Unconditional amendments to EP (UK) 1 487 472: 1. Use of a compound in the manufacture of a medicament for the treatment or prevention of an ischemic or hypoxic condition, wherein the hypoxic condition is an anemic disorder, and wherein the anemic disorder is renal disease, and wherein the compound is: a compound of formula (I): $$R^2$$ Q- R^4 (I) wherein A is (C₁-C₄)-alkylene; B is -CO₂H, -NH₂, -NHSO₂CF₃, tetrazolyl, imidazolyl, 3-hydroxyisoxazolyl, -CONHCOR''', -CONHSOR''', CONHSO₂R''', where R''' is aryl, heteroaryl, (C₃-C₇)-cycloalkyl, or (C₁-C₄)-alkyl, optionally monosubstituted by (C₆-C₁₂)-aryl, heteroaryl, OH, SH, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-thioalkyl, (C₁-C₄)-sulfinyl, (C₁-C₄)-sulfinyl, (C₁-C₄)-sulfonyl, CF₃, Cl, Br, F, I, NO₂, -COOH, (C₂-C₅)-alkoxycarbonyl, NH₂, mono-(C₁-C₄-alkyl)-amino, di-(C₁-C₄-alkyl)-amino, or (C₁-C₄)-perfluoroalkyl; or wherein B is a CO₂-G carboxyl radical, where G is a radical of an alcohol G-OH in which G is selected from (C₁-C₂₀)-alkyl radical, (C₃-C₈) cycloalkyl radical, (C₂-C₂₀)-alkenyl radical, (C₃-C₈)-cycloalkenyl radical, retinyl radical, (C₂-C₂₀)-alkynyl radical, (C₄-C₂₀)-alkenynyl radical, where the alkenyl, cycloalkenyl, alkynyl, and alkenynyl radicals contain one or more multiple bonds; (C₆-C₁₆)-carbocyclic aryl radical, (C₇-C₁₆)-carbocyclic aralkyl radical, heteroaryl radical, or heteroaralkyl radical, wherein a heteroaryl radical or heteroaryl moiety of a heteroaralkyl radical contains 5 or 6 ring atoms; and wherein radicals defined for G are substituted by one or more hydroxyl, halogen, cyano, trifluoromethyl, nitro, carboxyl, (C₁-C₁₂)-alkyl, (C₃-C₈)-cycloalkyl, (C₅-C₈)-cycloalkenyl, (C_6-C_{12}) -aryl, (C_7-C_{16}) -aralkyl, (C_2-C_{12}) -alkenyl, (C_2-C_{12}) -alkynyl, (C_1-C_{12}) -alkoxy, (C_1-C_1) -alkoxy, (C_1-C_1) -alkoxy, (C_1-C_1) -alkoxy, (C_1-C_1) -alkoxy, (C_1-C_1) -alkoxy, (C_1-C_1) - C_{12})-alkoxy- (C_1-C_{12}) -alkyl, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxy, (C_6-C_{12}) -aryloxy, (C_7-C_{16}) aralkyloxy, (C_1-C_8) -hydroxyalkyl, $-O-[CH_2]_x-C_tH_{(2f+1-q)}-F_q$, $-OCF_2CI$, $-OCF_2-CHFCI$, (C_1-C_8) -hydroxyalkyl, $-O-[CH_2]_x-C_tH_{(2f+1-q)}-F_q$, $-OCF_2CI$, $-OCF_2-CHFCI$, (C_1-C_8) -hydroxyalkyl, $-O-[CH_2]_x-C_tH_{(2f+1-q)}-F_q$, $-OCF_2CI$, $-OCF_2-CHFCI$, (C_1-C_8) -hydroxyalkyl, $-O-[CH_2]_x-C_tH_{(2f+1-q)}-F_q$, $-OCF_2CI$, $-OCF_2-CHFCI$ C_{12})-alkylcarbonyl, (C_3 - C_8)-cycloalkylcarbonyl, (C_6 - C_{12})-arylcarbonyl, (C_7 - C_{16})aralkylcarbonyl, cinnamoyl, (C₂-C₁₂)-alkenylcarbonyl, (C₂-C₁₂)-alkynylcarbonyl, (C₁- C_{12})-alkoxycarbonyl, (C_1 - C_{12})-alkoxy-(C_1 - C_{12})-alkoxycarbonyl, (C_6 - C_{12})aryloxycarbonyl, (C₇-C₁₆)-aralkoxycarbonyl, (C₃-C₈)-cycloalkoxycarbonyl, (C₂-C₁₂)alkenyloxycarbonyl, (C_2-C_{12}) -alkynyloxycarbonyl, acyloxy, (C_1-C_{12}) alkoxycarbonyloxy, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxycarbonyloxy, (C_6-C_{12}) aryloxycarbonyloxy, (C₇-C₁₆) aralkyloxycarbonyloxy, (C₃-C₈)-cycloalkoxycarbonyloxy, (C₂-C₁₂)-alkenyloxycarbonyloxy, (C₂-C₁₂)-alkynyloxycarbonyloxy, carbamoyl, N-(C₁-C₁₂)-alkylcarbamoyl, N.N-di(C₁-C₁₂)-alkylcarbamoyl, N-(C₃-C₈)-cycloalkyl-carbamoyl, $N-(C_6-C_{16})$ -arylcarbamoyl, $N-(C_7-C_{16})$ -aralkylcarbamoyl, $N-(C_1-C_{10})$ -alkyl- $N-(C_6-C_{16})$ arylcarbamoyl, N-(C₁-C₁₀)-alkyl-N-(C₇-C₁₆)-aralkylcarbamoyl, N-((C₁-C₁₀)-alkoxy-(C₁- C_{10})-alkyl)-carbamoyl, N-((C_6 - C_{12})-aryloxy-(C_1 - C_{10})alkyl)-carbamoyl, N-((C_7 - C_{16})aralkyloxy- (C_1-C_{10}) -alkyl)-carbamoyl, N- (C_1-C_{10}) -alkyl-N- $((C_1-C_{10})$ -alkoxy- (C_1-C_{10}) alkyl)-carbamoyl, N- (C_1-C_{10}) -alkyl-N- $((C_6-C_{16})$ -aryloxy- (C_1-C_{10}) -alkyl)-carbamoyl, N- (C_1-C_{10}) -alkyl-N- $((C_7-C_{16})$ -aralkyloxy- (C_1-C_{10}) -alkyl)-carbamoyl, carbamoyloxy, N- (C_1-C_{10}) -alkyl-N- $((C_1-C_{10})$ -alkyl- (C_1-C_{10}) - -(C₁₂)-alkylcarbamoyloxy, N.N-di-(C₁-C₁₂)-alkylcarbamoyloxy, N-(C₃-C₈)cycloalkylcarbamoyloxy, N-(C₆-C₁₂)-arylcarbamoyloxy, N-(C₇-C₁₆)aralkylcarbamoyloxy, $N-(C_1-C_{10})$ -alkyl- $N-(C_6-C_{12})$ -arylcarbamoyloxy, $N(C_1-C_{10})$ -alkyl- $N-(C_7-C_{16})$ -aralkylcarbamoyloxy, $N-((C_1-C_{10})$ -alkyl)-carbamoyloxy, $N-((C_6-C_{12})$ aryloxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, N- $((C_7-C_{16})$ -aralkyloxy- (C_1-C_{10}) -alkyl)carbamoyloxy, $N-(C_1-C_{10})$ -alkyl- $N-((C_1-C_{10})$ -alkoxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, $N-(C_1-C_{10})$ -alkyl- $N-(C_1-C_{10})$ -alkyl- $N-(C_1-C_{10})$ -alkyl- $N-(C_1-C_1)$ -alky (C_1-C_{10}) -alkyl-N- $((C_6-C_{12})$ -aryloxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, N- (C_1-C_{10}) -alkyl-N-((C₇-C₁₆)-aralkyloxy-(C₁-C₁₀)-alkyl)-carbamoyloxy, amino, (C₁-C₁₂)-alkylamino, di-(C₁-C₁₂)-alkylamino, (C₃-C₈)-cycloalkylamino, (C₂-C₁₂)-alkenylamino, (C₂-C₁₂)- alkynylamino, N-(C₆-C₁₂)-arylamino, N-(C-C₁₁)-aralkylamino, N-alkyl-aralkylamino, Nalkyl-arylamino, (C₁-C₁₂)-alkoxyamino, (C₁-C₁₂)-alkoxy-N-(C₁-C₁₀)-alkylamino, (C₁- C_{12})-alkylcarbonylamino, (C_3 - C_8)-cycloalkylcarbonylamino, (C_6 - C_{12}) arylcarbonylamino, (C₇-C₁₆)-aralkylcarbonylamino, (C₁-C₁₂)-alkylcarbonyl-N-(C₁-C₁₀)alkylamino, (C_3-C_8) -cycloalkylcarbonyl-N- (C_1-C_{10}) -alkylamino, (C_6-C_{12}) -arylcarbonyl- $N-(C_1-C_{10})$ alkylamino, (C_7-C_{11}) -aralkylcarbonyl- $N-(C_1-C_{10})$ -alkylamino, (C_1-C_{12}) alkylcarbonylamino-(C₁-C₈)-alkyl, (C₃-C₈)-cycloalkylcarbonylamino-(C₁-C₈)alkyl, (C₆- C_{12})-arylcarbonylamino- (C_1-C_8) -alkyl, (C_7-C_{12}) -aralkylcarbonylamino (C_1-C_8) -alkyl, amino- (C_1-C_{10}) -alkyl, N- (C_1-C_{10}) alkylamino- (C_1-C_{10}) -alkyl, N.N-di- (C_1-C_{10}) alkylamino- (C_1-C_{10}) -alkyl, (C_3-C_8) cycloalkylamino- (C_1-C_{10}) -alkyl, (C_1-C_{12}) alkylmercapto, (C_1-C_{12}) -alkylsulfinyl, (C_1-C_{12}) -alkylsulfonyl, (C_6-C_{16}) -arylmercapto, (C_6-C_{16}) -arylsulfinyl, (C_6-C_{12}) -arylsulfonyl, (C_7-C_{16}) -aralkylmercapto, (C_7-C_{16}) aralkylsulfinyl, (C₇-C₁₆)-aralkylsulfonyl, sulfamoyl, N-(C₁-C₁₀)-alkylsulfamoyl, N.Ndi(C₁-C₁₀)-alkylsulfamoyl, (C₃-C₈)-cycloalkylsulfamoyl, N-(C₆-C₁₂)-alkylsulfamoyl, N- (C_7-C_{16}) -aralkylsulfamoyl, N- (C_1-C_{10}) -alkyl-N- (C_6-C_{12}) -arylsulfamoyl, N- (C_1-C_{10}) -alkyl- $N-(C_7-C_{16})$ -aralkylsulfamoyl, (C_1-C_{10}) -alkylsulfonamido, $N-((C_1-C_{10})$ -alkyl)- (C_1-C_{10}) alkylsulfonamido, (C_7-C_{16}) -aralkylsulfonamido, or $N-((C_1-C_{10})$ -alkyl- (C_7-C_{16}) aralkylsulfonamido; wherein radicals which are aryl or contain an aryl moiety, may be substituted on the aryl by one to five identical or different hydroxyl, halogen, cyano, trifluoromethyl, nitro, carboxyl, (C₁-C₁₂)-alkyl, (C₃-C₈)-cycloalkyl, (C₆-C₁₂)-aryl, (C₇- C_{16})-aralkyl, (C_1-C_{12}) -alkoxy, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxy- $(C_1$ C_{12})alkoxy, (C_6 - C_{12})-aryloxy, (C_7 - C_{16})-aralkyloxy, (C_1 - C_8)-hydroxyalkyl, (C_1 - C_{12})alkylcarbonyl, (C_3-C_8) -cycloalkyl-carbonyl, (C_6-C_{12}) -arylcarbonyl, (C_7-C_{16}) aralkylcarbonyl, (C_1-C_{12}) -alkoxycarbonyl, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxycarbonyl, (C_6-C_{12}) -aryloxycarbonyl, (C_7-C_{16}) -aralkoxycarbonyl, (C_3-C_8) -cycloalkoxycarbonyl, (C_2-C_{12}) -alkenyloxycarbonyl, (C_2-C_{12}) -alkynyloxycarbonyl, (C_1-C_{12}) -alkylcarbonyloxy, (C_3-C_8) -cycloalkylcarbonyloxy, (C_6-C_{12}) -arylcarbonyloxy, (C_7-C_{16}) -aralkylcarbonyloxy, cinnamoyloxy, (C_2-C_{12}) -alkenylcarbonyloxy, (C_2-C_{12}) -alkynylcarbonyloxy, (C_1-C_{12}) - alkoxycarbonyloxy, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxycarbonyloxy, (C_6-C_{12}) aryloxycarbonyloxy, (C₇-C₁₆)-aralkyloxycarbonyloxy, (C₃-C₈)-cycloalkoxycarbonyloxy, (C₂-C₁₂)-alkenyloxycarbonyloxy, (C₂-C₁₂)-alkynyloxycarbonyloxy, carbamoyl, N-(C₁-C₁₂)-alkylcarbamoyl, N.N-di-(C₁-C₁₂)-alkylcarbamoyl, N-(C₃-C₈)-cycloalkylcarbamoyl, $N-(C_6-C_{12})$ -arylcarbamoyl, $N-(C_7-C_{16})$ -aralkylcarbamoyl, $N-(C_1-C_{10})$ -alkyl- $N-(C_6-C_{12})$ arylcarbamoyl, N-(C₁-C₁₀)-alkyl-N-(C₇-C₁₆)-aralkylcarbamoyl, N-((C₁-C₁₀)-alkoxy-(C₁- C_{10})-alkyl)-carbamoyl, $N-((C_6-C_{12})$ -aryloxy- (C_1-C_{10}) -alkyl)-carbamoyl, $N-((C_7-C_{16})$ aralkyloxy- (C_1-C_{10}) -alkyl)-carbamoyl, N- (C_1-C_{10}) -alkyl-N- $((C_1-C_{10})$ -alkoxy- (C_1-C_{10}) alkyl)-carbamoyl, N- (C_1-C_{10}) -alkyl-N- $((C_6-C_{12})$ -aryloxy- (C_1-C_{10}) -alkyl)-carbamoyl, N- (C_1-C_{10}) -alkyl-N- $((C_7-C_{16})$ -aralkyloxy- (C_1-C_{10}) -alkyl)-carbamoyl, carbamoyloxy, N- (C_1-C_1) -alkyl- $((C_1-C_1)$ - $((C_1-C_1)$ -alkyl- $((C_1-C_1)$ -alkyl- $((C_1-C_1)$ - C₁₂)-alkylcarbamoyloxy, N.N-di-(C₁-C₁₂)-alkylcarbamoyloxy, N-(C₃-C₈)cycloalkylcarbamoyloxy, N-(C₆-C₁₂)-arylcarbamoyloxy, N-(C₇-C₁₆)aralkylcarbamoyloxy, N-(C₁-C₁₀)-alkyl-N-(C₆-C₁₂)-arylcarbamoyloxy, N(C₁-C₁₀)-alkyl- $N-(C_7-C_{16})$ -aralkylcarbamoyloxy, $N-((C_1-C_{10})$ -alkyl)-carbamoyloxy, $N-((C_6-C_{12})$ aryloxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, N- $((C_7-C_{16})$ -aralkyloxy- (C_1-C_{10}) -alkyl)carbamoyloxy, N-(C₁-C₁₀)-alkyl-N-((C₁-C₁₀)-alkoxy-(C₁-C₁₀)-alkyl)-carbamoyloxy, N- (C_1-C_{10}) -alkyl-N- $((C_6-C_{12})$ -aryloxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, N- (C_1-C_{10}) -alkyl-N-((C₇-C₁₆)-aralkyloxy-(C₁-C₁₀)-alkyl)-carbamoyloxy, amino, (C₁-C₁₂)-alkylamino, di-(C₁-C₁₂)-alkylamino, (C₃-C₈)-cycloalkylamino, (C₃-C₁₂)-alkenylamino, (C₃-C₁₂)alkynylamino, N-(C₆-C₁₂)-arylamino, N-(C₇-C₁₁)-aralkylamino, N-alkylaralkylamino, Nalkyl-arylamino, (C_1-C_{12}) -alkoxyamino, (C_1-C_{12}) -alkoxy-N- (C_1-C_{10}) -alkylamino, -al C_{12})-alkylcarbonylamino, (C_3 - C_8)-cycloalkylcarbonylamino, (C_6 - C_{12})arylcarbonylamino, (C₇-C₁₆)-alkylcarbonylamino, (C₁-C₁₂)-alkylcarbonyl-N-(C₁-C₁₀)alkylamino, (C₃-C₈)-cycloalkylcarbonyl-N-(C₁-C₁₀)-alkylamino, (C₆-C₁₂)-arylcarbonyl- $N-(C_1-C_{10})$ -alkylamino, (C_7-C_{11}) -aralkylcarbonyl- $N-(C_1-C_{10})$ -alkylamino, (C_1-C_{12}) alkylcarbonylamino-(C₁-C₈)-alkyl, (C₃-C₈)-cycloalkylcarbonylamino-(C₁-C₈)-alkyl, (C₆-C₁₂)-arylcarbonylamino-(C₁-C₈)-alkyl, (C₇-C₁₆)-aralkylcarbonylamino-(C₁-C₈)-alkyl, amino- (C_1-C_{10}) -alkyl, N- (C_1-C_{10}) -alkylamino- (C_1-C_{10}) alkyl, N.N-di- (C_1-C_{10}) -alkylamino (C_1-C_{10}) -alkyl, (C_3-C_8) -cycloalkylamino- (C_1-C_{10}) -alkyl, (C_1-C_{12}) -alkylmercapto, (C_1-C_{12}) -alkylsulfinyl, (C_1-C_{12}) -alkylsulfinyl, (C_6-C_{12}) -arylmercapto, (C_6-C_{12}) -arylsulfinyl, (C_7-C_{16}) -aralkylmercapto, (C_7-C_{16}) -aralkylsulfinyl, or (C_7-C_{16}) -aralkylsulfonyl; X is O or S; Q is O, S, NR', or a bond; where, if Q is a bond, R⁴ is halogen, nitrile, or trifluoromethyl; or where, if Q is O, S, or NR', R⁴ is hydrogen, (C_1-C_{10}) -alkyl radical, (C_2-C_{10}) -alkenyl radical, (C_2-C_{10}) -alkynyl radical, wherein alkenyl or alkynyl radical contains one or two C-C multiple bonds; unsubstituted fluoroalkyl radical of the formula - $[CH_2]_x$ - $C_fH_{(2f+1-g)}$ - F_g , (C_1-C_8) -alkoxy- (C_1-C_6) -alkyl radical, (C_1-C_6) -alkoxy- (C_1-C_4) -alkoxy- (C_1-C_4) -alkyl radical, aryl radical, heteroaryl radical, (C_7-C_{11}) -aralkyl radical, or a radical of the formula Z $$-[CH_2]_v-[O]_w-[CH_2]_t-E$$ (Z) where E is a heteroaryl radical, a (C_3-C_8) -cycloalkyl radical, or a phenyl radical of the formula F $$R^7$$ R^8 R^9 R^{11} R^{10} v is 0-6, w is 0 or 1, t is 0-3, and R⁷, R⁸, R⁹, R¹⁰, and R¹¹ are identical or different and are hydrogen, halogen, cyano, nitro, trifluoromethyl, (C₁-C₆)-alkyl, (C₃-C₈)-cycloalkyl, (C₁-C₆)-alkoxy, -O-[CH₂]_x- $C_fH_{(2f+1-q)}-F_q$, $-OCF_2-CI$, $-O-CF_2-CHFCI$, (C_1-C_6) -alkylmercapto, (C_1-C_6) -hydroxyalkyl, (C_1-C_6) -alkoxy- (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy- (C_1-C_6) -alkyl, (C_1-C_6) -alkylsulfinyl, (C_1-C_6) -alkoxy- (C_1-C_6) -alkylsulfinyl, $(C_1$ C₆)-alkylsulfonyl, (C₁-C₆)-alkylcarbonyl, (C₁-C₈)-alkoxycarbonyl, carbamoyl, N-(C₁- C_8)-alkylcarbamoyl, N,N-di- (C_1-C_8) -alkylcarbamoyl, or (C_7-C_{11}) -aralkylcarbamoyl, optionally substituted by fluorine, chlorine, bromine, trifluoromethyl, (C₁-C₆)-alkoxy, N-(C₃-C₈)-cycloalkylcarbamoyl, N-(C₃-C₈)-cycloalkyl-(C₁-C₄)-alkylcarbamoyl, (C₁-C₆)alkylcarbonyloxy, phenyl, benzyl, phenoxy, benzyloxy, NRYRZ wherein Ry and Rz are independently selected from hydrogen, (C₁-C₁₂)-alkyl, (C₁-C₈)-alkoxy-(C₁-C₈)-alkyl, (C_7-C_{12}) -aralkoxy- (C_1-C_8) -alkyl, (C_6-C_{12}) -aryloxy- (C_1-C_8) -alkyl, (C_3-C_{10}) -cycloalkyl, (C_3-C_{10}) -aryloxy- (C_1-C_8) -alkyl, (C_3-C_{10}) -cycloalkyl, (C_3-C_{10}) -aryloxy- (C_1-C_8) -alkyl, (C_1-C_1) $(C_1$ C_{12})-alkenyl, (C_3 - C_{12})-alkynyl, (C_6 - C_{12})-aryl, (C_7 - C_{11})-aralkyl, (C_1 - C_{12})-alkoxy, (C_7 - C_{11})-aralkyl, (C_1 - C_1)-alkoxy, (C_7 - C_1) C_{12})aralkoxy, (C_1-C_{12}) -alkylcarbonyl, (C_3-C_8) -cycloalkylcarbonyl, (C_6-C_{12}) arylcarbonyl, (C₇-C₁₆)-aralkylcarbonyl; or further wherein R^y and R^z together are -[CH2]_h, in which a CH₂ group can be replaced by O, S, N-(C_1 - C_4)alkylcarbonylimino, or N-(C₁-C₄)-alkoxycarbonylimino; phenylmercapto, phenylsulfonyl, phenylsulfinyl, sulfamoyl, N-(C₁-C₈)-alkylsulfamoyl, or