represented classes.

A GAN generated face. 
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TRL Description

TRL 1 Basic principles observed and reported.

TRL 2 Technology concept and/or application formulated.

TRL 3
Analytical and experimental critical function and/or characteristic  
proof-of-concept.

TRL 4
Technology component and/or basic technology subsystem validation in  
a laboratory environment.

TRL 5
Technology component and/or basic technology subsystem validation in  
a relevant environment.

TRL 6
Technology system/subsystem model or prototype demonstration in a  
relevant environment.

TRL 7 Technology system prototype demonstration in an operational environment.

TRL 8
Actual Technology system completed and qualified through test and 
demonstration.

TRL 9 Actual Technology system qualified through successful mission operations.

Machine Learning with Limited Data

Technology 
readiness levels



032

◼	 �Akkaya, Ilge, et al. “Solving Rubik’s Cube with a Robot Hand.” arXiv preprint 
arXiv:1910.07113 (2019).

◼	 �Antoniou, Antreas, Amos Storkey, and Harrison Edwards. “Data augmentation generative 
adversarial networks.” arXiv preprint arXiv:1711.04340 (2017). 

◼	 �Arandjelovic, Relja, and Andrew Zisserman. “Objects that sound.” Proceedings of the 
European Conference on Computer Vision (ECCV). 2018.

◼	 �Doersch, Carl, Abhinav Gupta, and Alexei A. Efros. “Unsupervised visual representation 
learning by context prediction.” Proceedings of the IEEE International Conference on 
Computer Vision. 2015.

◼	 �Everingham, Mark, et al. “The pascal visual object classes (voc) challenge.” International 
journal of computer vision 88.2 (2010): 303-338.

◼	 �Finn, Chelsea, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for fast 
adaptation of deep networks.” Proceedings of the 34th International Conference on 
Machine Learning-Volume 70. JMLR. org, 2017.

◼	 �Gal, Yarin, and Zoubin Ghahramani. “Dropout as a bayesian approximation:  
Representing model uncertainty in deep learning.” International conference on  
machine learning. 2016.

◼	 �Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. “Human-level 
concept learning through probabilistic program induction.” Science 350.6266 (2015):  
1332-1338.

◼	 �Lampert, Christoph H., Hannes Nickisch, and Stefan Harmeling. “Learning to detect 
unseen object classes by between-class attribute transfer.” 2009 IEEE Conference on 
Computer Vision and Pattern Recognition. IEEE, 2009.

◼	 �LeCun, Yann, et al. “Gradient-based learning applied to document recognition.” 
Proceedings of the IEEE 86.11 (1998): 2278-2324.

◼	 �Li, Xiang, et al. “Fss-1000: A 1000-class dataset for few-shot segmentation.” Proceedings 
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

◼	 �Miller, George A. WordNet: An electronic lexical database. MIT press, 1998.
◼	 �Mishra, Nikhil, et al. “A simple neural attentive meta-learner.” arXiv preprint arXiv: 

1707.03141 (2017).
◼	 �Misra, Ishan, C. Lawrence Zitnick, and Martial Hebert. “Shuffle and learn: unsupervised 

learning using temporal order verification.” European Conference on Computer Vision. 
Springer, Cham, 2016.

◼	 �Munkhdalai, Tsendsuren, and Hong Yu. “Meta networks.” Proceedings of the  
34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017.

References

Machine Learning with Limited Data



033Machine Learning with Limited Data

◼	 �Kolesnikov, Alexander, et al. “Big transfer (BiT): General visual representation 
learning.” arXiv preprint arXiv:1912.11370 (2019).

◼	 �Pathak, Deepak, et al. “Context encoders: Feature learning by inpainting.” Proceedings  
of the IEEE conference on computer vision and pattern recognition. 2016.

◼	 �Schwartz, Eli, et al. “Delta-encoder: an effective sample synthesis method for few-shot 
object recognition.” Advances in Neural Information Processing Systems. 2018. 

◼	 �Sensoy, Murat, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify 
classification uncertainty.” Advances in Neural Information Processing Systems. 2018.

◼	 �Shorten, Connor, and Taghi M. Khoshgoftaar. “A survey on image data augmentation  
for deep learning.” Journal of Big Data 6.1 (2019): 60.

◼	 �Smith, Linda, and Michael Gasser. “The development of embodied cognition:  
Six lessons from babies.” Artificial life 11.1-2 (2005): 13-29.

◼	 �Snell, Jake, Kevin Swersky, and Richard Zemel. “Prototypical networks for few-shot 
learning.” Advances in neural information processing systems. 2017.

◼	 �SpaceNet on Amazon Web Services (AWS). “Datasets.” The SpaceNet Catalog.  
Last modified April 30, 2018. Accessed on [August 20, 2020].  
https://spacenetchallenge.github.io/datasets/datasetHomePage.html.

◼	 �Sung, Flood, et al. “Learning to compare: Relation network for few-shot 
learning.” Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. 2018.

◼	 �Tanner, Franklin, et al. “Overhead imagery research data set—An annotated data library 
& tools to aid in the development of computer vision algorithms.” 2009 IEEE Applied 
Imagery Pattern Recognition Workshop (AIPR 2009). IEEE, 2009. 

◼	 �Tian, Pinzhuo, et al. “Differentiable Meta-Learning Model for Few-Shot Semantic 
Segmentation.” AAAI. 2020.

◼	 �Vinyals, Oriol, et al. “Matching networks for one shot learning.” Advances in neural 
information processing systems. 2016.

◼	 �Yosinski, Jason, et al. “How transferable are features in deep neural networks?”  
Advances in neural information processing systems. 2014.

◼	 �Zhang, Richard, Phillip Isola, and Alexei A. Efros. “Colorful image colorization.”  
European conference on computer vision. Springer, Cham, 2016.

◼	 �Lan, Zhenzhong, et al. “Albert: A lite bert for self-supervised learning of language 
representations.” arXiv preprint arXiv:1909.11942 (2019).

◼	 �Xiao, Jianxiong, et al. “Sun database: Large-scale scene recognition from abbey to 
zoo.” 2010 IEEE computer society conference on computer vision and pattern recognition. 
IEEE, 2010.

https://spacenetchallenge.github.io/datasets/datasetHomePage.html


034

The approaches to learning with limited data presented in this guide are a part of ongoing 
research carried out by the Future of AI for Defence project at Dstl. For the approaches 
presented we are carrying out extensive research to understand the current state-of-the-art, 
develop the theory to benefit Defence and demonstrate how these approaches for learning 
with limited data could be applied to Defence problems.

For further information on these approaches to learning with limited data, contact: 

  E lowshot_learning@dstl.gov.uk

© Crown copyright (2020), Dstl.

This material is licensed under the terms of the Open Government  
Licence except where otherwise stated. To view this licence, visit 
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3
or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU
or email: psi@nationalarchives.gsi.gov.uk
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