Chapter 4
Natural Gas

Key points

- Natural gas imports reached a peak in 2010, since when import levels have declined and remained broadly level in recent years. However, in 2019 pipeline imports were down sharply owing to a three-fold increase in imports of Liquefied Natural Gas (LNG). This was the result of increased diversification of supply from other countries and global oversupply driving down prices. (Table 4.5, Chart 4.3).

- Like 2018, UK exports remain below 100 TWh of gas – only the third time since 1999. Using physical rather than commercial flows of gas, net imports were down 0.9 per cent in 2019 compared to 2018 (Table 4.5) as exports increased slightly to 87 TWh while imports were largely unchanged.

- UK natural gas production in 2019 decreased by 2.9 per cent compared with 2018 to 439 TWh. The longer-term trend has been a pattern of decline and continued into 2019 following the closure of the Theddlethorpe gas terminal in August 2018 and the Rough storage facility, from which the last of the cushion gas has now been extracted. In 2019 production remained two-thirds below the peak levels seen in 2000 (Table 4.1, Chart 4.1).

- Total gas demand (natural gas plus colliery methane) was 0.7 per cent lower than 2018 at 878 TWh as demand for gas fell across most sectors, including gas for electricity generation and the domestic sector. (Table 4.1, Chart 4.5).

- Final consumption decreased by 0.9 per cent in 2019 to 512 TWh, driven by milder temperatures reducing demand in contrast to the severe weather brought over by the ‘Beast from the East’ in 2018. There were decreases in the domestic (-0.9 per cent), public administration (-2.0 per cent) and industrial (-1.2 per cent) sectors. (Table 4.1, Chart 4.4).

Introduction

4.1 Gas is one of the key pillars of the UK’s energy mix, accounting for 29 per cent of the UK’s energy production and second only to oil. Gas production from the UK’s Continental Shelf (UKCS) would have been sufficient to meet nearly 50 per cent of UK demand in 2019. Gas is particularly important for electricity generation where it meets around 40 per cent of the fuel required in power stations. It is also critical for space heating, domestically and in offices, hotels and restaurants. In 2019 gas met nearly two thirds of total domestic energy demand.

4.2 An energy flow chart for 2019, showing the flows of natural gas from production and imports through to consumption, is included below as a summary of the figures in the commodity balance tables. It illustrates the flow of gas from the point at which it becomes available from indigenous production or imports (on the left) to the final use of gas (on the right), as well as volumes transformed into other forms of energy or exported.
Note:
This flow chart is based on data that appear in Table 4.1, excluding colliery methane.
Supply of gas

4.3 Mirroring the long-term trend in declining gas production since the turn of the century, gas production fell in 2019 and is 65 per cent below the peak recorded in 2000 (Chart 4.1). Despite this decline, the UK remains one of the two major gas-producing nations within the EU, alongside the Netherlands, and domestic production matches over half of UK demand.

4.4 At 439 TWh, production decreased by 2.9 per cent compared with 2018. One cause of this was the closure of the Theddlethorpe gas terminal in August 2018 as well as the running down of cushion gas extraction from the Rough Facility – a former long-term storage site that has now closed.

Chart 4.1: Changes in UK gas production and demand, 1998 – 2019

4.5 As well as a decline in production, demand has decreased since the mid-2000s as Chart 4.1 illustrates. This has been driven mainly by reduced industrial consumption (Chart 4.5). Despite this, there has been a growth in net imports with pipelines from Norway, the Netherlands and Belgium. In addition, UK imports via shipments of Liquefied Natural Gas (LNG) to terminals at Milford Haven (South Hook and Dragon) and the Isle of Grain. Much of this infrastructure has been relatively recent, with the completion of the pipeline between the UK and the Netherlands in 2006 and the completion of two new LNG terminals in 2009.

4.6 On a physical flow basis, net imports were down by 0.9 per cent in 2019 as exports rose slightly to 87 TWh and imports remained stable on the year before. However, the composition of imports has changed significantly where LNG imports comprised 39 per cent of all imports in 2019 compared to 15 per cent in 2018. Pipeline imports fell by 28 per cent percent with declines from Norway (21 per cent), the Netherlands (42 per cent) and Belgium (89 per cent). Imports from Belgium have generally been reduced since October 2018 due to the termination of the Bacton-Zeebrugge Interconnector long term capacity contract.

