Weekly national Influenza and COVID-19 surveillance report

Week 41 report (up to week 40 data)
8 October 2020
Executive summary

This report summarises the information from the surveillance systems which are used to monitor Coronavirus Disease 2019 (COVID-19), influenza, and other seasonal respiratory viruses in England. More information on the surveillance systems are available here. References to COVID-19 represent the disease name and SARS-CoV-2 represent the virus name. The report is based on data from week 40 (between 28 September and 4 October 2020) and for some indicators daily data up to 6 October 2020.

Several surveillance indicators suggest that COVID-19 activity at a national level has continued to increase during week 40. There is currently limited testing for other respiratory viruses, however, laboratory indicators suggest that influenza activity is low but rhinovirus activity remains high, in particular in children.

Detections of COVID-19 cases in England continued to increase in week 40. Case rates remain highest in the North West, North East and Yorkshire and Humber. By age group, cases rates remains highest in the 10 to 19 and 20 to 29 year olds. Positivity rates have increased further across most age groups and were highest in the 10-19 year olds tested through both Pillar 1 (NHS and PHE testing) and Pillar 2 (community testing). Positivity by regions remains highest in the North.

Through Respiratory Datamart, there were no influenza detections in week 40. Rhinovirus activity increased and remains high in children.

The overall number of acute respiratory infection incidents reported to PHE Health Protection Teams increased from 782 in the previous week to 885 in week 40 in England. In the majority of these incidents SARS-CoV-2 has been detected. Incidents in care homes and educational settings have remained stable, though educational settings still account for the highest proportion of reported incidents. Increases were seen in incidents reported in hospitals, prisons, workplace settings and other settings.

The majority of community and syndromic indicators decreased or remained stable during week 40. The declines were mainly in children and may reflect a normalisation following increases in respiratory illness reports that are often seen at the start of the school term.

General practice (GP) influenza-like illness (ILI) consultations remained low in all UK schemes.

Through the UK GP swabbing scheme, SARS-CoV-2 positivity increased from 3.2% in week 39 to 6.0% in week 40.
The overall COVID-19 confirmed hospital admission rate continued to increase whilst the influenza confirmed hospital admission rate remained low. The overall COVID-19 confirmed ICU/HDU admission rate remained stable and there was no influenza confirmed ICU/HDU admissions reported in week 40. Emergency department attendances for COVID-19 like diagnosis increased in week 40 whilst those for acute respiratory infections remained stable.

The number of COVID-19 confirmed deaths increased further but no excess all-cause mortality was observed.

Overall estimated national seroprevalence based on blood donor samples was 5.3% with the highest seroprevalence by region seen in London and by age group in young adults.

Influenza vaccine uptake is higher in those aged 65+ and 2 and 3 year olds compared to last year, and at similar levels to last year for those in at risk groups and pregnant women.
Contents

Executive summary .. 2

Contents ... 4

Laboratory surveillance .. 6
 Confirmed COVID-19 cases (England) ... 6
 Respiratory DataMart system (England) .. 16

Community surveillance .. 18
 Acute respiratory infection incidents .. 18
 COVID-19 cases by type of residence ... 25
 Medical Officers of Schools Association (MOSA) & PHE surveillance scheme 26
 FluSurvey ... 27
 Google search queries ... 28
 NHS 111 .. 29

Primary care surveillance ... 33
 RCGP (England) ... 33
 UK ... 35
 GP In Hours, Syndromic Surveillance ... 36
 GP Out of Hours, Syndromic Surveillance .. 38
 Sentinel swabbing scheme in England and the Devolved Administrations 40

Secondary care surveillance ... 41
 SARI Watch ... 41
 Hospitalisations, SARI Watch .. 42
 ICU/HDU admissions, SARI Watch .. 46
 ECMO, SARI Watch .. 50
 Emergency Department attendances, Syndromic surveillance 51

Mortality surveillance .. 53
 Cumulative COVID-19 deaths .. 53
 Daily excess all-cause mortality (England) .. 58

Microbiological surveillance .. 61
 Virus characterisation ... 61
Antiviral susceptibility ..61
Antimicrobial susceptibility ..62
COVID-19 sero-prevalence surveillance ..63
Influenza vaccine uptake in GP patients ..67
Influenza vaccine uptake in school age children ..69
Influenza vaccine uptake in healthcare workers ...69
International update ..70
 Global COVID-19 update ...70
 Global influenza update ...72
 Other respiratory viruses ...74
Related links ...75
Laboratory surveillance

Confirmed COVID-19 cases (England)

As of 09:00 on 6 October 2020, a total of 454,176 have been confirmed positive for COVID-19 in England under Pillar 1 and 2.

Overall case numbers and positivity continued to increase in both Pillar 1 and 2, in week 40, with the majority of cases reported from Pillar 2. The highest case rates and positivity were seen in the 10-19 year olds in both Pillar 1 and 2. Cases rates and positivity continue to be highest in the North of England.

Figure 1: Laboratory confirmed COVID-19 cases tested under Pillar 1 and Pillar 2, based on sample week with overall weekly positivity for Pillar 1 and 2 (%)

For the most recent week, more samples are expected therefore any decrease seen in this graph should be interpreted with caution. The data are shown by the week the specimen was taken from the person being tested. This gives the most accurate analysis of this time progression, but it does mean that the latest days’ figures may be incomplete.

Positivity data was previously deduplicated across the course of the pandemic to prevent persistent infections being counted as new cases. Since week 40, positivity is calculated as the number of individuals testing positive during the week divided by the number of individuals tested during the week. This approach accounts for the increasing number of individuals who will have been tested multiple times as the pandemic progresses.
Age and sex

Figure 2: Age/sex pyramids for laboratory confirmed COVID-19 cases tested under Pillar 1 and 2 (a) cumulative number since week 27 (n=208,171), and (b) in weeks 39 and 40 (n=99,123)

(a)

(b)
Figure 3: Weekly laboratory confirmed COVID-19 case rates per 100,000, tested under Pillar 1 and Pillar 2, by sex

Figure 4: Weekly laboratory confirmed COVID-19 case rates per 100,000, tested under Pillar 1 and Pillar 2, by age group
Figure 5: Weekly positivity (%) of laboratory confirmed COVID-19 cases tested overall and by sex under (a) Pillar 1 and (b) Pillar 2, (SGSS and Respiratory DataMart)

(a)

(b)
Figure 6: Weekly positivity (%) of laboratory confirmed COVID-19 cases tested under Pillar 1, (a) by male and age group and (b) by female and age group and; under Pillar 2, (c) by male and age group and (d) by female and age group, (SGSS and Respiratory DataMart)

(a) Pillar 1 - Male

(b) Pillar 1 - Female
Geography

Table 1: Cumulative number of cases under Pillar 1 and 2 (n=442,974) and cumulative number of cases since week 27 under Pillar 1 and 2 (n=208,048)

