FoodScreener solutions

Honey Authenticity Seminar 13.11.2019

Léa Heintz, Product Manager Bruker BioSpin GmbH Thomas Spengler Market Manager Bruker BioSpin GmbH

The Need for Multi-Marker and Non-Targeted Methods to tackle Dynamic Food Fraud

- Standard targeted methods more and more fail to detect fraud, as the fraudsters become more sophisticated and learn quickly how to deceive these tests.
- Significant reduction of the positive findings by such techniques after app 2 years.
- Costs of looking for specific markers of adulteration and the inability to keep up with the fraudsters has resulted in the amount of adulteration soaring tremendously in the last decade.

Example Canadian Food Inspection Agency

- 240 honey samples collected (including importers, packers, retailers...).
- The samples were tested with: Stable Isotope Ratio Analysis and NMR.
 - 52 samples were unsatisfactory by both methods: 21.7%
 - 16 samples were unsatisfactory for SIRA testing: 6.37%
 - 44 samples were unsatisfactory for NMR testing: 18.3%
- As of January 2019, CFIA had taken enforcement actions that prevented an estimated 12,762 kg of adulterated honey valued at \$76,758 CAD from entering the Canadian market.
- CFIA intends to use the results of this surveillance to improve the targeting of future sampling and inspection activities, inform analytical needs, and refine program design.
- CFIA also plans to apply lessons learned to other commodities at risk.

Example Famille Michaud:

NMR vs. conventional methods for detection of sugar syrup in Honey

SAMPLES NUMBER	DETECTED ADULTERATED USING C3/C4	DETECTED ADULTERATED BY NMR		
5035	80	508		

SAMPLES NUMBER	DETECTED ADULTERATED USING FOREIGN OLIGOSACCHARIDES ELSD	DETECTED ADULTERATED BY NMR	
2659	50	515	

Example Famille Michaud:

NMR vs. conventional methods for detection of sugar syrup in Honey

DATA-RESULTS-19 GEOGRAPHICAL ORIGIN-112 BOTANICAL ORIGIN

When no adulteration is detected by conventional methods, NMR can still detect exogenous sugars

SAMPLES NUMBER	DETECTED COMPLIANT USING ALL TYPES OF CONVENTIONAL METHODS	DETECTED ADULTERATED BY NMR	
2115	2115	421	

20% of adulterated samples pass all conventional methods, but are detected with NMR

1H NMR overview

BRUKER

- The signal paterns (number of peaks, relative intensity of peaks, distance between peaks) are unique for each compound and can be used to identify them amongst other signals in a mixture.
- The **integral values** can be used to **quantify** the compounds, as long as their chemical structures and signal assignment is known.

 $I_x = K_s \cdot N_x$

- I_x = Integral value
- N_x = number of protons contributing to I_x
- k_S = "spectrometer constant"

Example: ethanol in wine

1H NMR overview

• The integral values can be used to quantify the compounds, as long as their chemical structures and signal assignment is known.

 $I_x = K_s \cdot N_x$ $I_x =$ Integral value $N_x =$ number of protons contributing to I_x $K_s =$ "spectrometer constant"

NMR is quantitative by nature

- No need for compound-specific calibrations
- External calibration with a reference compound allows absolute quantification of compounds

Example: ethanol in wine

Innovation with Integrity

While working under identical conditions of sample preparation and measurement, a sample analyzed in different laboratories gives the same result.

Advantages:

- Cooperation between laboratories to create a common database and common data analysis methods
- Creation and maintenance of long-lasting databases
- Reliable statistical analysis
- Reliable automated quantification of compounds
- ✤ Retrospective analysis

Reproducibility

Pre-requisite: usage of common SOPs

Example of a wine

1H-NMR Food Screening applications

Targeted and non-targeted analysis

-Compound quantification, fingerprinting and detection of deviations in one run

- Purity of the product
- Authenticity of declared origin
- Authenticity of declared variety
- Typicity of the product
- Quantification of ingredients or markers

The importance of the database: Validation of markers and related thresholds

 Independently of the analytical technique used (NMR, MS, HPLC-UV...) and of the parameter measured (unknown compound or identified molecule like e.g. mannose):

To define what is "normal" it is mandatory to have a set of representative samples, to make sure markers chosen are not naturally present in a specific type of honey.

