ENHANCED CAPITAL ALLOWANCE (ECA) SCHEME FOR ENERGY EFFICIENT TECHNOLOGIES

ENERGY TECHNOLOGY CRITERIA LIST

FEBRUARY 2019

Issued on behalf of the Secretary of State for the Department for Business, Energy and Industrial Strategy

Signed:

CLAIRE PERRY
MINISTER OF STATE FOR ENERGY AND CLEAN GROWTH

Date: 26/02/2019
The Energy Technology List comprises the technologies that qualify for the UK Government’s Energy-Saving Enhanced Capital Allowance (ECA) scheme and their energy-saving eligibility criteria.

The Energy Technology List is divided into 2 parts:
- The Energy Technology Criteria List which contains details of the energy-saving criteria that must be met for each of the technology classes;
- The Energy Technology Product List which contains a list of products that have been certified as meeting those standards.

The Energy Technology Criteria List is updated and published annually. This document is a copy of the ETCL as first published in March 2019.

The Energy Technology Product List is published annually and is updated twice a month on the ECA website.

For the most up to date copy of the ETL and for further information about the ECA Scheme please refer to the ECA website:
https://etl.beis.gov.uk/engel/fox/live/ETL_PUBLIC_PRODUCT_SEARCH.

General information on ECA Schemes is available at:
http://www.hmrc.gov.uk/manuals/camanual/Index.htm

Ownership for the ECA Scheme for energy-saving technologies resides with the Department for Business, Energy and Industrial Strategy and HM Revenue and Customs. The Carbon Trust promotes the ECA Scheme and manages the Energy Technology List with ICF providing technical services (e.g. managing the annual research and conformity testing programmes and conducting technical assessments of product applications).
Contents

Air-to-air energy recovery devices ... 5
1 Air-to-air energy recovery devices ... 5
Automatic Monitoring & Targeting (aM&T) ... 9
2 Automatic Monitoring & Targeting (aM&T) Sub-metering Systems 9
3 Portable energy monitoring equipment ... 13
Boiler Equipment ... 15
4 Biomass Boilers ... 15
5 Burners with Controls ... 19
6 Condensing Economisers ... 24
7 Flue Gas Economisers ... 28
8 Gas-fired Condensing Water Heaters ... 31
9 Heat Recovery from Condensate and Boiler Blowdown 36
10 Heating Management Controllers (for Wet Heating Systems) 37
11 Hot Water Boilers .. 40
12 Retrofit Burner Control Systems ... 46
13 Steam Boilers .. 49
Combined Heat and Power .. 55
14 Combined Heat and Power ... 55
Compressed Air Equipment .. 61
15 Desiccant Air Dryers with Energy Saving Controls 61
16 Master Controllers .. 63
17 Refrigerated Air Dryers with Energy Saving Controls 66
Heat pumps ... 69
18 Air to Air Heat Pumps, Split, Multi-split and VRF .. 69
19 Air to Domestic Hot Water Heat Pumps .. 73
20 Air Source: Gas Engine Driven Split and Multi-Split (including VRF) Heat Pumps.. 77
21 Air to Water Heat Pumps ... 81
22 Heat Pump Dehumidifiers ... 86
23 Heat Pump Driven Air Curtains .. 89
24 Packaged Air to Air Heat Pumps (rooftop) .. 93
25 Water to Air Heat Pumps, Split, Multi-split and VRF 97
26 Water or Brine to Water Heat Pumps .. 102
Heating, Ventilation and Air Conditioning (HVAC) Equipment 107
27 Active Chilled Beams ... 107
28 Building Environment Zone Controls ... 112
29 Close Control Air Conditioning Equipment ... 119
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Evaporative Air Coolers</td>
<td>126</td>
</tr>
<tr>
<td>31</td>
<td>High Speed Hand Air Dryers</td>
<td>130</td>
</tr>
<tr>
<td>32</td>
<td>Efficient White Lighting Units</td>
<td>132</td>
</tr>
<tr>
<td>33</td>
<td>Lighting Controls</td>
<td>138</td>
</tr>
<tr>
<td>34</td>
<td>White LED Lighting Modules for Backlit Illuminated Signs</td>
<td>141</td>
</tr>
<tr>
<td>35</td>
<td>Converter-Fed Motors</td>
<td>146</td>
</tr>
<tr>
<td>36</td>
<td>Line Operated AC Motors</td>
<td>151</td>
</tr>
<tr>
<td>37</td>
<td>Variable Speed Drives</td>
<td>155</td>
</tr>
<tr>
<td>38</td>
<td>Pipework Insulation</td>
<td>158</td>
</tr>
<tr>
<td>39</td>
<td>Radiant Heating Equipment</td>
<td>162</td>
</tr>
<tr>
<td>40</td>
<td>Warm Air Heating Equipment</td>
<td>166</td>
</tr>
<tr>
<td>41</td>
<td>Absorption & Other Heat Driven Cooling & Heating Equipment</td>
<td>172</td>
</tr>
<tr>
<td>42</td>
<td>Air Blast Coolers</td>
<td>172</td>
</tr>
<tr>
<td>43</td>
<td>Air-Cooled Condensing Units</td>
<td>176</td>
</tr>
<tr>
<td>44</td>
<td>Automated Permanent Refrigerant Leak Detection Systems</td>
<td>182</td>
</tr>
<tr>
<td>45</td>
<td>Cellar Cooling Equipment</td>
<td>185</td>
</tr>
<tr>
<td>46</td>
<td>Curtains, Blinds, Doors and Covers for Refrigerated Display Cabinets</td>
<td>189</td>
</tr>
<tr>
<td>47</td>
<td>Evaporative Condensers</td>
<td>191</td>
</tr>
<tr>
<td>48</td>
<td>Packaged Chillers</td>
<td>193</td>
</tr>
<tr>
<td>49</td>
<td>Professional Refrigerated Storage Cabinets</td>
<td>203</td>
</tr>
<tr>
<td>50</td>
<td>Refrigerated Display Cabinets</td>
<td>208</td>
</tr>
<tr>
<td>51</td>
<td>Refrigeration Compressors</td>
<td>215</td>
</tr>
<tr>
<td>52</td>
<td>Refrigeration System Controls</td>
<td>219</td>
</tr>
<tr>
<td>53</td>
<td>Solar Thermal Systems and Collectors</td>
<td>225</td>
</tr>
<tr>
<td>54</td>
<td>Uninterruptible Power Supplies</td>
<td>228</td>
</tr>
<tr>
<td>55</td>
<td>Organic Rankine Cycle Heat Recovery Equipment</td>
<td>232</td>
</tr>
<tr>
<td>56</td>
<td>Saturated Steam to Electricity Conversion Equipment</td>
<td>238</td>
</tr>
</tbody>
</table>
Air-to-air energy recovery devices

1 Air-to-air energy recovery devices

<table>
<thead>
<tr>
<th>Date published</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2004</td>
</tr>
</tbody>
</table>

1.1 Scope

Air-to-air energy recovery devices are heat exchanger products that are specifically designed to recover (or salvage) waste heat from the exhaust air stream from a building ventilation system and use it to heat the incoming air stream to the same building ventilation system.

1.2 Definitions

Air-to-air energy recovery devices use heat exchanger technology to recover heat from the exhaust air of building ventilation systems that would otherwise be lost to atmosphere. The heat exchangers are incorporated into the supply air and extract air ventilation ducts. Some products may also be used to reduce the energy used by air conditioning systems by removing heat from the incoming air.

A wide range of air-to-air energy recovery devices is available. The ECA Scheme aims to encourage the purchase of products with higher levels of effectiveness in heat recovery.

The ECA Scheme covers two categories of product:

- Plate heat exchangers (or recuperators).

 These products must consist of a heat exchanger with alternate channels for the supply and exhaust airflows that are separated by plates through which heat is conducted. They must not contain any moving parts. This category includes both cross-flow type, and counter-current flow type, plate heat exchangers. The product may be designed to recover only sensible heat, or it may incorporate a specialist material (such as treated paper or a polymeric membrane) to enable it to recover both latent and sensible heat.

- Rotating heat exchangers (including thermal and desiccant heat wheels).

 These products must consist of a circular heat transfer medium (or ‘wheel’) that is designed to slowly rotate within an airtight container, and to pass the exhaust air stream over one section of the wheel, and the supply air stream over the other section of the wheel in counter flow direction. The product may be designed to recover only sensible heat, or it may incorporate a desiccant material to enable it to recover both latent and sensible heat.

Investments in air-to-air energy recovery devices can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.
1.3 Requirements

1.3.1 Performance requirements

Products must have:

- A dry heat recovery efficiency at the product’s maximum rated air flow balanced flow conditions that is greater than or equal to the values set out in Table 1.1 below.
- A pressure drop across each side of the heat exchanger(s) within the product at the product’s maximum rated air flow that is less than or equal to the values set out in Table 1.1 below.

Table 1.1 Performance requirements for air-to-air recovery devices.

<table>
<thead>
<tr>
<th>Product category</th>
<th>Dry heat recovery efficiency (%)</th>
<th>Pressure drop (in pascals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Plate heat exchangers</td>
<td>>= 71 %</td>
<td><= 250 Pa across each side.</td>
</tr>
<tr>
<td>2. Rotating heat exchangers</td>
<td>>= 74 %</td>
<td><= 200 Pa across each side.</td>
</tr>
</tbody>
</table>

“>=” means "greater than or equal to"
“<=” means "less than or equal to"

Where:

- The maximum rated air flow is the flow rate specified by the manufacturer according to the product’s design limits, for example, a maximum pressure drop or maximum face air speed.

1.4 Measurement and Calculations

1.4.1 Measurement standards

All products must be tested in accordance with the relevant procedures and test conditions in one of the following standards:

- BS EN 308:1997 “Heat Exchanger: Test procedures for establishing performance of air to air and flue gases heat recovery devices”.
- JIS B 8628: 2003, “Air to air heat exchanger”.
- Other equivalent test standards where the resulting performance data can be scientifically proven, using the methodologies in ANSI/ASHRAE Standard 84-2008 “Method of Testing Air-to- Air Heat/Energy Exchangers”, to be equivalent to that obtained under BS EN 308:1997.

1.4.2 Test Requirements

The dry heat recovery efficiency must be calculated using the formula for temperature ratio in section 6.4 of BS EN308:1997 and test data collected when
rating the product’s performance in heating mode at the test conditions specified in
the selected standard for the type of product.

Where products are too large to be tested at their maximum rated air flow under the
standard test conditions specified in AHRI 1060: 2005, BS EN 308: 1997 or JIS B
8628: 2003, then performance data obtained at other test conditions may be
extrapolated using validated models (or correlations), in accordance with the

If a single product is submitted for assessment, one detailed test report should be
submitted. For a product range, test results may be submitted in summary form
provided:

■ Sufficient data is included to confirm that product performance was
determined in accordance with the procedures and test conditions laid
down in the selected standard.
■ Two detailed test reports are submitted per product range.
■ Detailed test reports have been prepared for each product tested and are
available on request for inspection, where not submitted with the
application.

1.4.3 Rounding
For the avoidance of doubt test data should be presented to zero decimal places. As
an example, a plate heat exchanger with a minimum dry heat recovery efficiency of
70%, or a pressure drop of 251 pascals, would be deemed to be a fail.

1.5 Verification for ETL Listing
Any of the following testing routes may be used to demonstrate the conformity of
products against the requirements:

■ In-house testing – Self-certified
■ In-house testing – Self-tested and verified or cross-checked by an
independent body
■ Witnessed testing
■ Independent testing
■ Representative testing (see clause 1.5.1)

Further information regarding the first four routes can be found in Guidance Note 5
on the ETL product testing framework1.

1.5.1 Representative testing
Where applications are being made for two or more products that are variants of the
same basic design, test data may be submitted for a representative selection of
models, provided that all variants:

■ Use the same heat transfer mechanisms as the representative models.
■ Are constructed from materials with same heat transfer characteristics.

1 https://www.gov.uk/government/publications/energy-technology-list-etl-product-testing-framework
■ Have the same or better energy effectiveness as the representative models. It should be noted that:

■ If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.

■ If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

1.6 Conformity testing
Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

1.7 Scope of Claim
Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.
Automatic Monitoring & Targeting (aM&T)

2 Automatic Monitoring & Targeting (aM&T) Sub-metering Systems

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2003</td>
</tr>
<tr>
<td>Former name</td>
<td>Automatic Monitoring & Targeting Systems</td>
</tr>
<tr>
<td></td>
<td>Component Based AMT Systems</td>
</tr>
</tbody>
</table>

2.1 Scope

Automatic Monitoring & Targeting (aM&T) sub-metering systems are products that are specifically designed to measure energy consumption, record and distribute metered energy data, and analyse and report on energy consumption.

2.2 Definitions

aM&T sub-metering systems help users to save energy by identifying energy wastage which they can then take steps to reduce. aM&T sub-metering systems generally comprise of three elements:

- Sub-metering & sensors
- Communication and data capture software, and;
- Monitoring software.

Fiscal metering and internet-based software are outside the scope of this category (see section 2.6 for further details).

An aM&T sub-metering system captures energy consumption information automatically from which users can gain an understanding of their organisation’s energy use. It consists of equipment components that measure, record, transmit, analyse, report and communicate the energy management information that an organisation needs to manage its energy use (i.e. through implementing an effective energy management system) and highlight any energy wastage.

A wide range of aM&T sub-metering systems are available. The Enhanced Capital Allowance Scheme (ECA) Scheme for energy saving technologies aims to encourage the installation of sub-metering systems that can facilitate the proactive management of energy use in organisations.

Investments in aM&T sub-metering systems can only qualify for an ECA if the installation meets the eligibility criteria set out below. The individual equipment components or products used in the system are not named on the Energy Technology List.

2.3 Requirements

2.3.1 Eligibility requirements

To be eligible, aM&T sub-metering systems shall

1. Include the following:
a) One or more meters that measure energy use for metering purposes.

b) Some means of automatically capturing, retrieving & storing energy metering data electronically.

c) Software that enables the analysis of energy metering data and the key factors that influence energy use by means of visualising energy performance data.

2. Be able to meter at least one of the following:

a) Electricity use

b) Gas use

c) Heat use

The following sub metering equipment and sensors are eligible but only as part of an aM&T sub-metering system that directly measures at least one of the parameters in section 2a-c (above):

■ Oil fuel flow meters
■ Compressed air mass flow meters
■ Steam meters

3. Additionally, for electricity, gas and heat meters, the system shall be able to:

■ Automatically capture data from meters or sensors at regular intervals in order to provide energy performance indicators. The collection intervals may be user definable or configured for particular meter types.

■ Store and process meter readings made on a half hourly basis (as a minimum). The metering data may be transferred into the data store in real-time or at scheduled times.

■ Automatically identify and report data collection failures, missing metering data and the failure of communications with meters, transducers and any other system components.

■ Distribute data with no loss of accuracy, except for pulse outputs from meters, where the transmitted metered data shall be within +/- 0.5 % of the total variable measured.

■ Present energy consumption data in graphical reporting formats (for example, histograms, line plots, etc.), and in user selectable time intervals / divisions / bases.

■ Export the collected energy data in a standard format for use in other applications (for example, ASCII files or other formats commonly used by standard office applications).

■ Retain a minimum of 2 complete years of metering data without loss of data resolution or accuracy, in a date/time stamped format, suitable for analysis of trends and patterns.

4. For electricity, gas and heat meters, the system shall provide facilities to enable the user to:

■ Select datasets from individual meters and manipulate them by combining, comparing and calculating in order to analyse, identify and evaluate instances of energy waste.
- Undertake regression analysis using two variables in whatever frequency the dataset was obtained, and to display the results in graphical form with a correlation coefficient.

- Set up automatic exception reporting functions that are capable of basing exception reports on the raw data profile. The frequency capability of notifications should be kept at a minimum.

- Set up standard management reports that enable total energy consumption to be benchmarked against performance standards during a user selectable period. It may also be beneficial to compare energy consumption with the corresponding period in the previous year, including an analysis of energy use by meter, fuel type or energy accounting centre.

In addition, where new meters are being installed, they shall comply with the following requirements:

5. Electricity meters shall meet the accuracy requirements of one of the following:
 - BS EN62053-21:2003, "Electricity metering equipment (ac) – Particular requirements - Part 21: Static meters for active energy (classes 1 and 2)".

6. Gas meters shall meet the accuracy requirements of one of the following standards:
 - BS EN12480:2015, Gas Meters - Rotary displacement gas meters.

7. Heat meters shall meet the requirements of:
 - BS EN 1434-4: 2015, Heat meters. Pattern approval tests
 - BS EN 1434-5: 2015, Heat meters. Initial verification tests

8. Oil fuel flow meters shall conform to the following requirements:
 - Be installed on the same aM&T submetering system as either an electricity, gas or heat meter.
 - Possess a minimum flow rate range of 4:1, where the flow rate range is defined as the range between the minimum flow rate \(Q_{\text{min}} \) and the maximum flow rate \(Q_{\text{max}} \).

9. Compressed air mass flow meters shall conform to the following requirements:
 - Be installed on the same aM&T submetering system as either an electricity, gas or heat meter.
10. Steam meters shall conform to the following requirements:

- Be installed on the same aM&T submetering system as either an electricity, gas or heat meter.
- Be capable of displaying the measured steam pressure and temperature, and the current mass flow rate and cumulative mass of steam.
- Shall have, as a minimum, the following components continuously measuring the steam properties and calculating the cumulative steam energy that has passed through the measuring system as shown on the system's schematic diagram:
 - A flow meter – which determines how much fluid (steam) has passed through a pipe over a given time period.
 - A pressure sensor – to measure the pressure of steam flowing through the pipe.
 - A temperature sensor – to measure the temperature of steam flowing through the pipe.
 - A calculator/digital integrator – which uses the information provided by the flow meter, temperature and pressure sensors to calculate the cumulative heat energy transferred through the pipe.
- Conformity with the requirements of the appropriate BS EN ISO 5167 series of standards, if relevant for the steam meter.

11. Instrument transformers used to measure energy use for metering purposes shall conform to the accuracy requirements of one of the following:

Meters offering equivalent or better levels of accuracy to those specified above will be accepted, provided they meet the accuracy requirements of applicable British or European Standards. Please note that this includes all electricity, gas and heat meters conforming to the specific accuracy requirements of the EU Measuring Instruments Directive (MID) 2014/32/EC.

2.4 Verification for ETL Listing

This sub-technology is "unlisted" therefore individual products do not need to be listed on the Energy Technology Product List.

2.5 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

2.6 Scope of Claim

An Enhanced Capital Allowance (ECA) can only be claimed where the installation of an aM&T submetering equipment results in a system that complies with the eligibility criteria. In some instances, only part of the aM&T submetering system may be eligible for an ECA:
An ECA cannot be claimed on any component that is not part of an installation used to monitor energy use for energy management purposes. For example, if data collection is done as part of a BMS, IT network or process control system, then an ECA cannot be claimed on these components.

An ECA can only be claimed on a single purchase software license that is purchased outright. An ECA cannot be claimed on software that is leased or subject to ongoing license or sub-license payments.

An ECA can only be claimed on the specific types of energy meter mentioned in the eligibility criteria. Fiscal billing meters and analysis through internet-based software is not permitted (an ECA may also be claimed on water meters listed under the Water Technology List as part of the ECA water scheme).

An ECA cannot be claimed on components installed in any tax years prior to the creation of a complete automatic monitoring & targeting system that complies with the eligibility criteria.

An ECA can be claimed on parts of an aM&T submetering system should those parts be owned outright by the purchaser and priced individually. For example, this could include parts 1a) and 1b) of the aM&T submetering system, as defined above, within the eligibility criteria.

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

3 Portable energy monitoring equipment

<table>
<thead>
<tr>
<th>Date published</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2003</td>
</tr>
<tr>
<td>Former name</td>
<td>Portable AMT Equipment</td>
</tr>
</tbody>
</table>

3.1 Scope

Portable energy monitoring equipment covers products that are specifically designed to temporarily measure energy use in different locations, and to record, analyse and report on energy consumption.

Portable energy monitoring equipment helps to save energy by identifying energy wastage and ensuring the long-term effectiveness of other energy saving investment measures.

Portable energy monitoring equipment enables the temporary monitoring of energy use in different locations and can be used to record energy consumption data and to highlight unusual patterns of consumption.

A wide range of portable energy monitoring equipment is available. The ECA scheme aims to encourage the purchase of products that can measure and analyse energy consumption data, and produce reports containing energy management information that enable businesses to manage their energy use.

Investments in portable energy monitoring equipment can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology
Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

3.2 Requirements

3.2.1 Eligibility requirements

To be eligible, products must:

- Be a portable measuring instrument package that includes:
 a) An ‘energy use’ metering device and associated measurement transducers (or probes).
 b) A means of electronically capturing and storing energy consumption data.
 c) A means of transferring data to other computing devices or computer systems.
 d) A software or hardware-based means of analysing and displaying energy consumption data, and of producing energy management reports, that can be used to identify the ‘key factors’ that influence energy consumption.

- Be able to meter one or more of the following:
 a) Electricity use.
 b) Gas use.
 c) Heat flow.

- Have a measurement accuracy of +/- 3% of meter reading (or better) across the product’s entire operating temperature range, for all measurement ranges relevant to the metering of electricity use, gas use, or heat flow.

- Be CE marked.

3.3 Verification for ETL Listing

There are no testing requirements, however manufacturers shall provide sales and technical brochures to evidence the conformity of their products against the requirements from section 3.2.

3.4 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

3.5 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.
Boiler Equipment

4 Biomass Boilers

<table>
<thead>
<tr>
<th>Date published</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2001/2003</td>
</tr>
<tr>
<td>Former name</td>
<td>Biomass Boilers and Room heaters</td>
</tr>
</tbody>
</table>

4.1 Scope

Biomass boilers are used to heat water for process or space heating. Biomass boilers are available with a wide range of efficiencies. The ECA Scheme aims to encourage the purchase of products with the highest thermal efficiency. The fuels used in biomass boilers are renewable so their use will also reduce the amount of fossil fuel that might otherwise have been consumed. Investments in biomass boilers can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

4.2 Definitions

Biomass boilers are products that are specifically designed to burn solid biomass fuels in order to heat water.

4.3 Requirements

4.3.1 Eligibility requirements

To be eligible, products must:

- Be designed to burn wood, cereal straw, or solid fuels derived from them.
- Heat water for process or space heating.
- Be CE Marked.
- Meet the following air quality emission limits:
 - Particulate matter (PM) emissions must not exceed 30 grams per gigajoule (g/GJ) net heat input
 - Oxides of nitrogen (NOₓ) emissions must not exceed 150 grams per gigajoule (g/GJ) net heat input

Compliance with these emissions limits should be demonstrated by providing valid Renewable Heat Incentive (RHI) emissions certificates for the specific biomass boiler listed, or a certificate confirming that the boiler is part of range (as per the RHI emissions limits type testing rules) that meets these emission limits.

4.3.2 Performance Requirements and Test Procedure

Eligible products must exceed the minimum thermal efficiency set out in Table 4.1 and Table 4.2 based on the maximum continuous rated output of the product covered.
Table 4.1 For use with biomass hot water boilers with a maximum continuous rated output up to and including 300kW

SECTION 1A –PERFORMANCE THRESHOLDS

To be eligible products must have, when tested at maximum continuous rated output:

- For boilers with a nominal rating of <=100kW, a thermal efficiency of at least 90.0 + log (Nominal Heat Output) based on the net calorific value of the fuel.
- For boilers with a nominal rating of >100kW and <=300kW, a thermal efficiency of at least 92.0 % based on the net calorific value of the fuel.

SECTION 1B –TEST PROCEDURES

All products <= 300kW must be tested in accordance with:

- EN 303-5:2012 “Heating boilers for solid fuels, hand and automatically fired, nominal heat output of up to 500 kW. Terminology, requirements, testing and marking”.

The tests must be done using a biomass test fuel (designated A, B1, B2, C & D) in accordance with Table 7 of EN 303-5:2012 that is appropriate to the advertised usage of the product.

Please note that performance data obtained in accordance with the procedures and standard rating conditions laid down in EN 303-5:1999 and using a biomass test fuel (designated A1, A2, B1, B2, C & D) in accordance with Table 8 will be accepted as an alternative to testing in accordance with EN303-5:2012 until further notice.
Table 4.2 For use with biomass hot water boilers with a maximum continuous rated output above 300kW

SECTION 2A – PERFORMANCE THRESHOLDS

To be eligible products must have, when tested at an output that is between 60% and 100% of Maximum Continuous Rating (MCR):

- A thermal efficiency, of at least 90.0% based on the net calorific value of the test fuel.

SECTION 2B – TEST PROCEDURES

All products >300kW must be tested in accordance with:

EITHER

- BS 845-1:1987 “Methods for assessing thermal performance of boilers for steam, hot water and high temperature heat transfer fluids: Concise procedure”.
 OR (for shell boilers only)
 OR (for water tube boilers only)
 OR
- The testing procedures set out in EN303-5:2012.
 OR
- Equivalent procedures within the national standards of EU member states. Where equivalent procedures are used, details of the test procedure used must be supplied in English along with a declaration of equivalence from an accredited laboratory.

The tests must be done using a biomass test fuel (designated A, B1, B2, C & D) in accordance with Table 7 of EN 303-5:2012 that is appropriate to the advertised usage of the product.

Where BS 845-1:1987 is used, the standard test conditions are:

- A maximum ambient air temperature of 25 degrees Centigrade.
- An excess combustion air level certified as being representative of normal commercial operation.
- The boiler must be operating at a rating of at least 60% of its maximum continuous rating (i.e. 60 – 100% MCR) during the tests.

As an alternative to measurement of losses other than flue gas losses, a standard deduction of 2.0% x 100 %/% load may be used.

Please note that performance data obtained in accordance with the procedures and standard rating conditions laid down in EN 303-5:1999 and using a biomass test fuel (designated A1, A2, B1, B2, C & D) in accordance with Table 8 will be accepted as an alternative to testing in accordance with EN303-5:2012 until further notice.

4.4 Measurement and Calculations

4.4.1 Test Requirements

All products must be tested in accordance with the procedures and test conditions set out in Table 4.1 or Table 4.2 based upon the maximum continuous rated output of the product covered.

For products up to and including 300kW all tests must be carried out by, or witnessed by, an accredited laboratory, where “accredited” means accredited by the
United Kingdom Accreditation Scheme (UKAS), or other equivalent national accreditation bodies recognised via the European Co-operation for Accreditation, the International Accreditation Forum, or the International Laboratory Accreditation Co-operation (ILAC) agreements.

For products above 300kW, products can be either tested in an accredited laboratory OR performance may be determined from measurements made during field trials or acceptance tests, provided that the measurements have been made by, or witnessed by, an accredited laboratory or contractor that is accredited to make those measurements. The product’s net thermal efficiency must be calculated by an independent body that is competent to verify the measurement data.

For the avoidance of doubt net thermal efficiency test data must be presented to one decimal place. As an example, a Biomass hot water boiler with a maximum continuous rated output above 300kW and a net thermal efficiency of 89.9% when tested at between 60% and 100% of its maximum continuous rating (MCR) (as specified in Table 4.2) would be deemed to be a fail.

The requirements for testing of PM and NO\textsubscript{x} are:

- That testing is carried out in accordance with the provisions relevant to emissions of PM and NO\textsubscript{x} specified in whichever of the following standards applies: EN 303-5:1999; or, EN 303-5:2012.
- That testing is carried out in accordance with EN 14792:2005 for NO\textsubscript{x} and EN 13284-1:2002 or BS ISO 9096:2003 for PM.

4.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- Witnessed testing (test reports must be prepared by, or verified by, an independent accredited test laboratory)
- Independent testing (test reports must be prepared by, or verified by, an independent accredited test laboratory)
- Acceptance Tests or Field Trials (category 2&3 only; test reports must be prepared by, or verified by, an independent accredited test laboratory)
- Representative testing (see clause 4.5.1)

Further information regarding the first three routes can be found in Guidance Note 5 on the ETL product testing framework\(^2\).

4.5.1 Representative testing

Where applications are being made for products of the same constructional design, which are less than or equal to 300kW, to be included on the Energy Technology Product List (ETPL), the type testing procedures set out in Annex F of BS EN 303-3:1999 or section 5.1.4 of EN 303-5:2012 or Annex C.2.1 of BS EN 304:1992 (as amended) may be used to select representative models for testing and to reduce the overall number of performance tests that must be completed.

Where applications are being made for products of the same constructional design, which are greater than 300kW, to be included on the Energy Technology Product List...

List (ETPL), test data may be submitted for a single representative model provided that the maximum rated output of the products being applied for is not more than twice, or less than half, the maximum rated output of the product tested. Where the range of rated outputs exceeds these limits, products should be grouped into size ranges that comply with these rules, and test data submitted for one representative model for each group.

Where representative testing is used, details of the design calculations and data used to predict the performance of products that have not been tested must be submitted.

It should be noted that:

- If a manufacturer voluntarily removes a representative model from the ETPL then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested; then all products based on the same representative models will be removed from the ETPL.

4.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

4.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

5 Burners with Controls

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
</tbody>
</table>

5.1 Scope

Burners with controls are used to provide heat for hot water, steam and thermal oil boilers, heaters and processes. They are widely used in industry and commerce.

A wide range of burners is available, and these are fitted with combustion controls that offer different levels of precision and repeatability of control. A selected range of burner systems designed to recover combustion exhaust gas heat are also available. The ECA Scheme aims to encourage the purchase of products that are able to accurately control combustion and maintain their efficiency over a specified turn down range.

5.2 Definitions

Burners with Controls covers products that are specifically designed to create and burn air and fuel mixtures in a safe, efficient and controlled manner, and to direct the
heat released through combustion into a pressurised vessel (or other combustion chamber).

Eight different categories of burners with controls are covered:

1. Gas fired and dual fuel burners rated up to, and including, 400kW.
2. Gas fired and dual fuel burners rated between 401kW and 1,200kW.
3. Gas fired and dual fuel burners rated in excess of 1,200kW.
4. Oil fired burners rated up to, and including, 400kW.
5. Oil fired burners rated between 401 kW and 1,200kW.
6. Oil fired burners rated in excess of 1,200kW.
7. Gas fired burners designed to operate with external or built-in thermal storage material that recovers exhaust gas heat (of all rated outputs).
8. Gas fired burners designed to operate with external or built-in exhaust gas recovery heat exchanger (of all rated outputs).

Products that are designed to use liquid or gaseous biofuels are also covered by these categories.

Investments in burners with controls can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.

5.3 Requirements

5.3.1 Eligibility requirements

To be eligible, products shall:

- Be gas and/or oil fired.
- Be a forced draught burner.
- Be fitted with air dampers that fully close on burner shutdown.
- Automatically respond to changes in heat demand by modulating their output in a continuous manner (or alternatively for oil-fired burners rated up to and including 400kW only, in a step-wise manner across at least three stages of output).
- Conform to the requirements of the Pressure Equipment Directive 2014/68/EU in respect of their design, manufacture and testing procedures, or be CE Marked.
- Not use any form of mechanical linkage between the product’s modulating fuel valve, and its air damper or air control valve, to adjust the product’s air to fuel ratio.
- Be fitted with a burner heat input control system which is amplitude-modulating or frequency-modulating (pulse firing).

To be eligible, products with a thermal input greater than or equal to 1MW, and less than 50MW, shall comply with the minimum requirements as stated in Annex II of the Medium Combustion Plant Directive (EU) 2015/2193.

In addition, products with a thermal output in excess of 400kW shall:
■ Incorporate a microprocessor based burner control system.

■ Where mechanical dampers are used to modulate the air flow to the burners, they shall be operated by a precision servomotor. The servomotor shall be controlled by a positional or flow based feedback mechanism that automatically adjusts its operation to correct for mechanical wear, valve stiction and hysteresis.

■ Where control valves are used to modulate the fuel flow to the burners, they shall be operated by a precision servomotor. The servomotor shall be controlled by a positional or flow based feedback mechanism that automatically adjusts its operation to correct for mechanical wear, valve stiction and hysteresis. (This requirement shall not apply to pneumatically operated modulating gas valves).

■ Where the product is gas fired or dual fuelled, use a variable speed motor controller (or variable speed drive) to operate its forced draught fan.

5.3.2 Performance requirements

For product categories 1 to 6, the product shall meet the following criteria:

■ Automatically respond to changes in heat demand by modulating the output whilst adjusting the ratio of air and fuel fed to the product’s burner in a manner that maintains combustion efficiency across the required turndown range and complies with the maximum permitted levels of oxygen and carbon monoxide in the product’s exhaust gases, as set out in Table 5.1.

■ Products shall not exceed the maximum permitted levels of oxygen (O\textsubscript{2}) and carbon monoxide (CO) in their exhaust gas at each of test points specified in Table 5.1.

Table 5.1 Minimum performance requirements for burners with controls.

<table>
<thead>
<tr>
<th>Product category</th>
<th>Minimum turndown ratio</th>
<th>Maximum O\textsubscript{2} level at test point</th>
<th>Maximum CO level All test points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>Mid</td>
</tr>
<tr>
<td>1. Gas fired and dual fuel burners rated up to, and including, 400 kW</td>
<td>3.33:1</td>
<td>3.0%</td>
<td>4.0%</td>
</tr>
<tr>
<td>2. Gas fired and dual fuel burners rated between 401 kW and 1,200 kW</td>
<td>4:1</td>
<td>3.0%</td>
<td>4.0%</td>
</tr>
<tr>
<td>3. Gas fired and dual fuel burners rated in excess of 1,200 kW</td>
<td>4:1</td>
<td>3.0%</td>
<td>4.0%</td>
</tr>
<tr>
<td>4. Oil fired burners rated up to, and including, 400 kW</td>
<td>3.33:1</td>
<td>3.0%</td>
<td>4.0%</td>
</tr>
<tr>
<td>5. Oil fired burners rated between 401 kW and 1,200 kW</td>
<td>3.33:1</td>
<td>3.0%</td>
<td>4.0%</td>
</tr>
<tr>
<td>6. Oil fired burners rated in excess of 1,200 kW</td>
<td>4:1</td>
<td>3.0%</td>
<td>4.0%</td>
</tr>
</tbody>
</table>

Where the required test points are:

■ High: the burner is operating at 100% of its maximum continuous rating.

■ Mid: the burner is operating at 50% of its maximum continuous rating.
Low: the burner is operating at a level corresponding to the specified minimum turndown, which is 25% of maximum continuous rating for 4:1 and 30% for 3.33:1.

And:

Dual fuel means that the product can separately burn both gas and oil.

In addition, gas fired and dual fuelled burners with a thermal output up to, and including, 400kW shall incorporate pneumatic or electronic air fuel ratio controls that permit the oxygen levels in the exhaust gases to be adjusted at each of the test points specified in Table 5.1.

For product categories 7 and 8, the product shall meet the following criteria:

- Automatically respond to changes in heat demand by modulating the output whilst adjusting the ratio of air and fuel fed to the product’s burner in a manner that maintains combustion air inlet temperature as set out in Table 5.2, while operating at 100% of its maximum continuous rating.
- Products shall not exceed the maximum permitted levels of nitrogen oxide (NO\textsubscript{x}) in their exhaust gas specified in Table 5.2, while operating at 100% of its maximum continuous rating.

Table 5.2 Minimum performance requirements for burners designed to recover exhaust gas heat

<table>
<thead>
<tr>
<th>Product category</th>
<th>Minimum air temperature entering the burner for combustion at 100% of maximum continuous rating</th>
<th>Maximum NO\textsubscript{x} level at 100% of maximum continuous rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Gas fired burners designed to operate with external or built-in thermal storage material that recovers exhaust gas heat (of all rated outputs).</td>
<td>75.0% of designed combustion chamber operating temperature</td>
<td>105 ppmv (Maximum O\textsubscript{2} level: 3.0%)</td>
</tr>
<tr>
<td>8. Gas fired burners designed to operate with external or built-in exhaust gas recovery heat exchanger (of all rated outputs).</td>
<td>37.5% of designed combustion chamber operating temperature</td>
<td>75 ppmv (Maximum O\textsubscript{2} level: 3.0%)</td>
</tr>
</tbody>
</table>

5.4 Measurement and Calculations

5.4.1 Measurement standards

Product performance shall be determined in accordance with the procedures and test conditions in the following standards (or equivalent procedures within applicable British Standards, other national standards of EU Member States or European Standards):

- BS EN 676:2003 (as amended), “Automatic forced draught burners for gaseous fuels”.

5.4.2 Calculation Requirements
Where the product’s turndown ratio is greater than the minimum required, performance at the low and mid test points may be calculated by linear interpolation of the test results. Where operation at the product’s maximum continuous rated output is not possible, performance at the high test point may be determined by extrapolation of test data at two additional test points (e.g. 70% and 90%).

For the avoidance of doubt oxygen levels in the product’s exhaust and combustion air inlet reference percentage shall be presented to one decimal place. Carbon monoxide and nitrogen oxide levels to zero decimal places. For example,

■ a gas fired burner rated in excess of 1,200kW and whose exhaust gases contain oxygen levels of 3.1%, and/or carbon monoxide levels of 21ppmv, at 100% of its maximum continuous rating, would be deemed a fail.
■ a gas fired burner (designed to operate with an external thermal storage material that recovers exhaust gas heat) with combustion air inlet temperature of 74.9% of designed combustion chamber operating temperature would be deemed a fail.
■ a gas fired burner (designed to operate with external or built-in exhaust gas recovery heat exchanger) with a nitrogen oxide level of 76ppmv (with oxygen levels measured at 3.0%), or a nitrogen oxide level of 75ppmv (with oxygen levels measured at 3.1%), at 100% of its maximum continuous rating, would be deemed a fail.

5.5 Verification for ETL Listing
Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

■ In-house testing – Self-certified
■ In-house testing – Self-tested and verified or cross-checked by an independent body
■ Witnessed testing
■ Independent testing
■ Representative testing (see clause 5.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework.

3 https://www.gov.uk/government/publications/energy-technology-list-etl-product-testing-framework
5.5.1 Representative testing
Where applications are being made for two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that all variants:

- Are designed to burn the same fuel(s) as the representative models.
- Have the same basic constructional design as the representative models.
- Use the same burner control system / mechanisms as the representative models.
- Have the same or better energy efficiency as the representative models. It should be noted that:
 - If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
 - If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

5.6 Conformity testing
Products listed on the ETL may be subject to the scheme's conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

5.7 Scope of Claim
Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

6 Condensing Economisers

<table>
<thead>
<tr>
<th>Date published</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
</tbody>
</table>

6.1 Scope
Condensing economisers are a type of heat exchanger that enables some of the sensible heat and latent heat from boiler flue gases to be recovered. This heat is normally used to preheat the boiler’s feedwater and to supply low grade heating requirements. Typically a condensing economiser will improve boiler net thermal efficiency (expressed in percentage terms) by at least 9 points (i.e. a boiler with efficiency of 84.0% is improved to at least 93.0%).

Investments in condensing economisers can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.
6.2 **Definitions**

Condensing Economisers are products specifically designed to improve boiler net thermal efficiency by recovering both sensible and latent heat from boiler flue gases.

6.3 **Requirements**

6.3.1 **Performance requirements**

The product must increase the net thermal efficiency of the boiler system to which it is designed to be fitted by at least 9.0%, when the boiler system is operating at the test points set out in Table 6.1.

<table>
<thead>
<tr>
<th>Test point % MCR</th>
<th>Increase in net thermal efficiency of boiler system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>>= 9.0%</td>
</tr>
<tr>
<td>50</td>
<td>>= 9.0%</td>
</tr>
<tr>
<td>100</td>
<td>>= 9.0%</td>
</tr>
</tbody>
</table>

">=" means "greater than or equal to"

Where MCR is the maximum continuous rating (MCR) of the boiler system for which the product is designed.

6.4 **Measurement and Calculations**

6.4.1 **Measurement Standards and Test Requirements**

The required minimum performance must be demonstrated using Methods A, B or C, as set out in 6.4.1.1, 6.4.1.2 and 6.4.1.3 below:

6.4.1.1 **Method A – Indirect measurement**

Under this test method, product performance must be demonstrated by measuring the improvement in net thermal efficiency of a test boiler resulting from the addition of the condensing economiser. Net thermal efficiency must be measured at test points that are equivalent to 30%, 50% and 100% of the maximum continuous rating (MCR) of the boiler system for which the product is designed.

Where BS 845:Part 1:1987 is used, the standard test conditions are: a maximum ambient air temperature of 25 degrees Centigrade and an excess combustion air level of not less than 15%.

6.4.1.2 **Method B – Direct measurement**

Under this test method, product performance must be demonstrated by calculating the improvement in boiler net thermal efficiency that will occur at 30 %, 50 % and 100 % of the maximum continuous rating (MCR) of the boiler system for which the
product is designed. This calculation must be based on an assessment of the transfer of heat power that will occur at each of these test points.

The assessment of transfer of heat power must be done in accordance with the procedures set out in EN 305:1997, EN 306:1997 and/or EN308:1997.

6.4.1.3 Method C – validated design calculations

Under this test method:

1. The product’s performance is determined from design calculations. The calculations should assess the improvement in the net thermal efficiency of a boiler system that the product will deliver at the full and part load conditions specified in Table 6.1 when tested in accordance with the procedures and test conditions specified in Method A.

2. The accuracy of these design calculations must be confirmed by interpolation and extrapolation of measurements of the improvement in net thermal efficiency actually realised by the product. The measurements must be obtained using an indirect method (flue gas loss method) from one of the test standards specified in Method A:

 a) At least one test point between 60% and 100% MCR, and:
 b) At least one test point between 20% and 40% MCR.

3. To be eligible, the improvement in the net thermal efficiency of the boiler system at the full and part load conditions realised by fitting the product to the boiler system must exceed the performance thresholds specified in Table 6.1.

The test report must include (or be accompanied by):

a) Details of the calculations used to determine product performance.

b) A copy of the published performance data for the product.

c) Manufacturer’s design data for the product.

d) The following test data, which must be obtained with the product operating under stable conditions at each selected test point before and after fitting the product:
 I. Analysis of flue gas composition, including as a minimum, the levels of oxygen (or carbon dioxide) and carbon monoxide in the flue gas.
 II. Ambient and flue gas temperatures.
 III. Net thermal efficiency of the boiler system.

e) Details of the boiler system used during the test.

6.4.2 Rounding

For the avoidance of doubt the increase in net thermal efficiency of the boiler system must be presented to one decimal place. As an example, a condensing economiser that delivers an increase in net thermal efficiency of 8.9% at 100% of the maximum continuous rating (MCR) of the boiler system for which the product is designed would be deemed to be a fail.

6.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:
■ In-house testing – Self-certified
■ In-house testing – Self-tested and verified or cross-checked by an independent body
■ Witnessed testing
■ Independent testing
■ Representative testing (see clause 6.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework.

6.5.1 Representative testing

Where applications are being made for condensing economiser products of the same constructional design to be included on the Energy Technology Product List (ETPL), test data may be submitted for a single representative model provided that the maximum rated output of the products being applied for is not more than twice, or less than half, the maximum rated output of the product tested. Where the range of rated outputs exceeds these limits, products should be grouped into size ranges that comply with these rules, and test data submitted for one representative model for each group.

It should be noted that:

■ If a manufacturer voluntarily removes a representative model from the ETPL then other products linked with that representative model may or may not be permitted to remain on the ETPL.
■ If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative models will be removed from the ETPL.

6.6 Conformity testing

Products listed on the ETL may be subject to the scheme's conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

6.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

7 Flue Gas Economisers

<table>
<thead>
<tr>
<th>Date published</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
</tbody>
</table>

7.1 Scope

Flue gas economisers are a type of heat exchanger that enables some of the sensible heat in boiler flue gases to be recovered. This heat is normally used to preheat the boiler’s feedwater. Typically a flue gas economiser will increase boiler net thermal efficiency (expressed in percentage terms) by at least 3 points (i.e. a boiler with efficiency of 89.0% is improved to at least 92.0%).

Investments in flue gas economisers can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

7.2 Definitions

Flue Gas Economisers are products that are specifically designed to improve boiler net thermal efficiency by recovering sensible heat from boiler flue gases.

7.3 Requirements

7.3.1 Performance requirements

The product must increase the net thermal efficiency of the boiler system to which it is designed to be fitted by at least 3.0%, when the boiler system is operating at the test points set out in Table 7.1.

Table 7.1 Performance test points for flue gas economisers

<table>
<thead>
<tr>
<th>Test point</th>
<th>Increase in net thermal efficiency of boiler system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>>= 3.0%</td>
</tr>
<tr>
<td>50</td>
<td>>= 3.0%</td>
</tr>
<tr>
<td>100</td>
<td>>= 3.0%</td>
</tr>
</tbody>
</table>

">=" means "greater than or equal to"

Where MCR is the maximum continuous rating (MCR) of the boiler system for which the product is designed.

7.4 Measurement and Calculations

7.4.1 Measurement Standards and Test Requirements

The required minimum performance must be demonstrated using Methods A, B or C, as set out in 7.4.1.1, 7.4.1.2 and 7.4.1.3 below.
7.4.1.1 Method A – indirect measurement
Under this test method, product performance must be demonstrated by measuring the improvement in net thermal efficiency of a test boiler resulting from the addition of the flue gas economiser. Net thermal efficiency must be measured at test points that are equivalent to 30%, 50% and 100% of the maximum continuous rating (MCR) of the boiler system for which the product is designed.

Boiler net thermal efficiency must be measured in accordance with the procedures set out in BS 845:Part 1:1987, BS EN 303-3:1999 or BS EN 304:1992. Where BS 845:Part 1:1987 is used, the standard test conditions are: a maximum ambient air temperature of 25 degrees Centigrade and an excess combustion air level of not less than 15%.

7.4.1.2 Method B – direct measurement
Under this test method, product performance must be demonstrated by calculating the improvement in boiler net thermal efficiency that will occur at 30%, 50% and 100% of the maximum continuous rating (MCR) of the boiler system for which the product is designed. This calculation must be based on an assessment of the transfer of heat power that will occur at each of these test points.

The assessment of transfer of heat power must be done in accordance with the procedures set out in EN 305:1997, EN 306:1997 and/or EN308:1997.

7.4.1.3 Method C – validated design calculations
Under this test method:
1. The product’s performance is determined from design calculations. The calculations should assess the improvement in the net thermal efficiency of a boiler system that the product will deliver at the full and part load conditions specified in Table 7.1 when tested in accordance with the procedures and test conditions specified in Method A.
2. The accuracy of these design calculations must be confirmed by interpolation and extrapolation of measurements of the improvement in net thermal efficiency actually realised by the product. The measurements must be obtained using an indirect method (flue gas loss method) from one of the test standards specified in Method A:
 a) At least one test point between 60% and 100% MCR, and:
 b) At least one test point between 20% and 40% MCR.
3. To be eligible, the improvement in the net thermal efficiency of boiler system at the full and part load conditions realised by fitting the product to the boiler system must exceed the performance thresholds specified in Table 7.1.

The test report must include (or be accompanied by):
 a) Details of the calculations used to determine product performance.
 b) A copy of the published performance data for the product.
 c) Manufacturer’s design data for the product.
 d) The following test data, which must be obtained with the product operating under stable conditions at each selected test point before and after fitting the product:
I. Analysis of flue gas composition, including as a minimum, the levels of oxygen (or carbon dioxide) and carbon monoxide in the flue gas.

II. Ambient and flue gas temperatures.

III. Net thermal efficiency of the boiler system.

e) Details of the boiler system used during the test.

7.4.2 Rounding

For the avoidance of doubt the increase in net thermal efficiency of the boiler system must be presented to one decimal place. As an example, a flue gas economiser that delivers an increase in net thermal efficiency of 2.9% at 100% of the maximum continuous rating (MCR) of the boiler system for which the product is designed would be deemed to be a fail.

7.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 7.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework⁵.

7.5.1 Representative testing

Where applications are being made for flue gas economiser products of the same constructional design to be included on the Energy Technology Product List (ETPL), test data may be submitted for a single representative model provided that the maximum rated output of the products being applied for is not more than twice, or less than half, the maximum rated output of the product tested. Where the range of rated outputs exceeds these limits, products should be grouped into size ranges that comply with these rules, and test data submitted for one representative model for each group.

It should be noted that:

- If a manufacturer voluntarily removes a representative model from the ETPL then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested,

⁵ https://www.gov.uk/government/publications/energy-technology-list-etl-product-testing-framework
then all products based on the same representative models will be removed from the ETPL.

7.6 **Conformity testing**

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

7.7 **Scope of Claim**

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from [HMRC](https://www.gov.uk).

8 **Gas-fired Condensing Water Heaters**

<table>
<thead>
<tr>
<th>Date published</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2004</td>
</tr>
</tbody>
</table>

8.1 **Scope**

Gas-fired condensing water heaters are used to provide hot water for domestic purposes or process heating, and offer an energy efficient method of generating hot water. They can be installed close to the point of use, or in a central plant room.

Gas-fired condensing water heaters are described as ‘storage’ type products if they generate hot water by heating water stored within the product itself. Other types of gas-fired condensing water heaters are described as ‘non-storage’ type products, and can be divided into continuous flow type products that are designed to instantaneously generate hot water directly from cold water, and those that heat water as it is circulated round a loop (which may also include buffer vessels).

Gas-fired condensing water heaters are available in a range of different efficiencies. The ECA Scheme aims to encourage the purchase of higher efficiency products.

The ECA Scheme covers three categories of gas-fired condensing water heaters:

1. **Storage type**, gas-fired condensing water heaters not exceeding 150kW
2. **Non-storage, instantaneous (or continuous flow) type**, gas-fired condensing water heaters
3. **Non-storage, circulator (or multi-pass) type**, gas-fired condensing water heaters.

Investments in gas-fired condensing water heaters can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

8.2 **Definitions**

Gas-fired condensing water heaters are products that are specifically designed to continuously provide hot water either by the direct heating of water as it passes through the product, or the heating of water contained in an integral storage vessel.
8.3 Requirements

8.3.1 Eligibility requirements

To be eligible products, must:

- Be gas-fired.
- Comply with the requirements of the Water Supply (Water Fittings) Regulations 1999, the Water Byelaws 2000 Scotland and the Water Regulations in Northern Ireland (for example, by inclusion in the Water Regulations Advisory Scheme’s Water Fittings and Materials Directory).
- Be CE Marked.

