There were 1,784 reported road deaths in 2018, similar to the level seen since 2012, which followed a period of substantial reduction in fatalities from 2006 to 2010.

### About this release
This release gives an overview and commentary of reported road casualties in 2018. It provides the number of personal injury road traffic accidents in Great Britain that were reported by the police in 2018 using the STATS19 reporting system. It also includes the number of people killed or injured in these accidents and which road user group they were in. This is the final release of headline accident and casualty figures for 2018 and an update of main results published in July 2019.

### In this publication
- Introduction ........................................p2
- Headline statistics ..........................p3
- Summary of trends ..........................p7
- Trends in casualty rates ..................p8
- Casualties by road user type .........p9
- Casualties by road type .................p18
- International comparisons ..........p19
- Factors affecting road casualties ..p20
- Other topics .................................p23
- Strengths and weaknesses ..........p24
- Data tables ..................................p46
- Background information ........p47

### Chart 1: Fatalities in reported road accidents: GB, 2004-2018

- There were 25,511 **serious injuries** in road traffic accidents **reported to the police** in 2018. However, comparison of this figure with earlier years should be interpreted with caution due to changes in systems for severity reporting by some police forces. The report contains further information and an estimate adjusted to account for this discontinuity.

- There was a total of 160,597 **casualties of all severities** in reported road traffic accidents in 2018. This is 6% lower than in 2017 and is the lowest level on record.

- Accounting for change in traffic, the rate of fatalities per billion vehicle miles has fallen by 1% from 5.43 in 2017 to 5.38 in 2018.
Introduction

This publication provides the number of personal injury road traffic accidents in Great Britain that were reported to the police in 2018 using the STATS19 reporting system. It also includes the number of people killed or injured in these accidents and which road user group they were in.

The figures make up part of a long running series going back to 1926. The current set of definitions and detail of information goes back to 1979, providing a long period for comparison.

The information used to create these statistics are collected by police forces, either through officers attending the scene of accidents or from members of the public reporting the accident in police stations after the incident, or more recently online.

There is no obligation for people to report all personal injury accidents to the police (although there is an obligation under certain conditions, as outlined in the Road Traffic Act). These figures, therefore, do not represent the full range of all accidents or casualties in Great Britain. Please see the section on strengths and weaknesses of the data for further details.

All accidents that were reported by the police and that occurred on a public highway involving at least one motor vehicle, horse rider or pedal cyclist, and where at least one person was injured are included. Accidents that happened on private land (including private drives) or car parks are not included in the statistics. Damage only accidents that do not result in personal injury are also excluded from these statistics.

Further information

Fatalities

A total of 1,784 people were killed in reported road traffic accidents in Great Britain in 2018, similar to the level seen since 2012, which followed a period of substantial reduction in fatalities from 2006 to 2010.

Chart 2: Fatalities in reported road accidents: GB, 1979-2018

The trend in the number of fatalities has been broadly flat since 2010. Previously, and particularly between 2006 and 2010, the general trend was for fatalities to fall. Since that point, most of the year on year changes are either explained by one-off causes (for instance, the snow in 2010) or natural variation. The evidence points towards Britain being in a period when the fatality numbers are stable and most of the changes relate to random variation. The number of fatalities in 2018 (1,784) was 1% less compared to 1,793 fatalities in 2017.

Serious injuries

In 2018, there were 25,511 seriously injured casualties in reported road traffic accidents. This figure is as reported to the police and is not comparable to earlier years due to changes in severity reporting. From 2016 onwards, figures on the severity of injury have been affected by a large number of police forces changing their reporting systems. It is likely that the recording of injury severity is more accurate for forces using these new reporting systems. This has had a large impact on the number of serious injuries recorded in 2016 (24,101), 2017 (24,831) and 2018 (25,511) compared with 2015 (22,144). Some of these serious injuries may previously have been classified as slight injuries which means that the 2016, 2017 and 2018 serious injury figures are not comparable to previous years. Please see the strengths and weaknesses section for more information.
The Office for National Statistics (ONS) Methodology Advisory Service have completed analysis to quantify the effect of the introduction of new injury based reporting systems (CRASH and COPA) on the number of slight and serious injuries reported to the police, and to estimate the level of slight and serious injuries as if all police forces were using injury-based reporting systems. This is described in detail in the final ONS methodology report. An update to the final report is published alongside this release to set out how this methodology was finalised: https://www.gov.uk/government/statistics/reported-road-casualties-great-britain-annual-report-2018.

This methodology has allowed us to produce the following experimental statistics. This is a developing area, where we continue to welcome users views both on the methodology and on the ways in which you are using the statistics and any challenges you face. Building on the work last year and in response to user demand, we included adjustments for the first time for key breakdowns in the main results tables in July (beyond just the headline serious injuries series we produced last year), to provide a wider set of breakdowns to understand the changes over time. In addition to this, within this publication we are publishing adjustments at police force and local authority level. In 2020 we will look to complete the rollout of the experimental statistics to all the published tables, once we have three full years of data to assure ourselves of the stability of the model.

However, in advance of that and to aid user understanding, we included the probabilities of each casualty being serious under injury-based systems alongside the underlying dataset https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data. This is so that users can reproduce the summary tables and test out some limited further splits. Further guidance is given in the Annex.

Going forward in the next few years, we also expect to update the model as further forces move to an injury based reporting system.

As a guide to users, we recommend using the adjusted serious injuries data for understanding trends over time. However, for users wishing to look at low level geographic data just for the latest year, you are advised to use the unadjusted data from the open data. This is whilst we complete the verification work in the coming year on the use of this modelled approached to small subsets of the data. Further guidance on how to use the adjustments is given in the Annex.

Assuming that all police forces were using injury-based severity reporting systems, the analysis estimates that there were 28,122 serious injuries and 29,906 people killed or seriously injured in 2018.

Changes in systems for severity reporting

Please see the changes in reporting systems section within the Strengths and Weaknesses chapter for more information on the changes in systems for severity reporting.

The Office for National Statistics have completed work to quantify the effect of the introduction of these systems on the number of slight and serious injuries. An update to the final methodology is available in the Annex.

A selection of tables which accompany the publication present both the numbers of serious and slight injuries as reported by the police, and adjusted for the change in reporting systems side by side for comparison.

We welcome your feedback on this approach, specifically how you are using these statistics and whether this meets your needs. Please contact us at roadacc.stats@dft.gov.uk.
Chart 3 shows that when accounting for changes in reporting, the estimated number of serious injuries since 2010 has declined slightly, at a slower rate than before 2010.

**Slight injuries**

In 2018, there were 133,302 slightly injured casualties in reported road traffic accidents reported to the police. As explained in the previous section, this figure is as reported to the police.

Analysis completed by the Office for National Statistics has resulted in an estimate of 130,691 slightly injured casualties, assuming that all police forces were using an injury-based severity reporting system.

Chart 4 shows that when accounting for changes in reporting, the number of slight injuries in 2016 to 2018 has continued the decreasing trend observed since 2014.
Total casualties

There was a total of 160,597 casualties of all severities in reported road traffic accidents in 2018. This is 6% lower than in 2017 and is the lowest level on record. However, this figure should be interpreted with caution for two reasons:

- It has long been known that non-fatal (and particularly slight) casualties are underreported to the police and therefore this figure is likely to be an underestimate of the total.

- The introduction of online self-reporting by the Metropolitan Police Service at the end of 2016 and a few other forces in 2018 (see online self-reporting section on page 37 for more details), is likely to have led to an increase in the number of non-fatal (and particularly slight) casualties reported in these forces and therefore impact the total for Great Britain.

Comparisons to trends in other data sources available seem to suggest little change or a slight fall in casualties would be expected between 2017 and 2018. Please see the strengths and weaknesses section for further information page 24.

Chart 5: Casualties in reported road accidents: GB, 1979-2018

The long term trend in the number of casualties in reported road accidents has been broadly flat from 1979 to 1998, allowing for natural variation in the number of casualties. Since 1998 there has been a downward trend in the number of casualties.
The summary table below shows the number of reported road casualties in Great Britain in 2018 compared with previous years. Changes in unadjusted figures are presented for wider context, but it is advised to use the adjusted figures and changes to assess trends over time.

