Unconditional amendments to EP (UK) 2 322 153: - 1<u>A</u>. A compound that inhibits hypoxia inducible factor (HIF) <u>prolyl</u> hydroxylase activity for use in treating <u>or preventing</u> <u>functional</u> iron deficiency <u>associated with</u> anemia in a subject, wherein the compound is a structural mimetic of 2-oxoglutarate. - 2. The compound according to claim 1, wherein the compound is of Formula (I): $$R^2$$ $Q-R^4$ $NH-A-B$ X ### wherein A is 1,2-arylidene, 1,3-arylidene, 1,4-arylidene; or (C₁-C₄)-alkylene, optionally substituted by one or two halogen, cyano, nitro, trifluoromethyl, (C₁-C₆)-alkyl, (C₁-C₆)-<u>hydroxyalkyl, (C_1-C_6) -alkoxy, $-O-[CH_2]_x-C_fH_{(2f+1-g)}Hal_g$, (C_1-C_6) -fluoroalkoxy, (C_1-C_8) -</u> fluoroalkenyloxy, (C₁-C₈)-fluoroalkynyloxy, -OCF₂CI, -O-CF₂-CHFCI; (C₁-C₆)alkylmercapto, (C_1-C_6) -alkylsulfinyl, (C_1-C_6) -alkylsulfonyl, (C_1-C_6) -alkylcarbonyl, (C_1-C_6) -alkylsulfonyl, $(C_1$ <u>C₆)-alkoxycarbonyl, carbamoyl, N-(C₁-C₄)-alkylcarbamoyl, N,N-di-(C₁-C₄)-</u> alkylcarbamoyl, (C₁-C₆)-alkylcarbonyloxy, (C₃-C₈)-cycloalkyl, phenyl, benzyl, phenoxy, benzyloxy, anilino, N-methylanilino, phenylmercapto, phenylsulfonyl, phenylsulfinyl, sulfamoyl, N-(C₁-C₄)-alkylsulfamoyl, N,N-di-(C₁-C₄)-alkylsulfamoyl; or by a substituted (C_6 - C_{12})-aryloxy, (C_7 - C_{11})-aralkyloxy, (C_6 - C_{12})-aryl, (C_7 - C_{11})-aralkyl radical, which carries in the aryl moiety one to five identical or different substituents selected from halogen, cyano, nitro, trifluoromethyl, (C₁-C₆)-alkyl, (C₁-C₆)-alkoxy, -O- $[CH_2]_x$ - $C_fH_{(2f+1-a)}$ Hala, -OCF₂CI, -O-CF₂-CHFCI, (C₁-C₆)-alkylmercapto, (C₁-C₆)alkylsulfinyl, (C_1-C_6) -alkylsulfonyl, (C_1-C_6) -alkylcarbonyl, (C_1-C_6) -alkoxycarbonyl, carbamoyl, $N-(C_1-C_4)$ -alkylcarbamoyl, $N,N-di-(C_1-C_4)$ -alkylcarbamoyl, (C_1-C_6) alkylcarbonyloxy, (C₃-C₈)-cycloalkyl, sulfamoyl, N-(C₁-C₄)-alkylsulfamoyl, N,N-di-(C₁- C_4)-alkylsulfamoyl; or wherein A is -CR⁵R⁶ and R⁵ and R⁶ are each independently selected from hydrogen, (C_1 - C_6)-alkyl, (C_3 - C_7)-cycloalkyl, aryl, or a substituent of the α-carbon atom of an α-amino acid, wherein the amino acid is a natural L-amino acid or its D-isomer. B is -CO₂H, -NH₂, -NHSO₂CF₃, tetrazolyl, imidazolyl, 3-hydroxyisoxazolyl, -CONHCOR", -CONHSOR", CONHSO₂R", where R" is aryl, heteroaryl, (C₃-C₇)cycloalkyl, or (C_1-C_4) -alkyl, optionally monosubstituted by (C_6-C_{12}) -aryl, heteroaryl, OH, SH, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -thioalkyl, (C_1-C_4) -sulfinyl, (C_1-C_4) sulfonyl, CF₃, Cl, Br, F, I, NO₂, -COOH, (C₂-C₅)-alkoxycarbonyl, NH₂, mono-(C₁-C₄alkyl)-amino, di-(C1-C4-alkyl)-amino, or (C1-C4)-perfluoroalkyl; or wherein B is a CO2-G carboxyl radical, where G is a radical of an alcohol G-OH in which G is selected from (C_1-C_{20}) -alkyl radical, (C_3-C_8) cycloalkyl radical, (C_2-C_{20}) -alkenyl radical, (C_3-C_8) cycloalkenyl radical, retinyl radical, (C₂-C₂₀)-alkynyl radical, (C₄-C₂₀)-alkenynyl radical, where the alkenyl, cycloalkenyl, alkynyl, and alkenynyl radicals contain one or more multiple bonds; (C₆-C₁₆)-carbocyclic aryl radical, (C₇-C₁₆)-carbocyclic aralkyl radical, heteroaryl radical, or heteroaralkyl radical, wherein a heteroaryl radical or heteroaryl moiety of a heteroaralkyl radical contains 5 or 6 ring atoms; and wherein radicals defined for G are substituted by one or more hydroxyl, halogen, cyano, trifluoromethyl, nitro, carboxyl, (C₁-C₁₂)-alkyl, (C₃-C₈)-cycloalkyl, (C₅-C₈)-cycloalkenyl, (C_6-C_{12}) -aryl, (C_7-C_{16}) -aralkyl, (C_2-C_{12}) -alkenyl, (C_2-C_{12}) -alkynyl, (C_1-C_{12}) -alkoxy, (C_1-C_1) C_{12})-alkoxy- (C_1-C_{12}) -alkyl, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxy, (C_6-C_{12}) -aryloxy, (C_7-C_{16}) aralkyloxy, (C_1-C_8) -hydroxyalkyl, $-O-[CH_2]_x-C_tH_{(2f+1-q)}-F_q$, $-OCF_2Cl$, $-OCF_2-CHFCl$, (C_1-C_8) -hydroxyalkyl, $-O-[CH_2]_x-C_tH_{(2f+1-q)}-F_q$, $-OCF_2Cl$, $-OCF_2-CHFCl$, (C_1-C_8) -hydroxyalkyl, $-O-[CH_2]_x-C_tH_{(2f+1-q)}-F_q$, $-OCF_2Cl$, $-OCF_2-CHFCl$, (C_1-C_8) -hydroxyalkyl, $-O-[CH_2]_x-C_tH_{(2f+1-q)}-F_q$, $-OCF_2-CHFCl$ $-OCF_2-C$ \underline{C}_{12})-alkylcarbonyl, $(\underline{C}_3-\underline{C}_8)$ -cycloalkylcarbonyl, $(\underline{C}_6-\underline{C}_{12})$ -arylcarbonyl, $(\underline{C}_7-\underline{C}_{16})$ -<u>aralkylcarbonyl, cinnamoyl, (C₂-C₁₂)-alkenylcarbonyl, (C₂-C₁₂)-alkynylcarbonyl, (C₁-</u> $\underline{C_{12}}$ -alkoxycarbonyl, $(\underline{C_1}$ - $\underline{C_{12}}$)-alkoxy- $(\underline{C_1}$ - $\underline{C_{12}}$)-alkoxycarbonyl, $(\underline{C_6}$ - $\underline{C_{12}}$)aryloxycarbonyl, (C_7-C_{16}) -aralkoxycarbonyl, (C_3-C_8) -cycloalkoxycarbonyl, (C_2-C_{12}) alkenyloxycarbonyl, (C_2-C_{12}) -alkynyloxycarbonyl, acyloxy, (C_1-C_{12}) - alkoxycarbonyloxy, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxycarbonyloxy, (C_6-C_{12}) aryloxycarbonyloxy, (C_7-C_{16}) aralkyloxycarbonyloxy, (C_3-C_8) -cycloalkoxycarbonyloxy, (C₂-C₁₂)-alkenyloxycarbonyloxy, (C₂-C₁₂)-alkynyloxycarbonyloxy, carbamoyl, N-(C₁- C_{12})-alkylcarbamoyl, N.N-di(C_1 - C_{12})-alkylcarbamoyl, N-(C_3 - C_8)-cycloalkyl-carbamoyl, $N-(C_6-C_{16})$ -arylcarbamoyl, $N-(C_7-C_{16})$ -aralkylcarbamoyl, $N-(C_1-C_{10})$ -alkyl- $N-(C_6-C_{16})$ -<u>arylcarbamoyl, N-(C_1 - C_{10})-alkyl-N-(C_7 - C_{16})-aralkylcarbamoyl, N-((C_1 - C_{10})-alkoxy-(C_1 -</u> C_{10})-alkyl)-carbamoyl, $N-((C_6-C_{12})-aryloxy-(C_1-C_{10})alkyl)$ -carbamoyl, $N-((C_7-C_{16})-aryloxy-(C_1-C_{10})alkyl)$ <u>aralkyloxy-(C_1 - C_{10})-alkyl)-carbamoyl, N-(C_1 - C_{10})-alkyl-N-((C_1 - C_{10})-alkoxy-(C_1 - C_{10})-</u> <u>alkyl)-carbamoyl, N-(C_1 - C_{10})-alkyl-N-((C_6 - C_{16})-aryloxy-(C_1 - C_{10})-alkyl)-carbamoyl, N-</u> (C_1-C_{10}) -alkyl-N- $((C_7-C_{16})$ -aralkyloxy- (C_1-C_{10}) -alkyl)-carbamoyl, carbamoyloxy, N- (C_1-C_{10}) -alkyl-N- (C_1-C_1) C₁₂)-alkylcarbamoyloxy, N.N-di-(C₁-C₁₂)-alkylcarbamoyloxy, N-(C₃-C₈)cycloalkylcarbamoyloxy, N-(C₆-C₁₂)-arylcarbamoyloxy, N-(C₇-C₁₆)aralkylcarbamoyloxy, $N-(C_1-C_{10})$ -alkyl- $N-(C_6-C_{12})$ -arylcarbamoyloxy, $N(C_1-C_{10})$ -alkyl- $N-(C_7-C_{16})$ -aralkylcarbamoyloxy, $N-((C_1-C_{10})$ -alkyl)-carbamoyloxy, $N-((C_6-C_{12})$ -<u>aryloxy-(C_1 - C_{10})-alkyl)-carbamoyloxy, N-((C_7 - C_{16})-aralkyloxy-(C_1 - C_{10})-alkyl)-</u> carbamoyloxy, $N-(C_1-C_{10})$ -alkyl- $N-((C_1-C_{10})$ -alkoxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, $N-(C_1-C_{10})$ -alkyl- $N-(C_1-C_{10})$ -alkyl- $N-(C_1-C_{10})$ -alkyl- $N-(C_1-C_{10})$ -alkyl- $N-(C_1-C_1)$ -a (C_1-C_{10}) -alkyl-N- $((C_6-C_{12})$ -aryloxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, N- (C_1-C_{10}) -alkyl-N-((C₇-C₁₆)-aralkyloxy-(C₁-C₁₀)-alkyl)-carbamoyloxy, amino, (C₁-C₁₂)-alkylamino, di-(C₁- C_{12})-alkylamino, (C_3 - C_8)-cycloalkylamino, (C_2 - C_{12})-alkenylamino, (C_2 - C_{12})alkynylamino, N-(C₆-C₁₂)-arylamino, N-(C-C₁₁)-aralkylamino, N-alkyl-aralkylamino, Nalkyl-arylamino, (C₁-C₁₂)-alkoxyamino, (C₁-C₁₂)-alkoxy-N-(C₁-C₁₀)-alkylamino, (C₁-C₁₂)-alkoxyamino, (C₁- C_{12})-alkylcarbonylamino, (C_3 - C_8)-cycloalkylcarbonylamino, (C_6 - C_{12}) <u>arylcarbonylamino, (C₇-C₁₆)-aralkylcarbonylamino, (C₁-C₁₂)-alkylcarbonyl-N-(C₁-C₁₀)-</u> <u>alkylamino, (C_3-C_8) -cycloalkylcarbonyl-N- (C_1-C_{10}) -alkylamino, (C_6-C_{12}) -arylcarbonyl-</u> $N-(C_1-C_{10})$ alkylamino, (C_7-C_{11}) -aralkylcarbonyl- $N-(C_1-C_{10})$ -alkylamino, (C_1-C_{12}) -<u>alkylcarbonylamino-(C_1 - C_8)-alkyl, (C_3 - C_8)-cycloalkylcarbonylamino-(C_1 - C_8)alkyl, (C_6 -</u> C_{12})-arylcarbonylamino- (C_1-C_8) -alkyl, (C_7-C_{12}) -aralkylcarbonylamino (C_1-C_8) -alkyl, <u>amino-(C_1 - C_{10})-alkyl, N-(C_1 - C_{10}) alkylamino-(C_1 - C_{10})-alkyl, N.N-di-(C_1 - C_{10})-</u> <u>alkylamino-(C_1 - C_{10})-alkyl, (C_3 - C_8)cycloalkylamino-(C_1 - C_{10})-alkyl, (C_1 - C_{12})-</u> alkylmercapto, (C₁-C₁₂)-alkylsulfinyl, (C₁-C₁₂)-alkylsulfonyl, (C₆-C₁₆)-arylmercapto, (C_6-C_{16}) -arylsulfinyl, (C_6-C_{12}) -arylsulfonyl, (C_7-C_{16}) -aralkylmercapto, (C_7-C_{16}) aralkylsulfinyl, (C₇-C₁₆)-aralkylsulfonyl, sulfamoyl, N-(C₁-C₁₀)-alkylsulfamoyl, N.Ndi(C₁-C₁₀)-alkylsulfamoyl, (C₃-C₈)-cycloalkylsulfamoyl, N-(C₆-C₁₂)-alkylsulfamoyl, N- (C_7-C_{16}) -aralkylsulfamoyl, N- (C_1-C_{10}) -alkyl-N- (C_6-C_{12}) -arylsulfamoyl, N- (C_1-C_{10}) -alkyl- $N-(C_7-C_{16})$ -aralkylsulfamoyl, (C_1-C_{10}) -alkylsulfonamido, $N-((C_1-C_{10})$ -alkyl)- (C_1-C_{10}) -<u>alkylsulfonamido, (C_7-C_{16}) -aralkylsulfonamido, or $N-((C_1-C_{10})$ -alkyl- (C_7-C_{16}) -</u> aralkylsulfonamido; wherein radicals which are aryl or contain an aryl moiety, may be substituted on the aryl by one to five identical or different