Excess mortality in England
Methodology for the weekly reports
About Public Health England

Public Health England exists to protect and improve the nation’s health and wellbeing and reduce health inequalities. We do this through world-leading science, research, knowledge and intelligence, advocacy, partnerships and the delivery of specialist public health services. We are an executive agency of the Department of Health and Social Care, and a distinct delivery organisation with operational autonomy. We provide government, local government, the NHS, Parliament, industry and the public with evidence-based professional, scientific and delivery expertise and support.

Public Health England
Wellington House
133-155 Waterloo Road
London SE1 8UG Tel:
020 7654 8000
www.gov.uk/phe
Twitter: @PHE_uk
Facebook: www.facebook.com/PublicHealthEngland

Prepared by:
Sharmani Barnard, Senior Statistical Advisor
Sebastian Fox, Principal Data Scientist
Allan Baker, Deputy Head of Population Health Analysis
Paul Burton, Professor of Data Science for Health at Newcastle University and Honorary Consultant in Public Health (Epidemiology and Statistics) to PHE
Peter Goldblatt, Senior advisor University College London Institute of Health Equity and Statistical Advisor to PHE
Justine Fitzpatrick, Head of Population Health Analysis

© Crown copyright 2020
You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified any third-party copyright information you will need to obtain permission from the copyright holders concerned.

Published July 2020
PHE publications number: GW-1381
PHE supports the UN gateway Sustainable Development Goals
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About Public Health England</td>
<td>2</td>
</tr>
<tr>
<td>Summary</td>
<td>4</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Methods</td>
<td>5</td>
</tr>
<tr>
<td>Setting</td>
<td>5</td>
</tr>
<tr>
<td>Analyses</td>
<td>5</td>
</tr>
<tr>
<td>Generating expected deaths</td>
<td>5</td>
</tr>
<tr>
<td>Baseline model</td>
<td>8</td>
</tr>
<tr>
<td>Deaths registered in 2020</td>
<td>10</td>
</tr>
<tr>
<td>Excess deaths</td>
<td>11</td>
</tr>
<tr>
<td>COVID-19 deaths</td>
<td>11</td>
</tr>
<tr>
<td>Strengths and limitations</td>
<td>11</td>
</tr>
<tr>
<td>Interpretation of data and comparing groups</td>
<td>13</td>
</tr>
<tr>
<td>What this means when interpreting difference between groups</td>
<td>13</td>
</tr>
<tr>
<td>References</td>
<td>15</td>
</tr>
</tbody>
</table>
Summary

This report describes the methods used by Public Health England (PHE) in the Excess mortality in England: Weekly reports, it details how weekly and total excess deaths since 20 March 2020 in England have been estimated. Excess deaths are estimated by comparing the number of observed deaths in 2020 to the number of expected deaths. Expected deaths are estimated using models based on 5 years of data from 2015 to 2019.

Introduction

Excess mortality is the number of observed deaths relative to the number of deaths that would have been expected based on previous data. Weekly monitoring of excess mortality from all causes throughout the COVID-19 pandemic provides an objective and comparable measure of the scale of the pandemic [1]. Measuring excess mortality from all causes, instead of focusing solely on mortality from COVID-19, overcomes the issues of variation in testing and differential coding of cause of death between individuals and over time [1]. Because of this, weekly monitoring of excess mortality has become increasingly important [1].

Due to the increased importance of this measure, it is essential that the most accurate, timely and reliable measure of excess is used. This report describes the methods used by PHE to estimate excess mortality during the COVID-19 pandemic from all causes of death and specific causes, by place of death and among subgroups of the population in England.
Methods

Setting

The first reported death due to COVID-19 in England was on 6 March 2020. By 19 March, 76 deaths due to COVID-19 had been registered. PHE began receiving a daily feed of deaths registered from the Office of National Statistics (ONS) on 20 March 2020. The analyses presented in the Excess Mortality in England report include deaths occurring in England, registered between 20 March 2020 and the date for the final week of each report. This period captures all the registered deaths recorded as mentioning COVID-19 in England (to usual residents of England), except for the 76 COVID-19 deaths that were registered before 20 March.

Analyses

Analyses were carried out for deaths from all causes, deaths from specific causes and deaths by place of death. Geographical analyses were carried out for all causes of deaths for England and 9 English regions (East Midlands, East of England, London, North East, North West, South East, South West, West Midlands and Yorkshire and The Humber). Regions were constructed from 2019 Upper Tier Local Authorities (UTLAs). All-cause deaths were also analysed for England by age group, gender, ethnic group and deprivation quintile.