N, N-di-(C₁-C₈)alkylsulfamoyl; or alternatively R⁷ and R⁸, R⁸ and R⁹, R⁹ and R¹⁰, or R¹⁰ and R¹¹, together are a chain selected from -[CH₂]_n- or -CH=CH-CH=CH-, where a CH₂ group of the chain is optionally replaced by O, S, SO, SO₂, or NR^Y; and n is 3, 4, or 5; and if E is a heteroaryl radical, said radical can carry 1-3 substituents selected from those defined for R⁷-R¹¹, or if E is a cycloalkyl radical, the radical can carry one substituent selected from those defined for R⁷-R¹¹; or where, if Q is NR', R⁴ is alternatively R", where R' and R" are identical or different and are hydrogen, (C_6-C_{12}) -aryl, (C_7-C_{11}) -aralkyl, (C_1-C_8) -alkyl, $(C_1-C_8$ C_6 - C_{12})-arylcarbonyl; or R' and R" together are -[CH₂]_h, in which a CH₂ group can be replaced by O, S, N-acylimino, or N-(C₁-C₁₀)-alkoxycarbonylimino, and h is 3 to 7; Y is N or CR³; R¹, R² and R³ are identical or different and are hydrogen, hydroxyl, halogen, cyano, trifluoromethyl, nitro, carboxyl, (C₁-C₂₀)-alkyl, (C₃-C₈)-cycloalkyl, (C₃-C₈)cycloalkyl- (C_1-C_{12}) -alkyl, (C_3-C_8) -cycloalkoxy, (C_3-C_8) -cycloalkyl- (C_1-C_{12}) -alkoxy, (C_3-C_8) cycloalkyloxy-(C₁-C₁₂)-alkyl, (C₃-C₈)-cycloalkyloxy-(C₁-C₁₂)-alkoxy, (C₃-C₈)-cycloalkyl- (C_1-C_8) -alkyl- (C_1-C_6) -alkoxy, (C_3-C_8) -cycloalkyl- (C_1-C_8) -alkoxy- (C_1-C_6) -alkyl, (C_3-C_8) cycloalkyloxy- (C_1-C_8) -alkoxy- (C_1-C_6) -alkyl, (C_3-C_8) -cycloalkoxy- (C_1-C_8) -alkoxy- -alky- -alky-(C_8)-alkoxy, (C_6-C_{12}) -aryl, (C_7-C_{16}) -aralkyl, (C_7-C_{16}) -aralkenyl, (C_7-C_{16}) -aralkynyl, (C_2-C_{16}) -aralkynyl, (C_7-C_{16}) $(C_7-C_{$ C_{20})-alkenyl, (C_2-C_{20}) -alkynyl, (C_1-C_{20}) -alkoxy, (C_2-C_{20}) -alkenyloxy, (C_2-C_{20}) alkynyloxy, retinyloxy, (C_1-C_{20}) -alkoxy- (C_1-C_{12}) -alkyl, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxy, (C_1-C_{12}) -alkoxy- (C_1-C_8) -alkoxy- (C_1-C_8) -alkyl, (C_6-C_{12}) -aryloxy, (C_7-C_{16}) -aralkyloxy, (C_6-C_{12}) -aryloxy- (C_1-C_6) -alkoxy, (C_7-C_{16}) -aralkoxy- (C_1-C_6) -alkoxy, (C_1-C_{16}) hydroxyalkyl, (C_6-C_{16}) -aryloxy- (C_1-C_8) -alkyl, (C_7-C_{16}) -aralkoxy- (C_1-C_8) -alkyl, (C_6-C_{12}) aryloxy- (C_1-C_8) -alkoxy- (C_1-C_6) -alkyl, (C_7-C_{12}) -aralkyloxy- (C_1-C_8) -alkoxy- (C_1-C_6) -alkyl, (C_2-C_{20}) -alkenyloxy- (C_1-C_6) -alkyl, (C_2-C_{20}) -alkynyloxy- (C_1-C_6) -alkyl, retinyloxy- (C_1-C_6) alkyl, $-O-[CH_2]_xCfH_{(2f+1-g)}F_g$, $-OCF_2CI$, $-OCF_2-CHFCI$, (C_1-C_{20}) -alkylcarbonyl, (C_3-C_8) cycloalkylcarbonyl, (C₆-C₁₂)-arylcarbonyl, (C₇-C₁₆)-aralkylcarbonyl, cinnamoyl, (C₂-C₂₀)-alkenylcarbonyl, (C₂-C₂₀)-alkynylcarbonyl, (C₁-C₂₀)-alkoxycarbonyl, (C₁-C₁₂)alkoxy- (C_1-C_{12}) -alkoxycarbonyl, (C_6-C_{12}) -aryloxycarbonyl, (C_7-C_{16}) -aralkoxycarbonyl, (C₃-C₈)-cycloalkoxycarbonyl, (C₂-C₂₀)-alkenyloxycarbonyl, retinyloxycarbonyl, (C₂-C₂₀)-alkynyloxycarbonyl, (C₆-C₁₂)-aryloxy-(C₁-C₆)-alkoxycarbonyl, (C₇-C₁₆)-aralkoxy- (C_1-C_6) -alkoxycarbonyl, (C_3-C_8) -cycloalkyl- (C_1-C_6) -alkoxycarbonyl, (C_3-C_8) cycloalkoxy- (C_1-C_6) -alkoxycarbonyl, (C_1-C_{12}) -alkylcarbonyloxy, (C_3-C_8) cycloalkylcarbonyloxy, (C₆-C₁₂)-arylcarbonyloxy, (C₇-C₁₆)-aralkylcarbonyloxy, cinnamoyloxy, (C₂-C₁₂)-alkenylcarbonyloxy, (C₂-C₁₂)-alkynylcarbonyloxy, (C₁-C₁₂)- alkoxycarbonyloxy, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxycarbonyloxy, (C_6-C_{12}) aryloxycarbonyloxy, (C₇-C₁₆)-aralkyloxycarbonyloxy, (C₃-C₈)-cycloalkoxycarbonyloxy, (C₂-C₁₂)-alkenyloxycarbonyloxy, (C₂-C₁₂)-alkynyloxycarbonyloxy, carbamoyl, N-(C₁-C₁₂)-alkylcarbamoyl, N,N-di-(C₁-C₁₂)-alkylcarbamoyl, N-(C₃-C₈)-cycloalkylcarbamoyl, N,N-dicyclo- (C_3-C_8) -alkylcarbamoyl, N- (C_1-C_{10}) -alkyl-N- (C_3-C_8) -cycloalkylcarbamoyl, $N-((C_3-C_8)-cycloalkyl-(C_1-C_6)-alkyl)-carbamoyl, N-(C_1-C_6)-alkyl-N-((C_3-C_8)-cycloalkyl-(C_1-C_6)-alkyl-N-((C_3-C_8)-cycloalkyl-(C_1-C_6)-alkyl-N-((C_3-C_8)-cycloalkyl-(C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6)-alkyl-N-((C_1-C_6$ (C₁-C₆)-alkyl)-carbamoyl, N-(+)-dehydroabietylcarbamoyl, N-(C₁-C₆)-alkyl-N-(+)dehydroabietylcarbamoyl, N-(C₆-C₁₂)-arylcarbamoyl, N-(C₇-C₁₆)-aralkylcarbamoyl, N- (C_1-C_{10}) -alkyl-N- (C_6-C_{16}) -arylcarbamoyl, N- (C_1-C_{10}) -alkyl-N- (C_7-C_{16}) -aralkylcarbamoyl, $N-((C_1-C_{18})-alkoxy-(C_1-C_{10})-alkyl)-carbamoyl, N-((C_6-C_{16})-aryloxy-(C_1-C_{10})-alkyl)$ carbamoyl, $N-((C_7-C_{16})-aralkyloxy-(C_1-C_{10})-alkyl)-carbamoyl, N-(C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl)-carbamoyl, N-(C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl)-carbamoyl, N-(C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl)-carbamoyl, N-(C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl)-carbamoyl, N-(C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl)-carbamoyl, N-(C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl)-carbamoyl, N-(C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl)-carbamoyl, N-(C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl)-carbamoyl, N-(C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl)-carbamoyl, N-(C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_{10})-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl-N-((C_1-C_1)-alkyl$ C_{10})-alkoxy- (C_1-C_{10}) -alkyl)-carbamoyl, N- (C_1-C_{10}) -alkyl-N- $((C_6-C_{12})$ -aryloxy- (C_1-C_{10}) alkyl)-carbamoyl, $N-(C_1-C_{10})$ -alkyl- $N-((C_7-C_{16})$ -aralkyloxy- (C_1-C_{10}) -alkyl)-carbamoyl; CON(CH₂)_h, in which a CH₂ group can be replaced by O, S, N-(C₁-C₈)-alkylimino, N-(C₃-C₈)-cycloalkylimino, N-(C₃-C₈)-cycloalkyl-(C₁-C₄)-alkylimino, N-(C₆-C₁₂)-arylimino, $N-(C_7-C_{16})$ -aralkylimino, $N-(C_1-C_4)$ -alkoxy- (C_1-C_6) -alkylimino, and h is from 3 to 7; carbamoyloxy, $N-(C_1-C_{12})$ -alkylcarbamoyloxy, $N,N-di-(C_1-C_{12})$ -alkylcarbamoyloxy, $N-di-(C_1-C_{12})$ $N-di-(C_1-C_1)$ -alkyl (C₃-C₈)-cycloalkylcarbamoyloxy, N-(C₆-C₁₂)-arylcarbamoyloxy, N-(C₇-c₁₆)aralkylcarbamoyloxy, N-(C₁-C₁₀)-alkyl-N-(C₆-C₁₂)-arylcarbamoyloxy, N-(C₁-C₁₀)-alkyl- $N-(C_7-C_{16})$ -aralkylcarbamoyloxy, $N-((C_1-C_{10})$ -alkyl)-carbamoyloxy, $N-((C_6-C_{12})$ aryloxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, N- $((C_7-C_{16})$ -aralkyloxy- (C_1-C_{10}) -alkyl)carbamoyloxy, $N-(C_1-C_{10})$ -alkyl- $N-((C_1-C_{10})$ -alkoxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, $N-(C_1-C_{10})$ -alkyl- $N-(C_1-C_{10})$ -alkyl- $N-(C_1-C_1)$ (C_1-C_{10}) -alkyl-N- $((C_6-C_{12})$ -aryloxy- (C_1-C_{10}) -alkyl)-carbamoyloxy, N- (C_1-C_{10}) -alkyl-N-C₁₂)-alkylamino, (C₃-C₈)-cycloalkylamino, (C₃-C₁₂)-alkenylamino, (C₃-C₁₂)alkynylamino, $N-(C_6-C_{12})$ -arylamino, $N-(C_7-C_{11})$ -aralkylamino, N-alkyl-aralkylamino, N-alkyl-arylamino, (C₁-C₁₂)-alkoxyamino, (C₁-C₁₂)-alkoxy-N-(C₁-C₁₀)-alkylamino, (C₁-C₁₀)-alkylamino, (C₁-C₁₀-C₁₀)-alkylamino, (C₁-C₁₀-C₁₀-C₁₀-C₁₀-C₁₀-C₁₀-C₁₀-C₁₂)-alkanoylamino, (C₃-C₈)-cycloalkanoylamino, (C₆-C₁₂)-aroylamino, (C₇-C₁₆)- aralkanoylamino, (C_1-C_{12}) -alkanoyl-N- (C_1-C_{10}) -alkylamino, (C_3-C_8) -cycloalkanoyl-N- (C_1-C_{10}) -alkylamino, (C_6-C_{12}) -aroyl-N- (C_1-C_{10}) -alkylamino, (C_7-C_{11}) -aralkanoyl-N- (C_1-C_{10}) -alkylamino, (C_7-C_{11}) -aralkanoyl-N- -C₁₀)-alkylamino, (C₁-C₁₂)-alkanoylamino-(C₁-C₈)-alkyl, (C₃-C₈)-cycloalkanoylamino- (C_1-C_8) -alkyl, (C_6-C_{12}) -aroylamino- (C_1-C_8) -alkyl, (C_7-C_{16}) -aralkanoylamino- (C_1-C_8) alkyl, amino- (C_1-C_{10}) -alkyl, N- (C_1-C_{10}) -alkylamino- (C_1-C_{10}) -alkyl, N,N-di (C_1-C_{10}) alkylamino- (C_1-C_{10}) -alkyl, (C_3-C_8) -cycloalkylamino (C_1-C_{10}) -alkyl, (C_1-C_{20}) alkylmercapto, (C₁-C₂₀)-alkylsulfinyl, (C₁-C₂₀)-alkylsulfonyl, (C₆-C₁₂)-arylmercapto, (C_6-C_{12}) -arylsulfinyl, (C_6-C_{12}) -arylsulfonyl, (C_7-C_{16}) -aralkylmercapto, (C_7-C_{16}) aralkylsulfinyl, (C_7-C_{16}) -aralkylsulfonyl, (C_1-C_{12}) -alkylmercapto- (C_1-C_6) -alkyl, (C_1-C_{12}) alkylsulfinyl-(C₁-C₆)-alkyl, (C₁-C₁₂)-alkylsulfonyl-(C₁-C₆)-alkyl, (C₆-C₁₂)-arylmercapto- (C_1-C_6) -alkyl, (C_6-C_{12}) -arylsulfinyl- (C_1-C_6) -alkyl, (C_6-C_{12}) -arylsulfonyl- (C_1-C_6) -alkyl, (C_7-C_{16}) -aralkylmercapto- (C_1-C_6) -alkyl, (C_7-C_{16}) -aralkylsulfinyl- (C_1-C_6) -alkyl, (C_7-C_{16}) aralkylsulfonyl- (C_1-C_6) -alkyl, sulfamoyl, N- (C_1-C_{10}) -alkylsulfamoyl, N,N-di- (C_1-C_{10}) alkylsulfamoyl, (C₃-C₈)-cycloalkylsulfamoyl, N-(C₆-C₁₂)-arylsulfamoyl, N-(C₇-C₁₆)aralkylsulfamoyl, $N-(C_1-C_{10})$ -alkyl- $N-(C_6-C_{12})$ -arylsulfamoyl, $N-(C_1-C_{10})$ -alkyl- $N-(C_7-C_{10})$ - C_{16})-aralkylsulfamoyl, (C_1-C_{10}) -alkylsulfonamido, $N-((C_1-C_{10})$ -alkyl)- (C_1-C_{10}) alkylsulfonamido, (C₇-C₁₆)-aralkylsulfonamido, and N-((C₁-C₁₀)-alkyl-(C₇-C₁₆)aralkylsulfonamido; where an aryl radical may be substituted