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2017</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Killed</strong></td>
<td>1,784</td>
<td>↓ 1%</td>
<td>↓ 30%</td>
</tr>
<tr>
<td><strong>Seriously injured</strong></td>
<td>25,511</td>
<td>↑ 3%</td>
<td>↓ 2%</td>
</tr>
<tr>
<td>(unadjusted)¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Seriously injured</strong></td>
<td>28,122</td>
<td>↑ 2%</td>
<td>↓ 20%</td>
</tr>
<tr>
<td>(adjusted)²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>KSI</strong></td>
<td>27,295</td>
<td>↑ 3%</td>
<td>↓ 4%</td>
</tr>
<tr>
<td>(unadjusted)¹,³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>KSI</strong></td>
<td>29,906</td>
<td>↑ 2%</td>
<td>↓ 21%</td>
</tr>
<tr>
<td>(adjusted)²,³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Slightly injured</strong></td>
<td>133,302</td>
<td>↓ 8%</td>
<td>↓ 34%</td>
</tr>
<tr>
<td>(unadjusted)¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Slightly injured</strong></td>
<td>130,691</td>
<td>↓ 8%</td>
<td>↓ 32%</td>
</tr>
<tr>
<td>(adjusted)²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>All casualties</strong></td>
<td>160,597</td>
<td>↓ 6%</td>
<td>↓ 30%</td>
</tr>
</tbody>
</table>

1. As reported to the police.
2. Adjusted estimates following methodology from the Office for National Statistics Methodology Advisory Service analysis accounting for change in severity reporting.
3. KSI - Killed or Seriously injured.
Trends in casualty rates

There are two key ways of looking at casualty numbers, in terms of **absolute counts** or in terms of **rates** taking into account distance travelled. The following graphs show trends in casualties per billion vehicle miles by severity.

**Fatalities per billion vehicle miles**
- 2004: 12 fatalities
- 2011: 7
- 2018: 5.4 fatalities per billion vehicle miles

**Killed or seriously injured per billion vehicle miles**
- 2004: 150 KSI
- 2011: 82.4 KSI (unadjusted)
- 2018: 90.2 KSI (adjusted)

**Total casualties per billion vehicle miles**
- 2004: 1,000 casualties
- 2011: 500
- 2018: 484.5 casualties per billion vehicle miles

**Traffic (billion vehicle miles)**
- 2004: 5% change since 2008
- 2018: 8.2% change since 2010

The number of fatalities per billion vehicle miles travelled has fallen sharply from 2008 (8.1) to 2010 (6.0) and then has declined slightly since with 5.4 fatalities per billion miles travelled in 2018. Using the adjusted series, the number of killed or seriously injured casualties per billion vehicle miles decreased sharply until 2010, and declined slightly since to 90.2 people killed or seriously injured per billion vehicle miles in 2018. This is because killed or seriously injured casualty numbers have declined slightly since 2010 while traffic has increased over the same period. The casualty rate per billion vehicle miles travelled has decreased throughout 2008 to 2018 from 735.7 to 484.5 casualties per billion vehicle miles, a decrease of 34%.
In terms of absolute counts, car occupants come out as the road user group with the greatest number of casualties and fatalities each year (44% of total fatalities and 59% of total casualties in 2018). However, this is unsurprising as cars account for around 80% of the traffic on British roads.

Casualties by road user type

In terms of casualty rates (casualties per mile travelled) for each mode of transport, road users are split into two clearly distinctive groups. The first, with much higher casualty rates, are typically referred to as vulnerable road users (usually defined as pedestrians, pedal cyclists and motorcyclists). All of these groups have much higher casualty rates per mile travelled in comparison with the other road user groups, as shown in Chart 6.
The pattern for **pedal cycles** is an interesting one: the overall casualty rate of 5,272 casualties per billion miles cycled is close to the motorcycling casualty rate, whereas the fatality rate of 29.7 per billion miles cycled is much closer to the pedestrian rate.
Car occupants continue to account for the largest proportion of casualties of all severities. A total of 777 car occupants were killed in 2018, down 1% (or 10 fatalities) from 787 in 2017. This represents 44% of all fatalities in reported road accidents in 2018. Overall car occupant casualties decreased by 6% to 93,979 in 2018 compared to 2017, and was the lowest on record representing 59% of all casualties in reported road accidents in 2018.

Car and taxi traffic in Great Britain increased by 0.2% from 2017 to 2018. Although increases in car and taxi traffic can lead to an increase in accidents, other factors can have a stronger influence on road safety.
Pedestrian fatalities decreased from 470 in 2017 to 456 in 2018. Between 2010 and 2018 the number of fatalities has remained broadly constant and year-on-year changes are likely to be due to natural variation. Overall, pedestrian casualties also decreased by 6% between 2017 and 2018 to 22,432 pedestrian casualties in 2018. Pedestrians represented 14% of all casualties in 2018.

Estimates of distance walked have increased since 2014.

* Distance walked in Great Britain is estimated by using National Travel Survey average distance travelled in England for each year multiplied by Great Britain population for that year.
Although the number of pedal cyclists killed on the roads in 2018 was slightly lower than in 2017, the 99 fatalities is very similar to the level seen since 2008. Any changes since that point are most likely to be as a result of natural variation and cannot be attributed to underlying causes.

The number of pedal cyclists killed or serious injured in Great Britain has increased by 21% from 2008 to 2018 (using the series adjusted for changes in severity reporting). This is partly explained by an increase in pedal cyclist traffic in Great Britain of 17% from 2008 to 2018 (2.8 to 3.3 billion vehicle miles).

Overall pedal cyclist casualties decreased by 4% between 2017 and 2018. There was also an estimated 2% increase in cycling traffic in 2018 in comparison with 2017.
Motorcyclists fatalities increased in 2018 compared to 2017. In total, 354 motorcyclists were killed during 2018, up 1% from 349 in 2017. However, motorcyclist fatalities have fluctuated between 319 and 365 over 2011 to 2018 with no clear trend. Overall motorcyclist casualties decreased by 7% between 2017 and 2018 to 16,818 casualties. Motorcyclist traffic has been stable in the last few years.
Children (aged 15 or under)

There were 48 child deaths in 2018, same as in 2017. Child fatalities have fluctuated between 48 and 69 over 2010 to 2018 with no clear trend. Overall child casualties decreased by 9% between 2017 and 2018 to 14,266 casualties in 2018 which is the lowest year on record.

As has been the case historically, child fatalities are mainly pedestrian (28 fatalities in 2018) and car passenger (15 fatalities). This is because these are the forms of transport most commonly used by children.

These trends are observed despite the population of children aged 0-15 in Great Britain increasing by 8% since 2008.

---

The population of different age groups in Great Britain is from the Office of National Statistics population figures: https://www.nomisweb.co.uk/query/select/getdatasetbytheme.asp?opt=3&theme=&subgrp
Younger casualties (aged 17 to 24)

The number of fatalities aged 17 and 24 in reported road traffic accidents has remained the same as in 2017 with 279 fatalities in 2018. This follows from a general year-on-year downward trend prior to 2017. There were 28,708 younger casualties of all severities, down 13% from 2017.

There were less young fatalities as car drivers in 2018 (108 fatalities in 2017 and 99 fatalities in 2018) and as pedal cyclists (12 fatalities in 2017 and 7 fatalities in 2018). There were more young fatalities as pedestrians in 2018 (35 fatalities in 2017 and 47 fatalities in 2018).

The population of young people in Great Britain followed a steady upward trend until 2011 when the number of young people in Great Britain fell to 6.3 million people in 2018. The population in this age group has decreased by 1% in 2018 compared with 2017. This decreasing trend for this population group may partly explain the downwards trend in fatalities and KSIs seen for this age group.
The number of fatalities aged 60 and over in reported road accidents has increased by 5% from 559 in 2017 to 588 in 2018. The number of killed or seriously injured casualties aged 60 and over in reported road accidents (using the adjusted severity series) has increased by 9% from 5,486 in 2017 to 5,986 in 2018.

This increase was due to more older fatalities as car drivers in 2018 (165 fatalities in 2017 and 180 in 2018) and drivers of motorcycles over 50cc (44 in 2017 and 50 in 2018).

The population in this age group has increased by 2% compared with 2017 and by 17% compared with 2008. This relatively rapidly growing population may partly explain the upturn in fatalities and killed or seriously injured casualties seen for this age group in the last few years.

There were 22,483 older casualties of all severities, remaining stable compared to 2017.

The increase in fatalities and killed or seriously injured casualties is seen for all detailed older age groups (60 to 69, 70 to 79, 80 and more) since 2010. Part of this increase is likely due to an increase in the population for these age groups over the same time period.
Of the 1,784 road deaths in 2018, the majority (58%) occurred on rural roads (1,030). A total of 646 deaths occurred on urban roads and 107 on motorways.