Analysis by cause of death was carried out using the underlying cause of death (UCOD) of the deceased and, for selected causes, any mention of the cause on the death certificate. Deaths were selected using International Classification of Diseases, 10th revision (ICD-10) [2] codes assigned by Office for National Statistics (ONS).

Place of death analyses were carried out solely for all causes of death. Place of death was determined using the methodology described in Table 2 of the Classification of Place of Death Bulletin [3]. All deaths were disaggregated into those occurring: at home; in care homes (nursing or residential); in hospitals (acute or community, excluding psychiatric); in hospices; or elsewhere (other places) [3].

Generating expected deaths

Data sources

Models to develop baseline estimates of the expected number of death registrations on a given day of the year were constructed using a combination of deaths and population denominators data from 2015 to 2019.
Mortality data

Deaths for the years 2015 to 2018 were drawn from fully coded and cleaned annual extracts supplied to PHE by ONS. The ONS annual extract for 2019 was not available in March 2020 and so data for 2019 was provisionally drawn from the ONS Mortality and Births Information System (MBIS).

For analyses of all-cause mortality, deaths were disaggregated by age, sex, region (former Government Office Regions) or upper tier local authority (UTLA) and, where appropriate, ethnic group, and deprivation quintile.

Adjusting for changes to cause coding in 2020

ONS code causes of death using specialist software which automatically translates the text written on death certificates into ICD-10 codes. For the majority of deaths, the software also selects which of the causes on the death certificate was the underlying cause of death. In January 2020, ONS changed the software used to a version which reflects the latest medical and epidemiological thinking. This means that for some deaths a different underlying cause would be assigned using the old and new software. ONS have documented these changes [4]. To ensure that data between years are comparable, numbers of deaths for causes which were affected by the coding changes have been adjusted in 2015 to 2019, using comparability ratios based on bridge coded data released by ONS. This ensures that numbers of deaths by underlying cause in 2015 to 2019 and 2020 are consistent.

Assigning ethnicity

To undertake the ethnicity analysis, data linkage to hospital records was required to obtain the necessary information on ethnicity, as this is not recorded at death registration. To obtain ethnicity data for baseline data, an existing file that links ONS mortality records to Hospital Episode Statistics records (HES-ONS) was used [5].

Deaths from the HES-ONS mortality file were matched to HES records to obtain ethnicity codes. The most recent usable ethnicity code from 3 HES databases (Admitted Patient Care (APC), Outpatient (OP) and Accident and Emergency (A&E)) in 2003 to 2004 up until year of death were assigned. For remaining records where ethnicity could not be assigned, historic records from APC from 1997 to 2003 were used to assign ethnicity.

The method used results in a linkage rate of 98-99% (varying year on year). Of all linked records, 2.68% were linked to a ‘not stated’ or ‘not known’ ethnic group and less than 1% had differing codes for sex in each file. Among those not linked, not stated, not known and mismatched records it was viewed as reasonable to assume that data was
missing completely at random (MCAR). For not stated, not known and not linked data, ethnic group was assigned proportionally based on ONS population denominators for the same time period, stratified for age, sex and region.

The HES-ONS file only contains death records for individuals that have attended hospital in the past. Because some people die without ever having attended a hospital there are fewer deaths in this file than the annual mortality files [5]. This results in roughly 5,000 fewer deaths per year. To adjust for this, first the distribution of counts of deaths for each day (taken as an average of counts over the 17 preceding days and the 17 subsequent days) for ethnic group, by age, sex, and region was derived using the HES-ONS file. These distributions were then applied to the annual mortality file. Using this approach, the ethnicity findings were consistent with other analyses.

Denominator data

ONS mid-year population estimates for England (2015 to 2018) and projections (2019 and 2020) were used to estimate population denominators within each group on each day [6,7]. (The mid-year estimates for 2019 were not available when the model was created.) For analyses of all-cause mortality, denominators were disaggregated by age, sex and UTLA or region and, where appropriate, by ethnic group or deprivation quintile.

For all-cause mortality analyses that included ethnicity, ONS data that provide population denominators by ethnic group from 2015 to 2018 were used to obtain distributions of ethnic groups by age, sex and region [8]. These analyses were developed at regional level because the computational cost was too great at lower geographies. Using an approach analogous to that used for ethnicity deaths data, the distributions of the ethnic groups by age, sex and region were then applied to ONS midyear population estimates for England for 2015 to 2018 and projections for 2019 and 2020 [5,6]. Using this approach, the ethnicity analyses use population denominators consistent with other analyses.