<table>
<thead>
<tr>
<th>PHE Centres</th>
<th>Cumulative Pillar 1 + 2 cases</th>
<th>Cumulative since week 27, Pillar 1 + 2 cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>North East</td>
<td>32,355</td>
<td>17,311</td>
</tr>
<tr>
<td>North West</td>
<td>106,172</td>
<td>63,945</td>
</tr>
<tr>
<td>Yorkshire and Humber</td>
<td>61,668</td>
<td>32,965</td>
</tr>
<tr>
<td>West Midlands</td>
<td>48,300</td>
<td>23,159</td>
</tr>
<tr>
<td>East Midlands</td>
<td>38,143</td>
<td>17,498</td>
</tr>
<tr>
<td>East of England</td>
<td>34,881</td>
<td>10,764</td>
</tr>
<tr>
<td>London</td>
<td>55,709</td>
<td>22,058</td>
</tr>
<tr>
<td>South East</td>
<td>45,555</td>
<td>12,833</td>
</tr>
<tr>
<td>South West</td>
<td>20,191</td>
<td>7,515</td>
</tr>
</tbody>
</table>

Figure 7: Weekly laboratory confirmed COVID-19 case rates per 100,000 population tested under Pillar 1 and Pillar 2, by PHE Centres and sample week
Figure 8: Weekly positivity of laboratory confirmed COVID-19 cases tested under (a) Pillar 1 (%) and (b) Pillar 2 (%), by PHE Centres and sample week, (SGSS and Respiratory DataMart)
Figure 9: Weekly rate of COVID-19 cases per 100,000 population tested under Pillar 1 and 2, by upper-tier local authority, England (box shows enlarged map of London area)
Ethnicity

Figure 10: Weekly incidence per 100,000 population by ethnicity, England
Respiratory DataMart system (England)

The Respiratory Datamart system was initiated during the 2009 influenza pandemic to collate all laboratory testing information in England. It is now used as a sentinel laboratory surveillance tool, monitoring all major respiratory viruses in England. 16 laboratories in England will be reporting data for this season. As this is based on a sample of labs - SARS-CoV-2 positivity figures quoted here will differ from those quoted in the Confirmed COVID-19 cases section, however, they are included to facilitate comparison with data on other respiratory viruses.

In week 40 2020, out of the 70,929 respiratory specimens reported through the Respiratory DataMart System (based on data received from 11 out of 16 laboratories), 1,325 samples were positive for SARS-CoV-2 with an overall positivity of 1.9%. The highest positivity was noted in the 15 to 44 year olds at 2.3% in week 40. The overall influenza positivity was low at 0.0% in week 40, with no samples testing positive (out of 356 tested) (Figure 11).

Rhinovirus positivity increased slightly at 27.3% in week 40 compared to 22.4% in the previous week (Figure 12). The highest positivity by age group for rhinovirus was noted in the 5 to 14 year olds in week 40 (Figure 13). RSV, adenovirus, parainfluenza and human metapneumovirus (hMPV) positivity all remained low at 0.0%, 1.8%, 0.0% and 0.6% respectively in week 40 (Figure 12).

![Figure 11: DataMart samples positive for influenza and weekly positivity (%) for influenza and SARS-CoV-2, England](image_url)
Figure 12: DataMart weekly positivity (%) for other respiratory viruses, England

![Graph showing weekly positivity for different respiratory viruses in England. The X-axis represents week numbers from 27 to 51, and the Y-axis represents the proportion positive (%). The graph shows data for RSV, Rhinovirus, Parainfluenza, hMPV, and Adenovirus, with RSV having the highest positivity.]

Figure 13: DataMart weekly positivity (%) for rhinovirus by age, England

![Graph showing weekly positivity for rhinovirus by age group in England. The X-axis represents week numbers from 27 to 51, and the Y-axis represents the proportion positive (%). The graph shows data for different age groups: 0 to 4 years, 5 to 14 years, 15 to 44 years, 45 to 64 years, and 65+ years, with the 0 to 4 years group having the highest positivity.]

17
Community surveillance

Acute respiratory infection incidents

Information on acute respiratory infection (ARI) incidents is based on situations reported to PHE Health Protection Teams (HPTs). These include:

- confirmed outbreaks of acute respiratory infections ie two or more laboratory confirmed cases (SARS-CoV-2, influenza or other respiratory pathogens) linked to a particular setting
- setting situations where an outbreak is suspected

All suspected outbreaks are further investigated by the HPT in liaison with local partners and a significant proportion do not meet the criteria of a confirmed outbreak. For example if suspected cases test negative for COVID19 or other respiratory pathogens, or cases are subsequently found not to have direct links to the setting. Since Pillar 2 testing became open to everyone during week 21 more incidents of mild disease have been detected in settings with healthy young populations.

Processes for reporting ARI incidents vary between PHE Centres.

The number of incidents in each setting with at least one laboratory confirmed case of COVID19 are reported below.

918 new ARI incidents have been reported in week 40 in the UK (Figure 14):

- 172 incidents were from care homes where 116 had at least one linked case that tested positive for SARS-CoV-2
- 47 incidents were from hospitals where 38 had at least one linked case that tested positive for SARS-CoV-2 and 1 tested positive for rhinovirus
- 325 incidents were from educational settings where 252 had at least one linked case that tested positive for SARS-CoV-2
- 7 incidents were from prisons where 5 had at least one linked case that tested positive for SARS-CoV-2
- 216 incidents were from workplace settings where 132 had at least one linked case that tested positive for SARS-CoV-2
- 30 incidents were from food outlet/restaurant settings where 24 had at least one linked case that tested positive for SARS-CoV-2
- 121 incidents were from the other settings category where 88 had at least one linked case that tested positive for SARS-CoV-2
Figure 14: Number of acute respiratory infection (ARI) incidents by institution, UK

*excludes data from Wales

Figure 15: Number of acute respiratory infection (ARI) incidents by institution, England
Figure 16: Number of acute respiratory infection (ARI) in care homes by virus type from week 27, England

Care home

Figure 17: Number of acute respiratory infection (ARI) in hospitals by virus type from week 27, England

Hospital
Figure 18: Number of acute respiratory infection (ARI) in educational settings by virus type from week 27, England

Educational settings

<table>
<thead>
<tr>
<th>Virus Type</th>
<th>Number of ARI Incidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza A</td>
<td>27 29 31 33 35 37 39 41</td>
</tr>
<tr>
<td>Influenza B</td>
<td>10 12 14 16 18 20 22 24</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>5 7 9 11 13 15 17 19</td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>1 3 5 7 9 11 13 15</td>
</tr>
<tr>
<td>RSV</td>
<td>0 2 4 6 8 10 12 14</td>
</tr>
<tr>
<td>Other respiratory viruses</td>
<td>0 2 4 6 8 10 12 14</td>
</tr>
<tr>
<td>No organism reported</td>
<td>0 2 4 6 8 10 12 14</td>
</tr>
</tbody>
</table>

Figure 19: Number of acute respiratory infection (ARI) in prisons by virus type from week 27, England

