Guidelines for the Public Health Management of Pertussis in England

Produced by the Pertussis Guidelines Group
Public Health England exists to protect and improve the nation’s health and wellbeing, and reduce health inequalities. We do this through world-leading science, knowledge and intelligence, advocacy, partnerships and the delivery of specialist public health services. We are an executive agency of the Department of Health and Social Care, and a distinct delivery organisation with operational autonomy. We provide government, local government, the NHS, Parliament, industry and the public with evidence-based professional, scientific and delivery expertise and support.

Public Health England
Wellington House
133-155 Waterloo Road
London SE1 8UG
Tel: 020 7654 8000
www.gov.uk/phe
Twitter: @PHE_UK
Facebook: www.facebook.com/PublicHealthEngland

Prepared by: Colin Brown
For queries relating to this document, please contact: gayatri.amirthalingam@phe.gov.uk

© Crown copyright 2018
You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

Published May 2018 V2.0
PHE publications gateway number: 2018043

PHE supports the UN Sustainable Development Goals
Contents

About Public Health England 2
Contents 3
Introduction 5

Part 1: Background and rationale 6
1.1 Introduction 6
1.2 History of pertussis control in England and Wales 6
1.3 Surveillance of pertussis 8
1.4 Laboratory confirmation of clinically suspected cases 8
1.5 Rationale for public health action 12
1.6 Use of antibiotics in the treatment and prevention of pertussis 15
1.6.1 Treatment of suspected cases 16
1.6.2 Prophylaxis for close contacts 16
1.6.3 Use of antibiotics in pregnant women 17
1.7 Post-exposure vaccination 18
1.7.1 History of pertussis vaccination 18
1.7.2 Current pertussis vaccination recommendations 19
1.7.3 Use of vaccination in pregnant women 20

Part 2: Case definitions, management and investigation of suspected cases of pertussis and their close contacts 22
2.1 Case definition 22
2.2 Recommended details to be recorded when a case is reported 23
2.3 Risk assessment for the index case 24
2.4 Laboratory confirmation and public health action 24
2.4.1 Recommendations for testing 24
2.4.2 Swab types and sampling for culture and PCR 25
2.5 Case management 26
2.5.1 Exclusion 26
2.5.2 Antibiotic therapy 26
2.5.2 Immunisation 27
2.6 Contact management 29
2.6.1 Exclusion of contacts 30
2.6.2 Chemoprophylaxis of contacts 30
2.6.3 Immunisation of contacts 31
2.7 Special situations 31
2.7.1 Outbreaks 31
2.7.2 Healthcare settings 32
2.7.3 Nursery and school settings 32

Acknowledgements 34
Pertussis Guidelines Group 34
Abbreviations 35
References 36

Appendix 1: PHE Guidelines for the management of cases and close contacts of pertussis 41
Appendix 2: Reporting form for pertussis cases in healthcare workers and clusters in educational settings 42
Appendix 3: Enhanced surveillance form 44
Appendix 4: Oral fluid submission form 46
Appendix 5: Table of quality of evidence for recommendations 47
Appendix 6: Testing for Pertussis in Primary Care 48

<table>
<thead>
<tr>
<th>Version number</th>
<th>Change details</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01.4</td>
<td>Updated PHE Guidelines for the Public Health Management of Pertussis in England</td>
<td>October 2016</td>
</tr>
<tr>
<td>V02.0</td>
<td>PHE guidelines amended following extension of the availability of oral fluid testing.</td>
<td>May 2018</td>
</tr>
</tbody>
</table>
Introduction

These guidelines, which update the 2012 Health Protection Agency (HPA) Guidelines for the public health management of pertussis (1), are based on a recent review of all currently available scientific evidence and consultation with experts where required.

The key changes in the October 2016 guidance include:

- updated epidemiology of pertussis in England since the introduction of the pertussis immunisation programme for pregnant women in October 2012
- updated information on, and interpretation of, the available laboratory methods to confirm clinically suspected cases of pertussis at regional Public Health England (PHE) laboratories and the national reference laboratory at the Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), PHE Colindale
- revised definitions of the priority groups for public health action, in particular the definition of a vulnerable infant which takes into account the latest evidence of the effectiveness of the immunisation programme for pregnant women
- revised definition of the recommended exclusion period, which has been reduced from 5 days to 48 hours
- updated information on the available pertussis vaccines for post exposure management and outbreak control
- updated flow diagrams for management of cases and close contacts (Appendix 1).