A similar approach was taken to ensure that the denominators used for the deprivation model were consistent with the other analyses. Deprivation was measured using the 2019 Index of Multiple Deprivation (IMD). In England it is available at various geographic levels, including lower-layer super output areas (LSOAs) [9]. 2019 IMD scores for LSOA of usual residence were used to allocate national deprivation quintiles [9]. LSOA populations were available for 2015 to 2018 but population projections for 2019 and 2020 were only available for higher geographies. Therefore, to estimate denominators for LSOAs for 2019 and 2020, the distributions of age, sex and LSOA populations from 2018 were applied to the UTLA population projections in which each LSOA was located.

Because anybody in the population may die at home or in a hospital on any given day there is no defined subpopulation of denominators for place of death. This is also true
for cause of death. These are simply risks faced by the general population. Therefore, for place of death and cause of death analyses, denominators were derived from the age-sex distribution of the general population within a UTLA and, where appropriate, by ethnic group or deprivation decile. To avoid introducing a competing risk within the model, each place of death and cause of death model is fitted separately. This means that any shortfall or excess of deaths in one place may be mirrored (in part) by a corresponding excess or shortfall of deaths in one or more of the other places of death.

Baseline model

Outcome

Counts of excess deaths are presented by date of registration at national and subnational level, and for subgroups of the population. Date of registration, rather than date of occurrence, was used because the latter requires either a delay of at least 3 weeks before publication or making an estimate of the delay between date of death and date of registration, that adds uncertainty to the estimate, particularly among subnational groups.

Death registrations were modelled using only working days of the week (Monday to Friday), because historically very few deaths were registered on weekends or public holidays. Deaths registered on weekends or public holidays were reassigned to the nearest working day, that is deaths registered on Saturdays were assigned to the preceding Friday and registrations on a Sunday were assigned to the following Monday.

Data structure and covariates

In-line with the ‘rising activity, multi-level mixed effects, indicator emphasis’ (RAMMIE) model [10], independent variables included day of week (weekdays only), whether a day was a public holiday, and time of year, allowing for seasonal effects. Specific adjustments were made for registration fluctuations around public holidays. Covariates were included, allowing for the effect of age, gender, deprivation, ethnicity and geographical area. A linear calendar trend was also included in the model to take in to account any systematic changes in the rate of death that are not reflected in the changing age structure of the population. The linear trend was constructed by giving each day a numerical value relating to days from 31 December 2016 and dividing the value by 365.25.

For analysis of all-cause mortality, data were broken down by age groups (0-14, 15-44, 45-64, 65-74, 75-84, 85+) derived from age in years at the time of death. These groups are in line with EuroMOMO and some ONS presentations of age groups. Data are presented by sex (male/female) based on sex reported in the death record. Deaths were allocated to UTLAs based on April 2019 UTLA boundaries [11]. Ethnic group was
derived from the linkage process described above. Deprivation was measured using the 2019 IMD by UTLA. 2019 IMD scores for LSOA of usual residence were used to allocate each death to a national deprivation quintile [9].

The structure of the models used was hierarchical with population denominators and counts of death each being fully disaggregated by age, sex, geographic area, ethnicity and deprivation.

Statistical modelling

Quasi-Poisson regression models were fitted on the logarithmic scale [12]. Quasi-Poisson models were used because when counts of daily deaths are independent of one another they theoretically follow a "Poisson" distribution. This has the characteristic property that as its mean (the expected number of deaths) increases, the variability of the observed count of deaths (its variance) rises in parallel such that the variance always equals the mean. However, in the real world, the underlying risk of death varies between different population subgroups and as this cannot usually be modelled perfectly, observed counts of deaths are not completely independent. In consequence, the variance then increases faster than the mean and this is referred to as "overdispersion". Because Quasi-Poisson models allow the linear relationship between variance and mean to have a slope other than unity, they appropriately analyse rates of death when overdispersion exists [12].

The models contained the set of covariates outlined in the section 'Data Structure and Covariates' above. To allow for the effect of increasing age on risk of death to vary between the sexes, an interaction term was included between age and sex. Finally, to model the underlying rate of death, an offset was included in every model. This reflected the logarithm of the estimate of the size of the population in each population subset.

Prediction intervals were calculated to quantify the uncertainty around baseline predictions. Prediction intervals account for both the uncertainty around estimate and the random variation in the individual values. The width of prediction intervals was estimated by generating random samples from a Quasi-Poisson distribution with the appropriate modelled rates of death and the estimated dispersion parameter. Upper and lower prediction intervals were then obtained by estimating the 0.00135 and 0.99865 quantiles (i.e. ± 3 standard deviations) of this distribution.