In addition, non-storage – circulator type, gas-fired condensing water heaters must:

- Use fully premixed burners or an appropriately matched forced draught burner (or burners).
- Automatically respond to changes in hot water demand by modulating their output in a continuous manner across a minimum turndown ratio of 3.33:1, without initiating a purge cycle.
- Products with a thermal output in excess of 400kW must either use burners from the “burners with controls” part of the Energy Technology Product List or:
 - Incorporate a microprocessor based burner control system.
 - Use a variable speed motor controller (or Variable Speed Drive) to operate each forced draught fan incorporated into the product.
 - Where mechanical dampers are used to modulate the air flow to the burners, they must be operated by a precision servomotor. The servomotor must be controlled by a positional or flow based feedback mechanism that automatically adjusts its operation to correct for mechanical wear, valve stiction and hysteresis.
 - Where control valves are used to modulate the fuel flow to the burners, they must be operated by a precision servomotor. The servomotor must be controlled by a positional or flow based feedback mechanism that automatically adjusts its operation to correct for mechanical wear, valve stiction and hysteresis. (This requirement shall not apply to pneumatically operated modulating gas valves).

In addition, non-storage – instantaneous type, gas-fired condensing water heaters exceeding 70kW must be fitted with an integral, fully pre-mixed, modulating burner.

8.3.2 Performance requirements

Eligible products must meet or exceed the appropriate performance criteria:

- Products with a rated heat output ≤ 400kW, must meet or exceed the gross water heating energy efficiency η_{wh} thresholds shown in Table 8.1 at the declared load profile.
- Products with a rated heat output > 400kW, must meet or exceed the gross thermal efficiency thresholds shown in Table 8.2.
Table 8.1 Minimum gross water heating energy efficiency (η_{wh}) for gas-fired condensing water heaters with a rated heat output of 400kW or less (all product categories)

<table>
<thead>
<tr>
<th>Declared load profile</th>
<th>3XS</th>
<th>XXS</th>
<th>XS</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>XL</th>
<th>XXL</th>
<th>3XL</th>
<th>4XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Heating Energy Efficiency (η_{wh})</td>
<td>$\geq 70.0%$</td>
<td>$\geq 80.0%$</td>
<td>$\geq 85.0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where:

- Water Heating Energy Efficiency (η_{wh}) is the ratio between the useful energy in the water provided and the energy required for its generation, expressed as a percentage.
- Load profile is a given sequence of water draw-offs, as specified in in Annex III, Table 1 of Commission Regulation (EU) No 814/2013 “Ecodesign requirements for water heaters and hot water storage tanks”.

Table 8.2 Minimum gross thermal efficiency for gas-fired condensing water heaters with a rated heat output of over 400kW

<table>
<thead>
<tr>
<th>Product category</th>
<th>Nominal heat input (kW)</th>
<th>Test conditions</th>
<th>Gross thermal efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non storage – instantaneous type</td>
<td>$> 400kW$</td>
<td>At 100% load, flow/return temperatures of 80/60°C</td>
<td>$\geq 85.6%$</td>
</tr>
<tr>
<td>Non storage - circulator type</td>
<td>$> 400kW$</td>
<td>At 30% load, return temperature of 30°C</td>
<td>$\geq 93.7%$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 100% load, flow/return temperatures of 80/60°C</td>
<td>$\geq 85.6%$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 30% load, return temperature of 30°C</td>
<td>$\geq 93.7%$</td>
</tr>
</tbody>
</table>

"\geq" means “greater than or equal to”

For products with a rated heat output $\leq 400kW$, the load profile used for the test must be declared by the manufacturer and shall be the maximum load profile or the load profile one below the maximum load profile for the product.

Products with a rated heat output $> 400kW$ must meet or exceed the minimum gross thermal efficiencies at both full load and part load test conditions, as specified in Table 8.2.

8.4 Measurement and Calculations

8.4.1 Measurement standards

All products must be tested in accordance with the procedures set out in one of the test standards recognised by the ETL as set out below, or in accordance with equivalent procedures for assessing thermal efficiency within applicable British or European Standards, or the national standards of EU Member States.

Tests to determine gross water heating energy efficiency (products $\leq 400kW$) must be carried out at the conditions specified in BS EN 13203-2:2015.
Tests to determine gross thermal efficiency (products > 400kW) must be carried out at the test conditions specified in an appropriate test standard named in Table 8.3.

Table 8.3 ETL recognised test standards to determine gross thermal efficiency

<table>
<thead>
<tr>
<th>Test standard</th>
<th>Applicable product categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS EN 89:2000 Gas-fired storage water heaters for the production of domestic hot water</td>
<td>☑</td>
</tr>
<tr>
<td>BS EN 89:2015 Gas-fired storage water heaters for the production of domestic hot water</td>
<td>☑</td>
</tr>
<tr>
<td>BS EN 303-7:2006 Heating boilers — Part 7: Gas-fired central heating boilers equipped with a forced draught burner of nominal heat output not exceeding 1,000kW’.</td>
<td>☑</td>
</tr>
<tr>
<td>BS EN 15502-1:2012+A1:2015 Gas-fired heating boilers. General requirements and tests</td>
<td>☑</td>
</tr>
<tr>
<td>BS EN 15502-2:2012 Gas-fired central heating boilers. Specific standard for type C appliances and type B2, B3 and BS appliances of a nominal heat input not exceeding 1 000 kW</td>
<td>☑</td>
</tr>
<tr>
<td>BS EN 483:1999+A4:2007 Gas-fired central heating boilers. Type C boilers of nominal heat input not exceeding 70kW’</td>
<td>☑</td>
</tr>
<tr>
<td>BS EN 677:1998 Gas-fired central heating boilers. Specific requirements for condensing boilers with a nominal heat input not exceeding 70kW</td>
<td>☑</td>
</tr>
<tr>
<td>BS EN 26:1998 Gas fired instantaneous water heaters for the production of domestic hot water, fitted with atmospheric burners</td>
<td>☑ ☑</td>
</tr>
<tr>
<td>BS EN 26:2012 Gas-fired instantaneous water heaters for the production of domestic hot water</td>
<td>☑ ☑</td>
</tr>
<tr>
<td>BS EN 26:2015 Gas-fired instantaneous water heaters for the production of domestic hot water</td>
<td>☑ ☑</td>
</tr>
</tbody>
</table>

8.4.2 Rounding

For the avoidance of doubt, all efficiency test data should be presented to one decimal place. As an example, a 500kW non storage, instantaneous, gas fired condensing water heater with a gross thermal efficiency of 85.5% at the full load condition would be deemed to be a fail.

8.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 8.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework.

8.5.1 Representative testing

Where applications are being made for gas fired condensing water heaters that are variants of the same constructional design and rated outputs up to and including 400 kW to be included on the Energy Technology Product List (ETPL), test data may be submitted for a representative selection of models. The representative models must be selected by dividing the range of products into groups of models with similar design characteristics, and testing a model in the lowest quartile of predicted performance in each group. The performance of each model in the group must be predicted using a validated mathematical model. As a minimum, at least one model must be tested in each range of products.

Where applications are being made for products of the same constructional design and rated outputs greater than 400 kW to be included on the Energy Technology Product List (ETPL), test data may be submitted for a single representative model provided that the maximum rated output of the products being applied for is not more than twice, or less than half, the maximum rated output of the product tested. Where the range of rated outputs exceeds these limits, products should be grouped into size ranges that comply with these rules, and test data submitted for one representative model for each group.

It should be noted that:

- If a manufacturer voluntarily removes a representative model from the ETPL then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative models will be removed from the ETPL.

8.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

8.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

9 Heat Recovery from Condensate and Boiler Blowdown

<table>
<thead>
<tr>
<th>Date published</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
</tbody>
</table>

9.1 Scope

Significant amounts of heat can be recovered from the water extracted during boiler blowdown and from steam condensate. However, this water can contain significant levels of contaminants that reduce the efficiency of the heat recovery process.

The ECA Scheme encourages the purchase of heat recovery equipment that is specifically designed to recover heat from steam condensate and/or water from boiler blowdown.

The ECA Scheme covers three categories of product:

1. Flash steam recovery vessels or packages with associated control and safety devices
2. Heat exchanger units or packages with associated control and safety devices
3. Flash steam vessel with heat exchanger packages with associated control and safety devices

Where packages may include the following components necessary for operation of the equipment: pressure gauges, vacuum breakers, vent heads, valves and steam traps.

Investments in equipment for heat recovery from condensate and boiler blowdown can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

9.2 Definitions

Heat recovery from condensate and boiler blowdown covers products that are specifically designed to recover heat from steam condensate and/or water from boiler blowdown, by means of heat exchangers and/or flash steam recovery vessels.

9.3 Requirements

9.3.1 Eligibility requirements

To be eligible products, must:

- Be specifically designed to recover heat from steam condensate and/or water from boiler blowdown, by means of heat exchangers and/or flash steam recovery vessels.
- Conform to the requirements of the EU Pressure Equipment Directive PED 97/23/EC in respect of their design, manufacture and testing procedures.
9.4 **Verification for ETL Listing**

There are no testing requirements, however manufacturers shall provide sales and technical brochures to evidence the conformity of their products against the requirements from section 9.3.

9.5 **Conformity testing**

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

9.6 **Scope of Claim**

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

10 **Heating Management Controllers (for Wet Heating Systems)**

<table>
<thead>
<tr>
<th>Date published</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2003</td>
</tr>
<tr>
<td>Former name</td>
<td>Optimising Controls for Wet Heating Systems</td>
</tr>
</tbody>
</table>

10.1 **Scope**

Heating management controllers (for wet heating systems) realise fuel savings by adapting boiler firing and heat distribution patterns to match variations in heat demand and user requirements.

A wide range of heating management controls is available for wet heating systems including products designed to control space heating within both zoned and un-zoned buildings. The ECA Scheme aims to encourage the purchase of products that automatically adapt to changes in weather conditions, and thermal response time of the building and/or wet heating system.

The ECA Scheme covers three categories of product:

1. Standalone units that are self-contained control units that are designed to directly control the operation of, and to be directly connected to, the external control inputs of the boilers/burners, pumps and control valves in a wet heating system.
2. ‘Add-on’ modules that designed to be incorporated into other control systems, and to either directly, or indirectly, control the operation of wet heating systems.
3. Packaged products that consist of two or more control modules or units that are designed to be connected together during installation, and to either directly, or indirectly, control the operation of wet heating systems.

Investments in heating management controllers (for wet heating systems) can only qualify for Enhanced Capital Allowances if the product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.
10.2 Definitions

Heating management controllers (for wet heating systems) are products that are specifically designed to control heat generation and distribution within a wet heating system in an energy efficient manner that reflects weather conditions, occupation schedules and user requirements.

10.3 Requirements

10.3.1 Eligibility requirements

To be eligible, products must:

1. Incorporate a microprocessor based controller that is pre-programmed to:
 a) Automatically control heat generation and heat distribution within a wet heating system, in a manner that reflects weather conditions and building occupation schedules.
 b) Automatically switch between operating modes, in accordance with the predefined weekly occupation schedule of the space (or spaces) being heated.
 c) Maintain the temperature of the space or spaces being heated within pre-set limits, by modulating the heat flow around each heating circuit, in response to the output of one or more temperature sensors.

2. Be designed to have at least two of the following operating modes:
 a) A “normal” operating mode in which the wet heating system is operated in a manner consistent with the building being occupied, or prepared for occupation.
 b) An “economy” mode where the wet heating system operated at a reduced level to reflect, for example, the fact that the building is unoccupied, or reduced levels of activity in the building, or
 c) A “standby” or “holiday” mode where the wet heating system is switched off or operated solely for fabric, frost and equipment protection.

3. Incorporate:
 a) An optimum start mechanism that monitors external and/or internal temperatures, and calculates when boilers need to be switched on in order to just reach pre-set temperatures by the start of the next occupancy period.
 b) A “self-learning” algorithm that automatically monitors the accuracy of the optimum start mechanism and periodically updates the heating curve that the mechanism uses, to reflect changes in building characteristics.
 c) A “self-adaptive weather compensation” mechanism that automatically saves energy during milder weather conditions, by reducing the temperature set-point of the boiler water circuit as the external temperature rises, and also the temperature of, or heat flow through, any individual zone heating circuits controlled.
 d) A “frost protection” mechanism that monitors internal or external temperatures (or pipework temperatures), and switches on boilers and heating circuits (as required), in order to prevent equipment and pipework from “freezing up”.

Page 38 of 241
e) A building fabric protection mechanism that monitors external or internal temperatures and switches heating on to prevent condensation occurring.

f) A mechanism that prevents the boilers supplying the heating system from “dry cycling” (i.e. switching on and off), when there is no change in heat demand.

g) Interlock and inhibit mechanisms that can be used to prevent simultaneous heating and cooling, and space heating when windows have been opened.

h) An anti-tampering mechanism that prevents the product’s control strategy and configuration settings from being modified and automatic control from being disabled, except during commissioning, maintenance or testing.

4. Provide facilities that enable building managers to:

a) Define the normal occupation times for the building and for each zone controlled (in intervals of five minutes or less), for each day of the week, including at least two periods of occupation per day (i.e. at least 14 different occupation period per week).

b) Define the temperature set-points for each operating mode to +/- 1 degree centigrade, and separate set-points for each space heating circuit controlled.

c) Define periods or circumstances throughout the year when the wet heating system should be placed into economy, holiday or standby modes.

d) Define a separate seven-day schedule for the operation of any domestic hot water (DHW) system controlled, including at least two periods of operation per day.

e) “Temporarily override” or manually adjust the degree (or amount) of weather compensation applied to each heating circuit controlled.

5. Provide facilities that enable building users or managers to:

a) “Temporarily override” the pre-set time when the heating is scheduled to be switched off for a predefined period not exceeding 24 hours per override.

b) Only adjust the temperature set-points in the space (or spaces) being heated for a limited period of time, or by a limited amount (or allow no user adjustment).

c) Switch the wet heating system into economy or standby mode for the remaining portion of a pre-set occupation period.

6. Conform with the requirements of the EU EMC Directive 89/336/EEC (as amended) or its replacement EU EMC Directive 2004/108/EC, or be CE Marked.

10.4 Verification for ETL Listing

There are no testing requirements, however manufacturers shall provide sales and technical brochures to evidence the conformity of their products against the requirements from section 10.3.

10.5 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.
10.6 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

11 Hot Water Boilers

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
</tbody>
</table>

11.1 Scope

Hot water boilers are used to produce hot water for space heating, process heating and domestic uses. They are available in a wide range of different designs and efficiencies.

The ECA scheme aims to encourage the purchase of the higher efficiency, modulating, gas and oil fired hot water boilers, including products that are designed to use liquid and gaseous biofuels.

The ECA Scheme covers four categories of products:

1. High temperature, high pressure, high efficiency hot water boilers with rated outputs greater than 400kW.
 Boilers designed to operate with a water pressure greater than 6 bar and/or outlet water temperature greater than 105°C, and that are not designed to recover latent heat from flue gases by condensing water vapour.

2. Low temperature, low pressure, high efficiency hot water boilers with rated outputs greater than 400kW.
 Boilers designed to operate with a water pressure up to and including 6 bar and/or an outlet water temperature up to and including 105°C that are not designed to recover latent heat from flue gases by condensing water vapour.

3. Condensing hot water boilers with rated outputs greater than 70kW:
 Boilers designed to recover latent heat from flue gas water vapour.

4. Condensing hot water boilers with rated outputs up to 70kW: Boilers designed to recover latent heat from flue gas water vapour.

Investments in hot water boilers can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.

11.2 Definitions

Hot water boilers are products that are specifically designed to heat water by means of a heat exchanger that transfers heat from combustion into the water as it passes through the product.
11.3 Requirements

11.3.1 Eligibility requirements

To be eligible, products shall:

- Be gas and/or oil fired (where gas includes biogas and oil includes liquid biofuels).
- Automatically respond to changes in hot water demand by modulating their output in a continuous manner across a minimum specified turndown ratio, as set out in Table 11.1 in the performance criteria below, without initiating a purge cycle.
- Conform to the requirements of the Pressure Equipment Directive 2014/68/EC in respect of their design, manufacturer and testing procedures, or be CE Marked.

To be eligible, products with a thermal input greater than or equal to 1MW, and less than 50MW, shall comply with the minimum requirements as stated in Annex II of the Medium Combustion Plant Directive (EU) 2015/2193.

In addition, products with a rated output greater than 400kW shall either use burners from the “burners with controls” part of the Energy Technology Product List or:

- Incorporate a microprocessor based control system that continuously modulates burner output in response to measured boiler temperature or pressure values.
- Use fully pre-mixed burners, or forced draught burners. Where forced draft burners are used, automatic (electronic or pneumatic) air fuel ratio controls shall be fitted.
- Where mechanical dampers are used to modulate the air flow to the burners, they shall be operated by a precision servomotor. The servomotor shall be controlled by a positional or flow based feedback mechanism that automatically adjusts its operation to correct for mechanical wear, valve stiction and hysteresis.
- Where control valves are used to modulate the fuel flow to the burners, they shall be operated by a precision servomotor. The servomotor shall be controlled by a positional or flow based feedback mechanism that automatically adjusts its operation to correct for mechanical wear, valve stiction and hysteresis. (This requirement shall not apply to pneumatically operated modulating gas valves).
- Where the product is gas fired or dual fuelled, use a variable speed motor controller (or variable speed drive) to operate each fan incorporated into the product that controls air flow rate to the burner and, where relevant, the fuel-air pre-mixer.

Products with a rated output of up to 400kW shall be fitted with integrated burners. For category 1 and 2 products, the respective thresholds as detailed in Table 11.1 may be achieved with or without an economiser designed to recover specific heat from the exhaust flue gas.
11.3.2 Performance requirements

Eligible products shall meet or exceed the minimum thermal efficiencies set out in Table 11.1 below at the specified part and full load test conditions, which vary according to product category and fuel type.

Table 11.1 Performance requirements and test points for hot water boilers

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Fuel Type</th>
<th>Turndown ratio</th>
<th>Test point (% of Maximum Nominal Output)</th>
<th>Gross thermal efficiency %</th>
<th>Seasonal Space Heating Energy Efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. High temperature, high pressure, high efficiency hot water boilers</td>
<td>Gas, oil or dual fuelled</td>
<td>>= 3.33:1</td>
<td>30</td>
<td>>= 83.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>>= 83.0%</td>
<td></td>
</tr>
<tr>
<td>2. Low temperature, low pressure, high efficiency hot water boilers</td>
<td>Gas, oil or dual fuelled</td>
<td>>= 3.33:1</td>
<td>30</td>
<td>>= 83.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>>= 83.0%</td>
<td></td>
</tr>
<tr>
<td>3. Condensing hot water boilers >70kW</td>
<td>Gas fired or dual fuelled</td>
<td>>= 3.33:1</td>
<td>30</td>
<td>>= 97.3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>>= 87.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oil fired</td>
<td></td>
<td>30</td>
<td>>= 94.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>>= 89.0%</td>
<td></td>
</tr>
<tr>
<td>4. Condensing hot water boilers <=70kW</td>
<td>Gas, oil or dual fuelled</td>
<td>>= 3.33:1</td>
<td></td>
<td></td>
<td>>= 93%</td>
</tr>
</tbody>
</table>

“>=” means “greater than or equal to”
“<=” means “less than or equal to”

11.4 Measurement and Calculations

11.4.1 Measurement Standards and Test Requirements

Product performance shall be demonstrated using Method A, Method B or Method C (as set out in 11.4.1.2, 11.4.1.3 and 11.4.1.4 below), which are subject to the following restrictions:

- Method A shall only be used, where all the burners incorporated in the product are listed on the “burners with controls” part of the Energy Technology Product List.
- Method B shall be used to demonstrate the performance of modular boilers, or where any of the burners incorporated in the product are not listed on the “burners with controls” part of the Energy Technology Product List. A modular boiler is defined as an assembly of two or more similar (but not necessarily identical) modules, each with their own heat exchanger, burner, and control and safety devices. The assembly has common water

7 As defined in EU Regulation No 813/2013
feed and return connections, but the water flow to, and flow from each module is independently controlled.

■ Method C may only be used for category 1 and 2 boilers with rated outputs above 400kW and category 3 boilers with rated outputs above 900kW, where it is not possible to measure product performance in a laboratory due to product size.

All performance measurements shall be carried out in accordance with the procedures set out in one, or more, of the test standards recognised by the ETL as set out in Table 11.2, or in accordance with equivalent procedures for assessing gross thermal efficiency within applicable British or European Standards, or the national standards of EU Member States. The selected test standard(s) shall be appropriate to the specific type of boiler tested.

Table 11.2 ETL recognised test standards

<table>
<thead>
<tr>
<th>Test standard</th>
<th>Applicable product categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS EN 625:1996 ‘Gas-fired central heating boilers. Specific requirements for the domestic hot water operation of combination boilers of nominal heat input not exceeding 70kW’</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>BS EN 483:1999+A4:2007 ‘Gas-fired central heating boilers. Type C boilers of nominal heat input not exceeding 70kW’</td>
<td>☑</td>
</tr>
<tr>
<td>BS EN 677:1998 ‘Gas-fired central heating boilers. Specific requirements for condensing boilers with a nominal heat input not exceeding 70kW’</td>
<td>☑</td>
</tr>
<tr>
<td>BS EN 13836:2006 ‘Gas fired central heating boilers. Type B boilers of nominal heat input exceeding 300kW, but not exceeding 1 000kW’</td>
<td>☑</td>
</tr>
<tr>
<td>BS EN 15417:2006 ‘Gas-fired central heating boilers. Specific requirements for condensing boilers with a nominal heat input greater than 70kW but not exceeding 1000kW’</td>
<td>☑</td>
</tr>
<tr>
<td>prEN 15420:2005 ‘EN 15420. Gas-fired central heating boilers. Type C boilers of nominal heat input exceeding 70kW, but not exceeding 1000kW’ (CEN document code 06/3014913 DC)</td>
<td>☑</td>
</tr>
<tr>
<td>BS 845-1:1987 ‘Methods for Assessing thermal performance of boilers for steam, hot water and high temperature heat transfer fluids — Part 1: Concise procedure’</td>
<td>☑ ☑ ☑ ☑</td>
</tr>
<tr>
<td>BS 7190:1989 ‘Method for assessing thermal performance of low temperature hot water boilers using a test rig’</td>
<td>☑ ☑ ☑ ☑</td>
</tr>
<tr>
<td>BS EN 303-7:2006 ‘Heating boilers — Part 7: Gas-fired central heating boilers equipped with a forced draught burner of nominal heat output not exceeding 1,000 kW’.</td>
<td>☑ ☑ ☑ ☑</td>
</tr>
<tr>
<td>BS EN 304:1992 ‘Heating boilers — Test code for heating boiler for atomising oil burners’ (as amended).</td>
<td>☑ ☑ ☑ ☑</td>
</tr>
</tbody>
</table>
Where BS 845-1:1987 is used, the following standard test conditions shall be observed:

- A maximum ambient air temperature of 25°C.
- An excess combustion air level of not less than 15%.

11.4.1.2 Method A - separate testing boilers and burners

Under this test method:

1. Boiler and burner performance are demonstrated separately.
2. Boiler performance can be assessed using any burner (or burners) that can provide the heat input and operational stability needed to complete the test.
3. The boiler’s gross thermal efficiency at full load (100%) shall be measured in accordance with the procedures set out in an ETL recognised standard (Table 11.2).
4. The boiler’s gross thermal efficiency at part load (30%) is then inferred from burner performance data and design calculations of burner/boiler matching.

11.4.1.3 Method B – integrated testing at full and part loads

Under this test method, overall product performance shall be demonstrated by:

1. Measuring the gross thermal efficiency at the test points specified in Table 11.1, in accordance with the procedures set out in an ETL recognised standard (Table 11.2).

11.4.1.4 Method C – validated design calculations

Under this test method:

1. The product’s gross thermal efficiency at the full and part load conditions specified in Table 11.1 and the test conditions specified in one of the ETL recognised standards (Table 11.2) is determined from design calculations.
2. The accuracy of these design calculations shall be confirmed by using an indirect method (flue gas loss method) from one of the ETL recognised standards (Table 11.2) to measure the product’s actual gross thermal efficiency:
 a) At least one test point between 60% and 100% of product’s maximum rated input at the temperature conditions specified for the 100% test point, and:
b) At least one test point between 20% and 40% of product's maximum rated input at or near the temperature conditions specified for the 30% test point.

3. To be eligible, the product's gross thermal efficiency shall exceed the performance thresholds specified in Table 11.1.

The test report shall include (or be accompanied by):

a) Details of the calculations used to determine product performance.

b) A copy of the published performance data for the product.

c) Manufacturer's design data for the product.

d) The following test data, which shall be obtained with the product operating under stable conditions at each selected test point:

 I. Analysis of flue gas composition, including as a minimum levels or oxygen or carbon dioxide and carbon monoxide.

 II. Ambient and flue gas temperatures.

 III. Total conductive, convective and radiative loss rate.

 IV. Gross thermal efficiency.

e) Details of the burners used during the test.

11.4.2 Rounding

For the avoidance of doubt gross thermal efficiency test data shall be presented to 1 decimal place. As an example, a gas fired condensing hot water boiler >70kW with a gross thermal efficiency of 87.3% at 100% of its maximum rated output would be deemed to be a fail.

11.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Acceptance Tests or Field Trials (Category 1 & 2 above 400kW and Category 3 above 900kW)
- Representative testing (see clause 11.5.1)

Further information regarding the first five routes can be found in Guidance Note 5 on the ETL product testing framework.

8 https://www.gov.uk/government/publications/energy-technology-list-etl-product-testing-framework
11.5.1 **Representative testing**

Where applications are being made for hot water boilers that are variants of the same constructional design and rated outputs up to and including 400kW to be included on the Energy Technology Product List (ETPL), test data may be submitted for a representative selection of models. The representative models shall be selected by dividing the range of products into groups of models with similar design characteristics, and testing a model in the lowest quartile of predicted performance in each group. The performance of each model in the group shall be predicted using a validated mathematical model. As a minimum, at least one model shall be tested in each range of products.

Where applications are being made for products of the same constructional design and rated outputs greater than 400kW to be included on the Energy Technology Product List (ETPL), test data may be submitted for a single representative model provided that the maximum rated output of the products being applied for is not more than twice, or less than half, the maximum rated output of the product tested. Where the range of rated outputs exceeds these limits, products should be grouped into size ranges that comply with these rules, and test data submitted for one representative model for each group.

It should be noted that:

- If a manufacturer voluntarily removes a representative model from the ETPL then other products linked with that representative model may or may not be permitted to remain on the ETPL.

- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative models will be removed from the ETPL.

11.6 **Conformity testing**

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

11.7 **Scope of Claim**

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

12 **Retrofit Burner Control Systems**

<table>
<thead>
<tr>
<th>Date published</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
</tbody>
</table>

12.1 **Scope**

Burners are used to provide heat for hot water, steam and thermal oil boilers, heaters and processes. They are widely used in industry and commerce. Traditionally adjustable cams and mechanical linkages have been used to control the fuel valves and air dampers that modulate burner heat output. These
mechanisms are susceptible to mechanical wear and hysteresis, and are progressively being replaced by more accurate burner control systems.

A range of retrofit burner control systems is available, and these offer different levels of precision and repeatability of control. The ECA Scheme aims to encourage the purchase of microprocessor-based products that are able to accurately control combustion and maintain burner efficiency over a specified turn down range.

As installers assemble retrofit burner control systems on site from standard components from different manufacturers, which reflect the specific requirements of the installation, only the retrofit burner control units are listed the Energy Technology Product List (ETPL).

Investments in retrofit burner control systems can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

12.2 Definitions

Retrofit burner control systems are products that are specifically designed to automatically control in an energy efficient manner, the operation of industrial and commercial burners, and the matching of burner heat production with heat demand.

12.3 Requirements

12.3.1 Eligibility requirements

To be eligible, products must:

- Incorporate a microprocessor based control system.
- Be designed to:
 a) Control one or more forced draught, gas and/or oil fired burners.
 b) Use a precision servomotor to adjust any mechanical airflow dampers and/or modulating gas valves that control the air-fuel ratio of the burners controlled. Each precision servomotor must be controlled by a positional or flow based feedback mechanism that automatically adjusts its operation to correct for mechanical wear, valve stiction and hysteresis.
 c) Where the burners being controlled are gas fired or dual fuelled, use a variable speed motor drive or controller to operate the burners’ forced draught fans.
 d) Fully close the air dampers of the burners being controlled on shutdown.
- Automatically respond to changes in heat demand by modulating burner output:
 a) In a continuous manner across a minimum specified turndown ratio of 4:1
 b) Whilst adjusting the ratio of air and fuel fed to the burner in a manner that maintains combustion efficiency across the required turndown range and complies with the maximum permitted levels of oxygen and carbon monoxide in the burner’s exhaust gases, as set out in Table 12.1.
■ Be CE Marked, or conform with the EU EMC Directive 89/336/EEC (as amended) or its replacement EU EMC Directive 2004/108/EC in respect of their design, manufacturer and testing procedures.

■ Not depend on any form of mechanical linkage between a modulating gas valve, and air damper or air control valve, when adjusting the air fuel ratio of a burner.

■ Not incorporate any form of control valve, actuator, or variable speed drive.

12.3.2 Performance requirements

Products must be able to control all categories of burners for which they are designed in a manner that does not exceed the maximum permitted levels of oxygen (O_2) and carbon monoxide (CO) in the burners’ exhaust gas at each of test points specified in Table 12.1.

Table 12.1 Minimum performance requirements for retrofit burner control systems

<table>
<thead>
<tr>
<th>Maximum O_2 level at test point</th>
<th>Maximum CO level</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% MCR</td>
<td>50% MCR</td>
</tr>
<tr>
<td>3.0%</td>
<td>4.0%</td>
</tr>
</tbody>
</table>

Where MCR is the product’s maximum continuous rating.

12.4 Measurement and Calculations

12.4.1 Measurement standards

Product performance at the three required test points specified in Table 12.1 (above) must be determined by fitting the product to an appropriate burner and testing in accordance with the procedures and test conditions in one of the following standards:

■ BS EN 676:2003 (as amended) “Automatic forced draught burners for gaseous fuels”.

12.4.2 Calculation Requirements

Where the product’s turndown ratio is greater than the minimum required, performance at the 25% and 50% test points may be calculated by linear interpolation of the test results. Where operation at the burner’s maximum continuous rated output is not possible, performance at the 100% test point may be determined by extrapolation of test data at two additional test points (e.g. 70% and 90%).

12.4.3 Rounding

For the avoidance of doubt, the oxygen levels in the test burner’s exhaust should be presented to 1 decimal place, and carbon monoxide levels to zero decimal places. As an example, where the test burner’s exhaust gases contain oxygen levels of 3.1%, or carbon monoxide levels of 21ppmv, at 100% of the test burner’s maximum continuous rating, the product would be deemed to be a fail.
12.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing

Further information regarding the routes can be found in Guidance Note 5 on the ETL product testing framework\(^9\).

12.6 Conformity testing

Products listed on the ETL may be subject to the scheme's conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

12.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

13 Steam Boilers

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
</tbody>
</table>

13.1 Scope

Steam boilers are used to produce steam for process heating, space heating and water heating. They consist of a burner, a pressure vessel containing a heat exchanger, and associated burner control systems and boiler control equipment.

Steam boilers are available in a range of different designs and efficiencies. The ECA Scheme aims to encourage the purchase of the higher efficiency gas and oil fired steam boilers, including products that are designed to use liquid and gaseous biofuels.

Investments in steam boilers can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.

13.2 Definitions
Steam boilers are products that are specifically designed to convert water into pressurised steam by means of a burner that converts fuel into heat and a heat exchanger that transfers the heat into the water as it passes through the product.

13.3 Requirements

13.3.1 Eligibility requirements
To be eligible, products shall:

■ Be gas and/or oil fired.
■ Use an appropriately matched forced draught burner (or burners).
■ Automatically respond to changes in steam demand by modulating their output in a continuous manner across a minimum specified turndown ratio, as set out in the performance criteria below, without initiating a purge cycle.
■ Conform to the requirements of the Pressure Equipment Directive 2014/68/EU in respect of their design, manufacturer and testing procedures, or be CE Marked.

To be eligible, products with a thermal input greater than or equal to 1MW, and less than 50MW, shall:

■ Comply with the minimum requirements as stated in Annex II of the Medium Combustion Plant Directive (EU) 2015/2193.

In addition, products with a thermal output in excess of 400kW shall either use burners from the “burners with controls” part of the Energy Technology Product List or:

■ Incorporate a microprocessor based control system that continuously modulates burner output in response to measured boiler temperature or pressure values.
■ Use fully pre-mixed burners, or forced draught burners. Where forced draft burners are used, automatic (electronic or pneumatic) air fuel ratio controls shall be fitted.
■ Where mechanical dampers are used to modulate the air flow to the burners, they shall be operated by a precision servomotor. The servomotor shall be controlled by a positional or flow based feedback mechanism that automatically adjusts its operation to correct for mechanical wear, valve stiction and hysteresis.
■ Where control valves are used to modulate the cc to the burners, they shall be operated by a precision servomotor. The servomotor shall be controlled by a positional or flow based feedback mechanism that automatically adjusts its operation to correct for mechanical wear, valve stiction and hysteresis. (This requirement shall not apply to pneumatically operated modulating gas valves).
■ Where the product is gas fired or dual fuelled, use a variable speed motor controller (or variable speed drive) to operate each fan incorporated into the product that controls air flow rate to the burner and, where relevant, the fuel-air pre-mixer.
13.3.2 Performance requirements
Products shall have a minimum net thermal efficiency of 92.0% at the full load and part load conditions set out in Table 13.1 below.

Table 13.1 Performance test points for steam boilers

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Turndown ratio</th>
<th>Test point % MCR</th>
<th>Net thermal efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas fired or dual fuelled</td>
<td>3.33:1</td>
<td>30</td>
<td>>= 92.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>>= 92.0%</td>
</tr>
<tr>
<td>Oil fired</td>
<td>2:1</td>
<td>50</td>
<td>>= 92.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>>= 92.0%</td>
</tr>
</tbody>
</table>

">=" means "greater than or equal to" Where MCR is the product’s maximum continuous rating (MCR).

13.4 Measurement and Calculations

13.4.1 Measurement Standards and Test Requirements
The required minimum performance shall be demonstrated using Method A, Method B or Method C, (as set out in 13.5.1.1, 13.5.1.2 and 13.5.1.3 below), which are subject to the following restrictions:

- Method A shall only be used, where the all burners incorporated in the product are listed on the “burners with controls” part of the Energy Technology Product List.
- Method B shall be used to demonstrate the performance of modular boilers. A modular boiler is defined as an assembly of two or more similar (but not necessarily identical) modules, each with their own a heat exchanger, burner, and control and safety devices. The assembly has common water feed and steam output connections, but the water flow to, and steam flow from each module is independently controlled.
- Method C may only be used for products with rated outputs above 600kW, where it is not possible to measure product performance in a laboratory due to product size.

All performance measurements shall be carried out in accordance with the procedures set out in one of the following test standards:

Where BS 845-1:1987 is used, the following standard test conditions shall be observed:

- A maximum ambient air temperature of 25°C.
- An excess combustion air level of not less than 15%.

13.4.2 Rounding

For the avoidance of doubt net thermal efficiency test data shall be presented to 1 decimal place. As an example, a product with a net thermal efficiency of 91.9% at 100% of its maximum continuous rating (MCR) would be deemed to be a fail.

13.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 13.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework.\(^{10}\)

13.5.1 Representative testing

Where applications are being made for products of the same constructional design to be included on the Energy Technology Product List (ETPL), test data may be submitted for a single representative model provided that the maximum rated output of the products being applied for is not more than three times, or less than one third of, the maximum rated output of the product tested. Where the range of rated outputs exceeds these limits, products should be grouped into size ranges that comply with these rules, and test data submitted for one representative model for each group.

It should be noted that:

- If a manufacturer voluntarily removes a representative model from the ETPL then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative models will be removed from the ETPL.

\(^{10}\) https://www.gov.uk/government/publications/energy-technology-list-etl-product-testing-framework
13.5.1.1 Method A – separate testing of boilers and burners

Under this test method:

1. Boiler and burner performance are demonstrated separately.
2. Boiler performance can be assessed using any burner (or burners) that can provide the heat input and operational stability needed to complete the test.
3. The boiler’s net thermal efficiency at 100% of product’s maximum continuous rating (MCR) in accordance with the procedures in one of the specified standards.
4. The boiler’s net thermal efficiency at part load (30%) is then inferred from burner performance data and design calculations of burner/boiler matching.

13.5.1.2 Method B - Integral testing at full and part loads

Under this test method, overall product performance shall be demonstrated by:

5. Measuring the net thermal efficiency at the test points specified in Table 13.1, in accordance with the procedures in one of the specified test standards.

13.5.1.3 Method C – validated design calculations

Under this test method:

1. The product’s net thermal efficiency at the full and part load conditions specified in Table 13.1 is determined from design calculations.
2. The accuracy of these design calculations shall be confirmed by interpolation and extrapolation of measurements, obtained using the procedures in one of the specified test standards, of the product’s net thermal efficiency:
 a) At least one test point between 60% and 100% MCR, and:
 b) At least one test point between 20% and 40% MCR.

The test report shall include (or be accompanied by):

a) Details of the calculations used to determine product performance.

b) A copy of the published performance data for the product.

c) Manufacturer’s design data for the product.

d) The following test data, which shall be obtained with the product operating under stable conditions at each selected test point:

 I. Analysis of flue gas composition, including as a minimum levels or oxygen or carbon dioxide and carbon monoxide.

 II. Ambient and flue gas temperatures.

 III. Total conductive, convective and radiative loss rate.

 IV. Net thermal efficiency.

e) Details of the burners used during the test.

13.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.
13.7 **Scope of Claim**

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from [HMRC](https://www.gov.uk).
Combined Heat and Power

14 Combined Heat and Power

Combined Heat and Power is the simultaneous generation of heat and power (usually electricity) in a single process. CHP Schemes are by their nature bespoke and approval of a given CHP manufacturer or product would not provide sufficient assurance of environmental benefit. With CHP, case by case Certification is needed to ensure support is provided for ‘good quality’ CHP. Certification is achieved using the CHP Quality Assurance programme (CHPQA). Because a certificate is used, no specific products appear on the Energy Technology Product List.

Guidance on claiming Enhanced Capital Allowances for CHP is set out below.

Further information about CHP eligibility criteria and the CHPQA programme can be found at http://chpqa.decc.gov.uk

Questions on CHP eligibility should be directed to the CHPQA Helpline – 01235 753004 or chpqainfo@chpqa.com

USE OF CHPQA TO OBTAIN ENHANCED CAPITAL ALLOWANCES

1. One of the aims of the CHPQA programme is to ensure that entitlements to fiscal and other benefits are in line with, and incentivise, the environmental performance of CHP Schemes. Eligibility for Enhanced Capital Allowances (ECAs) is one of the fiscal benefits available to Good Quality CHP certified under the programme. ECAs give relief for the full cost of qualifying expenditure incurred in the accounting period, subject to any scale back of benefit, as applicable. To qualify for the allowances in respect of a CHP Scheme a “Certificate of Energy Efficiency” must be obtained from the Secretary of State. This is separate and distinct from the CHPQA Certificate.

2. The purpose of this guidance is to provide developers with step-by-step guidance on how to use CHPQA Certificates pertaining to proposed new or upgraded CHP Schemes to obtain ECAs. It will assist developers of Schemes:

- understand the overall procedure for applying for ECA, including the role of the CHPQA Certificate in the process
- with specific guidance on the timing and detail of each step of their application
- to interpret the application of the CHPQA Standard for ECA eligibility under specific circumstances, e.g. mixed fuel use.

3. The administration of ECAs is the responsibility of HM Revenue and Customs (HMRC). This guidance has been prepared in consultation with and has been approved by HMRC.

4. Further information can be obtained from

- The HMRC web site: www.hmrc.gov.uk

Readers seeking further clarification on the procedures described herein should refer initially to these sites. Subsequent queries on tax issues should be addressed to the reader’s local tax office.
Glossary

5. The following terms are used in this guidance, the majority of which are defined in more detail in the CHPQA Standard, Issue 5, November 2013.

Annual Operation is a period commencing on 1st January and finishing on 31st December of the same year.

Initial Operation is the period during which reduced Threshold Criteria apply and will include at least one full calendar year Operation.

Energy services provider (also known as ESCOs) may own an asset that is supplied for use by a client in return for a financial reward but this will only be one part of a much wider service. Energy service providers provide energy efficiency and/or load reduction services usually to commercial or industrial facilities. They are uniquely identified because their financial rewards are dependent on the energy savings that they achieve for their client. Typically, an ESCO offers the following services:

- develop, design and finance energy efficient projects
- install and maintain energy-efficient equipment
- measure, monitor and verify the project’s energy savings
- assume the risk of guaranteed energy savings

It is the provision of this wide range of energy management services compared to the contract of hire by an equipment lessor that enables the energy service provider to be differentiated from the “lessor”.

Qualifying Power Capacity is the registered power generation capacity (MWe) qualifying as Good Quality CHP.

Qualifying Expenditure is the expenditure incurred on Plant and Machinery. Such expenditure may be eligible for ECAs if installed as part of a CHP Scheme for which all or part of the capacity is certified as Good Quality CHP as defined in the CHPQA Standard Issue 5. Further guidance can be found on the CHPQA web site: http://chpqa.decc.gov.uk/guidance-notes/

Total Power Capacity is the registered maximum power generation capacity of a CHP Scheme (MWe).

CHPQA Certification

7. The CHPQA Certificate for a CHP Scheme in design (either a new Scheme or a proposed modification to an existing Scheme):

- records parameters, valid until the end of the year of issue, relating to the projected energy efficiency and the environmental performance of the Scheme
- must be renewed by annual submission of CHPQA Form F3 from each January, to confirm or update the proposed design.
 » See CHPQA GN3.
Combined Heat and Power Certificate of Energy Efficiency

8. The Combined Heat and Power Certificate of Energy Efficiency for each Scheme:
 - is valid from the date of issue, unless varied or revoked provided the operator maintains a valid CHPQA Certificate.
 - states the CHPQA Scheme Reference Number, the Total Power Capacity and the Qualifying Power Capacity all as recorded in the CHPQA Certificate at the time of issue.
 - states the percentage of total Qualifying Expenditure eligible as ECA
 - may be revoked if
 - the CHP Scheme design changes during its development
 - the Scheme development ceases
 - the Scheme is not built in accordance with the design certified under CHPQA

9. To obtain a Combined Heat and Power Certificate of Energy Efficiency (ECA Eligibility), which is issued on behalf of the Secretary of State by DECC, simply tick the box on CHPQA Form F3 when making your annual Self-Assessment.

10. Any change in design, whether or not it causes a change to the Qualifying Power Capacity or Power Efficiency, must be notified to the CHPQA Administrator by resubmitting a revised Form F3. This may trigger the revocation of any existing Certificate of Energy Efficiency and, if one is still required, the issue of a new Certificate of Energy Efficiency. An example Combined Heat and Power Certificate of Energy Efficiency is given in Appendix A.

Eligible Organisations

11. In considering the UK notification of the proposed ECA scheme, the European Commission ruled that, in the case of CHP, the award of ECAs does not constitute State Aid (and is therefore allowable) provided that;
 “the main intended business will be to provide heat and power for clearly identified users on site or to known third parties, and not to generate power for sale to or via unspecified third parties.”
 This statement is elaborated in a further reference;
 “ECAs for CHP will be available for all companies except for companies whose core business is electricity production, insofar as they use the CHP system to produce electricity to be sold to unknown end users.”

12. The statements above are clearly intended to avoid unfair competition in the Electricity Generating Industry between Member States. They should not affect the vast majority of CHP Scheme operators in UK however and provided that applicants can demonstrate their intention to supply heat and power to known end users they should fall outside the exclusion.

13. Such intention is recorded in the CHPQA Form F3, which asks for details about intended power exports.

Threshold Criteria for ECA Eligibility

14. The Threshold Criteria for ECA eligibility are based on the CHPQA Threshold Criteria for Good Quality CHP for Proposed New Power Generation Capacity as set out in the CHPQA standard, Issue 5. However, the Threshold Power
Efficiency Criterion is relaxed for Schemes that burn a proportion of biomass or solid or liquid waste fuels as shown in the Table 14.1 below.

› See CHPQA GN 14 for more information on biomass or solid or liquid waste fuels

Table 14.1 Threshold Power Efficiency Criterion for CHP

<table>
<thead>
<tr>
<th></th>
<th>Q1 Threshold</th>
<th>Power Efficiency Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>All new or upgraded Schemes Except for the special cases below</td>
<td>≥ 105 under MaxHeat Conditions</td>
<td>≥ 20% under long term annual operation</td>
</tr>
<tr>
<td>New or upgraded Schemes that use only biomass or solid or liquid waste fuels</td>
<td>≥ 105 under MaxHeat Conditions</td>
<td>≥ 10% under long term annual operation</td>
</tr>
<tr>
<td>New or upgraded Schemes that use part biomass or solid or liquid waste fuels (See note below)</td>
<td>≥ 105 under MaxHeat Conditions</td>
<td>≥ (20 - 10 x Fw) % under long term annual operation</td>
</tr>
</tbody>
</table>

Note: Fw = fraction of total energy inputs as biomass plus solid waste plus liquid waste fuels

Calculation of ECA Value

15. ECAs are claimed in the same way as other capital allowances on the Corporation Tax Return for companies and the Income Tax Return for individuals and partnerships. The responsibility for notifying the HMRC of any changes in eligibility lie with the tax payer and significant penalties are possible in the event of fraudulent or negligent claims.

Important Note: CHP Schemes failing to meet the relevant Threshold Power Efficiency Criterion (see Table 14.1) do not qualify for ECA on any expenditure incurred.

16. Where the Scheme fails to meet the Threshold Quality Index Criterion the entitlement to ECAs is restricted. Claims are made in respect of the individual items of plant and machinery within the Scheme and qualifying expenditure on these may not exceed a maximum calculated as follows:

1. identify the expenditure incurred on qualifying plant and machinery in the CHP Scheme
2. add any additional Eligible Costs listed on the web site such as transportation and installation charges
3. multiply the total value of Qualifying Expenditure and Eligible Costs, as identified in points 1 and 2, by the portion of the capacity of the proposed CHP scheme that qualifies as Good Quality CHP (for further details see CHPQA Guidance Notes 27).
4. select individual items from the list of Qualifying Expenditure and Eligible Costs, the value of which add up to, but do not exceed, the value calculated in point 3

The value of the items selected in point 4 is the value of ECA to be claimed. The remaining expenditure will qualify for capital allowances at the relevant rate.

The equipment that qualifies as Plant and Machinery, and will be eligible for ECA if installed as part of a CHP Scheme Certified by CHPQA as Good Quality is given on
the CHPQA website [http://chpqa.decc.gov.uk/guidance-notes/]. The classes of
equipment that can qualify for CHP ECAs include the additional equipment required
for the operation of CHP facilities using Solid Recovered Fuel (SRF). These
changes took effect for tax purposes from 11 August 2008.

Claimants should note that in respect of ECAs for CHP facilities using SRF they will
need to demonstrate that:

■ the SRF throughput tonnage is equal to or greater than 50 % of the rated
capacity of the plant in any one Tax Year or any part of a Tax Year on a
pro-rata basis; and
■ they have met the above criterion for at least five consecutive years from
the date of Plant Acceptance (as defined in the relevant plant construction
contract) to avoid the forfeit of the monetary value of the ECA.

17. ECAs are claimed on the relevant Tax Return for the year in which the Qualifying
Expenditure was incurred and can only be whilst in possession of a valid

Annual Review/Variations

18. A Certificate of Energy Efficiency may be withdrawn and any allowances
recovered if, for example, the CHP Scheme is not built to the design certified
under CHPQA. An application may be made for a new Certificate of Energy
Efficiency where appropriate.

APPENDIX A: Combined Heat and Power Certificate of Energy Efficiency
(example)

ENHANCED CAPITAL ALLOWANCES FOR ENERGY-SAVING INVESTMENTS:
CERTIFICATE OF ENERGY EFFICIENCY – COMBINED HEAT AND POWER

For the CHP Scheme referred to below the Secretary of State certifies that:

Address of Scheme

Date of Exemption Certificate DD/MM/YYYY

CHPQA Scheme Reference Number XXXX X

Qualifying Power Capacity (MWe) Total Power Capacity (MWe)

Qualifying Expenditure:

Expenditure on plant and machinery of a description specified under the heading
“combined heat and power” in the Energy Technology Criteria List issued by the
Secretary of State, which does not exceed [QPC/TPC] % of the total expenditure on
such specified plant and machinery for the Scheme to which this Certificate applies.

Signed by authority of the Secretary of State

Signature:

Name in block capitals:

Notes

19. This Certificate of Energy Efficiency is issued in accordance with, and for the

20. This Certificate is valid from the date of issue onwards, unless revoked.

21. This Certificate may be revoked if the Scheme is not built in accordance with the
design certified under CHPQA.
22. This certificate may be revoked if it has been issued in the basis of incorrect information supplied for the purposes of an application for a Certificate of Energy Efficiency.

23. If a person who has made a tax return becomes aware that, as a result of the revocation of a Certificate of Energy Efficiency after the return was made, the return has become incorrect, he or she must give notice to HM Revenue and Customs specifying how the return needs to be amended. The notice must be given within 3 months beginning with the day on which the person first became aware that anything in the tax return had become incorrect because of the revocation of the Certificate.
Compressed Air Equipment

15 Desiccant Air Dryers with Energy Saving Controls

<table>
<thead>
<tr>
<th>Date published</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2014</td>
</tr>
</tbody>
</table>

15.1 Scope

Desiccant air dryers are commonly fitted to compressed air systems to prevent moisture from condensing within pipe work and equipment. They are typically utilised where compressed air is needed at higher quality or with a lower dew point than can be achieved by a refrigerated air dryer.

They contain a desiccant material which absorbs the moisture and is then regenerated, for example, by blowing air through the dryer.

The direct energy usage of a desiccant air dryer typically increases the energy used in compressed air generation by between 10% and 25% depending on the product design and how it is controlled. Indirect energy usage, in the form of the pressure drop across the dryer and the compressed air used for purging can increase the overall energy usage in compressed air generation by between 20% and 50%. The aim of the ECA Scheme is to encourage the purchase of higher efficiency models, which have low pressure drops across them. The aim of the ECA Scheme is to encourage the purchase of models which use energy efficient methods of desiccant regeneration, have low pressure drops across them and include energy savings controls.