hydroxyl, halogen, cyano, trifluoromethyl, nitro, carboxyl, (C₁-C₁₂)-alkyl, (C₃-C₈)-cycloalkyl, (C₆-C₁₂)-aryl, (C₇- C_{16})-aralkyl, (C_1-C_{12}) -alkoxy, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxy- $(C_1$ C_{12})alkoxy, (C_6-C_{12}) -aryloxy, (C_7-C_{16}) -aralkyloxy, (C_1-C_8) -hydroxyalkyl, (C_1-C_{12}) alkylcarbonyl, (C₃-C₈)-cycloalkyl-carbonyl, (C₆-C₁₂)-arylcarbonyl, (C₇-C₁₆) aralkylcarbonyl, (C_1-C_{12}) -alkoxycarbonyl, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxycarbonyl, (C_6-C_{12}) -aryloxycarbonyl, (C_7-C_{16}) -aralkoxycarbonyl, (C_3-C_8) -cycloalkoxycarbonyl, (C_2-C_{12}) -alkenyloxycarbonyl, (C_2-C_{12}) -alkynyloxycarbonyl, (C_1-C_{12}) -alkylcarbonyloxy, (C_3-C_8) -cycloalkylcarbonyloxy, (C_6-C_{12}) -arylcarbonyloxy, (C_7-C_{16}) -aralkylcarbonyloxy, cinnamoyloxy, (C_2-C_{12}) -alkenylcarbonyloxy, (C_2-C_{12}) -alkynylcarbonyloxy, (C_1-C_{12}) alkoxycarbonyloxy, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxycarbonyloxy, (C_6-C_{12}) -<u>aryloxycarbonyloxy</u>, (C_7-C_{16}) -<u>aralkyloxycarbonyloxy</u>, (C_3-C_8) -<u>cycloalkoxycarbonyloxy</u>, (C₂-C₁₂)-alkenyloxycarbonyloxy, (C₂-C₁₂)-alkynyloxycarbonyloxy, carbamoyl, N-(C₁-C₁₂)-alkylcarbamoyl, N.N-di-(C₁-C₁₂)-alkylcarbamoyl, N-(C₃-C₈)-cycloalkylcarbamoyl, $N-(C_6-C_{12})$ -arylcarbamoyl, $N-(C_7-C_{16})$ -aralkylcarbamoyl, $N-(C_1-C_{10})$ -alkyl- $N-(C_6-C_{12})$ -<u>arylcarbamoyl, N-(C₁-C₁₀)-alkyl-N-(C₇-C₁₆)-aralkylcarbamoyl, N-((C₁-C₁₀)-alkoxy-(C₁-</u> C_{10})-alkyl)-carbamoyl, $N-((C_6-C_{12})-aryloxy-(C_1-C_{10})-alkyl)-carbamoyl, <math>N-((C_7-C_{16})-alkyl)-carbamoyl)$ <u>aralkyloxy-(C_1 - C_{10})-alkyl)-carbamoyl, N-(C_1 - C_{10})-alkyl-N-((C_1 - C_{10})-alkoxy-(C_1 - C_{10})-</u> <u>alkyl)-carbamoyl, N-(C_1 - C_{10})-alkyl-N-((C_6 - C_{12})-aryloxy-(C_1 - C_{10})-alkyl)-carbamoyl, N-</u> (C_1-C_{10}) -alkyl-N- $((C_7-C_{16})$ -aralkyloxy- (C_1-C_{10}) -alkyl)-carbamoyl, carbamoyloxy, N- (C_1-C_{10}) C_{12})-alkylcarbamoyloxy, N.N-di- (C_1-C_{12}) -alkylcarbamoyloxy, N- (C_3-C_8) cycloalkylcarbamoyloxy, N-(C₆-C₁₂)-arylcarbamoyloxy, N-(C₇-C₁₆)aralkylcarbamoyloxy, $N-(C_1-C_{10})$ -alkyl- $N-(C_6-C_{12})$ -arylcarbamoyloxy, $N(C_1-C_{10})$ -alkyl- $N-(C_7-C_{16})$ -aralkylcarbamoyloxy, $N-((C_1-C_{10})$ -alkyl)-carbamoyloxy, $N-((C_6-C_{12})$ -<u>aryloxy-(C_1 - C_{10})-alkyl)-carbamoyloxy, N-((C_7 - C_{16})-aralkyloxy-(C_1 - C_{10})-alkyl)-</u> carbamoyloxy, $N-(C_1-C_{10})$ -alkyl- $N-((C_1-C_{10})$ -alkoxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, $N-(C_1-C_{10})$ -alkyl- $N-(C_1-C_{10})$ -alkyl- $N-(C_1-C_{10})$ -alkyl- $N-(C_1-C_1)$ -alky (C_1-C_{10}) -alkyl-N- $((C_6-C_{12})$ -aryloxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, N- (C_1-C_{10}) -alkyl-N- (C_7-C_{16}) -aralkyloxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, amino, (C_1-C_{12}) -alkylamino, di- (C_1-C_1) -alkylamino, di- (C_1-C_1) -alkylamino, di-(C₁₂)-alkylamino, (C₃-C₈)-cycloalkylamino, (C₃-C₁₂)-alkenylamino, (C₃-C₁₂)alkynylamino, N-(C₆-C₁₂)-arylamino, N-(C₇-C₁₁)-aralkylamino, N-alkylaralkylamino, Nalkyl-arylamino, (C_1-C_{12}) -alkoxyamino, (C_1-C_{12}) -alkoxy-N- (C_1-C_{10}) -alkylamino, (C_1-C_{12}) (C_1-C_1) ($\underline{C_{12}}$)-alkylcarbonylamino, ($\underline{C_3}$ - $\underline{C_8}$)-cycloalkylcarbonylamino, ($\underline{C_6}$ - $\underline{C_{12}}$)-<u>arylcarbonylamino, (C₁-C₁₆)-alkylcarbonylamino, (C₁-C₁₂)-alkylcarbonyl-N-(C₁-C₁₀)-</u> alkylamino, (C₃-C₈)-cycloalkylcarbonyl-N-(C₁-C₁₀)-alkylamino, (C₆-C₁₂)-arylcarbonyl- $N-(C_1-C_{10})$ -alkylamino, (C_7-C_{11}) -aralkylcarbonyl- $N-(C_1-C_{10})$ -alkylamino, (C_1-C_{12}) alkylcarbonylamino- (C_1-C_8) -alkyl, (C_3-C_8) -cycloalkylcarbonylamino- (C_1-C_8) -alkyl, (C_6-C_8) -alkyl, (C_6-C_8) -alkyl, (C_6-C_8) -alkyl, (C_8-C_8) -al C_{12})-arylcarbonylamino- (C_1-C_8) -alkyl, (C_7-C_{16}) -aralkylcarbonylamino- (C_1-C_8) -alkyl, amino- (C_1-C_{10}) -alkyl, N- (C_1-C_{10}) -alkylamino- (C_1-C_{10}) alkyl, N.N-di- (C_1-C_{10}) -alkylamino- (C_1-C_{10}) -alkyl, (C_3-C_8) -cycloalkylamino- (C_1-C_{10}) -alkyl, (C_1-C_{12}) -alkylmercapto, -alkylmerca C_{12})-alkylsulfinyl, (C_1-C_{12}) -alkylsulfonyl, (C_6-C_{12}) -arylmercapto, (C_6-C_{12}) -arylsulfinyl, (C_6-C_{12}) -arylsulfonyl, (C_7-C_{16}) -aralkylmercapto, (C_7-C_{16}) -aralkylsulfinyl, or (C_7-C_{16}) aralkylsulfonyl; X is O or S; Q is O, S, NR', or a bond; where, if Q is a bond, R⁴ is