Application for consent to release a GMO

Part A2: Data or results from any previous releases of the GMO

Give information on data or results from any previous releases of this GMO by you either inside or outside the European Community [especially the results of monitoring and the effectiveness of any risk management procedures].

Not applicable.

Part A3: Details of previous applications for release

Give details of any previous applications to release the GMO made to the Secretary of State under the 2002 Regulations or to another Member State under the Deliberate Release Directive 2001/18/EC.

Not applicable.

Part A4: Risk assessment and a statement on risk evaluation

Summary Environmental risks

The probability of *B. oleracea* seeds or pollen escaping from the trial site or the transfer of inserted characteristics to sexually-compatible species outside the trial area is estimated as very low. Plants grown in the trial will have their inflorescences removed at the early stages, prior to pollen exposure and therefore seed set. Primary inflorescences produced will be harvested for analysis, along with leaf material. Following this, all plants will be uprooted and destroyed in their entirety by autoclaving at the John Innes Centre to prevent further flowering. Less than ten individuals will be allowed to flower with their inflorescences contained within a pollen proof bag, preventing pollen or subsequent seed release. *As B. oleracea* is unable to clonally propagate and reproduces exclusively through sexual reproduction, it is unlikely any residual plant material will lead to further emergence of plants. With the exception of a barrier of *Brassica napus* plants surrounding the plants in the trial, no *Brassica* plants will be grown within 20 metres of the trial site and surrounding areas will be monitored for the presence of species capable of crossing with *B. oleracea*. If any species are found which may cross pollinate within

20m of the *B. oleracea* plants in this study, they will be treated with a herbicide (glyphosate). The potential removal of defence compounds, glucosinolates, in trial plants suggests that they would not posess a selective advantage over any existing Brassica plants and will be very unlikely to outcompete any wild or ruderal plants.

The risk of non-sexual, horizontal gene transfer to other species is extremely low. Current data suggests an absence of the transgene used to generate the mutation in this line and therefore an absence of the plasmid (further analysis will be conducted to confirm this), further reducing the risk of any potential gene transfer. In the event of horizontal gene transfer to bacteria, neither the trait genes nor the marker genes would be expected to confer a selective advantage in the field environment under consideration. The genes introduced in *B. oleracea* have been inserted *via Agrobacterium tumefaciens*-mediated gene transfer. We estimate the likelihood of horizontal gene transfer as low and the consequences were it to occur, as negligible.

Human health risks

Where applicable, the gene donor organisms are not known to be pathogenic or allergenic to humans, and none of the genes under investigation, or the selectable marker genes, are expected to result in the synthesis of products that are harmful to humans, other organisms or the environment. The breeding line used to generate these plants is AG DH1012, a doubled haploid genotype from the *Brassica oleracea* ssp *alboglabra* (A12DHd) and *Brassica oleracea* ssp *italica* (Green Duke GDDH33) mapping population (Bohuon et al., 1996; Bohuon, 1995). Both parental lines are already widely consumed as Chinese kale (ssp *alboglabra*) and broccoli (ssp *italica*) and have no currently recognised negative effects upon human consumption. Moreover these lines have been edited to potentially reduce the production of existing compounds in the plant (glucosinolates) and are not proposed to produce any novel metabolites which may pose as threat to human health upon consumption. Any unknown hazards arising from the expression and ingestion of foreign proteins will not occur since the *B. oleracea* plants will not be consumed by humans.

Risk assessment

Conclusions on the Potential Environmental Impact from the Release or the Placing on the Market of GMOs

i. Likelihood of the genetically modified higher plant (GMHP) becoming more persistent than the recipient or parental plants in agricultural habitats or more invasive in natural habitats.

It is highly unlikely that the genetic modification introduced to the GMHP could result in major changes in invasiveness or persistence, as the proposed modification would potentially reduce the ability of the plant to persist or outcompete. If it were to occur, this hazard would be realised only if seeds or pollen possessing genes encoding these traits were to spread from the trial site and successfully become established elsewhere. This is highly unlikely as the GMHPs will have their inflorescences removed prior to flowering, with the exception of those that will be kept in pollen-proof bags, preventing the spread of pollen or seed to surrounding plants. Moreover the *B. oleracea* pollen is large and unlikely to come into contant with other compatible species.

ii. Any selective advantage or disadvantage conferred to the GMHP.