<table>
<thead>
<tr>
<th></th>
<th>Rural roads</th>
<th>Urban roads</th>
<th>Motorways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatalities</td>
<td>1,030</td>
<td>646</td>
<td>107</td>
</tr>
<tr>
<td>% change</td>
<td>4%</td>
<td>3%</td>
<td>8%</td>
</tr>
<tr>
<td>All casualties</td>
<td>52,278</td>
<td>100,931</td>
<td>7,309</td>
</tr>
<tr>
<td>% change</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Traffic</td>
<td>145</td>
<td>114</td>
<td>69</td>
</tr>
<tr>
<td>(billion vehicle miles)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% change</td>
<td>1%</td>
<td>= 0%</td>
<td>= 0%</td>
</tr>
</tbody>
</table>

The majority of fatalities (58%) occurred on rural roads, whereas the majority of casualties (63%) occurred on urban roads. Although motorways carry around 21% of traffic, they only account for 6% of fatalities.
The European Transport Safety Council’s Performance Index (PIN) programme enables comparisons of road safety progress between European countries to be made. The latest PIN report was published by the European Transport Safety Council in June (see here: https://etsc.eu/13th-annual-road-safety-performance-index-pin-report/).

Overall, the total number of road deaths in the 28 members of the European Union during 2018 was 25,173, compared with 25,328 in 2017 (a 1% decrease). This has followed a 1% decrease in road deaths in 2017.

Of the 32 countries covered, 17 saw a decrease in the number of fatalities between 2017 and 2018, 13 saw an increase and two remained the same.

Chart 9: Number of road deaths per million inhabitants in 2018, PIN Programme countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>AT</td>
</tr>
<tr>
<td>Belgium</td>
<td>BE</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>BG</td>
</tr>
<tr>
<td>Croatia</td>
<td>HR</td>
</tr>
<tr>
<td>Cyprus</td>
<td>CY</td>
</tr>
<tr>
<td>The Czech Republic</td>
<td>CZ</td>
</tr>
<tr>
<td>Denmark</td>
<td>DK</td>
</tr>
<tr>
<td>Estonia</td>
<td>EE</td>
</tr>
<tr>
<td>Finland</td>
<td>FI</td>
</tr>
<tr>
<td>France</td>
<td>FR</td>
</tr>
<tr>
<td>Germany</td>
<td>DE</td>
</tr>
<tr>
<td>Greece</td>
<td>EL</td>
</tr>
<tr>
<td>Hungary</td>
<td>HU</td>
</tr>
<tr>
<td>Ireland</td>
<td>IE</td>
</tr>
<tr>
<td>Italy</td>
<td>IT</td>
</tr>
<tr>
<td>Latvia</td>
<td>LV</td>
</tr>
<tr>
<td>Lithuania</td>
<td>LT</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>LU</td>
</tr>
<tr>
<td>Malta</td>
<td>MT</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>NL</td>
</tr>
<tr>
<td>Poland</td>
<td>PL</td>
</tr>
<tr>
<td>Portugal</td>
<td>PT</td>
</tr>
<tr>
<td>Romania</td>
<td>RO</td>
</tr>
<tr>
<td>Slovakia</td>
<td>SK</td>
</tr>
<tr>
<td>Slovenia</td>
<td>SI</td>
</tr>
<tr>
<td>Spain</td>
<td>ES</td>
</tr>
<tr>
<td>Sweden</td>
<td>SE</td>
</tr>
<tr>
<td>Great Britain</td>
<td>GB</td>
</tr>
</tbody>
</table>

*Countries with provisional fatality figures.

Countries highlighted in light green bars have fewer than 150 deaths per year and therefore the fatality rate can vary significantly between years.

The international comparisons can be found in the RAS52 table series here: https://www.gov.uk/government/statistical-data-sets/ras52-international-comparisons.
Factors that affect road casualty numbers

There is no single underlying factor that drives road casualties. Instead, there are a number of influences. These include:

• The distance people travel (which is partly affected by economic externalities)

• The mix of transport modes used

• Behaviour of drivers, riders and pedestrians

• The mix of groups of people using the road (e.g. changes in the number of newly qualified or older drivers)

• External effects such as the weather, which can influence behaviour (for instance, encouraging / discouraging travel, or closing roads) or change in the risk on roads (by making the road surface more slippery)

It is very hard to isolate many of these factors between years. In particular, police-reported road casualty data only gives a limited amount of information about behaviour changes and it is very rare to be able to identify such changes between individual years.

A considerable amount of research has been carried out looking at the relationship between economic activity and road casualties. The Organisation for Economic Co-operation and Development (OECD) produced a comprehensive report on this topic in 2015. The simplest message from the research is that accidents and casualties increase as economic development increases in a country. The main reason for this increase is that as the economy grows, so do traffic volumes. Greater traffic volumes then result in more incidents. This continues until a critical threshold in economic development is reached. At that point, better training, vehicle standards, enforcement and engineering all start to dominate to counteract the effect from traffic increases. As a result, the number of incidents and resulting casualties start to decrease, even if traffic volumes continue to grow.

In times of economic stagnation or recession three key mechanisms come into play:

• Lower traffic growth rates (or even decreases in traffic volumes – as happened in Britain in the 2008-09 recession)

• Disproportionate reductions in the exposure of high-risk groups (for instance, younger drivers)

• Reductions in more risky behaviour (for instance, people might drive more slowly to save fuel, or drink and drive less)

Chart 10 shows the rolling five year average for the year on year change in gross domestic product (GDP) for the UK along with traffic volumes and the number of road deaths for Great Britain.

Although GDP and traffic are not perfectly aligned, since the mid-1970s there is a clear relationship in that they move broadly in the same direction. For example, GDP grew strongly between 1993 and 2007. During this period, traffic also grew each year (albeit, not as strongly). The downturn and recession around 2007 to 2012 resulted in very low levels of GDP growth (with economic contraction for some of the years). Traffic growth halted entirely during this period and actually decreased for most of the period.

The relationship with road deaths is far more complex. In general, road deaths have fallen in most years since the 1970s. However, the periods of greatest decreases have coincided with weaker GDP growth. This is particularly marked in the period 2007 to 2010 when road deaths dropped by between 7 and 17% every year. By 2011, however, road deaths increased, and most subsequent decreases were of a much small magnitude than earlier.

Whilst not certain, all of this indicates that while Britain is in a period of stronger growth (in comparison with the recent recession) there is unlikely to be as large falls in casualties as there were earlier on without further significant interventions.

Further Information

ONS GDP data
https://www.ons.gov.uk/economy/grossdomesticproductgdp

Road traffic data

The chart shows periods of recession shaded grey.
An article which examined a number of factors which influence road casualty numbers was published with the 2015 Reported road casualties in Great Britain (RRCGB) annual report. It covers topics such as:

- **Population changes**, and particularly focussing on how the number of people in younger and older age groups have changed over time. In particular, it highlights that the population of Britain had grown by 15% from 1986 to 2015 whereas fatalities have fallen by 68% in that time.

- The population of **older people (aged 70 and older)** has increased relatively rapidly over recent years. This carries implications for higher levels of casualties in this age group in the future. Further information is in the older car driver factsheet for 2016: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/706517/older-car-drivers-factsheet.pdf.

- The number of people taking **driving tests** has changed over time. After four years of rising numbers of younger people taking the test, there has been a decrease in the last two years. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/812367/drt0203.ods

- **Fuel prices and the economy** impact on traffic volumes and therefore casualties.

**Weather** also influences the number of road casualties. This has been reported on in an article in the 2014 annual report. A table giving weather-adjusted casualty numbers has been previously published up to 2015 (RAS30080).
Value of the prevention of accidents

An estimate of unreported injuries has been included in the ‘value of prevention of accidents’, which can be found here: https://www.gov.uk/government/statistical-data-sets/ras60-average-value-of-preventing-road-accidents. We estimate that the total value of prevention of unreported injury accidents at around £19bn a year, the value of damage-only accidents at around £4bn a year and the total value of prevention of reported injury accidents at around £12bn a year. This gives a total estimate for all reported and unreported accidents of around £36bn per year.

Drink-drive estimates

STATS19 data include information on breath test results at the scene of the road accident, Tables on this data are updated for 2018 in the series RAS51 tables https://www.gov.uk/government/statistical-data-sets/ras51-reported-drinking-and-driving.