halogen, nitrile, or trifluoromethyl; or where, if Q is O, S, or NR', R^4 is hydrogen, (C_1-C_{10}) -alkyl radical, (C_2-C_{10}) -alkenyl radical, (C_2-C_{10}) -alkynyl radical, wherein alkenyl or alkynyl radical contains one or two C-C multiple bonds; unsubstituted fluoroalkyl radical of the formula - $[CH_2]_x$ - $C_fH_{(2f+1-g)}$ - F_g , (C_1-C_8) -alkoxy- (C_1-C_6) -alkyl radical, (C_1-C_6) -alkoxy- (C_1-C_4) -alkoxy- (C_1-C_4) -alkyl radical, aryl radical, heteroaryl radical, (C_7-C_{11}) -aralkyl radical, or a radical of the formula Z $$-[CH_2]_v-[O]_w-[CH_2]_t-E$$ (Z) <u>where</u> <u>E is a heteroaryl radical, a (C_3 - C_8)-cycloalkyl radical, or a phenyl radical of the</u> formula F $$R^7$$ R^8 R^9 R^{11} R^{10} R^{10} <u>v is 0-6,</u> w is 0 or 1, <u>t is 0-3, and</u> R^7 , R^8 , R^9 , R^{10} , and R^{11} are identical or different and are hydrogen, halogen, cyano, nitro, trifluoromethyl, (C_1-C_6) -alkyl, (C_3-C_8) -cycloalkyl, (C_1-C_6) -alkoxy, $-O-[CH_2]_{x-}$ $C_fH_{(2f+1-q)}-F_q$, $-OCF_2-Cl$, $-O-CF_2-CHFCl$, (C_1-C_6) -alkylmercapto, (C_1-C_6) -hydroxyalkyl, (C_1-C_6) -alkoxy- (C_1-C_6) -alkoxy- (C_1-C_6) -alkoxy- (C_1-C_6) -alkylsulfinyl, (C_1-C_6) -alkylsulfonyl, (C_1-C_6) -alkylsulfonyl, (C_1-C_6) -alkylcarbonyl, (C_1-C_8) -alkoxycarbonyl, carbamoyl, (C_1-C_8) -alkylcarbamoyl, or (C_7-C_{11}) -aralkylcarbamoyl, optionally substituted by fluorine, chlorine, bromine, trifluoromethyl, (C_1-C_6) -alkoxy, (C_1-C_6) -alkylcarbamoyl, (C_1-C_6) -alkylcarbamoyl, (C_1-C_6) -alkoxy, (C_3-C_8) -cycloalkylcarbamoyl, (C_1-C_6) -alkylcarbamoyl, -alkylcarbamoyl or where, if Q is NR', R⁴ is alternatively R", where R' and R" are identical or different and are hydrogen, (C₆-C₁₂)-aryl, (C₇-C₁₁)-aralkyl, (C₁-C₈)-alkyl, (C₁-C₈)-alkyl, (C₁-C₈)-alkyl, (C₁-C₁₂)-aryloxy-(C₁-C₈)-alkyl, (C₁-C₁₀)-alkyl, (C₁-C₁₂)-aryloxy-(C₁-C₈)-alkyl, (C₁-C₁₀)-alkylcarbonyl, optionally substituted (C₇-C₁₆)-aralkylcarbonyl, or optionally substituted C₆-C₁₂)-arylcarbonyl; or R' and R" together are -[CH₂]_h, in which a CH₂ group can be replaced by O, S, N-acylimino, or N-(C₁-C₁₀)-alkoxycarbonylimino, and h is 3 to 7. #### Y is N or CR³; R^1 , R^2 and R^3 are identical or different and are hydrogen, hydroxyl, halogen, cyano, trifluoromethyl, nitro, carboxyl, (C_1-C_{20}) -alkyl, (C_3-C_8) -cycloalkyl, (C_3-C_8) -cycloalkyl- (C_1-C_{12}) -alkyl, (C_3-C_8) -cycloalkoxy, (C_3-C_8) -cycloalkyl- (C_1-C_{12}) -alkoxy, (C_3-C_8) -cycloalkyloxy- (C_1-C_{12}) -alkoxy, (C_3-C_8) -cycloalkyloxy- (C_1-C_{12}) -alkoxy, (C_3-C_8) -cycloalkyl- (C_1-C_8) -alkyl- (C_1-C_8) -alkoxy, (C_3-C_8) -cycloalkyl- (C_1-C_8) -alkoxy- (C_1-C_6) -alkyl, (C_3-C_8) - cycloalkyloxy- (C_1-C_8) -alkoxy- (C_1-C_6) -alkyl, (C_3-C_8) -cycloalkoxy- (C_1-C_8) -alkoxy- -alky- -alky-(C_8)-alkoxy, (C_6-C_{12}) -aryl, (C_7-C_{16}) -aralkyl, (C_7-C_{16}) -aralkenyl, (C_7-C_{16}) -aralkynyl, (C_2-C_{16}) -aralkynyl, (C_7-C_{16}) $(C_7-C_{$ C_{20})-alkenyl, (C_2-C_{20}) -alkynyl, (C_1-C_{20}) -alkoxy, (C_2-C_{20}) -alkenyloxy, (C_2-C_{20}) alkynyloxy, retinyloxy, (C_1-C_{20}) -alkoxy- (C_1-C_{12}) -alkyl, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxy, (C_1-C_{12}) -alkoxy- (C_1-C_8) -alkoxy- (C_1-C_8) -alkyl, (C_6-C_{12}) -aryloxy, (C_7-C_{16}) -aralkyloxy, (C_6-C_{12}) -aryloxy- (C_1-C_6) -alkoxy, (C_7-C_{16}) -aralkoxy- (C_1-C_6) -alkoxy, (C_1-C_{16}) hydroxyalkyl, (C_6-C_{16}) -aryloxy- (C_1-C_8) -alkyl, (C_7-C_{16}) -aralkoxy- (C_1-C_8) -alkyl, (C_6-C_{12}) $aryloxy-(C_1-C_8)-alkoxy-(C_1-C_6)-alkyl, (C_7-C_{12})-aralkyloxy-(C_1-C_8)-alkoxy-(C_1-C_6)-alkyl,$ (C_2-C_{20}) -alkenyloxy- (C_1-C_6) -alkyl, (C_2-C_{20}) -alkynyloxy- (C_1-C_6) -alkyl, retinyloxy- (C_1-C_6) alkyl, $-O-[CH_2]_xCfH_{(2f+1-q)}F_q$, $-OCF_2Cl$, $-OCF_2-CHFCl$, (C_1-C_{20}) -alkylcarbonyl, (C_3-C_8) cycloalkylcarbonyl, (C₆-C₁₂)-arylcarbonyl, (C₇-C₁₆)-aralkylcarbonyl, cinnamoyl, (C₂- C_{20})-alkenylcarbonyl, (C_1-C_{20}) -alkynylcarbonyl, (C_1-C_{20}) -alkoxycarbonyl, (C_1-C_{12}) -<u>alkoxy-(C_1 - C_{12})-alkoxycarbonyl, (C_6 - C_{12})-aryloxycarbonyl, (C_7 - C_{16})-aralkoxycarbonyl,</u> (C_3-C_8) -cycloalkoxycarbonyl, (C_2-C_{20}) -alkenyloxycarbonyl, retinyloxycarbonyl, $(C_{2-}$ C_{20})-alkynyloxycarbonyl, (C_6 - C_{12})-aryloxy-(C_1 - C_6)-alkoxycarbonyl, (C_7 - C_{16})-aralkoxy- (C_1-C_6) -alkoxycarbonyl, (C_3-C_8) -cycloalkyl- (C_1-C_6) -alkoxycarbonyl, (C_3-C_8) -<u>cycloalkoxy-(C_1 - C_6)-alkoxycarbonyl, (C_1 - C_{12})-alkylcarbonyloxy, (C_3 - C_8)-</u> cycloalkylcarbonyloxy, (C₆-C₁₂)-arylcarbonyloxy, (C₇-C₁₆)-aralkylcarbonyloxy, cinnamoyloxy, (C_2-C_{12}) -alkenylcarbonyloxy, (C_2-C_{12}) -alkynylcarbonyloxy, (C_1-C_{12}) -<u>alkoxycarbonyloxy</u>, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxycarbonyloxy, (C_6-C_{12}) -<u>aryloxycarbonyloxy</u>, (C_7-C_{16}) -<u>aralkyloxycarbonyloxy</u>, (C_3-C_8) -<u>cycloalkoxycarbonyloxy</u>, (C₂-C₁₂)-alkenyloxycarbonyloxy, (C₂-C₁₂)-alkynyloxycarbonyloxy, carbamoyl, N-(C₁-C₁₂)-alkylcarbamoyl, N,N-di-(C₁-C₁₂)-alkylcarbamoyl, N-(C₃-C₈)-cycloalkylcarbamoyl, N,N-dicyclo- (C_3-C_8) -alkylcarbamoyl, N- (C_1-C_{10}) -alkyl-N- (C_3-C_8) -cycloalkylcarbamoyl, $N-((C_3-C_8)-cycloalkyl-(C_1-C_6)-alkyl)-carbamoyl, N-(C_1-C_6)-alkyl-N-((C_3-C_8)-cycloalkyl-$ (C₁-C₆)-alkyl)-carbamoyl, N-(+)-dehydroabietylcarbamoyl, N-(C₁-C₆)-alkyl-N-(+)-<u>dehydroabietylcarbamoyl, N-(C6-C12)-arylcarbamoyl, N-(C7-C16)-aralkylcarbamoyl, N-</u> (C_1-C_{10}) -alkyl-N- (C_6-C_{16}) -arylcarbamoyl, N- (C_1-C_{10}) -alkyl-N- (C_7-C_{16}) -aralkylcarbamoyl, N-((C₁-C₁₈)-alkoxy-(C₁-C₁₀)-alkyl)-carbamoyl, N-((C₆-C₁₆)-aryloxy-(C₁-C₁₀)-alkyl)-carbamoyl, N-((C₁-C₁₀)-alkyl-N-((C₁-C₁₀)-alkyl-N-((C₁-C₁₀)-alkyl-N-((C₁-C₁₀)-alkyl-N-((C₁-C₁₀)-alkyl-N-((C₁-C₁₀)-alkyl-N-((C₁-C₁₀)-alkyl-N-((C₁-C₁₀)-alkyl-N-((C₁-C₁₀)-alkyl-N-((C₁-C₁₀)-alkyl-N-((C₁-C₁₀)-alkyl-N-((C₁-C₁₀)-alkyl)-carbamoyl; CON(CH₂)_h, in which a CH₂ group can be replaced by O, S, N-(C₁-C₈)-alkylimino, N-(C₃-C₈)-cycloalkylimino, N-(C₃-C₈)-cycloalkyl-(C₁-C₄)-alkylimino, N-(C₆-C₁₂)-arylimino, N-(C₇-C₁₆)-aralkylimino, N-(C₁-C₄)-alkoxy-(C₁-C₆)-alkylimino, and h is from 3 to 7; a carbamoyl radical of the formula R $$-CO = \begin{bmatrix} R^{X} \\ R^{V} \\ O \end{bmatrix} - T \qquad (R)$$ # in which R^x and R^v are each independently selected from hydrogen, (C_1-C_6) -alkyl, (C_3-C_7) -cycloalkyl, aryl, or the substituent of an α -carbon of an α -amino acid, to which the L-and D-amino acids belong, ## <u>s is 1-5,</u> T is OH, or NR*R**, and R*, R** and R*** are identical or different and are selected from hydrogen, (C_6-C_{12}) -aryl, (C_7-C_{11}) -aralkyl, (C_1-C_8) -alkyl, (C_3-C_8) -cycloalkyl, (+)-dehydroabietyl, (C_1-C_8) -alkoxy- (C_1-C_8) -alkyl, (C_7-C_{12}) -aralkoxy- (C_1-C_8) -alkyl, (C_6-C_{12}) -aryloxy- (C_1-C_8) -alkyl, (C_1-C_1) -alkanoyl, optionally substituted (C_7-C_{16}) -aralkanoyl, optionally substituted (C_6-C_{12}) -aroyl; or R* and R** together are -[CH₂]_h, in which a CH₂ group can be replaced by O, S, SO, SO₂, N-acylamino, N- (C_1-C_1) -alkoxy-alkylimino, N- (C_1-C_8) -alkylimino, N- (C_3-C_8) -cycloalkylimino, N- (C_3-C_8) -cycloalkyl- (C_1-C_4) -alkylimino, N- (C_6-C_{12}) -arylimino, N- (C_7-C_{16}) -aralkylimino, N- (C_1-C_4) -alkylimino, and h is from 3 to 7; carbamoyloxy, N-(C₁-C₁₂)-alkylcarbamoyloxy, N,N-di-(C₁-C₁₂)-alkylcarbamoyloxy, N- (C_3-C_8) -cycloalkylcarbamoyloxy, N- (C_6-C_{12}) -arylcarbamoyloxy, N- (C_7-c_{16}) aralkylcarbamoyloxy, N-(C₁-C₁₀)-alkyl-N-(C₆-C₁₂)-arylcarbamoyloxy, N-(C₁-C₁₀)-alkyl- $N-(C_7-C_{16})$ -aralkylcarbamoyloxy, $N-((C_1-C_{10})$ -alkyl)-carbamoyloxy, $N-((C_6-C_{12})$ -<u>aryloxy-(C_1 - C_{10})-alkyl)-carbamoyloxy, N-((C_7 - C_{16})-aralkyloxy-(C_1 - C_{10})-alkyl)-</u> <u>carbamoyloxy</u>, $N-(C_1-C_{10})$ -alkyl- $N-((C_1-C_{10})$ -alkoxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, $N-(C_1-C_{10})$ -alkyl- $N-(C_1-C_1)$ - $N-(C_1-C_1)$ (C_1-C_{10}) -alkyl-N- $((C_6-C_{12})$ -aryloxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, N- (C_1-C_{10}) -alkyl-N- $((C_7-C_{16})-aralkyloxy-(C_1-C_{10})-alkyl)-carbamoyloxyamino, (C_1-C_{12})-alkylamino, di-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alkyloxy-(C_1-C_1)-alky$ C_{12})-alkylamino, (C_3-C_8) -cycloalkylamino, (C_3-C_{12}) -alkenylamino, (C_3-C_{12}) alkynylamino, N-(C₆-C₁₂)-arylamino, N-(C₇-C₁₁)-aralkylamino, N-alkyl-aralkylamino, N-alkyl-arylamino, (C_1-C_{12}) -alkoxyamino, (C_1-C_{12}) -alkoxy-N- (C_1-C_{10}) -alkylamino, -alkyla \underline{C}_{12})-alkanoylamino, $(\underline{C}_3-\underline{C}_8)$ -cycloalkanoylamino, $(\underline{C}_6-\underline{C}_{12})$ -aroylamino, $(\underline{C}_7-\underline{C}_{16})$ aralkanoylamino, (C₁-C₁₂)-alkanoyl-N-(C₁-C₁₀)-alkylamino, (C₃-C₈)-cycloalkanoyl-N- (C_1-C_{10}) -alkylamino, (C_6-C_{12}) -aroyl-N- (C_1-C_{10}) -alkylamino, (C_7-C_{11}) -aralkanoyl-N- (C_1-C_{11}) -aralkanoyl-N- (C_1-C_{11}) -aralkanoyl-N- (C_1-C_{11}) -aralkanoyl-N- (C_1-C_{11}) -aralkanoyl-N- (C_1-C_{11}) -aralkanoyl-N- (C_1-C_1) -ara C₁₀)-alkylamino, (C₁-C₁₂)-alkanoylamino-(C₁-C₈)-alkyl, (C₃-C₈)-cycloalkanoylamino- (C_1-C_8) -alkyl, (C_6-C_{12}) -aroylamino- (C_1-C_8) -alkyl, (C_7-C_{16}) -aralkanoylamino- (C_1-C_8) alkyl, amino- (C_1-C_{10}) -alkyl, $N-(C_1-C_{10})$ -alkylamino- (C_1-C_{10}) -alkyl, $N,N-di(C_1-C_{10})$ alkylamino- (C_1-C_{10}) -alkyl, (C_3-C_8) -cycloalkylamino (C_1-C_{10}) -alkyl, (C_1-C_{20}) alkylmercapto, (C₁-C₂₀)-alkylsulfinyl, (C₁-C₂₀)-alkylsulfonyl, (C₆-C₁₂)-arylmercapto, (C_6-C_{12}) -arylsulfinyl, (C_6-C_{12}) -arylsulfonyl, (C_7-C_{16}) -aralkylmercapto, (C_7-C_{16}) -<u>aralkylsulfinyl, (C₇-C₁₆)-aralkylsulfonyl, (C₁-C₁₂)-alkylmercapto-(C₁-C₆)-alkyl, (C₁-C₁₂)-</u> <u>alkylsulfinyl-(C_1 - C_6)-alkyl, (C_1 - C_{12})-alkylsulfonyl-(C_1 - C_6)-alkyl, (C_6 - C_{12})-arylmercapto-</u> (C_1-C_6) -alkyl, (C_6-C_{12}) -arylsulfinyl- (C_1-C_6) -alkyl, (C_6-C_{12}) -arylsulfonyl- (C_1-C_6) -alkyl, (C_7-C_{16}) -aralkylmercapto- (C_1-C_6) -alkyl, (C_7-C_{16}) -aralkylsulfinyl- (C_1-C_6) -alkyl, (C_7-C_{16}) -<u>aralkylsulfonyl-(C_1 - C_6)-alkyl, sulfamoyl, N-(C_1 - C_{10})-alkylsulfamoyl, N,N-di-(C_1 - C_{10})-</u> <u>alkylsulfamoyl, (C₃-C₈)-cycloalkylsulfamoyl, N-(C₆-C₁₂)-arylsulfamoyl, N-(C₇-C₁₆)-</u> <u>aralkylsulfamoyl, N-(C_1 - C_{10})-alkyl-N-(C_6 - C_{12})-arylsulfamoyl, N-(C_1 - C_{10})-alkyl-N-(C_7 -</u> \underline{C}_{16})-aralkylsulfamoyl, $(\underline{C}_1-\underline{C}_{10})$ -alkylsulfonamido, $N-((\underline{C}_1-\underline{C}_{10})$ -alkyl)- $(\underline{C}_1-\underline{C}_{10})$ - alkylsulfonamido, (C_7-C_{16}) -aralkylsulfonamido, and N- $((C_1-C_{10})$ -alkyl- (C_7-C_{16}) aralkylsulfonamido; where an aryl radical may be substituted by 1 to 5 substituents selected from hydroxyl, halogen, cyano, trifluoromethyl, nitro, carboxyl, (C₂-C₁₆)-alkyl, (C_3-C_8) -cycloalkyl, (C_3-C_8) -cycloalkyl- (C_1-C_{12}) -alkyl, (C_3-C_8) -cycloalkoxy, (C_3-C_8) -<u>cycloalkyl-(C_1 - C_{12})-alkoxy, (C_3 - C_8)-cycloalkyloxy-(C_1 - C_{12})-alkyl, (C_3 - C_8)-cycloalkyloxy-</u> (C_1-C_{12}) -alkoxy, (C_3-C_8) -cycloalkyl- (C_1-C_8) -alkyl- (C_1-C_6) -alkoxy, (C_3-C_8) -cycloalkyl (C_1-C_8) -alkoxy, (C_3-C_8) -cycloalkyl (C_1-C_8) -alkoxy, (C_3-C_8) -cycloalkyl (C_1-C_8) -alkoxy, (C_3-C_8) -cycloalkyl (C_1-C_8) -alkoxy, (C_3-C_8) -alkoxy, (C_3-C_8) -cycloalkyl (C_1-C_8) -alkoxy, (C_3-C_8) C_8)-alkoxy- (C_1-C_6) -alkyl, (C_3-C_8) -cycloalkyloxy- (C_1-C_8) -alkoxy- (C_1-C_6) -alkyl, (C_3-C_8) -<u>cycloalkoxy-(C_1 - C_8)-alkoxy-(C_1 - C_8)-alkoxy, (C_6 - C_{12})-aryl, (C_7 - C_{16})-aralkyl, (C_2 - C_{16})-</u> alkenyl, (C_2-C_{12}) -alkynyl, (C_1-C_{16}) -alkoxy, (C_1-C_{16}) -alkenyloxy, (C_1-C_{12}) -alkoxy- (C_1-C_1) -alkox C_{12} -alkyl, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxy, (C_1-C_{12}) -alkoxy (C_1-C_8) -alkoxy- $(C_1-$ <u>alkyl, (C_6-C_{12}) -aryloxy, (C_7-C_{16}) -aralkyloxy, (C_6-C_{12}) -aryloxy- (C_1-C_6) -alkoxy, (C_7-C_{16}) -</u> <u>aralkoxy-(C_1 - C_6)-alkoxy, (C_1 - C_8)-hydroxyalkyl, (C_6 - C_{16})-aryloxy-(C_1 - C_8)-alkyl, (C_7 - C_{16})-</u> <u>aralkoxy-(C_1 - C_8)-alkyl, (C_6 - C_{12})-aryloxy-(C_1 - C_8)-alkoxy-(C_1 - C_6)-alkyl, (C_7 - C_{12})-</u> $\underline{\text{aralkyloxy-}(C_1-C_8)\text{-alkoxy-}(C_1-C_6)\text{-alkyl}, -O-[CH_2]_xC_fH_{(2f+1-g)}F_g, -OCF_2CI, -OCF_2-CHFCI,}$ (C_1-C_{12}) -alkylcarbonyl, (C_3-C_8) -cycloalkylcarbonyl, (C_6-C_{12}) -arylcarbonyl, (C_7-C_{16}) -<u>aralkylcarbonyl</u>, (C_1-C_{12}) -alkoxycarbonyl, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxycarbonyl, (C_6-C_{12}) -aryloxycarbonyl, (C_7-C_{16}) -aralkoxycarbonyl, (C_3-C_8) -cycloalkoxycarbonyl, (C_2-C_{12}) -alkenyloxycarbonyl, (C_2-C_{12}) -alkynyloxycarbonyl, (C_6-C_{12}) -aryloxy- (C_1-C_6) alkoxycarbonyl, (C_7-C_{16}) -aralkoxy- (C_1-C_6) -alkoxycarbonyl, (C_3-C_8) -cycloalkyl- (C_1-C_6) alkoxycarbonyl, (C_3-C_8) -cycloalkoxy- (C_1-C_6) -alkoxycarbonyl, (C_1-C_{12}) alkylcarbonyloxy, (C_3-C_8) -cycloalkylcarbonyloxy, (C_6-C_{12}) -arylcarbonyloxy, (C_7-C_{16}) -<u>aralkylcarbonyloxy</u>, <u>cinnamoyloxy</u>, (C₂-C₁₂)-alkenylcarbonyloxy, (C₂-C₁₂)-<u>alkynylcarbonyloxy, (C_1-C_{12}) -alkoxycarbonyloxy, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -</u> <u>alkoxycarbonyloxy</u>, (C_6-C_{12}) -aryloxycarbonyloxy, (C_7-C_{16}) -aralkyloxycarbonyloxy, (C_3-C_{16}) -aralkyloxycarbonyloxy