by 1 to 5 substituents selected from hydroxyl, halogen, cyano, trifluoromethyl, nitro, carboxyl, (C₂-C₁₆)-alkyl, (C_3-C_8) -cycloalkyl, (C_3-C_8) -cycloalkyl- (C_1-C_{12}) -alkyl, (C_3-C_8) -cycloalkoxy, (C_3-C_8) cycloalkyl-(C₁-C₁₂)-alkoxy, (C₃-C₈)-cycloalkyloxy-(C₁-C₁₂)-alkyl, (C₃-C₈)-cycloalkyloxy- (C_1-C_{12}) -alkoxy, (C_3-C_8) -cycloalkyl- (C_1-C_8) -alkyl- (C_1-C_6) -alkoxy, (C_3-C_8) -cycloalkyl (C_1-C_8) -alkoxy, (C_3-C_8) -cycloalkyl (C_1-C_8) -alkoxy, (C_3-C_8) -cycloalkyl (C_1-C_8) -alkoxy, (C_3-C_8) -alkoxy, (C_3-C_8) -cycloalkyl (C_1-C_8) -alkoxy, (C_3-C_8) -a C_8)-alkoxy- (C_1-C_6) -alkyl, (C_3-C_8) -cycloalkyloxy- (C_1-C_8) -alkoxy- (C_1-C_6) -alkyl, (C_3-C_8) cycloalkoxy- (C_1-C_8) -alkoxy- (C_1-C_8) -alkoxy, (C_6-C_{12}) -aryl, (C_7-C_{16}) -aralkyl, (C_2-C_{16}) alkenyl, (C_2-C_{12}) -alkynyl, (C_1-C_{16}) -alkoxy, (C_1-C_{16}) -alkenyloxy, (C_1-C_{12}) -alkoxy- (C_1-C_{16}) - (C_1-C_{16}) -alkoxy- (C_1-C_{16}) - C_{12})-alkoy, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxy, (C_1-C_{12}) -alkoxy (C_1-C_8) -alkoxy- $(C_1$ alkyl, (C_6-C_{12}) -aryloxy, (C_7-C_{16}) -aralkyloxy, (C_6-C_{12}) -aryloxy- (C_1-C_6) -alkoxy, (C_7-C_{16}) aralkoxy- (C_1-C_6) -alkoxy, (C_1-C_8) -hydroxyalkyl, (C_6-C_{16}) -aryloxy- (C_1-C_8) -alkyl, (C_7-C_{16}) - aralkoxy- (C_1-C_8) -alkyl, (C_6-C_{12}) -aryloxy- (C_1-C_8) -alkoxy- (C_1-C_6) -alkyl, (C_7-C_{12}) $aralkyloxy-(C_1-C_8)-alkoxy-(C_1-C_6)-alkyl, -O-[CH_2]_xC_fH_{(2f+1-a)}F_a, -OCF_2CI, -OCF_2-CHFCI,$ (C_1-C_{12}) -alkylcarbonyl, (C_3-C_8) -cycloalkylcarbonyl, (C_6-C_{12}) -arylcarbonyl, (C_7-C_{16}) aralkylcarbonyl, (C_1-C_{12}) -alkoxycarbonyl, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) -alkoxycarbonyl, (C_6-C_{12}) -aryloxycarbonyl, (C_7-C_{16}) -aralkoxycarbonyl, (C_3-C_8) -cycloalkoxycarbonyl, (C_2-C_{12}) -alkenyloxycarbonyl, (C_2-C_{12}) -alkynyloxycarbonyl, (C_6-C_{12}) -aryloxy- (C_1-C_6) alkoxycarbonyl, (C_7-C_{16}) -aralkoxy- (C_1-C_6) -alkoxycarbonyl, (C_3-C_8) -cycloalkyl- (C_1-C_6) alkoxycarbonyl, (C_3-C_8) -cycloalkoxy- (C_1-C_6) -alkoxycarbonyl, (C_1-C_{12}) alkylcarbonyloxy, (C_3-C_8) -cycloalkylcarbonyloxy, (C_6-C_{12}) -arylcarbonyloxy, (C_7-C_{16}) aralkylcarbonyloxy, cinnamoyloxy, (C₂-C₁₂)-alkenylcarbonyloxy, (C₂-C₁₂)alkynylcarbonyloxy, (C_1-C_{12}) -alkoxycarbonyloxy, (C_1-C_{12}) -alkoxy- (C_1-C_{12}) alkoxycarbonyloxy, (C₆-C₁₂)-aryloxycarbonyloxy, (C₇-C₁₆)-aralkyloxycarbonyloxy, (C₃- C_8)-cycloalkoxycarbonyloxy, (C_2 - C_{12})-alkenyloxycarbonyloxy, (C_2 - C_{12})alkynyloxycarbonyloxy, carbamoyl, N-(C₁-C₁₂)-alkylcarbamoyl, N,N-di(C₁-C₁₂)alkylcarbamoyl, N-(C₃-C₈)-cycloalkylcarbamoyl, N,N-dicyclo-(C₃-C₈)-alkylcarbamoyl, $N-(C_1-C_{10})$ -alkyl- $N-(C_3-C_8)$ -cycloalkylcarbamoyl, $N-((C_3-C_8)$ -cycloalkyl- (C_1-C_6) alkyl)carbamoyl, $N-(C_1-C_6)$ -alkyl- $N-((C_3-C_8)$ -cycloalkyl- (C_1-C_6) -alkyl)carbamoyl, N-(+)dehydroabietylcarbamoyl, $N-(C_1-C_6)$ -alkyl-N-(+)-dehydroabietylcarbamoyl, $N-(C_6-C_{12})$ arylcarbamoyl, N-(C₇-C₁₆)-aralkylcarbamoyl, N-(C₁-C₁₀)-alkyl-N-(C₆-C₁₆)arylcarbamoyl, $N-(C_1-C_{10})$ -alkyl- $N-(C_7-C_{16})$ -aralkylcarbamoyl, $N-((C_1-C_{16})$ -alkoxy- (C_1-C_{16}) -arylcarbamoyl, $N-(C_1-C_{16})$ -alkoxy- (C_1-C_1) -arylcarbamoyl, $N-(C_1-C_1)$ -alkoxy- (C_1-C_1) -alkoxy- (C_1-C_1) -arylcarbamoyl, $N-(C_1-C_1)$ -arylcarbam C_{10})-alkyl)carbamoyl, N-((C_6 - C_{16})-aryloxy-(C_1 - C_{10})-alkyl)carbamoyl, N-((C_7 - C_{16})aralkyloxy- (C_1-C_{10}) -alkyl)carbamoyl, N- (C_1-C_{10}) -alkyl-N- $((C_1-C_{10})$ -alkoxy- (C_1-C_{10}) alkyl)carbamoyl, $N-(C_1-C_{10})$ -alkyl- $N-((C_6-C_{12})$ -aryloxy- (C_1-C_{10}) -alkyl)carbamoyl, $N-(C_1-C_{10})$ C₁₀)-alkyl-N-((C₇-C₁₆)-aralkyloxy-(C₁-C₁₀)-alkyl)-carbamoyl, CON(CH₂)_h, in which a CH₂ group can be replaced by, O, S, N-(C₁-C₈)-alkylimino, N-(C₃-C₈)-cycloalkylimino, N-(C₃-C₈)-cycloalkyl-(C₁-C₄)-alkylimino, N-(C₆-C₁₂)-arylimino, N-(C₇-C₁₆)-aralkylimino, $N-(C_1-C_4)$ -alkoxy- (C_1-C_6) -alkylimino, and h is from 3 to 7; carbamoyloxy, $N-(C_1-C_{12})$ alkylcarbamoyloxy, N,N-di-(C₁-C₁₂)-alkylcarbamoyloxy, N-(C₃-C₈)- cycloalkylcarbamoyloxy, N-(C₆-C₁₆)-arylcarbamoyloxy, N-(C₇-C₁₆)aralkylcarbamoyloxy, N-(C₁-C₁₀)-alkyl-N-(C₆-C₁₂)-arylcarbamoyloxy, N-(C₁-C₁₀)-alkyl- $N-(C_7-C_{16})$ -aralkylcarbamoyloxy, $N-((C_1-C_{10})$ -alkyl)carbamoyloxy, $N-((C_6-C_{12})$ -aryloxy- (C_1-C_{10}) -alkyl)carbamoyloxy, N- $((C_7-C_{16})$ -aralkyloxy- (C_1-C_{10}) -alkyl)carbamoyloxy, N- (C_1-C_{10}) -alkyl-N- $((C_1-C_{10})$ -alkoxy- (C_1-C_{10}) -alkyl)carbamoyloxy, N- (C_1-C_{10}) -alkyl-N- $((C_6-C_{12})-aryloxy-(C_1-C_{10})-alkyl)$ carbamoyloxy, N- $(C_1-C_{10})-alkyl-N-((C_7-C_{16})-alkyl)$ aralkyloxy-(C₁-C₁₀)-alkyl)carbamoyloxy, amino, (C₁-C₁₂)-alkylamino, di-(C₁-C₁₂)alkylamino, (C₃-C₈)-cycloalkylamino, (C₃-C₁₂)-alkenylamino, (C₃-C₁₂)-alkynylamino, N-(C₆-C₁₂)-arylamino, N-(C₇-C₁₁)-aralkylamino, N-alkyl-aralkylamino, N-alkylarylamino, (C_1-C_{12}) -alkoxyamino, (C_1-C_{12}) -alkoxy-N- (C_1-C_{10}) -alkylamino, (C_1-C_{12}) alkanoylamino, (C_3-C_8) -cycloalkanoylamino, (C_6-C_{12}) -aroylamino, (C_7-C_{16}) aralkanoylamino, (C₁-C₁₂)-alkanoyl-N-(C₁-C₁₀)-alkylamino, (C₃-C₈)-cycloalkanoyl-N- (C_1-C_{10}) -alkylamino, (C_6-C_{12}) -aroyl-N- (C_1-C_{10}) -alkylamino, (C_7-C_{11}) -aralkanoyl-N- -C₁₀)-alkylamino, (C₁-C₁₂)-alkanoylamino-(C₁-C₈)-alkyl, (C₃-C₈)-cycloalkanoylamino- (C_1-C_8) -alkyl, (C_6-C_{12}) -aroylamino- (C_1-C_8) -alkyl, (C_7-C_{16}) -aralkanoylamino- (C_1-C_8) alkyl, amino- (C_1-C_{10}) -alkyl, N- (C_1-C_{10}) -alkylamino- (C_1-C_{10}) -alkyl, N,N-di- (C_1-C_{10}) alkylamino- (C_1-C_{10}) -alkyl, (C_3-C_8) -cycloalkylamino- (C_1-C_{10}) -alkyl, (C_1-C_{12}) alkylmercapto, (C₁-C₁₂)-alkylsulfinyl, (C₁-C₁₂)-alkylsulfonyl, (C₆-C₁₆)-arylmercapto, (C_6-C_{16}) -arylsulfinyl, (C_6-C_{16}) -arylsulfonyl, (C_7-C_{16}) -aralkylmercapto, (C_7-C_{16}) aralkylsulfinyl, or (C₇-C₁₆)-aralkylsulfonyl; or wherein R^1 and R^2 , or R^2 and R^3 form a chain $[CH_2]_o$, which is saturated or unsaturated by a C=C double bond, in which 1 or 2 CH₂ groups are optionally replaced by O, S, SO, SO₂, or NR', and R' is hydrogen, (C_6-C_{12}) -aryl, (C_1-C_8) -alkyl, optionally substituted (C_1-C_8) -aralkanoyl, or optionally substituted (C_1-C_1) -aroyl; and o is 3, 4 or 5; or wherein the radicals R¹ and R², or R² and R³, together with the pyridine or pyridazine carrying them, form a 5,6,7,8-tetrahydroisoquinoline ring, a 5,6,7,8-tetrahydrocinnoline ring; or wherein R¹ and R², or R² and R³ form a carbocyclic or heterocyclic 5- or 6membered aromatic ring; or where R¹ and R², or R² and R³, together with the pyridine or pyridazine carrying them, form an optionally substituted heterocyclic ring systems selected from thienopyridines, furanopyridines, pyridopyridines, pyrimidinopyridines, imidazopyridines, thiazolopyridines, oxazolopyridines, quinoline, isoquinoline, and cinnoline; or wherein the radicals R¹ and R², together with the pyridine carrying them, form a compound of Formula 1d: $$R^{26}$$ R^{25} R^{27} R^{24} $Q-R^4$ $NH-A-B$ where V is S, O, or NR k , and R k is selected from hydrogen, (C₁-C₆)-alkyl, aryl, or benzyl; where an aryl radical may be optionally substituted by 1 to 5 substituents as defined above; and R^{24} , R^{25} , R^{26} , and R^{27} in each case independently of each other have the meaning of R^1 , R^2 and R^3 ; f is 1 to 8; g is 0 or 1 to (2f+1); x is 0 to 3; and h is 3 to 7 including physiologically active salts thereof. 2. A compound for use in the treatment or prevention of an ischemic or hypoxic conditions, wherein the hypoxic condition is an anemic disorder, and wherein the anemic disorder is renal disease, and wherein the compound is a compound of formula (I) as defined in claim 1. 3. The use according to claim 1 or the compound according to claim 2 for the use of that claim wherein A is C₁-alkylene; B is -CO₂H; Q is O; R⁴ is hydrogen; X is O; Y is CR³; and R¹, R² and R³ are as defined above; including physiologically active salts derived therefrom. - 4. The use according to claim 1 or the compound according to claim 2 for the use of that claim wherein the compound is a structural mimetic of 2-oxoglutarate. - 3. The use according to claim 1 or the compound according to claim 2 for the use of that claim, wherein the ischemic condition is an acute or chronic ischemic condition. - 4. The use according to claim 3 or the compound according to claim 3 for the use of that claim, wherein the acute ischemic condition is myocardial infarction, ischemic stroke, pulmonary embolism, perinatal hypoxia, circulatory shock, mountain sickness or acute respiratory failure. - 5. The use according to claim 3 or the compound according to