Prisons

<table>
<thead>
<tr>
<th>Virus Type</th>
<th>Number of ARI Incidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza A</td>
<td>27 29 31 33 35 37 39 41</td>
</tr>
<tr>
<td>Influenza B</td>
<td>10 12 14 16 18 20 22 24</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>5 7 9 11 13 15 17 19</td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>1 3 5 7 9 11 13 15</td>
</tr>
<tr>
<td>RSV</td>
<td>0 2 4 6 8 10 12 14</td>
</tr>
<tr>
<td>Other respiratory viruses</td>
<td>0 2 4 6 8 10 12 14</td>
</tr>
<tr>
<td>No organism reported</td>
<td>0 2 4 6 8 10 12 14</td>
</tr>
</tbody>
</table>
Figure 20: Number of acute respiratory infection (ARI) in workplace settings by virus type from week 27, England

Workplace settings

Date of report week

Number of ARI incidents

Workplace settings

Influenza A
Influenza B
SARS-CoV-2
Rhinovirus
RSV
Other respiratory viruses
No organism reported

Figure 21: Number of acute respiratory infection (ARI) in food outlet/restaurants settings by virus type from week 27, England

Food outlet/restaurants

Date of report week

Number of ARI incidents

Food outlet/restaurants

Influenza A
Influenza B
SARS-CoV-2
Rhinovirus
RSV
Other respiratory viruses
No organism reported
Figure 22: Number of acute respiratory infection (ARI) in other settings settings by virus type from week 27, England

Other settings

- Influenza A
- Influenza B
- SARS-CoV-2
- Rhinovirus
- RSV
- Other respiratory viruses
- No organism reported
Table 2: Total number of situations/incidents by institution and PHE Centres over the past four weeks with the total number in the last week in brackets

<table>
<thead>
<tr>
<th>PHE Centres</th>
<th>Care home</th>
<th>Hospital</th>
<th>Educational settings</th>
<th>Prisons</th>
<th>Workplace settings</th>
<th>Food outlet/restaurant settings</th>
<th>Other settings</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>East of England</td>
<td>63(11)</td>
<td>9(4)</td>
<td>45(7)</td>
<td>0(0)</td>
<td>33(7)</td>
<td>5(0)</td>
<td>8(4)</td>
<td>163(33)</td>
</tr>
<tr>
<td>East Midlands</td>
<td>106(12)</td>
<td>15(7)</td>
<td>84(24)</td>
<td>2(0)</td>
<td>52(18)</td>
<td>12(5)</td>
<td>16(4)</td>
<td>287(70)</td>
</tr>
<tr>
<td>London</td>
<td>45(14)</td>
<td>28(10)</td>
<td>241(84)</td>
<td>2(2)</td>
<td>79(30)</td>
<td>13(6)</td>
<td>29(10)</td>
<td>437(156)</td>
</tr>
<tr>
<td>North East</td>
<td>70(25)</td>
<td>1(0)</td>
<td>45(14)</td>
<td>1(0)</td>
<td>21(5)</td>
<td>5(0)</td>
<td>20(3)</td>
<td>163(47)</td>
</tr>
<tr>
<td>North West</td>
<td>84(18)</td>
<td>16(6)</td>
<td>201(49)</td>
<td>4(1)</td>
<td>195(64)</td>
<td>27(4)</td>
<td>88(37)</td>
<td>615(179)</td>
</tr>
<tr>
<td>South East</td>
<td>113(19)</td>
<td>19(4)</td>
<td>71(25)</td>
<td>2(0)</td>
<td>26(8)</td>
<td>10(1)</td>
<td>21(6)</td>
<td>262(63)</td>
</tr>
<tr>
<td>South West</td>
<td>105(19)</td>
<td>2(0)</td>
<td>105(16)</td>
<td>1(0)</td>
<td>39(9)</td>
<td>11(4)</td>
<td>19(8)</td>
<td>282(56)</td>
</tr>
<tr>
<td>West Midlands</td>
<td>111(15)</td>
<td>29(11)</td>
<td>221(47)</td>
<td>3(3)</td>
<td>110(41)</td>
<td>20(3)</td>
<td>35(14)</td>
<td>529(134)</td>
</tr>
<tr>
<td>Yorkshire and Humber</td>
<td>114(27)</td>
<td>7(3)</td>
<td>134(51)</td>
<td>5(1)</td>
<td>96(31)</td>
<td>13(4)</td>
<td>61(30)</td>
<td>430(147)</td>
</tr>
<tr>
<td>Total</td>
<td>811(317)</td>
<td>126(45)</td>
<td>1147(317)</td>
<td>20(7)</td>
<td>651(213)</td>
<td>116(27)</td>
<td>297(116)</td>
<td>3168(885)</td>
</tr>
</tbody>
</table>
COVID-19 cases by type of residence

Table 3 shows the proportion of confirmed COVID-19 cases according to their type of residence. Property classifications are derived from Ordnance Survey AddressBase and are matched to address details within the laboratory data. Properties are identified by unique property reference number (UPRN) and basic land property unit (BLPU). Cases with poor or no address data which failed the address matching and are classed as ‘undetermined’. No fixed abode and overseas addresses identified by recording in the laboratory data.

In week 40, there were small decreases in the percentage of cases in residential dwelling (Table 3).

Table 3: Type of residence of confirmed COVID-19 cases by percentage of total weekly cases

<table>
<thead>
<tr>
<th>Type of residence</th>
<th>week 37</th>
<th>week 38</th>
<th>week 39</th>
<th>week 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential dwelling (including houses, flats, sheltered accommodation)</td>
<td>80.6</td>
<td>80.9</td>
<td>79.3</td>
<td>78.2</td>
</tr>
<tr>
<td>Undetermined</td>
<td>15.2</td>
<td>15.5</td>
<td>16.3</td>
<td>15.3</td>
</tr>
<tr>
<td>Care/Nursing home</td>
<td>2.6</td>
<td>1.8</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Residential institution (including residential education)</td>
<td>0.5</td>
<td>0.4</td>
<td>1.1</td>
<td>2.4</td>
</tr>
<tr>
<td>House in multiple occupancy (HMO)</td>
<td>0.4</td>
<td>0.6</td>
<td>1.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Medical facilities (including hospitals and hospices, and mental health)</td>
<td>0.4</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Other property classifications</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Prisons, detention centres, secure units</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>No fixed abode</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Overseas address</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Medical Officers of Schools Association (MOSA) & PHE surveillance scheme

Boarding schools in England within the MOSA network are recruited each season to report various respiratory related illnesses including influenza like illnesses (ILI).

Data will be reported from week 45.

If you are a MOSA school and would like to participate in this scheme, please email mosa@phe.gov.uk for more information.
FluSurvey

An internet based surveillance system has been developed based on FluSurvey. FluSurvey is a web tool survey designed to monitor trends of influenza like illness (ILI) in the community using self-reported respiratory symptoms from registered participants. The platform has been adapted to capture respiratory symptoms, exposure risk and healthcare seeking behaviours among registered participants to contribute to national surveillance of COVID-19 activity.