Selective disadvantage may result from the intended traits (reduced defence compounds) or as a result of unintended effects of the genetic modification. However the risk of this is very low as GMHP plants with the intended mutation do not have a differing phenotype when grown in the glasshouse. This potential hazard would be realised only if seeds or pollen possessing genes encoding these traits were to spread from the trial site and successfully become established in environments where the appropriate selection pressures were present. This is highly unlikely as the the low number of plants allowed to flower will be contained in pollen-proof bags and therefore not spread pollen or seed outside of the trial area.

iii. Potential for gene transfer to the same or other sexually compatible plant species under conditions of planting the GMHP and any selective advantage or disadvantage conferred to those plant species.

Gene transfer would only be accomplished through spread of seed or crosspollenation with compatible species, which is unlikely due to the low number of plants that will be left to flower, which will be contained within pollen-proof bags. Moreover these plants will be surrounded by a barrier of *Brassica napus* plants, with any other compatible species within 20 metres of the trial site being removed through herbicide treatment. Should the highly unlikely event of cross-pollenation arise, there should be no predicted advantage conferred to those plants species.

iv. Potential immediate and/or delayed environmental impact resulting from direct and indirect interactions between the GMHP and target organisms, such as predators, parasitoids and pathogens (if applicable).

Due to the proposed reduction in secondary defence compounds introduced by the modification, it is possible that the GMHPs may undergo more damage by pathogens and pests than the parental lines whilst out in the field, though this is effect is likely to be minor and will only affect the GMHP. Management practices will be put into place to minimise pest and pathogen contact with the GMHPs, including pesticide/herbicide practices, as the plants will be treated in a practice that best reflects commercial *Brassica* cultivation. In addition, this scenario remains

hypothetical as low defence levels are not guaranteed in these GMHPs nor is the effect this will have on interactions.

v. Possible immediate and/or delayed environmental impact resulting from direct and indirect interactions of the GMHP with non-target organisms, (also taking into account organisms which interact with target organisms), including impact on population levels of competitors, herbivores, symbionts (where applicable), parasites and pathogens.

Due to the proposed reduction in secondary defence compounds introduced by the modification, it is possible that the GMHPs may undergo more damage by pathogens and pests than the parental lines whilst out in the field, though this is effect is likely to be minor and will only affect the GMHP. Management practices will be put into place to minimise pest and pathogen contact with the GMHPs, including pesticide/herbicide practices, as the plants will be treated in a practice that best reflects commercial *Brassica* cultivation. In addition, this scenario remains hypothetical as low defence compound levels are not guaranteed in these GMHPs nor is the effect this will have on interactions.

vi. Possible immediate and/or delayed effects on human health resulting from potential direct and indirect interactions of the GMHP and persons working with, coming into direct contact with, or in the vicinity of the GMHP release(s).

The nature of the trial relies on some human contact between the trained scientists and the GMHP and appropriate advice and SOPs will be used to minimise exposure to the GMHP, despite the risk of effects on human health being negligible. The compounds being potentially reduced in the GMHPs are already very widely represented in the human food chain, without any reported negative effects. Moreover, no plant material from the trial will enter the food chain.

vii. Possible immediate and/or delayed effects on animal health and consequences for the food/feed chain resulting from consumption of the GMO and any products derived from it if it is intended to be used as animal feed.

It is not intended to use the GMHP for direct animal feeding studies, nor will the GMHP enter the food chain.

- viii. Possible immediate and/or delayed effects on biogeochemical processes resulting from potential direct and indirect interactions of the GMO and target and non-target organisms in the vicinity of the GMO release(s).
 Biogeochemical processes are not expected to be affected by the cultivation of the genetically modified plants and the area in which the GMHP will be grown will be small and temporary.
 - ix. Possible immediate and/or delayed, direct and indirect environmental impacts of the specific cultivation, management and harvesting techniques used for the GMHP where these are different from those used for non-GMHPs.