However, most recent estimates of drink-drive accidents and casualties are for 2017 and were published in August 2019: https://www.gov.uk/government/statistics/reported-road-casualties-in-great-britain-final-estimates-involving-illegal-alcohol-levels-2017.

Seatbelt use

Table RAS41001 (https://www.gov.uk/government/statistical-data-sets/ras41-reported-casualties-rates) shows information on the proportion of car occupant fatalities not wearing a seatbelt. This data is provided by most police forces. In the last 5 years, the proportion of car occupants killed who were not wearing a seatbelt has remained consistently above 20%.
Underreporting of casualties and accidents and other sources of information

Comparisons of road accident reports with death registrations show that very few, if any, road accident fatalities are not reported by the police. However, it has long been known that a considerable proportion of non-fatal casualties are not known to the police, as hospital, survey and compensation claims data all indicate a higher number of casualties than those recorded in police accident data.

Each of these other sources provide a means to assess the coherence of the police reported data in terms of absolute numbers of casualties and also trends in casualties.

We have considered 5 alternative sources here. Each one is described in more detail below, and how they can be used in conjunction with the Stats19 data.

• The National Travel Survey (https://www.gov.uk/government/collections/national-travel-survey-statistics): this includes questions asked since 2007 on whether respondents resident in England (both adults and children) have been involved in road accidents on public roads (including pavements and cycle lanes on public roads) in Great Britain; whether they sustained injuries, what type, and whether the police attended or they reported later. This provides a self-reported estimate, with a range of definitional differences of injuries and questions of recall bias that will mean the results will differ from those obtained through the Stats19 data collection. Given the NTS data in theory captures all road injury accidents people had, this gives a way of estimating the total number of road accidents, including those not recorded through Stats19.

• Hospital Episodes Statistics (https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/hospital-episode-statistics): this administrative data comes from hospital systems which records for people who were admitted whether they were recorded as involved in a road traffic accident and provides a diagnosis code that can then be matched to the seriousness of the injury.

• Compensation recovery unit data (https://www.gov.uk/government/collections/cru): this administrative data comes from the DWP Compensation recovery unit who work with insurance companies, solicitors and Department for Work and Pensions (DWP) customers, to recover social security benefits paid as a result of an accident, injury or disease, if a compensation payment has been made (the Compensation Recovery Scheme) and costs incurred by NHS hospitals and Ambulance Trusts for treatment from injuries from road traffic accidents and personal injury claims (Recovery of NHS Charges).

• Motor Insurance Claims statistics (https://www.abi.org.uk/data-and-resources/industry-data/free-industry-data-downloads/): the Association of British Insurers collects data from insurers on
the type and number of claims made.


**National Travel Survey**

This section provides longer term trends up to 2018, based on self-reported responses to the road accident questions.

The chart below, based on published table RAS54004 ([https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/665317/ras54004.ods](https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/665317/ras54004.ods)), shows annual estimates of non-fatal road casualties from the NTS, with approximate confidence limits, for 5 year averages from 2009 to 2018. This shows that since 2010-2014, the estimated number of injury accidents has been decreasing. The absolute number of injury collisions estimated from this source was around 560,000 in 2014-2018.

**Chart 11: Estimates of the annual non-fatal road casualties using National Travel Survey data: Great Britain**

Of people reporting a personal road accident injury in the three years before their NTS interview, the most common injury reported has been whiplash. For the average of three years of data from 2016 to 2018, 49% of respondents having a road injury accident reported a whiplash injury. Note this relates to injuries received in the most recent road accident the respondent reported in the three years before their interview, and respondents can record more than one injury for this accident. In 2009-2011, this proportion was 59% and in recent years there has been a decreasing trend in the proportion of respondents reporting whiplash injuries.
However, this is offset by increases in those reporting ‘minor bruising or minor cuts’ which were reported by 44% of all respondents reporting a road accident in the data in 2016-2018.

Chart 12: Proportion of respondents reporting whiplash or “minor bruising or minor cuts” in personal injury road accidents: NTS, England, 3-year averages

The proportion of respondents that reported more serious injuries such as fractures, severe shock or internal injuries had been around 36% for most 3-year data periods since 2007. However, NTS self-reported serious injuries did increase from 33% to 44% between 2013-2015 and 2016-2018. This may link to the increased proportion who reported attending hospital in recent periods.

Over time the proportion of road accident injuries where the respondent reported attending hospital (either A&E or as an inpatient) was generally decreasing over time from 47% in 2008-2010 to 36% in 2014-2016. However, in the last two periods, it has increased to 43%.

Chart 13: Proportion of respondents reporting medical attention in personal injury accidents as A&E or as a hospital inpatient: NTS, England, 3 year averages
Lastly, the respondent indicates whether the police attended at the scene, or whether they later informed the police. The average of data for 2016-2018 shows that 49% of most recently self-reported road accident injuries occurring in the three years before the NTS interview were not reported to the police.

Chart 14: Proportion of respondents not reporting road accident injuries to the police: NTS, England, 3 year averages

What is not clear from this self-reported data is how many of these would not have qualified as injuries had the police attended the scene of the road accident. Overall, the NTS supports the downwards trend in the overall number of injuries in recent years to 2018.

Improving estimates of injury accidents derived from the National Travel Survey

The Department will review how the estimates of unreported road accidents and casualties that are derived from the National Travel Survey in the RAS54 tables series are calculated. These estimates are currently based on results from questions on whether respondents were involved in an injury accident in the last year and last three years. There is evidence that there might be bias in the way respondents answer these questions and particularly conflicting results between the 3-year and the 1-year windows. More work is also needed to understand the gap between what is reported to the police in Stats19 and what is stated to be have been reported to the police in the NTS.

Cognitive testing and panel testing of these questions is currently underway primarily to understand a) how people interpret and answers these questions, and b) whether the ordering of the questions asking about accidents up to 3 years ago and accidents within the last 12 months has an impact on how people respond. The Department aims to suggest a way forward and invite feedback on the RAS54 methodology based on their results in 2020.
Hospital Episodes Statistics

Analysis of the Hospital Episode Statistics from NHS Digital allows us to report on the number of admitted patient care admissions where the admission is recorded as being related to a road traffic accident. This source also records diagnosis codes which we can match to determine whether these admissions have a clinically defined serious injury. This definition is based on the maximum score on the abbreviated injury scale: an injury is considered clinically serious with a score of three or higher (MAIS3+).

Chart 15 shows the time series of the number of admissions for road traffic accidents broken down by MAIS score. This shows that the total number of admissions for road traffic accidents has fluctuated around 35,000 non-fatal admissions to hospital for road traffic accidents.

Chart 15: Estimated number of admissions for road traffic accidents by MAIS score, England, 1999-2016

Out of all admissions for road traffic accidents, the proportion with a MAIS score of 1 or 2 (less serious injuries) has remained stable over this period at around 70%. The proportion with a MAIS score of 3 or more was stable from 1999 to 2010 at around 11% but from 2011 increased every year to reach 16% in 2016. Conversely, the proportion of admissions with an unknown MAIS score or where the MAIS score could not be matched has decreased in the same period. It is likely that changes in recording have resulted in more records to be matched to MAIS3+, rather than a genuine increase in clinically serious injuries. Further analysis is needed to understand this change.
On the most serious end of the scale, trends in MAIS3+ admissions can be compared to Stats19 serious injuries. The stability of MAIS3+ estimates described above does not appear to be consistent with the trend observed in serious injuries as reported by the police over the same period. The number of serious injuries reported to the police has steadily decreased from 1999 to 2010, and has been relatively stable from 2010 to 2015.

More detail about the source of the data and the abbreviated injury scale can be found in the original article from the 2015 report at: https://www.gov.uk/government/statistics/reported-road-casualties-great-britain-annual-report-2015
Note that the estimated number of MAIS3+ casualties has always been lower than the number of serious injuries reported in police data. This is likely to be due to MAIS3+ capturing more severe injuries than the definition of serious injury in police reported data. By definition MAIS3+ includes very severe injuries such as traumatic brain injuries whereas the definition of a serious injury in police data can include more moderate injuries such as severe cuts which do not require admission to hospital.

There are a wider set of contextual data to consider here as well:

• Overall Accident and Emergency (https://digital.nhs.uk/data-and-information/publications/statistical/hospital-accident--emergency-activity/2017-18) attendances have been rising steadily over time, and by 4% between 2017/18 and 2018/19. In last year’s report, we reported on Table 16 in the main tables sheet (from the link above), which shows a breakdown of A&E attendances by patient group (one of which is road traffic accident). However in 2018/19 NHS Digital have introduced a new reporting system for A&E data which has led to a significant increase in ‘not known’ group in this table and therefore we cannot make a time series comparison to previous years.