A total of 3,671 participants completed the weekly COVID-19 surveillance survey in week 40, of which 167 (4.6%) reported fever or cough. The most commonly reported method of access to healthcare services continue to be through telephoning a GP practice in week 40 (Figure 23).

ILI data will be reported from week 45.

Figure 23: Rate of contact with different healthcare services among FluSurvey participants reporting fever or cough symptoms, England
Google search queries

This is a web-based syndromic surveillance system which uses daily search query frequency statistics obtained from the Google Health Trends API [1]. This model focuses on search queries about COVID-19 symptoms as well as generic queries about “coronavirus” (e.g. “covid-19”). The search query frequency time series has been weighted based on symptom frequency as reported in other data sources. Frequency of searches for symptoms is compared with a baseline calculated from historical daily data.

The overall and media-debiasing weighted scores increased during week 40 (Figure 24).

Figure 24: Normalised Google search score for COVID-19 symptoms, with weighted score for media-debiasing and historical trend, England
NHS 111

The NHS 111 service monitors daily trends in phone calls made to the service in England, to capture trends in infectious diseases such as influenza and norovirus.

Up to 04 October 2020, the daily percentage of NHS 111 ‘potential COVID-19-like’ calls (as a percentage of total NHS 111 calls) and number of online assessments are decreasing. The daily percentage of cold/flu calls (as a percentage of total NHS 111 calls) and cold/flu completed online assessments are also decreasing (Figure 25 and 26). The daily percentage of loss of taste or smell calls are decreasing while online assessments for loss of taste or smell remain stable.

Please note that NHS 111 callers (from 11 May 2020) and NHS 111 online users (from 11 June 2020), who are assessed as having probable COVID-19 symptoms are now triaged using symptom specific pathways e.g. cold/flu, which are included in routine syndromic indicators.

Further information about these caveats is available from the PHE Remote Health Advice Syndromic Surveillance bulletin.

Figure 25: NHS 111 telephony indicators (and 7-day moving average) for (a) daily potential COVID-19 calls, (b) daily cold/flu calls and (c) daily loss of taste or smell calls, as a percentage of total calls for all ages, England (a)
Figure 26: NHS 111 completed online assessments (and 7-day moving average) for (a) daily potential COVID-19 online assessments, (b) daily cold/flu online assessments and (c) daily loss of taste or smell online assessments, as the number of completed online assessments for all ages, England

(a)

(b)
Weekly National Influenza & COVID-19 Report: week 41 report (up to week 40 data)
Primary care surveillance

RCGP (England)

The weekly ILI consultation rate through the RCGP surveillance was 2.1 per 100,000 registered population in participating GP practices in week 40 compared to the same rate in the previous week. This is below the baseline threshold (12.2 per 100,000) (Figure 27). By age group, the highest rates were seen in the 1 to 4 year olds (2.8 per 100,000), in the less than 1 year olds (2.7 per 100,000) and in the 45 to 64 year olds (2.6 per 100,000). The Lower Respiratory Tract Infections (LRTI) consultation rate was 23.2 per 100,000 in week 40, a decrease from the previous week. The COVID-19-like indicator consultation rate increased at 39.3 per 100,000 in week 40 compared to 20.0 per 100,000 in the previous week (Figure 28).

Figure 27: RCGP ILI consultation rates, all ages, England
Figure 28: RCGP ILI, LRTI and COVID-19-like indicator consultation rates, England
UK

Overall, weekly ILI consultations rates were below baseline levels in Scotland, Northern Ireland and Wales in week 40 (Table 4).

By age group, the highest rates were seen in the 65-74 year olds in Scotland (0.9 per 100,000), in the 15-44 year olds in Wales (2.1 per 100,000) and in the 45-64 year olds in Northern Ireland (2.2 per 100,000).

Table 4: GP ILI consultations in the UK for all ages with MEM thresholds applied

<table>
<thead>
<tr>
<th>GP ILI consultation rates (all ages)</th>
<th>Week number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>England (RCGP)</td>
<td>2.1</td>
</tr>
<tr>
<td>Wales</td>
<td>1.0</td>
</tr>
<tr>
<td>Scotland</td>
<td>0.5</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>1.3</td>
</tr>
</tbody>
</table>

The Moving Epidemic Method (MEM) has been adopted by the European Centre for Disease Prevention and Control to calculate thresholds for GP ILI consultations for the start of influenza activity (based on 10 seasons excluding 2009/10), in a standardised approach across Europe. For MEM threshold values for each country, please visit: https://www.gov.uk/guidance/sources-of-uk-flu-data-influenza-surveillance-in-the-uk#clinical-surveillance-through-primary-care
GP In Hours, Syndromic Surveillance

The GP In Hours (GPIH) syndromic surveillance system monitors the number of GP visits during regular hours of known clinical indicators.

Up to 4 October 2020, GPIH consultations for potential COVID-19-like consultations decreased while ILI consultations remained stable (Figure 29). Please note that the GPIH COVID-19-like indicator presented in this report is derived from a reduced denominator population, compared to ILI. Please note, week 40 contains days with a reduced denominator and therefore these recent rates should be interpreted with some caution.

Please note GP data should be interpreted with caution due to changes in advice regarding accessing GP surgeries due to COVID-19. Further information about these caveats is available from the PHE GP In Hours Syndromic Surveillance bulletin.

Figure 29: GPIH clinical indicators for (a) potential COVID-19 GP consultations and (b) influenza-like illness GP consultations, England
GP Out of Hours, Syndromic Surveillance

The GP Out of Hours (GPOOH) syndromic surveillance system monitors the numbers of daily unscheduled visits and calls to GPs during evenings, overnight, on weekends and on public holidays. Both systems cover around 55% of England’s population.

Up to 4 October 2020, there has been a decrease in GP out-of-hours and unscheduled care consultations for acute respiratory infections, influenza-like illness and difficulty breathing/asthma/wheeze (Figure 30).

Figure 30: GPOOH daily contacts (%) for (a) difficulty breathing/wheeze/asthma, (b) influenza-like illness and (c) acute respiratory infections, England
Sentinel swabbing scheme in England and the Devolved Administrations

In week 40 2020, three samples tested positive for SARS-CoV-2 with an overall positivity of 6.0% (3/50) compared to 3.2% (8/248) in the previous week, through the UK GP sentinel swabbing schemes (Figure 31).

This is based on the English schemes only for SARS-CoV-2. Samples up to week 40 were only tested for SARS-CoV-2.

Figure 31: Number of influenza and COVID-19 positive samples and weekly positivity (%), UK GP sentinel swabbing scheme

*For the most recent week, more samples are expected to be tested therefore the graph in Figures XX should be interpreted with caution
*Positivity (%) is not calculated when the total number tested is less than 10
Secondary care surveillance

SARI Watch

The Severe Acute Respiratory Infection (SARI) Watch surveillance system was established in 2020 to report the number of laboratory confirmed influenza and COVID-19 cases admitted to hospital and critical care units (ICU/HDU) in NHS acute trusts across England. This has replaced the USISS Mandatory and Sentinel data collections for influenza surveillance used in previous seasons, and the COVID-19 hospitalisations in England surveillance system (CHESS) collections for COVID-19 surveillance.