4.7 Conversely, imports of LNG have tripled, accounting for the second highest record share of the UK’s total imports at 39 per cent. Decreased global demand and increased availability from the diversification of the LNG market was a significant factor for this increase, as well as substantial increases in imports from Qatar - the UK’s biggest LNG supplier. In addition, there was a global

1 Physical flows of gas are volumes that have moved between countries and are shown in DUKES Table 4.5. Nominated, or commercial, flows include volumes to and from Belgium where trades have taken place between companies, but then ‘sold back’ before the gas has been physically transferred. These are shown in DUKES Tables 4.1 and 4.2.
oversupply in LNG as new projects came onstream most notably in the US and Russia, pushing wholesale LNG gas prices downwards.

For further details on latest trends in LNG supply, see the Energy Trends special feature that was published in March 2020:

4.8 Chart 4.2 shows UK imports by source. Despite the 21 per cent decrease in 2019, pipeline imports from Norway remain the principal source of UK gas imports, meeting 57 per cent of the UK import volumes over the year. For LNG, Qatar remains the primary supplier at nearly half of all volumes although the mix of LNG sources has become increasingly diversified in recent years. After importing to the UK LNG market for the first time in 2017, export volumes from Russia and the USA have increased to 34 TWh and 33 TWh in 2019, respectively, forming 33 per cent of LNG imports combined. For further details and to see the imports and exports of other countries see Table 4.5.

Chart 4.2: Gas imports by country 2019 (physical flows basis, Table 4.5)

4.9 The UK is a major exporter of gas within Europe, despite demand outstripping supply from the UK’s Continental Shelf. Chart 4.3 shows that export volumes have been considerable but vary in response to the prevailing market conditions at the time.

4.10 UK physical exports were 5.6 per cent higher than the record lows seen in 2018 at 83 TWh. The increase was largely driven by a 38 per cent increase in exports to Ireland. Due to the ending of the long-term capacity contract for the UK-Belgium interconnector, exports to Belgium remain low compared to previous years. Despite the year-on-year increase, exports remain below 100 TWh and 2019 is only the third annual total since 1999 that the UK exported less than 100 TWh of gas.
4.11 The European transit system for gas is complex, with multiple connectors giving a high degree of interconnectivity. Map 4A is illustrative of this and shows how gas flows into the EU (from Russia, Norway and by ship principally) and onto the UK (principally from Norway and by ship). The UK National Gas Transmission System is similarly complex map and is illustrated in Map 4B.

Map 4A: The European gas transit system

Demand for gas

4.13 Gas demand can be broadly broken down into two main sectors of very substantial size; domestic consumption and gas for electricity generation, with demand for industry, commercial, public administration and other sectors making up the rest (see Chart 4.4).

Chart 4.4: Gas demand in 2019

4.14 Whilst gas is a critical part of the UK’s energy demand, the long-term trend is downwards, down by a fifth (22 per cent) in 2019 since 2000 (Chart 4.5, DUKES Table 4.1). Most notably, industry demand has shrunk by 45 per cent since 2000. Demand for generation and domestic demand has also shrunk by 17 and 16 per cent, respectively, despite a rising population and growing number of homes. Increased efficiencies, including greater levels of home insulation, are in part responsible for this. Despite the overall downwards trend, there are notable peaks that correspond with weather variations, which generate a greater demand for space heating in homes and offices.

Chart 4.5: Changes in gas demand over time, 2000 - 2019 (DUKES Table 4.1)

2 Note: Transformation includes colliery methane
4.15 Gas demand in 2019 decreased by 0.7 per cent compared to 2018 to 878 TWh. In contrast to the cold weather brought over by the ‘Beast from the East’ in the first quarter of 2018, 2019 saw milder temperatures. Comparatively low levels of demand in Q1 2019 contributed to an annual 0.9 per cent reduction in domestic consumption for gas. Similarly, industrial usage fell by 1.2 per cent, with slight decreases in most sectors, contributing to an overall decrease in final consumption of 0.9 per cent.

4.16 Gas demand for transformation, including electricity and heat generation, fell by 1.5 per cent. This includes gas used for electricity generation which decreased by 1.6 per cent because of the continued increase in output from renewable sources. The only broad sector that saw an increase was in the energy industry (by 6.1 per cent) and this was due to increased demand for Oil and Gas extraction.