C_8)-cycloalkoxycarbonyloxy, (C_2 - C_{12})-alkenyloxycarbonyloxy, (C_2 - C_{12})alkynyloxycarbonyloxy, carbamoyl, $N-(C_1-C_{12})$ -alkylcarbamoyl, $N,N-di(C_1-C_{12})$ -<u>alkylcarbamoyl</u>, N-(C₃-C₈)-cycloalkylcarbamoyl, N,N-dicyclo-(C₃-C₈)-alkylcarbamoyl, $N-(C_1-C_{10})$ -alkyl- $N-(C_3-C_8)$ -cycloalkylcarbamoyl, $N-((C_3-C_8)$ -cycloalkyl- (C_1-C_6) - alkyl)carbamoyl, $N-(C_1-C_6)$ -alkyl- $N-((C_3-C_8)$ -cycloalkyl- (C_1-C_6) -alkyl)carbamoyl, N-(+)dehydroabietylcarbamoyl, N-(C₁-C₆)-alkyl-N-(+)-dehydroabietylcarbamoyl, N-(C₆-C₁₂)arylcarbamoyl, N- (C_7-C_{16}) -aralkylcarbamoyl, N- (C_1-C_{10}) -alkyl-N- (C_6-C_{16}) arylcarbamoyl, N- (C_1-C_{10}) -alkyl-N- (C_7-C_{16}) -aralkylcarbamoyl, N- $((C_1-C_{16})$ -alkoxy- (C_1-C_{16}) -aralkylcarbamoyl, N- $((C_1-C_{16})$ -alkoxy- (C_1-C_{16}) -aralkylcarbamoyl, N- $((C_1-C_{16})$ -alkoxy- (C_1-C_1) -aralkylcarbamoyl, N- $((C_1-C_1)$ -alkoxy-((\underline{C}_{10})-alkyl)carbamoyl, \underline{N} -((\underline{C}_6 - \underline{C}_{16})-aryloxy-(\underline{C}_1 - \underline{C}_{10})-alkyl)carbamoyl, \underline{N} -((\underline{C}_7 - \underline{C}_{16})-<u>aralkyloxy- (C_1-C_{10}) -alkyl)carbamoyl, N- (C_1-C_{10}) -alkyl-N- $((C_1-C_{10})$ -alkoxy- (C_1-C_{10}) -</u> alkyl)carbamoyl, $N-(C_1-C_{10})$ -alkyl- $N-((C_6-C_{12})$ -aryloxy- (C_1-C_{10}) -alkyl)carbamoyl, $N-(C_1-C_{10})$ C_{10})-alkyl-N-((C_7 - C_{16})-aralkyloxy-(C_1 - C_{10})-alkyl)-carbamoyl, CON(CH₂)_h, in which a CH₂ group can be replaced by, O, S, N- (C_1-C_8) -alkylimino, N- (C_3-C_8) -cycloalkylimino, $N-(C_3-C_8)$ -cycloalkyl- (C_1-C_4) -alkylimino, $N-(C_6-C_{12})$ -arylimino, $N-(C_7-C_{16})$ -aralkylimino, $N-(C_1-C_4)$ -alkoxy- (C_1-C_6) -alkylimino, and h is from 3 to 7; carbamoyloxy, $N-(C_1-C_{12})$ -<u>alkylcarbamoyloxy</u>, N,N-di- (C_1-C_{12}) -alkylcarbamoyloxy, N- (C_3-C_8) cycloalkylcarbamoyloxy, N-(C₆-C₁₆)-arylcarbamoyloxy, N-(C₇-C₁₆)-<u>aralkylcarbamoyloxy, N-(C_1 - C_{10})-alkyl-N-(C_6 - C_{12})-arylcarbamoyloxy, N-(C_1 - C_{10})-alkyl-</u> $N-(C_7-C_{16})$ -aralkylcarbamoyloxy, $N-((C_1-C_{10})$ -alkyl)carbamoyloxy, $N-((C_6-C_{12})$ -aryloxy- $(\underline{C}_1-\underline{C}_{10})$ -alkyl)carbamoyloxy, $N-((\underline{C}_7-\underline{C}_{16})$ -aralkyloxy- $(\underline{C}_1-\underline{C}_{10})$ -alkyl)carbamoyloxy, N- (C_1-C_{10}) -alkyl-N- $((C_1-C_{10})$ -alkoxy- (C_1-C_{10}) -alkyl)carbamoyloxy, N- (C_1-C_{10}) -alkyl-N- $((C_6-C_{12})-aryloxy-(C_1-C_{10})-alkyl)$ carbamoyloxy, N- $(C_1-C_{10})-alkyl-N-((C_7-C_{16})-alkyl)$ <u>aralkyloxy-(C₁-C₁₀)-alkyl)carbamoyloxy, amino, (C₁-C₁₂)-alkylamino, di-(C₁-C₁₂)-</u> alkylamino, (C₃-C₈)-cycloalkylamino, (C₃-C₁₂)-alkenylamino, (C₃-C₁₂)-alkynylamino, N-(C₆-C₁₂)-arylamino, N-(C₇-C₁₁)-aralkylamino, N-alkyl-aralkylamino, N-alkyl-<u>arylamino, (C_1-C_{12}) -alkoxyamino, (C_1-C_{12}) -alkoxy-N- (C_1-C_{10}) -alkylamino, (C_1-C_{12}) -alkoxyamino, -alkoxya</u> alkanoylamino, (C₃-C₈)-cycloalkanoylamino, (C₆-C₁₂)-aroylamino, (C₇-C₁₆)-<u>aralkanoylamino, (C_1-C_{12}) -alkanoyl-N- (C_1-C_{10}) -alkylamino, (C_3-C_8) -cycloalkanoyl-N-</u> (C_1-C_{10}) -alkylamino, (C_6-C_{12}) -aroyl-N- (C_1-C_{10}) -alkylamino, (C_7-C_{11}) -aralkanoyl-N- (C_1-C_{11}) -aralkanoyl-N- (C_1-C_{11}) -aralkanoyl-N- (C_1-C_{11}) -aralkanoyl-N- (C_1-C_{11}) -aralkanoyl-N- (C_1-C_{11}) -aralkanoyl-N- (C_1-C_1) -ara C_{10})-alkylamino, (C_1-C_{12}) -alkanoylamino- (C_1-C_8) -alkyl, (C_3-C_8) -cycloalkanoylamino- (C_1-C_8) -alkyl, (C_6-C_{12}) -aroylamino- (C_1-C_8) -alkyl, (C_7-C_{16}) -aralkanoylamino- (C_1-C_8) -<u>alkyl, amino- (C_1-C_{10}) -alkyl, N- (C_1-C_{10}) -alkylamino- (C_1-C_{10}) -alkyl, N,N-di- (C_1-C_{10}) -alkyl</u> alkylamino- (C_1-C_{10}) -alkyl, (C_3-C_8) -cycloalkylamino- (C_1-C_{10}) -alkyl, (C_1-C_{12}) -alkylsulfinyl, (C_1-C_{12}) -alkylsulfonyl, (C_6-C_{16}) -arylmercapto, (C_6-C_{16}) -arylsulfinyl, (C_6-C_{16}) -arylsulfonyl, (C_7-C_{16}) -aralkylsulfonyl, (C_7-C_{16}) -aralkylsulfonyl, (C_7-C_{16}) -aralkylsulfonyl; or wherein R¹ and R², or R² and R³ form a chain [CH₂]₀, which is saturated or unsaturated by a C=C double bond, in which 1 or 2 CH₂ groups are optionally replaced by