All data were analysed using the Generalised linear modelling function in the statistical package R [13]. Cause of death and ethnicity analyses were conducted with R 4.0.0. The remaining analyses were performed with R 3.6.3. Analyses were carried out in different versions of R due to a software upgrade that took place during the analysis.
Deaths registered in 2020

Data source

ONS provided PHE with a daily feed of registered deaths data that began on 20 March 2020. These data are provisional and are subject to change. As each weekly report is run on the latest version of the data, small changes may occur to previous weekly numbers, reflecting improvements to cause of death coding or the addition of registrations not previously received.

Weekly deaths

Results of the analyses are presented on a weekly basis. To maximise correspondence with the pattern of death registrations in the baseline data, all weekend and public holiday death registrations were reassigned to the nearest working day.

To ensure data for deaths in communal establishments was up to date, an individual’s place of residence was mapped to a list of communal establishments in England. This was supplied by the ONS and was up to date as of June 2020, with planned updates occurring monthly.

Assigning ethnicity

To obtain ethnicity data for 2020 deaths data, a method for linking to data held within PHE to closely match the method used for the HES-ONS mortality file was developed. A 20-year historic HES table that included NHS number, date of birth (DOB), home address, sex and ethnic group is used. HES tables included APC, OP and A&E. Additionally, a table of daily Secondary Uses Service (SUS) data was used because this contained more recent finished hospital episodes for patients covering all completed episodes of care from 1 December 2019. Duplicates were identified, and the most recent valid ethnicity was assigned to the 2020 death records. All linkage was deterministic, using NHS number, admission/attendance data, date of birth, address and sex.

Using this method 97% of records were linked to a valid ethnic code, 2% were linked to a not stated or not known record and less than 1% were not linked. As with the baseline data, the mechanism of missingness was assumed to be MCAR. The same method of assigning not linked, not stated or unknown ethnicity data was applied to these records as with the baseline data. This linkage is carried out weekly.
Causes of death

The causes of death included in the report were selected based on the leading causes of deaths in years before 2020 and on the causes of death with the highest numbers of deaths in April 2020. They are grouped according to standard groups of leading causes developed by ONS [14] but with some adjustments. All acute respiratory infections have been grouped together in this report (ICD-10 J00-J22) rather than reporting influenza and pneumonia separately (J09-J18), as in the ONS definition. At this stage in the pandemic it was also thought more appropriate to group all cancers together rather than reporting on specific cancer sites. Future analyses of excess deaths could examine the impact of the pandemic on specific cancers.

Although there is interest in the impact of the pandemic on external causes of death, such as transport accidents and suicides, it is not yet possible to look at this. Deaths from external causes are not generally registered until after a coroner’s inquest has taken place to examine the circumstances of the death. It may take months for an inquest to take place and for the death to then be registered. As the coronial system has been disrupted during the pandemic, fewer deaths from external causes are being registered [15]. This aspect of the pandemic will be an important factor to examine when data do eventually become available.

Excess deaths

Total cumulative excess mortality was estimated by counting deaths since 20 March 2020 and subtracting the expected cumulative deaths since 20 March 2020 in the baseline model. Weekly excess mortality was calculated by taking the observed number of deaths registered in a week and subtracting the expected registered deaths for that week.

COVID-19 deaths

A separate colour is used on charts to represent the number of deaths where COVID-19 was mentioned on the death certificate. This includes any death record where COVID19 was the underlying cause of death or was mentioned anywhere (ICD10 code U07.1 or U07.2). This includes both confirmed and suspected COVID-19.

Strengths and limitations

This methodology has many strengths. It produces timely, reliable estimates of excess deaths by modelling date of registration rather than date of occurrence. This is especially important when the excess appears to be declining, because using date of occurrence too soon after the decline will overestimate how quickly the excess is declining. This method takes appropriate account of the age, sex and geographical
distribution in each sub-group both in the baseline and 2020 data. By including year on year trends in mortality and changing population denominators the method adjusts for trends in mortality and an ageing population. By modelling expected deaths for each working day, based on the time of year and proximity to a public holiday, it accurately adjusts expected death registrations during the weeks around Easter (where the date varies year on year) and other public holidays. This is especially important for monitoring weekly excess over the Easter period in 2020, which occurred at a critical point in the outbreak. Finally, it provides a clear picture of the total excess attributable to the COVID-19 outbreak by only including excess mortality occurring from 20 March 2020.