Sub-national gas data

4.18 In December 2019, BEIS published sub-national energy statistics data on its website: www.gov.uk/government/collections/sub-national-gas-consumption-data, including consumption data at both regional (NUTS1) and local (LAU1) level. Data for earlier years are presented on the website.

Chart 4.6: Domestic and non-domestic gas customer numbers and sales by region, 2018/19

<table>
<thead>
<tr>
<th>Region</th>
<th>Domestic customers</th>
<th>Non-domestic sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>South East</td>
<td>3,000</td>
<td>4,000</td>
</tr>
<tr>
<td>London</td>
<td>2,500</td>
<td>3,500</td>
</tr>
<tr>
<td>North West</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Yorkshire and the Humber</td>
<td>1,500</td>
<td>1,500</td>
</tr>
<tr>
<td>West Midlands</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>East</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Scotland</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>South West</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>West Midlands</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>East</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Wales</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>North East</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Domestic customers (with an annual consumption of 73,200 kWh or lower) will include some small industrial and commercial consumers. Data excludes approximately 74,000 customers (0.3 per cent) for whom regional allocation was not possible.

4.19 The total number of customers in 2018/19 remained similar to 2017/18. With the exception of the West Midlands where the number of meters stayed the same, all areas saw a small rise in the total number of customers. Within this, the South East and London have the largest numbers of consumers, whilst there are fewest in the North East. Total sales were up in all regions last year, with largest increases in the North West, Wales and the East of England. A more detailed summary of this data can be found at: www.gov.uk/government/statistics/sub-national-electricity-and-gas-consumption-summary-report-2018

Table 4A: Domestic gas market penetration (in terms of percentage of customers supplied\(^1\)) by region, Quarter 4 2019

<table>
<thead>
<tr>
<th>Region/Country(^2)</th>
<th>All Payment Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Home supplier (%)</td>
</tr>
<tr>
<td>South Wales</td>
<td>22</td>
</tr>
<tr>
<td>North East</td>
<td>23</td>
</tr>
<tr>
<td>East Midlands</td>
<td>22</td>
</tr>
<tr>
<td>North Scotland</td>
<td>29</td>
</tr>
<tr>
<td>South East</td>
<td>23</td>
</tr>
<tr>
<td>Southern</td>
<td>29</td>
</tr>
<tr>
<td>Yorkshire</td>
<td>25</td>
</tr>
<tr>
<td>Eastern</td>
<td>29</td>
</tr>
<tr>
<td>South Scotland</td>
<td>27</td>
</tr>
<tr>
<td>South West</td>
<td>29</td>
</tr>
<tr>
<td>West Midlands</td>
<td>31</td>
</tr>
<tr>
<td>North West</td>
<td>27</td>
</tr>
<tr>
<td>Merseyside & N Wales</td>
<td>34</td>
</tr>
<tr>
<td>London</td>
<td>35</td>
</tr>
<tr>
<td>Great Britain</td>
<td>28</td>
</tr>
</tbody>
</table>

\(^1\) Table is not adjusted to account for survey coverage. The Domestic Fuels Inquiry survey coverage is estimated at around 88%. All those not surveyed are with non-home suppliers.

\(^2\) The regions used in this table are the distribution areas of the former public electricity suppliers.

At the end of December 2019, BEIS estimated that 72 per cent of domestic gas customers in Great Britain are not with their ‘home’ supplier, British Gas. The data in Table 4A are based on the BEIS domestic prices survey, which does not include many small suppliers and therefore underestimates the proportion of customers not with their home supplier. By the end of December 2019, of the companies surveyed, around 28 per cent of customers were supplied by British Gas. For all types of domestic customers, it is in the markets in South Wales and the East Midlands that new suppliers have taken more of a market share.

Competition in the domestic market has continued to increase in 2019 as the concentration of sales by the largest three and largest six suppliers for each relevant sector have continued to dilute compared to past years. **Competition remained broadly unchanged between 2008 and 2013, but from 2014 onwards the competition has gradually increased**\(^3\). In 2018 (the latest year for which the analysis is available), the top nine suppliers accounted for around 75 per cent of sales, like 2017 but down from 80 per cent of sales in 2014.