The weekly rate of new admissions of COVID-19 and influenza cases is based on the trust catchment population of those NHS Trusts who made a new return. This may differ from other published figures such as the total number of people currently in hospital with COVID-19.

Trends in hospital and critical care admission rates need to be interpreted in the context of testing recommendations.
Hospitalisations, SARI Watch

In week 40, the weekly hospital admission rate for COVID-19 increased whilst the hospital admission rate for influenza was low.

The hospitalisation rate for COVID-19 was at 3.59 per 100,000 in week 40 compared to 3.03 per 100,000 in the previous week. The hospitalisation rate for influenza was at 0.00 per 100,000 in week 40 and there were two confirmed influenza hospital admissions (2 flu B) reported.

By NHS regions, the highest hospital admission rate for both COVID-19 and influenza were observed in the North West. By age groups, the highest hospital admission rate for confirmed COVID-19 was observed in the 85+ year olds whilst the highest hospital admission rate for confirmed influenza was observed in the 0 to 4 year olds.

Figure 32: Weekly overall hospital admission rates per 100,000 of new COVID-19 and influenza positive cases reported through SARI Watch, England

* influenza hospital admission rate is reported from week 40 2020 onwards
* influenza hospital admission rate based on 23 sentinel NHS trusts for week 40
* COVID-19 hospital admission rate based on 117 sentinel NHS trusts for week 40
Figure 33: Weekly overall influenza hospital admission rates per 100,000 trust catchment population with MEM thresholds, SARI Watch, England

* the MEM thresholds used are those from the 2019/20 season due to the pandemic

Figure 34: Weekly influenza hospital admissions by influenza type, SARI Watch, England
Figure 35: Weekly hospital admission rate by NHS region for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch

(a)

(b)
Figure 36: Weekly hospital admission rate by age group for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch
ICU/HDU admissions, SARI Watch

In week 40, the weekly ICU/HDU admission rates for COVID-19 remained stable whilst the ICU/HDU admission rate for influenza was low.

The ICU/HDU rate for COVID-19 was at 0.39 per 100,000 in week 40 (based on data reported from 112 NHS Trusts) compared to the same rate in the previous week. The ICU/HDU rate for influenza was at 0.00 per 100,000 in week 40 (based on data reported from 96 NHS Trusts) and there were no influenza confirmed ICU/HDU admissions.

By NHS regions, the highest ICU/HDU rate for COVID-19 was observed in the North West. By age groups, the highest ICU/HDU rate for COVID-19 was observed in the 65 to 74 year olds.

Figure 37: Weekly overall ICU/HDU admission rates per 100,000 of new COVID-19 and influenza positive cases reported through SARI Watch, England

* influenza ICU/HDU admission rate is reported from week 40 2020 onwards
* influenza ICU/HDU admission rate based on 96 NHS trusts for week 40
* COVID-19 ICU/HDU admission rate based on 112 NHS trusts for week 40
Figure 38: Weekly overall influenza ICU/HDU admission rates per 100,000 trust catchment population with MEM thresholds, SARI Watch, England

![Weekly overall influenza ICU/HDU admission rates](image)

Figure 39: Weekly influenza ICU/HDU admissions by influenza type, SARI Watch, England

![Weekly influenza ICU/HDU admissions by type](image)

*there were no laboratory confirmed influenza ICU/HDU admissions in week 40
Figure 40: Weekly ICU/HDU admission rate by NHS region for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch

(a)

![Graph showing ICU/HDU admission rate per 100,000 for different NHS regions.](image)

(b)

![Graph showing ICU/HDU admission rate per 100,000 for different NHS regions.](image)

the rate for all NHS regions for week 40 was 0.00 per 100,000 trust catchment population.
Figure 41: Weekly ICU/HDU admission rate by age group for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch

(a)

(b)

*the rate for all age groups for week 40 was 0.00 per 100,000 trust catchment population.
ECMO, SARI Watch

Between 3 March and 05 October 2020, a total of 231 laboratory confirmed COVID-19 admissions have been reported from the 5 SRFs in England. There were two new laboratory confirmed COVID-19 admissions reported in week 40 (Figure 42).

Figure 42: Laboratory confirmed ECMO admissions (COVID-19, influenza and non-COVID-19 confirmed) to Severe Respiratory Failure centres in England
Emergency Department attendances, Syndromic surveillance

The Emergency Department Syndromic Surveillance System (EDSSS) monitors the daily visits in a network of emergency departments across England.

Up to 4 October 2020, the daily number of ED attendances for all ages as reported by 61 EDs, for COVID-19-like attendances increased while attendances for acute respiratory infections remained stable (Figure 43).

Please note: the COVID-19-like ED indicator is an underestimation of the number of COVID-19 attendances as it only includes attendances with a COVID-19-like diagnosis as their primary diagnosis. The EDSSS COVID-19-like indicator should therefore be used to monitor trends in ED attendances and not to estimate actual numbers of COVID-19 ED attendances. Further information about these caveats is available from the PHE Emergency Department Syndromic Surveillance bulletin.

Figure 43: Daily ED attendances for (a) COVID-19-like and (b) acute respiratory infections, all ages, England
Weekly National Influenza & COVID-19 Report: week 41 report (up to week 40 data)

(b)
Mortality surveillance

Cumulative COVID-19 deaths

Changes to the definitions of COVID-19 related deaths in England are described in more detail in an accompanying PHE technical summary.

The current definitions used for mortality surveillance of COVID-19 in England are:

(a) 28 day definition: A death in a person with a laboratory-confirmed positive COVID-19 test and died within (equal to or less than) 28 days of the first positive specimen date
(b) 60 day definition: A death in a person with a laboratory-confirmed positive COVID-19 test and either: died within 60 days of the first specimen date OR died more than 60 days after the first specimen date only if COVID-19 is mentioned on the death certificate

The introduction of these definitions will affect the numbers which have been presented in past reports and therefore Figure 44 represents these differences by definition.