Investments in desiccant air dryers with energy savings controls can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

15.2 Definitions

Desiccant air dryers are products that are specifically designed to extract water vapour from industrial compressed air systems by absorbing moisture using a desiccant material which is then, for example, regenerated by blowing air through the dryer.

15.3 Requirements

15.3.1 Eligibility requirements

To be eligible, products must:

- Have a dew point rating of -40°C i.e. Class 2 specifications for moisture removal in BS ISO 8573-1:2010.
- Utilise a regeneration method which is either heatless or internally/externally electrically heated or utilises a blower or vacuum system. Desiccant dryers that utilise steam, heat of compression or are heated in any way other than electrically are not eligible.
■ Incorporate dew point sensing controls that automatically control the regeneration cycle to optimise the time between regenerations depending on the dew point of the exit air in a manner that reduces the energy consumption of the product.

■ **Not** exceed the limits set out in the performance criteria below for the composite specific energy consumption (SEC) at 100% load (i.e. rated air flow), corrected for the pressure drop across the dryer and any compressed air used by the dryer for regeneration, purging and/or cooling.

■ Conform with the requirements of the EU Pressure Equipment Directive PED 97/23/EC in respect of their design, manufacture and testing procedures, or be CE Marked.

15.3.2 Performance requirements

Products must not exceed the values for composite specific energy consumption (SEC), corrected for the pressure drop across the dryer and any compressed air used by the dryer, set out in the Table 15.1 below at 100% load (i.e. rated air flow).

Table 15.1 Maximum Allowable Composite SEC in kW/m³/min

<table>
<thead>
<tr>
<th>Percentage of full load (i.e. rated air flow)</th>
<th>Maximum allowable Composite SEC (kW/m³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td><= 1.07</td>
</tr>
</tbody>
</table>

The composite SEC should be calculated as follows:

\[
SEC = \frac{P + (1.67 \times \Delta p \times Q) + (5 \times C)}{Q - C}
\]

Where:

- **P** = Total electrical power consumed by air dryer, inclusive of any external heaters, blowers, vacuum pumps or other associated equipment, kW
- **\(\Delta p\)** = Pressure drop across air dryer, bar
- **Q** = Flow rate of air, m³/min
- **C** = Total compressed air loss of air dryer for regeneration, purging, cooling or any other purpose, m³/min

15.4 Measurement and Calculations

15.4.1 Measurement Standards and Test Requirements

All products must be tested in accordance with the procedures and test conditions laid down in BS ISO 7183:2007, which specifies how to measure the electrical power consumed by the product at full load, the pressure drop across the dryer, compressed air loss and the flow rate of air through the product. The test results should be presented in the format laid down in Annex B of BS ISO 7183-2:2007.

Products must also meet the Class 2 specifications for moisture removal in BS ISO 8573-1:2010, “Table 2 Compressed air purity classes for humidity and liquid water”
15.4.2 Rounding
For the avoidance of doubt composite SEC data must be presented to 2 decimal places. As an example, a product with a composite SEC of 1.08 at 100% of full load would be deemed to be a fail.

15.5 Verification for ETL Listing
Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:
- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing

Further information regarding the routes can be found in Guidance Note 5 on the ETL product testing framework11.

15.6 Conformity testing
Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

15.7 Scope of Claim
Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

16 Master Controllers

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2010</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2008</td>
</tr>
</tbody>
</table>

16.1 Scope
Master controllers are microprocessor-based controllers that can be used to improve the control of compressed air systems with two or more compressors. They realise energy savings by reducing the pressure fluctuations that are normally present in compressed air systems when simple cascade or sequence controls are used to maintain system pressure, and by allowing users to schedule compressor operations that reflect working patterns.

Investments in master controllers can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

16.2 Definitions

Master controllers are products that are specifically designed to control the operation of multiple air compressors in a manner that maintains the operating pressure of the compressed air system within a narrow band, thereby minimising energy consumption.

16.3 Requirements

16.3.1 Eligibility requirements

To be eligible, products shall:

■ Be able to automatically control the operation of:
 1. At least two air compressors.
 2. Both fixed speed and variable speed compressors.
 3. Any positive displacement compressor that is capable of accepting a remote load/unload control signal via a volt-free switching circuit or electromechanical pressure switch, or in the case of variable speed drives capable of accepting a speed control signal or a remote pressure set point adjustment.

■ Incorporate a microprocessor based controller that is pre-programmed to provide facilities for users to:
 1. Detect/determine efficiency to load level curve for Variable speed compressors.
 2. Prioritise the use of more efficient compressors over less efficient ones, whilst making optimal use of any variable speed compressors being controlled (including optimal efficiency of variable speed compressors).
 3. Schedule the times of the week (in intervals of five minutes or less) when the compressed air system should be switched on and off and be operated at a reduced pressure.
 4. Schedule at least two different operating pressures for the compressed air system (to enable for example operation at lower pressure at off peak times).
 5. Define the minimum and maximum limits for the operating pressure (or pressure band) that the controller must maintain the compressed air system within.

■ Incorporate an anti-tampering mechanism that prevents automatic control from being disabled, except during commissioning, maintenance or testing.

■ The Master controller shall be capable of controlling any air compressor, regardless of compressor manufacturer.

■ Incorporate a pressure transducer that has a measurement accuracy of at least (i.e. <=) +/- 0.5% of full scale across its rated operating pressure range and across a rated temperature range of −25 to 80 degrees Centigrade.
■ Incorporate automatic control algorithms that monitor rate of change in system air pressure/flow and prevent compressors from being brought on load or unloaded in response to small fluctuations in demand.

■ Be capable of automatically regulating the operating pressure of the compressed air system (where all compressors in the system are situated at a single location), based on the output of a single pressure transducer, to within +/-0.1 bar of the operating pressure set-point, as air demand varies in 60 seconds between 10% and 100% of the maximum combined, continuous, rated output of air compressors being controlled.

■ Conform with the requirements of the EU EMC Directive 2014/30/EC, and be CE Marked.

Where products provide facilities for operators to override automatic control, they must be pre-programmed to return to automatic control at the next scheduled time for system switch off / on, and to automatically reset the override within 24 hours.

Where products are also designed to control desiccant air dryers, they must also satisfy the eligibility criteria for ‘energy saving controls for desiccant air dryers.

Automatic control may be implemented either directly by means of an analogue or digital signal connection, or indirectly by means of another control device or network.

Where products are designed to indirectly control variable speed compressors, they must be capable of monitoring the operating speed of the variable speed compressors, and of remotely adjusting the speed or pressure set points (or pressure or speed range limits) within the variable speed compressor’s control device.

Products that cannot directly control the speed (or speed range) of a variable speed compressor, or indirectly control their speed of operation by adjusting their pressure set points, are not eligible.

16.4 Verification for ETL Listing

There are no testing requirements, however manufacturers shall provide sales and technical brochures to evidence the conformity of their products against the requirements from section 16.3.

16.5 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

16.6 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

16.7 Review

16.7.1 Indicative review date

This technology specification will be reviewed in 2022-23
16.7.2 **Illustrative future direction of the requirements**

Future changes in Technology Specification may include:

■ Master controllers shall enable a much tighter running of compressors to match demand. Software upgrades could be upgraded to detect if there is excess demand due to a leak in the system.

■ Master controllers shall monitor and report the energy savings achieved by the end user as a result from its installation. Through this monitoring, the device would be capable of making recommendations to the user for better system performance.

17 **Refrigerated Air Dryers with Energy Saving Controls**

<table>
<thead>
<tr>
<th>Date published</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2003</td>
</tr>
</tbody>
</table>

17.1 **Scope**

Refrigerated air dryers are commonly fitted to compressed air systems to prevent moisture from condensing within pipe work and equipment. They work by cooling the air to a desired dew point temperature, thus forcing moisture to condense out of the air. This resulting condensate is then drained from the compressed air system.

A refrigerated air dryer typically increases the energy used in compressed air generation by between 2% and 5% depending on the type of product selected and how it is controlled. The pressure drop across the refrigerated air dryer is also a key factor in the amount of additional energy consumed as a result of the use of refrigerated air dryers. The aim of the ECA Scheme is to encourage the purchase of higher efficiency models, which have low pressure drops across them.

Investments in refrigerated air dryers with energy savings controls can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

17.2 **Definitions**

Refrigerated air dryers are products that are specifically designed to extract water vapour from industrial compressed air systems by means of cooling with a refrigeration cycle.

17.3 **Requirements**

17.3.1 **Eligibility requirements**

To be eligible, products must:

■ Incorporate energy saving controls that automatically reduce the cooling output of the refrigerated air dryer as the average flow rate and temperature of the inlet air decreases in a manner that reduces the energy consumption of the product.
■ Automatically control their output between 20% and 100% in response to changes in the flow rate and/or temperature of the inlet air and/or outlet air.

■ Not exceed the limits set out in the performance criteria below for pressure drop corrected composite specific energy consumption (SEC) at 50%, 75% and 100% load (i.e. rated air flow).

■ Conform with the requirements of the EU Pressure Equipment Directive PED 97/23/EC in respect of their design, manufacture and testing procedures, or be CE Marked.

17.3.2 Performance requirements

Products must not exceed the values for pressure drop corrected composite specific energy consumption (SEC) set out in the Table 17.1 below at the specified percentage of full load.

Table 17.1 Maximum Allowable Composite SEC in kW/m³/min

<table>
<thead>
<tr>
<th>Percentage of full load (i.e. rated air flow)</th>
<th>Maximum allowable Composite SEC (kW/m³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td><= 0.30</td>
</tr>
<tr>
<td>75%</td>
<td><= 0.40</td>
</tr>
<tr>
<td>100%</td>
<td><= 0.50</td>
</tr>
</tbody>
</table>

The pressure drop-corrected composite SEC should be calculated as follows:

\[
SEC = \frac{P + (1.67 \times \Delta p \times Q)}{Q}
\]

Where:

- \(P\) = Total electrical power consumed by air dryer, kW
- \(\Delta p\) = Pressure drop across air dryer, bar
- \(Q\) = Flow rate of air, m³/min

17.4 Measurement and Calculations

17.4.1 Measurement Standards and Test Requirements

All products must be tested in accordance with the procedures and test conditions laid down in BS ISO 7183:2007, which specifies how to measure the electrical power consumed by the product at full load, the pressure drop across the dryer and the flow rate of air through the product. The test results should be presented in the format laid down in Annex B of BS ISO 7183-2:2007.

Products must also meet the Class 4 specifications for moisture removal in BS ISO 8573-1:2010, “Table 2 Compressed air purity classes for humidity and liquid water”

In addition, manufacturers should use the above procedures to evaluate the pressure drop corrected composite SEC of their products at two part load conditions (50% and 75%).

Please note that performance data obtained in accordance with the procedures in ISO 7183: 1986 will be accepted as an alternative to testing in accordance with ISO 7183:2007 until further notice.
17.4.2 Rounding
For the avoidance of doubt composite SEC data must be presented to 2 decimal places. As an example, a product with a composite SEC of 0.49 at 75% of full load) would be deemed to be a fail.

17.5 Verification for ETL Listing
Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing

Further information regarding the routes can be found in Guidance Note 5 on the ETL product testing framework12.

17.6 Conformity testing
Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

17.7 Scope of Claim
Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

Heat pumps

18 Air to Air Heat Pumps, Split, Multi-split and VRF

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2015</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2002</td>
</tr>
<tr>
<td>Former name</td>
<td>Air Source: Split and Multi-Split (including VRF) Heat Pumps</td>
</tr>
</tbody>
</table>

18.1 Scope

Air to air heat pumps are products that are specifically designed to transfer heat from the air in one space to the air within another space by means of a refrigeration cycle.

‘Split’ type heat pumps have separate heat collection and rejection units for each space known as ‘outdoor’ and ‘indoor’ units. The ‘outdoor’ and ‘indoor’ units are specifically designed to be connected together during installation by refrigerant pipework to form a single functional system.

Variable Refrigerant Flow (VRF) heat pumps are systems specifically designed to automatically adjust the flow of refrigerant to each ‘indoor’ unit so that the heat delivered is matched to its demand. In particular, one of the ‘indoor’ units of a VRF system could be an air curtain.

18.2 Definitions

Air to Air Heat Pumps, Split, Multi-Split and VRF use an electrically operated refrigeration system to transfer heat from air outside a building to the air inside it. They can be used to provide space heating in a wide range of buildings, and some products also are able to provide cooling by reversing the refrigeration flows around the product (these products are also known as reversible ‘air-cooled’ air conditioning units).

Split, multi-split and VRF heat pumps are available with a wide range of efficiencies. The ECA Scheme aims to encourage the purchase of higher efficiency products.

The ECA Scheme covers three categories of products:

1. Single split (non-VRF) heat pumps that consist of one ‘outdoor’ unit and one ‘indoor’ unit.
2. Multi-split (non-VRF) heat pumps that consist of one ‘outdoor’ unit connected to two or more ‘indoor’ units using either individual refrigerant circuits (with the indoor units individually controlled) or using a common refrigerant circuit with the indoor units controlled as one.
3. VRF heat pumps that consist of one ‘outdoor’ unit connected to one or more ‘indoor’ units using a common refrigerant circuit with the indoor units individually controlled.

A heat pump driven air curtain unit for VRF heat pumps may replace one or more ‘indoor’ heat pump units within an ECA eligible VRF heat pump.

Systems with cascade refrigerant/other-medium (e.g. water) heat distribution shall be tested using same methodology as other VRF systems, taking into account all additional energy used in supplementary medium loops, such as circulation pumps’ consumption.
18.3 Requirements

18.3.1 Eligibility requirements

Investments in air to air heat pumps, split, multi-split and VRF can only qualify for Enhanced Capital Allowances if the products meet the eligibility criteria set out below. The individual products purchased do not need to be named on the Energy Technology Product List.

To be eligible, products shall:

- Consist of an ‘outdoor’ unit and one or more ‘indoor’ units that are:
 - Factory–built sub-assemblies.
 - Supplied as a matched set of units.
 - Designed to be connected together during installation.
- Incorporate an electrically driven refrigeration system.
- Be designed for, and include fittings for, permanent installation.
- Be CE marked.

To be eligible, heat pump driven air curtain ‘indoor’ units for multi-split heat pump products shall also:

- Be specifically designed to be fitted above a doorway or similar opening.
- Be designed to use electrical air heaters (where fitted) only during defrosting or heat pump failure.

18.3.2 Performance requirements

Eligible products must meet the performance criteria set out in Table 18.1 for:

- Seasonal Space Heating Energy Efficiency as defined by Ecodesign Commission Regulation (EU) 2016/2281.
- Seasonal Space Cooling Energy Efficiency as defined by Ecodesign Commission Regulation (EU) 2016/2281.

Products with a rated cooling capacity less than, or equal to, (≤) 12kW shall meet the performance criteria set out in Table 18.1 for:

- Seasonal Coefficient of Performance (SCOP) across the range of connected capacities.
- Seasonal Energy Efficiency Ratio (SEER) across the range of connected capacities.

Table 18.1 Performance requirements for air to air heat pumps, split, multi-split and VRF

<table>
<thead>
<tr>
<th>Rated Cooling Capacity</th>
<th>>12 kW</th>
<th>≤12 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heating mode ($\eta_{h,h}$)</td>
<td>Cooling mode ($\eta_{c,c}$)</td>
</tr>
<tr>
<td>Product Category</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Single split (non-VRF) heat pumps</td>
<td>≥165%</td>
<td>≥250%</td>
</tr>
<tr>
<td>2. Multi-split (non-VRF) heat pumps</td>
<td>≥160%</td>
<td>≥240%</td>
</tr>
<tr>
<td>3. VRF heat pumps</td>
<td>≥170%</td>
<td>≥260%</td>
</tr>
</tbody>
</table>

"≥" means "greater than or equal to"
In addition, eligible heat pump driven air curtain ‘indoor’ units for multi-split heat pump products shall have an outlet air velocity uniformity (u_{ACU}), as defined in Section 5.4.4 of BS ISO 27327-1: 2009, greater than or equal to 70% over the range of doorway/opening heights that they are designed to be fitted above.

18.4 Measurement and Calculations

18.4.1 Energy efficiency metrics

Seasonal Space Heating Energy Efficiency ($\eta_{s,h}$) – ratio between the space heating demand for reference heating season, supplied by a space heater and the annual primary energy consumption required to meet this demand, as defined by Ecodesign Commission Regulation (EU) 2016/2281.

Seasonal Space Cooling Energy Efficiency ($\eta_{s,c}$) – ratio between the space cooling demand for reference cooling season supplied and annual primary energy consumption required to meet that demand, as defined by Ecodesign Commission Regulation (EU) 2016/2281.

Seasonal Coefficient Of Performance (SCOP) – overall coefficient of performance of a heat pump using electricity, representative of the heating season, calculated as the reference annual heating demand divided by annual energy consumption for heating as defined by Commission Regulation (EU) No 206/2012.

Seasonal Energy Efficiency Ratio (SEER) – ratio of the total cooling capacity to the effective power input of the unit Commission Regulation (EU) No 206/2012.

Primary energy consumption for electricity usage is obtained using Conversion Coefficient (CC), known also as Primary Energy Factor, equal to 2.5, as defined by Ecodesign Commission Regulation (EU) 2016/2281, Annex I.

Reference heating season, also called climate - set of operating conditions describing per bin the combination of outdoor temperatures and the number of hours these temperatures occur for heating for which the unit is declared fit for purpose. There are three reference heating seasons: “A” average, “C” colder and “W” warmer. UK is located in two reference zones: A and W, but for the ETL purposes “A” for average is to be used.

Correction factor (F1) is a correction that accounts for a negative contribution to the seasonal space heating energy efficiency of heaters due to adjusted contributions of temperature controls, equal to 3 % (BS EN 14825:2016).

In case of any changes regarding the value of CC in relevant regulations or test reporting procedures, performance indicators will be calculated using following equations:

1. $\eta_{s,h}= \text{SCOP}/\text{CC} - F1$
2. $\eta_{s,c}= \text{SEER}/\text{CC} - F1$

18.4.2 Test Requirements

No additional testing requirements beyond the measurement standard below.

18.4.3 Measurement standards

Testing for non-VRF products with a cooling capacity greater than 12kW and all VRF products shall be carried out in accordance with the procedures in Ecodesign
Commission Regulation (EU) 2016/2281. The standard rating conditions are set out in the Table 18.2 below.

Table 18.2 Test conditions for air to air split, multi-split and VRF heat pumps >12kW

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Heating mode ((\eta_{s,h}))</th>
<th>Cooling mode ((\eta_{s,c}))</th>
</tr>
</thead>
</table>

Testing products should be carried out in accordance with the procedures in BS EN 14825: 2016 under the test conditions set out in the Table 18.3 below.

Performance data for units with cooling capacity greater than 12 kW should be obtained in accordance with requirements of Commission Regulation (EU) No 2281/2016 Annex III.

Performance data for non-VRF products with a cooling capacity less than or equal to 12kW should be determined following the requirements of Commission Regulation (EU) No 206/2012 Annex II.

Table 18.3 Test conditions for air to air heat pumps split, multi-split and VRF <12kW

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Heating mode (SCOP)</th>
<th>Cooling mode (SEER)</th>
</tr>
</thead>
</table>

Please note that performance data obtained in accordance with the corresponding procedures and standard rating conditions laid down in BS EN 14825: 2013 will be accepted as an alternative to testing in accordance with BS EN 14825: 2016 until further notice.

18.4.3.1 Calculated results

Where results are determined by calculation then this should be on the basis of design and/or extrapolation from other combinations of indoor and outdoor units. In this case, details of such calculations and/or extrapolations, and of tests to verify the accuracy of the calculations undertaken (including details of the mathematical model for calculating performance of such combinations, and of measurements taken to verify this model) shall be made available. Tests undertaken to verify the accuracy of the calculations must be carried out in accordance with the test procedures described above.
18.4.4 Rounding
For the avoidance of doubt test data should be presented to 0 decimal places for percentage points in η_{sh} and η_{sc} values and to 2 decimal places for SEER and SCOP indicators. As an example, a 20kW air source, single split (non-VRF) heat pump product with a heating mode η_{sh} of 164.4% would be deemed to be a fail.

18.5 Verification for ETL Listing
This sub-technology is “unlisted” therefore individual products do not need to be listed on the Energy Technology Product List.

18.6 Conformity testing
Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

18.7 Scope of Claim
Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

18.8 Review

18.8.1 Indicative review date
The next technical review is scheduled for 2022-23.

18.8.2 Illustrative future direction of the requirements
Future changes to the Specification may include:
- Increasing performance thresholds for η_{sh}, η_{ch} and/or SCOP, SEER.
- Introduction of refrigerant’s GWP requirements

19 Air to Domestic Hot Water Heat Pumps

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2016</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2013</td>
</tr>
<tr>
<td>Former name</td>
<td>Heat Pumps for Domestic Hot Water Heating CO2 Heat pumps for domestic hot water heating</td>
</tr>
</tbody>
</table>

19.1 Scope
Air to Domestic Hot Water Heat Pumps are products that are specifically designed to transfer heat from the outdoor environment into a domestic hot water tank by means of a refrigeration cycle.
19.2 Definitions

Air to Domestic Hot Water Heat Pumps use an electrically operated refrigeration system to transfer heat from the ambient source into a domestic hot water system. They can be used to provide sanitary hot water in a wide range of buildings, including commercial and leisure.

Air to Domestic Hot Water heat pumps are available in a range of efficiencies. The ECA Scheme aims to encourage purchase of higher efficiency products. Air to Domestic Hot Water Heat pumps can realise substantial reductions in carbon emissions when used instead of fossil fuel based, or resistive electric, water heating.

The ECA Scheme covers various types of products, including:

1. Air Source CO₂ heat pumps for domestic hot water heating
2. Air Source non-CO₂ heat pumps for domestic hot water heating

19.3 Requirements

19.3.1 Eligibility requirements

Investments in Air to Domestic Hot Water Heat Pumps can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.

To be eligible, products shall:

- Consist either of a single factory built unit or of an ‘outdoor’ unit and one or more ‘indoor’ units that are:
 - Factory-built sub-assemblies.
 - Supplied as a matched set of units.
 - Designed to be connected together during installation.
- Incorporate an electrically driven refrigeration system that uses refrigerant which has a Global Warming Potential (GWP) of below 1,800.
- Be designed for, and include fittings for, permanent installation.
- Be designed primarily to provide domestic hot water heating.
- Be CE marked.

GWP values will be those set out in Annex I to Regulation (EC) No 842/2006. For refrigerants not included in this reference, the IPCC UNEP 2010 report on Refrigeration, Air Conditioning and Heat Pumps should be used as the reference.

19.3.2 Performance requirements

Eligible products shall meet the performance criteria set out in Table 19.1 below for:

- Water Heating Energy Efficiency (η_{wh}) at the declared load profile.

Table 19.1 Performance thresholds for air to domestic hot water heat pumps (all product categories)

<table>
<thead>
<tr>
<th>Declared load profile</th>
<th>L</th>
<th>XL</th>
<th>XXL</th>
<th>3XL</th>
<th>4XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Heating Energy Efficiency (η_{wh})</td>
<td>≥110%</td>
<td>≥115%</td>
<td>≥120%</td>
<td>≥125%</td>
<td>≥130%</td>
</tr>
</tbody>
</table>

“≥” means “greater than” or equal to”
Where:

- Water Heating Energy Efficiency (\(\eta_{wh}\)) is the ratio between the useful energy in the water provided and the energy required for its generation, expressed as a percentage.
- Load profile is a given sequence of water draw-offs, as specified in in Annex III, Table 1 of Commission Regulation (EU) No 814/2013 “Ecodesign requirements for water heaters and hot water storage tanks”.

19.4 Measurement and Calculations

19.4.1 Energy efficiency metrics

Water Heating Energy Efficiency (\(\eta_{wh}\)) – means the ratio between the useful energy provided by a water heater and the energy required for its generation, expressed in %.

Reference Energy (\(Q_{ref}\)) means the sum of the useful energy content of water draw-offs, expressed in kWh, in a particular load profile.

Smart Control Factor (SCF) means the water heating energy efficiency gain due to smart control under the conditions.

19.4.2 Test Requirements

No additional testing requirements beyond the measurement standard below.

19.4.3 Measurement standards

The product’s performance data shall be determined in accordance with the procedures detailed in BS EN 16147:2011 “Heat pumps with electrically driven compressors - Testing and requirements for marking of domestic hot water units” and the water heating energy efficiency calculation, following the requirements of Commission Regulation (EU) No 814:2013 or Commission Regulation (EU) No 812:2013”.

The load profile used for the test shall be declared by the manufacturer and shall be the maximum load profile or the load profile one below the maximum load profile for the product.

19.4.4 Rounding

For the avoidance of doubt test data should be presented to zero decimal places. As an example, an Air to Domestic Hot Water Heat Pump product with a declared load profile of XL and a water heating energy efficiency of 114.4% would be deemed to be a fail.

19.5 Verification for ETL Listing

There are five main ways that applicants can demonstrate their product’s performance:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
■ Witnessed testing
■ Independent testing
■ Representative testing (see clause 19.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework13.

19.5.1 Representative Testing

Where applications are being made for a range of products that are variants of the same basic design, test data may be submitted for a representative model, provided that all variants, i.e. models, share the following characteristic features:

■ Use the same refrigerant
■ Have the same compressor type (i.e. manufacturer, line of models), which should imply:
 ○ same method of compression (e.g. reciprocating or scroll) and
 ○ same type of enclosure (e.g. hermetic or semi-hermetic)
■ Use the same defrosting method (e.g. hot gas defrost)
■ Fit within the same product category (i.e. are all low-temperature air to water heat pumps, or are all non-low-temperature air to water heat pumps.

The representative models may be selected by dividing the range of products into groups of models with similar design characteristics. The performance of each model shall be predicted using a validated mathematical model. At least one model in each group shall be tested for validation purposes. A report documenting performed model calculations, showing all significant calculation steps, shall be submitted with the application.

It should be noted that:

■ If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
■ If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

19.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

19.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

13 \url{https://www.gov.uk/government/publications/energy-technology-list-etl-product-testing-framework}
19.8 Review

19.8.1 Indicative review date

The next technical review is scheduled for 2022-23.

19.8.2 Illustrative future direction of the requirements

Future changes to the Specification may include:

- Increasing performance thresholds for Water Heating Energy Efficiency (η_{wh}),
- Decreasing the maximum allowed GWP for refrigerant used,
- Adding a sub-category for exhaust air heat pumps.

20 Air Source: Gas Engine Driven Split and Multi-Split (including VRF) Heat Pumps

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2004</td>
</tr>
</tbody>
</table>

20.1 Scope

Air-source gas engine driven (GED) split and multi-split heat pumps use a gas-fired internal combustion engine driven refrigeration system to transfer heat from air outside a building to the air inside it. They can be used to provide space heating in a wide range of buildings, and some products also are able to provide cooling by reversing the refrigeration flows around the product. (These products are known as reversible gas engine driven ‘air-cooled’ air conditioning units).

Air source gas engine driven split and multi-split heat pumps are available with a wide range of efficiencies. The ECA Scheme aims to encourage the purchase of higher efficiency products.

The ECA Scheme covers four categories of products:

1. Air source: GED single split (non-VRF) heat pumps that consist of one ‘outdoor’ unit and one ‘indoor’ unit.
2. Air source: GED dual split (non-VRF) heat pumps that consist of one ‘outdoor’ unit and two ‘indoor’ units.
3. Air source: GED multi-split (non-VRF) heat pumps that consist of one ‘outdoor’ unit connected to two or more ‘indoor’ units using either individual refrigerant circuits (with the indoor units individually controlled) or using a common refrigerant circuit with the indoor units controlled as one.
4. Air source: GED split or multi-split variable refrigerant flow (VRF) heat pumps that consist of one ‘outdoor’ unit connected to one or more ‘indoor’ units using a common refrigerant circuit with the indoor units individually controlled.

Investments in air source gas engine driven split and multi-split (including variable refrigerant flow) heat pumps can only qualify for Enhanced Capital Allowances if the specific product is listed on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.
20.2 Definitions

Air-source, gas engine driven (GED), heat pumps covers products that are specifically designed to transfer heat from the air in one space to the air in another space by means of a refrigeration cycle that is driven by a gas-fired internal combustion engine.

‘Split’ type heat pumps have separate heat collection and rejection units for each space known as ‘indoor’ and ‘outdoor’ units. The ‘indoor’ and ‘outdoor’ units are specifically designed to be connected together during installation by refrigerant pipework to form a single functional unit.

Variable refrigerant flow (VRF) heat pumps are specifically designed to automatically adjust the flow of refrigerant to each indoor unit so that the heat delivered is matched to the demand.

20.3 Requirements

20.3.1 Eligibility requirements

To be eligible, products shall:

- Consist of an ‘outdoor’ unit and one or more ‘indoor’ units that are:
 - Factory–built sub-assemblies.
 - Supplied as a matched set of units.
 - Designed to be connected together during installation.
- Incorporate a refrigeration system that is driven by a gas-fired internal combustion engine.
- Be designed for, and include fittings for, permanent installation.
- Be CE marked.

20.3.2 Performance requirements

Eligible products shall meet the performance criteria set out in Table 20.1 below for:

- Seasonal Primary Energy Ratio in heating mode (SPERh) across the range of connected capacities and including 100% (full) load in heating mode.
- Seasonal Primary Energy Ratio in cooling mode (SPERc) across the range of connected capacities and including 100% (full) load in cooling mode, where the product is designed to provide cooling.

Table 20.1 Performance requirements for air source: (GED) split and multi-split heat pumps

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Heating mode (SPERh)</th>
<th>Cooling mode (SPERc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Air source: GED single split (non VRF) heat pumps.</td>
<td>>=1.30</td>
<td>>=1.72</td>
</tr>
<tr>
<td>2. Air source: GED dual split (non VRF) heat pumps.</td>
<td>>=1.30</td>
<td>>=1.72</td>
</tr>
</tbody>
</table>
The performance requirements in Table 20.1 shall include all relevant energy inputs to the indoor unit(s) for the matched indoor and outdoor model assembly.

20.4 Measurement and Calculations

20.4.1 Measurement standards

All products shall be tested in accordance with the procedures laid down in the following standards:

20.4.2 Test Requirements

The standard rating conditions are set out in the Table 20.2 below.

Table 20.2 Test conditions for air source: gas engine driven (GED) split and multi-split heat pumps

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Heating mode (SPER<sub>H</sub>)</th>
<th>Cooling mode (SPER<sub>C</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Air source: GED single split (non-VRF) heat pumps.</td>
<td>BS EN 16905-3:2017 Table 3</td>
<td>BS EN 16905-3:2017 Table 4</td>
</tr>
<tr>
<td>2. Air source: GED dual split (non-VRF) heat pumps.</td>
<td>BS EN 16905-3:2017 Table 3</td>
<td>BS EN 16905-3:2017 Table 4</td>
</tr>
<tr>
<td>3. Air source: GED multi-split (non-VRF) heat pumps.</td>
<td>BS EN 16905-3:2017 Table 3</td>
<td>BS EN 16905-3:2017 Table 4</td>
</tr>
<tr>
<td>4. Air source: GED split and multi-split variable refrigerant flow (VRF) heat pumps.</td>
<td>BS EN 16905-3:2017 Table 3</td>
<td>BS EN 16905-3:2017 Table 4</td>
</tr>
</tbody>
</table>

Notes
<table>
<thead>
<tr>
<th>Product Category</th>
<th>Heating mode (SPER\textsubscript{h})</th>
<th>Cooling mode (SPER\textsubscript{c})</th>
</tr>
</thead>
</table>

The heating standard test requires an entering air temperature on the indoor side of 20°C (Dry-bulb), and an entering air temperature on the outdoor side of 7°C (Dry-bulb) and 6°C (Wet-bulb).

The cooling standard test requires an entering air temperature on the indoor side of 27°C (Dry-bulb) and 19°C (Wet-bulb), and an entering air temperature on the outdoor side of 35°C (Dry-bulb).

20.4.3 Rounding

For the avoidance of doubt test data should be presented to 2 decimal places. As an example, an air source gas engine driven single split (non-VRF) heat pump product with a heating mode SPER\textsubscript{h} of 1.29 would be deemed to be a fail.

20.5 Verification for ETL Listing

There are five main ways that applicants can demonstrate their product’s performance:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative Testing (see clause 20.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework14.

20.5.1 Representative testing

Where applications are being made for a range of two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that all variants:

- Use the same gas engine constructional design.
- Use the same refrigerant as the representative model.
- Have the same compressor type (i.e. manufacturer, method of compression (e.g. reciprocating or scroll) and type of enclosure (e.g. hermetic or semi-hermetic) as the representative model.
- Use the same defrosting method (e.g. hot gas defrost).
- Fit within the same product category (i.e. are all low temperature air to water heat pumps, or are all air to water heat pumps (except low temperature heat pumps).
- Use multiple indoor units with the same outdoor unit.

14 https://www.gov.uk/government/publications/energy-technology-list-etl-product-testing-framework
The representative models shall be selected by dividing the range of products into groups of models with similar design characteristics, and testing a model in each group.

As a minimum, at least one complete matched outdoor and indoor unit(s) model assembly shall be tested (as per the required test procedures listed above) in each range of products. Where other variants of indoor unit(s) are applied, the performance of each representative model assembly in the group may be calculated using a validated mathematical model.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

20.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

20.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

21 Air to Water Heat Pumps

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2016</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2009</td>
</tr>
<tr>
<td>Former name</td>
<td>Air Source: Air to Water Heat Pumps</td>
</tr>
</tbody>
</table>

21.1 Scope

Air to water heat pumps are products that are specifically designed to transfer heat from ambient air outside a building to a water-based heating system, by means of a refrigeration cycle.

This specification covers reversible and irreversible models below 45kW and irreversible heat pumps above 45kW. Reversible products above 45kW may be considered within the Packaged Chillers sub-technology.

21.2 Definitions

An air to water heat pump uses an electrically driven refrigeration system to transfer heat from outside air into a water-based heating system. It is primarily used to
provide space heating in a wide range of buildings. Additional functionality which may be available includes:

- Provision of heat to domestic hot water
- Space cooling using a water loop by reversing the product’s refrigeration cycle.

Air to water heat pumps are available with a wide range of efficiencies and the ECA Scheme aims to encourage the purchase of higher efficiency products.

The ECA Scheme distinguishes between three categories of Air to Water Heat Pumps:

1. Low-temperature heat pumps - specifically designed for low-temperature applications, that cannot deliver heating water with an outlet temperature of 52 °C at an inlet dry (wet) bulb temperature of -7°C (-8°C) in the reference conditions for average climate, with rated output not greater than 45kW.

2. Medium and high temperature heat pumps – that are capable of delivering water with an outlet temperature of 52°C or greater at an inlet dry (wet) bulb temperature of – 7°C (– 8°C) in the reference conditions for average climate, with rated output not greater than 45kW.

3. Large irreversible heat pumps with rated output greater than 45kW.

21.3 Requirements

21.3.1 Eligibility requirements

Investments in air to water heat pumps can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.

To be eligible, products shall:

- Incorporate an electrically driven refrigeration system.
- Be designed for, and include fittings for, permanent installation.
- Be CE marked
- Be designed primarily to provide space heating and:
 - space heating only, i.e. “space heater” as defined by Commission Regulation (EU) No 813/2013, or
 - providing heat to deliver domestic hot water, i.e. “combination heater” as defined by Commission Regulation (EU) No 813/2013.

In addition, single split products shall consist of an ‘outdoor’ unit and an ‘indoor’ unit that are:

- Factory–built sub-assemblies.
- Supplied as a matched set of units.
- Designed to be connected together during installation.

21.3.2 Performance requirements

Eligible products shall meet the performance criteria set out in Table 21.1 below for:

- Seasonal Space Heating Energy Efficiency ($\eta_{\text{s,h}}$), as defined by Commission Regulation (EU) No 813/2013.
- Seasonal Energy Efficiency Ratio (SEER) for average climate conditions, where the product is designed to provide cooling.

Table 21.1 Performance thresholds for air to water heat pumps

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Heating mode ((\eta_{s,h}))</th>
<th>Cooling mode ((SEER))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Low temperature heat pumps</td>
<td>(\geq155%)</td>
<td>(\geq4.50)</td>
</tr>
<tr>
<td>2. Medium and high temperature heat pumps</td>
<td>(\geq130%)</td>
<td>(\geq4.50)</td>
</tr>
<tr>
<td>3. Large irreversible heat pumps</td>
<td>(\geq125%)</td>
<td>n/a</td>
</tr>
</tbody>
</table>

"\(\geq\)" means "greater than or equal to"

21.4 Measurement and Calculations

21.4.1 Energy efficiency metrics

Seasonal Space Heating Energy Efficiency \((\eta_{sh})\) – ratio between the space heating demand for reference heating season, supplied by a space heater and the annual primary energy consumption required to meet this demand (BS EN 14825:2016).

Seasonal Coefficient Of Performance (SCOP) – overall coefficient of performance of a heat pump using electricity, representative of the heating season, calculated as the reference annual heating demand divided by annual energy consumption for heating (BS EN 14825:2016).

Seasonal Energy Efficiency Ratio (SEER) – ratio of the total cooling capacity to the effective power input of the unit (BS EN 14825:2016)

Primary energy consumption for electricity usage is obtained using Conversion Coefficient (CC), known also as Primary Energy Factor, equal to 2.5, as defined by Ecodesign Commission Regulation (EU) 813/2013.

Reference heating season, also called climate – a set of operating conditions describing per bin the combination of outdoor temperatures and the number of hours these temperatures occur for heating for which the unit is declared fit for purpose.

There are three reference heating seasons: “A” average, “C” colder and “W” warmer. UK is located in two reference zones: A and W, but for the ETL purposes “A” for average is to be used.

Correction factor \((F1)\) is a correction that accounts for a negative contribution to the seasonal space heating energy efficiency of heaters due to adjusted contributions of temperature controls, equal to 3% (BS EN 14825:2016).

Equation for calculating \(\eta_{sh}\) corresponding to section 7.1 of BS EN 14825:2016:

\[
(1) \quad \eta_{s,h} = \frac{SCOP}{CC} - F1
\]

21.4.2 Test Requirements

No additional testing requirements beyond the measurement standard below.
21.4.3 Measurement standards

Performance data shall be determined and the η_{sh} calculated, following the requirements of Commission Regulation (EU) No 813/2013.

The product's capacity and SEER (where the product is designed to provide cooling), must be determined at the conditions shown in Table 21.2 and in accordance with the procedures detailed in BS EN 14825:2016 “Air conditioners, liquid chilling packages and heat pumps, with electrically driven compressors, for space heating and cooling - Testing and rating at part load conditions and calculation of seasonal performance.”

Table 21.2 Part load conditions for air to water heat pumps

<table>
<thead>
<tr>
<th>Product category</th>
<th>Heating mode</th>
<th>Cooling mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Low temperature heat pumps</td>
<td>Commission Regulation (EU) No 813/2013, Annex III, Tables 4 and 5 and Table 3 for outdoor air and low-temperature heat pumps</td>
<td>BS EN 14825:2016 Table 4, Part load condition A, cooling floor application</td>
</tr>
<tr>
<td>2. Medium and high temperature heat pumps</td>
<td>Commission Regulation (EU) No 813/2013, Annex III Tables 4 and 5 and Table 3 for outdoor air and heat pump space heaters other than low-temperature heat pumps</td>
<td>BS EN 14825:2016 Table 4, Part load condition A, cooling floor application</td>
</tr>
<tr>
<td>3. Large irreversible heat pumps</td>
<td>Commission Regulation (EU) No 813/2013, Annex III Tables 4 and 5 and Table 3 for outdoor air and heat pump space heaters other than low-temperature heat pumps</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The η_{sh} shall be calculated in accordance with the requirements of Commission regulation (EU) No 813/2013 Annex III, by dividing the SCOP by the factor 2.5 (to allow for generation efficiency), corrected by contributions accounting for temperature controls.

Where results are determined by calculation then this should be on the basis of design and/or extrapolation. In this case, details of such calculations and/or extrapolations, and of tests to verify the accuracy of the calculations undertaken (including details of the mathematical model for calculating performance of such combinations, and of measurements taken to verify this model) shall be made available.

21.4.4 Rounding

For the avoidance of doubt test data should be presented to three significant figures. As an example, a low temperature heat pump with a cooling mode SEER of 4.444 or a heating mode η_{sh} of 154.4% would be deemed to be a fail.

21.5 Verification for ETL Listing

There are five main ways that applicants can demonstrate their product’s performance:
■ In-house testing – Self-certified
■ In-house testing – Self-tested and verified or cross-checked by an independent body
■ Witnessed testing
■ Independent testing
■ Representative testing (see clause 21.5.1)

Further information regarding the first four routes can be found within Guidance Note 5 on the ETL product testing framework\(^\text{15}\).

21.5.1 Representative Testing

Where applications are being made for a range of products that are variants of the same basic design, test data may be submitted for a representative model, provided that all variants, i.e. models, share following characteristic features:

- Use the same refrigerant
- Have the same compressor type (i.e. manufacturer, line of models), which should imply:
 - same method of compression (e.g. reciprocating or scroll) and
 - same type of enclosure (e.g. hermetic or semi-hermetic)
- Use the same defrosting method (e.g. hot gas defrost)
- Fit within the same product category (i.e. are all low-temperature air to water heat pumps, or are all non-low-temperature air to water heat pumps.

The representative models may be selected by dividing the range of products into groups of models with similar design characteristics. The performance of each model shall be predicted using a validated mathematical model. At least one model in each group shall be tested for validation purposes. A report documenting performed model calculations, showing all significant calculation steps, shall be submitted with the application.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

21.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

21.7 **Scope of Claim**

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

21.8 **Review**

21.8.1 **Indicative review date**

The next technical review is scheduled for 2022-23.

21.8.2 **Illustrative future direction of the requirements**

Future changes to the Specification may include:

- Increasing performance thresholds for $\eta_{s,h}$ and/or SEER,
- Introduction of refrigerant’s GWP requirements.

22 **Heat Pump Dehumidifiers**

<table>
<thead>
<tr>
<th>Date published</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2008</td>
</tr>
</tbody>
</table>

22.1 **Scope**

Heat pump dehumidifiers are widely used to improve personal comfort, to protect building fabric and stored goods or materials, and to dry industrial products. They work by circulating the moist air over the evaporator of the refrigeration system. This reduces the temperature of the air, which causes the water vapour to condense. The resulting condensate can be then drained away.

Heat pump dehumidifiers are available in a range of different designs and efficiencies. The ECA Scheme aims to encourage the purchase of the higher efficiency products that recover both sensible and latent heat released during dehumidification, and use it to heat the air as it leaves the product or for other useful purposes, such as water heating.

Investments in heat pump dehumidifiers can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

22.2 **Definitions**

Heat pump dehumidifiers are products that are specifically designed to remove water vapour from moist air using an electrically driven refrigeration cycle.

22.3 **Requirements**

22.3.1 **Eligibility requirements**

To be eligible, products must:
- **Either** be a single packaged unit or consist of two or more factory built sub-assemblies that are designed to be connected together during installation.
- Incorporate an electrically driven refrigeration system that is designed to remove water vapour from the surrounding atmosphere, as the air is recirculated through the product.
- Recover both sensible and latent heat released during dehumidification, and use it to heat the air as it leaves the product and/or for other useful purposes (such as water heating).
- Incorporate a control system that monitors the relative humidity of the surrounding atmosphere, and automatically switches off dehumidification, or modulates the rate of dehumidification, when the relative humidity falls below a pre-set value.
- Be designed for, and include fittings for, permanent installation within a building.
- Have a dehumidification capacity that is greater than or equal to (>=) 0.625 litres per hour.
- **Not** be designed to be connected to compressed air systems.
- Be CE marked.

22.3.2 Performance requirements

Products must have a dehumidification efficiency ratio (DER) equal to or greater than the thresholds set out in Table 22.1 below, which depend on the dehumidification capacity (C) of the product.

<table>
<thead>
<tr>
<th>Dehumidification capacity (C) (Litres/hour)</th>
<th>Dehumidification efficiency ratio (DER) (Litres/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>= 0.625 and < 1.5</td>
<td>>= 1.40</td>
</tr>
<tr>
<td>>= 1.5 and < 2.3</td>
<td>>= 1.80</td>
</tr>
<tr>
<td>>= 2.3</td>
<td>>= 2.30</td>
</tr>
</tbody>
</table>

”>=” means “greater than or equal to”

Where the product’s dehumidification capacity and dehumidification efficiency ratio are defined in sections 3.5 and 3.6 (respectively) of BS EN 810:1997 “Dehumidifiers with electrically driven compressors. Rating tests, marking, operational requirements and technical data sheet”.

22.4 Measurement and Calculations

22.4.1 Measurement standards

All products must be tested in accordance with the procedures laid down in BS EN 810:1997.
22.4.2 Test Requirements

The dehumidification capacity must be determined at the appropriate rating test conditions for the type of product (or intended application) as set out in Tables 2, 3 and 4 of BS EN 810:1997.

The dehumidification efficiency ratio must be determined at an air inlet temperature of 27 degrees Centigrade (dry bulb) and 21 degrees Centigrade (wet bulb) and, where applicable, include the corrections for the power input of fans and water pumps specified in section 4.1 of BS EN 810:1997.

Test results may be submitted in summary form provided that:

- Sufficient data is included to confirm that the dehumidification capacity (kW), COP and DER of each product was determined in accordance with the test procedures in BS EN 810:1997 and at the appropriate rating test conditions as described above.

- At least two detailed test reports are submitted for each range of products. The data must be recorded in a detailed test report as defined in Section 5 of BS EN 810:1997. The test report must include details of the data recording period and duration of the performance measurement.

22.4.3 Rounding

For the avoidance of doubt, test data should be presented to 2 decimal places. As an example, a DER of 1.39 litres/kWh for a heat pump dehumidifier with a dehumidification capacity of 1.2 litres per hour would be deemed to be a fail.

22.5 Verification for ETL Listing

There are five main ways that applicants can demonstrate their product’s performance:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 22.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework.\(^\text{16}\)

22.5.1 Representative testing

Where applications are being made for a range of two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that all variants:

- Use the same refrigerant as the representative model.

- Have the same compressor type (i.e. manufacturer, method of compression (e.g. reciprocating or scroll) and type of enclosure (e.g. hermetic or semi-hermetic)) as the representative model.
- Use the same defrosting method (e.g. hot gas defrost).
- Consist of the same number of units (e.g. are all single packaged units).

The representative models must be selected by dividing the range of products into groups of models with similar design characteristics, and testing a model in each group. The performance of each model in the group must be predicted using a validated mathematical model. As a minimum, at least two models must be tested in each range of products.

It should be noted that:
- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

22.6 Conformity testing
Products listed on the ETL may be subject to the scheme's conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

22.7 Scope of Claim
Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

23 Heat Pump Driven Air Curtains

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2015</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2012</td>
</tr>
<tr>
<td>Former name</td>
<td>Heat Pump Driven Air Curtains</td>
</tr>
</tbody>
</table>

23.1 Scope
Heat Pump Driven Air Curtains are products fitted above a doorway or similar opening that are specifically designed to reduce the infiltration of air from one space to another, and that is heated and/or cooled by a heat pump that transfers heat by means of a refrigeration cycle.

23.2 Definitions
Air curtains are used to reduce losses by disrupting the natural convection between two adjacent spaces that are at differing temperatures, thereby reducing the amount
of heating or cooling needed to maintain the temperature of a space. They are typically used in commercial premises for situations where an open door is required to allow uninterrupted access or where traffic through the doorway is so high that the door is open for extended periods.

Heat pump driven air curtains use a heat pump to heat or cool the air expelled by the product. This heat substitutes the need to heat the air with resistive electric heaters or fuel combustion.

The ECA Scheme aims to encourage the purchase of higher efficiency split type heat pump driven air curtains, which have separate heat collection and rejection units for each space known as ‘indoor’ and ‘outdoor’ units. The ‘indoor’ and ‘outdoor’ units are specifically designed to be connected together during installation by refrigerant pipework to form a single functional unit.

The sub-technology described within this Specification covers:

1. Single-split Heat Pump Driven Air Curtains, that consist of one ‘outdoor’ heat pump unit and one air curtain unit.

Heat pump driven air curtain units for multi-split and VRF heat pumps, that consist of one air curtain unit that is specifically designed to replace one or more ‘indoor’ heat pump units are covered by the Air to Air Heat Pumps, Split, Multi-Split and VRF sub-technology.

23.3 Requirements

23.3.1 Eligibility requirements

Investments in heat pump driven air curtains can only qualify for Enhanced Capital Allowances if the specific product is named in the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.

To be eligible, products shall:

- Include an air curtain unit or package that:
 - Is specifically designed to be fitted above a doorway or similar opening.
 - Is specifically designed to use a heat pump to heat and/or cool the air curtain expelled by it, and to use electrical air heaters (where fitted) only during defrosting or heat pump failure.
 - Has been rated in terms of air curtain airflow rate, outlet air velocity uniformity and air curtain velocity projection in accordance with the procedures in BS ISO 27327-1:2009.

- Be able to automatically modulate in response to changes in air inlet temperature and/or space temperature(s), the amount of heating and/or cooling applied to the air curtain between 40% and 100% of its nominal rated heating/cooling capacity output.

- Be designed for, and include fittings for, permanent installation.

- Be CE marked.

In addition, single split heat pump driven air curtain products shall:
■ Consist of one air curtain unit (or package) and one outdoor heat pump unit that are:
 - Factory-built sub-assemblies.
 - Supplied as a matched set of units.
 - Designed to be connected together during installation.
■ Incorporate an electrically driven refrigeration system.

23.3.2 Performance requirements
Eligible products shall meet the performance criteria set out in Table 23.1 below for:
■ Coefficient of Performance (COP), across the range of connected capacities, including at 100% (full) load, in heating mode, where the product is designed to heat the expelled air.
■ Energy Efficiency Ratio (EER) across the range of connected capacities, including at 100% (full) load in cooling mode, where the product is designed to cool the expelled air.
■ Outlet air velocity uniformity (u_{ACU}), as defined in Section 5.4.4 of BS ISO 27327-1: 2009, over the range of doorway/opening heights that they are designed to be fitted above.

Table 23.1 Performance requirements for heat pump driven air curtains

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Heating mode (COP)</th>
<th>Cooling mode (EER)</th>
<th>Outlet air velocity uniformity (u_{ACU})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Single-split heat pump driven air curtains</td>
<td>≥3.00</td>
<td>≥3.00</td>
<td>≥ 70%</td>
</tr>
</tbody>
</table>

\geq" means "greater than or equal to"

23.4 Measurement and Calculations

23.4.1 Energy efficiency metrics
Coefficient of Performance (COP) - ratio of the heating capacity to the effective power input of the unit (as defined by BS EN 14511:2018).