No differences in the cultivation and management of the GMHP compared with the non-GMHP will occur

	Step1: Potential hazards which may be caused by the characteristics of the novel plant	Step 2: Evaluation of how each hazard could be realised in the receiving environments	Step 3: Evaluation of the magnitude of harm caused by each hazard if realised	Step 4: Estimation of how likely/often each hazard will be realised as harm	Step 5: Modification of management strategies to obtain lowest possible risks from the deliberate release	Step 6: Overall estimate of risk of harm caused by the release for each hazard
a	Increased invasiveness in natural habitats or persistence in agricultural habitats.	Potential off-target effects of the Cas9 on similar genes may provide plants with traits making them better able to establish and thrive in uncultivated environments or to persist in agricultural habitats.	Left unmanaged, <i>B.</i> oleracea does not establish in nature and thus has a low base line of invasiveness and persistence. Even if intended or unintended effects of the genetic modification resulted in major changes in invasiveness or persistence, it is considered that this would not result in significant environmental harm	It is highly unlikely that intended or unintended effects of the genetic modification will result in major changes in invasiveness or persistence. If it were to occur, this hazard would be realised only if seeds or pollen possessing genes encoding these traits were to spread from the trial site and successfully become established	Following inflorescence harvest, plants will be uprooted and destroyed by autoclave to prevent any pollen or subsequent seed release. Less than ten individuals will be allowed to flower with their inflorescences contained within a pollen proof bag, preventing pollen or subsequent seed release.	Overall risk is negligible

			for agricultural or unmanaged ecosystems. <i>B.</i> <i>oleracea</i> is a benign plant that can be easily managed by cultivation or specific herbicides.	elsewhere. This is highly unlikely as the GMHPs will not flower on the trial site and therefore not spread pollen or seed to surrounding plants. Moreover the <i>B. oleracea</i> pollen is large and unlikely to come into contant with other compatible species.		
b	Selective advantage: improved resistance to <i>P.</i> <i>infestans.</i>	n/a	n/a	n/a	n/a	n/a

С	Selective	n/a	n/a	n/a	n/a	n/a
	advantage:					
	improved					
	resistance to					
	potato cyst					
	nematodes					
d	Salaatiya	nla	n/a	n/a	nla	nla
u	advantaga	11/a	11/a	11/a	11/a	n/a
	resistance to					
	imidazolinones					
	nrovided by the					
	selectable marker					
	gene (CSR)					
	gono (CO N)					
е	Selective	These hazards could	The modification	It is highly unlikely	Following	Overall risk is low
	advantage or	be realised in the	would potentially	that pollen from the	inflorescence	
	disadvantage	receiving	lead to a reduction in	GMHP will	harvest, plants will	
	conferred to	environment via	defence compunds,	successfully fertilise	be uprooted and	
	sexually	dispersal of GM	which may provide a	a compatible	destroyed by	
	compatible plant	seeds from trial site	selective	species. It is also not	autoclave to prevent	
	species	to the surrounding	disadvantage if it	guaranteed that the	any pollen or	
		environment or via	were to be	intended	subsequent seed	

		out-crossing to	transferred to a	modification would	release. Less than	
		sexuallycompatible	sexually compatable	provide any selective	ten individuals will	
		species outside.	species. , This would	disadvantage as	be allowed to flower	
			be dependent on	these GMHPs	with their	
			crosspollenation	display no	inflorescences	
			between the GMHP	phenotype when	contained within a	
			and compatible	grown in the	pollen proof bag,	
			species which will	glasshouse.	preventing pollen or	
			not be present within		subsequent seed	
			at least 20 metres of		release. Brassica	
			the site, with the		napus barrier plants	
			exception of a		will also be	
			surrounding barrier		surrounding the	
			of Brassica napus		GMHPs to act as a	
			which will act as an		physical barrier to	
			additional hindrance		pests and a pollen	
			to pollen release		barrier.	
f	Potential	Reduced	GMHPs may	It is unlikely that this	Management	Overall risk is low
	environmental	glucosinolate	undergo more	hazard will be	practices will be put	
	impact due to	content may reduce	damage by	realised as a harm to	into place to	
	interactions	ability of the plant to	pathogens and pests	any organism other	minimise pest and	
	between the novel	deter herbivory and	than the parental	than the GMHP	pathogen contact	
	plant and target	defend against pest	lines whilst out in the		with the GMHPs,	
	organisms	or pathogen attack.	field, though this is		including	
		This could lead to	effect is likely to be		pesticide/herbicide	
		increased feeding by	minor.		practices (as the	
		insects or			plants will be treated	
					in a practice that	

