Spice authenticity – DNA-based approaches for the detection of adulterating nut material

Timothy Wilkes 28 February 2018

Science for a safer world

LGC

LGC

Case study 1: Mahaleb in Cumin,

Development of a novel qPCR assay specific for Prunus mahaleb

Background

- October 2014, Random testing conducted by the Canadian Food Inspection Agency suggested presence of almond protein in products containing cumin
 - > Widespread product recall and issuing of alerts on the EU Rapid Alerts System for Food and Feed
- March 2015, UK company subject to recall of the cumin product:
 - > Mahaleb was possibly the origin of the ELISA almond positives
- April 2015, Canadian Food Inspection Agency rescinded ~ 25 product recalls

"New evidence regarding the cross-reactivity of mahaleb, a spice obtained from a specific species (*Prunus mahaleb*) of cherry seeds, with the almond allergen test kit. It is highly likely that the positive sample results for the ground cumin and cumin-containing products were due to mahaleb contamination and not almond"

• Therefore a requirement to provide a definitive identification for the *Prunus* species present in the samples and responsible for the initial result

Almond

- Almond: Member of the large and commercially important 'Prunus' genus
- Genus also includes drupes (stone fruit) capable of producing kernels :
 - > Almond, Prunus dulcis
 - > Apricot, Prunus armeniaca
 - > Cherry, Prunus avium
 - > Peach, Prunus persica
 - > Plum, e.g. Prunus domestica
 - > Mahaleb, Prunus mahaleb
- Biological relatedness of Prunus species is very high
 - > Multiple cultivars developed for commercial fruit production
 - Almond and peach are able to form hybrids
 - Almond and peach crosses regularly utilised as root stock for grafting
- Phenotypic similarity mirrored by similarity of homologous gene DNA sequences

Examples of non-commercial, Prunus real-time PCR assays

- Number of real-time PCR assays have been developed for use in the detection of *Prunus* species
- Employ a range of different DNA sequences as targets
- Majority of existing assays reported to exhibit some degree of cross-reactivity between *Prunus* species
- No real-time PCR assay available for the specific detection of *Prunus mahaleb*

Publication	DNA Target	Assay
Leidinger <i>et al.</i> , 2009	11s globulin (prunin, Pru 1)	TaqMan® real-time PCR
Pafundo <i>et al.</i> , 2009	11s globulin (prunin, Pru 1)	SYBR® Green real-time PCR
Koppel <i>et al</i> ., 2010	Pathogenesis related protein (PR10)	TaqMan® real-time PCR
Röder <i>et al</i> ., 2011	Non-specific lipid transfer protein (LTP1)	TaqMan® real-time PCR
Costa <i>et al.</i> , 2012	60s acidic ribosomal protein (AL60SRP)	Evagreen® real-time PCR and DNA high resolution melting
López-Calleja <i>et</i> al., 2012	ITS1 (Intergenic spacer)	TaqMan® real-time PCR
Costa <i>et al.</i> , 2013	11s globulin (prunin, Pru 1)	TaqMan® real-time PCR

Experimental design

LG(

Control materials employed

- > Control materials were shared between the multidisciplinary teams at LGC
- > For use with the DNA methodologies, species identities for control materials were independently confirmed by PCR amplicon sequencing¹

DNA extraction²

- > DNA was isolated and purified using a modified CTAB/Proteinase K extraction method
 - Two independent DNA extractions were performed for each of the control samples
 - Four independent DNA extractions were performed for the referred sample
- > DNA concentration and purity were determined spectrophotometrically

Experimental design

- > Two DNA concentrations were employed,
 - 25 ng/reaction
 - 2.5 ng/reaction (1:10 dilution)
- > Triplicate PCR replicates performed for each sample

For further information delegates are referred to ¹DNA sequencing to support food labelling enforcement and ²DNA extraction to support food labelling enforcement, available at the Food Authenticity Network: <u>http://www.foodauthenticity.uk/</u>

Experimental conditions

Component	Concentration
Forward primer	900 nM
Reverse primer	900 nM
Probe	200 nM
2 x TaqMan® Universal PCR Master Mix	1 x
DNA template	25 ng/reaction
Reaction volume	25 µl

Step	Temperature	Duration	Cycles
UNG incubation	50°C	5 minutes	1 cycle
Hot start Taq activation	95°C	10 minutes	1 cycle
Template denaturation	95°C	15 seconds	4E ovoloo
Anneal + extend	60°C	60 seconds	45 Cycles

Recommended composition of the LGC *Prunus mahaleb* real-time PCR reaction

- HPLC purified primers and probe
- Consumables and biological reagents from reputable distributers

Recommended thermal cycling profile for use with the LGC *Prunus mahaleb* real-time PCR assay