It is not possible to assess the extent that these factors may influence the type and seriousness of casualty which is then admitted. Therefore it is difficult to draw conclusions about what the Hospital Episode Statistics are able to tell us about trends in road traffic casualties overall and in terms of serious casualties. In order to improve on the use of this source, we plan to conduct a new linking exercise between Stats19 and HES data, and learn more about how cases are recorded in hospitals as part of the Stats19 review – this would be expected to feed into the 2020 publication cycle.

Stats19 review

Road accident data is collected from the police with the Stats19 collection. As with any collection system, it needs to be periodically reviewed to keep up with changes in technology, to make improvements to completeness and accuracy, and to reduce the reporting burden.

Stats19 is currently under review, having previously been reviewed in 2008. This process is overseen by the Standing Committee on Road Accident Statistics (SCRAS) (https://www.gov.uk/government/publications/committees-and-user-groups-on-transport-statistics/the-transport-statistics-user-group).

The review is seeking to:

• Make recommendations for modifications to Stats19 variables with a view to improving the quality/value of the data to users and to reducing reporting burdens on the police

• Identify areas where the Stats19 specification can be streamlined and modernised in order to reduce burdens, including improving validation at source and therefore overall increase the quality of data collected and speed up the ability to report/produce findings

• Consider the scope and opportunities for better use of technology, data sharing and matching to modernise road
casualty data. This is both with a view to reducing the amount of data needing to manually rather than automatically input by the police, but also to enrich the data available to generate insight to improve road safety interventions.

- Develop a roadmap for any longer term data changes needed to improve the evidence base for road safety interventions

We are engaging with a wide range of stakeholders:

- The expanded user group which is accessible through the SCRAS representatives
- Local Authority and Police Force analysts, officers and back office staff through set piece events, talks at conferences and through user research
- Senior police officers through presentations at key forums
- Society of Road Safety Auditors
- Road Safety organisations and local road safety partnerships
- Devolved administrations

Topics in the review include:

**The completeness and quality of collisions data**

- Slight injuries
- Non-injury collisions
- New types of vehicles
- Online reporting
- Evaluating the changes made in the 2008 review
- The quality of location data

**Whether any changes should be made to the recording of casualties**

- Suicides (are currently not included where recorded as such)
- Deliberate acts of violence (are currently not included where recorded as such)
- Reviewing the inclusion and quality of journey purpose data

**The Contributory Factors list**

- Current use and pain points
- Potential improvements and refinements and reducing overlap with other parts of the STATS19 form

**Methodology, data processing, reporting and dissemination**

- Severity changes due to injury based reporting
- User focussed approach to dissemination including APIs
- Improvements that could speed up the data collection and processing
Future data strategy for STATS19

- Making better use of data linking and other sources to reduce burden and enrich the data

The review will run through 2019 before making recommendations on modifications to the data collection which we will consult on.

For further information please contact: STATS19REVIEW@dtf.gov.uk

Compensation recovery unit data

The Compensation Recovery Unit (CRU) works with insurance companies, solicitors and Department for Work and Pensions (DWP) customers, to recover:

- amounts of social security benefits paid as a result of an accident, injury or disease, if a compensation payment has been made (the Compensation Recovery Scheme)

- costs incurred by NHS hospitals and Ambulance Trusts for treatment from injuries from road traffic accidents and personal injury claims (Recovery of NHS Charges)

By far the largest number of cases they deal with are motor related. The table below shows a significant reduction in cases in 2017/18 compared to the previous four years, but a slight rise into 2018/19. For 2017/18 this might suggest either a reduction in injury accidents in the latest year, and/or a change in the insurance/claims market, whereas for 2018/19 there is much less change compared to the previous year – so this source would suggest we would not expect to see much change in injury accidents all other things being equal.

Table 1: Number of cases registered to Compensation recovery unit

<table>
<thead>
<tr>
<th>Year</th>
<th>Motor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/11</td>
<td>790,999</td>
<td>987,381</td>
</tr>
<tr>
<td>2011/12</td>
<td>828,489</td>
<td>1,041,150</td>
</tr>
<tr>
<td>2012/13</td>
<td>818,334</td>
<td>1,048,309</td>
</tr>
<tr>
<td>2013/14</td>
<td>772,843</td>
<td>1,016,801</td>
</tr>
<tr>
<td>2014/15</td>
<td>761,878</td>
<td>998,359</td>
</tr>
<tr>
<td>2015/16</td>
<td>770,791</td>
<td>981,324</td>
</tr>
<tr>
<td>2016/17</td>
<td>780,324</td>
<td>978,816</td>
</tr>
<tr>
<td>2017/18</td>
<td>650,019</td>
<td>853,615</td>
</tr>
<tr>
<td>2018/19</td>
<td>660,608</td>
<td>862,356</td>
</tr>
</tbody>
</table>

Source for CRU data

Motor Insurance Claims Statistics

The Association of British Insurers (https://www.abi.org.uk/news/news-articles/2018/03/average-motor-insurance-claim-at-a-record-level-says-the-abi/) collects aggregate data from all its members on the number and type of claims, and therefore has data on the number of motor insurance claims. Although the underlying data is not currently freely available, ABI data shows:

‘The number of [motor] personal injury claims in 2018 fell slightly on 2017, with 312,000 claims settled.’

Other things being equal, we therefore might expect a slight fall in the number of injury accidents in 2018.

Road Traffic Statistics

Road traffic statistics for 2018 show that there was a 0.3% increase in miles travelled on Britain’s roads, after a rise of 1.3% between 2016 and 2017. Other things being equal, this would suggest we should not expect much change in the number of injury accidents in 2018 compared to 2017. However, there are a wide range of other factors which influence road casualties.

Conclusions on coherence

Police reported road casualty data is only a subset of all road casualties.

In terms of changes into 2018, of the sources available, they would suggest little change or a slight fall would be expected compared to 2017 in total injury accidents.

The Stats19 review will aim to improve the estimate of both the overall size of under-reporting and any further steps we can take to improve this, and what further work can be done to provide a better assessment of the coherence in trends from these different sources.

The data used as the basis for these statistics are therefore not a complete record of all personal injury road accidents, and this should be borne in mind when using and analysing the figures. Furthermore, police data on road accidents, whilst not perfect, remain the most detailed, complete and reliable single source of information on road casualties covering the whole of Great Britain, in particular for monitoring trends over time, and remains well regarded in international comparisons.
Changes in reporting systems used by police forces

Background on the change

Approximately half of English police forces adopted the CRASH (Collision Recording and Sharing) system for recording reported road traffic collisions at the end of 2015 or the first part of 2016, although Surrey has been using the system since November 2012. In addition, the Metropolitan Police Service (MPS) switched to a new reporting system called COPA (Case Overview Preparation Application), which went live to police officers from November 2016.

The remaining forces use a wide variety of systems to report accidents, in which police officers uses their own judgement and guidance to determine directly the severity of a casualty (‘slight’ or ‘serious’).

In contrast CRASH and COPA are injury-based severity reporting systems where the officer records the most severe injury for the casualty (Table 2 shows the link between injury and severity as used in the CRASH system). The injuries are then automatically converted to a severity level from ‘slight’ to ‘serious’.

Eliminating the uncertainty in determining severity that arises from the officer having to make their own judgement means that the new severity level data observed from these systems using injury based methods are expected to be more accurate than the data from other systems.