Energy Efficiency Ratio (EER) - ratio of the total cooling capacity to the effective power input of the unit (as defined by BS EN 14511:2018).

Outlet air velocity uniformity (u_{ACU}) - a percentage calculated from the average air curtain core velocity and velocity’s standard deviation, as defined by BS EN 27327-1:2009

23.4.2 Test Requirements
No additional testing requirements beyond the measurement standard below.
23.4.3 **Measurement standards**

All products shall be tested in accordance with the procedures in BS EN 14511:2018 using the standard rating conditions as set out in the Table 23.2 below.

<table>
<thead>
<tr>
<th>Table 23.2 Test conditions for heat pump driven air curtains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Category</td>
</tr>
<tr>
<td>1. Single-split heat pump driven air curtains</td>
</tr>
</tbody>
</table>

Please note that performance data obtained in accordance with the corresponding procedures and standard rating conditions laid down in BS EN 14511: 2011 and BS EN 14511: 2013 will be accepted as an alternative to testing in accordance with BS EN 14511: 2018 until further notice. Outlet air velocity uniformity shall be tested in accordance with BS EN 27327-1: 2009.

23.4.4 **Rounding**

For the avoidance of doubt test data for COP and EER should be presented to 2 decimal places. As an example, a single split heat pump driven air curtain with a heating mode COP of 2.994 would be deemed to be a fail.

23.5 **Verification for ETL Listing**

There are five main ways that applicants can demonstrate their product’s performance:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 23.5.1)

Further information on the first four routes can be found within Guidance Note 5, ETL product testing framework.\(^\text{17}\)

23.5.1 **Representative Testing**

Where applications are being made for two or more products that are variants of the same basic design, test data may be submitted for a single ‘representative model’, provided that all products:

- Use the same model of outdoor unit.
- Use the same refrigerant as the representative model.
- Provide the same air curtain core velocity range allowing for same installation height.

The representative model may be selected by dividing the range of products into groups of models with similar design characteristics. The performance of each model shall be predicted using a validated mathematical model. At least one model in each group shall be tested for validation purposes. A report documenting the performed model calculations, showing all significant calculation steps, shall be submitted with the application.

It should be noted that:
- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

23.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

23.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

23.8 Review

23.8.1 Indicative review date

The next technical review is scheduled for 2022-23.

23.8.2 Illustrative future direction of the requirements

Future changes to the Specification may include:
- Increasing the performance thresholds for COP and EER
- Introduction of refrigerant GWP requirements.

24 Packaged Air to Air Heat Pumps (rooftop)

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2016</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2002</td>
</tr>
<tr>
<td>Former name</td>
<td>Air Source: Packaged Heat Pumps</td>
</tr>
</tbody>
</table>
24.1 Scope

‘Packaged’ type heat pumps are single18 factory assembled units that incorporate all the elements of the refrigeration system and air distribution mechanisms for space heating, often referred to as ‘rooftop’ due to the most common placement of the product.

Air to air heat pumps are products that are specifically designed to transfer heat from the air in one space into the air within another space by means of a refrigeration cycle.

24.2 Definitions

Packaged Air to Air heat pumps use an electrically operated refrigeration system to transfer heat from the air outside a building to the air inside it. They can be used to provide space heating in a wide range of buildings, and some products also are able to provide cooling by reversing the refrigeration cycle (these products are known as reversible ‘air-cooled’ air conditioning units).

Packaged Air to Air heat pumps are available with a wide range of efficiencies. The ECA Scheme aims to encourage the purchase of higher efficiency products.

24.3 Requirements

24.3.1 Eligibility requirements

Investments in Packaged air to air heat pumps can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.

To be eligible, products shall:

- Consist of a single18 factory–built unit.
- Incorporate an electrically driven refrigeration system.
- Incorporate all the elements of the air distribution mechanisms for space heating.
- Be designed for, and include fittings for, permanent installation.
- Be CE marked.

Products shall be designed to primarily supply heating by means of the built-in heat pump and must not incorporate a gas-fired burner, hot water heating coil or steam heating coil.

24.3.2 Performance requirements

Eligible products shall meet the performance criteria set out in Table 24.1 below for:

- Seasonal Space Heating Energy Efficiency ($\eta_{s,h}$) as defined by Ecodesign Commission Regulation (EU) 2016/2281.
- Seasonal Space Cooling Energy Efficiency as defined by Ecodesign Commission Regulation (EU) 2016/2281.

18 As per Ecodesign guidelines single package should be interpreted as “a unique functional unit that is provided by one manufacturer with one single commercial reference. However, this assembly can be provided on one or two separate frames”.
Table 24.1 Performance requirements for Packaged Air to Air heat pumps

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Heating mode ($\eta_{s,h}$)</th>
<th>Cooling mode ($\eta_{s,c}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air source: packaged heat pumps</td>
<td>$\geq 135%$</td>
<td>$\geq 145%$</td>
</tr>
</tbody>
</table>

"\geq" means "greater than"

24.4 Measurement and Calculations

24.4.1 Energy efficiency metrics

Seasonal Space Heating Energy Efficiency ($\eta_{s,h}$) – ratio between the space heating demand for reference heating season, supplied by a space heater and the annual primary energy consumption required to meet this demand, as defined by Ecodesign Commission Regulation (EU) 2016/2281.

Seasonal Space Cooling Energy Efficiency ($\eta_{s,c}$) – ratio between the space cooling demand for reference cooling season supplied and annual primary energy consumption required to meet that demand, as defined by Ecodesign Commission Regulation (EU) 2016/2281.

Seasonal Coefficient Of Performance (SCOP) - overall coefficient of performance of a heat pump using electricity, representative of the heating season, calculated as the reference annual heating demand divided by annual energy consumption for heating, as defined by Ecodesign Commission Regulation (EU) 2016/2281.

Seasonal Energy Efficiency Ratio (SEER) – overall energy efficiency ratio of a heat pump working in reverse mode for a representative cooling season, calculated as the reference annual cooling demand divided by the annual energy consumption for cooling, as defined by Ecodesign Commission Regulation (EU) 2016/2281.

Primary energy consumption for electricity usage is obtained using the Conversion Coefficient (CC), known also as the Primary Energy Factor, equal to 2.5, as defined by Ecodesign Commission Regulation (EU) 2016/2281.

Reference heating season, also called climate - set of operating conditions describing per bin the combination of outdoor temperatures and the number of hours these temperatures occur for heating for which the unit is declared fit for purpose. There are three reference heating seasons: “A” average, “C” colder and “W” warmer. The UK is located in two reference zones: A and W, but for the ETL purposes “A” for average is to be used.

Correction factor (F_1) is the correction that accounts for a negative contribution to the seasonal space heating energy efficiency of heaters due to adjusted contributions of temperature controls, equal to 3% (BS EN 14825:2016)

In case of any changes regarding the value of CC in relevant regulations or test reporting procedures, the performance indicators will be calculated using the following equations:

\[
\eta_{s,h} = \frac{\text{SCOP}}{\text{CC}} - F_1
\]

\[
\eta_{s,c} = \frac{\text{SEER}}{\text{CC}} - F_1
\]

24.4.2 Test Requirements

No additional testing requirements beyond the measurement standard below.
24.4.3 Measurement standards

Performance data shall be determined and the $\eta_{s,h}$, $\eta_{s,c}$ calculated, following the requirements of Commission Regulation (EU) No 2281/2016. The standard rating conditions are set out in Table 24.2 below.

Table 24.2 Test conditions for Packaged Air to Air heat pumps

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Heating mode ($\eta_{s,h}$)</th>
<th>Cooling mode ($\eta_{s,c}$)</th>
</tr>
</thead>
</table>

Please note that performance data obtained in accordance with the corresponding procedures and standard rating conditions laid down in BS EN 14825:2013 and BS EN 14825: 2016 will be accepted as an alternative to testing in accordance with Commission Regulation (EU) No 2281/2016 until further notice.

24.4.4 Rounding

For the avoidance of doubt, test data should be presented to 0 decimal places for percentage points. As an example, a product with a heating mode $\eta_{s,h}$ of 134.4% would be deemed to be a fail.

24.5 Verification for ETL Listing

There are five main ways that applicants can demonstrate their product’s performance:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 24.5.1)

Further information regarding the first four routes can be found within Guidance Note 5, the ETL product testing framework.\(^{19}\)

24.5.1 Representative Testing

Where applications are being made for a range of products that are variants of the same basic design, test data may be submitted for a representative model, provided that all variants, i.e. models, share following characteristic features:

- Use the same refrigerant,
- Have the same compressor type (i.e. manufacturer, line of models), which should imply:
 - same method of compression (e.g. reciprocating or scroll) and
 - same type of enclosure (e.g. hermetic or semi-hermetic),

\(^{19}\) https://www.gov.uk/government/publications/energy-technology-list-etc-product-testing-framework
- Use the same defrosting method (e.g. hot gas defrost),
- Are powered using same configuration of inverters.

The representative models may be selected by dividing the range of products into groups of models with similar design characteristics. The performance of each model shall be predicted using a validated mathematical model. At least one model in each group shall be tested for validation purposes. A report documenting performed model calculations, showing all significant calculation steps, shall be submitted with the application.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

24.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

24.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

24.8 Review

24.8.1 Indicative review date

The next technical review is scheduled for 2022-23.

24.8.2 Illustrative future direction of the requirements

Future changes to the Specification may include:

- Increasing performance thresholds for $\eta_{s,h}$ and $\eta_{s,c}$
- Introduction of refrigerant GWP requirements.

25 Water to Air Heat Pumps, Split, Multi-split and VRF

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2014</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2002</td>
</tr>
<tr>
<td>Former name</td>
<td>Water Source: Split and Multi-Split (including VRF) Heat Pumps</td>
</tr>
</tbody>
</table>
25.1 Scope
Water to Air Heat Pumps, Split, Multi-Split and VRF, are products that are specifically designed to transfer heat from water (in a building’s internal water loop) into the air within the space to be heated by means of a refrigeration cycle.

‘Split’ type heat pumps have separate heat collection and rejection units for each space known as ‘outdoor’ and ‘indoor’ units. The ‘outdoor’ and ‘indoor’ units are specifically designed to be connected together during installation by refrigerant pipework to form a single functional unit.

Variable refrigerant flow (VRF) heat pumps are specifically designed to automatically adjust the flow of refrigerant to each indoor unit so that the heat delivered is matched to the demand.

25.2 Definitions
Water to Air Heat Pumps, Split, Multi-Split and VRF, use an electrically operated refrigeration system to transfer heat from an internal water loop into the air within the space to be heated. They can be used to provide space heating in a wide range of buildings and some products also are able to provide cooling by reversing the refrigeration cycle within the product (these products are known as reversible ‘water cooled’ air conditioning units).

Water to Air Heat Pumps, Split, Multi-Split and VRF are available with a range of efficiencies. The ECA Scheme aims to encourage the purchase of higher efficiency products.

The ECA Scheme covers two categories of products:

1. Single split (non-VRF) heat pumps that consist of one ‘outdoor’ unit and one ‘indoor’ unit
2. Multi-split VRF heat pumps that consist of one ‘outdoor’ unit connected to one or more ‘indoor’ units using a common refrigerant circuit with the indoor units individually controlled.

25.3 Requirements

25.3.1 Eligibility requirements
Investments in Split, Multi-Split and VRF Water to Air heat pumps can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.

To be eligible, products shall:
- Consist of an ‘outdoor’ unit and one or more ‘indoor’ units that are:
 - Factory–built sub-assemblies.
 - Supplied as a matched set of units.
 - Designed to be connected together during installation.
- Incorporate an electrically driven refrigeration system.
- Be designed for, and include fittings for, permanent installation.
- Be CE marked.
25.3.2 Performance requirements

Eligible products shall meet the performance criteria set out in Table 25.1 below for:

- Seasonal Space Heating Energy Efficiency for water heat source, as defined by Ecodesign Commission Regulation (EU) 2016/2281
- Seasonal Space Cooling Energy Efficiency for ground coupled heat sink, as defined by Ecodesign Commission Regulation (EU) 2016/2281

Table 25.1 Performance thresholds for water to air heat pumps, split, multi-split & VRF

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Heating mode ($\eta_{s,h}$)</th>
<th>Cooling mode ($\eta_{s,c}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Single split (non-VRF) heat pumps</td>
<td>$\geq 165%$</td>
<td>$\geq 270%$</td>
</tr>
<tr>
<td>2. Multi-split VRF heat pumps</td>
<td>$\geq 170%$</td>
<td>$\geq 280%$</td>
</tr>
</tbody>
</table>

\geq means “greater than”

25.4 Measurement and Calculations

25.4.1 Energy efficiency metrics

Seasonal Space Heating Efficiency ($\eta_{s,h}$) – ratio between the space heating demand for reference heating season, supplied by a space heater and the annual primary energy consumption required to meet this demand (as defined by Ecodesign Commission Regulation (EU) 2016/2281).

Seasonal Space Cooling Energy Efficiency ($\eta_{s,c}$) – ratio between the space cooling demand for reference cooling season supplied and annual primary energy consumption required to meet that demand.

Seasonal Coefficient Of Performance (SCOP) – overall coefficient of performance of a heat pump using electricity, representative of the heating season, calculated as the reference annual heating demand divided by annual energy consumption for heating (as defined by Ecodesign Commission Regulation (EU) 2016/2281).

Seasonal Energy Efficiency Ratio (SEER) – overall energy efficiency ratio of a heat pump working in reverse mode for a representative cooling season, calculated as the reference annual cooling demand divided by the annual energy consumption for cooling (as defined by Ecodesign Commission Regulation (EU) 2016/2281).

Primary energy consumption for electricity usage is obtained using Conversion Coefficient (CC), known also as Primary Energy Factor, equal to 2.5, as defined by Ecodesign Commission Regulation (EU) 2016/2281.

Reference heating season, called also climate - set of operating conditions describing per bin the combination of outdoor temperatures and the number of hours these temperatures occur for heating for which the unit is declared fit for purpose. There are three reference heating seasons: “A” average, “C” colder and “W” warmer. UK is located in two reference zones: A and W, but for the ETL purposes “A” for average is to be used.

Correction factor (F1) is correction that accounts for a negative contribution to the seasonal space heating energy efficiency of heaters due to adjusted contributions of temperature controls, equal to 3% (BS EN 14825:2016)
In case of any changes regarding the value of CC in relevant regulations or test reporting procedures, performance indicators will be calculated using following equations:

\[(5) \eta_{s,h} = \frac{SCOP}{CC} - F1\]
\[(6) \eta_{s,c} = \frac{SEER}{CC} - F1\]

25.4.2 Test Requirements

No additional testing requirements beyond the measurement standard below.

25.4.3 Measurement standards

All products shall be tested in accordance with the procedures in Commission Regulation (EU) No 2281/2016, consistent with BS EN 14825:2016. The standard rating conditions are set out in the Table 25.2 below.

Table 25.2 Test conditions for water to air heat pumps, split, multi-split and VRF

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Heating mode ((\eta_{s,h}))</th>
<th>Cooling mode ((\eta_{s,c}))</th>
</tr>
</thead>
</table>

Please note that performance data obtained in accordance with the corresponding procedures and standard rating conditions laid down in BS EN 14825:2013 will be accepted as an alternative to testing in accordance with BS EN 14825:2016 until further notice.

25.4.4 Rounding

For the avoidance of doubt test data should be presented to three significant figures. As an example, a multi-split VRF heat pump with a heating mode \(\eta_{s,h}\) of 169.4\% would be deemed to be a fail.

25.5 Verification for ETL Listing

There are five main ways that applicants can demonstrate their product’s performance:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 25.5.1)
Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework\(^{20}\).

25.5.1 Representative Testing

Where applications are being made for a range of products that are variants of the same basic design, test data may be submitted for a representative model, provided that all variants, i.e. models, share following characteristic features:

- Use the same refrigerant
- Have the same compressor type (i.e. manufacturer, line of models), which should imply:
 - same method of compression (e.g. reciprocating or scroll) and
 - same type of enclosure (e.g. hermetic or semi-hermetic)
- Use the same defrosting method (e.g. hot gas defrost)
- Fit within the same product category (i.e. are all low-temperature air to water heat pumps, or are all non-low-temperature air to water heat pumps.
- The representative models may be selected by dividing the range of products into groups of models with similar design characteristics. The performance of each model shall be predicted using a validated mathematical model. At least one model in each group shall be tested for validation purposes. A report documenting performed model calculations, showing all significant calculation steps, shall be submitted with the application.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

25.6 Conformity testing

Products listed on the ETL may be subject to the scheme's conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

25.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

25.8 Review

25.8.1 Indicative review date
The next technical review is scheduled for 2022-23.

25.8.2 Illustrative future direction of the requirements
Future changes to the Specification may include:
- Increasing performance thresholds for η_s and $\eta_{s,h}$
- Introduction of refrigerant GWP requirements.

26 Water or Brine to Water Heat Pumps

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2016</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2004</td>
</tr>
<tr>
<td>Former name</td>
<td>Ground Source and Surface Water Source Heat Pumps Ground Source: Brine to Water Heat Pumps</td>
</tr>
</tbody>
</table>

26.1 Scope
Water or Brine to Water Heat Pump systems are specifically designed to transfer heat from the ground or surface water to a water-based heating system by means of a refrigeration cycle.

The liquid heat transferring medium for the heat pump may be brine or water.
In a brine to water heat pump, the heat is collected from the ground or surface water by circulating a solution of water and anti-freeze (known as ‘brine’) through a buried or submerged, closed-loop, ground heat exchanger.
In a water to water heat pump, the heat is collected from ground water (aquifer) or surface water by circulating the water through a direct, open-loop heat exchanger.

26.2 Definitions
Water or Brine to Water Heat Pumps use an electrically operated refrigeration system to transfer heat from the ground or surface water into a water-based heating system. They can be used to provide space heating in a wide range of buildings, and some products may be also able to provide cooling by reversing the refrigeration cycle within the product.

Products which are designed to be used for a water heat source without the use of an intermediate circuit, i.e. direct open-loop system, are classified as water to water heat pumps. All others are classified as brine to water heat pumps. The ECA Scheme aims to encourage the purchase of higher efficiency water or brine to water heat pumps, which can be used to realise substantial reductions in carbon emissions.

26.3 Requirements
Investments in water or brine to water heat pumps can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology
Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.

26.3.1 Eligibility requirements

To be eligible, products shall:

■ Consist of a single factory-built unit.
■ Incorporate an electrically driven refrigeration system.
■ Be designed to use an indirect, closed-loop ground heat exchanger, indirect, closed-loop surface water heat exchanger or a direct, open-loop ground or surface water heat source.
■ Be designed for, and include fittings for, permanent installation.
■ Be CE marked.

26.3.2 Performance requirements

Eligible products shall meet the relevant performance criteria set out in Table 26.1 below for:

■ Seasonal Space Heating Energy Efficiency ($\eta_{s,h}$) as defined by Commission Regulation (EU) No 813/2013.
■ Seasonal Energy Efficiency Ratio (SEER) for average climate conditions, where the product is designed to provide cooling.

Table 26.1 Performance thresholds for water or brine to water heat pumps

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Heating mode ($\eta_{s,h}$)</th>
<th>Cooling mode (SEER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Brine to water heat pumps</td>
<td>≥175%</td>
<td>≥5.00</td>
</tr>
<tr>
<td>2. Water to water heat pumps</td>
<td>≥185%</td>
<td>≥5.00</td>
</tr>
</tbody>
</table>

“≥” means “greater than or equal to”

26.4 Measurement and Calculations

26.4.1 Energy efficiency metrics

Seasonal Space Heating Efficiency ($\eta_{s,h}$) – ratio between the space heating demand for reference heating season, supplied by a space heater and the annual primary energy consumption required to meet this demand (as defined by Commission Regulation (EU) No 813/2013).

Seasonal Coefficient Of Performance (SCOP) – overall coefficient of performance of a heat pump using electricity, representative of the heating season, calculated as the reference annual heating demand divided by the annual energy consumption for heating (as defined by Commission Regulation (EU) No 813/2013).

Seasonal Energy Efficiency Ratio (SEER) – ratio of the total cooling capacity to the effective power input of the unit (BS EN 14825:2016).

Primary energy consumption for electricity usage is obtained using Conversion Coefficient (CC), known also as Primary Energy Factor, equal to 2.5, as defined by Ecodesign Commission regulation (EU) 813/2013.
Reference heating season, called also climate – a set of operating conditions describing per bin the combination of outdoor temperatures and the number of hours these temperatures occur for heating for which the unit is declared fit for purpose. There are three reference heating seasons: “A” average, “C” colder and “W” warmer. UK is located in two reference zones: A and W, but for the ETL purposes “A” for average is to be used.

Correction factor \(F_1 \) is correction that accounts for a negative contribution to the seasonal space heating energy efficiency of heaters due to adjusted contributions of temperature controls, equal to 3% (BS EN 14825:2016).

Correction factor \(F_2 \) is correction that accounts for a negative contribution to the seasonal space heating energy efficiency of heaters due to electricity consumption of brine and water pumps, equal to 5% (BS EN 14825:2016).

Equation corresponding to section 7.1 of BS EN 14825:2016:

\[
\eta_{s,h} = \frac{SCOP}{CC} - F_1 - F_2
\]

26.4.2 Test Requirements

No additional testing requirements beyond the measurement standard below.

26.4.3 Measurement standards

Performance data shall be determined and the SSHEE calculated, following the requirements of Commission Regulation (EU) No 813/2013, Annex III.

The product’s capacity and performance indicators, shall be determined at the conditions shown in Table 26.2 and in accordance with the procedures detailed in BS EN 14825:2016 “Air conditioners, liquid chilling packages and heat pumps, with electrically driven compressors, for space heating and cooling - Testing and rating at part load conditions and calculation of seasonal performance.”

Table 26.2 Part load conditions for water or brine to water heat pumps

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Heating mode ((\eta_{s,h}))</th>
<th>Cooling mode (SEER)</th>
</tr>
</thead>
</table>

The seasonal coefficient of performance (SCOP) shall be determined according to the calculation methods in BS EN 14825:2016.

Where results are determined by calculation then this should be on the basis of design and/or extrapolation. In this case, details of such calculations and/or extrapolations, and of tests to verify the accuracy of the calculations undertaken (including details of the mathematical model for calculating performance of such combinations, and of measurements taken to verify this model) shall be made available. Tests undertaken to verify the accuracy of the calculations shall be carried out in accordance with the test procedures described above.
Please note that the performance data for heating mode COP can only be obtained in accordance with the corresponding procedures laid down in BS EN 14825:2016 and standard rating conditions laid down in Table 12, BS EN 14825:2013 will be accepted as an alternative to testing in accordance with Table 24, BS EN 14825:2016 until further notice.

26.4.4 Rounding
For the avoidance of doubt data should be presented to three significant figures. As an example, a brine to water heat pump with a heating mode performance $\eta_{s,h}$ of 174.4% would be deemed to be a fail.

26.5 Verification for ETL Listing
There are five main ways that applicants can demonstrate their product’s performance:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 26.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework.

26.5.1 Representative Testing
Where applications are being made for a range of products that are variants of the same basic design, test data may be submitted for a representative model, provided that all variants, i.e. models, share following characteristic features:

- Use the same refrigerant
- Have the same compressor type (i.e. manufacturer, line of models), which should imply:
 - same method of compression (e.g. reciprocating or scroll) and
 - same type of enclosure (e.g. hermetic or semi-hermetic)
- Are powered using same configuration of inverters.

The representative models may be selected by dividing the range of products into groups of models with similar design characteristics. The performance of each model shall be predicted using a validated mathematical model. At least one model in each group shall be tested for validation purposes. A report documenting performed model calculations, showing all significant calculation steps, shall be submitted with the application.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with

that representative model may or may not be permitted to remain on the ETPL.

- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

26.6 Conformity testing

Products listed on the ETL may be subject to the scheme's conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

26.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

26.8 Review

26.8.1 Indicative review date

The next technical review is scheduled for 2022-23.

26.8.2 Illustrative future direction of the requirements

Future changes to the Specification may include:

- An increase of the performance thresholds for $\eta_{s,h}$
- Introduction of refrigerant GWP limits.
Heating, Ventilation and Air Conditioning (HVAC) Equipment

27 Active Chilled Beams

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2015</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2014</td>
</tr>
</tbody>
</table>

27.1 Scope

Active chilled beams incorporate an integral (primary) air supply and cooling coil(s) to provide cooled air into occupied spaces without the use of an integral fan, in order to achieve comfortable working conditions. The primary air supply enhances and controls the induction of air from the occupied space through the cooling coil.

Active chilled beams may provide space cooling only or both space heating and cooling. Where beams provide space heating, they will also incorporate a heating coil to provide warm air to occupied spaces.

27.2 Definitions

Active chilled beams are terminal units attached to heating, ventilation and air conditioning (HVAC) systems that are specifically designed to provide chilled air (and warm air for heating and cooling products) into a treated environment.

Cooling only active chilled beams are convectors with an integrated (primary) air supply and cooling coil(s) through which chilled water passes to provide the cooling effect. Heating and cooling active chilled beams also have an integrated heating coil to provide space heating. Primary ventilation air produces an inductive effect to increase the convection of room air. The induced air flow passes through the cooling or heating coil, and then mixes with the primary air before being discharged into the space through integral air distributors.

Active chilled beams do not incorporate fans for air distribution. They are designed to use dry (sensible) cooling to prevent condensation thus negating the need for condensate collection and disposal. Dehumidification of the primary supply air is important to prevent the risk of condensation as well as any internal latent gains.

Active chilled beams can be linear or modular in format:

- Linear active chilled beams are produced in various widths and lengths with either one or two directional air throw patterns (1 or 2-way throws). One or more linear active chilled beams can be installed as a continuous linear beam to make up desired length.

- Modular or cassette format active chilled beams are characterized by modular sized units, typically 0.6m x 0.6m and 0.6m x 1.2m with 4 directional outlets (4-way throws).

- Bulkhead active chilled beams are designed to fit into restricted spaces with low ceilings such as bulkheads. They deliver treated air in a horizontal direction.

Multi-service chilled beams (MSCBs) combine chilled beams with additional building services such as lighting, controls & control sensors, sprinklers, cables or public-
address speakers. Some components of a MSCB will not be eligible for an ECA claim – see Section 27.7.

The ECA scheme aims to encourage the purchase of active chilled beams which are energy efficient due to their use of relatively high chilled water temperatures and the use of outdoor ventilation air, resulting in increased efficiency of chiller operation and the opportunity to maximise free-cooling.

Investments in chilled beams can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility requirements as set out below.

27.3 Requirements

27.3.1 Eligibility requirements

To be eligible, products shall:

- Be an active chilled beam designed to introduce primary ventilation air into the treated space through the beam.
- Be designed to operate above the dew point. Any condensate tray fitted should be included as a precautionary measure only, and should have no facility to connect to drainage.
- Not include any electrical heating elements.
- Not include an integral fan

Multi-service chilled beams that contain lighting equipment are eligible as long as the lighting equipment also meets the relevant ETL criteria for high efficiency lighting units, white light emitting diode lighting units, or lighting controls, as appropriate.

27.3.2 Performance requirements

Products shall have a “Specific Waterside Cooling Capacity” that is greater than or equal to the values set out in Table 27.1 for “Linear Active Chilled Beams” and Table 27.2 for “Modular Active Chilled Beams” and Table 27.3 for “Bulkhead Active Chilled Beams” at the operating conditions specified below.

Table 27.1 Linear active chilled beam performance requirements

<table>
<thead>
<tr>
<th>Nominal Active Chilled Beam Width</th>
<th>≤ 300mm</th>
<th>> 300mm and ≤ 600mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Throw</td>
<td>1-Way</td>
<td>2-Way</td>
</tr>
<tr>
<td>Induction (nozzle) pressure (P_A)</td>
<td>≤ 100 Pa</td>
<td>≤ 100 Pa</td>
</tr>
<tr>
<td>Cooling coil pressure drop (P_W)</td>
<td>≤ 20 kPa</td>
<td>≤ 20 kPa</td>
</tr>
<tr>
<td>Specific waterside cooling capacity</td>
<td>≥ 15.0 W/mK</td>
<td>≥ 25.0 W/mK</td>
</tr>
</tbody>
</table>
Table 27.2 Modular active chilled beam performance requirements

<table>
<thead>
<tr>
<th>Nominal Active Chilled Beam Size (Active width x Active length)</th>
<th>Air Throw</th>
<th>600mm x 600mm 4-Way</th>
<th>600mm x 1200mm 4-Way</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction (nozzle) pressure (P_A)</td>
<td>≤ 100 Pa</td>
<td>≤ 100 Pa</td>
<td></td>
</tr>
<tr>
<td>Cooling coil pressure drop (P_W)</td>
<td>≤ 20 kPa</td>
<td>≤ 20 kPa</td>
<td></td>
</tr>
<tr>
<td>Specific waterside cooling capacity</td>
<td>≥ 45.0 W/K</td>
<td>≥ 40.0 W/K</td>
<td></td>
</tr>
</tbody>
</table>

Table 27.3 Bulkhead active chilled beam performance requirements

<table>
<thead>
<tr>
<th>Nominal Active Chilled Beam Size (Active length)</th>
<th>Bulkhead unit up to 1500mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction (nozzle) pressure (P_A)</td>
<td>≤ 100 Pa</td>
</tr>
<tr>
<td>Cooling coil pressure drop (P_W)</td>
<td>≤ 20 kPa</td>
</tr>
<tr>
<td>Specific waterside cooling capacity</td>
<td>≥ 40.0 W/mK</td>
</tr>
</tbody>
</table>

Where:

- Specific waterside cooling capacity in W/mK is the waterside cooling capacity per unit length of beam and per unit temperature difference between the reference room air temperature and the mean chilled water temperature. For modular active chilled beams, the specific waterside cooling capacity is measured for the modular unit in W/K.
- Nominal active chilled beam width/dimensions is the size of the active cooling element excluding architectural components that do not affect product cooling performance.
- All other terms are as defined in BS EN 15116:2008.
- "≤" means "less than or equal to", “≥” means “greater than or equal to”

27.4 Measurement and Calculations

27.4.1 Measurement standards

Product performance specified in Table 27.1, Table 27.2 and Table 27.3 (above) shall be determined in accordance with the procedures and test conditions laid out in the following standard:

27.4.2 Performance metric

The specific waterside cooling capacity for the product shall be calculated using the equation below:

$$Specific\ Waterside\ Cooling\ Capacity = \frac{P_w}{L \Delta \theta}$$

Where:

- P_w = Waterside cooling capacity [Watts]
- L = Cooling length [metres], the active length of cooling section
- $\Delta \theta = \text{Temperature difference between reference air temperature } (\theta_r) \text{ and mean cooling water temperature } (\theta_w) \text{ i.e. } \Delta \theta = (\theta_r - \theta_w) \text{ [Kelvin]}

For modular active chilled beams, where the product is a fixed size, the specific waterside cooling capacity is simply the ratio between the waterside cooling capacity in Watts to the temperature difference between reference air temperature and mean cooling water temperature in Kelvin, as described above.

27.4.3 Test Requirements

All products shall be tested in accordance with the procedure set out in BS EN 15116:2008. A test report shall be submitted in accordance with the format specified in Section 6 of BS EN 15116:2008.

27.4.4 Rounding

For the avoidance of doubt test data should be presented to one decimal place. As an example, a Specific Waterside Cooling Capacity of 14.9 Watts/mK for a 1 Way throw linear active chilled beam with Nominal Active Width of \leq 300 mm would be deemed to not meet the performance requirements.

27.4.5 Uncertainties of measurement

The total calculated uncertainty when calculating the specific waterside cooling capacity of a product shall be less than \pm6% at nominal flow and $\Delta \theta = 8K$, in accordance with Section 5 of BS EN 15116:2008.

27.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 27.5.1)

Further information regarding the first three routes can be found within Guidance Note 5, ETL product testing framework\(^{22}\).

27.5.1 Representative testing

Where applications are being made for a range of two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that it can be demonstrated that all variants have:

- the same cooling coil width
- the same cooling coil height
- fins that are made from the same material, with the same surface and spacing between adjacent fins

\(^{22}\) https://www.gov.uk/government/publications/energy-technology-list-etc-etl-product-testing-framework
■ pipes that are the same shape (e.g. internally smooth or rifled), and of the same material and pattern.
■ the same plenum and diffuser geometry
■ the same discharge (e.g. are all one way, two ways, three ways or four ways)

As a minimum, at least one representative model shall be tested in each range of products. The performance of each model in the representative group shall be predicted using a validated mathematical model.

It should be noted that:
■ If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
■ If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

27.6 Conformity Testing
Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

27.7 Scope of Claim
Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

Active chilled beams classed as MSCB can include additional technologies such as lighting and lighting controls, speakers, sprinklers, presence sensors, data cabling, or architectural metal work. Many of these additional technologies are not energy saving and an ECA is not available on their purchase. Only the cost of the base active chilled beam unit is eligible.

Where the additional technologies are supported by the ECA scheme (e.g. lighting and lighting controls, building environment zone controls) and meet ECA scheme requirements (e.g. meet ETCL performance requirements, are listed on the ETL – where appropriate) then an ECA may be claimed on their purchase.

Therefore, when claiming ECAs for multi-service chilled beams, only the following costs may be claimed:
■ The cost of the base active chilled beam, for which published claims values shall be used
■ The cost of any additional features (such as lighting) which meet ECA scheme requirements
27.8 Review

27.8.1 Indicative review date
This specification is scheduled for review during the 2022/23 ETL review cycle.

27.8.2 Illustrative future direction of the requirements
In future, the ETL technology specification for active chilled beams sub-categories will be reviewed for a potential scope expansion to include other product types not currently covered under the scope of this specification.

28 Building Environment Zone Controls

<table>
<thead>
<tr>
<th>Date published</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2004</td>
</tr>
<tr>
<td>Former name</td>
<td>Heating, Ventilation and Air Conditioning (HVAC) Zone Controls</td>
</tr>
</tbody>
</table>

28.1 Scope
Building environment zone controls are used to control the environmental conditions (i.e. temperature, ventilation rate and/or air condition) in individual zones (i.e. rooms or areas) within a building. They can be programmed to maintain these environmental conditions within pre-set limits in a manner that reflects occupation schedules, occupation status and/or level of activity in the zone, whilst also taking account of environmental conditions, and the specific operating requirements of the zone.

Some products are also able to switch lighting and electrical appliances in a zone on and off in line with its occupation schedule or occupation status, and some can control the operation of window shading equipment in a manner that minimises the amount of cooling needed to maintain zone environmental conditions without excessively reducing the amount of natural light that can be used.

A wide range of building environment zone controls is available. The ECA Scheme aims to encourage the purchase of products that automatically minimise the energy consumption of building heating, cooling, ventilation, or air conditioning equipment, and associated distribution systems.

The ECA Scheme covers four categories of products:
1. Standalone control units that are self-contained zone control units that are designed to control one or more zones, but not centralised HVAC plant.
2. Centralised control units that are self-contained central control units that are designed to control two or more zones, and centralised HVAC plant.
3. Packaged control products that consist of two or more control modules or units that are designed to be connected together during installation, and that are designed to control one or more zones. They may also control centralised HVAC plant, provided they are also designed to control at least two zones.
4. ‘Add-on’ control modules that are not self-contained units, but are designed to incorporate zone control facilities into HVAC control units or equipment.

Investments in building environment zone controls can only qualify for Enhanced Capital Allowances if the product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.
28.2 Definitions

Building environment zone controls (formerly listed as HVAC zone controls) are products that are specifically designed to automatically control in an energy efficient manner, the amount of heating, cooling, ventilation or air conditioning that is applied to individual rooms or defined areas within a building, known as “zones”.

“HVAC” is the collective term used to refer to the combination of heating, cooling, ventilation, or air conditioning that is specifically employed within a particular building.

28.3 Requirements

28.3.1 Eligibility requirements

To be eligible, products must:

1. Incorporate a microprocessor based controller that is pre-programmed to:
 a) Automatically control the individual environmental conditions in one or more zones within a building, in an energy efficient manner that reflects the occupation status or the level of activity in each zone and/or predefined zone occupation schedules.
 b) EITHER automatically switch between pre-defined operating modes, in accordance with the predefined occupation schedule or occupation status of the zones being controlled, OR automatically modulate the amount of zone heating, cooling, ventilation and air-conditioning applied in a manner that reflects the level of activity in the zone.

2. Be able to automatically control the operation of the equipment:
 a) Heating and/or cooling the zones being controlled; and/or:
 b) Ventilating and/or air-conditioning the zones being controlled.

3. Be designed to have at least two of the following zone operating modes:
 a) A “normal” operating mode where zone environmental conditions are maintained within predefined levels consistent with zone occupation or a high level of activity in the zone.
 b) An “economy” mode where zone environmental conditions are maintained at reduced levels to reflect, for example, the fact that the zone is unoccupied, or a reduced level of activity in the zone or
 c) A “standby” mode where the zone heating, cooling, ventilation and air-conditioning is switched off or operated solely for fabric, frost and equipment protection.

4. Incorporate an anti-tampering mechanism that prevents the product’s control strategy and configuration settings from being modified, and automatic control from being disabled, except during commissioning, maintenance or testing.

5. Comply with the relevant requirements for particular type of zone control and type of HVAC plant controlled, as set out in Table 28.1 to Table 28.6 below, for products that:
 a) Control zone temperature (see Table 28.1).
 b) Control zone ventilation rate or air condition (see Table 28.2).
 c) Control based on zone occupation status or level of activity (see Table 28.3).
 d) Control based on zone occupation schedules (see Table 28.4).
e) Control centralised HVAC plant (see Table 28.5).

f) Control wet heating systems (see Table 28.6).

6. **Not** incorporate any form of control valve, actuator, damper, motor, pump, fan or variable speed drive, except for fans or pumps incorporated solely for the purpose of product cooling.

7. Conform with the requirements of the EU EMC Directive 89/336/EEC (as amended) or its replacement EU EMC Directive 2004/108/EC, or be CE Marked. In addition, products that are designed to control any type of heating or cooling equipment (including centralised heating or cooling plant) must control zone temperature.

Table 28.1 Requirements for control zone temperature

<table>
<thead>
<tr>
<th>Control of zone temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>All products that are designed to control zone temperature must:</td>
</tr>
<tr>
<td>1. Be designed to directly measure zone temperature by means of a temperature sensor, and automatically adjust heat flow into, or out of, the zone to maintain temperature within the predefined temperature limits for the operating mode.</td>
</tr>
<tr>
<td>2. Provide facilities that enable building managers to define the temperature set-points for each operating mode in each zone to +/- 1 degree centigrade.</td>
</tr>
<tr>
<td>3. Limit the ability of building users to adjust the temperature set-point within individual zones, so any adjustments are restricted in terms of duration.</td>
</tr>
</tbody>
</table>

In addition, products that are designed to control both zone heating and cooling must:

| 1. Provide facilities that enable building managers to define separate temperature set-points for zone heating and zone cooling in each zone. |
| 2. Incorporate a mechanism or mechanisms that prevent simultaneous zone heating and cooling, and frequent cycling of heating and cooling equipment on and off. |

In addition, products that are designed to control window shading equipment must:

| 3. Be designed to monitor the position of the sun by means of a solar tracking sensor, and automatically adjust the position of window blinds or orientation of louvres in a manner that minimises the entry of solar radiation without excessive reduction in natural light. |

Notes

4. Products that solely rely on an external thermostatic device (for example, a digital thermostat) to determine when additional heating or cooling is required within a zone, are not eligible.

5. Products must automatically reset temperature set-point adjustments made by building users either after a pre-defined time interval (that may be fixed or defined by the building manager), or where zone control is based on occupation schedule, at the next scheduled switching time.
Table 28.2 Requirements for control zone ventilation rates or air condition

<table>
<thead>
<tr>
<th>Control of zone ventilation rates or air condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>All products that are designed to control zone ventilation rate or air condition must:</td>
</tr>
<tr>
<td>1. Be designed to monitor zone ventilation rate or air condition by means of a presence detector or activity sensor (see Table 28.3, note 8), and automatically adjust the airflow into, or out of, the zone to maintain zone ventilation rates or air condition within the predefined limits for the operating mode.</td>
</tr>
<tr>
<td>2. Incorporate a mechanism that automatically minimises ventilation rates in unoccupied zones, and in zones operating in economy or standby modes.</td>
</tr>
</tbody>
</table>

Notes

3. Products that solely rely on an electronic or mechanical ‘timing out’ mechanism (for example, a spring loaded button) to determine when a zone is unoccupied are not eligible.

4. Products must not allow building users to adjust ventilation rate set-points, but may incorporate facilities that enable them to temporarily override ventilation rates for a limited period.

5. Products that have a “night cooling mode” that is designed to make use of natural ventilation to remove excess heat and cool the building fabric when the zone is unoccupied are eligible.
Table 28.3 Requirements for control based on zone occupation status or level of activity

Control based on zone occupation status or level of activity

All products that are designed to control zones based on occupation status must:

1. Be able to monitor zone occupation status by means of presence detector or activity sensor, and automatically adjust zone-operating mode to maintain environmental conditions within the predefined limits for the zone occupation status.
2. Provide facilities that enable building managers or users to manually switch the zone into economy or standby mode, without disabling automatic zone controls.

All products that are designed to control zones based on level of activity must:

3. Be able to monitor the level of activity in the zone by means of presence detector or activity sensor, and automatically modulate the amount of heating, cooling, ventilation and air-conditioning applied in a manner that reflects the level of activity in the zone.
4. Provide facilities that enable building managers or users to manually switch the zone into economy or standby mode, without disabling automatic zone controls.

In addition, products that are designed to control kitchen ventilation equipment must:

5. Be designed to monitor the level of fumes resulting from the cooking activity, and to automatically reduce the rate of extraction to the minimum necessary to maintain air condition within predefined limits.

Notes

6. The product may monitor zone occupation status by means of one or more presence detectors, or activity sensors, which may include for example, CO\textsubscript{2} level monitors, heat or motion detectors, moisture sensors etc. However, manually operated devices (for example, electrical switches, electronic touch buttons or entry detection devices) are not considered to be presence detectors unless they automatically reset to a “no presence detected state” after a pre-set period of time.
7. A key card activated master control switch may be used as an alternative to a presence detector, provided that when the key card is removed from it: it is designed to switch the zone controller into economy or standby mode and to switch off all lighting and electrical appliances being controlled.
8. Products that are designed to monitor the usage of lighting and electrical appliances by measuring energy use are eligible, provided that they are also designed to use a presence detector or activity sensor to detect that the zone is unoccupied, and then to automatically switch such equipment off.
9. Products that are designed to monitor the operation of plant and machinery within a zone and raise an alarm when a fault or fire is detected, or when unauthorised occupation is detected, are eligible. In this context, a fault may include the local override of control settings or automatic control.
10. Products that are designed to share the use of presence detectors and activity sensors with other types of management and control systems (e.g. building management systems) are eligible.
Table 28.4 Requirements for control based on zone occupation schedules

Control based on zone occupation schedules

All products that are designed to control zones based on occupation schedules must:

1. Automatically switch zones between operating modes, in accordance with the predefined and individual weekly occupation schedule for each zone controlled.
2. Provide facilities that enable building managers to define the normal occupation times in each zone (in intervals of five minutes or less), for each day of the week, including at least two periods of occupation per day (i.e. at least 14 different occupation periods a week).
3. Provide facilities that enable building users to temporarily override the predefined schedules and/or to cancel the remaining portion of a pre-defined occupation period.
4. Provide facilities that enable building managers to define future dates (e.g. holidays) when zone heating, cooling, ventilation and air-conditioning should be completely switched off, or operated at frost, fabric or equipment protection levels.

In addition, products that also control zone heating and cooling must:

5. Incorporate a zone “optimum start” mechanism that monitors external and/or internal temperatures, and calculates when heating or cooling needs to begin in the zone in order to reach the pre-set temperature by the start of the next occupancy period.
6. Provide facilities that enable building managers to define different temperature set-points for each scheduled period of normal occupation throughout the day and week.

Notes

7. Products that control domestic hot water (DHW) systems must provide facilities that enable building managers to define a separate operating schedule for the operation of DHW systems.
8. Products must automatically reset overrides, either after a pre-defined time interval (which may be fixed or defined by the building manager) or at the next scheduled switching time.

Table 28.5 Requirements for control of centralised HVAC plant

Control of centralised HVAC plant

Where products control the operation of centralised HVAC plant, they must:

1. Incorporate a mechanism that enables the building’s HVAC systems to be easily switched into economy or standby mode, for example, when a scheduled activity finishes early.

In addition, products that control central heating or cooling systems must:

2. Provide facilities to control the operation of the centralised heating or cooling systems, and zone environmental conditions based on zone occupation schedules (as defined in Table 28.4).
3. Monitor internal temperatures and automatically switch zone heating circuits on or cooling circuits off, to stop condensation occurring and to protect building fabric.
4. Incorporate an overall “optimum start” mechanism that monitors external or internal temperatures, and calculates when the heating or cooling system needs to be switched on in order to reach pre-set temperatures by the start of the next occupancy period, after taking account of the requirements of each zone.

Notes

5. Products that control centralised HVAC plant must be designed to control at least two zones.
Table 28.6 Requirements for control of wet heating systems

Control of wet heating systems

Where products control the overall operation of wet heating systems, they must:

1. Incorporate a "self-adaptive weather compensation" mechanism that automatically saves energy during milder weather conditions, by reducing the temperature set-point of the boiler water circuit as the external temperature rises, and also the temperature of, or the heat flow through, the individual heating circuits for each zone controlled. The mechanism must be able to ‘learn’ the thermal characteristics of the zone(s) and to automatically optimise the amount of weather compensation applied to each zone.

2. Incorporate a “frost protection” mechanism that monitors external and/or internal temperatures (or pipework temperatures), and switches on boilers and heating circuits as required to prevent equipment and pipework from “freezing up”.

3. Provide facilities for building managers to “temporarily override” or manually adjust the degree (or amount) of weather compensation applied to each zone controlled.

Notes

4. The requirements in Table 28.5 also apply to products that control wet heating systems.

Where:

- Automatic control may be implemented either directly by means of an analogue or digital signal connection, or indirectly by means of another control device or network.

- A mechanism is defined as “any sequence of pre-defined actions that performs a given function, where an action can be defined in hardware and/or software”.

- An algorithm is defined as “a mechanism that is defined in software”.

- In this context: “activity” includes the unattended operation of plant and machinery.

- The product’s control strategy is the combination of automatic control functions, mechanisms and facilities specified for particular type of zone control or HVAC plant controlled. In this context, products may be pre-programmed in one of the following ways:

 a) One or more fixed control strategies that are designed to control specific type of zone, or set of equipment (or plant), and that can be selected during commissioning.

 b) One or more flexible control strategies that can be configured to control different types of zones, and equipment, as part of a clearly defined commissioning procedure.

- Products designed to control the types of equipment specified in Table 28.7, must also comply with the relevant parts of the eligibility criteria for ECA compliant products in those areas.

- Products that are designed to other types of equipment not specified in Table 28.7 are only eligible, if control is based on zone occupation schedules, status or levels of activity.
Table 28.7 Additional requirements when other types of equipment are controlled

<table>
<thead>
<tr>
<th>Type of equipment controlled</th>
<th>Relevant ECA eligibility criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical lighting equipment</td>
<td>Lighting controls</td>
</tr>
<tr>
<td>Automatic monitoring and targeting equipment</td>
<td>Component based AMT systems</td>
</tr>
<tr>
<td>Commercial refrigeration equipment</td>
<td>Refrigeration system controls</td>
</tr>
<tr>
<td>Two or more air compressors</td>
<td>Master controllers</td>
</tr>
</tbody>
</table>

28.4 Verification for ETL Listing
There are no testing requirements, however manufacturers shall provide sales and technical brochures to evidence the conformity of their products against the requirements from section 28.3.

28.5 Conformity testing
Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

28.6 Scope of Claim
Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

29 Close Control Air Conditioning Equipment

<table>
<thead>
<tr>
<th>Date published</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2009</td>
</tr>
</tbody>
</table>

29.1 Scope
Close control air conditioning equipment is used to control temperature (and optionally humidity) in rooms and enclosures containing heat generating equipment, such as servers, computers or telecommunications devices, and in some types of manufacturing process (e.g. clean rooms). The equipment typically operates continuously and has a much higher unit floor area cooling load requirement than conventional air conditioning.

Close control air conditioning equipment is available with a wide variety of efficiencies. The ECA Scheme aims to encourage the purchase of higher efficiency products.

The ECA Scheme covers seven categories of product:

1. DX air cooled close control air conditioning equipment (without free cooling coil).
2. DX air cooled close control air conditioning equipment with integral chilled water free cooling coil(s).
3. DX water cooled close control air conditioning equipment (without free cooling coil).
4. DX water cooled close control air conditioning equipment with integral chilled water free cooling coil(s).
5. Chilled water (CHW) cooled close control air conditioning equipment.
6. Dual mode: DX air cooled and chilled water (CHW) cooled close control air conditioning equipment (without free cooling).
7. Dual mode: DX water cooled and chilled water (CHW) cooled close control air conditioning equipment (without free cooling).

Where DX stands for ‘direct expansion’ and refers to products that effect cooling, or partial cooling, of the air by evaporating a refrigerant in their indoor heat exchangers.

The ECA Scheme covers products that are designed to provide close control air conditioning to the room containing the heat generating equipment (room air conditioning, or room AC, products) and those that are designed to provide close control air conditioning to the local area surrounding the heat generating equipment or the heat generating equipment itself (close coupled cooling, or CCC, products).

Investments in close control air conditioning equipment can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

29.2 Definitions

Close control air conditioning equipment covers products that are specifically designed to provide the cooling needed to maintain the air temperature, and optionally the relative humidity, in rooms that contain equipment or processes with high sensible heat loads.

29.3 Requirements

29.3.1 Eligibility requirements

To be eligible, products must:

- Either be a single packaged unit or consist of two or more factory built sub-assemblies that are designed to be connected together during installation.
- Either incorporate an electrically powered compressor (or compressors) and / or incorporate a chilled water cooling coil with fittings for connection to an external chilled water circuit.
- Have a ratio of sensible cooling capacity to the total cooling capacity (i.e. sensible heat ratio) that is greater than or equal to (>=) 0.9 at the relevant rating conditions specified in Table 29.2 and Table 29.3 below.
- Be CE marked.