In version 2.0 (May 2018) the guidelines were further amended following extension of the availability of oral fluid testing. The main changes were:

- from May 2018, oral fluid testing available for children aged 2 to <17 years
- use of days rather than weeks in guidance for appropriate pertussis testing in order to add clarity
- clarification that cases of parapertussis do not require public health action
- hexavalent (DTaP/IPV/Hib/HepB) vaccine added to the primary schedule for infants born from 1 August 2017
- the addition of appendix 6 which summarises testing for pertussis in Primary Care

The information presented by this guidance is intended to supplement, not substitute for, the expertise and judgement of healthcare professionals.

These guidelines are split into two sections:

Part 1: Background and rationale
Part 2: Investigation and management of suspected cases of pertussis and their close contacts
Part 1: Background and rationale

1.1 Introduction

Pertussis (whooping cough) is an acute bacterial infection caused by *Bordetella pertussis*, an exclusively human pathogen that can affect people of all ages. While adolescents and adults tend to have a prolonged cough illness but without other major symptoms, young unimmunised infants are the most vulnerable group with the highest rates of complications and death. Transmission of the organism occurs as a result of close direct contact with an infected person (2). It is highly contagious, with up to 90% of household contacts developing the disease (3).

The incubation period of pertussis is on average between 7-10 days (range 5-21 days). The usual clinical presentation is an initial catarrhal stage with a cough that becomes paroxysmal. Paroxysms of cough usually increase in frequency and severity as the illness progresses and persist for 2-6 weeks. These paroxysms may end in vomiting, cyanosis and/or a characteristic inspiratory whoop. Patients with pertussis are most infectious in the initial catarrhal stage and during the first 3 weeks after the onset of cough (4). Symptoms slowly improve in the convalescent phase, which generally lasts 2-6 weeks but can persist for months. Adults generally have a non-productive cough illness without fever (5). Serious complications include pneumonia, seizures and encephalitis. Vaccination provides the most effective strategy for preventing pertussis transmission in the population, although protection afforded by vaccination or from past infection is not lifelong.

1.2 History of pertussis control in England and Wales

Whole-cell pertussis vaccination was introduced into the UK routine childhood immunisation schedule in the 1950s. There was a fall in pertussis vaccine coverage in the 1970s linked to high-profile scares about the safety of the vaccine, followed by a period of recovery in the 1980s.

In order to optimise pertussis control, the current accelerated primary schedule consisting of three primary doses at 2, 3 and 4 months of age replaced the previous three, five and ten month schedule in 1990. In October 2001, an acellular pertussis booster was introduced at 3 years 4 months to 5 years of age, subsequently simplified to between 3 years 4 months and 3 years 6 months (6). Since October 2004, combination vaccines containing acellular pertussis have replaced those containing whole-cell pertussis in the routine primary schedule. In addition to being less reactogenic than those containing whole cell pertussis (7–10), these diphtheria/tetanus/acellular pertussis/inactivated polio/*Haemophilus influenzae* type b (DTaP/IPV/Hib) vaccines use an inactivated polio vaccine that removes the risk of vaccine-associated paralytic poliomyelitis associated with live oral polio vaccine (11). In
July 2016, two DTaP/IPV/Hib vaccines were available for the routine primary infant schedule in England, Pediacel® (a 5 component acellular pertussis containing vaccine) and Infanrix-IPV-Hib® (a 3 component acellular pertussis containing vaccine). From autumn 2017, all babies born on or after 1 August 2017 have been eligible for a hexavalent vaccine which additionally includes hepatitis B (HepB) for their primary immunisations. This vaccine, called Infanrix hexa® (DTaP/IPV/Hib/HepB), replaces the pentavalent infant vaccines Infanrix®-IPV-Hib and Pediacel®.