This methodology has some limitations. Because baseline data is based on previous years’ registration practices, adjustments could not be made to the baseline model for changes that occurred to registration processes in 2020. One important difference between 2020 and previous years is that deaths could be registered on weekends and public holidays in April [16]. The increased capacity for registration over the Easter weekend may have resulted in registrations being brought forward. This may slightly overestimate the excess [17]. This may be more pronounced in the week before Easter due to the reassignment of deaths from Friday and Saturday of the Easter weekend to the previous Thursday [17]. There may also be a greater delay in death registrations where the death has been referred to a coroner throughout the COVID-19 outbreak, resulting in an underestimation of the excess.

Analysis of ethnicity was limited to 5 broad categories because of differences in the source of data between the death data and the denominator data. Ethnicity was obtained by linking deaths to HES in the baseline and 2020 data, while denominators for ethnicity are derived from 2011 Census data. While ethnicity is intended to be self-reported in both the census and HES, it is possible that a proportion of HES ethnicity is recorded by health care staff or may be recorded by the head of household at census. Compared to those coded as White, those coded as non-White are more likely to be misclassified in HES [18]. Health care staff may be more likely to record ethnicity as ‘other’ ethnic groups, (such as ‘Black Other’ and ‘Asian Other’), or to misclassify ethnicity if they are not sure of the ethnicity of the patient. This may have occurred more often during the COVID-19 outbreak, when fewer family members were present in hospitals. Therefore, there may be a greater number of excess deaths among ‘Black other’ and ‘Asian other’ ethnic groups and more misclassification of ethnicity during the COVID-19 outbreak that would not be reflected in the denominators. To reduce the impact of this potential bias, ethnic groups are presented as 5 broad categories. Future work will attempt to cross-validate ethnicity coding in HES and the Census.

A further potential source of bias between deaths and populations may result from the fact that ethnicity was assigned using HES records, which include international migrants since 2011. The population estimates by ethnic group used in this analysis do not, however, reflect the effect of international migration since 2011 on the ethnic distribution
of the population. This is likely to have led to underestimation of the population for some ethnic groups.

Deprivation is measured by LSOA of residence at time of death. Among individuals in care homes, the LSOA of the care home may not reflect the level of deprivation they experienced prior to entering the home.

The baseline is modelled using 5 years of historical data. This data includes years of relatively high mortality and relatively low mortality. Although, prior to the COVID-19 outbreak, 2020 began as a year with relatively low mortality, this may have been due to the relatively mild flu season and would not necessarily have affected mortality compared to the baseline through the spring and summer months. Finally, there may be a small underestimation (including the 76 deaths coded to COVID-19 as well as early deaths caused by COVID-19, with no mention of COVID-19 on the certificate) of the cumulative excess due to the start date of 20 March 2020.

Interpretation of data and comparing groups

Among each subgroup (age, sex, region, ethnicity/deprivation) rates are calculated from the historic (2015 to 2019) data and then applied to the 2020 population for that same subgroup to calculate the expected number of deaths. When these are added up, they generate the total expected number of deaths that would be registered in a specified week, if the death rates based on the historic data were to apply in 2020. Observed deaths are compared to expected deaths to estimate both the excess number of deaths and the ratio of the observed to expected deaths. This can therefore be seen to be a form of indirect standardisation (equivalent to a Standardised Mortality Ratio).

What this means when interpreting difference between groups

In the comparative charts, showing total cumulative absolute numbers of excess and ratios of excess for particular groups (for example age groups, ethnic groups or deprivation quintiles), the excess deaths and ratios are generated for each group separately. Excess deaths can be interpreted as the additional deaths in the group in 2020 over and above the number it would have experienced if the 5 years’ age-sex-region specific rates for that group had stayed the same as they were in the historic (2015 to 2019) period.

The ratio is the number of observed deaths divided by the number that would have been experienced if rates had stayed the same in that group. Therefore, both the excess and the ratio are standardised for changes in the age and sex distribution over time within that group. Any excess deaths or increase in the ratio are not due to the ageing of the population of that group.
Using the ratio of observed to expected deaths, comparisons can be made to compare the excess between groups of difference sizes. However, differences between the age, sex structure of the groups will still account for some of the difference seen in the ratio of observed to expected deaths between groups.

There are 2 reasons for this:

- the expected number of deaths are predicted, given the age, sex structure of that population
- the risk of death from COVID-19 (observed deaths) is differential between age groups and sex

Therefore, rather than removing the effect of age and sex between groups (as a directly standardised rate does), ratios of excess deaths take account of the age and sex structure of each group. Differences between groups (such as 2 ethnic groups), should be interpreted as the relative difference from the expected, given the different age and sex structures of each group.
References