Figure 44: Number of deaths since week 27 by week of death and time since laboratory confirmation of COVID-19, England
Figure 45: Age/sex pyramid of laboratory confirmed COVID-19 deaths, since week 27

Table 5: Ethnic group (%) of COVID-19 deaths and time since laboratory confirmation of COVID-19, England

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>28 day definition</th>
<th>60 day definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>82.9</td>
<td>87.3</td>
</tr>
<tr>
<td>Asian / Asian British</td>
<td>12.9</td>
<td>8.8</td>
</tr>
<tr>
<td>Black / African / Caribbean / Black British</td>
<td>2.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Mixed / Multiple ethnic groups</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Other ethnic group</td>
<td>1.5</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Table 6: Cumulative number of COVID-19 deaths since week 27 and time since laboratory confirmation of COVID-19 by PHE Centres

<table>
<thead>
<tr>
<th>PHE Centres</th>
<th>28 day definition</th>
<th>60 day definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>North East</td>
<td>125</td>
<td>189</td>
</tr>
<tr>
<td>North West</td>
<td>536</td>
<td>789</td>
</tr>
<tr>
<td>Yorkshire & Humber</td>
<td>231</td>
<td>391</td>
</tr>
<tr>
<td>West Midlands</td>
<td>194</td>
<td>336</td>
</tr>
<tr>
<td>East Midlands</td>
<td>168</td>
<td>295</td>
</tr>
<tr>
<td>East of England</td>
<td>176</td>
<td>339</td>
</tr>
<tr>
<td>London</td>
<td>131</td>
<td>225</td>
</tr>
<tr>
<td>South East</td>
<td>257</td>
<td>485</td>
</tr>
<tr>
<td>South West</td>
<td>44</td>
<td>97</td>
</tr>
</tbody>
</table>
Figure 46: Cumulative mortality rate of COVID-19 cases per 100,000 population tested under Pillar 1 and 2 for the past four weeks by (a) 28 day definition and (b) 60 day definition

(a)
COVID-19 mortality rate by UTLA (60 days cut off)
Previous 28 days (8 Sep - 6 Oct 2020)
- No mortality
- 0.01 - 0.49
- 0.50 - 0.99
- 1.00 - 1.99
- 2.00 - 2.99
- ≥ 3.00
- Data suppressed

Contains Ordnance Survey data © Crown copyright and database right 2020.
Created by PHE, GIS Team
Daily excess all-cause mortality (England)

Deaths occurring from 1 January to 30 September 2020 were assessed to calculate the daily excess above a baseline using age-group and region specific all cause deaths as provided daily by the General Register Office (GRO). The deaths were corrected to allow for delay to registration based on past data on these delays and the baseline was from the same day of the year in the previous 5 years +/- 7 days with an extrapolated time trend, and with 2 and 3 standard deviation (SD) limits shown (Figure 47).

Weeks in which at least 2 days exceeded the 3SD threshold are shown in Table 7 and the daily difference from the baseline by age and region is given in Figure 47. Note that as these data are by date of death with delay corrections, numbers are subject to change each week, particularly for more recent days.

No significant excess all-cause mortality was observed in week 39 overall, by age group or subnationally. The excess noted in week 33 coincides with a heat wave (Figure 47, 48 and Table 7).

Figure 47: Daily excess all-cause deaths in all ages, England, 1 January 2020 to 30 September 2020

^ based on same day in previous 5 years +/- 1 week with a linear trend projected
* corrected for delay to registration from death
Table 7: Excess all-cause deaths by (a) age group and (b) PHE centres, England

(a)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Excess detected in week 39 2020?</th>
<th>Weeks in excess since week 10 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>x</td>
<td>13 to 21, 23, 33</td>
</tr>
<tr>
<td>under25</td>
<td>x</td>
<td>None</td>
</tr>
<tr>
<td>25 to 44</td>
<td>x</td>
<td>13 to 16, 32</td>
</tr>
<tr>
<td>45 to 64</td>
<td>x</td>
<td>12 to 19</td>
</tr>
<tr>
<td>65 to 74</td>
<td>x</td>
<td>13 to 19</td>
</tr>
<tr>
<td>75 to 84</td>
<td>x</td>
<td>13 to 21, 33</td>
</tr>
<tr>
<td>85+</td>
<td>x</td>
<td>13 to 21, 33</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>PHE Centres</th>
<th>Excess detected in week 39 2020?</th>
<th>Weeks in excess since week 10 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>East of England</td>
<td>x</td>
<td>14 to 19</td>
</tr>
<tr>
<td>East Midlands</td>
<td>x</td>
<td>13 to 19</td>
</tr>
<tr>
<td>London</td>
<td>x</td>
<td>12 to 19, 33</td>
</tr>
<tr>
<td>North East</td>
<td>x</td>
<td>14 to 21</td>
</tr>
<tr>
<td>North West</td>
<td>x</td>
<td>13 to 20, 33</td>
</tr>
<tr>
<td>South East</td>
<td>x</td>
<td>13 to 21, 33</td>
</tr>
<tr>
<td>South West</td>
<td>x</td>
<td>14 to 19, 33</td>
</tr>
<tr>
<td>West Midlands</td>
<td>x</td>
<td>13 to 20</td>
</tr>
<tr>
<td>Yorkshire and Humber</td>
<td>x</td>
<td>14 to 21, 23</td>
</tr>
</tbody>
</table>
Figure 48: Daily excess all-cause deaths by (a) age group and (b) PHE centres, England, 1 March 2020 to 30 September 2020

(a)

(b)
Microbiological surveillance

Virus characterisation

PHE characterises the properties of influenza viruses through one or more tests, including genome sequencing (genetic analysis) and haemagglutination inhibition (HI) assays (antigenic analysis). These data are used to compare how similar the currently circulating influenza viruses are to the strains included in seasonal influenza vaccines, and to monitor for changes in circulating influenza viruses. The interpretation of genetic and antigenic data sources is complex due to a number of factors, for example, not all viruses can be cultivated in sufficient quantity for antigenic characterisation, so that viruses with sequence information may not be able to be antigenically characterised as well. Occasionally, this can lead to a biased view of the properties of circulating viruses, as the viruses which can be recovered and analysed antigenically, may not be fully representative of majority variants, and genetic characterisation data does not always predict the antigenic characterisation.

In week 40, no influenza viruses were characterised by PHE Respiratory Virus Unit (RVU).

Antiviral susceptibility

Influenza positive samples are screened for mutations in the virus neuraminidase gene known to confer oseltamivir and/or zanamivir resistance. Additionally, testing of influenza A(H1N1)pdm09, A(H3N2), and influenza B virus isolates for neuraminidase inhibitor susceptibility (oseltamivir and zanamivir) is performed at PHE-RVU using a functional assay. The data summarized below combine the results of both testing methods. The samples tested are routinely obtained for surveillance purposes, but diagnostic testing of patients suspected to be infected with neuraminidase inhibitor-resistant virus is also performed.

In week 40, no influenza viruses were tested for antiviral susceptibility.
Antimicrobial susceptibility

Table 8 shows in the 12 weeks up to week 40 2020, the proportion of all lower respiratory tract isolates of Streptococcus pneumoniae, Haemophilus influenza, Staphylococcus aureus, MRSA and MSSA tested and susceptible to antibiotics. These organisms are the key causes of community-acquired pneumonia (CAP) and the choice of antibiotics reflects the British Thoracic Society empirical guidelines for management of CAP in adults.