Since 1991, when the accelerated schedule at 2, 3 and 4 months of age was introduced, coverage in England of three primary doses of pertussis-containing vaccine has remained above 90% by second birthday, and since 2009/10, coverage has exceeded 95% (12). High vaccination coverage led to a marked reduction in notifications of pertussis in England and Wales, although the typical 3-4 yearly cyclical pattern continues to occur with 2008 and 2012 reported as the most recent peak years (13).

In England, the burden of disease in children under 1 year has fallen since the introduction of the accelerated schedule and concomitant period of sustained high coverage. However, the highest rates of disease occur in infants less than 3 months of age (laboratory confirmed pertussis: 77 per 100,000 population in 2015 [provisional data]) who account for the highest proportion of all hospitalised cases (14). Since 2006, rates of pertussis in older children and adolescents have also increased with a marked rise among 10 to 14 year olds. Since 2004 for those 15 years and over, initial increases before the rise associated with the 2012 outbreak (see below) were likely to be largely due to improved ascertainment in these older age groups, particularly with the introduction of serology testing in 2001 (14).

Following a national increase in the numbers of laboratory confirmed cases in adolescents and adults starting from the second quarter of 2011, a national outbreak was declared in April 2012. In response to a marked increase in infant disease and deaths, the Department of Health announced the introduction of a temporary immunisation programme for pregnant women, initially ideally between 28-32 weeks of pregnancy (but can be given up to 38 weeks) from 1 October 2012 (15). In April 2016, the recommendation for optimal time of vaccination of pregnant women was revised to around 20 weeks gestation (anytime from week 16 weeks following the detailed ultrasound scan routinely carried out at this stage of pregnancy) (16).

The primary purpose of this maternal programme is to boost the maternal pertussis antibodies that are passively transferred from mother to baby to provide passive protection to the baby from birth. PHE figures report that between January 2017 and December 2017 in England 72.3% (range 69.3% to 75.3%) of mothers had been immunised with a pertussis containing vaccine in pregnancy(17). Evaluation of the pertussis vaccination in pregnancy programme in England has demonstrated no safety concerns (18) and high vaccine effectiveness at >90% (19,20). With the continued raised circulation of pertussis and following a review of evidence of safety and
effectiveness, in June 2014 the Joint Committee on Vaccination and Immunisation (JCVI) advised the continuation of the temporary programme for a further five years (21). Further details on the temporary maternal programme are available on the PHE website (22).

1.3 Surveillance of pertussis

Pertussis remains a notifiable disease under the Health Protection Legislation (England) Guidance 2010. Suspected cases should be notified to the local health protection team (HPT). This should be done by telephone as soon as is practicable and in writing within 3 days.

From October 2010, all diagnostic laboratories have been required to report confirmed cases of *B. pertussis* infection to their local HPT (23). Written notification must be provided within 7 days of the agent being identified, or if the case is considered to be urgent, the HPT should be notified by phone promptly.

HPTs are strongly encouraged to report all pertussis related deaths to the Immunisation Service, National Infection Service (NIS) at PHE Colindale in a timely manner, via Gayatri Amirthalingam and pertussis@phe.gov.uk. In addition, HPTs are requested to notify the Immunisation Service, NIS of any suspected/confirmed cases in healthcare workers and clusters in educational or healthcare settings by submitting the reporting form to pertussis@phe.gov.uk (Appendix 2).

Staff at the Immunisation Service, NIS, PHE Colindale follow-up all cases of confirmed pertussis with the GP to obtain further epidemiological and clinical information as well as vaccination status (Appendix 3). The department is also responsible for reporting epidemiological data on pertussis annually to the European Centre for Disease Prevention and Control (ECDC) and to the World Health Organization (WHO) European region.

1.4 Laboratory confirmation of clinically suspected cases

Laboratory confirmation of clinically suspected cases can be made by culture and isolation of the causative organism, *B. pertussis*, detection of its DNA (from nasopharyngeal swabs (NPS)/pernasal swabs (PNS) or nasopharyngeal aspirates (NPA) or throat swabs) or antibody detection performed on serum or oral fluid, which usually only provide a late or retrospective diagnosis. The strengths and limitations of each of the laboratory methods are discussed below.
1.4.1 Culture

Laboratory confirmation is conventionally performed culture and isolation of \textit{B. pertussis} from NPA or NPS/PNS.