29.3.2 Performance requirements

Products must have an energy efficiency ratio (EER), and a free cooling capacity (where applicable) that is greater than or equal to the values set out in Table 29.1 below.
Table 29.1 Performance thresholds for close control air conditioning equipment

<table>
<thead>
<tr>
<th>Product category</th>
<th>EER</th>
<th>Free cooling capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DX air cooled (without free cooling).</td>
<td>>= 3.20</td>
<td>Free cooling coil cooling capacity >= 90% of cooling capacity in DX operating mode where both cooling capacities are measured at the rating conditions given in Table 29.2 for room AC products and Table 29.3 for CCC products.</td>
</tr>
<tr>
<td>2. DX air cooled with integral chilled water free cooling coil(s).</td>
<td>>= 3.00</td>
<td>Free cooling coil cooling >= 90% of cooling capacity in DX operating mode where both cooling capacities are measured at the rating conditions given in Table 29.2 for room AC products and Table 29.3 for CCC products.</td>
</tr>
<tr>
<td>3. DX water cooled (without free cooling).</td>
<td>>= 3.90</td>
<td></td>
</tr>
<tr>
<td>4. DX water cooled with integral chilled water free cooling coil(s).</td>
<td>>= 3.60</td>
<td></td>
</tr>
<tr>
<td>5. Chilled water (CHW) cooled (only).</td>
<td>>= 18.00</td>
<td></td>
</tr>
<tr>
<td>6. DX mode</td>
<td>>= 3.20</td>
<td></td>
</tr>
</tbody>
</table>

'=' means 'greater than or equal to'.

Where EER is the ratio of total gross cooling capacity (Watts) to the electric power absorbed by the product (Pelec). In the case of DX and dual mode products, the electric power absorbed by the product should include that of both the indoor and outdoor heat exchangers.

29.4 Measurement and Calculations

29.4.1 Measurement Standards and Test Requirements

All room AC products must be tested in accordance with the test standards, procedures and conditions specified in Table 29.2. All CCC products must be tested in accordance with the test standards, procedures and conditions specified in Table 29.3.

Table 29.2 Required test procedures for room AC close control air conditioning equipment

<table>
<thead>
<tr>
<th>Product category</th>
<th>Standard</th>
<th>Rating condition</th>
</tr>
</thead>
</table>
| 1. DX air cooled (without free cooling). | BS EN 14511:2013 | Outdoor heat exchanger, inlet dry bulb temperature 35°C
Indoor heat exchanger, inlet dry bulb temperature 23.9°C and inlet wet bulb temperature 16.2°C |
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>DX Refrigeration Part</th>
<th>Free Cooling Coil</th>
<th>Outdoor Heat Exchanger, Inlet Dry Bulb Temperature</th>
<th>Indoor Heat Exchanger, Inlet Dry Bulb Temperature and Inlet Wet Bulb Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>DX air cooled with integral chilled water free cooling coil(s).</td>
<td>BS EN 14511:2013</td>
<td>BS 4856-3:1975 (if ducted) BS 4856-2:1975 (if not ducted) or BS EN 1397: 2015</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
<td>Indoor heat exchanger, inlet dry bulb temperature 23.9°C and inlet wet bulb temperature 16.2°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>DX water cooled (without free cooling).</td>
<td>BS EN 14511:2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>DX water cooled with integral chilled water free cooling coil(s).</td>
<td>BS EN 14511:2013</td>
<td>BS 4856-3:1975 (if ducted) BS 4856-2:1975 (if not ducted) or BS EN 1397: 2015</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
<td>Indoor heat exchanger, inlet dry bulb temperature 23.9°C and inlet wet bulb temperature 16.2°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Chilled water (CHW) cooled (only).</td>
<td>BS 4856-3:1975 (if ducted) BS 4856-2:1975 (if not ducted) or BS EN 1397: 2015</td>
<td></td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
<td>Indoor heat exchanger, inlet dry bulb temperature 23.9°C and inlet wet bulb temperature 16.2°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Dual mode: DX air cooled and chilled water cooling (without free cooling).</td>
<td>BS EN 14511:2013</td>
<td></td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
<td>Indoor heat exchanger, inlet dry bulb temperature 23.9°C and inlet wet bulb temperature 16.2°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Dual mode: DX water cooled and chilled water cooling (without free cooling).

<table>
<thead>
<tr>
<th>Product category</th>
<th>Standard</th>
<th>Rating condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX mode</td>
<td>BS EN 14511:2013</td>
<td>Outdoor heat exchanger, inlet temperature 28.3°C and outlet temperature 35°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indoor heat exchanger, inlet dry bulb temperature 23.9°C and inlet wet bulb temperature 16.2°C</td>
</tr>
<tr>
<td>CHW mode</td>
<td>BS 4856-3:1975 (if ducted) BS 4856-2:1975 (if not ducted) or BS EN 1397:2015</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indoor heat exchanger, inlet dry bulb temperature 23.9°C and inlet wet bulb temperature 16.2°C</td>
</tr>
</tbody>
</table>

Table 29.3 Required test procedures for CCC close control air conditioning equipment

<table>
<thead>
<tr>
<th>Product category</th>
<th>Standard</th>
<th>Rating condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DX air cooled (without free cooling).</td>
<td>BS EN 14511:2013</td>
<td>Outdoor heat exchanger, inlet dry bulb temperature 35°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indoor heat exchanger, inlet dry bulb temperature 35.0°C and inlet wet bulb temperature 19.9°C</td>
</tr>
<tr>
<td>2. DX air cooled with integral chilled water free cooling coil(s).</td>
<td>BS EN 14511:2013</td>
<td>Outdoor heat exchanger, inlet dry bulb temperature 35°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indoor heat exchanger, inlet dry bulb temperature 35.0°C and inlet wet bulb temperature 19.9°C</td>
</tr>
<tr>
<td></td>
<td>BS 4856-3:1975 (if ducted) BS 4856-2:1975 (if not ducted) or BS EN 1397:2015</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indoor heat exchanger, inlet dry bulb temperature 35.0°C and inlet wet bulb temperature 19.9°C</td>
</tr>
<tr>
<td>3. DX water cooled (without free cooling).</td>
<td>BS EN 14511:2013</td>
<td>Outdoor heat exchanger, inlet temperature 28.3°C and outlet temperature 35°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indoor heat exchanger, inlet dry bulb temperature 35.0°C and inlet wet bulb temperature 19.9°C</td>
</tr>
<tr>
<td>4. DX water cooled with integral chilled water free cooling coil(s).</td>
<td>BS EN 14511:2013</td>
<td>Outdoor heat exchanger, inlet temperature 28.3°C and outlet temperature 35°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indoor heat exchanger, inlet dry bulb temperature 35.0°C and inlet wet bulb temperature 19.9°C</td>
</tr>
<tr>
<td></td>
<td>BS 4856-3:1975 (if ducted) BS 4856-2:1975 (if not ducted) or BS EN 1397:2015</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indoor heat exchanger, inlet dry bulb temperature 35.0°C and inlet wet bulb temperature 19.9°C</td>
</tr>
</tbody>
</table>
5. Chilled water (CHW) cooled (only).

<table>
<thead>
<tr>
<th>Mode</th>
<th>BS Specification</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX mode</td>
<td>BS EN 14511:2013</td>
<td>Outdoor heat exchanger, inlet dry bulb temperature 35°C</td>
</tr>
<tr>
<td></td>
<td>BS 4856-3:1975 (if ducted)</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
</tr>
<tr>
<td></td>
<td>BS 4856-2:1975 (if not ducted)</td>
<td>Indoor heat exchanger, inlet dry bulb temperature 35°C and inlet wet bulb temperature 19.9°C</td>
</tr>
<tr>
<td>CHW mode</td>
<td>BS 4856-3:1975 (if ducted)</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
</tr>
<tr>
<td></td>
<td>BS 4856-2:1975 (if not ducted)</td>
<td>Indoor heat exchanger, inlet dry bulb temperature 35°C and inlet wet bulb temperature 19.9°C</td>
</tr>
<tr>
<td></td>
<td>BS EN 1397:2015</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
</tr>
</tbody>
</table>

6. Dual mode: DX air cooled and chilled water cooling (without free cooling).

<table>
<thead>
<tr>
<th>Mode</th>
<th>BS Specification</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX mode</td>
<td>BS EN 14511:2013</td>
<td>Outdoor heat exchanger, inlet dry bulb temperature 35°C</td>
</tr>
<tr>
<td></td>
<td>BS 4856-3:1975 (if ducted)</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
</tr>
<tr>
<td></td>
<td>BS 4856-2:1975 (if not ducted)</td>
<td>Indoor heat exchanger, inlet dry bulb temperature 35°C and inlet wet bulb temperature 19.9°C</td>
</tr>
<tr>
<td>CHW mode</td>
<td>BS 4856-3:1975 (if ducted)</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
</tr>
<tr>
<td></td>
<td>BS 4856-2:1975 (if not ducted)</td>
<td>Indoor heat exchanger, inlet dry bulb temperature 35°C and inlet wet bulb temperature 19.9°C</td>
</tr>
<tr>
<td></td>
<td>BS EN 1397:2015</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
</tr>
</tbody>
</table>

7. Dual mode: DX water cooled and chilled water cooling (without free cooling).

<table>
<thead>
<tr>
<th>Mode</th>
<th>BS Specification</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX mode</td>
<td>BS EN 14511:2013</td>
<td>Outdoor heat exchanger, inlet dry bulb temperature 35°C</td>
</tr>
<tr>
<td></td>
<td>BS 4856-3:1975 (if ducted)</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
</tr>
<tr>
<td></td>
<td>BS 4856-2:1975 (if not ducted)</td>
<td>Indoor heat exchanger, inlet dry bulb temperature 35°C and inlet wet bulb temperature 19.9°C</td>
</tr>
<tr>
<td>CHW mode</td>
<td>BS 4856-3:1975 (if ducted)</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
</tr>
<tr>
<td></td>
<td>BS 4856-2:1975 (if not ducted)</td>
<td>Indoor heat exchanger, inlet dry bulb temperature 35°C and inlet wet bulb temperature 19.9°C</td>
</tr>
<tr>
<td></td>
<td>BS EN 1397:2015</td>
<td>Liquid side conditions, inlet temperature 10°C and outlet 16.7°C</td>
</tr>
</tbody>
</table>

An external static pressure of at least (\(\geq\)) 20 Pascals must be used for testing downflow units with ducted outlets.

Please note that performance data obtained in accordance with the corresponding procedures and the standard rating conditions for Close Control laid down in BS EN 14511:2007 or BS EN 14511:2011 will be accepted as an alternative to testing in accordance with BS EN 14511:2013 and the rating conditions given in Table 29.2 and Table 29.3 until further notice.

Please note that performance data obtained in accordance with the corresponding procedures laid down in BS EN 1397:1999 will be accepted as an alternative to testing in accordance with BS EN 1397:2015 until further notice.

29.4.2 Rounding

For the avoidance of doubt test data should be presented to 2 decimal places. As an example an EER of 3.19 for a DX air cooled product would be deemed a fail.

29.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:
In-house testing – Self-certified
In-house testing – Self-tested and verified or cross-checked by an independent body
Witnessed testing
Independent testing
Representative testing (see clause 29.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework.

29.5.1 Representative testing

Where applications are being made for a range of two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that all variants:

- Use the same refrigerant as the representative model.
- Have the same compressor type (i.e. manufacturer, method of compression (e.g. reciprocating or scroll) and type of enclosure (e.g. hermetic or semi-hermetic)) as the representative model.
- Fit within the same product category (e.g. are all DX air cooled without free cooling).
- Use the same indoor heat exchanger configuration (e.g. 4-row and fan blow through).

The representative models must be selected by dividing the range of products into groups of models with similar design characteristics, and testing a model in the lowest quartile of predicted performance in each group. The performance of each model in the group must be predicted using a validated mathematical model. As a minimum, at least two models must be tested in each range of products.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

29.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

29.7 **Scope of Claim**

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

30 Evaporative Air Coolers

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2018</td>
</tr>
</tbody>
</table>

30.1 Scope

Evaporative air coolers can be direct or indirect. With direct evaporative air cooling, outside air is blown through a water-saturated medium and cooled by evaporation. The cooled air is circulated by a fan. With indirect evaporative air cooling, a secondary air stream is cooled by water. The cooled secondary air stream passes through a heat exchanger, where it cools the primary air stream. The cooled primary air stream is circulated by a fan.

Evaporative air coolers are available with a wide variety of efficiencies. The ECA Scheme aims to encourage the purchase of direct evaporative air coolers and higher efficiency indirect evaporative air coolers.

The ECA Scheme covers two categories of product:

1. Direct evaporative air coolers
2. Indirect evaporative air coolers

Investments in evaporative air coolers can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

30.2 Definitions

An evaporative air cooler is a device that cools air through the evaporation of water.

30.3 Requirements

30.3.1 Eligibility requirements

General functional criteria for evaporative air coolers

Direct and Indirect evaporative air coolers shall conform to the following functional criteria:

- Incorporate one or more electrically powered fans
- Incorporate an electrically powered pump to circulate water to a water-saturated medium through which an air stream passes or to spray nozzles in an air stream.
- Minimise scale build up with optimised water bleed rates
- Maintains conditions compliant with ACoPI8 legionella code of practice and guidance.
■ **Not** use air to cool a water stream.

Direct and indirect evaporative air coolers shall be CE Marked.

In addition to the general functional criteria above, evaporative air coolers shall also conform to specific functional criteria for either direct or indirect evaporative air coolers.

Functional criteria for direct evaporative air coolers

In order for the product to be classified as a direct evaporative air cooler, all of the following criteria shall be met:

■ The product cools an air stream by moving air through a water-saturated medium which is cooled by evaporation. Moisture must be added to the air stream until it is close to the point of saturation (i.e., the wet bulb depression is close to zero).

■ The product dry bulb temperature should reduce while the wet bulb temperature remains constant.

Functional criteria for indirect evaporative air coolers

The product will be classified as an indirect evaporative air cooler should any one of the following criteria be met:

■ The product incorporates a secondary air stream that is cooled by means of evaporation of water.

■ The product incorporates a secondary air stream that passes through a heat exchanger in order to provide further cooling to a primary air stream.

■ The product incorporates a primary airstream with no change in absolute moisture content.

30.3.2 Performance requirements

Eligible indirect evaporative air coolers shall meet the following criteria:

1. Energy Efficiency Ratio (EER). The EER is the ratio of cooling capacity (kW) to electrical power input (kW).

\[
EER = \frac{\text{Cooling capacity (kW)}}{\text{electrical power input (kW)}}
\]

\[
\text{Cooling capacity, } q = 1.21Q_p(t_{d1} - t_{d2})
\]

\(t_{d1}\) and \(t_{d2}\) are the primary air inlet and outlet dry-bulb temperatures, respectively.

\(Q_p\) is the primary standard airflow rate (\(m^3/s\)).

The total electrical power input is the sum of pump, air-moving device, and any other electric power input due to appurtenances required to produce cooling.

Table 30.1 EER performance threshold for indirect evaporative air coolers

<table>
<thead>
<tr>
<th>Product Category</th>
<th>EER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect</td>
<td>>= 7.0</td>
</tr>
</tbody>
</table>

"\(>=\)" means "greater than or equal to"
2. Cooling Effectiveness (ε), which is the primary air dry-bulb temperature reduction divided by the primary air entering dry-bulb temperature less the entering secondary air wet-bulb temperature.

$$\varepsilon = \frac{t_{d1} - t_{d2}}{t_{d1} - t_{w3}}$$

Where, t_{w3} is the secondary air inlet wet bulb temperature.

Table 30.2 Cooling effectiveness performance threshold for indirect evaporative air coolers

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Cooling effectiveness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect</td>
<td>\geqslant 95.0</td>
</tr>
</tbody>
</table>

"\geqslant" means "greater than or equal to"

3. Water consumption. For information purposes only, provide details on the amount of water consumed by the indirect evaporative cooling unit (m^3/hr).

30.4 Measurement and Calculations

30.4.1 Measurement standards

All indirect evaporative air coolers shall be tested in accordance with the procedures and test conditions laid down in:

30.4.2 Calculation Requirements

The EER and cooling effectiveness of the evaporative air cooler will be calculated when operated at an inlet psychometric condition of 35°C dry bulb temperature, and a 24°C wet bulb temperature. Furthermore, the following external resistance (system static pressure) will be applied:

- Units up to $4 \, m^3/s = 80 \, Pa$ resistance
- Units greater than $4 \, m^3/s = 120 \, Pa$ resistance

30.4.3 Rounding

For the avoidance of doubt test data should be presented to 1 decimal place. As an example, a Cooling Effectiveness of 94.9 % for an indirect unit would be deemed to be a fail.

30.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- Witnessed testing
- Independent testing
- Representative testing (see clause 30.5.1)
Further information regarding the first two routes can be found in Guidance Note 5 on the ETL product testing framework.

30.5.1 Representative testing

Where applications are being made for a range of two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that it can be demonstrated that all variants:

- Utilise the same core technology as the tested model;
- Utilise the same key components as the tested model.

The representative models must be selected by dividing the range of products into groups of models with similar design characteristics, and testing a model in the lowest quartile of predicted performance in each group. The performance of each model in the group must be predicted using a validated mathematical model. As a minimum, at least one model must be tested in each range of products.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETL.

30.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

30.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

High Speed Hand Air Dryers

31 High Speed Hand Air Dryers

<table>
<thead>
<tr>
<th>Date published</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2011</td>
</tr>
</tbody>
</table>

31.1 Scope

Hand air dryers are widely used in washrooms to dry hands after washing, as an alternative to paper or linen hand towels. They use an electric blower to produce one or more jets of air that are used to dry hands placed under, or into, the hand air dryer unit. Some models heat the air jets prior to use with electrical heating elements or by passing it over the electric motor that drives the blower.

Hand air dryers are available with a wide range of efficiencies. The ECA Scheme aims to encourage the purchase of high speed hand air dryer products with the highest efficiency.

Investments in hand air dryers can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the List, products must meet the eligibility criteria as set out below.

31.2 Definitions

High speed hand air dryers are products that are specifically designed to dry human hands by moving air past the hands in a manner that removes water from the hands by physical displacement and/or evaporation.

31.3 Requirements

31.3.1 Eligibility requirements

To be eligible, products must:

- Incorporate an electrically driven blower that produces one or more jets of high speed air that can be used to dry human hands that are placed beneath, or into, the product.
- Automatically switch off power to the blower and air heater (where fitted) when hands are removed from the product’s drying zone.
- **Not** incorporate facilities to wash or apply soap to hands, or to dispense towels.
- Be CE Marked.

31.3.2 Performance requirements

Eligible products must:

- Use not more than (≤) 5.5kWh of electricity per 1,000 standard drying cycles in its normal mode of operation.
- Have a standard drying time that is less than, or equal to, 15 (+/- 0.5) seconds.
For the avoidance of doubt, test data should be presented to one decimal place. As an example, a product that uses 5.6kWh per 1,000 standard drying cycles would be deemed to be a fail.

31.4 Measurement and Calculations

31.4.1 Measurement standards

The product’s standard drying time and electricity consumed per standard drying cycle must be determined in accordance with the method and test conditions set out in:

- ETL Method for Testing of High Speed Hand Dryers, as published on the ECA Website.

31.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing

Further information regarding the routes can be found in Guidance Note 5 on the ETL product testing framework25.

31.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

31.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

Lighting equipment

32 Efficient White Lighting Units

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
</tbody>
</table>
| Former name | White Light Emitting Diode Lighting Units
High Efficiency Lighting Units |

32.1 Scope

Efficient White Lighting Units are a combination of a light fitting (or luminaire), one or more light sources, and associated control gear that have been assembled either into a single packaged unit or a luminaire with remote control gear. Neither light fitting, light sources nor control gear alone can be said to ‘comply with the ETL’. Efficient White Lighting Units may also incorporate lighting control devices such as dimming and ‘presence’ controls. The luminaire could also include an optical system that reflects and/or focuses the product’s light output onto the item(s) being illuminated. An Efficient White Lighting Unit may be equipped with any high efficiency light source, such that it meets the eligibility criteria set down in this document.

Efficient White Lighting Units have been included in the Enhanced Capital Allowance (ECA) scheme because they offer substantial energy and carbon savings. A wide variety of products are available with a range of performance levels. The ECA scheme aims to encourage the purchase of higher efficiency products that meet certain minimum quality, design and performance standards.

The ECA Scheme covers four categories of products:

1. Amenity, accent and display lighting units
2. General interior lighting units
3. Exterior area lighting units
4. Exterior floodlighting units

Where:

- **Amenity lighting** is decorative lighting intended to enhance the appearance of a building or outdoor area in order to promote the activities of a business. It can include ‘mood’ lighting of hotels, bars and restaurants and other leisure activities; and decorative lighting for public areas of buildings and parts of buildings or the surrounding grounds (where such lighting is necessary to the enhancement of the business function). It does not include lighting to provide general illumination or circulation, or building lighting that would be present regardless of the type of business being carried out.

- **Display lighting** comprises lighting intended to highlight displays of exhibits, merchandise and other associated uses. It includes for instance spot or projector lighting in shops, theatres, galleries and studios.

- **Accent lighting** comprises lighting that is intended to provide additional light over a specific small area in order to carry out or promote the activities of a business. This may include lighting required for a particular task (e.g. medical or dental examination, supplementary lighting for fine machining work or critical inspection work). It does not cover general lighting for an entire room or a large part of a room.
- **General interior lighting** covers all other interior lighting.
- **Exterior area lighting** covers all exterior lighting which is intended to provide downward light onto horizontal or near horizontal surfaces, including roadways, car parks, paths, stairs, ramps, gardens and other open spaces. This includes illuminated bollards and post-top lanterns.
- **Exterior floodlighting** covers exterior lighting that is intended to light vertical or near vertical surfaces, including floodlighting of buildings, monuments and statues.

Investments in Efficient White Lighting Units can only qualify for Enhanced Capital Allowances if the products meet the eligibility criteria set out below. The individual products purchased do not need to be named on the Energy Technology Product List.

32.2 Definitions

Efficient White Lighting Units are products that are specifically designed to provide efficient, high quality, illumination. These criteria shall only apply to the complete lighting unit.

32.3 Requirements

32.3.1 Eligibility requirements

To be eligible, products shall:

- Include one or more light sources, a luminaire and associated control gear.
- Not be luminaires designed to incorporate or be supplied with light sources that retrofit to existing light fittings.
- Not be exclusively for emergency lighting. However combined emergency/general lighting is acceptable.

In addition:

- The luminaire, lamps and control gear shall be CE marked.
- Where products incorporate fluorescent or compact fluorescent lamps, they shall be controlled by non-dimmable ‘warm start’ or ‘dimmable’ (regulating) type, high frequency (HF) electronic control gear.
- Where products incorporate compact fluorescent lamps, they shall be of the non-integral type (i.e. those types that do not incorporate the control gear in the lamp cap).
- Where products incorporate high intensity discharge lamps rated below 200W, they shall use electronic control gear.
- Where products incorporate LEDs, they shall use electronic control gear, and be capable of producing white light. White light is defined in Annex 2, paragraph 3b of EC Regulation 245/2009 “Implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to Ecodesign requirements for fluorescent lamps without integrated ballast,

26 A luminaire containing two or more light sources, at least one of which is energised from the emergency supply and the remainder from the normal supply.
for high intensity discharge lamps, and for ballasts and luminaires able to operate such lamps”

- Only include components that are compliant with the Ecodesign requirements and energy labelling regulations in force, where applicable. At the finalisation of this ETL criteria, the relevant regulations were:

In addition, lamps and control gear shall comply with the following performance standards (where relevant):

32.3.2 Performance requirements

Eligible efficient white lighting units shall:

- Have a luminaire efficacy (i.e. lighting efficiency) that is greater than, or equal to, the thresholds set out in Table 32.1 below, when tested after 100 hours of continuous operation.
- Have a power factor that is greater than, or equal to, 0.9 at its highest light output level.
- Be able to provide a light output (in lumens) after 6000 hours of continuous operation that is not less than 90% of their initial light output (in lumens).

In addition:

- With the exception of combined emergency lighting, individual control gear shall have a standby power not exceeding 0.5 Watts when the lighting unit incorporates an electronically addressed dimming or switching circuit. If the product is not fitted with an automatic switching or dimming circuit, the product shall not consume power when it is switched off.
- White LED, Fluorescent and compact fluorescent lamps in all categories, and all light sources used in amenity, accent and display lighting fittings shall have a colour rendering index that is at least Ra 80. All other light sources shall have a colour rendering index of at least Ra 40.
- If the product incorporates dimming control it shall be tested at its highest light output level.
- Amenity, accent and display lighting units to be installed indoors shall have a minimum light output of at least 100 lumens after 100 hours of continuous operation. All other fittings shall have a minimum light output of at least 200 lumens after 100 hours of continuous operation.
Table 32.1 Minimum luminaire efficacies for efficient white lighting units

<table>
<thead>
<tr>
<th>Category</th>
<th>Minimum luminaire efficacy (in luminaire lumens per circuit watt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amenity, accent and display lighting units</td>
<td>≥ 95</td>
</tr>
<tr>
<td>General interior lighting, using downlighting units (DLOR/LOR>=0.9)</td>
<td>≥ 105</td>
</tr>
<tr>
<td>General interior lighting using uplighting units (DLOR/LOR<0.1)</td>
<td>≥ 125</td>
</tr>
<tr>
<td>General interior lighting using combined up and down lighting units</td>
<td>≥ 125– (20 x DLOR/LOR)</td>
</tr>
<tr>
<td>(DLOR/LOR>=0.1 and <0.9)</td>
<td></td>
</tr>
<tr>
<td>Exterior area lighting units</td>
<td>≥ 105</td>
</tr>
<tr>
<td>Exterior floodlighting units</td>
<td>≥ 105</td>
</tr>
</tbody>
</table>

Where:

- “≥” means "greater than or equal to".
- Downward Light Output Ratio (DLOR) is the ratio of the light emitted by the unit in a downward direction to that emitted by the bare lamp(s) in any direction.
- Light Output Ratio (LOR) is the ratio of the total light emitted by the unit to that emitted by the bare lamp(s).
- Luminaire efficacy is defined in terms of lumens of light output emitted by the luminaire per circuit watt of electrical power consumed.
- The electrical power consumed (in circuit watts) is defined as the total power consumed by the whole lighting unit from main circuit connection point to the light source, including losses in the control gear (ballast or driver).
- The product shall perform at the minimum required efficacy at each drive current for which the product is designed to operate, when tested after 100 hours of continuous operation. If the product incorporates dimming control it shall be tested at its highest light output level.
- For amenity, accent and display lighting units, general interior lighting, and exterior floodlighting units, light output is defined as the total light output in all directions (TLO), which is the sum of:
 a) Light output in a downward direction (DLO) i.e. below the horizontal as installed, and
 b) Light output in an upward direction (ULO) i.e. above the horizontal as installed.

Note: In luminaires containing replaceable lamps the TLO may also be expressed as the result of the following calculation:
Initial (100 hour) lamp lumen output x LOR

- For exterior area lighting units only, light output is defined as total light output in a downward direction (DLO) only i.e. below the horizontal as installed (i.e. light output in an upward direction is not included in the calculation of product light output or luminaire efficacy). Note: As above the DLO may also be expressed by the calculation:

\[\text{Initial (100 hour) lamp lumen output x DLOR} \]

32.4 Measurement and Calculations

32.4.1 Test Requirements

All products shall be tested in accordance with the procedures laid down in one of the following:

- IESNA LM-79-08, “Electrical and Photometric Measurements of Solid-State Lighting Products”.

If a white LED based product is sold solely27 for use in refrigerators or freezers with a declared application temperature of 5ºC or below, its efficacy and luminous flux may be measured at a temperature of between 0º and 5ºC on its external casing.

32.4.2 Rounding

For the avoidance of doubt, test data should be presented to zero decimal places by rounding down. As an example, an efficacy of 94.9 luminaire lumens per circuit Watt for a display lighting unit would be expressed as 94llm/W and deemed to be a fail.

32.5 Verification for ETL Listing

This sub-technology is “unlisted” therefore individual products do not need to be listed on the Energy Technology Product List.

32.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

32.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

27 If luminaires are used in other applications, this is not required.
33 Lighting Controls

Date published: 2016
Date first launched: 2001

33.1 Scope

Lighting controls manage electric lighting levels within specific areas, as and when required to match changes in daylight or occupancy, or individual activities.

A wide variety of lighting control products are available, and these range from simple manual switches to fully automatic control systems that adjust electric lighting levels to reflect planned operating hours, activities, occupation levels and the availability of daylight in specific areas.

The Enhanced Capital Allowance scheme aims to encourage the purchase of lighting controls that realise energy savings by automatically switching or dimming lighting in these ways.

Five different categories of lighting controls are covered by the ECA scheme:

1. Time controllers that automatically switch off lighting, or dim it down, at predetermined times.
2. Presence detectors with associated controllers that monitor occupancy or movement of personnel, and automatically switch off lighting, or dim it down, when the area is unoccupied.
3. Daylight detectors with associated switching controllers that monitor daylight availability, and automatically switch off lighting when daylight is sufficient to illuminate the area.
4. Daylight detectors with associated dimming controllers that monitor daylight availability, and automatically dim lighting, by reducing its power consumption, to the level needed to sufficiently illuminate the area.
5. Central area and network control units that provide the facility to manage the overall operation of electric lighting installations that include some or all of the categories of lighting controls above.

The above categories of controls may be installed either individually, or in combination.

Investments in lighting controls can only qualify for Enhanced Capital Allowances if the product meets the criteria as set out below. The individual products purchased do not need to be named on the Energy Technology Product List.

33.2 Definitions

Lighting controls are products that are specifically designed to switch electric lighting on or off, and/or to dim its output.

33.3 Requirements

33.3.1 Eligibility requirements

To be eligible, products must:

- Incorporate one or more of the categories of lighting controls set out in Table 33.1, Table 33.2, Table 33.3, Table 33.4 and Table 33.5 below, and comply with the specific eligibility criteria in the relevant table(s).
Be CE marked.

Products may also incorporate the facility that permits the automatic switching of lights to be temporarily overridden on a central basis for maintenance or security purposes, or to ensure the safety of occupants during particular events or activities.

Table 33.1 Time Controllers

<table>
<thead>
<tr>
<th>SECTION 1A –ELIGIBILITY CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>To be eligible under this category of Lighting Controls:</td>
</tr>
<tr>
<td>■ The product must automatically switch the lighting off, or dim it down, at predetermined times of the day or week, or after a predefined interval.</td>
</tr>
<tr>
<td>Where automatic dimming controls are used, they must be capable of reducing the power consumption of the controlled lamps by at least 75%.</td>
</tr>
<tr>
<td>Where fluorescent lighting is being dimmed, it must incorporate high frequency dimmable ballast and electronic control gear. Other forms of lighting may incorporate either mains frequency or high frequency dimmable ballasts and associated controls.</td>
</tr>
</tbody>
</table>

SECTION 1B –Notes

1. The product may also be set to automatically switch on the lighting at predetermined times.
2. Products may incorporate the facility for local users to manually switch on and off lighting in a local area and thus to override the predetermined lighting levels at that particular time. However products that allow local users to locally override subsequent predetermined times for the lighting to be automatically switched off, or dimmed down, are not eligible.
3. If the product used is designed to control any form of heating, ventilation or air conditioning (HVAC) equipment, then it must be listed under the HVAC Zone Controls part of the Energy Technology Product List (ETPL).

Table 33.2 Presence detectors with associated controllers

<table>
<thead>
<tr>
<th>SECTION 2A –ELIGIBILITY CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>To be eligible under this category of Lighting Controls:</td>
</tr>
<tr>
<td>■ The product must automatically switch off the lighting, or dim it down, after the area has become unoccupied.</td>
</tr>
<tr>
<td>Where automatic dimming controls are used, they must be capable of reducing the power consumption of the controlled lamps by at least 75%.</td>
</tr>
<tr>
<td>Where fluorescent lighting is being dimmed, it must incorporate high frequency dimmable ballast and electronic control gear. Other forms of lighting may incorporate either mains frequency or high frequency dimmable ballasts and associated controls.</td>
</tr>
</tbody>
</table>

SECTION 2B –Notes

1. The product may also automatically switch on the lighting when the space becomes occupied. Alternatively local users may manually switch on the lighting at the start of occupancy.
2. Products may incorporate the facility for local users to manually override the presence detector/controller and to switch the lighting off at any particular instance. However products that allow local users to override the ability of the presence detector/controller to automatically switch off, or dim the lighting, are not eligible.
3. Products must not consume more than 0.5 Watts in parasitic power, when the associated lights are turned off.
Table 33.3 Daylight detectors with associated switching controllers

SECTION 3A –ELIGIBILITY CRITERIA
To be eligible under this category of Lighting Controls:

■ The product must monitor the availability of daylight and automatically switch the lighting off when sufficient daylight is available to illuminate the area.

SECTION 3B –Notes

1. The product may also automatically switch on the lighting when daylight has fallen below the required level. Alternatively local users could be allowed to switch on the lighting manually, when daylight has fallen below the required level.

2. Products may incorporate the facility for local users to manually override daylight detector/controller and switch the lights off at any particular instance. However products that allow local users to override the ability of the daylight detector/controller to automatically switch off the lighting are not eligible.

3. Products must not consume more than 0.5 Watts in parasitic power, when the associated lights are turned off.

Table 33.4 Daylight detectors with associated dimming controllers

SECTION 4A –ELIGIBILITY CRITERIA
To be eligible under this category of Lighting Controls:

■ The product must monitor the availability of daylight and automatically dim the electric lighting to the level just needed to sufficiently illuminate the area, and switch it off when there is enough daylight.

■ The product must be able to reduce the power consumption of the lamps being controlled by at least 75% through dimming.

Where fluorescent lighting is being dimmed, it must incorporate high frequency dimmable ballasts and electronic control gear. Other forms of lighting may incorporate either mains frequency or high frequency dimmable ballasts and associated controls.

SECTION 4B –Notes

1. The product may also automatically switch on the lighting when daylight has fallen below the required level. Alternatively local users could be required to switch on the lighting manually, as and when needed.

2. Products may incorporate the facility for local users to manually override the dimming controller at any particular instance and to set the lighting to a lower level than it would be under automatic control, or switch it off. However products that allow local users to override the ability of the daylight detector/controller to automatically dim the lighting are not eligible.

3. Products must not consume more than 0.5 Watts in parasitic power, when the associated lights are turned off.
Table 33.5 Central area and network control units (lighting control systems)

<table>
<thead>
<tr>
<th>SECTION 5A – ELIGIBILITY CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>To be eligible under this category of Lighting Controls:</td>
</tr>
<tr>
<td>■ The product must be able to manage the overall operation of the electric lighting installation that includes some or all of the categories of lighting controls set out in Table 33.1 to Table 33.4 above.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION 5B – Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The product may make use of pre-programmed “scenes” that configure the lighting levels in different areas for a particular activity or daylight level or occupancy status in the most energy efficient manner. However products that are only capable of manual scene setting are not eligible.</td>
</tr>
<tr>
<td>2. Products may also incorporate the facility to monitor lighting energy consumption.</td>
</tr>
<tr>
<td>3. If the product is designed to control any form of heating, ventilation or air conditioning (HVAC) equipment then, it must be listed under the HVAC Zone Controls part of the Energy Technology Product List (ETPL).</td>
</tr>
</tbody>
</table>

33.4 Verification for ETL Listing

This sub-technology is “unlisted” therefore individual products do not need to be listed on the Energy Technology Product List.

33.5 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

33.6 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

34 White LED Lighting Modules for Backlit Illuminated Signs

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2018</td>
</tr>
</tbody>
</table>

34.1 Scope

The internally illuminated box signage and built up letters that, for example, spell out company names, logos or other messages and pictures, have been included in the Enhanced Capital Allowance (ECA) scheme because they offer substantial energy and carbon savings, considering their usual long hours of operation. These products are designed to provide a more efficient solution to back-lit Illuminated signs, which have traditionally been using fluorescent batten fixtures or cold cathode systems.

These products are a form of Display Lighting, i.e. lighting used to highlight displays of exhibits, signs associated with the business function, merchandise, and display
case lighting used predominantly in the services and the retail industries either indoors (e.g. shop vitrines) or outdoors (e.g. hotels and restaurant facades).

The ETL criteria are only applicable for situations where the white LED lighting modules are integrated with the electronic control gear. Neither the individual white LED lighting module or electronic control gear alone can be said to ‘comply with the ETL’.

The internally illuminated signs with white LEDs may also incorporate lighting control devices such as dimming and presence controls.

Investments in backlit illuminated signs using white LED modules can only qualify for Enhanced Capital Allowances if the products meet the eligibility criteria set out below and are listed on the Energy Technology List (ETL).

34.2 Definitions

White light emitting diode (LED) lighting modules for backlit illuminated signs are products which provide white light by means of solid state lighting to illuminate signage.

The technology is used to internally illuminated box signs and built up letters using white LEDs and modules, in combination with appropriate control gear, in both internal and external applications.

34.3 Requirements

34.3.1 Eligibility requirements

To be eligible, white LED lighting modules for backlit illuminated signs shall:

- Be used exclusively to back light illuminated signage;
- Not be used as road traffic signs, safety signs or fire safety signs, trackside railway signs or airside airport signs.
- Include one or more LEDs, driven by suitable electronic control gear;
- **Not** be designed to incorporate or be supplied with LED based ‘lamps’ that retrofit to traditional light sources;
- Include only CE marked components;
- Be capable of producing white light. White light is defined in Annex 2, paragraph 3b of EC Regulation 245/2009 “Implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to Ecodesign requirements for fluorescent lamps without integrated ballast, for high intensity discharge lamps, and for ballasts and luminaires able to operate such lamps”;
- Only include components that are compliant with the Ecodesign requirements and energy labelling regulations in force, where applicable.

At the finalisation of this ETL criteria, the relevant regulations were:

In addition, lamps and control gear shall comply with the following EU safety directives and British/European standards:

- BS EN 50107-3. Product standard covering luminous signs with discharge lamps and/or LED (light emitting diodes) and/or EL (electroluminescent) light sources with a nominal voltage not exceeding 1000 V, with the exclusion of general lighting, traffic- or emergency purposes.

34.3.2 Performance requirements

Eligible white LED lighting modules for backlit illuminated signs shall:

- Have a lighting efficacy that is greater than, or equal to, 93 lumens per circuit watt, when tested after 100 hours of continuous operation. If the product incorporates dimming control it shall be tested at its highest light output level.
- Have a power factor that is greater than, or equal to, 0.9 at ≥75% of designed driver load at highest light output level.
- Be able to provide a light output (in lumens) after 6000 hours of continuous operation that is not less than 90% of their initial light output (in lumens).

In addition:

- The electrical power consumed (in circuit watts) is defined as the total power consumed by the whole unit from main circuit connection point to the LED light source, including losses in the control gear.
- Individual control gear shall have a standby power not exceeding 0.5 Watts when the lighting unit incorporates an electronically addressed dimming or switching circuit. If the product is not fitted with an automatic switching or dimming circuit, the product shall not consume power when it is switched off.

34.4 Measurement and Calculations

34.4.1 Measurement standards

All products shall be tested in accordance with the procedures laid down in one of the following standards:

- IESNA LM-79-08, “Electrical and Photometric Measurements of Solid-State Lighting Products”.

28 Lumens of light output emitted by the module per circuit watt of electrical power consumed.
34.4.2 Rounding

For the avoidance of doubt test data should be presented to zero decimal places by rounding down. As an example, an efficacy of 99.9 lumens per circuit Watt for backlit illuminated signs would be expressed as 99 lm/W and deemed to be a fail.

34.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- Independent testing
- Representative testing (see clause 34.5.1)

Further information regarding the first route can be found in Guidance Note 5 on the ETL product testing framework.

34.5.1 Representative testing

Where applications are being made for a range of two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that all variants conform to the following condition:

1. Parameters such as size, shape, power rating and constructional design do not reduce product energy efficiency performance or basic functionality.

The representative models shall be selected by dividing the range of products into groups of models with similar design characteristics, and testing a model in the lowest quartile of predicted performance in each group. The performance of each model in the group shall be predicted using a validated mathematical model.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

34.6 Conformity testing

Products listed on the ETL may be subject to the scheme's conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

34.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.
Motors and Drives

35 Converter-Fed Motors

<table>
<thead>
<tr>
<th>Date published</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2010</td>
</tr>
<tr>
<td>Former name</td>
<td>Permanent Magnet Synchronous Motors</td>
</tr>
</tbody>
</table>

35.1 Scope

Converter-fed motors are applied throughout industry and commerce in a wide range of ‘general purpose’ and specialist applications.

A converter-fed motor is designed to be operated from a non-sinusoidal multi-phase electrical power supply and may comprise permanent magnet, synchronous reluctance or other design.

A converter-fed motor drive is a combination of a motor and an electronic VSD. The VSD can either be physically mounted on the motor to form a single factory assembled, integrated unit, or the VSD and motor can be supplied as a package of two units that are designed to be connected together during installation.

Converter-fed motors are available in a wide range of designs and efficiencies. The ECA Scheme aims to supports the purchase of higher efficiency products.

The ECA Scheme covers three categories of product:

1. Converter-fed ac motors (sold without VSD).
2. Integrated converter-fed motor drive units.

Integrated converter-fed motor drive units include electrically commutated motors which comprise a brushless dc multi-phase motor and an integral electronic control device. The ac power supply is commutated to dc by the control device and the power output is used to rotate the motor.

Investments in converter-fed motors can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

35.2 Definitions

Converter-fed motors are products that are specifically designed to convert electrical power into mechanical power, and to rotate a drive shaft at a speed that is directly related to the non-sinusoidal multi-phase electrical power supplied to the motor.

Converter-fed ac motor drives consist of a motor, and a matched, electronic, variable speed drive (VSD) that is specifically designed to provide the multi-phase electrical power input needed to operate the motor, and to vary its speed in a controlled manner in response to an external signal.
35.3 Requirements

35.3.1 Eligibility requirements

Eligible products must:

- Be designed to include or operate with an electronic VSD
- Incorporate a converter-fed motor that:
 a) Has a rated operating voltage between 200 and 700 Volts
 b) Is CE Marked.
- Not incorporate any type of mechanical apparatus that derives its motive force from the product’s motor, except for fans or pumps incorporated solely for the purpose of product cooling or lubrication, integrated torque couplings, and position encoding mechanisms.
- Not include a mechanically commutated dc motor

Category 1 (converter-fed ac motor) products must be designed to operate with an electronic VSD providing a non-sinusoidal multi-phase ac electrical power supply to the motor.

Category 2 and 3 (converter-fed motor drive unit and package) products must be configured for direct connection to the UK public electricity supply system, or a private alternating current supply of nominally fixed frequency and voltage. The electronic VSD should provide a non-sinusoidal multi-phase electrical power supply to the motor.

In addition, for all products (except for electronically commutated motors) that include an electronic VSD, the VSD must also comply with the separate ETL criteria for Variable Speed Drives.

35.3.2 Performance requirements

Products must have an efficiency at 100% of their maximum continuous speed rating that is greater than or equal to the values shown in Table 35.1 below, which vary with power rating and maximum continuous speed rating. If the product’s specific power rating is not shown in Table 35.1, then the performance threshold for the next highest power rating should be used to determine eligibility.
Table 35.1 Performance thresholds for converter-fed motors and motor drive units

<table>
<thead>
<tr>
<th>Rated Power of motor, P_N (kW)</th>
<th>Efficiency at full load of motor and VSD combined</th>
<th>Maximum continuous speed rating (RPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>up to 750</td>
<td>751 to 1000</td>
</tr>
<tr>
<td>0.75</td>
<td>≥ 75.0</td>
<td>≥ 78.9</td>
</tr>
<tr>
<td>1.1</td>
<td>≥ 77.7</td>
<td>≥ 81.0</td>
</tr>
<tr>
<td>1.5</td>
<td>≥ 79.7</td>
<td>≥ 82.5</td>
</tr>
<tr>
<td>2.2</td>
<td>≥ 81.9</td>
<td>≥ 84.3</td>
</tr>
<tr>
<td>3.0</td>
<td>≥ 83.5</td>
<td>≥ 85.6</td>
</tr>
<tr>
<td>4.0</td>
<td>≥ 84.8</td>
<td>≥ 86.8</td>
</tr>
<tr>
<td>5.5</td>
<td>≥ 86.2</td>
<td>≥ 88.0</td>
</tr>
<tr>
<td>7.5</td>
<td>≥ 87.7</td>
<td>≥ 90.0</td>
</tr>
<tr>
<td>11.0</td>
<td>≥ 89.0</td>
<td>≥ 91.1</td>
</tr>
<tr>
<td>15.0</td>
<td>≥ 89.9</td>
<td>≥ 91.8</td>
</tr>
<tr>
<td>18.5</td>
<td>≥ 90.5</td>
<td>≥ 92.4</td>
</tr>
<tr>
<td>22.0</td>
<td>≥ 90.9</td>
<td>≥ 92.8</td>
</tr>
<tr>
<td>30.0</td>
<td>≥ 91.6</td>
<td>≥ 93.3</td>
</tr>
<tr>
<td>37.0</td>
<td>≥ 92.1</td>
<td>≥ 93.7</td>
</tr>
<tr>
<td>45.0</td>
<td>≥ 92.4</td>
<td>≥ 94.0</td>
</tr>
<tr>
<td>55.0</td>
<td>≥ 92.8</td>
<td>≥ 94.4</td>
</tr>
<tr>
<td>75.0</td>
<td>≥ 93.3</td>
<td>≥ 94.7</td>
</tr>
<tr>
<td>90.0</td>
<td>≥ 93.6</td>
<td>≥ 94.9</td>
</tr>
<tr>
<td>110.0</td>
<td>≥ 93.9</td>
<td>≥ 95.2</td>
</tr>
<tr>
<td>132.0</td>
<td>≥ 94.1</td>
<td>≥ 95.4</td>
</tr>
<tr>
<td>160.0</td>
<td>≥ 94.4</td>
<td>≥ 95.6</td>
</tr>
<tr>
<td>200</td>
<td>≥ 94.7</td>
<td>≥ 95.7</td>
</tr>
<tr>
<td>250</td>
<td>≥ 94.7</td>
<td>≥ 96.0</td>
</tr>
<tr>
<td>315 up to 400</td>
<td>≥ 94.7</td>
<td>≥ 96.1</td>
</tr>
</tbody>
</table>

"\geq" means "greater than or equal to"

"\leq" means "less than or equal to"

Where the rated power (P_N) is that of the motor, for ‘Duty type S1 – Continuous running duty’ as defined in Section 4.2.1 of BS EN 60034-1:2010 “Rotating electrical machines – Part 1: Rating and performance”, and is determined with the product operating at 100% of its maximum continuous speed rating.

The efficiency at full load refers to the overall efficiency of the motor and VSD combined.
35.4 Measurement and Calculations

35.4.1 Measurement Standards and Test Requirements

Product efficiency at 100% of maximum continuous speed rating must be determined using:

Method 2-1-2A according to Table 4 in Section 7 of BS EN 60034-2-1:2014 “Rotating electrical machines – Part 2-1: Standard methods for determining losses and efficiency from tests (excluding machines for traction vehicles)”. Where the input power P_1, must be measured at the main input terminals to the electronic VSD.

Note: until further notice results of tests according to BS EN 60034-2-1:2007 will also be accepted.

Products must be operated from a standard 230, 400 or 690 Volt ac, 50Hz electrical power supply during testing, and any filters that are required by the product in order to comply with EU EMC Directives must be fitted.

Where the product does not include a VSD, it may be tested using any appropriately matched VSD. If a single product is submitted for assessment, one detailed test report should be submitted.

For a product range, test results may be submitted in summary form provided:

- Sufficient data is included to confirm that product performance was determined in accordance with the procedures and test conditions laid down in the relevant standards.
- Detailed test reports have been prepared for each product tested and are available on request for inspection, where not submitted with the application.

35.4.2 Rounding

For the avoidance of doubt test data should be presented to 1 decimal place. As an example, a product with a rated power output of 45.0 kW, maximum continuous rated speed of 1,200 rpm, and an efficiency of 94.6 % would be deemed to be a fail.

35.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 35.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework30.

35.5.1 Representative testing

Where applications are being made for two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that:

- All variants are of the same product range as the representative models and the primary variations between models are rated power and physical dimensions.
- All variants are constructed from the same materials.
- At least one detailed representative test report is provided for each product range.
- Clear descriptions of the formulae or mathematical model used for calculating performance of the variants, and details of measurements taken to verify this model are provided. Tests undertaken to verify the accuracy of the model must be carried out in accordance with the test procedures described above.

It should be noted that:

- The efficiency value stated on the ETL for tested products should be taken from the test data provided, and not from the calculated or modelled values.
- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

35.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

35.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.
36 Line Operated AC Motors

<table>
<thead>
<tr>
<th>Date published</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
<tr>
<td>Former name</td>
<td>Single Speed AC Induction Motors</td>
</tr>
</tbody>
</table>

36.1 Scope

Line operated ac motors are used to drive plant and machinery throughout industry and commerce, and a wide range ‘general purpose’ products are available in internationally agreed, standard designs with different rated power outputs, frame sizes, fixed operating speeds, and energy efficiency ratings.

The ECA Scheme aims to encourage the purchase of higher efficiency line operated ac motors.

Investments in line operated ac motors can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet minimum performance criteria as set out below.

36.2 Definitions

Line operated ac motors covers products that are specifically designed to convert standard three phase electrical power into mechanical power, and to rotate a drive shaft at a fixed speed that is directly related to the frequency of the electrical power supply.

36.3 Requirements

36.3.1 Eligibility requirements

To be eligible products must:

- Be a totally enclosed, three-phase, single speed, ac motor that has:
 a) A maximum rated operating voltage less than or equal to 1,000 Volts ac
 b) 2, 4, 6 or 8 poles.
 c) A built in method of cooling that is classified according to BS EN 60034-6:1994, “Rotating electrical machines. Methods of cooling (IC Code) as:
 - IC 410: (frame surface cooled – free convection),
 - IC 411: (frame surface cooled – self circulation)
 - IC 418: (frame surface cooled circulation by relative displacement.)
 d) Dimensions and a power rating that conform with the requirements of IEC 60072-1: 1991-02 (sixth edition), “Dimensions and output series for rotating electrical machines – Part 1: Frame numbers 56 to 400 and flange numbers 55 to 1080”.
- Be capable of direct connection to the UK public electricity supply system, or a private alternating current supply of nominally fixed frequency and voltage
- Be rated at 50 Hz in accordance BS EN 60034-1:2010 (or IEC 60034-1: 2010) “Rotating electrical machines - Part 1: Rating and performance”.