> AVOID THE RISK OF FALSE POSITIVE

(False positive = authentic sample detected as being adulterated)

• In NMR Honey-Profiling, the markers are all in the spectral regions related to sugars, which is less sensitive to origin.

Innovation with Integrity

ISO 17025 accreditation

Innovation with Integrity

Database: example for honey

- 16100 authentic samples / 1900 adulterated samples
- > 50 country of origin & 100 botanical varieties.
- Monofloral and polyfloral honeys from a single country source.
- Blends of honeys from different countries.
- 2.000 honey dew
- 1.500 industrial honeys (or "baker honey")

Samples per country in the Data Base:

> 100: USA, Guatemala, Austria, El Salvador, Serbia, Tanzania...
 > 200: New Zealand, Brazil, Vietnam, Thailand, India, Turkey...
 > 500: Spain, Germany, Mexico, Cuba, Romania, Chile...
 > 1.000: China, Ukraine, Argentina, France...

Detection of Sugar Syrups NMR Honey-Profiling

- **Quantitative analysis** of many parameters: up to 60 parameters per sample
- The values are compared to the reference thresholds
- Reference thresholds have been determined and validated thanks to a large database of authentic and known adulterated honeys from various countries and botanical varieties

Detection of Sugar Syrups

Following tests have been applied in order to detect sugar syrups:

Nr	Туре	Description	Result	Value	Limit	Out
1	Intensity/Ratio	3.263 (absolute quantitative)	passed	475	<1279	-
2	Intensity/Ratio	5.077 (absolute quantitative)	passed	154	>39	-
3	Intensity/Ratio	3.636 (absolute quantitative)	passed	2604	<4674	-
4	Intensity/Ratio	4.262 (absolute quantitative)	passed	74	>29	-
5	Intensity/Ratio	4.195 (absolute quantitative)	passed	128	<1200	-
6	Intensity/Ratio	5.271 (absolute quantitative)	passed	30.6	>5.6	-
7	Intensity/Ratio	4.280 (absolute quantitative)	passed	58	>20	-
8	Intensity/Ratio	5.113/(3.270-3.310)	passed	0.005	< 0.036	-
9	Intensity/Ratio	4.496/(3.270-3.310)	passed	0.039	>0.012	-
10	Intensity/Ratio	5.334/(5.270-5.300)	passed	0.08	< 0.13	-
11	Intensity/Ratio	3.546/(5.270-5.300)	passed	1.15	>0.62	-
12	Intensity/Ratio	3.740/(5.270-5.300)	passed	3.2	>1.2	-
13	Intensity/Ratio	3.857/(5.200-5.260)	passed	0.0145	>0.0037	-
14	Intensity/Ratio	4.150 (absolute quantitative)	passed	258	>115	-
15	Intensity/Ratio	5.181 (absolute quantitative)	passed	50	>24	-
16	Intensity/Ratio	4.055/(5.030-5.070)	passed	3	<46	-
17	Intensity/Ratio	1.809/(5.030-5.070)	passed	0.2	<1.0	-
18	Intensity/Ratio	3.708/(5.030-5.070)	passed	312	<872	-
19	Intensity/Ratio	6.765/(5.250-5.270)	passed	0.009	< 0.046	-
20	Intensity/Ratio	2.200/(5.305-5.315)	passed	0.236	>0.019	-
21	Intensity/Ratio	3.326/(3.270-3.310)	passed	0.415	>0.034	-
22	Intensity/Ratio	4.037/(3.270-3.310)	passed	1.56	>0.73	-
23	Intensity/Ratio	4.006/(5.270-5.300)	passed	1.10	>0.70	-
24	Intensity/Ratio	3.564/(5.270-5.300)	passed	20.2	>10.0	-
25	Intensity/Ratio	5.388/(5.370-5.400)	passed	0.19	>0.13	-
26	Intensity/Ratio	3.524/(4.075-4.110)	passed	0.064	< 0.070	-
27	Intensity/Ratio	3.182/(4.075-4.110)	passed	0.0024	< 0.0045	-
28	Intensity/Ratio	3.785/(4.075-4.110)	passed	0.060	>0.036	-
29	Intensity/Ratio	3.857/(4.075-4.110)	passed	0.0093	>0.0021	-
30	Intensity/Ratio	4.267/(4.970-4.990)	passed	1.5	<4.7	-
31	Intensity/Ratio	4.276/(4.970-4.990)	passed	0.3	<5.4	-
32	Intensity/Ratio	4.204/(5.090-5.110)	passed	1.1	<5.7	-
49	Quantification	Fructose/Glucose	passed	1.12	>0.85 and <1.95	-
50	Quantification	Fructose+Glucose	passed	69.4	>40	-
51	Quantification	Turanose	passed	1.43	>0.3	-
52	Quantification	DHA(D) and Mannose(M)	passed	3 / 0.000	D<30 or M<0.05	-
53	Quantification	Sucrose	passed	0.2	<15	-