		susceptibility to			best reflects	
		disease.			commercial Brassica	
					cultivation). In	
					addition, this	
					scenario remains	
					hypothetical as low	
					glucosinolate levels	
					are not guaranteed	
					in these GMHPs nor	
					is the effect this will	
					have on interactions.	
g	Potential	Reduced	GMHPs may	It is unlikely that this	Management	Overall risk is low
	environmental	glucosinolate	undergo more	hazard will be	practices will be put	
	impact due to	content may reduce	damage by	realised as a harm to	into place to	
	interactions	ability of the plant to	pathogens and pests	any organism other	minimise pest and	
	between the novel	deter herbivory and	than the parental	than the GMHP	pathogen contact	
	plant and non-	defend against pest	lines whilst out in the		with the GMHPs,	
	target organisms	or pathogen attack.	field, though this is		including	
		This could lead to	effect is likely to be		pesticide/herbicide	
		increased feeding by	minor.		practices (as the	
		insects or			plants will be treated	
		susceptibility to			in a practice that	
		disease.			best reflects	
					commercial Brassica	
					cultivation). In	
					addition, this	
1					scenario remains	
					hypothetical as low	

					glucosinolate levels	
					are not guaranteed	
					in these GMHPs nor	
					is the effect this will	
					have on interactions.	
h	Potential effect on	By contact or ingestion	The compounds	Some contact	No plant material	Overall risk is very
	human or animal	of GM plant material.	being potentially	between the GMHP	from the trial will	low
	health due to the		reduced in the	and humans is	enter the food chain.	
	introduced genes		GMHPs are already	expected. Field	Appropriate advice	
			very widely	Experimentation	and SOPs will be	
			represented in the	staff working in the	used to minimise	
			human food chain,	field site and	exposure to the	
			without any reported	scientists working in	GMHP, despite the	
			negative effects.	the trial site will	risk being negligible.	
				come into physical		
				contact with the		
				plants. It is not		
				intended to use the		
				GMHP for direct		
				animal feeding		
				studies		
i	Potential effects on	Changes in	The magnitude of	The frequency of	None	Overall risk is
	biogeochemical	biogeochemical	harm is estimated to	changes to		negligible
	processes	processes may	be extremely low.	biogeochemical		
	(changes in soil	result from	Biogeochemical	processes is		
	decomposition of	unintended changes	processes are not	considered to be		
	organic material)	in the modified	expected to be	very low. The		
		plants or from	affected by the	maximum area		

		unintended changes	cultivation of the	proposed to be		
		in soil microbes due	genetically modified	planted with GMOs		
		to horizontal transfer	plants.	is small and		
		of DNA.		temporary.		
j	Possible		No differences in the		No differences in the	Overall risk is
	environmental		cultivation and		cultivation and	negligible
	impact due to		management of the		management of the	
	changes in		GMHP compared		GMHP compared	
	cultivation practice		with the non-GMHP		with the non-GMHP	
			will occur		will occur	

Part A5: Assessment of commercial or confidentiality of information contained in this application.

Identify clearly any information that is considered to be commercially confidential. A clear justification for keeping information confidential must be given.

This is publicly-funded research and has no associated commercial confidentiality considerations

Part A6: Statement on whether detailed information on the description of the GMO and the purpose of release has been published

Make a clear statement on whether a detailed description of the GMO and the purpose of the release have been published, and the bibliographic reference for any information so published.

This is intended to assist with the protection of the applicant's intellectual property rights, which may be affected by the prior publication of certain detailed information, e.g. by its inclusion on the public register.

Detailed information on the description of this GMO have yet to be published

References

Bohuon, E., Keith, D., Parkin, I., Sharpe, A., and Lydiate, D. (1996). Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theoretical and Applied Genetics 93, 833-839.

Bohuon, E.R.J. (1995). A genetic analysis of Brassica oleracea (University of Birmingham).