O, S, SO, SO₂, or NR¹, and R¹ is hydrogen, (C₆-C₁₂)-aryl, (C₁-Cォ)-alkyl, (C₁-Cォ)-alkyl, (C₁-Cκ)-alkyl, (C₁-Cκ)-alkyl, (C₁-Cκ)-alkyl, (C₁-Cκ)-alkyl, (C₁-Cκ)-alkyl, (C₁-Cκ)-aryloxy-(C₁-Cκ)-alkyl, (C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ)-aryloxy-(C₁-Cκ or wherein the radicals R¹ and R², or R² and R³, together with the pyridine or pyridazine carrying them, form a 5,6,7,8-tetrahydroisoquinoline ring, a 5,6,7,8-tetrahydrocinnoline ring; or wherein R¹ and R², or R² and R³ form a carbocyclic or heterocyclic 5- or 6membered aromatic ring; or where R¹ and R², or R² and R³, together with the pyridine or pyridazine carrying them, form an optionally substituted heterocyclic ring system selected from thienopyridines, furanopyridines, pyridopyridines, pyrimidinopyridines, imidazopyridines, thiazolopyridines, oxazolopyridines, quinoline, isoquinoline, and cinnoline; or wherein the radicals R¹ and R², together with the pyridine carrying them, form a compound of Formula Id: $$R^{26}$$ R^{25} R^{24} (Id) where V is S, O, or NR^k, and R^k is selected from hydrogen, (C₁-C₆)-alkyl, aryl, or benzyl; where an aryl radical may be optionally substituted by 1 to 5 substituents as defined above; and R^{24} , R^{25} , R^{26} , and R^{27} in each case independently of each other have the meaning of R^{1} , R^{2} and R^{3} ; f is 1 to 8; g is 0 or 1 to (2f+1); x is 0 to 3; and h is 3 to 7; or a physiologically active salt derived therefrom. - 2. A compound that inhibits hypoxia inducible factor (HIF) hydroxylase activity for use in treating or preventing microcytosis associated with iron deficiency in a subject, wherein the compound is a structural mimetic of 2-oxoglutarate. - 3. The compound of claim 2 for the use of that claim, wherein B is -CO₂H; A is C₁-alkylene; Q is O; R⁴ is hydrogen; X is 0; Y is CR3; and R¹, R² and R³ are as defined above; including physiologically active salts derived therefrom. - 3 4. The compound of claim 1 for the use of that claim, wherein the iron deficiency is functional iron deficiency. - 4 <u>5</u>. The compound of claim 1 for the use of that claim, wherein the iron deficiency is associated with a disorder selected from the group consisting of anemia, iron deficiency anemia, microcytic anemia, inflammation, infection, immunodeficiency disorder and neoplastic disorder. - 5-6A. The compound of claim 1 for the use of that claim, wherein the compound is for use in increasing iron absorption. - 6-7A. The compound of claim 5-6A for the use of that claim, wherein the iron absorption is in the intestine, is in duodenal enterocytes, or is absorption of dietary iron. - 7-8A. The compound of claim 1 for the use of that claim, wherein the compound is for use in increasing iron availability for erythropoiesis or red blood cell production. - 8-9A. The compound of claim 1, 2 or 3 for the use of that claim, wherein the compound is for use in: increasing reticulocytes; increasing hematocrit; increasing hemoglobin; increasing red blood cell count; increasing mean corpuscular hemoglobin; or increasing mean corpuscular volume. - 9-10A. The compound of claim 1, 2 or 3 for the use of that claim, wherein the compound is for use in: increasing serum iron or; increasing total iron binding eapacity; increasing transferrin saturation; increasing soluble transferrin receptor levels; or decreasing hepcidin expression. - 11A. The compound of claim 1, 2 or 3 for the use of that claim, wherein the compound is for decreasing hepcidin expression. - 10. The compound of any preceding claim for the use of that claim, wherein the compound inhibits HIF prolyl hydroxylase activity. - 44_12. The compound of any preceding claim for the use of that claim, wherein the compound is for oral administration. Conditional amendment to claim 1 (in addition to the unconditional amendments): 1A. A compound that inhibits hypoxia inducible factor (HIF) prolyl hydroxylase activity for use in <u>increasing serum iron in treating functional</u> iron deficiency associated with anemia in a subject, wherein the compound is a structural mimetic of 2-oxoglutarate. Claims 2-9, 11 and 12 are unchanged and Claim 10 is amended in the following manner: 10A. The compound of claim 1, 2 or 3 for the use of that claim, wherein the compound is for use in: increasing serum iron or increasing transferrin saturation.