False declaration of origin

- Hiding real country of origin or variety.
- Intend: Avoid higher tariff rules, avoid further testing, reach higher market value
- Transhipment = sending the honey to another country where it is relabeled before being exported.
- **Pollen grains manipulation** to deceive detection by pollen analysis:

Filtration of endogeneous pollen grains and addition of pollen grains from another country

Floral source (e.g. Manuka)

Riddle of how 1,700 tons of manuka honey are made... but 10.000 are sold

Geo. origin (e.g. Transhipment)

a to US, via quick-change port

Detection of false declaration of origin Pollen analysis

- Identification and counting pollen grains by microscopy
- Requires a trained expert and is time consuming
- Not working on pollen-filtered honeys.
- Not able to differenciate the real pollens from exogeneous pollen grains.

Detection of false declaration of origin Marker compounds

- Compounds commonly used as markers can often be synthetically produced and added into the honey.
- E.g. DHA and MGO are cheap chemicals
- The non-compliance of marker compound(s) can be used to detect a fraud
- However, the compliance of 1 or few markers is not sufficient to prove authenticity

Result in detail:

6 elevated signals observed, not typical for Manuka

(0.846high 0.850high 6.359high 6.363high 6.400high 6.404high)/

With the courtesy of QSI GmbH

Detection of false declaration of origin NMR Honey-Profiling

- Based on the **complete chemical composition of the honey** observed by 1H-NMR
- Statistical analysis of the NMR spectrum: untargeted buckets/variables.
- Differentiation of the supposed/declared origin or variety with all other ones present in the Database (50 countries / 100 varieties).

- Statistical models have been validated by Monte Carlo cross validation (Criteria: TP > 98%)
 - Very difficult/ impossible to deceive
 - No need for an expert and fast
 - Applicable to pollen-filtered honey

Non-Targeted analysis

Detection of atypical samples

- Statistical comparison of the NMR profile with "normal" profiles from the same floral source
- Potential to detect new frauds at early stage.

Non-Targeted Verification Analysis

Univariate Verification

- Applied Model: Eucalyptus
- Result: No deviation was detected in univariate verification (In-Model).
- Multivariate Verification
 - Applied Model: Eucalyptus

Result: No deviation was detected in multivariate verification (In-Model).

log-Mahalanobis Paramete

Quantitative analysis

Quantitative Analysis

In the following table the results of the quantitative analysis are given. The concentrations are obtained by direct quantification. Parameters labelled with * are calculated parameters. The reference range is derived from the *Eucalyptus* samples in the Honey-Profiling Database. The reference range bases on 158 samples.