Map 4B: The North Sea Oil and Gas Transmission System

- UK cities
- LNG terminals
- Pipelines
- Terminals/Platforms
- Offshore fields

Source: Oil and Gas Authority and BEIS
Gas resources

4.23 The Oil and Gas Authority estimates that there are 260 billion cubic metres of proven and probable (2P) gas reserves, of which 174 billion cubic metres are proven reserves. There has been a steady decline in 2P reserves since 1994 (as shown in Chart 4.7), initially associated with a higher rate of production. At the end of 2019 cumulative production plus 2P reserves was 2,971 billion cubic metres. The apparent decline in reserves in 2015 was due to re-classification of some reserves that had not yet been sanctioned - these will be included in future as and when sanctioned.

Chart 4.7: Gas reserves, 1980 - 2019

List of DUKES gas tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Natural gas commodity balances</td>
<td>1998-2019</td>
</tr>
<tr>
<td>4.2</td>
<td>Supply and consumption of natural gas and colliery methane</td>
<td>1996-2019</td>
</tr>
<tr>
<td>4.3</td>
<td>UK continental shelf and onshore natural gas production and supply</td>
<td>2008-2019</td>
</tr>
<tr>
<td>4.4</td>
<td>Gas storage sites and import/export facilities in the United Kingdom</td>
<td>November 2019</td>
</tr>
<tr>
<td>4.5</td>
<td>Natural gas imports and exports</td>
<td>2000-2019</td>
</tr>
<tr>
<td>4.6</td>
<td>Liquefied natural gas imports by terminal</td>
<td>2006-2019</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Natural gas and colliery methane production and consumption</td>
<td>1970-2019</td>
</tr>
<tr>
<td>F.2</td>
<td>Gas production</td>
<td>1998-2019</td>
</tr>
</tbody>
</table>

The Oil and Gas Authority will update with detailed estimates in November 2020: www.ogauthority.co.uk/data-centre/data-downloads-and-publications/reserves-and-resources/
Technical notes and definitions

These notes and definitions are in addition to the technical notes and definitions covering all fuels and energy in Chapter 1, paragraphs 1.29 to 1.63. For notes on the commodity balances and definitions of the terms used in the row headings see Annex A, paragraphs A.7 to A.42. While the data in the pdf copy of this Digest cover only the most recent five years, these notes also cover data for earlier years that are available on the BEIS energy statistics website.

Definitions used for production and consumption

4.24 Natural gas production in Tables 4.1 and 4.2 relates to the output of indigenous methane at land terminals and gas separation plants (includes producers' and processors' own use). For further explanation, see Annex F on BEIS's energy statistics website under ‘Production of gas’ - www.gov.uk/government/collections/digest-of-uk-energy-statistics-dukes. Output of the Norwegian share of the Frigg and Murchison fields is included under imports. A small quantity of onshore produced methane (other than colliery methane) is also included.

4.25 Colliery methane production is colliery methane piped to the surface and consumed at collieries or transmitted by pipeline to consumers. As the output of deep-mined coal declines so does the production of colliery methane, unless a use can be found for gas that was previously vented. The supply of methane from coal measures that are no longer being worked or from drilling into coal measures is licensed under the same legislation as used for offshore gas production.

4.26 Transfers of natural gas include natural gas use within the iron and steel industry for mixing with blast furnace gas to form a synthetic coke oven gas. For further details see paragraph 2.52 in Chapter 2.

4.27 Non-energy use is gas used as feedstock for petrochemical plants in the chemical industry as raw material to produce ammonia (an essential intermediate chemical in the production of nitrogen fertilisers) and methanol. The contribution of liquefied petroleum gases (propane and butane) and other petroleum gases is shown in Tables 3.2 to 3.4 of Chapter 3. Firm data for natural gas are not available but estimates for 2011 to 2015 are shown in Table 4.2 and estimates for 2013 to 2019 in Table 4.1. The estimates for the years up to 2011 have been obtained from AEA’s work for the National Atmospheric Emissions Inventory; 2012-13 data are BEIS extrapolations.

Sectors used for sales/consumption

4.28 For definitions of the various sectors used for sales and consumption analyses see Chapter 1 paragraphs 1.55 to 1.60 and Annex A, paragraphs A.31 to A.42.