Conditions employed with use of an ABI 7900HT Fast PCR System

Real-time PCR results

Specimen	Amplification	Ct ± SD
Almond kernel	No amplification	Not applicable
Apricot kernel	No amplification	Not applicable
Peach kernel	No amplification	Not applicable
Mahaleb kernel	Amplification	17.87 ± 0.06
Cumin	No amplification	Not applicable
Referee sample (4 independent extractions)	Amplification	$30.39 \pm 0.10; 30.14 \pm 0.07$ $30.40 \pm 0.04; 30.12 \pm 0.15$
Referee sample (1:10) (4 independent extractions)	Amplification	$\begin{array}{ll} 33.49 \pm 0.34; & 33.58 \pm 0.14 \\ 34.04 \pm 0.22; & 33.65 \pm 0.25 \end{array}$
1% DNA:DNA mahaleb:cumin	Amplification	23.10 ± 0.14
Extraction blanks (n = 4)	No amplification	Not applicable

LGC

Non-standard approach for estimating the abundance of *Prunus mahaleb* n the referred sample

This is not the standard method for estimating the amount of target present for qPCR which should utilise gravimetric standards to generate a calibration curve. Alternatively, the use of a digital PCR based approach could be evaluated

- A 1 in 10 dilution of the 25 ng (DNA) reference sample resulted in a 2.5 ng PCR reaction
- The difference in Cq values between the two PCR's was approximately 3.4 and which is in agreement with what would be expected for a 1:10 dilution of a target
- A difference of 7.2 Cq was observed between the 1% mahaleb in cumin sample (normalised to 25 ng) and the referee sample (25 ng)
- Equates to 150 fold difference in target template concentration
- Infers that the concentration of mahaleb in the referee sample may be around 0.001% DNA:DNA (less than 10 ppm) based on a large number of assumptions

Summary

Scientific Research Publishing

Development of a Real-Time PCR Approach

for the Specific Detection of Prunus mahaleb

Malcolm Burns', Michael Walker, Timothy Wilkes, Laurie Hall, Kirstin Gray, Gavin Ni

Science and Innovation, LGC Ltd., Teddington, Engl Email: "malcolm.burns@lgcgroup.com

http://creativecommons.org/licenses/by-nc/4.0/

eceived 9 July 2016; accepted 19 July 2016; published 22 July 2016

yright © 2015 by authors and Scientific Research Publishing Inc. work is licensed under the Creative Commons Attribution-NonCo

- Conclusion: The referred sample contained *Prunus* protein and DNA, the origin of which was consistent with the presence of *Prunus mahaleb*
- The DNA approach provided unequivocal species identification that showed that *Prunus mahaleb* was present
- Method has been published as a peer reviewed paper
 - Scope:
 - Method evaluated with use of commercially sourced samples as controls
 - Several species/cultivars of apricot, plum, cherry and peach
 - In-silico database searches indicated that the method real-time assay unlikely to cross react with untested Prunus species, but additional experimental validation advocated

- August 2015: a sample of paprika was referred to the Government Chemist by the Food Standards Agency
- Reports/evidence that almond, was thought to be present in the sample
- Product did not enter the UK food chain

Initial screening approach

DNA Specificity tests

- The Government Chemist was asked if it was possible to tell whether almond or mahaleb (or both) was present in the referred sample of paprika
- This required further investigation of the analytical methods previously developed for mahaleb in cumin to ensure they were applicable in paprika

The *Prunus mahaleb* real-time PCR assay developed at LGC was revisited: Did not cross react with paprika 10% mahaleb spiked into background of paprika was easily detected (no inhibition from paprika background) Sensitivity tests: Using a dilution series (mahaleb in paprika, DNA/DNA) the LOD was estimated as <1 ppm (comparable to ELISA) Using six independent extracts of the referred sample: Mahaleb DNA was not detected (LOD of <1 ppm) Conclusion Mahaleb DNA was not detected (LOD of <1 ppm) Likely to be almond (common *Prunus* species) Further analysis required to determine the species present

Experimental setup

Component	Concentration
Forward primer	900 nM
Reverse primer	900 nM
2 x Fast Plus EvaGreen® qPCR Master Mix	1 x
DNA template	50 ng/reaction
Reaction volume	25 µl

Step	Temperature	Duration	Cycles	
Hot start Taq activation	95°C	10 min	1 cycle	
Template denaturation	95°C	15 sec	45	
Anneal + extend	60°C	60 sec	cycles	
DNA malt analysia	95°C	15 sec	1 cycle	
DivA men analysis	60°C to 95°C	1.75°C/min		

Recommended composition of the LGC *Prunus* PCR reaction

- HPLC purified primers and probeConsumables and biological
- reagents from reputable distributers
 Appropriate experimental and
- contamination controls

Recommended thermal cycling profile for use with the LGC *Prunus* PCR assay and DNA melt analysis

 Conditions employed with use of an ABI 7900HT Fast PCR System

Overall conclusion

- DNA:
 - > No detectable presence of mahaleb
 - > Confirmed presence of almond

• Impact:

- > Non-compliant with relevant food labelling legislation
- > Although limitations still remain in the state of the science the referred sample contains *Prunus* protein(s) and DNA the origin of which is consistent with almond rather than mahaleb