- Absolute quantification
- Sugars, organic acids, amino acids, freshness and quality criteria
- Comparison to reference values (according to Database samples)

Compound	Value	Unit	LOQ	Reference Range	Flag
alanine	22	mg/kg	5	<5 46	
aspartic acid	<LOQ	${\sf mg}/{\sf kg}$	150	${<}150~{ m mg/kg}$ in reference dataset	
glutamine	<LOQ	${\sf mg}/{\sf kg}$	200	<200	
leucine	<LOQ	${\sf mg}/{\sf kg}$	40	<40 mg/kg in reference dataset	
proline	618	${\sf mg}/{\sf kg}$	200	288 837	
valine	13	${\sf mg}/{\sf kg}$	10	<10 23	
tyrosine	276	${\sf mg}/{\sf kg}$	50	<50 246	\bigcirc
phenylalanine	776	${\sf mg}/{\sf kg}$	100	<100 581	\bigcirc

(Analysis-ID: HO-Q/1363)

Quantitative analysis

Regulated parameters in EU-directive / Codex Alimentarius

- Absolute quantification
- HMF, glucose+fructose, sucrose
- Conclusion according to directive.

Codex Alimentarius and EU-Directive 2001/110/EC:

Following parameters are required according to Codex Alimentarius and EU-Directive 2001/110/EC. The concentrations are obtained by direct quantification. Parameters labelled with * are calculated parameters.

				Official Reference		
Compound	Value	Unit	LOQ	min	max	Flag
glucose + fructose *	69.4	g/100g	20.0	45	-	
sucrose	<loq< td=""><td>g/100g</td><td>0.5</td><td>-</td><td>10</td><td></td></loq<>	g/100g	0.5	-	10	
5-hydroxymethylfurfural (HMF)	<LOQ	mg/kg	5	-	80	

Following flags are used according to Codex Alimentarius and EU-Directive 2001/110/EC:

Compound	Flag	Concentration	Declaration	Interpretation	
glucose +	•	< 45 g/100 g	All	Not compliant	
fructose		< 60 g/100 g	Blossom	Not compliant for blossom honey	
		\geq 60 g/100g	All	Compliant	
		$\ge 45 \text{ g}/100 \text{g}$	Honeydew	Compliant for honeydew honey	
	0	\geq 45 g/100g,	Unknown	Compliant for honeydew honey and	
	-	< 60 g/100 g		blends of honeydew honey with blossom	
				honey. Not compliant for blossom honey.	

Validation

- Daily quality controls
- Recovery experiments for each single compound (> 600 spikings done)
- Monte-Carlo/Cross-Validation of statistical methods
- Comparison with other analytical methods
- Inter-laboratory tests (collaborative trials)
- Participation in international ring tests
- Validation with external datasets

NMR and Food-Profiling

- An **all-in-one method**, comprehensive authenticity test:
 - Detection of foreign compounds (e.g. sugar syrups in honey)
 - Verification of labelling/declaration of origin (country and botanical source/variety)
 - Detection of atypical samples
 - Quality control (composition, freshness, regulated parameters)
- deeply validated methods, relying on huge Databases of well-characterized samples
- Several labs (including Bruker BAS lab) accredited ISO17025 for Food-Profiling
- no NMR expertise required. Easy to operate, fully automated, no regular instrument cleaning
- Fast: 20 25 min / sample
- Difficult to deceive
- Wide and worldwide network of partners and users

NMR and Food-Profiling

- Standardized protocols for sample preparation and measurement to ensure data reproducibility and the usage of common and centralized data analysis tools.
- **Centralized Database** with worldwide network including governmental laboratories.
- **Transparency** about parameters used and related thresholds (purity criteria)
- A method which is **continously expanded** and updated
- Round tables have been kicked-off to specifically discuss such NMR purity criteria amongst honey experts

Wide & Worldwide Adoption of NMR for Food Analysis

Innovation with Integrity

Adoption of NMR by Industry

Gov Agencies	
Commercial Testing Labs	
Food Research	S.
CPGs (Consumer Packaged Goods)	F
High Value Suppliers	2
Large Retailers	\searrow

Adoption of NMR by Commercial Service Providers

Adoption of NMR by Governmental Laboratories