Data collection

4.29 Production figures are generally obtained from returns made under OGA’s Petroleum Production Reporting System (PPRS). BEIS also obtain data on the transmission of natural gas from National Grid (who operate the National Transmission System) and from other pipeline operators. Data on consumption are based on returns from gas suppliers and UK Continental Shelf (UKCS) producers who supply gas directly to customers (see paragraph 4.31).

4.30 The production data are for the UK (including natural gas from the UKCS - offshore and onshore). The restoration of a public gas supply to parts of Northern Ireland in 1997 means that all tables in this chapter, except Tables 4A and 4B, cover the UK.

4.31 BEIS carry out an annual survey of gas suppliers to obtain details of gas sales to the various categories of consumer. The larger gas suppliers (defined as those with more than about a 0.5 per cent share of the UK market up to 1997 and those known to supply more than 1,750 GWh per year for 1998 onwards) provide a detailed breakdown of sales for final consumption to BEIS on an annual basis. This provides the main data source for the UK’s gas demand. Prior to 2013, companies supplying less than 1,750 GWh provided gas sales as a single sum which was then apportioned across sectors using the same proportional split as seen in the data from the large suppliers. From 2013 onwards, data from smaller suppliers were provided broken down by broad sector (e.g. domestic, other industry etc.) to allow more accurate apportioning of these data.

4.32 Data on sectoral gas use are primarily derived from surveys of large and small gas suppliers. Beyond this, data for electricity generation by major power producers are adjusted, such that the data
agree with a separate data set collected via the Major Power Producers’ (MPP) survey. Data for autogenerators are similarly adjusted to match CHP data (see Chapter 7) provided to BEIS, with the appropriate amount of gas used for autogeneration being subtracted from each sector and added to the autogeneration figure. The same methodology is applied for heat sold, which makes up the heat generation figure. For 2000 and subsequent years, gas consumption for the iron and steel sector is based on data provided by the Iron and Steel Statistics Bureau (ISSB) rather than gas suppliers, since gas suppliers were over-estimating their sales to this sector. The difference between the ISSB and ‘gas suppliers’ figures has been re-allocated to other sectors.

Methodology updates

4.33 Biomethane has been injected into the National Grid from certified Renewable Heat Incentive (RHI) installations since 2014. These volumes have been small, but increasing, with biomethane accounting for 0.5 per cent of supply in 2019. This gas is included in the transfers row in Tables 4.1, 4.2 and 4.3 in this chapter and is separately identified in the monthly Energy Trends tables. Since 2017, data for biomethane gas injection has been expanded from RHI only to also include data from the environmental consultancy NNFC. More information on Biomethane injection can be found at https://ee.ricardo.com/downloads/energy/restats-%E2%80%93-the-definitive-source-of-uk-renewable-gas.

4.34 In 2016 BEIS updated the methodology to calculate gas exports to the Republic of Ireland to remove virtual reverse flows, which ensures that only physical flows are reported in line with international reporting standards. Republic of Ireland and Northern Ireland gas flows are now taken from published data by Gas Networks Ireland. In previous years Republic of Ireland flows have been calculated but we now take these flows from Gas Networks Ireland (GN). These flows, along with reported flows from Manx Utilities to Isle of Man and data from the Bacton Terminal is compared to GM10 data reported to BEIS by National Grid to identify exported flows.

4.35 BEIS updated our gas data collection methodology and analysis in 2014 (see Energy Trends June 2014 special feature for details: www.gov.uk/government/statistics/energy-trends-june-2014). This change in methodology resulted in shifts in sectoral gas use going back to 2008. Notably, gas use was moved out of the industrial sector with a subsequent increase in the services sector.

Period covered

4.36 Figures generally relate to years ended 31 December. However, before 2004, data for natural gas for electricity generation relate to periods of 52 weeks.