Page 151 of 241
■ Have a ‘Duty type S1 – Continuous running duty’ rated power output that is greater than or equal to 0.75kW and less than or equal to 400kW as defined in Section 4.2.1 of BS EN 60034-1: 2010.

■ Be CE Marked.

36.3.2 Performance requirements

Products must have an efficiency when tested in accordance with BS EN 60034-2-1: 2014 at full load (i.e. 100% of their maximum continuous rated power output) that is greater than or equal to the values shown in Table 36.1 below, which vary with rated power output and number of poles. If the product’s specific rated power output is not shown in Table 36.1, then the performance threshold is determined by interpolation in accordance with the method set out in Section 5.4.5 of BS EN 60034-30-1: 2014. Note: until further notice results of tests according to BS EN 60034-2-1:2007 will also be accepted.

<table>
<thead>
<tr>
<th>Rated Power Output (kW)</th>
<th>Efficiency at full load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Pole</td>
</tr>
<tr>
<td>0.75</td>
<td>>= 80.7</td>
</tr>
<tr>
<td>1.1</td>
<td>>= 82.7</td>
</tr>
<tr>
<td>1.5</td>
<td>>= 84.2</td>
</tr>
<tr>
<td>2.2</td>
<td>>= 85.9</td>
</tr>
<tr>
<td>3</td>
<td>>= 87.1</td>
</tr>
<tr>
<td>4</td>
<td>>= 88.1</td>
</tr>
<tr>
<td>5.5</td>
<td>>= 89.2</td>
</tr>
<tr>
<td>7.5</td>
<td>>=91.7</td>
</tr>
<tr>
<td>11</td>
<td>>=92.6</td>
</tr>
<tr>
<td>15</td>
<td>>=93.3</td>
</tr>
<tr>
<td>18.5</td>
<td>>=93.7</td>
</tr>
<tr>
<td>22</td>
<td>>=94.0</td>
</tr>
<tr>
<td>30</td>
<td>>=94.5</td>
</tr>
<tr>
<td>37</td>
<td>>=94.8</td>
</tr>
<tr>
<td>45</td>
<td>>=95.0</td>
</tr>
<tr>
<td>55</td>
<td>>=95.3</td>
</tr>
<tr>
<td>75</td>
<td>>=95.6</td>
</tr>
<tr>
<td>90</td>
<td>>=95.8</td>
</tr>
<tr>
<td>110</td>
<td>>=96.0</td>
</tr>
<tr>
<td>132</td>
<td>>=96.2</td>
</tr>
<tr>
<td>160</td>
<td>>=96.3</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>>=96.5</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td></td>
</tr>
<tr>
<td>375</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

">=" means "greater than or equal to"

For the avoidance of doubt test data should be presented to 1 decimal place. As an example, a 4 pole, single speed motor with a rated power output of 45.0kW and an efficiency at full load of 95.3% would be deemed to be a fail.

36.4 Measurement and Calculations

36.4.1 Measurement Standards and Test Requirements

Product efficiency at full load (100% of maximum continuous rated power output) must be determined in accordance with:

- Method 2-1-1B according to Table 2 (Induction Machines - preferred testing methods) of BS EN 60034-2-1:2014 “Rotating electrical machines – Part 2-1: Standard methods for determining losses and efficiency from tests (excluding machines for traction vehicles)”

OR

- The low uncertainty method according to Table 2 (Induction Machines) of BS EN 60034-2-1:2007 “Rotating electrical machines – Part 2-1: Standard methods for determining losses and efficiency from tests (excluding machines for traction vehicles)”.

Products must be operated from a 400 Volt ac, 3 phase, 50Hz electrical power supply during testing. (If the product is not designed to operate at this voltage, then product testing should be undertaken using a 230V ac or 690V ac electrical power supply, or alternatively at all rated operating voltages).

If a single product is submitted for assessment, one detailed test report should be submitted. For a product range, test results may be submitted in summary form provided:

- Sufficient data is included to confirm that product performance was determined in accordance with the procedures and test conditions laid down in the relevant standards.

- Detailed test reports have been prepared for each product tested and are available on request for inspection, where not submitted with the application.

36.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:
■ In-house testing – Self-certified
■ In-house testing – Self-tested and verified or cross-checked by an independent body
■ Witnessed testing
■ Independent testing
■ Representative testing (see clause 36.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework\(^{31}\).

36.5.1 Representative testing

Where applications are being made for two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that:

- All variants are of the same product range as the representative models and the primary variations between models are rated power and physical dimensions.
- All variants are constructed from the same materials.
- A detailed test report is provided for at least one representative product in each range.
- The representative model is in the bottom quartile of predicted performance within each range.
- Clear descriptions and formulae describing the relationship between the representative model(s) and the variants are provided.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

36.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

36.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the

equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

37 Variable Speed Drives

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
</tbody>
</table>

37.1 Scope

A variable speed drive is essentially an electronic power converter that generates a multi-phase, variable frequency output that can be used to drive a standard line operated ac motor, or permanent magnet synchronous or other converter-fed motor, and to modulate and control the motor’s speed, torque and mechanical power output.

Variable speed drives may be purchased either as a stand-alone product or purchased as part of another item of plant or machinery. They are included on the Energy Technology Product List because they can realise substantial energy savings when used to control the speed of machinery.

The ECA Scheme covers two categories of products:

1. Variable Speed Drives for line operated ac motors (as defined within the ETL category line operated ac motors)
2. Variable Speed Drives for converter-fed motors (as defined within the ETL category converter-fed motors)

Products which are able to control both line operated ac motors and converter-fed motors are also covered, as long as all of the eligibility criteria are met for both forms of control.

Investments in variable speed drives can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.

37.2 Definitions

A variable speed drive is specifically designed to drive a motor in a manner that rotates the motor’s drive shaft at a variable speed dictated by an external signal.

37.3 Requirements

37.3.1 Eligibility requirements

Eligible products shall:

- Incorporate an electronic VSD that generates a controlled variable frequency, variable voltage, 3 phase power output (with each phase displaced by approximately 120 degrees) that is suitable for operating a 3 phase motor.

- Provide an adjustable variable-voltage, variable-frequency output that can be matched to the torque-speed characteristic of the load (being driven by the motor), including both loads with a quadratic torque-speed and linear...
torque-speed characteristics. The relationship between the voltage and frequency of the product's output shall either be:

a) Predefined prior to sale to match a number of specific motor loads, which can be selected during commissioning; OR

b) Programmed into the product during installation using a multi-point approximation or parametric motor model as part of a clearly defined commissioning procedure; OR

c) Determined during commissioning by a self-tuning or automatic model identification algorithm that automatically minimises the energy consumption of the drive; OR

d) Automatically adjusted during operation as part of a control algorithm in a manner that ensures the product's output matches the characteristics of the motor and its load and minimises energy consumption of the drive; OR

e) Any combination of (a) to (d) above.

■ Be able to automatically vary, in response to an external control signal, the frequency of its output between 5% (or less) and 100% (or greater) of the frequency of its alternating current supply.

■ Be configured for direct connection to the UK public electricity supply system, or a private alternating current supply of nominally fixed frequency and voltage.

■ Be designed to make smooth controlled transitions between speed changes by the use of predefined, programmable, or automatically adjusted, acceleration and deceleration ramps.

■ Be CE Marked, or otherwise demonstrate conformity with the requirements of the EU EMC Directive 2014/30/EU.

■ Not incorporate any type of mechanical apparatus that derives its motive force from the product’s variable frequency output, including any form of electric motor or fluid movement mechanism, except for fans or pumps incorporated solely for the purpose of product cooling.

Where the relationship between the voltage and frequency of the product's output is determined by a multi-point approximation, then flux optimisation shall be adjustable at a minimum of five points.

The criteria stated above shall be clearly presented in the product brochure, leaflet, technical specification sheet. It may also be supported by the relevant operation instruction document demonstrating the product’s functionality in accordance with the criteria listed above.

37.4 Verification for ETL Listing

There are no testing requirements, however manufacturers shall provide sales and technical brochures to evidence the conformity of their products against the requirements from section 37.3.
37.5 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

37.6 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.
38.1 Scope

Pipework insulation is used to reduce the amount of heat lost from pipework containing hot fluids, and the amount of heat gained by pipework containing cold and chilled fluids, thus reducing the amount of energy wasted on maintaining the temperature of the fluids.

The ECA Scheme covers six categories of pipework insulation:

1. Refrigeration pipework.
2. Chilled water pipework
4. ‘Domestic’ heating & hot water services (excluding insulation within individual dwellings).
5. Non-domestic hot water services.
6. Non-domestic heating services.

Investments in pipework insulation can only qualify for Enhanced Capital Allowances if the installation meets the eligibility criteria set out below. Individual products used in an installation do not need to be named on the Energy Technology Product List.

38.2 Definitions

Pipework insulation covers products that are specifically designed to be applied to the outer circumference of a pipe with the primary objective of reducing thermal flow into or out of the pipe.

38.3 Requirements

38.3.1 Performance requirements

To be eligible, installations of pipework insulation must:

1. For categories 1, 2 and 3, comply with the relevant clauses, tables and annexes of BS 5422: 2009 as set out in Table 38.1 below.

<table>
<thead>
<tr>
<th>Category</th>
<th>Relevant Clause</th>
<th>Relevant Table(s)</th>
<th>Relevant Annex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Refrigeration pipework</td>
<td>6</td>
<td>None</td>
<td>F</td>
</tr>
<tr>
<td>2. Chilled water pipework</td>
<td>7</td>
<td>10 & 11</td>
<td>A</td>
</tr>
<tr>
<td>3. Process pipework</td>
<td>10</td>
<td>21</td>
<td>A</td>
</tr>
</tbody>
</table>

2. For categories 4, 5 and 6, comply with the maximum permissible heat loss criteria found within Table 38.2, Table 38.3 & Table 38.4 below, which duly form
the basis for determining the minimum required thickness of pipework insulation for each category for an eligible installation.

Table 38.2 Maximum Permissible Heat Losses for Domestic Heating & Hot Water

<table>
<thead>
<tr>
<th>Outside pipe diameter (mm)</th>
<th>Permitted Heat loss (W/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td><= 5.82</td>
</tr>
<tr>
<td>10</td>
<td><= 6.20</td>
</tr>
<tr>
<td>12</td>
<td><= 6.52</td>
</tr>
<tr>
<td>15</td>
<td><= 7.03</td>
</tr>
<tr>
<td>22</td>
<td><= 8.02</td>
</tr>
<tr>
<td>28</td>
<td><= 8.87</td>
</tr>
<tr>
<td>35</td>
<td><= 9.63</td>
</tr>
<tr>
<td>42</td>
<td><= 10.58</td>
</tr>
<tr>
<td>54</td>
<td><= 11.83</td>
</tr>
</tbody>
</table>

Table reproduced with kind permission from the ‘ECA Enhanced’ tables of NES Y-50 (2011).

Table 38.3 Maximum Permissible Heat Losses for Non-Domestic Hot Water Supply

<table>
<thead>
<tr>
<th>Outside pipe diameter (mm)</th>
<th>Permitted Heat loss (W/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2</td>
<td><= 6.04</td>
</tr>
<tr>
<td>21.3</td>
<td><= 6.45</td>
</tr>
<tr>
<td>26.9</td>
<td><= 7.00</td>
</tr>
<tr>
<td>33.7</td>
<td><= 7.71</td>
</tr>
<tr>
<td>42.4</td>
<td><= 8.46</td>
</tr>
<tr>
<td>48.3</td>
<td><= 9.01</td>
</tr>
<tr>
<td>60.3</td>
<td><= 9.94</td>
</tr>
<tr>
<td>76.1</td>
<td><= 11.25</td>
</tr>
<tr>
<td>88.9</td>
<td><= 12.17</td>
</tr>
<tr>
<td>114.3</td>
<td><= 14.29</td>
</tr>
<tr>
<td>139.7</td>
<td><= 16.09</td>
</tr>
<tr>
<td>168.3</td>
<td><= 18.24</td>
</tr>
<tr>
<td>219.1</td>
<td><= 22.06</td>
</tr>
<tr>
<td>273 and above</td>
<td><= 25.95</td>
</tr>
</tbody>
</table>

Table reproduced with kind permission from the ‘ECA Enhanced’ tables of NES Y-50 (2011).
Table 38.4 Maximum Permissible Heat Losses for Non-Domestic Heating Supplies

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td><=95°C</td>
<td></td>
<td>96-120°C</td>
<td>121-150°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outside pipe diameter (mm)</th>
<th>Permitted Heat loss (W/m)</th>
<th>Permitted Heat loss (W/m)</th>
<th>Permitted Heat loss (W/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2</td>
<td><= 7.78</td>
<td><= 10.57</td>
<td><= 13.27</td>
</tr>
<tr>
<td>21.3</td>
<td><= 8.42</td>
<td><= 11.25</td>
<td><= 14.06</td>
</tr>
<tr>
<td>26.9</td>
<td><= 9.05</td>
<td><= 12.06</td>
<td><= 15.02</td>
</tr>
<tr>
<td>33.7</td>
<td><= 9.86</td>
<td><= 13.04</td>
<td><= 16.07</td>
</tr>
<tr>
<td>42.4</td>
<td><= 10.83</td>
<td><= 14.12</td>
<td><= 17.34</td>
</tr>
<tr>
<td>48.3</td>
<td><= 11.42</td>
<td><= 14.80</td>
<td><= 18.09</td>
</tr>
<tr>
<td>60.3</td>
<td><= 12.61</td>
<td><= 16.22</td>
<td><= 19.62</td>
</tr>
<tr>
<td>76.1</td>
<td><= 14.12</td>
<td><= 17.88</td>
<td><= 21.41</td>
</tr>
<tr>
<td>88.9</td>
<td><= 15.28</td>
<td><= 19.20</td>
<td><= 22.87</td>
</tr>
<tr>
<td>114.3</td>
<td><= 17.51</td>
<td><= 21.66</td>
<td><= 25.53</td>
</tr>
<tr>
<td>139.7</td>
<td><= 19.72</td>
<td><= 23.99</td>
<td><= 27.98</td>
</tr>
<tr>
<td>168.3</td>
<td><= 22.34</td>
<td><= 26.63</td>
<td><= 30.69</td>
</tr>
<tr>
<td>219.1</td>
<td><= 26.61</td>
<td><= 31.15</td>
<td><= 35.25</td>
</tr>
<tr>
<td>273 and above</td>
<td><= 30.91</td>
<td><= 35.83</td>
<td><= 40.05</td>
</tr>
</tbody>
</table>

Table reproduced with kind permission from the ‘ECA Enhanced’ tables of NES Y-50 (2011).

Where:

- Where “<=” means “less than or equal to”
- If the pipe diameter differs from the parameters used to generate these tables, then linear interpolation methods may be used to calculate the maximum permissible heat flows and, in combination with information on the thermal conductivity of the chosen product at the relevant mean temperature, the minimum required thickness of insulation.
- If the parameters of the specific installation are outside the scope of these tables (e.g. different ambient air temperature, or linear interpolation is not possible) then the minimum required thickness of insulation must be calculated from first principles using the methodology set out in Annex A of BS 5422: 2009.
- The methodology set out in Annex F of BS 5422: 2009 must be used to calculate the minimum required thickness for refrigeration pipework insulation needed to comply with clause 6.3.2 of BS 5422: 2009.
38.4 Verification for ETL Listing

This sub-technology is “unlisted” therefore individual products do not need to be listed on the Energy Technology Product List.

38.5 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

38.6 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the pipework insulation products, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.
Radiant and Warm Air Heaters

39 Radiant Heating Equipment

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2014</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2002</td>
</tr>
</tbody>
</table>

39.1 Scope

Radiant heating equipment covers products that are specifically designed to heat people or objects in the space below them by infrared radiation without heating the surrounding air directly, and optimising controllers that ensure radiant heating systems operate in an efficient manner.

39.2 Definitions

Radiant heaters are widely used to provide space heating for warehouses, retail sheds, sports centres, factories, and other buildings containing similarly large spaces. Radiant heaters contain a gas or oil-fired burner that is used to heat a tube, cone or plaque that emits infrared radiation when hot. This infrared radiation is focussed and directed downwards by reflectors within the product.

Radiant heaters are available in a range of different types and efficiencies. The ECA Scheme encourages the purchase of higher efficiency radiant heaters. It also encourages the purchase of optimising controllers that ensure that radiant heating products and systems operate in an energy efficient manner that reflects weather conditions, occupation schedules and user requirements.

The ECA Scheme covers five categories of product:

1. Unitary radiant tube heater units and packages.
2. Multi burner radiant tube heater units and packages.
3. Continuous radiant tube heater units and packages.
4. Radiant plaque and cone heater units and packages.
5. Optimising controllers for radiant heating systems. (including both standalone unit and add-on module type products).

Where packages consist of a combination of radiant heater units, and an optimising controller.

Investments in radiant heating equipment can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility requirements as set out below.

39.3 Requirements

39.3.1 Eligibility requirements

To be eligible, all products shall comply with the relevant requirements set out below:

1. All products incorporating radiant heaters shall:
 - Be gas or oil-fired.
■ Be designed to be permanently mounted above head height.
■ Be CE marked.

2. All products incorporating radiant tube type heaters shall incorporate a reflector (with end caps) that directs the radiated heat downwards.

3. All products that incorporate optimising controllers shall:
■ Incorporate a microprocessor based controller that is pre-programmed to:
 a) Automatically control the temperature in one or more zones within a building in an energy efficient manner that reflects predefined zone occupation schedules.
 b) Automatically switch radiant heating equipment on and off in accordance with the predefined occupation schedule for each of the zones being controlled.
■ Incorporate the following automatic control mechanisms:
 c) A frost protection mechanism that monitors internal air temperature, and switches on the radiant heaters to prevent equipment and/or pipework from freezing up.
 d) A building fabric protection mechanism that monitors external or internal temperatures and switches heating on to prevent condensation from occurring.
 e) An anti-tampering mechanism that prevents the product’s control strategy from being modified, and the specified automatic control mechanisms from being disabled, except during commissioning, maintenance or testing.
■ Provide facilities that enable building managers to:
 f) Define the normal occupation times for the building and for each zone controlled (in intervals of five minutes or less), for each day of the week, including at least two periods of occupation per day (i.e. at least 14 different occupation periods per week).
 g) Define the temperature set-points for each zone to ±1°C.
■ Provide facilities that enable building users to “temporarily override” the preset times when the radiant heating is scheduled to be switched off within an individual zone.
■ Incorporate, or be packaged with, a black bulb sensor.
■ Conform with the requirements of the EU EMC Directive 2014/30/EU or be CE Marked.

Where:
■ A mechanism is defined as “any sequence of pre-defined actions that performs a given function, where an action can be defined in hardware and/or software terms”.
■ Products that incorporate control strategies that are specifically designed to control other types of equipment (other than warm air or radiant heaters) are not eligible.
39.3.2 Performance requirements

All products that incorporate radiant heaters shall have a seasonal space heating energy efficiency (η_S) that is greater than or equal to the values set out in Table 39.1 below.

Table 39.1 Performance requirements for radiant heating equipment.

<table>
<thead>
<tr>
<th>Product category</th>
<th>Seasonal space heating energy efficiency (η_S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Unitary radiant tube heater units and packages.</td>
<td>$\geq 80.0%$</td>
</tr>
<tr>
<td>2. Multi burner radiant tube heater units and packages.</td>
<td>$\geq 80.0%$</td>
</tr>
<tr>
<td>3. Continuous radiant tube heater units and packages.</td>
<td>$\geq 90.0%$</td>
</tr>
<tr>
<td>4. Radiant plaque and cone heater units and packages.</td>
<td>$\geq 88.0%$</td>
</tr>
</tbody>
</table>

“\geq” means "greater than or equal to"

39.4 Measurement and Calculations

39.4.1 Measurement standards

The seasonal space heating energy efficiency of the product shall be determined in accordance with the procedure and test conditions set out in:

The emission efficiency associated with the radiant heating component of continuous radiant heating systems shall be determined in accordance with the relevant procedures and test conditions in the following standard:

- prEN 17175: 2017, “Gas-fired overhead radiant strip heaters and multi-burner continuous radiant tube heater systems for non-domestic use - Safety and energy efficiency”.

39.4.2 Performance metric

The seasonal space heating energy efficiency for the product shall be calculated using the equation below:

$$\eta_S = \eta_{S, on} - F(1) - F(4) - F(5)$$

Where:

- $\eta_{S, on}$ is the seasonal space heating energy efficiency in active mode, expressed in $\%$.

$$\eta_{S, on} = \eta_{S, th} \cdot \eta_{S, RF}$$

- $\eta_{S, th}$ is the weighted thermal efficiency and $\eta_{S, RF}$ is the emission efficiency, both of which shall be determined in accordance with Annex III, point 5(b) of Commission Regulation (EU) 2015/1188 for commercial local space heaters.

- F(1) is a correction factor accounting for a negative contribution to seasonal space heating efficiency for commercial local space heaters due
to adjusted contributions for options for the heat output, expressed in %. The value for this shall be determined in accordance with Table 6 of Commission Regulation (EU) 2015/1188.

- F(4) is a correction factor accounting for a negative contribution to the seasonal space heating energy efficiency by auxiliary electricity consumption, expressed in %. The value for this shall be determined in accordance with Annex III, point 5(f) of Commission Regulation (EU) 2015/1188 for commercial local space heaters.

- F(5) is a correction factor accounting for a negative contribution to the seasonal space heating energy efficiency by energy consumption of a permanent pilot flame, expressed in %. The value for this shall be determined in accordance with Annex III, point 5(g) of Commission Regulation (EU) 2015/1188 for commercial local space heaters.

39.4.3 Test requirements

The product shall be tested with the minimum possible length of flue that is consistent with the product’s design specification. Where the product is supplied in several parts that are to be connected together during installation, the product shall be tested with the minimum possible interconnecting pipework.

39.4.4 Rounding

For the avoidance of doubt, efficiency test data shall be presented to 1 decimal place. As an example, a unitary radiant tube heater with a seasonal space heating energy efficiency of 79.9% would be deemed to not meet the performance requirements.

39.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 39.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework32.

39.5.1 Representative testing

Where applications are being made for a range of two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that all variants:

- Use the same fuel (e.g. oil or gas) as the representative model.

Fit within the same product category (e.g. are all unitary radiant tube heater units) as the representative model.

The representative models shall be selected by dividing the range of products into groups of models with similar characteristics, as above, and testing a model in each group. The performance of each model in the group shall be predicted by extrapolation or interpolation or by using a validated mathematical model. As a minimum, a full test report shall be provided for at least one model tested in each range of products. Details of the calculation method used in determining the performance of models that have not been tested shall also be provided.

It should be noted that:

■ If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.

■ If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

39.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

39.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

39.8 Review

39.8.1 Indicative review date

This specification is scheduled for review during the 2022/23 ETL review period.

39.8.2 Illustrative future direction of the requirements

A suite of provisional test standards has been introduced to enable performance measurement for the Ecodesign regulation for local space heaters. With the exception of the test standard for continuous radiant heating systems which previously did not exist, these provisional standards are not included in this specification. Future requirements will reference the finalised versions of the test standards when they come into force.

40 Warm Air Heating Equipment

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2015</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2003</td>
</tr>
</tbody>
</table>
40.1 Scope

Warm air heating equipment covers products that are specifically designed to provide space heating by using the heat generated by a burner to raise the air temperature in the space(s) being heated, and optimising controllers that ensure warm air heating systems operate in an efficient manner.

40.2 Definitions

Warm air heaters are widely used to provide space heating for warehouses, retail sheds, sports centres, factories, and other buildings containing similarly large spaces. Warm air heaters contain a gas or oil-fired burner that is used to heat the air in the space directly, or indirectly by means of a heat exchanger. A fan is used to distribute the warm air throughout the space(s) being heated.

Warm air heaters are available in a range of different types and efficiencies. The ECA Scheme encourages the purchase of higher efficiency warm air heaters. It also encourages the purchase of optimising controllers that ensure that warm air heating products and systems operate in an energy efficient manner that reflects weather conditions, occupation schedules and user requirements.

The ECA Scheme covers three categories of product:

1. Indirect fired condensing packaged warm air heater units including on/off, high/low and fully-modulating type products.
2. Indirect fired condensing packaged air heater modules including on/off, high/low and fully-modulating type products.
3. Optimising controllers for warm air heating systems including both standalone unit and add-on module type products.

Investments in warm air heating equipment can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility requirements as set out below.

40.3 Requirements

40.3.1 Eligibility requirements

To be eligible, all products shall comply with the relevant requirements set out below:

1. All products incorporating warm air heaters shall:
 - Be gas or oil-fired (where gas includes biogas and oil includes liquid biofuels).
 - Be designed to be permanently installed in one of the following ways:
 a) As a suspended, wall mounted or floor-standing unit.
 b) As a heating module within an air handling unit.
 - Incorporate a fan to distribute warm air within the heated space, unless they are warm air heating modules that are specifically designed to be installed in an air handling unit.
 - Be CE marked.
2. All products that incorporate optimising controllers shall:
 ■ Incorporate a microprocessor based controller that is pre-programmed to:
 a) Automatically control the air temperature in one or more zones within a building in an energy efficient manner that reflects predefined zone occupation schedules.
 b) Automatically switch warm air heating equipment on and off in accordance with the predefined occupation schedule for each of the zones being controlled.
 ■ Incorporate the following automatic control mechanisms:
 a) An optimum start mechanism that monitors external and/or internal temperatures, and calculates when the warm air heating equipment need to be switched on in order to just reach pre-set temperatures by the start of the next occupancy period.
 b) A “self-learning” algorithm that automatically monitors the accuracy of the optimum start mechanism and periodically updates the heating curve that the mechanism uses, to reflect changes in building characteristics.
 c) A frost protection mechanism that monitors internal air temperature, and switches on the warm air heaters to prevent equipment and/or pipework from freezing up.
 d) A building fabric protection mechanism that monitors external or internal temperatures and switches heating on to prevent condensation from occurring.
 e) An anti-tampering mechanism that prevents the product’s control strategy from being modified, and the specified automatic control mechanisms from being disabled, except during commissioning, maintenance or testing.
 ■ Provide facilities that enable building managers to:
 a) Define the normal occupation times for the building and for each zone controlled (in intervals of five minutes or less), for each day of the week, including at least two periods of occupation per day (i.e. at least 14 different occupation periods per week). b) Define the temperature set-points for each zone to ±1°C.
 b) Define future dates (e.g. holidays) when the warm air heating equipment should be completely switched off, or operated at frost, fabric or equipment protection levels.
 ■ Provide facilities that enable building users to “temporarily override” the preset times when the warm air heating is scheduled to be switched off within an individual zone.
 ■ Conform to the requirements of the EU EMC Directive 2014/30/EU or be CE Marked.

Where:
 ■ A mechanism is defined as “any sequence of pre-defined actions that performs a given function, where an action can be defined in hardware and/or software terms”.

Page 168 of 241
■ Products that incorporate control strategies that are specifically designed to control other types of equipment (other than warm air or radiant heaters) are not eligible.

40.3.2 Performance requirements
All products shall have a seasonal space heating energy efficiency that is greater than or equal to 80.0%.

40.4 Measurement and Calculations

40.4.1 Performance metric and Measurement standard
The product’s seasonal space heating energy efficiency shall be determined in accordance with the method set out in:

40.4.2 Rounding
For the avoidance of doubt seasonal space heating energy efficiency test data shall be presented to 1 decimal place. As an example, a warm air heater unit with a seasonal space heating energy efficiency of 79.9% would be deemed to not meet the performance requirements.

40.5 Verification for ETL Listing
Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

■ In-house testing – Self-certified
■ In-house testing – Self-tested and verified or cross-checked by an independent body
■ Witnessed testing
■ Independent testing
■ Representative testing (see clause 40.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework33.

40.5.1 Representative testing
Where applications are being made for a range of two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that all variants:

33 https://www.gov.uk/government/publications/energy-technology-list-etr-product-testing-framework
■ Use the same fuel (e.g. oil or gas) as the representative model.
■ Fit within the same product category (e.g. are all indirect fired condensing packaged warm air heater units) as the representative model.
■ Have the same control mechanism (e.g. are all fully-modulating warm air heater units) as the representative model.

The representative models shall be selected by dividing the range of products into groups of models with similar characteristics, as above, and testing a model in each group. The performance of each model in the group shall be predicted by extrapolation or interpolation or by using a validated mathematical model. As a minimum, a full test report shall be provided for at least one model tested in each range of products. Details of the calculation method used in determining the performance of models that have not been tested shall also be provided.

It should be noted that:

■ If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
■ If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

40.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

40.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

40.8 Review

40.8.1 Indicative review date

This specification will be reviewed during the 2022/23 ETL review period.

40.8.2 Illustrative future direction of the requirements

The eco-design Tier 2 Minimum Energy Performance Standards for this category of products is due to come into force on 1 January 2021. At this time, there may be some scope to increase performance thresholds; however, the technology is close to its energy efficiency limits. Future requirements may look to encourage the use of ‘green’ gases with lower carbon emissions than oil and natural gas.

A new test standard has also been introduced to enable performance measurement for the Ecodesign regulation for warm air heaters. This is currently under provisional
status and is therefore not included in this specification. Future requirements will reference the finalised version of the new test standard when it comes into force.
Refrigeration Equipment

41 Absorption & Other Heat Driven Cooling & Heating Equipment

This category only covers products installed as part of a CHP scheme that has been awarded a certificate from the CHP Quality Assurance (CHPQA) programme. The absorption chiller's useful chilling effect must be driven by heat derived from the CHP plant. The absorption plant is assessed with the CHP plant under CHPQA programme - for further information go to www.chpqa.com.

42 Air Blast Coolers

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2003</td>
</tr>
<tr>
<td>Former name</td>
<td>Forced Air Pre-Coolers</td>
</tr>
</tbody>
</table>

42.1 Scope

Air blast coolers (including 'ambient air pre-coolers' and 'dry adiabatic coolers', and commonly known as 'free coolers' and 'hybrid coolers', and previously referred to as 'forced air pre-coolers') normally consist of a finned tube heat exchanger and a cooling fan(s). The cooling fan is used to force air over the heat exchanger and to cool water and other process liquids as they passed through the heat exchanger. Some products also make use of adiabatic cooling for limited periods.

Air blast coolers can be used to reduce the load on refrigeration systems by cooling water and other process liquids, prior to their transfer into the refrigeration system.

Air blast coolers can be broadly categorised as packaged air blast free coolers and general air blast coolers. Packaged air blast free coolers include the valves and control systems required for use as a pre-cooler to a refrigeration chiller with full, partial or no free cooling depending on the ambient conditions. The free cooler is bypassed when ambient conditions are not suitable for free cooling. General air blast coolers (also known as dry coolers) are sold ready to connect to any suitable closed circuit cooling system.

The ECA Scheme encourages the purchase of free standing air blast coolers that either turn off the cooling fan when the ambient air temperature is high, and/or feature variable speed fan(s) with appropriate controller to modulate the cooling fan speed according to cooling demand.

Air blast coolers that are sold as an integrated part of a mechanical chiller are not included in this category, but are covered by the ‘Packaged Chillers’ sub-technology of the ETL.

Investments in air blast coolers can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.
42.2 Definitions
Air blast coolers are products that are specifically designed to cool water or process liquid by means of a heat exchanger, over which air is forced by a fan(s), prior to transfer to a refrigeration system.

42.3 Requirements

42.3.1 Eligibility requirements
To be eligible, products shall:

■ Incorporate a heat exchanger designed to cool water or other process liquids.
■ Incorporate a fan(s) which forces air over the heat exchanger.
■ Conform with the requirements of the EU Pressure Equipment Directive PED 2014/68/EU in respect of its design, manufacture and testing procedures, or be CE Marked.

In addition air blast coolers shall incorporate:
Either:

■ a series of control valves (or “by-pass mechanism”) that re-direct the water or other process liquid around the pre-cooler in response to a control signal, and a controller that operates the by-pass mechanism and turns off the cooling fan at times when the ambient air temperature is higher than the water/process liquid inlet temperature.

And/Or:

■ a variable speed fan(s) with appropriate controller which reduces the duty of the cooling fan as the cooling demand decreases, or as the ambient air temperature decreases

42.3.2 Performance requirements
Eligible general air blast coolers shall have:

■ A minimum energy efficiency rating (EER) that, at a 5K liquid temperature difference (i.e., difference between inlet and outlet liquid temperatures) and a 15K approach temperature difference (i.e. difference between inlet air and outlet leaving water temperature) and when operating at maximum cooling capacity (as stated on the datasheet), is greater than or equal to (>=) 100.0.

All packaged air blast free coolers are eligible, and do not need to meet a minimum EER performance threshold.

42.4 Measurement and Calculations

42.4.1 Performance metrics
Where EER = net cooling capacity (kW) / effective power input (kW).
42.4.2 Measurement Standards and Test Requirements

The required minimum performance shall be demonstrated using Method A or B, as set out in 42.4.2.1 and 42.4.2.2 below.

For both methods A and B, the liquid for the test shall be water. Effective measured power input is the electricity required to run the fan(s) at full speed plus any control equipment. Water pump power shall not be included. The measurement of air flow will not be required as part of the test. Hybrid coolers shall be run dry i.e. without adiabatic cooling.

42.4.2.1 Method A - Direct Measurement

Product performance shall be demonstrated by measuring the cooling capacity and power input in accordance with the test procedure in BS EN 1048:2014 at a 5K liquid temperature difference and at 3 test points corresponding to a 10K, 15K and 20K difference in approach temperature. The EER should be determined for each test point. The approach temperature is the difference in temperature between the outlet water leaving the product and the inlet air temperature onto the product (i.e. the ambient temperature condition of the inlet air).

42.4.2.2 Method B - Indirect Measurement

Product performance shall be demonstrated by two separate tests conducted on the same product model and in accordance with BS EN 1048:2014, using a different set of operating conditions for each test. The product performance and EER at a 5K liquid temperature difference and 15K inlet temperature difference shall then be determined by extrapolation from the test results.

42.4.3 Rounding

For the avoidance of doubt test data should be presented to 1 decimal place. As an example, an EER of 99.9 would be deemed to be a fail.

42.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 42.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework.

34 https://www.gov.uk/government/publications/energy-technology-list-etal-product-testing-framework
42.5.1 **Representative testing**

Where applications are being made for two or more products that are variants of the same basic design, heat exchanger test data or predictions using a validated mathematical model may be submitted for a single representative model, provided that all variants:

- Use air to liquid heat exchangers of the same constructional design.
- Have the same general arrangement of fans and heat exchangers.
- Are constructed from materials with same heat transfer characteristics.
- Have the same (+/- 5%) or better energy efficiency as the representative models.

Since model numbers are dependent on configuration, dimensions, number and type of fans, heat exchanger coil number and fin type, wild cards can be used for representative models as long as the criteria listed above are met. For example, LF-PA2**T2*-080N06D, where the wild card is applied to number of fans per row, and orientation (horizontal or vertical).

Evidence supporting representative models, including a description of the fan and heat exchanger configuration, fan area to coil area ratios, dimensions and orientation shall be provided (e.g., technical brochure).

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

42.6 **Conformity testing**

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

42.7 **Scope of Claim**

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from [HMRC](https://www.gov.uk).
43 Air-Cooled Condensing Units

43.1 Scope

Air-cooled condensing units covers products that are specifically designed to provide cooling to other equipment and systems that incorporate evaporators (and associated expansion valve control systems). Air-cooled condensing units are factory-assembled units that consist of an air-cooled condenser, one or more compressors, and interconnecting pipe work. They may include liquid receivers, filter driers, oil separators, shut off valves and related controls, and a weatherproof housing.

43.2 Definitions

An air-cooled condensing unit is a factory-assembled, packaged unit that consists of a refrigeration compressor, an air-cooled condenser and various ancillary components. This packaged unit does not contain a complete refrigeration system, but is designed to provide a convenient method for cooling a cold room or other equipment fitted with an evaporator that is controlled by an expansion valve.

Air-cooled condensing units are used in a variety of commercial and industrial cooling applications, including cold rooms, refrigerated display cabinets, back-bar equipment, temperature controlled food preparation areas, and for air conditioning systems.

Air-cooled condensing units are available in a range of different designs and efficiencies. The ECA Scheme aims to encourage the purchase of the higher efficiency products.

The ECA Scheme covers products in three temperature categories:

- High temperature units.
- Medium temperature units.
- Low temperature units.

These categories are defined in terms of the product performance at a particular temperature rating point. Products may be submitted under more than one category.

Investments in air-cooled condensing units can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility requirements as set out below.

43.3 Requirements

43.3.1 Eligibility requirements

To be eligible, products shall:

- Be designed to operate with one or more clearly identified standard refrigerants.
Be a factory assembled unit that incorporates at least the following components:

a) Air-cooled refrigerant condenser.

b) One or more electrically driven refrigeration compressors.

c) A control system that controls the product's compressor(s) and cooling fan(s).

Conform to the requirements of the Pressure Equipment Directive 2014/68/EU in respect of their design, manufacture and testing procedures.

43.3.2 Performance requirements

Products shall have a coefficient of performance (COP) or Seasonal Energy Performance Ratio (SEPR) that is greater than or equal to the values shown in Table 43.1, according to the rated cooling capacity of the product.

Table 43.1 Performance thresholds for air-cooled condensing units

<table>
<thead>
<tr>
<th>Operating temperature</th>
<th>Evaporating temperature (Dew point)</th>
<th>Rated cooling capacity, (P_A) (kW)</th>
<th>Performance parameter</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>+5°C</td>
<td>n/a</td>
<td>COP</td>
<td>(\geq 3.4)</td>
</tr>
<tr>
<td>MT</td>
<td>-10°C</td>
<td>(0 < P_A \leq 5)</td>
<td>COP</td>
<td>(\geq 2.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5 < P_A \leq 20)</td>
<td>SEPR</td>
<td>(\geq 3.30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20 < P_A \leq 50)</td>
<td>SEPR</td>
<td>(\geq 3.30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P_A > 50)</td>
<td>COP</td>
<td>(\geq 2.0)</td>
</tr>
<tr>
<td>LT</td>
<td>-35°C</td>
<td>(0 < P_A \leq 2)</td>
<td>COP</td>
<td>(\geq 1.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2 < P_A \leq 8)</td>
<td>SEPR</td>
<td>(\geq 1.70)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8 < P_A \leq 20)</td>
<td>SEPR</td>
<td>(\geq 1.80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P_A > 20)</td>
<td>COP</td>
<td>(\geq 1.1)</td>
</tr>
</tbody>
</table>

“\(\geq \)” means "greater than or equal to"

“\(\leq \)” means "less than or equal to"

The COP, where applicable, should be measured at the specified standard rating points shown in Table 43.2.

Table 43.2 Testing conditions for COP of air-cooled condensing units at the standard rating points

<table>
<thead>
<tr>
<th>Temperature category</th>
<th>Evaporating temperature (Dew point)</th>
<th>Ambient (Condenser air-on) temperature</th>
<th>Compressor suction gas temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>High temperature units</td>
<td>+5°C</td>
<td>32°C</td>
<td>20°C</td>
</tr>
<tr>
<td>Medium temperature units</td>
<td>-10°C</td>
<td>32°C</td>
<td>20°C</td>
</tr>
<tr>
<td>Low temperature units</td>
<td>-35°C</td>
<td>32°C</td>
<td>20°C</td>
</tr>
</tbody>
</table>

Where:

- COP = refrigerating capacity divided by the power absorbed.
- SEPR = reference annual cooling demand divided by the annual electricity consumption of the product
Refrigerating capacity, power absorbed and reference annual cooling demand are as defined in BS EN13215:2016 “Condensing units for refrigeration – Rating conditions, tolerances and presentation of manufacturer’s performance data”.

Any condenser sub-cooling factored into the refrigerating capacity shall be clearly declared, noting that when a liquid receiver is incorporated into the product with no subsequent sub-cooler, the liquid temperature at the unit outlet should be used to determine capacity.

43.4 Measurement and Calculations

43.4.1 Measurement standards

The following standards, where applicable, shall be used for measuring and calculating product performance:

- BS EN 13215:2016 “Condensing units for refrigeration – Rating conditions, tolerances and presentation of manufacturer’s performance data”
- BS EN 13771-2:2017 “Compressor and condensing units for refrigeration. Performance testing and test methods. Part 2: Condensing units”
- BS EN 12900:2013 “Refrigerant compressors. Rating conditions, tolerances and presentation of manufacturer’s performance data”

Please note that performance data obtained in accordance with the test procedures set out in BS EN 13771-2:2007 will be accepted as an alternative to testing in accordance with BS EN 13771-2:2017 until further notice.

For product categories where a COP threshold is specified, performance data obtained in accordance with BS EN 13215:2000 will be accepted as an alternative to BS EN 13215:2016 until further notice.

43.4.2 Test Requirements

Product performance can either be determined using Method A or Method B to determine COP, or Method C to determine SEPR, subject to the following reporting requirements:

1. For COP measurement, a detailed test report shall be provided and include a statement of achieved performance at the required standard rating point.

2. For SEPR measurement, a detailed test report shall be provided for test point condition A or condition B according to the rating conditions defined in BS EN 13215:2016 “Condensing units for refrigeration – Rating conditions, tolerances and presentation of manufacturer’s performance data”. In addition, a statement of performance at load conditions A, B, C and D, shall be provided. Where results are determined by calculation then this should be on the basis of design and/or extrapolation. In this case, details of such calculations and/or extrapolations, and of tests to verify the accuracy of the calculations undertaken shall be made available.

3. The refrigerant properties used in the analysis of product / compressor performance shall be obtained from one of the following sources:

 - The US National Institute of Standards & Technology (NIST) Standard Reference Database 23 Thermodynamic and Transport Properties of

- The ASERCOM properties database as defined in the ASERCOM Compressor Certification scheme, which is based closely on the NIST database (see http://www.asercom.org/).

4. For the high temperature category only, data for a suction gas temperature of 20°C may be obtained by the thermodynamic translation of data physically tested at 10K superheat.

5. To enable calculations to be checked, the report shall include (or be accompanied by) the manufacturer’s design data for the product and its key components, including the type of refrigerant used, condenser fan motor power, and compressor make and model number.

43.4.3 Performance metrics

43.4.3.1 Method A to determine COP

Under method A:

- The product’s coefficient of performance (COP) at relevant standard rating point (as specified in Table 43.2) shall be calculated with the method used to generate its published performance over the standard range of air temperature and evaporating temperature conditions.

- The accuracy of these calculations shall be confirmed in the following manner:

 a) Actual product performance should be determined at two test conditions close to the relevant standard rating point specified in Table 43.2 that comply with the following limits:
 i. Evaporation temperature shall be within ±1°C of the standard rating point.
 ii. Ambient temperature shall be within ±5°C of the standard rating point, and one point shall be above the standard rating condition, and one below it.
 iii. Suction Temperature shall be within ±1°C of the standard rating point.

 The following measurements shall be made at each test condition with the level of measurement uncertainty specified in Table 3 of BS EN 13771-2: 2017, whilst the product operating under stable conditions at full load:
 i. Condensing and evaporating pressures and dew point temperatures at the compressor inlet and outlet.
 ii. Superheat and sub-cooling at the compressor’s inlet and the product’s outlet.
 iii. Condenser air inlet temperature.

 b) The condenser’s UA value is determined at each test condition using the verified compressor performance data to establish the heat rejection rate.

 c) The arithmetic mean of the UA values at the two test conditions is used to determine the condensing temperature, and the product’s performance at the standard rating point.

- The test report shall include (or be accompanied by):

 a) Details of the calculation used to determine product performance.
b) The following information on the product’s compressor:
 i. Refrigerating capacity and COP at the appropriate standard rating point specified in BS EN 12900: 2013, and at the relevant standard rating point specified in the eligibility criteria for ‘refrigeration compressors’.
 ii. Evidence that the product’s compressor is listed on the Energy Technology Product List, or that its performance has been independently verified.
 iii. A copy of the manufacturer’s published performance data (or a print out of its key performance data from the manufacturer’s design/selection software).

43.4.3.2 Method B to determine COP
Under method B, product performance shall be demonstrated by testing the product in accordance with BS EN 13771-2: 2017 “Compressor and condensing units for refrigeration. Performance testing and test methods. Part 2: Condensing units”.

43.4.3.3 Method C to determine SEPR
Under method C, product performance shall be demonstrated by testing the product in accordance with the procedures in BS EN 13771-2: 2017 “Compressor and condensing units for refrigeration. Performance testing and test methods. Part 2: Condensing units”. The test conditions to be used, and the SEPR calculation method, should be those described in BS EN 13215:2016 “Condensing units for refrigeration – Rating conditions, tolerances and presentation of manufacturer’s performance data”.

43.4.4 Rounding
For the avoidance of doubt COP test data should be presented to 1 decimal place. SEPR test data should be provided to 2 decimal places. As an example, a product in the high temperature category with a COP of 3.3 would be deemed to not meet the performance requirements.

43.5 Verification for ETL Listing
Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-tested and self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 43.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework35.

43.5.1 Representative Testing
Where applications are being made for a range of two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that all variants:

- Use the same refrigerant as the representative model.
- Have the same compressor type (i.e. manufacturer, method of compression (e.g. reciprocating or scroll) and type of enclosure (e.g. hermetic or semi-hermetic)) as the representative model.
- Have the same sub cooling arrangement as the representative model.
- Fit within the same product category (e.g. are all high temperature units).

The representative models shall be selected by dividing the range of products into groups of models with similar design characteristics, and testing a model in each group. The performance of each model in the group shall be predicted using a validated mathematical model. As a minimum, at least one model shall be tested in each range of products.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

43.6 Conformity testing
Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

43.7 Scope of Claim
Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of Installation. Clarity on the eligibility of direct costs is available from HMRC.

43.8 Review

43.8.1 Indicative review date
This specification is scheduled for review during the 2021/22 ETL review cycle.

43.8.2 Illustrative future direction of the requirements
As the use of new low Global Warming Potential (GWP) refrigerants becomes more widespread in the air cooled condensing units market, eligibility and performance requirements may be reviewed, to account for the range of new lower GWP
refrigerants that will become more widespread due to the EU F-gas regulations. The performance parameters may also be reviewed; products could potentially be assessed on their overall environmental impact accounting for seasonal efficiency, refrigerant GWP and refrigerant leakage.

44 Automated Permanent Refrigerant Leak Detection Systems

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2016</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
</tbody>
</table>

44.1 Scope

Automated permanent refrigerant leak detection systems are products that are specifically designed to continuously monitor the atmosphere in the vicinity of refrigeration equipment and, in the event of detection of refrigerant, give an alarm.

44.2 Definitions

An automated permanent refrigerant leak detection system continuously monitors the atmosphere in the vicinity of refrigeration equipment, and other components or pipework that contain refrigerant. The detection system shall be permanently fixed in place at the site of the refrigeration equipment.

Detection systems may be standalone/fixed point or aspirated systems. Where standalone/fixed point systems have a sensor for each space, aspirated systems have a single master control panel which senses refrigerant concentration levels from multiple spaces by extracting air samples from each space through tubing.

The ECA Scheme aims to encourage the purchase of products that give an early warning of refrigerant leaks, to allow their early repair, and thus improve the energy efficiency of the refrigeration system and reduce carbon emissions.

Investments in automated permanent refrigerant leak detectors can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility requirements as set out below.

44.3 Requirements

44.3.1 Eligibility requirements

To be eligible, products shall:

- Continuously monitor the refrigeration system for refrigerant leakage.
- Detect the presence of one or more refrigerants (which shall be clearly named in the information supporting the application) and raise an audible alarm when a pre-set level of refrigerant is reached.
- Have fittings to allow permanent fixing to the wall or floor.
- Standalone systems shall be able to operate in conditions of between --25 to 50°C and relative humidity levels of up to 90%.
- Aspirated systems shall be capable of extracting air samples in conditions of between -25 to 50°C and relative humidity levels of up to 90%. The control panels of these systems shall be able to operate in conditions of between 0 to 50°C and relative humidity levels of up to 90%.

- Be CE marked.

Automated permanent refrigerant leak detectors shall be calibrated for each refrigerant named in the application. The product shall be capable of detecting at least one of the following types of refrigerant: HCFC, HFC, HC, HFO, Carbon Dioxide (CO$_2$) or Ammonia (NH$_3$).

Automated permanent leak detection systems dedicated to ammonia detection for concentration levels at which ammonia is flammable, are not eligible.

44.3.2 Performance requirements

To be eligible, products shall:

- Meet the relevant alarm signal threshold set out in Table 44.1 below, which varies with refrigerant type.

- Generate an alarm signal when the level of refrigerant in the atmosphere exceeds the alarm signal threshold, which may be equal to or lower than the refrigerant-specific thresholds set out in Table 44.1 below.

- Have a measurement accuracy and measurement sensitivity according to the refrigerant type, equal to or better than the levels set out in Table 44.1 at refrigerant concentrations up to the relevant alarm threshold in Table 44.1.

Table 44.1 Performance thresholds for automated permanent refrigerant leak detection systems

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Alarm signal threshold (parts per million, ppm)</th>
<th>Measurement accuracy (ppm)</th>
<th>Measurement sensitivity (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCFC, HFC, HFO or HC</td>
<td>≤100</td>
<td>±20</td>
<td>10</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>≤5,000</td>
<td>±500</td>
<td>100</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>≤100</td>
<td>±20</td>
<td>10</td>
</tr>
</tbody>
</table>

"≤" means "less than or equal to" where products that can generate an alarm signal at lower refrigerant concentration levels than stated in the above Table 44.1, exceed the performance requirements.

Where:

- Measurement accuracy refers to the allowed variation between the measured and actual refrigerant level in the atmosphere.

- Measurement sensitivity refers to the change in the refrigerant concentration level that a product is able to detect. This is not the minimum refrigerant concentration level that the product is able to detect.
44.4 Measurement and Calculations

44.4.1 Measurement standards

The test procedures set out in the following test standards can be used to demonstrate product performance:

- BS EN 14624:2005 “Performances of mobile leak detectors and of room controllers of halogenated refrigerants”. (Section 11.2 – Efficiency tests of room controller).
- BS EN 14624:2012 “Performance of portable leak detectors and of room monitors for halogenated refrigerants”.

44.4.2 Test Requirements

The performance of the equipment shall be tested at the concentrations stated in the performance criteria using calibration gases produced using methods that are traceable to national standards.

A calibration report shall be supplied that demonstrates the product’s sensitivity, accuracy and alarm setting using test gases.