Table 2: Classification of injury severity using the CRASH reporting system

<table>
<thead>
<tr>
<th>Injury in CRASH</th>
<th>Detailed severity</th>
<th>Severity classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deceased</td>
<td>Killed</td>
<td>Killed</td>
</tr>
<tr>
<td>Broken neck or back</td>
<td>Very Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Severe head injury, unconscious</td>
<td>Very Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Severe chest injury, any difficulty breathing</td>
<td>Very Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Internal injuries</td>
<td>Very Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Multiple severe injuries, unconscious</td>
<td>Very Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Loss of arm or leg (or part)</td>
<td>Moderately Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Fractured pelvis or upper leg</td>
<td>Moderately Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Other chest injury (not bruising)</td>
<td>Moderately Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Deep penetrating wound</td>
<td>Moderately Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Multiple severe injuries, conscious</td>
<td>Moderately Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Fractured lower leg / ankle / foot</td>
<td>Less Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Fractured arm / collarbone / hand</td>
<td>Less Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Deep cuts / lacerations</td>
<td>Less Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Other head injury</td>
<td>Less Serious</td>
<td>Serious</td>
</tr>
<tr>
<td>Whiplash or neck pain</td>
<td>Slight</td>
<td>Slight</td>
</tr>
<tr>
<td>Shallow cuts / lacerations / abrasions</td>
<td>Slight</td>
<td>Slight</td>
</tr>
<tr>
<td>Sprains and strains</td>
<td>Slight</td>
<td>Slight</td>
</tr>
<tr>
<td>Bruising</td>
<td>Slight</td>
<td>Slight</td>
</tr>
<tr>
<td>Shock</td>
<td>Slight</td>
<td>Slight</td>
</tr>
</tbody>
</table>
Table 3: Adoption dates for CRASH or COPA by police force

<table>
<thead>
<tr>
<th>Police Force</th>
<th>System Used</th>
<th>Adoption Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedfordshire</td>
<td>CRASH</td>
<td>April 2016</td>
</tr>
<tr>
<td>Cambridgeshire</td>
<td>CRASH</td>
<td>May 2016</td>
</tr>
<tr>
<td>City of London</td>
<td>CRASH</td>
<td>November 2015</td>
</tr>
<tr>
<td>Cumbria</td>
<td>CRASH</td>
<td>January 2016</td>
</tr>
<tr>
<td>Devon and Cornwall</td>
<td>CRASH</td>
<td>December 2015</td>
</tr>
<tr>
<td>Durham</td>
<td>CRASH</td>
<td>March 2016</td>
</tr>
<tr>
<td>Essex</td>
<td>CRASH</td>
<td>November 2015</td>
</tr>
<tr>
<td>Gloucestershire</td>
<td>CRASH</td>
<td>November 2015</td>
</tr>
<tr>
<td>Hertfordshire</td>
<td>CRASH</td>
<td>April 2016</td>
</tr>
<tr>
<td>Humberside</td>
<td>CRASH</td>
<td>January 2016</td>
</tr>
<tr>
<td>Kent</td>
<td>CRASH</td>
<td>January 2016</td>
</tr>
<tr>
<td>Metropolitan Police</td>
<td>COPA</td>
<td>Live to police officers in November 2016</td>
</tr>
<tr>
<td>Norfolk</td>
<td>CRASH</td>
<td>February 2016</td>
</tr>
<tr>
<td>Northumbria</td>
<td>CRASH</td>
<td>April 2016</td>
</tr>
<tr>
<td>South Yorkshire</td>
<td>CRASH</td>
<td>January to February 2013, then January 2016 onwards</td>
</tr>
<tr>
<td>Staffordshire</td>
<td>CRASH</td>
<td>May 2015</td>
</tr>
<tr>
<td>Suffolk</td>
<td>CRASH</td>
<td>February 2016</td>
</tr>
<tr>
<td>Surrey</td>
<td>CRASH</td>
<td>November 2012</td>
</tr>
<tr>
<td>Warwickshire</td>
<td>CRASH</td>
<td>November 2015</td>
</tr>
<tr>
<td>West Mercia</td>
<td>CRASH</td>
<td>December 2015</td>
</tr>
<tr>
<td>West Midlands</td>
<td>CRASH</td>
<td>November 2015</td>
</tr>
</tbody>
</table>

Note that adoption dates are indicative as there can be phased introduction of new systems during transitions.

Table 3 shows the police forces which use or have used either CRASH or COPA and the dates from which these systems have been used.

Impact on trends

Following the introduction of CRASH and COPA, the number of casualties recorded as serious has increased in Great Britain. Chart 18 shows the number of reported serious road casualties by police force over time, from two years before to two years after injury based reporting systems were introduced (year introduced, index = 100).

Chart 18: Reported serious road casualties by police force, two years before to two years after injury based reporting systems were introduced

1 Forces not using injury based reporting systems (IBRS). The non-IBRS forces have been given an index year of 2016 for comparison as this is when most forces moved over to IBRS.
Chart 18 shows that the size of the increase in serious casualties varies across police forces following the introduction of injury based reporting systems. A comparison line for non-IBRS forces has been included to show how reported serious casualties have changed in these forces. Some forces (such as the Metropolitan Police Service) show a more marked increase in serious casualties than others, while other forces (such as Durham) show a more stable trend in serious casualties over time. Devon and Cornwall and South Yorkshire have also been highlighted in the chart above to illustrate the variety of trends observed.

The differences in the impact of the introduction of injury based reporting systems is likely to depend on the practices within a police force that were in place before these new systems were introduced. For example, Durham have stated that having a relatively low number of casualties each year allows them to extensively validate how the severity of each casualty reflects the injury received, and that their previous system for severity recording was very similar to the CRASH approach. Whereas, larger forces might not be able to carry out extensive severity reviews and there might be more differences in practices between the large numbers of officers recording accidents.

Adjusting time series

The Office for National Statistics (ONS) Methodology Advisory Service have completed analysis to quantify the effect of the introduction of injury reporting systems (CRASH and COPA) on the number of slight and serious injuries reported to the police. The final methodology paper was published alongside 2018 main results in July (https://www.gov.uk/government/statistics/reported-road-casualties-great-britain-main-results-2018) and is complemented by the Annex published alongside this publication. The final paper addresses feedback received on the interim report published alongside the 2017 annual report in September 2018, and confirms the use of a logistic regression approach to adjust severity figures to account for the effect of injury reporting systems while controlling for other factors which predict severity.

The methodology developed by the ONS has been used to provide adjusted figures which are presented alongside the actual reported figures in the main results publication tables. The adjustments provide the statistically ‘expected’ number of serious and slight injuries (i.e. what might be expected on average) if all forces were using injury based severity reporting approaches.

The adjustments are published for further breakdowns of slight and serious including speed limit, road class, casualty road user type, casualty age, quarter, police force, and local authority. It is expected that these adjustments will need to be provided for each year that there are police forces using a non-injury based reporting system. When other police forces move over to an injury based reporting system, the model will be reviewed and this will be taken into account, which we expect would be for at least the next couple of years.

In this report, the Department has also included adjustment figures by police force and local authority. Please see the Annex for more information on the method to characterise police force
The annex also includes information on the final methodology, and guidance around quantifying uncertainty when using record-level data.

Aside from this, for more detailed breakdowns on serious and slight injuries, the Department will wait to have three full years of data for injury reporting systems to produce some adjustments in tables. This is to ensure there is sufficient data to provide stable adjustments across the publication.

Alongside this annual report, the Department has published the underlying adjusted figures from the regression model available on data.gov at (https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data), in a look-up alongside our main data extracts, so that users can explore the results of the severity adjustment at casualty level and provide any further feedback. Caution should be used when interpreting adjustment at a detailed level. It is advised that adjustment figures are used when users are looking at trends over time, for individual records and totals the unadjusted figures can be used.

Your feedback

We welcome your feedback on this approach, specifically how you are using these statistics and whether this meets your needs. Please contact us at roadacc.stats@dft.gov.uk.

Online self-reporting

Online self-reporting is part of a wider project for digital public contact called Single Online Home funded by the Home Office to allow people involved in road traffic accidents to report the collision to the police online should they choose to do so rather than having to physically report it at a police station.

The principle of online reporting is to make it easier for members of the public to report accidents. It is expected that the introduction of online reporting will lead to an increase in the total number of accidents and casualties reported, as it will be easier for the public to perform this duty with more reporting options available. This is particularly likely to impact numbers for slight injuries, which might not have been reported otherwise. Serious injuries, on the other hand, are expected to be less impacted by this change since the police are more likely to physically attend the scene of serious accidents or for them to already be otherwise reported to the police. No change is expected to be found for fatal accidents as these cases are more likely to be attended at the scene and thoroughly investigated.

In addition to the overall volume, the introduction of online reporting is also likely to impact the nature of the collisions reported, for example by road user type.

The Department is starting work as part of the STATS19 review to assess the scale of the discontinuity caused by the introduction of online reporting so far, and consider how to adjust for
this as more forces roll it out. The rest of this section gives a high-level overview of the changes introduced by online reporting.