Monthly and quarterly data

4.37 Monthly data on natural gas production and supply are available in Energy Trends Table 4.2, and a quarterly commodity balance is published in Energy Trends Table 4.1: www.gov.uk/government/collections/gas-statistics

Statistical and metering differences

4.38 DUKES Table 4.3 shows production, transmission, and consumption figures for off and onshore natural gas. This departs from the standard balance methodology to maintain the link with historical and monthly data. This section of the technical notes illustrates how total gas consumption shown in Table 4.3 and Table 4.1 are mapped. Production includes waste and own use for drilling, production, and pumping operations, but excludes gas flared. Gas available in the UK excludes waste, own use for drilling etc., stock change, and net trade. Gas transmitted is after stock change, own use, and losses at inland terminals. The amount consumed in the UK differs from the total gas transmitted because of losses in transmission, differences in temperature and pressure between the points at which the gas is measured and delays in reading meters. The figures include an adjustment to the quantities billed to allow for the estimated consumption remaining unread at year end.

4.39 In Table 4.3 there are several headings that refer to statistical or metering differences. These arise because measurement of gas flows, in volume and energy terms, takes place at several points along the supply chain. The main sub-headings in the table represent the instances in the supply chain where accurate reports are made of the gas flows at that key point in the supply process. It is possible to derive alternative estimates of the flow of gas at any point by taking the estimate for the previous point in the supply chain and then applying the known losses and gains in the subsequent part of the supply chain. The differences seen when the actual reported flow of gas at any point and
the derived estimate are compared and separately identified in the table wherever possible, under the headings statistical or metering differences.

4.40 Losses and metering differences attributable to the information provided on the upstream gas industry are zero from 2001 onwards because these data are no longer reported in the revised PPRS System. This simplified system for reporting the production of crude oil, NGLs and natural gas in the UK was implemented from 1 January 2001; it reduced the burden on the respondents and improved the quality of data reported on gas production.

4.41 The differences in the natural gas commodity balances arise from several factors:
- Limitations in the accuracy of meters used through the supply chain. While standards are in place, a degree of error is allowed which, with large flows, can become significant.
- Differences in the methods used to calculate the flow of gas in energy terms. For example, at the production end, rougher estimates of the calorific value of the gas produced are used which may be revised only periodically, rather than the more accurate and more frequent analyses carried out further down the supply chain. At the supply end, although the calorific value of gas shows day-to-day variations, for the purposes of recording the gas supplied to customers a single calorific value is used. Until 1997 this was the lowest of the range of calorific values for the actual gas being supplied within each LDZ, resulting in a “loss” of gas in energy terms. In 1997 there was a change to a “capped flow-weighted average” algorithm for calculating calorific values resulting in a reduction in the losses shown in the penultimate row of Table 4.3. This change in algorithm, along with improved meter validation and auditing procedures, also reduced the level of the “metering differences” row within the downstream part of Table 4.3.
- Differences in temperature and pressure at points at which gas is measured. Until February 1997 British Gas used “uncorrected therms” on their billing system for tariff customers when converting from volume to an energy measure. This made their supply figure too small by a factor of 2.2 per cent, equivalent to about 1 per cent of the wholesale market.
- Differences in the timing of reading meters. While National Transmission System meters are read daily, customers’ meters are read less frequently and profiling is used to estimate consumption. Profiling will tend to underestimate consumption in a strongly rising market.
- Other losses from the system, for example theft through meter tampering by consumers.

4.42 The headings in Table 4.3 show where, in the various stages of the supply process, it has been possible to identify these metering differences as having an effect. Usually they are aggregated with other net losses as the two factors cannot be separated. Whilst the factors listed above can give rise to either losses or gains, losses are more common. However, the negative downstream gas metering difference within the transmission system in 2003 was an anomaly that was investigated by National Grid during 2004. They concluded that this unaccounted element of National Transmission System shrinkage was due to an exceptional run of monthly negative figures between February and June 2003 within what is usually a variable but mainly positive series. However, after a comprehensive investigation of this exceptional period no causal factors were identified. It is probable that the meter error or errors that caused this issue were corrected during the validation of metering.

4.43 Care should be exercised when interpreting the industrial subsector data. Companies switch contracts between gas suppliers, meaning it has not been possible to ensure consistent classification in industry sectors and across years. There are substantial estimates prior to 2013.

Contacts:

Oil-Gas.Statistics@beis.gov.uk

Natalie Cartwright Zoe Clark Jeremy Burton
Head of Oil and Gas Statistics Upstream Gas Downstream Gas
0300 068 5260 020 7215 8170 0300 068 5785