44.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 44.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework36.

44.5.1 Representative testing

Where applications are being made for two or more products that are constructed using a common set of sensors and electronic modules, then test data may be submitted for a representative selection of models that clearly demonstrate the performance of each type of sensor with each refrigerant, and impact on performance of using different electronic modules.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with

36 https://www.gov.uk/government/publications/energy-technology-list-etl-product-testing-framework
that representative model may or may not be permitted to remain on the ETPL.

- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

44.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

44.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

44.8 Review

44.8.1 Indicative review date

This specification is scheduled for review during the 2022/23 review cycle.

44.8.2 Illustrative future direction of the requirements

A provisional update to the standard for measuring refrigerant concentration levels, prEN 14624:2018 for portable leak detectors has been released. It is currently under review and has not been referenced in this specification; however, future requirements will reference it. There is also a provisional standard prEN 50676 for electrical equipment used for refrigerant and SF6 detection and concentration measurement, which will be referenced in future requirements.

45 Cellar Cooling Equipment

<table>
<thead>
<tr>
<th>Date published</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2003</td>
</tr>
</tbody>
</table>

45.1 Scope

Cellar cooling refrigeration equipment is permanently installed and uses the standard refrigeration cycle of evaporation, compression and condensation to cool a cellar or other storage space.

Cellar cooling refrigeration equipment is available in a range of different designs and efficiencies. The ECA Scheme aims to encourage the purchase of higher efficiency products. It also encourages the purchase of free cooling units that utilise free cooling in order to reduce the energy consumption of the cellar cooling refrigeration equipment when weather conditions are suitable.

The ECA Scheme covers three categories of cellar cooling equipment:
- Single split systems with the equipment supplied in two parts (evaporator and condensing unit) to be connected on installation.
- Dual split systems with the equipment supplied in three parts (two evaporators and one condensing unit) to be connected on installation.
- Free cooling units for cellar cooling.

Investments in cellar cooling equipment can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet minimum eligibility criteria as set out below.

45.2 Definitions

Cellar cooling equipment covers refrigeration products that are specifically designed to maintain, by means of a refrigeration system, an indoor environment at a condition suitable for the storage of chilled beverages below 12°C, and free cooling units that ensure free cooling is utilised when the outside ambient temperature is sufficiently low.

45.3 Requirements

45.3.1 Eligibility requirements

To be eligible, cellar cooling refrigeration equipment products must:
- Have a cooling capacity of between 2kW and 12kW at the standard rating conditions for ambient air temperature of 32°C and a cellar air temperature of 10°C.
- Consist of two or three factory-built sub-assemblies that are designed to be connected together during installation.
- Conform with the requirements of EU Pressure Equipment Directive PED 97/23/EC.

To be eligible, free cooling unit products must:
- Utilise a fan to draw in ambient air from outdoors to provide free cooling when the ambient temperature is sufficiently below the required indoor temperature.
- Incorporate a fan which meets the minimum energy efficiency requirements for fans driven by motors with an electric input power between 125W and 10kW as given in eco-design regulation (EU) No 327/2011.
- Include a damper which is designed to close when the free cooling unit is not in operation in order to prevent air leakage from outdoors into the cooled space.
- Incorporate an automatic control system which controls both the free cooling unit and cellar cooling equipment as follows:
 - The free cooling unit is in operating mode when the outside ambient temperature is below a set temperature.
- Air is circulated within the cooled space by using one or two fans of the cellar cooling unit evaporator when the free cooling unit is in operating mode, the remaining one or more evaporator fans being switched off.

- The free cooling unit fan starts and draws ambient air into the cooled space when the temperature rises to a given setpoint and the outside ambient temperature is below the set temperature.

- When the temperature of the cooled space reduces to the setpoint temperature minus the set temperature differential, the free cooling unit fan switches off.

- If the outside temperature rises above the set temperature, the free air cooling system goes into standby mode and the cellar cooling equipment resumes normal operation.

■ Be CE Marked.

45.3.2 Performance requirements

Cellar cooling refrigeration products must have a coefficient of performance (COP) equal to or greater than the figures shown in Table 45.1 below.

Table 45.1 Performance thresholds for cellar cooling equipment

<table>
<thead>
<tr>
<th>Product category</th>
<th>COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single split systems</td>
<td>>= 3.30</td>
</tr>
<tr>
<td>Dual split systems</td>
<td>>= 3.30</td>
</tr>
</tbody>
</table>

“>=” means “greater than or equal to”

45.4 Measurement and Calculations

45.4.1 Measurement standards

Testing must be carried out in accordance with:

45.4.2 Test Requirements

With the following amendments:

Section 6.2 “Cooling capacity measurement”

■ The test period shall be at least 1 hour and at the end of the test period, the temperature of the thermal mass must be at or below the temperature that it was at when the test period started.

Section 6.3 “System energy consumption measurement”:

■ System energy measurement conditions - room B temperature at 10°C ± 2°C.

■ Steady state conditions:
- air on to the evaporator is maintained within the band 8°C to 12°C.
- the thermal mass is maintained at a temperature of 10°C ± 0.5°C.
- The temperature in test room B for the system efficiency test shall be 10°C ± 2°C, with the average temperature during the test period being 10°C ± 0.5°C.
- The test period shall be at least 2 hours and must end at the same point in the temperature control cycle for room B that the test started at.
- At the end of the test period, the temperature of the thermal mass must be at or below the temperature that it was at when the test period started.

Section 6.4 “Conditions to be recorded”:
- Section 6.4.2 “Temperature (°C), accuracy ± 0.3°C of the:
- - Add m) thermal mass at two locations (the closest location to, and furthest location from, the air off the evaporator).

Test reports must be submitted and contain a statement of achieved performance at the required rating points and the information specified in section 8 of PAS 57:2003.
The following additional information shall be included in the test report:
- A copy of data recorded for both the capacity and energy consumption tests.
- Thermal mass - type, temperature and quantity. Number and type of containers used.
- Photograph(s) of the interior of Room B clearly showing the position of the evaporator(s) and the thermal mass.
- Room A & B dimensions, insulation type and U value.

45.4.3 Rounding
For the avoidance of doubt test data should be presented to 2 decimal places. As an example, a COP of 3.29 would be deemed to be a fail.

45.5 Verification for ETL Listing
Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 45.5.1)

Further information regarding the first three routes can be found in Guidance Note 5 on the ETL product testing framework37.

45.5.1 Representative testing

Where applications are being made for a range of two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that all variants:

- Use the same refrigerant as the representative model.
- Have the same compressor type (i.e. manufacturer, method of compression (e.g. reciprocating or scroll) and type of enclosure (e.g. hermetic or semi-hermetic)) as the representative model.
- Have the same sub cooling arrangement as the representative model.
- Have the same number of evaporators.
- Fit within the same product category (e.g. are all split systems).

The representative models must be selected by dividing the range of products into groups of models with similar design characteristics, and testing a model in the lowest quartile of predicted performance in each group. The performance of each model in the group must be predicted using a validated mathematical model. As a minimum, at least two models must be tested in each range of products.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

45.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

45.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

46 Curtains, Blinds, Doors and Covers for Refrigerated Display Cabinets

<table>
<thead>
<tr>
<th>Date published</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
</tbody>
</table>
46.1 Scope

Curtains, blinds, doors and covers are barriers that can be used to reduce the infiltration of ambient air (and heat flow) into refrigerated display cabinets, thereby reducing the energy consumption of the cabinet.

The ECA Scheme covers six categories of products:

1. Strip curtains that consist of transparent, flexible strips hung adjacent to each other, and fastened at both ends to neighbouring strips, in a manner that allows temporary openings to be made in the curtain for the purpose of removing items from the cabinet.
2. Blinds that consist of a flexible fabric mounted on a roller mechanism that enables the blind to be deployed across the display window of the cabinet when the retail outlet is closed or during trading. The blind may also incorporate a motorised control system.
3. Transparent chest freezer covers (or ‘bubble lids’) that consist of a rigid transparent material that fits across the display window of the cabinet, and incorporates access holes that enable items to be removed from the cabinet without removing the cover.
4. Transparent sliding doors that consist of doors with a heat reflective coating, mounted in a mechanism (that is designed to be installed in the window of the cabinet) that enables the doors to be opened when items need to be removed from the cabinet.
5. Transparent hinged doors that consist of doors with a heat reflective coating, mounted in a mechanism (that is designed to be installed in the window of the cabinet) that enables the doors to be opened when items need to be removed from the cabinet.
6. Enhanced air flow management equipment designed to enhance the descending air curtain at the front of an open refrigerated display cabinet in order to reduce the infiltration of ambient air. This equipment comprises modifications or attachments to the shelves of the cabinet.

Investments in curtains, blinds, doors and covers for refrigerated display cabinets can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

46.2 Definitions

Curtains, blinds, doors and covers (for refrigerated display cabinets) are products that are specifically designed to reduce the infiltration of ambient air into a refrigerated display cabinet.

46.3 Requirements

46.3.1 Eligibility requirements

To be eligible, products must:

- Be of fixed design and dimensions with a unique product code.

In addition, products in categories 1, 2, 3, 4 and 5 must:
- Provide a flexible or rigid barrier that can be used to reduce the infiltration of ambient air (and heat flow) through the open display window of a refrigerated display cabinet.

- Be designed to fit one or more specific types or models of refrigerated display cabinet in a manner that ensures that when fitted there is no air gap around the edges of the product’s rigid barriers, and an air gap of less than 20mm around the edges of the product’s flexible barriers.

Products in category 6 must:

- Be a physical device designed to modify or be permanently attached to the shelving of one or more specific types or models of refrigerated display cabinet.

- Be designed to guide the air flow(s) more closely down the entire front of a refrigerated display cabinet in order to reduce the infiltration of ambient air.

Equipment that contains integrated lighting equipment is eligible as long as the lighting equipment also meets the relevant ETL criteria for high efficiency lighting units or white light emitting diode lighting units as appropriate.

46.4 Verification for ETL Listing

There are no testing requirements, however manufacturers shall provide sales and technical brochures to evidence the conformity of their products against the requirements from section 46.3.

46.5 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

46.6 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

47 Evaporative Condensers

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
</tbody>
</table>

47.1 Scope

Evaporative condensers allow refrigeration systems to operate with lower head pressures and higher efficiencies than can be achieved using air-cooled condensers or water-cooled condensers. They use evaporative cooling to remove heat from the refrigerant vapour.

Evaporative condensers are generally used in larger refrigeration systems and the ECA Scheme aims to encourage their purchase as an alternative to lower efficiency solutions.
Investments in evaporative condensers can only qualify for Enhanced Capital Allowances if the product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.

47.2 Definitions
Evaporative Condensers are specifically designed to cool and condense high-pressure refrigerant vapour by means of a heat exchanger that has a wetted external surface across which air is blown by a fan.

47.3 Requirements

47.3.1 Eligibility requirements
To be eligible, products shall:

- Incorporate:

 a) A heat exchanger that is designed to cool and condense refrigerant vapour.

 b) An axial fan that blows air over the heat exchanger.

 c) A blow down facility for the water storage tank to enable total dissolved solids content of the water in the storage tank to be controlled.

 d) And either:

 - A mechanism that wets the external surface of the heat exchanger that includes a water pump and a water storage tank; or

 - A hybrid mechanism that wets the external surface of the heat exchanger at high ambient temperatures (evaporative cooling) and switches to dry operation when a user defined dry switch-point is reached at lower temperatures (dry cooling). The hybrid mechanism will also include includes a water pump and a water storage tank.

- Conform with the requirements of the EU Pressure Equipment Directive 2014/68/EU in respect of its design, manufacture and testing procedures, or be CE marked.

- In addition, where products incorporate an automatic blow down control system, they shall also incorporate a means of measuring total dissolved solids content of the water in the storage tank.

47.4 Verification for ETL Listing
There are no testing requirements, however manufacturers shall provide sales and technical brochures to evidence the conformity of their products against the requirements from section 47.3.
47.5 Conformity testing
Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

47.6 Scope of Claim
Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

48 Packaged Chillers

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2016</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2014</td>
</tr>
<tr>
<td>Former name</td>
<td>Packaged Chillers (tested for seasonal performance to ESEER)</td>
</tr>
</tbody>
</table>

48.1 Scope
Packaged chillers cover products that are specifically designed to cool liquids by means of a refrigeration system that is packaged within a single factory assembled unit. Optionally products also may be designed to heat liquids.

48.2 Definitions
Packaged chillers generate chilled water that can be used to provide space cooling in summer in large air-conditioned buildings; these are comfort chillers. They can also be used as process chillers to generate chilled water or other fluids for industrial process cooling.

Reverse cycle packaged chillers are able to heat fluids and can be used to provide space heating in winter, or for industrial process heating. Simultaneous heating and cooling packaged chillers are able to provide space heating and cooling simultaneously to meet different space conditioning needs within a building. Some air cooled packaged chillers also incorporate free cooling mechanisms that can be used to reduce the amount of electricity needed by the product to provide cooling at lower ambient temperatures.

Under the ECA scheme, comfort chillers are defined as products which are designed to deliver a chilled water flow temperature of greater than or equal to 2°C. High temperature process chillers are defined as products that are designed to meet a process cooling load with a chilled water flow temperature of between 2°C and 12°C, inclusive.

Packaged chillers are available in a wide range of different designs and efficiencies. The ECA Scheme aims to encourage the purchase of the higher efficiency products.

48.2.1 Sub-categories
The ECA Scheme covers seven categories of products:

1. Air-cooled comfort chillers that provide cooling only and have a cooling capacity that is less than or equal to 1,500kW.
2. Air-cooled, reverse cycle, comfort chillers that provide both heating and cooling and have a cooling capacity that is less than or equal to 1,500kW.

3. Water-cooled comfort chillers that provide cooling only and have a cooling capacity that is less than or equal to 2,000kW.

4. Water-cooled, reverse cycle, comfort chillers that provide both heating and cooling and have a cooling capacity that is less than or equal to 2,000kW.

5. Air-cooled simultaneous heating and cooling comfort chillers that are able to provide both heating and cooling simultaneously and have a cooling capacity that is less than or equal to 1,500kW.

6. Air-cooled high temperature process chillers that have a refrigeration capacity that is less than or equal to 1,500kW.

7. Water-cooled high temperature process chillers that have a refrigeration capacity that is less than or equal to 2,000kW.

Investments in packaged chillers can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility requirements as set out below.

48.3 Requirements

48.3.1 Eligibility requirements

To be eligible, products shall:

- Incorporate the following items of equipment:
 - a) One or more electrically powered compressors.
 - b) One or more air-cooled or water-cooled condensers.
 - c) One or more evaporators.
 - d) A control system that ensures the safe, reliable and efficient operation of the product.

- Be CE Marked.

Where the product incorporates an integral free-cooling mechanism, it shall be:

- Fully integrated into the packaged chiller unit during product manufacturing.

- Directly controlled by the product’s control system in a manner that maximises the use of free cooling for outside air, dry bulb temperatures between 2.0 and 15.0°C, where the inlet and outlet water temperatures may differ from the standard rating condition specified in Table 48.2 to enable free cooling to occur at these ambient conditions.

- Able to provide a cooling capacity at an outside air, dry bulb temperature of 2.0°C and an outlet water temperature of 7.0°C that is at least (≥) 50% of the cooling capacity obtained at the standard rating condition specified in Table 48.2.
48.3.2 Performance requirements

Products shall have a Seasonal Space Cooling Energy Efficiency ($\eta_{S,C}$) or Seasonal Energy Performance Ratio (SEPR) that is greater than or equal to the values set out in Table 48.1, according to the rated cooling/refrigeration capacity of the product and the product category. Products that can be used for comfort cooling and process cooling applications can be listed under both categories, provided that the applicable performance requirements for both comfort and process chillers, as set out in Table 48.1, are met.

In addition, reverse cycle products shall have a Seasonal Space Heating Energy Efficiency ($\eta_{S,H}$) greater than or equal to the values set out in Table 48.1. Simultaneous heating and cooling products shall have a cooling Energy Efficiency Ratio (EER) and heating Coefficient of Performance (COP) greater than or equal to the values set out in Table 48.1.
Table 48.1 Performance thresholds for packaged chillers at standard rating conditions

<table>
<thead>
<tr>
<th>Product category</th>
<th>Rated cooling capacity (kW)</th>
<th>Performance thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cooling η_{S,C} (%)</td>
<td>Heating η_{S,H} (%)</td>
</tr>
<tr>
<td>1. Air-cooled comfort chillers that provide cooling only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>without integral free cooling mechanism</td>
<td>< 400 kW</td>
<td>≥ 175.0%</td>
</tr>
<tr>
<td></td>
<td>≥ 400 kW and ≤ 1500 kW</td>
<td>≥ 190.0%</td>
</tr>
<tr>
<td>with integral free cooling mechanism</td>
<td>< 400 kW</td>
<td>≥ 168.0%</td>
</tr>
<tr>
<td></td>
<td>≥ 400 kW and ≤ 1500 kW</td>
<td>≥ 185.0%</td>
</tr>
<tr>
<td>2. Air-cooled, reverse cycle, comfort chillers that provide heating and cooling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 400 kW</td>
<td>≥ 168.0%</td>
</tr>
<tr>
<td></td>
<td>≥ 400 kW and ≤ 1500 kW</td>
<td>≥ 185.0%</td>
</tr>
<tr>
<td>3. Water-cooled comfort chillers that provide cooling only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 400 kW</td>
<td>≥ 230.0%</td>
</tr>
<tr>
<td></td>
<td>≥ 400 kW and < 1500 kW</td>
<td>≥ 310.0%</td>
</tr>
<tr>
<td></td>
<td>≥ 1500 kW and ≤ 2000 kW</td>
<td>≥ 320.0%</td>
</tr>
<tr>
<td>4. Water-cooled, reverse cycle, comfort chillers that provide heating and cooling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 400 kW</td>
<td>≥ 220.0%</td>
</tr>
<tr>
<td></td>
<td>≥ 400 kW and < 1500 kW</td>
<td>≥ 270.0%</td>
</tr>
<tr>
<td></td>
<td>≥ 1500 kW and ≤ 2000 kW</td>
<td>≥ 284.0%</td>
</tr>
</tbody>
</table>

Product category

<table>
<thead>
<tr>
<th>Rated refrigeration capacity (kW)</th>
<th>Cooling SEPR performance thresholds</th>
</tr>
</thead>
</table>

5. Air-cooled, simultaneous heating and cooling comfort chillers that provide heating and cooling

<table>
<thead>
<tr>
<th>Product category</th>
<th>Rated refrigeration capacity (kW)</th>
<th>Cooling SEPR performance thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Air-cooled, high temperature process chillers</td>
<td>< 400 kW</td>
<td>≥ 6.50</td>
</tr>
<tr>
<td></td>
<td>≥ 400 kW and ≤ 1500 kW</td>
<td>≥ 7.00</td>
</tr>
<tr>
<td>7. Water-cooled, high temperature process chillers</td>
<td>< 400 kW</td>
<td>≥ 8.00</td>
</tr>
<tr>
<td></td>
<td>≥ 400 kW and < 1500 kW</td>
<td>≥ 9.00</td>
</tr>
<tr>
<td></td>
<td>≥ 1500 kW and ≤ 2000 kW</td>
<td>≥ 9.10</td>
</tr>
</tbody>
</table>

“≥” means "greater than or equal to"
“≤” means "less than or equal to"
“<” means “less than"

Where:

- The seasonal space cooling energy efficiency (\(\eta_{S,C}\)) is defined as the ratio between the reference annual cooling demand pertaining to the cooling season for a product and the annual energy consumption for cooling, corrected by contributions accounting for temperature control and the electricity consumption of ground water pumps, where applicable.
The seasonal space heating energy efficiency ($\eta_{S,H}$) is defined as the ratio between the reference annual heating demand pertaining to the heating season for a product and the annual energy consumption for heating, corrected by contributions accounting for temperature control and the electricity consumption of ground water pumps, where applicable.

The seasonal energy performance ratio (SEPR) is the efficiency ratio of a high temperature process chiller at standard rating conditions, representative of the variations in load and ambient temperature throughout the year, and calculated as the ratio between the annual refrigeration demand and the annual electricity consumption.

The cooling energy efficiency ratio (EER) is the ratio of the net cooling capacity to the effective power input when the product is cooling at full load.

The heating coefficient of performance (COP) is the ratio of the net heating capacity to the effective power input when the product is heating at full load.

48.4 Measurement and Calculations

48.4.1 Measurement standards

The following standards, where applicable, shall be used to determine product performance:

- BS EN 14511:2018 “Air conditioners, liquid chilling packages and heat pumps, with electrically driven compressors, for space heating and cooling”
- BS EN 14825:2018 “Air conditioners, liquid chilling packages and heat pumps, with electrically driven compressors, for space heating and cooling – Testing and rating at part load conditions and calculation of seasonal performance”

Please note that performance data for comfort chillers obtained in accordance with the procedures and standard rating conditions laid down in BS EN 14511:2013 will be accepted as an alternative to testing in accordance with BS EN 14511:2018 until further notice. Performance data for comfort chillers obtained in accordance with the procedures and standard rating conditions laid down in BS EN 14825:2016 will also be accepted as an alternative to testing in accordance with BS EN 14825:2018.

48.4.2 Performance metrics

48.4.2.1 Calculation of $\eta_{S,C}$

The seasonal space cooling energy efficiency ($\eta_{S,C}$) shall be calculated using the equation below:

$$\eta_{S,C} = \frac{1}{C_C} \times SEER - \sum F(i)$$

Where:

- The Seasonal Energy Efficiency Ratio (SEER) is defined as the overall energy efficiency ratio of the product, representative for the cooling season
and shall be calculated in accordance with the methods described in BS EN 14825:2018.

- The value of the Conversion coefficient (CC), which accounts for the estimated 40% average EU generation efficiency, shall be 2.5.

- \(\Sigma F(i) \) is the sum of the space cooling correction factors, of which there are two:
 - \(F(1) \), the temperature controls correction factor, shall be 3%.
 - \(F(2) \), the brine and water pumps correction factor, which is only applicable for water-cooled cooling only and reverse-cycle comfort chillers, shall be 5%.

The seasonal space cooling energy efficiency shall be calculated based on the part load Energy Efficiency Ratios (EER) at the 24 outdoor temperature conditions of the reference cooling season, as defined in BS EN 14825:2018. Each part load EER shall be weighted by the number of hours in a year during which each outdoor temperature condition occurs, as defined by the reference cooling season.

The part-load EER values shall be measured at four of the 24 part-load conditions; A, B, C and D, which are defined in BS EN 14825:2018 – see Table 48.3. The remainder of the EER values shall be determined via interpolation of the EER values at part-load conditions A, B, C and D. For ambient temperatures above the part load A ambient temperature, the same EER value as for part load condition A shall be used. For ambient temperatures below the part load D ambient temperature, the EER value for part load condition D shall be used.

The methods for calculating the \(\eta_{S,C} \) and SEER are described in full in Clause 5 of BS EN 14825:2018, with a worked example in Annex G of the same test standard.

48.4.2.2 Calculation of \(\eta_{S,H} \)

The seasonal space heating energy efficiency (\(\eta_{S,H} \)) shall be calculated using the equation below, in accordance with the methods described in BS EN 14825:2018.

\[
\eta_{S,H} = \frac{1}{CC} \times SCOP - \sum F(i)
\]

Where:

- The Seasonal Coefficient of Performance (SCOP) is defined as the overall energy efficiency ratio of the product, representative for the heating season.

- The value of the Conversion coefficient (CC), which accounts for the estimated 40% average EU generation efficiency, shall be 2.5.

- \(\Sigma F(i) \) is the sum of the space heating correction factors, of which there are two:
 - \(F(1) \), the temperature controls correction factor, shall be 3%.
 - \(F(2) \), the brine and water pumps correction factor, which is only applicable for water-cooled reverse-cycle comfort chillers, shall be 5%.

The seasonal space heating energy efficiency shall be calculated for a low temperature application with a water supply temperature of 35°C. \(\eta_{S,H} \) shall be based on the part load Coefficient of Performance (COP) at the 46 outdoor temperature conditions of the reference heating season, as defined in BS EN 14825:2018. Each part load COP shall be weighted by the number of hours in a
year during which each outdoor temperature condition occurs, as defined by the reference heating season.

The part-load COP values shall be measured at four of the 46 part-load conditions; A, B, C and D, which are defined in BS EN 14825:2018 – see Table 48.3. The remainder of the COP values shall be determined via interpolation/extrapolation of the COP values at part-load conditions A, B, C and D. For ambient temperatures above the part load D ambient temperature, the COP and capacity shall be extrapolated from the values for part load conditions C and D.

The methods for calculating the \(\eta_{SH} \) and SCOP are described in full in Clause 8 of BS EN 14825:2018, with a worked example in Annex H of the same test standard.

48.4.2.3 Calculation of SEPR

The SEPR shall be determined in accordance with the test conditions and calculation method described in Clause 10 of BS EN 14825:2018.

48.4.2.4 Calculation of EER

The cooling Energy Efficiency Ratio (EER) at full load shall be calculated using the following equation:

\[
EER = \frac{\text{net cooling capacity (kW)}}{\text{effective power input (kW) when cooling}}
\]

48.4.2.5 Calculation of COP

The heating Coefficient of Performance (COP) at full load shall be calculated using the following equation:

\[
COP = \frac{\text{net heating capacity (kW)}}{\text{effective power input (kW) when heating}}
\]

48.4.3 Test Requirements

All products shall be tested to determine product performance under laboratory conditions in accordance with the procedures set out in BS EN 14511:2018.

The product’s cooling/refrigeration capacity (kW), EER (at full load) and COP shall be determined at the standard rating conditions set out in Table 48.2 below, which vary by product category.
Table 48.2 Standard rating conditions for Packaged Chillers

<table>
<thead>
<tr>
<th>Product category</th>
<th>Cooling EER and Cooling/refrigeration capacity (kW)</th>
<th>Heating COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Air-cooled comfort chillers that provide cooling only</td>
<td>BS EN 14511-2:2018 Table 16, Standard rating conditions, Water (for intermediate temperature heating application and comfort chillers)</td>
<td>BS EN 14511-2:2018 Table 12, Standard rating conditions, Outdoor air</td>
</tr>
<tr>
<td>2. Air-cooled, reverse cycle, comfort chillers that provide heating and cooling</td>
<td>BS EN 14511-2:2018 Table 16, Standard rating conditions, Water (for intermediate temperature heating application and comfort chillers)</td>
<td>BS EN 14511-2:2018 Table 25, Cooling capacity conditions for air-cooled, water-cooled process chillers</td>
</tr>
<tr>
<td>3. Water-cooled comfort chillers that provide cooling only</td>
<td>BS EN 14511-2:2018 Table 11, Standard rating conditions, Water-to-water (for intermediate temperature heating applications) from cooling tower and comfort chillers</td>
<td>BS EN 14511-2:2018 Table 25, Cooling capacity conditions for air-cooled, water-cooled process chillers</td>
</tr>
<tr>
<td>4. Water-cooled, reverse cycle, comfort chillers that provide heating and cooling</td>
<td>BS EN 14511-2:2018 Table 11, Standard rating conditions, Water-to-water (for intermediate temperature heating applications) from cooling tower and comfort chillers</td>
<td>BS EN 14511-2:2018 Table 25, Cooling capacity conditions for air-cooled, water-cooled process chillers</td>
</tr>
<tr>
<td>5. Air-cooled, high temperature, process chillers</td>
<td>BS EN 14511-2:2018 Table 22, Cooling capacity conditions for air-cooled, water-cooled process chillers</td>
<td>BS EN 14511-2:2018 Table 25, Cooling capacity conditions for air-cooled, water-cooled process chillers</td>
</tr>
<tr>
<td>6. Water-cooled, high temperature, process chillers</td>
<td>BS EN 14511-2:2018 Table 22, Cooling capacity conditions for air-cooled, water-cooled process chillers</td>
<td>BS EN 14511-2:2018 Table 25, Cooling capacity conditions for air-cooled, water-cooled process chillers</td>
</tr>
</tbody>
</table>

The product’s cooling/refrigerating capacity (kW) and EER at part load; and heating capacity (kW) and COP at part load, shall be determined at the part load conditions shown in Table 48.3 below and in accordance with the procedures detailed in BS EN 14825:2018 for comfort and process chillers.

For comfort chillers, where cooling capacity (kW) and EER test data is available at four part load conditions other than those stated in Table 48.3, these can be used to calculate the cooling capacity and EER at part load ratios A, B, C and D as below. In this scenario, test data in accordance with BS EN 14825:2013 will also be accepted as an alternative to testing in accordance with BS EN 14825:2018 until further notice.
Table 48.3 Part Load Conditions for Packaged Chillers

<table>
<thead>
<tr>
<th>Product category</th>
<th>Cooling EER and cooling/refrigerating capacity (kW) at part load</th>
<th>Heating COP and heating capacity (kW) at part load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-cooled comfort chillers</td>
<td>BS EN 14825:2018 Table 4, Part load ratios A, B, C and D, fan coil application, fixed or variable outlet</td>
<td>BS EN 14825:2018 Table 8, Part load ratios A, B, C and D, low temperature application, average reference heating season, fixed or variable outlet</td>
</tr>
<tr>
<td>Water-cooled comfort chillers</td>
<td>BS EN 14825:2018 Table 5, Part load ratios A, B, C and D, cooling tower application, fan coil application, fixed or variable outlet</td>
<td>BS EN 14825:2018 Table 12, Part load ratios A, B, C and D, low temperature application, average reference heating season, ground water, fixed or variable outlet</td>
</tr>
<tr>
<td>Air-cooled high temperature process chillers</td>
<td>BS EN 14825:2018 Table 16, Part load ratios A, B, C and D, high temperature application</td>
<td></td>
</tr>
<tr>
<td>Water-cooled high temperature process chillers</td>
<td>BS EN 14825:2018 Table 17, Part load ratios A, B, C and D, high temperature application</td>
<td></td>
</tr>
</tbody>
</table>

Test results may be submitted in summary form provided that:

- Sufficient data is included to confirm that the cooling/refrigerating capacity (kW), EER, COP and SEPR, as applicable for each product was determined in accordance with the test procedures in BS EN 14511: 2018 and determined at, or corrected to, the standard rating conditions outlined in Table 48.2 and the part load conditions outlined in Table 48.3.

- At least one detailed test report is submitted for each range of products and for each laboratory used. The data to be recorded in a detailed test report for the test at standard rating conditions is defined in Table 6 of BS EN 14511-3: 2018. The test report shall include details of the data recording period and duration of performance measurement.

- Detailed test reports have been prepared for each product tested and are available on request for inspection, where not submitted with the application.

Where the same product can be used for comfort and process cooling applications, a single test report demonstrating that the $\eta_{S,C}$ performance threshold for comfort chillers is achieved may be provided. For these products, evidence that the SEPR performance threshold for process chillers is achieved may be provided by calculation using a validated mathematical model.

48.4.4 Rounding

For the avoidance of doubt test data should be presented to one decimal place. As an example, a water-cooled, reverse cycle, comfort chiller with a cooling capacity of 100kW, and a seasonal space cooling energy efficiency of 219.9, or a seasonal space heating energy efficiency of 211.9, would be deemed to not meet the performance requirements.
48.4.5 Uncertainties of measurement

All measurements used for the calculation of the SEER shall have a maximum level of uncertainty as stated in BS EN 14825:2018.

48.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 48.5.1 below)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework38.

48.5.1 Representative Testing

Where applications are being made for a range of two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that all variants:

- Use the same refrigerant as the representative model.
- Have the same compressor type (i.e. manufacturer, method of compression (e.g. reciprocating or scroll) and type of enclosure (e.g. hermetic or semi-hermetic)) as the representative model.
- Fit within the same product category (e.g. are all water-cooled comfort chillers).

The representative models shall be selected by dividing the range of products into groups of models with similar design characteristics, and testing a model in each group. The performance of each model in the group shall be predicted using a validated mathematical model. As a minimum, at least one model shall be tested in each range of products.

For air-cooled comfort chillers that provide cooling only, test data for representative models that incorporate free cooling can only be used to represent variants of similar design that incorporate free cooling. Test data for representative models that do not incorporate free cooling can only be used to represent variants of similar design that do not incorporate free cooling.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all

38 https://www.gov.uk/government/publications/energy-technology-list-etl-product-testing-framework
products based on the same representative model will be removed from the ETPL.

48.6 Conformity Testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

48.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

The end-user shall ensure that the product end-use application i.e. comfort or process cooling, shall correspond to the ETL-compliant product category. For example, if a product is listed on the ETL as a process chiller only, an ECA claim can only be made if the end-use application is for process cooling and not for comfort cooling.

48.8 Review

48.8.1 Indicative review date

This specification will be reviewed during the 2021/22 ETL review cycle.

48.8.2 Illustrative future direction of the requirements

When the Tier 2 minimum energy performance standards of Commission Regulation (EU) 2016/2281 come into force for packaged chillers on 1 January 2021, the market average product performance will rise. Future requirements will therefore see a tightening of thresholds to reflect the top 25% of products with regards to energy efficiency.

Also, as the use of new low Global Warming Potential (GWP) refrigerants becomes more widespread in the packaged chillers market, the requirements will be reviewed to assess their impact on product performance.

49 Professional Refrigerated Storage Cabinets

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2016</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2003</td>
</tr>
<tr>
<td>Former name</td>
<td>Commercial Service Cabinets</td>
</tr>
</tbody>
</table>

49.1 Scope

Professional refrigerated storage cabinets are products that are specifically designed to store, but not to display, chilled and frozen foodstuffs.
49.2 Definitions

Professional refrigerated storage cabinets are widely used in the catering industry to store frozen or chilled foodstuffs (including super-chilled or partly-frozen foodstuffs), but a door, lid or drawer shall be opened to view or access the contents of the cabinet.

Professional refrigerated storage cabinets are available in a range of different designs and efficiencies. The ECA Scheme aims to encourage the purchase of higher efficiency products.

The ECA Scheme covers three categories of product:

- Single door (vertical) professional refrigerated storage cabinets with one solid door or drawer accessing the same compartment.
- Double door (vertical) professional refrigerated storage cabinets with two solid doors or drawers accessing the same compartment.
- Under counter and counter (counter type) professional refrigerated storage cabinets with one or more solid doors or drawers accessing the same compartment.

Investments in professional refrigerated storage cabinets can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility requirements as set out below. The ECA Scheme aims to encourage the purchase of higher efficiency products.

49.3 Requirements

49.3.1 Eligibility requirements

To be eligible, products shall:

- Be designed to store chilled or frozen foodstuffs, whilst maintaining them within prescribed temperature limits.
- Be fitted with solid-faced lids, drawers or doors that:
 - Are normally kept closed, but can be opened to access the contents of a single compartment.
 - Obscure the contents of the cabinet from view when closed.
 - Enable users to access the contents of any part of the interior without stepping into the refrigerated space.
- Be a 'plug in' type cabinet with an integral refrigeration system (i.e. incorporating a compressor and condensing unit).
- Have a gross internal volume between 68 and 1,495 litres; where the gross internal volume is as defined as the volume within the inside walls of the cabinet or of a compartment without internal fittings, with any doors being closed.
- Be CE marked.

49.3.2 Performance requirements

Products shall have an Energy Efficiency Index (EEI) that is less than, or equal to, the thresholds set out in Table 49.1 below, which depend on the type of cabinet.
number of doors/drawers, cabinet overall external height and temperature classification.

Table 49.1 Performance thresholds for professional refrigerated storage cabinets

<table>
<thead>
<tr>
<th>Type</th>
<th>Overall external height (mm)</th>
<th>Chilled (M1)</th>
<th>Frozen (L1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single door professional refrigerated storage cabinets</td>
<td>≥ 1,050</td>
<td>≤ 50.0</td>
<td>≤ 60.0</td>
</tr>
<tr>
<td>Frozen (vertical)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double door professional refrigerated storage cabinets</td>
<td>≥ 1,050</td>
<td>≤ 60.0</td>
<td>≤ 65.0</td>
</tr>
<tr>
<td>Frozen (vertical)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under counter and counter professional refrigerated</td>
<td>< 1,050</td>
<td>≤ 30.0</td>
<td>≤ 55.0</td>
</tr>
<tr>
<td>storage cabinets (counter)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"≤" means "less than or equal to"

"<" means “less than”

"≥" means “greater than or equal to”

Where:

- The Energy Efficiency Index (EEI) is defined as the ratio between AEC (Annual Energy Consumption of the cabinet in kWh/year) and SAEC (Standard Annual Energy Consumption of the cabinet in kWh/year).
- The overall external height shall be based on the ‘as-installed’ product height.

49.4 Measurement and Calculations

49.4.1 Measurement standards

The following standard shall be used for measuring and calculating product performance:

- BS EN 16825:2016 “Refrigerated storage cabinets and counters for professional use. Classification, requirements and test conditions."

Equivalent test standards will be accepted as an alternative to testing in accordance with BS EN 16825:2016 where the resulting performance data can be shown to be equivalent to that obtained under BS EN 16825:2016.

49.4.2 Performance metrics

The Energy Efficiency Index (EEI) of a product shall be calculated using the equation below:

\[
EEI = \left(\frac{AEC}{SAEC} \right) \times 100 = \left(\frac{(E24h \times 365)}{(M \times Vn + N)} \right) \times 100
\]

Where:

- E24h = the energy consumption of the cabinet over 24 hours, as defined in BS EN 16825:2016 (measured in kWh)
■ Vn = net volume of the appliance, which is the sum of net volumes of all compartments of the cabinets (measured in litres). Net volume is as defined in Section 6.1 of BS EN 16825:2016. The net volume shall be calculated as follows: the usable shelf area that food can be loaded onto, multiplied by the usable height into which food can be loaded minus an allowance for the height of the shelves, minus any other protrusions into the usable space.

■ M and N are scaling coefficients with values defined in Table 49.2 below.

Table 49.2 M and N scaling coefficients

<table>
<thead>
<tr>
<th>Climate class 4 (30°C 55%RH)</th>
<th>Value for M</th>
<th>Value for N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical chilled (single or double door)</td>
<td>1.643</td>
<td>609</td>
</tr>
<tr>
<td>Vertical frozen (single or double door)</td>
<td>4.928</td>
<td>1,472</td>
</tr>
<tr>
<td>Counter chilled</td>
<td>2.555</td>
<td>1,790</td>
</tr>
<tr>
<td>Counter frozen</td>
<td>5.840</td>
<td>2,380</td>
</tr>
</tbody>
</table>

49.4.3 Test Requirements

Cabinets shall be able to conform to the temperature classifications set out in Table 49.3 below, when tested to BS EN 16825:2016 in climate class 4 (30°C, 55% RH).

Table 49.3 Product classification according to temperature

<table>
<thead>
<tr>
<th>Temperature classification</th>
<th>The highest temperature $\Phi_{\alpha\max}$ of the warmest M-package equal to or lower than °C</th>
<th>The lowest temperature Φ_{β} of the coldest M-package equal to or higher than °C</th>
<th>The lowest temperature $\Phi_{\alpha\min}$ of the warmest M-package equal to or lower than °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled cabinets (M1)</td>
<td>+5</td>
<td>-1</td>
<td>-</td>
</tr>
<tr>
<td>Frozen cabinets (L1)</td>
<td>-15</td>
<td>-</td>
<td>-18</td>
</tr>
</tbody>
</table>

Cabinets shall be tested in a test room conforming to BS EN 16825:2016.

Cabinets shall be tested according to the requirements for “Commercial Service Refrigerated Cabinets and Counters intended for use in commercial kitchens” in BS EN 16825:2016 with the following test conditions:

■ **Loading:** as described in BS EN 16825:2016. For cabinets with shelves, the minimum number of shelves to be used is calculated by dividing by 300mm the vertical distance from the surface of the lowest shelf or loadable surface to the load limit line. The number of shelves resulting shall be rounded to the nearest lower integer, with a minimum of one shelf to be used. The lowest height shelf should be located at the lowest available height fitting.

■ **Temperature test:** as described in BS EN 16825:2016, specifically section 5.3.4

■ **The energy consumption of the cabinet over 24 hours (E24h)** of cabinets fitted with integral condensing units shall be measured in accordance with sections 5 and 6 of BS EN 16825:2016, and to the accuracy specified in section 5.3.2.7 of BS EN 16825:2016.
49.4.4 Rounding
For the avoidance of doubt test data should be presented to 1 decimal place. As an example, a frozen, single door vertical professional refrigerated storage cabinet with an EEI of 60.1 would be deemed to not meet the performance requirements.

49.5 Verification for ETL Listing
Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 49.5.1)

Further information regarding the first three routes can be found in Guidance Note 5 on the ETL product testing framework.\footnote{https://www.gov.uk/government/publications/energy-technology-list-etl-product-testing-framework}

49.5.1 Representative Testing
Where applications are being made for two or more cabinet models that are variants of the same basic design, test data may be submitted for a single 'representative model'. The rules in Table 49.4 shall be used to select the representative model that should be performance tested.

Table 49.4 Rules for selecting the representative model for performance testing

<table>
<thead>
<tr>
<th>Variation between models</th>
<th>Selection rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmetic differences to the exterior</td>
<td>Any model may be selected to be the representative model.</td>
</tr>
<tr>
<td>Heaters (door, trim etc.), fans, defrosts, lighting and other accessories</td>
<td>The model with the greatest energy consumption shall be the representative model.</td>
</tr>
<tr>
<td>Cabinets with the same refrigeration system components but different refrigerants</td>
<td>The model with the greatest energy consumption shall be the representative model.</td>
</tr>
<tr>
<td>Two or more of the above variations</td>
<td>The rules set out above shall be combined when selecting the representative model.</td>
</tr>
</tbody>
</table>

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.
49.6 **Conformity testing**

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

49.7 **Scope of Claim**

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

49.8 **Review**

49.8.1 **Indicative review date**

This specification is scheduled for review during the 2022/23 review cycle.

49.8.2 **Illustrative future direction of the requirements**

The Energy Technology List aims to capture the upper quartile of products with regards to energy efficiency. As professional refrigerated storage cabinet technology improves, future requirements will be revised to cover this portion of the market.

50 Refrigerated Display Cabinets

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2016</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2004</td>
</tr>
</tbody>
</table>

50.1 **Scope**

Refrigerated display cabinets are products that are specifically designed to store and display chilled and/or frozen foodstuffs.

50.2 **Definitions**

Refrigerated display cabinets are used to maintain foodstuffs and drinks at chilled and frozen temperatures. There are many different designs of refrigerated display cabinets, but all enable the customer to view the foodstuff stored in the cabinet, either through an opening in the cabinet, or through a transparent door or lid. Refrigerated display cabinets also include commercial beverage coolers, which are specifically designed to chill and store pre-packaged, non-perishable beverage products for sale to customers.

Refrigerated display cabinets are available in a range of different designs and efficiencies. The ECA Scheme aims to encourage the purchase of higher efficiency products.

The ECA Scheme covers four categories of products:
- ‘Plug in’/integral refrigerated display cabinets with integral refrigeration systems (i.e. incorporating a compressor and condensing unit).
‘Remote’ refrigerated display cabinets that are designed to work with a non-integral refrigeration system (i.e. where the compressor and condenser, or all or parts of the refrigeration system are located at a different location from the cabinet).

‘Water loop’ refrigerated display cabinets that are designed to work with integral refrigeration systems where the condenser is partially or fully cooled by a closed water circuit, from which heat may be recovered for space heating or for pre-heating hot water systems. The closed water circuit may also be cooled by a water chiller.

‘Chilled air’ refrigerated display cabinets that are designed to work with a ducted air system served by a remote refrigeration system where the compressor, condenser, evaporator and all parts of the refrigeration system are located at a different location from the cabinet.

Investments in refrigerated display cabinets can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility requirements as set out below.

50.3 Requirements

50.3.1 Eligibility requirements

To be eligible, products shall:

- Be designed to display chilled and/or frozen foodstuffs, whilst maintaining them within prescribed temperature limits.

- Conform to one of the temperature classifications in Table 50.1 when tested to BS EN ISO 23953-2:2015 in climate class III (25°C, 60% RH). Commercial beverage coolers shall conform to one of the temperature classifications in Table 50.2 when tested to BS EN 16902:2016 in climate class III (25°C, 60% RH).

- Be classified in accordance with the precise 5-digit classification system set out in Annex A of BS EN ISO 23953-1:2015. Commercial beverage coolers shall be classified in accordance with the precise classification system set out in Annex A of BS EN 16902:2016.

- Be CE marked.

Water loop refrigerated display cabinets designed for use with a dry air cooler with variable chilled water flow temperatures, are not eligible.

Table 50.1 Classification according to temperature

<table>
<thead>
<tr>
<th>Class</th>
<th>Highest temperature θ_{ah} of the warmest M-package colder than or equal to ($^\circ$C)</th>
<th>Lowest temperature θ_{b} of the coldest M-package warmer than or equal to ($^\circ$C)</th>
<th>Lowest temperature θ_{al} of the warmest M-package colder than or equal to ($^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>-15</td>
<td>-</td>
<td>-18</td>
</tr>
<tr>
<td>L2</td>
<td>-12</td>
<td>-</td>
<td>-18</td>
</tr>
<tr>
<td>L3</td>
<td>-12</td>
<td>-</td>
<td>-15</td>
</tr>
<tr>
<td>M0</td>
<td>+4</td>
<td>-1</td>
<td>-</td>
</tr>
<tr>
<td>M1</td>
<td>+5</td>
<td>-1</td>
<td>-</td>
</tr>
<tr>
<td>M2</td>
<td>+7</td>
<td>-1</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 50.2 Classification according to temperature for commercial beverage coolers

<table>
<thead>
<tr>
<th>Class</th>
<th>Highest temperature θ_{ah} of the warmest M-package colder than or equal to (°C)</th>
<th>Lowest temperature θ_{b} of the coldest M-package warmer than or equal to (°C)</th>
<th>Lowest temperature θ_{al} of the warmest M-package colder than or equal to (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>+10</td>
<td>+1</td>
<td>-</td>
</tr>
<tr>
<td>H2</td>
<td>+10</td>
<td>-1</td>
<td>-</td>
</tr>
</tbody>
</table>

All commercial beverage cooler classes are as described in BS EN 16902:2016, where the M-can temperature classes shall be measured with an accuracy of ±0.8°C.

50.3.2 Performance requirements

Products shall have an Energy Efficiency Index (EEI) that is less than, or equal to, the threshold shown in Table 50.3 for the relevant temperature class and type of cabinet.

Table 50.3 Performance thresholds for refrigerated display cabinets

<table>
<thead>
<tr>
<th>Temperature Class</th>
<th>EEI performance thresholds (kWh/day/m²)</th>
<th>Geometry/configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Horizontal</td>
</tr>
<tr>
<td>L1</td>
<td>≤ 10.00</td>
<td>≤ 11.50</td>
</tr>
<tr>
<td>L2</td>
<td>≤ 8.50</td>
<td>≤ 11.00</td>
</tr>
<tr>
<td>L3</td>
<td>≤ 8.00</td>
<td>≤ 11.00</td>
</tr>
<tr>
<td>M0</td>
<td>≤ 6.00</td>
<td>≤ 7.50</td>
</tr>
<tr>
<td>M1</td>
<td>≤ 5.00</td>
<td>≤ 6.00</td>
</tr>
<tr>
<td>M2</td>
<td>≤ 4.50</td>
<td>≤ 5.50</td>
</tr>
<tr>
<td>H1</td>
<td>≤ 4.00</td>
<td>≤ 5.00</td>
</tr>
<tr>
<td>H2</td>
<td>≤ 4.00</td>
<td>≤ 5.00</td>
</tr>
<tr>
<td>K1</td>
<td>≤ 4.00</td>
<td>≤ 5.00</td>
</tr>
<tr>
<td>K2</td>
<td>≤ 4.50</td>
<td>≤ 5.50</td>
</tr>
<tr>
<td>K3</td>
<td>≤ 5.50</td>
<td>≤ 6.00</td>
</tr>
<tr>
<td>K4</td>
<td>≤ 3.50</td>
<td>≤ 4.50</td>
</tr>
</tbody>
</table>

"≤" means "less than or equal to"
Where the Energy Efficiency Index (EEI) is defined as the ratio of the product’s Total Energy Consumption (TEC) to Total Display Area (TDA)

And where the geometry/configuration of the cabinet refers to the designation under the classification system in BS EN ISO 23953-1:2015 Annex A and BS EN 16902:2016 Annex A for commercial beverage coolers, as follows:

- Vertical (V) cabinets comprise:
 - VC1 to VC4, VF1, VF2 and VF4, YC1 to YC4, YF1 to YF4, and YM5 to YM8 units.
 - BCSO, BCST, BCSS, BCVO, BCVT, BCVS, BCCO, BCCOT, BCCOS, BCCTO, BCCSO, BCCTT, BCCTS and BCCST commercial beverage cooler units.

- Horizontal (H) cabinets comprise:
 - HC1 to HC8, HF1 and HF3 to HF7 units.
 - BCHO, BCHT and BCHS commercial beverage cooler units.

50.4 Measurement and Calculations

50.4.1 Measurement standards

The following standards shall be used to determine product performance:

- BS EN ISO 23953-2:2015 ‘Refrigerated display cabinets – Part 2: Classification, requirements and test conditions’
- BS EN 16902:2016 ‘Commercial beverage coolers. Classification, requirements and test conditions’

Please note that performance data obtained in accordance with the procedures and standard rating conditions laid down in BS EN ISO 23953-2:2005+A1:2012 will be accepted as an alternative to testing in accordance with BS EN ISO 23953-2:2015 until further notice. For products with glass that have been tested in accordance with BS EN ISO 23953-2:2005+A1:2012, performance data will only be accepted if the Total Display Area (TDA) is recalculated in accordance with BS EN ISO 23953-2:2015.

For products listed on the Energy Technology prior to 1 January 2019, performance data obtained in accordance with BS EN ISO 23953-2:2005 will also be accepted as an alternative to testing in accordance with BS EN ISO 23953-2:2015. Similarly, if these products contain glass, the TDA shall be recalculated in accordance with BS EN ISO 23953-2:2015.

50.4.2 Performance metrics

The Energy Efficiency Index (EEI) shall be calculated using the equation below:

$$ EEI = \frac{\text{Total energy consumption (TEC)}}{\text{Total display area (TDA)}} $$

Where:

- TEC is the daily energy consumption of the product in kWh/day calculated according to BS EN ISO 23953-2:2015 section 5.3.6.3.4 and BS EN 16902:2016 section 6.3.13.3 for commercial beverage coolers.
■ TDA is the total display area of the product in m² calculated according to BS EN ISO 23953-2:2015 Annex A and BS EN 16902:2016 Annex D for commercial beverage coolers.