The forces that introduced online reporting of collisions through the Single Online Home project are listed below:

<table>
<thead>
<tr>
<th>Force</th>
<th>Date online reporting introduced in SOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metropolitan Police Service</td>
<td>October 2016</td>
</tr>
<tr>
<td>City of London</td>
<td>October 2016</td>
</tr>
<tr>
<td>Thames Valley</td>
<td>January 2018</td>
</tr>
<tr>
<td>Hampshire</td>
<td>January 2018</td>
</tr>
<tr>
<td>Derbyshire</td>
<td>August 2018</td>
</tr>
<tr>
<td>Merseyside</td>
<td>October 2018</td>
</tr>
<tr>
<td>Surrey</td>
<td>December 2018</td>
</tr>
</tbody>
</table>

Although Essex adopted online reporting in April 2016, it is not part of the Single Online Home (SOH) project and is excluded from this analysis. The City of London Police has a low number of accidents and therefore cannot be included in this analysis to quantify the impact of online reporting. Merseyside and Surrey only introduced online reporting towards the end of 2018 and hence insufficient data is currently available to measure the effect. Therefore, for the rest of this section, forces that introduced online reporting and can be used for analysis (Metropolitan Police Service, Thames Valley, Hampshire and Derbyshire) will be compared to forces that have not introduced online reporting; and Essex, City of London, Merseyside and Surrey are not included.

Changes in trends by severity

Following the introduction of online reporting, the Metropolitan Police Service has seen an increase in the total number of casualties of all severities (+7.7% between 2016 and 2017). Other forces (Derbyshire, Hampshire) have generally seen a smaller decrease in all casualties than forces that do not currently use online reporting between 2017 and 2018.

<table>
<thead>
<tr>
<th>Police Force</th>
<th>Number of casualties</th>
<th>Percentage change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>Force adopting online reporting end 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metropolitan Police</td>
<td>29,902</td>
<td>32,200</td>
</tr>
<tr>
<td>Forces adopting online reporting in 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derbyshire</td>
<td>2,570</td>
<td>2,126</td>
</tr>
<tr>
<td>Thames Valley</td>
<td>6,580</td>
<td>5,567</td>
</tr>
<tr>
<td>Hampshire</td>
<td>5,477</td>
<td>5,089</td>
</tr>
<tr>
<td>Total</td>
<td>14,627</td>
<td>12,782</td>
</tr>
<tr>
<td>Forces not adopting online reporting¹</td>
<td>122,912</td>
<td>113,681</td>
</tr>
</tbody>
</table>

1. Essex, City of London, Merseyside and Surrey are excluded from this table.

Source: STATS19
The Department for Transport is not yet able to reliably differentiate between self-reported casualties over the counter and online in the data (particularly for the Metropolitan Police, Derbyshire or Hampshire). Therefore, the rest of this section is contrasting all self-reported cases (whether over the counter or online) with cases attended by the police at the scene. Note that there is likely to be some switch from over the counter to online reporting: some members of the public who would have gone to a police station to report are likely to do so online instead. However, overall any large increase in the number of self-reported cases is likely to be attributed to the introduction of online reporting.

### Number of casualties in self-reported reported road accidents, by police force, 2016-2018

<table>
<thead>
<tr>
<th>Police Force</th>
<th>Number of casualties</th>
<th>Percentage change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>Force adopting online reporting end 2016</td>
<td>Metropolitan Police</td>
<td>4,992</td>
</tr>
<tr>
<td>Forces adopting online reporting in 2018</td>
<td>Derbyshire</td>
<td>599</td>
</tr>
<tr>
<td></td>
<td>Thames Valley</td>
<td>977</td>
</tr>
<tr>
<td></td>
<td>Hampshire</td>
<td>785</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2,361</td>
</tr>
<tr>
<td>Forces not adopting online reporting¹</td>
<td>27,672</td>
<td>27,804</td>
</tr>
</tbody>
</table>

1. Essex, City of London, Merseyside and Surrey are excluded from this table

Across forces that have not adopted online reporting, casualties in self-reported accidents rose by 0.5% between 2016 and 2017 and fell by 4.0% from 2017 to 2018.

The size of the change for forces adopting online reporting has varied for each force. In the Metropolitan Police Service (MPS), which adopted online reporting at the end of 2016, casualties in self-reported accidents rose by 35% between 2016 and 2017 and by 22% from 2017 to 2018. Of the forces that adopted online reporting in 2018, Derbyshire and Thames Valley saw large increases in the number of casualties in self-reporting accidents between 2017 and 2018 (16% and 48% respectively). Only Hampshire did not experience an increase (reduction of less than 1%) in casualties in self-reported accidents.

This suggests that online reporting results in more accidents being reported than would otherwise have been the case, however there are differences between forces.

The below series of charts show the impact of the introduction of online reporting in the proportion and number of self-reported casualties by severity over time. The change to online reporting is indicated by the dotted grey line.
In the MPS, the number of casualties in self-reported accidents in 2018 was 8,256 up from 6,748 in 2017 and 4,992 in 2016. Prior to the introduction of online reporting, less than 20% of casualties a month were self-reported, this proportion is now over 30% a month and the progressive increase has not yet levelled off.

In the MPS, Thames Valley and Derbyshire, there is a clear increase in the proportion of self-reported casualties which is progressive after the date of introduction. The impact of online reporting is visible for their trends in slight casualties. For these three forces, fluctuations in serious self-reported casualties do not follow a clear upwards trend after the introduction of online reporting. The pattern over time is similar for these forces despite their different starting points in terms of the proportion of self-reported casualties before the introduction of online reporting (ranging from 10% to 30%).

Hampshire, on the other hand, has not experienced a noticeable increase since introducing online reporting.

### Changes in trends by road user type

Since 2016, around 94% of casualties in self-reported road accidents each year are pedestrians, pedal cyclists, motorcyclists or car occupants. Therefore, the following table shows the percentage changes for these casualty types only.

<table>
<thead>
<tr>
<th>Police Force</th>
<th>Pedestrians</th>
<th>Pedal cyclists</th>
<th>Motorcyclists</th>
<th>Car occupants</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forces adopting online reporting end 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metropolitan Police from 2016-2017</td>
<td>45.0%</td>
<td>50.2%</td>
<td>40.8%</td>
<td>26.4%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Metropolitan Police from 2017-2018</td>
<td>13.6%</td>
<td>9.6%</td>
<td>16.8%</td>
<td>34.2%</td>
<td>26.2%</td>
</tr>
<tr>
<td>Forces adopting online reporting in 2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derbyshire from 2017-2018</td>
<td>33.9%</td>
<td>1.7%</td>
<td>27.0%</td>
<td>16.2%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Thames Valley from 2017-2018</td>
<td>17.4%</td>
<td>27.7%</td>
<td>59.0%</td>
<td>78.0%</td>
<td>25.0%</td>
</tr>
<tr>
<td>Hampshire from 2017-2018</td>
<td>17.2%</td>
<td>3.3%</td>
<td>-9.5%</td>
<td>-11.8%</td>
<td>14.7%</td>
</tr>
<tr>
<td>Overall from 2017-2018</td>
<td>21.9%</td>
<td>11.7%</td>
<td>17.3%</td>
<td>27.9%</td>
<td>11.5%</td>
</tr>
<tr>
<td>Forces not adopting online reporting¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change from 2016-2017</td>
<td>-3.1%</td>
<td>-4.6%</td>
<td>-7.4%</td>
<td>-3.8%</td>
<td>-3.3%</td>
</tr>
<tr>
<td>Change from 2017-2018</td>
<td>-3.1%</td>
<td>-4.6%</td>
<td>-7.4%</td>
<td>-3.8%</td>
<td>-3.3%</td>
</tr>
</tbody>
</table>

1. Essex, City of London, Merseyside and Surrey are excluded from this table

For forces that have not adopted online reporting, the year-on-year percentage changes between 2016 and 2017 and between 2017 and 2018 for all these casualty types range between a reduction of 7% and an increase of 7%.

Between 2016 and 2017 in accidents that were self-reported online in the MPS, pedal cyclist
casualties increased by 50%, pedestrians by 45%, motorcyclists by 41%, and car occupants by 26%. For the second full year of online reporting in the MPS, car occupant casualties rose by 34% and the increases for the other casualty types were smaller.

For forces that adopted online reporting in 2018, Derbyshire saw the biggest increase for pedestrians (34%) and motorcyclists (27%) while Thames Valley saw largest increases for car occupants (78%) and motorcyclists (59%).

Generally, forces that have adopted online reporting have recorded increases for each of these four casualty types much larger than for those forces that have not adopted online reporting. These differences might reflect differences in travel behaviours of the population of these police forces and therefore the type of accidents that occur in each of them. For example, the increase in the MPS is particularly large for vulnerable road users (pedestrians, pedal cyclists, motorcyclists).