Table 8: Antimicrobial susceptibility surveillance in lower respiratory tract isolates, 12 weeks up to week 40 2020, England and Wales

<table>
<thead>
<tr>
<th>Organism</th>
<th>Antibiotic</th>
<th>Specimens tested (N)</th>
<th>Specimens susceptible (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneumoniae</td>
<td>Penicillin</td>
<td>578</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Macrolides</td>
<td>634</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Tetracycline</td>
<td>630</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Amoxicillin/ampicillin</td>
<td>3,793</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Co-amoxiclav</td>
<td>4,124</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Macrolides</td>
<td>738</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Tetracycline</td>
<td>4,240</td>
<td>98</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>Methicillin</td>
<td>2,635</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Macrolides</td>
<td>2,871</td>
<td>69</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Clindamycin</td>
<td>108</td>
<td>44</td>
</tr>
<tr>
<td>MRSA</td>
<td>Tetracycline</td>
<td>144</td>
<td>75</td>
</tr>
<tr>
<td>MSSA</td>
<td>Clindamycin</td>
<td>1,744</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Tetracycline</td>
<td>2,397</td>
<td>93</td>
</tr>
</tbody>
</table>

* Macrolides = erythromycin, azithromycin and clarithromycin

Data source: PHE’s SGSS CDR module. Please note that this is different to the data source used during the 2019/20 influenza season when the SGSS AMR module was used, and so the results are not directly comparable.

There has been a reduction in the total number of bacterial positive lower respiratory tract clinical samples reported to PHE since mid-March 2020.
COVID-19 sero-prevalence surveillance

In this week’s report the results from testing samples provided by healthy adult blood donors aged 17 years and older, supplied by the NHS Blood and Transplant (NHS BT collection) between weeks 17 to 39 are summarised. Donor samples from two different geographic regions (approximately 1000 samples per region) in England are tested each week. Since week 26, an exclusion of donors aged 70 years and older donating throughout lockdown was lifted, and therefore data from recent sampling periods include donors in this older age group.

Seroprevalence in Adults aged 17 years and older (Blood Donors)

The results presented here are based on testing using the Euroimmun assay for blood donor samples collected between weeks 17 to 39. This week’s report includes the results of testing the 13th set of samples from the London (weeks 39 to 40) and the 7th set of samples from the North West region (week 39).

This report presents, for the first time, seropositivity estimates using a 4-week rolling prevalence for national and regional estimates. Seroprevalence is also now based on seropositivity unadjusted for the sensitivity and specificity of the assays used. This is because waning of antibodies means assay sensitivity will be changing according to time since infection in these cohorts. Estimates are therefore generally slightly lower than previously reported but trends will be unaffected.

National Prevalence

Overall population weighted (by age group, sex and NHS region) antibody prevalence using the Euroimmun assay among blood donors aged 17 years and older in England was 5.3% (95% CI 4.8% - 5.9%) for the period 2 to 27 September (weeks 36 to 39). Estimates are based on 7779 samples, of which 448 were positive. This compares with 7.8% (95% CI 7.2% - 8.6%) for the period of 6 to 29 May (weeks 19 to 22). Declines in prevalence can partially be explained by demographic differences in the donor population, such as later data including donors aged 70 years and older who were previously excluded from donating during lockdown. Waning immunity may also be a contributing factor to the lower prevalence.

Regional Prevalence over Time

Seropositivity (weighted by age group and sex) vary across the country and over time. In London where estimates are highest, overall seropositivity increased from 11.9% (week 17-18) to 13.7% (weeks 21 to 23). From week 24 seropositivity was lower and plateaued with estimates at 7.8% in weeks 31 to 33. Figure 49 shows the overall 4-weekly rolling proportion seropositive in each region over time.
More recently London data shows increases in seropositivity to 10.4% (95% CI 9.1% - 12%) in weeks 34-37 and 9.9% (95% CI 8.8% - 11.1%) in weeks 36-39. This increase is likely to be in part be due to increases in recent infection, although variability in the precise locations of sampling within London and potential changes in exposure of donors and likelihood of being part of the of the donor pool in earlier parts of the epidemic could also be contributory factors.

Prevalence estimates from other regions have been consistently lower than those from London; compatible with the lower incidence of COVID-19 observed in other surveillance systems.

Data from the North West show that seropositivity was 5.9% (95% CI 4.4% - 7.9%) in weeks 33 to 37 and more recently 5.6% in weeks 36-39 (95% CI 4.6-6.9%) showing a continued plateauing.

In the East of England seropositivity amongst donors was 5.8% (95% CI 4.5% - 7.5%) in the most recent data (weeks 36-39) fluctuating between 4.1% (95% CI 3.0% - 5.7%) in weeks 32-35 and 5.9% (95% CI 4.6% - 7.6%) in weeks 35 to 38.

Seropositivity in the South East region was 4.3% (95% CI 3.0% - 6.0%) in the latest data (weeks 36-39) lower than the 5.1% (95% CI 3.3% - 7.7%) observed in weeks 33 to 36. Seropositivity in the South West region was 3.8% (95% CI 2.7 - 5.5%) in (weeks 36-39) similar to 2.9% (95% CI 2.0% - 4.1%) observed in the previous survey in weeks 33-36. Data from the Midlands show a higher proportion seropositive at 5.5% (95% CI 4.3%-7.0%) in weeks 36 to 39. This compares to 4.8% (95% CI 3.6%-6.5%) in weeks 30-33. This observed increase is likely due to geographical variation of the population sampled, with a lower proportion of samples from Birmingham in week 32 compared to other sampling periods.

In the North East and Yorkshire NHS region the seropositivity was 3.7% (95% CI 2.7%-5.0%) in weeks 36 to 39 compared with 4.3% (95% CI 3.3%-5.7%) in weeks 31-34. Similar plateauing has been seen across other regions.

The change in proportion seropositive observed in some regions is likely to be largely driven by changes in the precise locations of sample collection. Declines in prevalence can be partially explained by demographic differences in the donor population as lockdown measures are relaxed. Examples include a reduction in attendance of regular donors in August and that donors aged 70 years and above were not allowed to donate during lockdown, but this exclusion was lifted from week 26. Waning immunity may also be a contributing factor to the lower prevalence.
Prevalence by age group

Population weighted antibody prevalence (unadjusted) estimates have generally remained highest in donors aged 17–29 and decline with age, with lowest prevalence in donors aged 70–84. Donors aged 70–84 years are only included from week 26 onward as this age group, who were advised to shield during lockdown, have been able to return to donor clinics since then (Figure 50).

The largest variation over time are observed in those aged 17–29, prevalence has decreased from 10.8% (95% CI 9.0%–12.9%) in weeks 19–22 to 7.5% (95% CI 6.3%–8.8%) in weeks 36 to 39. There is less variation across other age groups.