For water loop cabinets, the TEC shall be the sum of the direct cabinet consumption (DEC) including compressor energy consumption, the pumping daily energy consumption (CPEC) for the water circuit and the refrigeration energy consumption (RECRI) for a remote indirect refrigerating system. The RECRI is used to approximate the energy consumption associated with cooling the chilled water circuit when free cooling or heat recovery for space or hot water heating is not feasible. The DEC, CPEC and RECRI for water loop cabinets shall be calculated in accordance with BS EN ISO 23953-2:2015 Section 5.3.5.3 and Section 5.3.6.3.3.

For chilled air cabinets, the TEC shall be calculated in accordance with the calculation methodology described in the air-cooled cases testing procedure and calculation method document available from: https://www.rdandt.co.uk/news/aircooled.

50.4.3 Test Requirements

All cabinets shall be tested in a test room conforming to BS EN ISO 23953-2:2015 and BS EN 16902:2016 for commercial beverage coolers.

During testing, the cabinet shall comply with the conditions defined in BS EN ISO 239532:2015 with the following specifications:

■ Section 5.3.2.7.1 – Lighting – section (b).

■ Section 5.3.2.7.2 – Night covers – Test data shall not include results from testing with night blinds.

■ Section 5.3.6 - Heat extraction rate measurement when condensing unit is remote from cabinet shall be calculated according to section 5.3.6.3.1 and 5.3.6.3.2 method Ø24-deft.

Water loop cabinets shall be tested in accordance with the method described in BS EN ISO 23953-2:2015 for remote indirect refrigerating systems. In addition to the specifications listed above, the inlet chilled water flow temperature shall be set at 20°C. A tolerance of ±1°C shall be allowed for the inlet chilled water flow temperature.

Chilled air cabinets shall be tested in accordance with the methodology set out in the air-cooled cases testing procedure and calculation method document available from: https://www.rdandt.co.uk/news/aircooled.

During testing of commercial beverage coolers, the cabinet shall comply with the conditions defined in BS EN 16902:2016 with the following specifications:

■ Section 6.3.8 – Lighting and night covers – follow the procedure described in Figure 24 for commercial beverage coolers with lighting and night covers. Test data shall not include results from testing with night blinds.

Products that use refrigerant blends consisting of a mixture of two or more component refrigerants may exhibit temperature glide, where the refrigerant evaporates and condenses over a temperature range at constant pressure. For these products, the evaporating temperature shall be the mid-point temperature of the evaporating temperature range.

Hybrid water loop cabinets which are also able to operate as air-cooled integral cabinets shall be tested in both air-cooled and water-cooled modes. The TEC for
hybrid water loop cabinets shall be calculated as the average of the TEC in air-cooled mode and the TEC in water-cooled mode.

The test report shall be prepared in accordance with the specification set out in BS EN ISO 23953-2:2015 and in BS EN 16902:2016 for commercial beverage coolers.

50.4.4 Rounding

For the avoidance of doubt, M-package temperatures should be rounded to the nearest integer value (where 0.5 should be rounded up). M-can temperatures for commercial beverage coolers should be rounded to one decimal place. Other test data should be presented to two decimal places. As an example, a vertical M0 cabinet with an EEI performance threshold of 7.51 would be deemed to not meet the performance requirements.

50.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-tested and verified or cross-checked by an independent body (for all categories except for water loop refrigerated display cabinets)
- Witnessed testing
- Independent testing
- Representative testing (see clause 50.5.1 below)

Further information regarding the first three routes can be found in Guidance Note 5 on the ETL product testing framework.

50.5.1 Representative testing

Where applications are being made for two or more cabinet models that are variants of the same basic design, test data may be submitted for a single ‘representative model’ provided that all variants have the same precise 5-digit classification according to Annex A of BS EN ISO 23953-1:2015. For commercial beverage coolers, all variants shall have the same precise classification according to Annex A of BS EN 16902:2016. The rules in Table 50.4 shall be used to select the representative model that should be performance tested.

Table 50.4 Rules for selecting the representative model for performance testing

<table>
<thead>
<tr>
<th>Variation between models</th>
<th>Selection rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmetic differences to the exterior</td>
<td>Any model may be selected to be the representative model.</td>
</tr>
<tr>
<td>Heaters (door, trim etc.), fans, defrosts, lighting and other accessories</td>
<td>The model with the greatest direct electrical energy consumption (DEC) shall be the representative model.</td>
</tr>
<tr>
<td>Temperature level</td>
<td>The model with the lowest temperature setting shall be the representative model.</td>
</tr>
</tbody>
</table>

Variation between models

<table>
<thead>
<tr>
<th>Variation between models</th>
<th>Selection rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Any model may be selected to be the representative model. All variants shall have a length that is within ±50% of the representative model length.</td>
</tr>
<tr>
<td>Type of doors</td>
<td>Where some variants have sliding doors and some have hinged doors, the representative model should be equipped with hinged doors.</td>
</tr>
<tr>
<td>Cabinet depth</td>
<td>The model with the greatest cabinet depth shall be the representative model.</td>
</tr>
<tr>
<td>Shelves</td>
<td>The model with the lowest number of shelves shall be the representative model.</td>
</tr>
<tr>
<td>Front-opening height (throat):</td>
<td>The model with the largest front-opening height (throat) shall be the representative model.</td>
</tr>
<tr>
<td>Two or more of the above variations</td>
<td>The rules set out above shall be combined when selecting the representative model</td>
</tr>
</tbody>
</table>

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.

- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

50.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

50.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

50.8 Review

50.8.1 Indicative review date

This specification is scheduled to be reviewed during the 2022/23 review cycle.

50.8.2 Illustrative future direction of the requirements

Future requirements will see the alignment of the Energy Efficiency Index definition for refrigerated display cabinets with the proposed eco-design regulation for refrigerating appliances with a direct sales function. The requirements for small ice cream freezers will be separated out from the horizontal refrigerated display cabinet segment, in line with ecodesign. Performance thresholds will also be reviewed to
ensure that the ETL specification captures the upper quartile of products on the market.

51 Refrigeration Compressors

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2016</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2002</td>
</tr>
</tbody>
</table>

51.1 Scope

Refrigeration compressors are products that are specifically designed to raise the pressure, temperature and energy level of a refrigerant vapour by mechanical means as part of a "vapour-compression, economised vapour compression or transcritical CO\textsubscript{2} refrigeration cycle.

Economiser packages consist of a refrigeration compressor, an expansion device, and an economiser that is capable of increasing refrigerant sub-cooling and refrigeration cycle efficiency.

51.2 Definitions

Refrigeration compressors are at the heart of every refrigeration system that employs a subcritical vapour-compression refrigeration cycle, or transcritical R744 (CO\textsubscript{2}) cycle. They range in size from those used in refrigerated display cabinets used in shops and supermarkets, to those used in large industrial refrigeration systems in breweries.

Refrigeration compressors are available in a range of different designs and efficiencies, and can be manufactured as fully hermetic, semi-hermetic or open products. The ECA Scheme aims to encourage the purchase of the higher efficiency products.

The categories of refrigeration compressor and economiser package covered are:

1. High temperature with HFC or HC refrigerant.
2. Medium temperature with HFC or HC refrigerant.
3. Low temperature with HFC or HC refrigerant.
4. Medium temperature transcritical/subcritical with R744 refrigerant.
5. Low temperature transcritical/subcritical with R744 refrigerant
6. Low temperature subcritical cascade with R744 refrigerant.

Where:

- These categories are defined in terms of the specific refrigerant type and the product performance at a particular temperature rating point.
- ‘Subcritical cascade’ refers to the first stage of a two-stage process using two vapour compression cycles, the first stage with R744 and the second stage with an HFC or other refrigerant.
- ‘Transcritical/subcritical’ refers to single stage products that normally operate in a subcritical mode, but can also operate in transcritical mode as and when conditions demand.
- Products may be submitted under more than one category.
Investments in refrigeration compressors can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. Claims shall be made for listed products with a named refrigerant and specified rated refrigerating capacity. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility requirements as set out below.

51.3 Requirements

51.3.1 Eligibility requirements

To be eligible, products shall:

- Use the refrigerant specified by the product category.
- Be either a refrigeration compressor or an economiser package.
- Incorporate a positive displacement type, hermetic or semi hermetic compressor (with integral electric motor).
- Be subject to quality assurance procedures that ensure consistency of performance between one production item and any other.

In addition, all low temperature transcritical/subcritical R744 products shall include an appropriately matched gas intercooler that is capable of reducing the intermediate gas temperature to the level required for second stage compression.

Products that depend on an external motor for compressor operation (i.e. ‘open’ type compressors) are not eligible.

51.3.2 Performance requirements

Products shall have a coefficient of performance (COP) that is greater than the values shown in Table 51.1 below at the specified standard rating points. The rated refrigerating capacity for the product shall be specified and for products that use HFC or HC refrigerants, the specific refrigerant with which the stated COP has been achieved shall be named.

Table 51.1 Performance thresholds for refrigeration compressors at the standard rating points

<table>
<thead>
<tr>
<th>Category</th>
<th>Evaporating temperature (Dew Point)</th>
<th>Condensing temperature (Dew Point)</th>
<th>Compressor suction gas temperature</th>
<th>Liquid sub-cooling</th>
<th>COP threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>High temperature with HFC or HC refrigerant</td>
<td>+5°C</td>
<td>50°C</td>
<td>20°C</td>
<td>0K</td>
<td>≥ 3.20</td>
</tr>
<tr>
<td>Medium Temperature with HFC or HC refrigerant</td>
<td>-10°C</td>
<td>45°C</td>
<td>20°C</td>
<td>0K</td>
<td>≥ 2.40</td>
</tr>
<tr>
<td>Low Temperature with HFC or HC refrigerant</td>
<td>-35°C</td>
<td>40°C</td>
<td>20°C</td>
<td>0K</td>
<td>≥ 1.45</td>
</tr>
<tr>
<td>Medium temperature transcritical/subcritical with R744 refrigerant</td>
<td>-10°C</td>
<td>15°C</td>
<td>0°C</td>
<td>0K</td>
<td>≥ 4.70</td>
</tr>
<tr>
<td>Low temperature transcritical/subcritical with R744 refrigerant</td>
<td>-35°C</td>
<td>15°C</td>
<td>-25°C</td>
<td>0K</td>
<td>≥ 1.80</td>
</tr>
</tbody>
</table>
Energy Technology Criteria List 2019

Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Evaporating temperature (Dew Point)</th>
<th>Condensing temperature (Dew Point)</th>
<th>Compressor suction gas temperature</th>
<th>Liquid subcooling</th>
<th>COP threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low temperature subcritical with R744</td>
<td>-35°C</td>
<td>-5°C</td>
<td>-25°C</td>
<td>0K</td>
<td>≥ 3.70</td>
</tr>
</tbody>
</table>

"≥" means "greater than or equal to"

Where:

- COP is the ratio of the refrigerating capacity to the power absorbed.
- For economiser packages, zero sub-cooling refers to the liquid condition at the condenser exit.

51.4 Measurement and Calculations

51.4.1 Measurement standards

The following standards, where applicable, shall be used for measuring and calculating product performance:

- BS EN12900:2013 “Refrigerant compressors. Rating conditions, tolerances and presentation of manufacturer’s performance data”.
- BS EN13771-1:2016 “Compressor and condensing units for refrigeration. Performance testing and test methods. Part 1: Refrigerant compressors”.

Please note that tests carried out in accordance with the procedures set out in BS EN 13771-1:2003 shall be accepted as an alternative to those set out in BS EN 13771-1:2016 until further notice.

51.4.2 Performance metrics

The Coefficient of Performance (COP) of a product shall be calculated using the equation below:

\[
COP = \frac{\text{Refrigerating capacity}}{\text{Power absorbed}}
\]

The product’s COP shall be calculated at the standard rating point in the manner set out in BS EN12900:2013 “Refrigerant compressors. Rating conditions, tolerances and presentation of manufacturer’s performance data”.

51.4.3 Test requirements

Product performance may be calculated by interpolation of performance data obtained in accordance with the specified test standards at a minimum of three rating points commonly used to independently verify compressor performance characteristics within the industry. The calculated performance shall be adjusted to take account for uncertainties in the measurements and interpolation method in line with industry best practice.
A test report shall be submitted in accordance with the formats specified in BS EN13771-1:2016. This shall include a statement of measured or calculated performance at the standard rating point.

The refrigerant properties used in the analysis of compressor performance shall be obtained from one of the following sources:

- The ASERCOM properties database as defined in the ASERCOM Compressor Certification scheme, which is based closely on the NIST database (see http://www.asercom.org/).

Where necessary some liquid subcooling may be used during testing to ensure the correct operation of the test apparatus, provided the results are corrected back to a liquid subcooling of 0K.

51.4.4 Rounding

For the avoidance of doubt, test data should be presented to 2 decimal places. As an example, a product in the high temperature category with a COP of 3.19 would be deemed to not meet the performance requirements.

51.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-tested and self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing
- Representative testing (see clause 51.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework.\(^{41}\)

51.5.1 Representative testing

Where applications are being made for a range of two or more products that are variants of the same basic design, test data may be submitted for a representative selection of models, provided that all variants:

- are the same compressor type i.e. method of compression (e.g. reciprocating or scroll) and type of enclosure (e.g. hermetic or semi-hermetic) as the representative model.
- fit within the same product category (e.g. are all high temperature HFC or HC units).

\(^{41}\) https://www.gov.uk/government/publications/energy-technology-list-etl-product-testing-framework
The representative models shall be selected by dividing the range of products into groups of models with similar design characteristics using the same refrigerant, and testing a model in each group. The performance of each model in the group shall be predicted using a validated mathematical model or validated simulation software. Evidence should be provided for both the method and the type of validation used. As a minimum, a test report for at least one model in each range of products shall be provided.

It should be noted that:

- If a manufacturer voluntarily removes the representative model from the Energy Technology Product List (ETPL) then other products linked with that representative model may or may not be permitted to remain on the ETPL.
- If any product submitted under these representative model rules is later found not to meet the performance criteria when independently tested, then all products based on the same representative model will be removed from the ETPL.

51.6 Conformity testing
Products listed on the ETL may be subject to the scheme's conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

51.7 Scope of Claim
Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

51.8 Review

51.8.1 Indicative review date
This specification is scheduled for review during the 2022/23 review cycle.

51.8.2 Illustrative future direction of the requirements
As the refrigeration compressor market evolves to meet the requirements of the EU F-gas regulations, the use of new lower Global Warming Potential (GWP) refrigerants will become more widespread. The performance parameters may also be reviewed in light of the potential impact of the new refrigerants on product performance. Furthermore, future compressor performance thresholds may be categorised by compressor rated refrigerating capacity.

52 Refrigeration System Controls

<table>
<thead>
<tr>
<th>Date published</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date previously reviewed</td>
<td>2016</td>
</tr>
<tr>
<td>Date first launched</td>
<td>2001</td>
</tr>
</tbody>
</table>
52.1 Scope
Refrigeration system controls are products that are specifically designed to automatically optimise the operating temperatures, fan speeds and/or pressures within a distributed commercial refrigeration system in a manner that minimises the system's energy consumption, whilst maintaining the spaces or equipment being refrigerated within predefined temperature limits.

52.2 Definitions
Refrigeration system controls are used to control the temperatures, pressures and fan speeds within a distributed, commercial refrigeration system, and to automatically adjust the refrigeration system operation to reflect changes in load, weather conditions, and operating requirements.

A wide range of refrigeration system control products is available. The ECA Scheme aims to encourage the purchase of products that automatically optimise the operation of a distributed, commercial refrigeration system and minimise its energy consumption.

The ECA Scheme covers two categories of products:

- System management units or packages consisting of one or more control units or modules that are designed to optimise an entire refrigeration system, including the operation of refrigeration compressor(s), evaporator(s), electronic expansion valve(s) and condenser(s).
- ‘Add-on’ controllers that are designed to be used in conjunction with a specific system management unit or package, and enable the operation of additional refrigeration compressors, evaporators, electronic expansion valves and condensers to be optimised.

Investments in refrigeration controls can only qualify for Enhanced Capital Allowances if the product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility requirements as set out below.

52.3 Requirements

52.3.1 Eligibility requirements
To be eligible, products shall:

1. Incorporate a microprocessor based controller that is pre-programmed to automatically control the rate of flow of refrigerant through, and/or operating temperature of, and/or the fan speed of, at least one of the following components of refrigerating systems:
 a) Evaporators.
 b) Condensers.
 c) Compressors.
 d) Electronic expansion valves.
 e) Door trim heaters.

2. Be one of the following:
 a) A system management unit or package that:
- Automatically adjusts system operating set points in a manner that minimises the refrigeration system’s energy consumption under different operating loads, weather conditions and surrounding air temperatures.

- Is pre-programmed to undertake one or more of the following:
 - Monitor temperatures and/or pressures around the refrigeration system, and automatically initiate defrost cycles, or inhibit (or delay) scheduled defrost cycles, within individual parts of the refrigeration system, as required, to optimise the overall performance of the refrigeration system.
 - Monitor refrigeration system energy input (kWh) and generate a visual or audible alarm when system power consumption exceeds a pre-defined limit, or when system efficiency degradation is preventing automatic adjustment.
 - Automatically in accordance with a pre-defined weekly time schedule, turn off, or turn down, ancillary power loads around the refrigeration system (such as lighting in display cabinets, trim heaters or fans), or activate night blinds, in order to reduce system energy consumption.

- Provides facilities that enable system managers to define the default set points, and alarm limits, for each item of refrigeration equipment controlled.

b) An add-on controller that:

- Automatically accepts instructions from the system manager to change its operating set points or alarm limits, or to initiate or inhibit a defrost cycle.

- Automatically transmits data on operating temperatures, pressures, or flow rates to the system manager at intervals not exceeding 1 minute.

 OR:

- For products which solely control the evaporator fan speed, automatically transmit data on the evaporator fan speed to the system manager at intervals not exceeding 10 minutes.

3. Comply with the relevant requirements, as set out in Tables 52.1 to 52.6 below, for products that directly control by means of an analogue or digital signal connection:

 a) Evaporators (see Table 52.1).
 b) Condensers (see Table 52.2).
 c) Compressors (see Table 52.3).
 d) Evaporator fans (see Table 52.4).
 e) Electronic expansion valves (see Table 52.5).
 f) Door trim heaters (see Table 52.6).

4. Incorporate an anti-tampering mechanism that prevents the product’s control strategy and configuration settings from being modified, and automatic control from being disabled, except during commissioning, maintenance or testing.

5. Conform to the requirements of the EU Electromagnetic Compatibility (EMC) Directive 2014/30/EU, or be CE Marked. Products that allow wireless/remote functionality shall also conform to the requirements of the EU Radio Equipment Directive (RED) 2014/53/EU.
6. Not incorporate any form of variable speed drive (with the exception of evaporator fan speed controllers), fan, pump, heat exchanger or valve, except where incorporated solely for the purposes of cooling electronic circuitry.

Table 52.1 Requirements for control of evaporators

Control of evaporators

All products that directly control evaporators shall:

1. Be designed to directly measure evaporator pressure or temperature by means of a sensor, and automatically adjust the flow of refrigerant through the evaporator to maintain the refrigerated space within pre-defined operating limits.
2. Automatically terminate its defrost cycle when:
 a) The temperature of the evaporator or refrigerated space exceeds a pre-set value.
 b) A maximum defrost time consistent with sensor failure has been exceeded.
3. Provide facilities that enable system managers to define separate temperature set points and alarm limits for each evaporator being controlled.
4. Provide facilities that enable system managers to take the equipment out of service for cleaning or maintenance.
5. Generate an alarm signal when the temperature of the refrigerated space is in danger of straying outside, or has strayed outside, its pre-defined safe operating limits.

Table 52.2 Requirements for control of condensers

Control of condensers

All products that directly control condensers shall:

1. Be designed to directly measure condenser pressure or temperature by means of a sensor, and automatically adjust the airflow across the condenser(s) in a manner that maintains condensation at the rate required to maintain the thermal balance of the refrigeration system under different operating loads and weather conditions.
2. Allow the compressor discharge (head) pressure to “float” with ambient temperature down to the minimum safe level for the particular refrigeration system.
3. Provide facilities that enable system managers to define separate temperature set points and alarm limits for each condenser being controlled.
4. Generate an alarm signal when the condensing pressure or temperature is in danger of straying outside, or has strayed outside, the predefined safe limits.
5. Provide facilities that can enable modulating control of a condenser by controlling the speed of a variable speed condenser fan.
Table 52.3 Requirements for control of compressors

Control of compressors

All products that are designed to directly control compressors shall:
1. Be able to control the operation of at least two refrigeration compressors.
2. Be able to provide modulating control of a single variable speed compressor within a multi-compressor pack consisting of other fixed speed compressors.
3. Incorporate automatic control algorithms that monitor rate of change in system suction pressure or refrigerant temperature to prevent compressors from unnecessarily being controlled to load or unload in response to small fluctuations in cooling demand. For multi-compressor packs containing a single variable speed compressor, the product shall be able to optimise the operation of the variable speed compressor using the monitored changes to the suction pressure or refrigerant temperature to minimise the energy consumption of the refrigeration system.
4. Be able to provide crankcase heater control using ambient and superheat temperature conditions to restrict crankcase heater operation to only when required, thereby reducing the energy consumption of the compressor pack.
5. Be able to use operational data from the refrigerated display cabinets/cases (transmitted via the system management unit) to float the suction pressure of the compressor pack. Floating the suction pressure during low load conditions will help to reduce the operational energy consumption of the refrigeration system.

Table 52.4 Requirements for evaporator fan speed controllers

Evaporator fan speed controllers

All products that are designed to directly optimise the speed of evaporator fans shall:
1. Be able to optimise the speed of at least two evaporator fans.
2. Incorporate automatic control algorithms that reduce the speed of the evaporator fans in response to signals from the master controller, for example that the set point has been reached/exceeded, a doorway within the refrigerated space has been opened or a defrost cycle is underway.
3. Not affect the ability of the refrigeration system to achieve the set point and maintain any temperature legally required to refrigerate products contained in the space.
4. Be compatible with ETL compliant system management unit or package type refrigeration system controls.

Table 52.5 Requirements for control of electronic expansion valves

Control of electronic expansion valves

All products that are designed to directly control electronic expansion valves shall:
1. Be able to control the operation of at least two electronic expansion valves.
2. Enable the modulating control of electronic expansion valves by monitoring refrigerant temperature and pressure.

Table 52.6 Requirements for control of door trim heaters

Control of door trim heaters

All products that are designed to directly control door trim heaters on refrigerated display cabinets/cases with doors shall:
1. Be able to control the operation of at least two refrigerated display cabinet/case door trim heaters by pulsing the trim heaters on and off to reduce their energy consumption.
2. Be able to monitor ambient relative humidity levels to turn the trim heaters off for longer periods if ambient humidity levels are low, thereby reducing the door trim heater energy consumption.
Where:

- Automatic control may be implemented either directly by means of an analogue or digital signal connection, or indirectly by means of another control device or network.
- A mechanism is defined as “any sequence of pre-defined actions that performs a given function, where an action can be defined in hardware and/or software”.
- An algorithm is defined as “a mechanism that is defined in software”.
- The product’s control strategy is the combination of automatic control functions, mechanisms and facilities specified for the particular equipment controlled. In this context, products may be pre-programmed in one of the following ways:
 - One or more fixed control strategies that are designed to control a specific set of equipment that can be selected during commissioning.
 - One or more flexible control strategies that can be configured to control different equipment, as part of a clearly defined commissioning procedure.
- Products that incorporate control strategies that are designed to control any type of equipment that is not directly related to refrigeration systems are not eligible.

52.4 Verification for ETL Listing

There are no testing requirements, however manufacturers shall provide sales and technical brochures to evidence the conformity of their products against the requirements from section 52.3.

52.5 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

52.6 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

52.7 Review

52.7.1 Indicative review date

This specification is scheduled to be reviewed during the 2022/23 review cycle.

52.7.2 Illustrative future direction of the requirements

The ETL aims to keep up to date with innovations in the refrigeration system controls industry and future requirements will incorporate such innovations that help to reduce the energy consumption of refrigeration systems.
Solar Thermal Systems and Collectors

53 Solar Thermal Systems and Collectors

Date published	2014
Date first launched	2002
Former name	Solar Thermal Systems

53.1 Scope

Solar thermal systems are energy saving products that reduce the amount of fossil fuel consumed by conventional water heating plant. They are built around a solar collector that has a dark coloured absorbing surface, which ‘traps’ solar radiation and converts it into heat. This heat is then transferred to a storage vessel by means of a circulating fluid, or in some instances, the solar collector could be directly connected into the heating circuit.

A solar thermal system either may be assembled by an installer using plumbing components from different suppliers, or a complete system may be purchased in kit form direct from a single manufacturer. To cover these options, the ECA Scheme covers two categories of product:

- Individual solar collectors for use in installer-assembled solar thermal systems.
- Complete, ready to install, fixed configuration, solar thermal systems.

Investments in solar thermal systems can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List. To be eligible for inclusion on the Energy Technology Product List, products must meet the eligibility criteria as set out below.

53.2 Definitions

Solar thermal systems are products that are specifically designed to capture solar energy and convert it to useful heat for water heating applications.

53.3 Requirements

53.3.1 Eligibility requirements

To be eligible, products must either:

- Use collectors that comply with the requirements of BS EN 12975-1:2006 “Thermal solar systems and components. Solar collectors. General requirements”; or
- Be sold as a complete, ready to install, fixed configuration, solar thermal system that complies with the requirements of BS EN 12976-1:2006 “Thermal solar systems and components. Factory made systems. General requirements”.

Where a solar thermal system may include the following components:

- One or more solar collectors.
- One or more appropriately sized storage vessels (where required).
The pipework and valves forming the connection loop between the solar collector(s) and storage vessel(s), including any non-return valves, control valves, pressure relief valves, air bleed valves etc., as required for the effective operation of the product.

Circulation pumps (where required).

Any controls or sensors (and their associated power supplies) needed to:

a) Stop circulation when the yield is low.

b) Ensure compliance with Health & Safety Executive (HSE) requirements.

c) Operate a drain down or a frost protection strategy (where required).

The following items shall not be considered to be part of a solar thermal system unless they are required to deliver the functionality outlined above:

- The pipework from the storage vessel(s) to the point of use.
- Any auxiliary tanks used to provide back-up heating to the solar thermal system.
- Any cold water tanks and associated pipework used to replace the water being consumed at the point of use.
- Any re-enforcement to roof or structure required to mount the solar thermal system.

53.3.2 Performance requirements

The solar collector within the product must:

Pass the reliability tests detailed in the standards specified in Table 53.1 below:

Table 53.1 Requirements for reliability tests

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Applicable Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete, ready to install, fixed configuration, solar thermal systems</td>
<td>BS EN 12976-2:2006 “Thermal solar systems and components – Factory made systems – Part 2: Test methods”.</td>
</tr>
</tbody>
</table>

53.4 Measurement and Calculations

53.4.1 Test Requirements

All products must be tested in accordance with the procedures and test conditions laid down in the standards specified in the performance criteria above.

53.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:
- In-house testing – Self-certified
- In-house testing – Self-tested and verified or cross-checked by an independent body
- Witnessed testing
- Independent testing

Further information regarding the routes can be found in Guidance Note 5 on the ETL product testing framework.¹⁴²

53.6 **Conformity testing**

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

53.7 **Scope of Claim**

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

Uninterruptible Power Supplies

54 Uninterruptible Power Supplies

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2009</td>
</tr>
</tbody>
</table>

54.1 Scope

Uninterruptible power supplies are used to allow electrical equipment to continue operating when the mains power supply is interrupted for a period, or the quality of the power supply deteriorates. They are widely used throughout industry and commerce to maintain the safety critical and business critical systems located in process control stations, computer rooms, data centres and server areas.

Uninterruptible power supplies are available with a wide range of different efficiencies. The ECA Scheme aims to encourage the purchase of products with the highest efficiency.

The ECA Scheme covers two categories of products:

1. Static (installed) uninterruptible power supply units or packages, with a power range greater than or equal to 10kVA, that use one or more electronic power converters, switches and energy storage devices (such as batteries) to generate their output voltage when operating without mains input power.
2. Rotary uninterruptible power supply units or packages, with a power range greater than or equal to 200 kVA that use one or more rotating electrical machines (i.e. AC generators) to generate their output voltage when operating without mains input power.

Investments in uninterruptible power supplies can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology Product List, and in order to be eligible for inclusion on the List, products shall meet the eligibility criteria as set out below.

54.2 Definitions

Uninterruptible power supplies are products that are specifically designed to maintain the continuity and quality of a power supply to electrical appliances or electrically driven equipment in the case of input power failure. When the mains electricity supply is operating, they charge up an energy storage device, which can be used to provide electrical power for a defined period when the mains electricity supply is interrupted.

54.3 Requirements

54.3.1 Eligibility requirements

To be eligible, products shall:

■ Be one of the following categories of product:
 a) A static uninterruptible power supply as defined in BS EN 62040-3:2011 (or IEC 62040-3: 2011).
b) A rotary uninterruptible power supply as defined in BS EN 88528-11:2004 (or IEC 88528-11:2004).

- Include the following components (within the unit or package):
 a) An electronic control system that controls the operation of the product.
 b) Voltage inverter and rectifier devices (required for static uninterruptible power supplies, optional for rotary uninterruptible power supplies).
 c) One or more energy storage devices (for example: batteries, flywheels, etc.) specified for use with the UPS.
 d) One or more power supply filters.
 e) A bypass switch (where required)
 f) A motor generator set or alternator (for rotary uninterruptible power supplies only).

- Be designed to be connected to, and to provide electrical power backup to, a three-phase electricity supply of nominally fixed frequency and voltage.
- Be CE Marked.

Functionality criteria

To be eligible:

a) Static UPS with more than one operating mode shall incorporate a high efficiency operating mode and include controls to switch between modes quickly and automatically when the utility supply falls below acceptable tolerances.

b) Modular products shall incorporate controls to operate automatically at higher load per module, provided this demonstrably improves efficiency.

54.3.2 Performance requirements

Eligible products shall:

a) Meet or exceed the minimum efficiencies at full and part load conditions set out in Table 54.1 below, which depends on the product category.

b) Have an input power factor that is greater than or equal to (i.e. \(\geq \)) 0.93 at 25%, 50%, 75% and 100% of rated maximum power output at nominal input voltage.

c) Have an input total harmonic distortion (THD) that is less than or equal to (i.e. \(\leq \)) 5% at 100% of rated maximum power output.
Table 54.1 Performance thresholds for uninterruptible power supplies

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Power range (kVA)</th>
<th>% of rated maximum power (i.e. % full load)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td>Static uninterruptible power supply units or packages</td>
<td>>=10</td>
<td>>=94.0</td>
</tr>
<tr>
<td>Rotary uninterruptible power supply units or packages</td>
<td>>=200</td>
<td>>=91.0</td>
</tr>
</tbody>
</table>

"<=" means "less than or equal to"

">" means "greater than"

">=" means "greater than or equal to"

54.4 Measurement and Calculations

54.4.1 Measurement standards

Product performance shall be tested in accordance with the procedures and standard rating conditions laid down in the following standard:

- Section 6.4.1.6 and Annex J of BS EN 62040-3:2011 (or IEC 62040-3:2011): “Uninterruptible power systems (UPS) – Part 3: Method of specifying the performance and test requirements”.

54.4.2 Test Requirements

With the following amendments:

- Products shall be operated in their least efficient normal operating mode from a standard 230/400 Volt AC (+/-10%), 50Hz electrical power supply.
- The package tested shall exclude additional isolation transformers that are not physically incorporated into the uninterruptible power supply unit or package, switchgear, low voltage switchboards, and generation sets.
- Any static bypass switches fitted shall be in the ‘open’ position.

54.4.3 Rounding

For the avoidance of doubt, test data should be presented to one decimal place. As an example, a rotary uninterruptible power supply product with an efficiency of 94.9 % when operating at 50% of its rated maximum power output would be deemed to be a fail.

54.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- In-house testing – Self-certified
- In-house testing –Self-tested and verified or cross-checked by an independent body
Witnessed testing
Independent testing
Representative testing (see clause 54.5.1)

Further information regarding the first four routes can be found in Guidance Note 5 on the ETL product testing framework\(^{43}\).

54.5.1 Representative testing

Where applications are being made for two or more products that are constructed out of a number of identical power supply modules, test data may be submitted for a single ‘representative model’.

54.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

54.7 Scope of Claim

An Enhanced Capital Allowance (ECA) can be claimed on the purchase of an ETL listed complete UPS product that includes all of the ETL required components (including one or more energy storage devices).

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and some of the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.\(^{43}\)

Waste Heat to Electricity Conversion Equipment

55 Organic Rankine Cycle Heat Recovery Equipment

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2015</td>
</tr>
</tbody>
</table>

55.1 Scope

Organic Rankine Cycle (ORC) Heat Recovery Equipment typically captures waste heat from exhaust stacks in manufacturing plants, or other waste heat from industrial processes, and uses it to generate electricity that is used on site.

The ECA scheme covers products that can capture low to medium grade waste heat through an Organic Rankine Cycle. In ORC units, the captured waste heat is used to heat a working fluid. Vapour is produced, which is used to mechanically drive an electricity generator by means of an expander (e.g. turbine or screw). The low pressure vapour is then condensed (rejecting its heat to a lower temperature heat sink) and pumped back to the higher pressure, to complete the cycle.

The waste heat may be captured directly, by means of an internal or external heat exchanger, or indirectly, by means of a secondary heat recovery system.

Heat rejection to the lower temperature ambient heat sink may be directly to the air using a heat exchanger, or via a secondary cooling medium (e.g. cooling water).

The ECA scheme covers three categories of product:

1. Remote, secondary-cooling type
 These products include a complete, closed circuit for the working fluid, contained within the unit. The condensing heat-exchanger is supplied with open connections for a secondary cooling circuit (e.g. cooling water), for connection on site.

2. Integral cooling type
 These products include a complete, closed circuit for the working fluid, contained within the unit. The condenser rejects its heat directly or indirectly to the air, via a heat exchanger (contained within the unit). The heat exchanger may use dry air cooling, evaporative or adiabatic cooling.

3. Split-circuit type
 ‘Split’ type products have separate heat collection and rejection units specifically designed to be connected together during installation by pipework to create the closed circuit for the working fluid, forming a single functional unit. The main assembly includes the heat capture heat-exchanger, expander and power generator. The second unit includes the condensing heat-exchanger, for rejection of heat to the air, using dry air cooling, evaporative or adiabatic cooling.

ORC Heat Recovery Equipment is available in a range of efficiencies. The ECA Scheme aims to encourage purchase of higher efficiency products, which can realise substantial reductions in carbon emissions when used to reduce the use of electricity from the mains supply.

Investments in ORC Heat Recovery Equipment can only qualify for Enhanced Capital Allowances if the specific product is named on the Energy Technology
Product List. To be eligible for inclusion on the Energy Technology Product List, products shall meet the eligibility criteria as set out below.

ECA’s can only be claimed for equipment where the electricity will be used on site, and not where power is generated for sale to or via unspecified third parties.

55.2 Definitions

Organic Rankine Cycle (ORC) Heat Recovery Equipment covers products that are specifically designed to convert waste heat to electrical power by means of a closed thermodynamic power cycle that does not involve the internal combustion of fuel.

55.3 Requirements

55.3.1 Eligibility requirements

To be eligible, products shall:

- Consist of a factory-built packaged unit or split system (comprising a main assembly and a matched heat-rejection unit, designed for connection together on site).
- Be designed to generate electricity or produce mechanical power in the ORC shaft from waste heat with a temperature of less than or equal to (<=) 350 °C.
- Be designed to provide three-phase electricity at 230/400 Volt a.c. at 50Hz.
- Be rated for continuous operation with an electrical power output not exceeding 1.5 MWe.
- Not incorporate any form of combustion equipment, including boost burners.
- Not use water, ammonia or any water based solution as a working fluid.
- Be designed for, and include fittings for, permanent installation.
- Be CE marked.

55.3.2 Performance requirements

Eligible products shall meet or exceed the minimum adjusted net efficiency set out in Table 55.1, according to the maximum temperature of waste heat that the product is designed to capture:
Table 55.1 Adjusted net efficiency thresholds for ORC Heat Recovery Equipment

<table>
<thead>
<tr>
<th>Maximum design waste heat temperature (°C)</th>
<th><= 125°C</th>
<th>> 125°C and <= 250°C</th>
<th>> 250°C and <= 350°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Category</td>
<td>Minimum adjusted net efficiency, η</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Remote, secondary-cooling type</td>
<td>>= 7.0%</td>
<td>>= 12.5%</td>
<td>>= 17.5%</td>
</tr>
<tr>
<td>2. Integral cooling type</td>
<td>>= 4.6%</td>
<td>>= 7.4%</td>
<td>>= 15.6%</td>
</tr>
<tr>
<td>3. Split-circuit type</td>
<td>>= 4.6%</td>
<td>>= 7.4%</td>
<td>>= 15.6%</td>
</tr>
</tbody>
</table>

"<=" means "less than or equal to"

">=" means "greater than or equal to"

">" means "greater than"

Where:

$$\text{Net Efficiency, } \eta = \frac{\text{Electrical output (kW)} - \text{Electrical input (kW)}}{\text{Thermal Input (kW)}}$$

And adjusted net efficiency $\bar{\eta}$ is defined in 55.4.1.1 below.

The electrical input applies to 100% of the electrical consumption of the product, including any pumps and fans contained within it. However, for remote, secondary-cooling type (category 1) products, the energy use of pumps and fans associated with the secondary cooling circuit should not be included as electrical input, and are not included in the net efficiency calculation.

55.4 Measurement and Calculations

55.4.1 Measurement Standards and Test Requirements

The required minimum performance shall be determined using Methods A or B, as set out in 55.4.1.1 and 55.4.1.2 below.

Products can either be tested in an accredited laboratory, or performance may be determined from measurements made during field trials or acceptance tests, provided that the measurements have been made by, or witnessed by, an accredited laboratory or contractor that is accredited to make those measurements. The product's adjusted net efficiency shall be calculated by an independent body that is competent to verify the measurement data.

55.4.1.1 Method A – Direct Measurement

Under this test method, product performance shall be demonstrated by calculating the net efficiency (as defined above), from measurements of thermal input, electrical output and electrical input, in the application and at the rated capacity, for which it is designed.

The reference test conditions, which depend on the maximum temperature of waste heat that the product is designed to capture, are set out in Table 55.2 below.
Table 55.2 Reference test conditions

<table>
<thead>
<tr>
<th>Maximum design waste heat temperature (°C)</th>
<th><= 125°C</th>
<th>> 125°C and <= 250°C</th>
<th>> 250°C and <= 350°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference test conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1 – inlet temperature of the captured waste heat source</td>
<td>125°C</td>
<td>250°C</td>
<td>350°C</td>
</tr>
<tr>
<td>T2 – inlet temperature of the heat rejection sink</td>
<td>Remote, secondary cooling type products (inlet temperature of the secondary coolant)</td>
<td>30°C</td>
<td>30°C</td>
</tr>
<tr>
<td></td>
<td>Integral cooling type products (air on temperature, dry bulb)</td>
<td>20°C</td>
<td>20°C</td>
</tr>
<tr>
<td></td>
<td>Split-circuit type products (air on temperature, dry bulb)</td>
<td>20°C</td>
<td>20°C</td>
</tr>
</tbody>
</table>

At the reference conditions, the adjusted net efficiency, \(\bar{\eta} \), is equal to the net efficiency \(\eta \), as defined above.

Where the application does not make it feasible for tests to be carried out at the conditions above, then alternative inlet temperatures T1 and T2 can be used. In such cases, the adjusted net efficiency, \(\bar{\eta} \), should be calculated as defined in Table 55.3 below.

Table 55.3 Adjusted net efficiency for alternative inlet temperatures

<table>
<thead>
<tr>
<th>Maximum design waste heat temperature (°C)</th>
<th><= 125°C</th>
<th>> 125°C and <= 250°C</th>
<th>> 250°C and <= 350°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (allowable range)</td>
<td><= 125°C</td>
<td>> 125°C and <= 250°C</td>
<td>> 250°C and <= 350°C</td>
</tr>
<tr>
<td>Remote, secondary-cooling type products</td>
<td>[\eta = \frac{125 - 30}{T_1 - T_2} \left(\frac{273.15 + T_1}{273.15 + 125} \right)]</td>
<td>[\eta = \frac{250 - 30}{T_1 - T_2} \left(\frac{273.15 + T_1}{273.15 + 250} \right)]</td>
<td>[\eta = \frac{350 - 30}{T_1 - T_2} \left(\frac{273.15 + T_1}{273.15 + 350} \right)]</td>
</tr>
<tr>
<td>Integral cooling and split circuit type products</td>
<td>[\eta = \frac{125 - 20}{T_1 - T_2} \left(\frac{273.15 + T_1}{273.15 + 125} \right)]</td>
<td>[\eta = \frac{250 - 20}{T_1 - T_2} \left(\frac{273.15 + T_1}{273.15 + 250} \right)]</td>
<td>[\eta = \frac{350 - 20}{T_1 - T_2} \left(\frac{273.15 + T_1}{273.15 + 350} \right)]</td>
</tr>
</tbody>
</table>

Note: T1 and T2 above are defined in Table 55.2 and expressed in degrees Celsius.

The adjusted efficiency, \(\bar{\eta} \), shall meet or exceed the associated minimum adjusted net efficiency threshold defined in Table 55.1.

For example, a category 1 ORC product designed for a maximum waste heat temperature of 200°C, with a net efficiency of 10.8% (T1 = 200°C and T2 =30°C), will have an adjusted net efficiency of 12.6%, and therefore deemed eligible.
The assessment of thermal input shall be done in accordance with the procedures set out in:

- EN 306:1997 “Heat exchangers – Methods of measuring the parameters necessary for establishing the performance”; or
- EN 308:1997 “Heat exchangers – Test procedures for establishing the performance of air to air and flue gas heat recovery devices”.

The assessment of electrical output and electrical input shall be done in accordance with the relevant procedures set out in:

- BS ISO 8528-6:2005 “Reciprocating internal combustion engine driven alternating current generating sets – Test methods”.

55.4.1.2 Method B - Validated Design Calculations

Under this test method, product performance shall be demonstrated by calculating net efficiency (as defined above), from design calculations.

The accuracy of these calculations shall be confirmed by interpolation and extrapolation of measurements obtained from tests (carried out according to Method A above) of at least two units of the same basic design as the product, i.e.:

- Use the same working fluid as the product
- Use the same thermodynamic cycle
- Have the same expander type – i.e. manufacturer, method of expansion (e.g. reciprocating, turbine, or screw)
- Use the same heat exchanger types – for both waste heat capture and heat rejection to the ambient heat sink; and any other recuperative heat exchangers
- Use the same method of rejecting heat to the ambient heat sink – i.e. water-cooled; or dry or evaporative air-cooled.

The product shall have a rated maximum electrical output of no more than 20% greater or smaller than one of the tested products.

The test report shall include (or be accompanied by):

a) Details of the methodology and calculations used to determine product performance
b) A copy of the published performance data for the product
c) Manufacturer’s design data for the product
d) The following data for the tests carried out according to Method A and for the design conditions of the product:
i. Details of the composition, specific heat capacity, inlet and outlet temperatures, and flow-rates of:
 - The captured waste heat source
 - The low-temperature heat sink

ii. Electricity output and input

iii. Calculated net efficiency and adjusted net efficiency

e) Details of main components of the tested units and (where these are not identical to the product) calculations demonstrating that their performance can be used to validate that of the product, including:

i. Heat exchangers

ii. Expander

iii. Alternator

55.4.2 Rounding

For the avoidance of doubt, test data should be presented to one decimal place. As an example, a remote, secondary-cooling type product designed to capture waste heat with a temperature of 125°C, with an adjusted net efficiency of 6.9%, would be deemed to be a fail.

55.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

- Witnessed testing
- Independent testing
- Acceptance tests or Field Trials (must be witnessed by an independent body)
- Representative testing (see Method B – 55.4.1.2)

Further information regarding the first three routes can be found in Guidance Note 5 on the ETL product testing framework[^44].

55.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

55.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and the direct costs of installation. Clarity on the eligibility of direct costs is available from [HMRC](https://www.gov.uk/government/publications/energy-technology-list-etl-product-testing-framework).

56 Saturated Steam to Electricity Conversion Equipment

<table>
<thead>
<tr>
<th>Date published</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date first launched</td>
<td>2018</td>
</tr>
</tbody>
</table>

56.1 Scope

Saturated steam to electricity conversion equipment covers products that are specifically designed to generate electrical power from waste or excess wet or saturated steam by reducing the steam pressure. The categories of product covered under the ETL scheme include:

1. Screw expanders – as wet steam passes through the product, it turns a screw rotor, which is connected to a generator. Energy is removed from the steam as the pressure reduces, which is converted into rotational shaft energy and then electricity.

2. Non-condensing or back pressure turbines – equipment which features rotary turbines where high pressure input steam is allowed to expand as it passes through the turbine. This releases energy and lowers the pressure of the steam at the outlet, without increasing the temperature.

Products should be sold as packaged units that can be fitted to industrial processes. Products that incorporate any form of combustion equipment, including boost burners, shall be excluded.

56.2 Definitions

Saturated steam to electricity conversion equipment is specifically designed to convert waste or excess saturated steam, from a specific process, into electrical power by means of a closed thermodynamic power cycle that does not involve the internal combustion of fuel.

56.3 Requirements

56.3.1 Eligibility requirements

To be eligible, products shall:

- Utilise waste or excess steam source from a process (i.e. steam is not produced for the primary purpose of power generation).
- Use wet or saturated steam at the inlet (i.e. not superheated steam).
- Be designed to use water or steam as the thermal working fluid (i.e. product shall not use any thermal working fluid applicable to Organic Rankine Cycle).
- Not be part of a Good Quality CHP scheme, under CHPQA.
- Not exceed 700kWe power output at standard conditions.
- Be designed to provide three-phase electricity output.
- Not incorporate any form of combustion equipment, including boost burners.
- Be designed and include fittings for permanent installation.
- Be CE marked.

56.3.2 Performance requirements

Eligible products shall meet or exceed minimum overall efficiencies as set out in Table 56.1. Minimum efficiencies shall be achieved across the specified range of inlet and outlet pressures. Eligible products shall also achieve a net electrical efficiency of at least 4.5%.

Table 56.1 Overall efficiency thresholds for saturated steam to electricity conversion equipment

<table>
<thead>
<tr>
<th>Standard conditions for the measurement of overall efficiencies</th>
<th>Inlet Pressure Test Point (barA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>No.</td>
<td>Product Category</td>
</tr>
<tr>
<td>1.</td>
<td>Screw Expanders</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Non-condensing or back pressure turbines</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

56.4 Measurement and Calculations

56.4.1 Performance metrics

The Overall Efficiency is defined as:

\[
\text{Overall Efficiency} \, (\%) = \frac{Net \, Electrical \, Output \, (kWe)}{Actual \, Enthalpy \, Drop \, (kJ/kg) \times \, Inlet \, Mass \, Flow \, Rate \, (kg/s)}
\]

The Net Electrical Efficiency shall meet or exceed 4.5% and is defined as follows:

\[
\text{Net Electrical Efficiency} \, (\%) = \frac{Net \, Electrical \, Output \, (kWe)}{Inlet \, Enthalpy \, (kJ/kg) \times \, Inlet \, Mass \, Flow \, Rate \, (kg/s)}
\]

Net electrical output is defined as the electrical output minus any electrical input into the product. Actual enthalpy drop is defined as the change in the inlet enthalpy of the steam entering the product minus the outlet enthalpy of the steam. The inlet mass flow rate is the flowrate of the steam as it enters the product.

56.4.2 Measurement Standards and Test Requirements

The required minimum performance shall be determined using Methods A or B, as set in 56.4.2.1 and 56.4.2.2 below.
56.4.2.1 Method A - Direct measurement

Under this test method, product performance shall be demonstrated by calculating the overall efficiency from measurements of net electrical output, actual enthalpy drop and inlet mass flow rate. Overall efficiencies shall meet or exceed the threshold minimum efficiencies as set out in Table 56.1.

Products can either be tested in an accredited laboratory, or performance may be determined from measurements made during field trials or acceptance tests, provided that the measurements have been made by, or witnessed by, an accredited laboratory or contractor that is accredited to make those measurements. The product’s overall efficiency shall be calculated by an independent body that is competent to verify the measurement data.

The assessment shall be done in accordance with the procedures set out in:

- EN 306:1997 “Heat exchangers – Methods of measuring the parameters necessary for establishing the performance”; or
- BS EN 60953-2:1996 “Rules for steam turbine thermal acceptance tests, Part 2: Method B: Wide range of accuracy for various types and sizes of turbines”

The assessment of electrical output and electrical input shall be done in accordance with the relevant procedures set out in:

- BS ISO 8528-6:2005 “Reciprocating internal combustion engine driven alternating current generating sets – Test methods”.

56.4.2.2 Method B - Validated design calculations

Under this test method, product performance shall be demonstrated by calculating overall efficiency and net electrical efficiency from design calculations. The accuracy of these calculations shall be verified by an independent accredited laboratory.

The product shall not exceed the threshold electrical power output of 700kWe at standard conditions.

The test report shall include (or be accompanied by):

a) Manufacturer's design data for the product
b) Details of the methodology (including any standards used) and calculations verified by the independent accredited laboratory, used to determine product performance
c) A copy of the published performance data for the product
56.5 Verification for ETL Listing

Any of the following testing routes may be used to demonstrate the conformity of products against the requirements:

■ In-house testing – Self-tested and verified or cross-checked by an independent body
■ Witnessed testing
■ Independent testing
■ Acceptance Tests or Field Trials (must be witnessed by an independent body)

Further information regarding the routes can be found in Guidance Note 5 on the ETL product testing framework\(^{45}\).

56.6 Conformity testing

Products listed on the ETL may be subject to the scheme’s conformity testing programme in order to ensure listed models continue to meet the ETL requirements.

56.7 Scope of Claim

Expenditure on the provision of plant and machinery can include not only the actual costs of buying the equipment, but other direct costs such as the transport of the equipment to site, and the direct costs of installation. Clarity on the eligibility of direct costs is available from HMRC.

\(^{45}\) https://www.gov.uk/government/publications/energy-technology-list-etl-product-testing-framework