**Conclusion on the impact on trends**

In summary, online reporting has resulted in more accidents being reported in most of the police forces that have introduced this method of self-reporting compared to forces that have not. While forces had different starting points in terms of the proportion of accidents that are self-reported, trends over time in almost all these forces show a progressive increase in self-reported slight casualties that has not yet levelled off. The size of the effect, and the road user groups most impacted, differ between forces, and is likely to reflect the mix of travel patterns and accidents in these police force areas. It also suggests that collisions involving vulnerable road users (pedestrians, pedal cyclists and motorcyclists) are reported more online.

Because of the number and size of forces having adopted online reporting, this is already impacting the national figures. Online reporting tools delivered through the Single Online Home project will be made available to more police forces in the future and as a result the Department anticipates that this will impact even more the total number of accidents and casualties reported as the system is adopted. Leicestershire, Greater Manchester and Northamptonshire have adopted it in April 2019, some other forces have already planned to adopt it in 2019, and around half of police forces are understood to be considering adopting it. It is therefore expected that the discrepancy in data trends caused by the introduction of online reporting will expand in the future.

The Department will explore further how to estimate the impact of the introduction of online reporting as part of the STATS19 review. This will include research to understand differences in practices of back office staff between forces where online reporting is available, and review the STATS19 requirements of online reporting from a user perspective.
Impact on quality

The introduction of online reporting has also impacted the quality of data received by the Department. It is believed that the introduction of online reporting has introduced a different interpretation for unknown values (for example, unknown to the public as opposed to unknown by the police) that has not been subsequently populated by the police. As a result, the number of unknown values on some variables like left hand drive vehicle, special conditions at site and carriageway hazards, has increased compared to previous years.

The specific variables affected are the following:

Vehicle level variables

• Skidding / overturning
• Hit object in carriageway
• Vehicle leaving carriageway
• Vehicle location
• First object hit off carriageway
• Junction location of vehicle
• Was vehicle left hand drive?
• First point of impact
• Towing and articulation

Accident level variables

• Weather conditions
• Junction control
• Carriageway type
• Pedestrian crossing
• Special conditions at site
• Carriageway hazards
• Junction type
• Road surface conditions

The vast majority of the unknown values above are observed in the Metropolitan Police Service, however there are indications that some, including weather conditions and carriageway type, are also observed in other online reporting forces.

Comparisons with earlier years for these variables should therefore be made with caution. This is indicated as a footnote in published tables where relevant.

In particular, there has been an issue in the recording of the left hand drive information for vehicles in the Metropolitan Police Service. There has been a large increase in unknowns for this field since 2016, which is linked to the introduction of online reporting, and a large increase in vehicles
recorded as left hand drive since 2016, which is believed to be linked to the introduction of COPA. This is indicated in RAS40005, which has been amended to include two tables for 2017 and 2018: one for Great Britain and one for Great Britain excluding the Metropolitan Police Service.

The Department is actively engaged with the project team to improve the capture of the geographic location of the collision and to add additional validation to improve the quality of online self-reported data.

**Publication timetable**

This annual report is an update of the provisional main results publication published in July 2019. The timetable of 2018 publications has been a large improvement on the last two years, where the main results publication did not go ahead, reflecting the efforts of both police forces and the DfT team.

The Department aims to go back to the normal publication timetable by publishing mid-year estimates for 2019 in November 2019 and main results for 2019 in June 2020.

**Data supply from forces**

The last batch of data was received on 31 May 2019 and the database was closed for main results after resolving queries with forces on 5 July 2019. Accidents that were flagged in the main results publication as being outstanding in London and North Somerset then, have now been resolved as far as possible for this annual report. Consequently, the database has been finalised for the year at the start of August and figures in this release are based on the best available information at that time. The Department is aware that a small number of non-fatal accidents from Transport for London (15) could not be resolved and were not included in the 2018 data. This, along with any changes following validation, is why totals might not completely align with publications from TfL.

The total number of accidents and casualties has been agreed with each police force as far as possible but a small number of non-fatal accidents might not be fully reconciled for some forces.

This is before DfT performs validation including updates from local authorities, transfers between police forces and geographical validation, which might introduce further small differences.

Surrey Police have experienced an increase in serious accidents between 2017 and 2018. Rather than a real change, this is believed to be due to a change in the collection of the injury information in the Pronto mobile application, used by the police to collect data at the scene of the collision, to match the injury list used by CRASH. Before November 2017, police officers in Surrey were recording injuries in a free text field at the accident scene which was then interpreted into the CRASH injury list by police back office staff. From November 2017 onwards, the Pronto mobile
application allows police officers at the scene in Surrey to select the injury type in the CRASH list directly. This has had an estimated net effect of around 300 more accidents being recorded as serious in 2018 compared to 2017, particularly at the less serious end of the severity scale, which partly explains a decrease in slight accidents in this force. The change only impacts the classification of injuries between slight and serious and should not impact the total number of accidents reported, which have declined in this force.

Similarly, City of London Police have experienced an increase in serious accidents between 2017 and 2018. In October 2017 City of London changed reporting practices, from using paper Stats19 forms at the accident scene that were interpreted into the CRASH injury list later by police back office staff, to using the Pronto mobile application. Before this, around 50 accidents each year were classed as serious in City of London and this has increased to 81 in 2018. The change only impacts the classification of injuries between slight and serious and should not impact the total number of accidents reported, which have declined in this force. There is volatility in figures for City of London and trends might have also been impacted by exceptional events and weather in 2018.

We will be able to better understand this issue with an additional year of data with no expected changes to the method of collection in the Pronto system. Similar changes in reporting will be monitored for other mobile applications.

Forces that have seen a larger change in casualties from the previous year than average have been queried by the Department, and they did not identify specific relevant factors to explain this change.
Data tables

The annual report also includes detailed tables based on data reported by the police. Areas covered are listed below, with relevant table numbers in brackets:

- Accidents (RAS10)
- Drivers and vehicles involved (RAS20)
- Casualties (RAS30)
- Combined accidents, casualties, vehicles (RAS40)
- Area comparisons (RAS30038-RAS30058, RAS10014-RAS10015, RAS41002-RAS41004)
- International comparisons (RAS52)
- Former Strategic Framework for Road Safety outcome indicators (RAS41)
- Contributory factors (RAS50)
- Reported drink-driving (RAS51)
- Survey data on road accidents (RAS54)
- Hospital admissions as a result of road accidents (RAS55)
- Accident and casualty costs (RAS60)

Making our data easier to access

The Department wants to make road safety data easier for users to access and navigate, and has therefore carried out a review of all published road accidents tables. The aim of this review was to enable users to get the tailored information they need while reducing the number of tables published.

The Department is trialling a new road safety data download tool (https://roadtraffic.dft.gov.uk/custom-downloads/road-accidents), for users to create bespoke reports. We will continue to improve this tool continuously to include more data and improve the user experience. If you have any feedback or issues with the tool please contact us at roadacc.stats@dft.gov.uk. Some tables have been dropped as the same information is now available in this tool.

As announced in the main results publication, some tables have also been dropped as part of this review because information has been consolidated in tables, information was duplicated across tables, or they were identified as being rarely used. For full details of specific tables dropped, please see the tables index: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/648083/reported-road-casualties-gb-index-of-tables.xlsm.

The objective of removing the number of tables that are made available through the tool, that are rarely used, or are redundant, is to provide a better user experience to users by not having to navigate a very large number of tables. The complexity of navigating the current set of tables faced by users in finding the information they need is shown by evidence from web analytics that place our table index as one of the top tables downloaded for DfT statistics.

Any feedback is welcome at roadacc.stats@dft.gov.uk.

Background information


Provisional in-year reported road casualty statistics are published throughout the year. Provisional estimates for the first half of 2018 were published in November 2018. In-year statistical releases can be found at: https://www.gov.uk/government/collections/road-accidents-and-safety-statistics.


Details of Ministers and officials who receive pre-release access to these statistics up to 24 hours before release can be found here: www.gov.uk/government/publications/road-accident-and-safety-statistics-pre-release-access-list.

Further information


Further information on Reported Road Casualties Great Britain, including information about the variables collected on the STATS19 form, historical publications and factsheets, can be found at: https://www.gov.uk/government/collections/road-accidents-and-safety-statistics.

Feedback

We welcome further feedback on any aspects of the Department’s road safety statistics including content, timing, and format, via email to roadacc.stats@dft.gov.uk.