Figure 49: 4-weekly rolling SARS-CoV-2 antibody seroprevalence (% seropositive) in blood donors by region, using Euroimmun test; error bars show 95% confidence intervals
Figure 50: Population weighted 4-weekly rolling SARS-CoV-2 antibody seroprevalence (% seropositive) in blood donors by age group, using Euroimmun test; error bars show 95% confidence intervals.
Influenza vaccine uptake in GP patients

Up to week 40 2020 in 38.3% of GP practices reporting weekly to Immform for the main collection, the provisional proportion of people in England who had received the 2020/21 influenza vaccine in targeted groups was as follows (Figure 51):

- 5.0% in under 65 years in a clinical risk group
- 8.6% in pregnant women
- 35.3% in 65+ year olds

Figure 51: Cumulative weekly influenza vaccine uptake by target group in England

In 2020/21, all 2 and 3 year olds continue to be eligible for influenza vaccination through their GPs. Up to week 40 2020, in 40.3% of GP practices reporting weekly to Immform for the childhood collection, the provisional proportion of children in England who had received the 2020/21 influenza vaccine in targeted groups was as follows (Figure 52):

- 14.4% in 2 year olds
- 15.2% in 3 year olds
Figure 52: Cumulative weekly influenza vaccine uptake in 2 and 3 year olds, in England

2020/21 season indicated by bold lines, 2019/20 season indicated by fainter lines.
Influenza vaccine uptake in school age children

The first report on influenza vaccine uptake in school age children (Year Reception to Year 7) will be published in November 2020.

Influenza vaccine uptake in healthcare workers

The first report on influenza vaccine uptake in healthcare workers will be published in November 2020.
International update

Global COVID-19 update

Globally, up to 6 July 2020, a total of 35,585,784 cases of COVID-19 infection have been reported worldwide, including 1,043,508 COVID-19 related deaths.

For further information on the global COVID-19 situation please see the WHO COVID-19 situation reports.

Figure 53: Global map of cumulative COVID-19 cases
Figure 54: Global map of weekly COVID-19 case incidence rate per 100,000, week 40 2020

International COVID-19 cases
Weekly incidence per 100K
29 Sept - 6 Oct 2020

- No new cases reported
- 0.01 - 5.00
- 5.01 - 10.00
- 10.01 - 30.00
- 30.01 - 60.00
- ≥ 60.01
- No cases reported to date

Created by PHE, GIS Team
Global influenza update

Updated on 6 October 2020 (based on data up to 13 September 2020) (WHO website)

In the temperate zone of the northern hemisphere, influenza activity remained below inter-seasonal levels. In the temperate zones of the southern hemisphere, influenza activity remained record low in comparison with previous seasons. Worldwide, of the very low numbers of detections reported, seasonal influenza B viruses accounted for the majority of detections.

In the countries of North America, influenza activity indicators, including the percent of tests positive for influenza, were at very low levels.

In Europe, influenza activity remained at inter-seasonal levels.

In Central Asia and Northern Africa, there were no influenza updates for this reporting period.

In Western Asia, there were no influenza detections and ILI levels were low across reporting countries.

In East Asia, influenza illness indicators and influenza activity remained at inter-seasonal levels in most reporting countries.

In the Caribbean and Central American countries, there were sporadic, or no influenza detections reported.

In tropical South America, tropical Africa and Southern Asia there were sporadic or no influenza detections across reporting countries.

In South East Asia, sporadic influenza detections were reported in Lao People’s Democratic Republic and Thailand.

In Oceania, influenza like illness (ILI) and other influenza activity indicators remained below usual levels for this time of year in general.

The WHO GISRS laboratories tested more than 129824 specimens between 31 August 2020 and 13 September 2020. 56 were positive for influenza viruses, of which 21 (37.5%) were typed as influenza A and 35 (62.5%) as influenza B. Of the sub-typed influenza A viruses, 4 (100%) were influenza A (H3N2). Of the characterized B viruses, 2 (12.5%) belonged to the B-Yamagata lineage and 14 (87.5%) to the B-Victoria lineage.
Influenza in Europe

Updated on 6 October 2020 (Joint ECDC-WHO Europe Influenza weekly update)

This is the last Joint ECDC-WHO Europe weekly influenza update for the 2019/20 influenza season. Weekly reporting will begin on 10 October 2020 for the 2020/21 season.

Overall, influenza activity has been at inter-seasonal levels from weeks 21 to 39.

Of 1,523 sentinel specimens tested for influenza viruses in weeks 21 to 39, 3 tested positive (one each of A(H3N2), B/Victoria lineage and type B no lineage ascribed).

Influenza in the Northern Hemisphere

For information on influenza in the United States of America please see the Centre for Disease Control weekly influenza surveillance report.

For information on influenza in Canada please see the Public Health Agency weekly influenza report.
Other respiratory viruses

Avian influenza

Latest update on 22 July 2020 (WHO website)

Influenza A(H5) viruses:
According to reports received by the World Organisation for Animal Health (OIE), various influenza A(H5) subtypes continue to be detected in birds in Africa, Europe and Asia.

Influenza A(H7N9) viruses:
There have been no publicly available reports from animal health authorities in China or other countries on influenza A(H7N9) virus detections in animals in recent months.

Influenza A(H9N2) viruses:
Between 9 May and 10 July 2020 two new laboratory-confirmed human cases of influenza A(H9N2) virus infections were reported from China.

Middle East respiratory syndrome coronavirus (MERS-CoV)

Latest update on 29 September 2020 (WHO website)

Up to 29 September 2020, a total of five cases of Middle East respiratory syndrome coronavirus, MERS-CoV, (three imported and two linked cases) have been confirmed in the UK. On-going surveillance has identified 1,816 suspected cases in the UK since September 2012 that have been investigated for MERS-CoV and tested negative.

From 1 April to 31 May 2020, the National IHR Focal Point of Saudi Arabia reported 9 new cases of MERS-CoV infection, including five deaths.

Globally, since September 2012, WHO has been notified of 2,562 laboratory-confirmed cases of infection with MERS-CoV, including 881 related deaths. Further information on management and guidance of possible cases is available online. The latest ECDC MERS-CoV risk assessment can be found here, where it is highlighted that risk of widespread transmission of MERS-CoV remains very low.
Related links

Previous national COVID-19 reports

Previous weekly influenza reports

Annual influenza reports

Sources of influenza surveillance data

Sources of COVID-19 surveillance data

PHE has delegated authority, on behalf of the Secretary of State, to process Patient Confidential Data under Regulation 3 The Health Service (Control of Patient Information) Regulations 2002 http://www.legislation.gov.uk/uksi/2002/1438/regulation/3/made. Regulation 3 makes provision for the processing of patient information for the recognition, control and prevention of communicable disease and other risks to public health.
About Public Health England

Public Health England exists to protect and improve the nation’s health and wellbeing, and reduce health inequalities. We do this through world-leading science, research, knowledge and intelligence, advocacy, partnerships and the delivery of specialist public health services. We are an executive agency of the Department of Health and Social Care, and a distinct delivery organisation with operational autonomy. We provide government, local government, the NHS, Parliament, industry and the public with evidence-based professional, scientific and delivery expertise and support.

Public Health England
Wellington House
133-155 Waterloo Road
London SE1 8UG
Tel: 020 7654 8000

OGL

You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

PHE supports the UN Sustainable Development Goals