claim 3 for the use of that claim, wherein the chronic ischemic condition is atherosclerosis, chronic venous insufficiency, chronic heart failure, cardiac cirrhosis, diabetes, macular degeneration, sleep apnea, Raynaud's disease, systemic sclerosis, nonbacterial thrombotic endocarditis, occlusive artery disease, angina pectoris, transient ischemic attacks, or chronic alcoholic liver disease. - 6. The use according to claim 1 or the compound according to claim 2 for the use of that claim: wherein the hypoxic condition is ischemic hypoxia; wherein hypoxia results from reduced circulation; wherein the hypoxic condition is a pulmonary disorder; wherein hypoxia results from reduced oxygenation of the blood in the lungs; wherein the hypoxic condition is an anemic disorder such as gastric or duodenal ulcers, liver or renal disease, thrombocytopenia, a blood coagulation disorder, cancer, a chronic illness, cancer chemotherapy, or a therapeutic intervention that produces anemia; or wherein the hypoxic condition is altitude sickness. - 7. The use according to claim 1, wherein the medicament is for preventing tissue damage caused by an ischemic disorder. - 8. The compound according to claim 2 for the use of that claim, wherein the compound is for preventing tissue damage caused by an ischemic disorder. - 9. The use according to claim 7 or the compound according to claim 8 for the use of that claim, wherein the treatment is predicated on a predisposing condition, wherein the predisposing condition is hypertension, diabetes, occlusive arterial disease, chronic venous insufficiency, Raynaud's disease, cirrhosis, congestive heart failure or systemic sclerosis. - 10. The use according to claim 1, wherein the medicament is to be administered to a subject immediately following diagnosis of an acute ischemic disorder. - 11. The compound according to claim 2 for the use of that claim, wherein the compound is to be administered to a subject immediately following diagnosis of an acute ischemic disorder. - 12. The use according to claim 1, wherein the medicament is to be administered to a subject during the course of a chronic ischemic condition. - 13. The compound according to claim 2 for the use of that claim, wherein the compound is to be administered to a subject during the course of a chronic ischemic condition. - 14-5. The use according to claim <u>1</u>any one of claims 1, 3, 7, 9, 10, or 12, wherein the medicament is for a subject that is a human. - <u>15-6</u>. The compound according to claim <u>2</u>any one of claims <u>2</u>, <u>6</u>, <u>8</u>, <u>9</u>, <u>11</u>, or <u>13</u> for the use of that claim, wherein the compound is for a subject that is a human. - <u>16-7</u>. The use according to claim 1 or the compound according to claim 2 for the use of that claim, wherein the compound is to be administered with another therapeutic agent having a different mode of action selected from ACE inhibitor, angiotensin-II receptor blocker, diuretic, digoxin or carnitine. - 17-8. The use according to any one of claims 1, 3, 4, 5, or 73, 7, 9, 10, 12, 14, or 16 or the compound according to any one of claims 2, 3, 4, 6, or 72, 6, 8, 9, 11, 13, 15 or 16 for the use of that claim, wherein the compound is to be delivered by an oral or transdermal delivery mechanism. - 9. A compound selected from the group consisting of N-((1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino)-acetic acid, (3-hydroxy-pyridine-2-carbonyl)-amino-acetic acid, N-(3-hydroxy-6-isopropoxy-quinoline-2-carbonyl)-amino-acetic acid, (3-hydroxy-6-trifluoromethoxy-quinoline-2-carbonyl)-aminoacetic acid, N-(6-benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-aminoacetic acid, ((7-benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino)-acetic acid methyl ester, N-(7-benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-aminoacetic acid, (6-chloro-3-hydroxy-quinoline-2-carbonyl)-aminoacetic acid, and (3-methoxy-pyridine-2-carbonyl)-aminoacetic acid for use as defined in any of claims 2-4. - 10. The compound according to claim 9 for the use of that claim, wherein the compound is N-[(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid. - 11. The compound according to claim 9 for the use of that claim, wherein the compound is (3-hydroxy-pyridine-2-carbonyl)-aminoacetic acid.