Where local laboratory facilities are available, culture should be attempted as isolation of the causative organism is definitive and characterisation of isolates is important for further surveillance of circulating strains. Pure cultures of any putative isolates of \textit{B. pertussis} should be referred to RVPBRU for confirmation, serotyping and further characterisation.

It is important to note that \textit{B. pertussis} is a delicate organism and therefore, processing delays may affect the likelihood of a positive culture. Sensitivity is also highly dependent on specimen quality and is affected by increasing patient age, vaccination status and length of illness. The likelihood of a positive culture also decreases with time after onset, from approximately 60% within 1 week of symptom onset to culture to 10% or less after 4 weeks (24,25). Cultures are unlikely to be positive in adolescents and adults with more than 3 weeks of coughing (26).

It is also more difficult to recover the organism in vaccinated compared with unvaccinated children (27). Given the limitations of culture methods, it is important to emphasise that a negative culture does not exclude pertussis.

1.4.2 Serology

Detection of anti-pertussis toxin (PT) IgG antibody levels in serum taken at least fourteen days after the onset of cough using an enzyme linked immunosorbent-assay (ELISA) can provide confirmatory evidence of recent infection. Serology may be helpful to confirm the diagnosis of pertussis in patients with a cough duration of 21 days or more, when culture and PCR are unlikely to yield positive results. The anti-PT IgG serology test cannot, however, be used to determine immunity as there are currently no agreed correlates of protection.

This charged-for service is offered by RVPBRU, which defines a serologically confirmed case as an anti-PT IgG concentration >70 International Units per millilitre (IU/ml) in the absence of recent vaccination (within the past year) (28). This serological assay is targeted towards older children and adults. Interpretation of anti-PT IgG levels among infants and younger children may be confounded by the presence of maternal antibodies or recent primary and booster vaccination, or show an atypical response. Data suggests that the confounding period following vaccination may be up to 10 months after the primary vaccination and up to 3 years or more after the preschool booster (29). Therefore, serological testing should only be undertaken where there is a minimum of 1 year from primary or booster dose of pertussis containing vaccine and results should be interpreted with caution.
1.4.3 Genome detection by real-time PCR

PCR has been shown to have improved sensitivity over culture and is a valuable confirmatory test, particularly in young infants. In the PCR assay two regions of the *B. pertussis* genome are targeted, the pertussis toxin S1 promoter region (*ptxA-pr*), and the insertion element IS481 which is present in multiple copies in *B. pertussis*, but is also present in some other *Bordetella* species ie *B. holmesii* and some, but not all, *B. bronchiseptica* (30,31). The recommended interpretation is as follows:

<table>
<thead>
<tr>
<th>IS481</th>
<th>ptxP</th>
<th>Final reported result</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>B. pertussis DNA detected by PCR</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>Bordetella spp. DNA detected by PCR*</td>
</tr>
</tbody>
</table>

A result of IS481 only is likely to be consistent with a low amount of *B. pertussis* in the specimen, however the cross-reactivity of the IS481 assay may represent the presence of other *Bordetella* species.

PCR is usually more sensitive than culture as the organism does not need to be viable, however, PCR is less likely to be positive in patients with symptom duration of 21 days or more. A PHE pilot comparing the use of nasopharyngeal swab (NPS) and throat swabs in primary care for pertussis PCR found both swab types to be acceptable. While NPS are preferable for PCR testing, throat swabs may be used if NPS are not available, especially in community settings.

Historically, from 2002, the real-time PCR service offered by RVPBRU was restricted to hospitalised cases less than 6 months of age; extended to less than 12 months of age in 2007 (30). Since 2014, regional PHE laboratories offer a pertussis PCR service for patients in all age groups in both hospital and primary care settings. From January 2015, the *B. pertussis* PCR for routine diagnostic use is no longer offered by RVPRU Colindale, London.

1.4.4 Oral fluid testing

In England and Wales, an enhanced surveillance test for the follow-up of notified cases of pertussis, which had not already been confirmed by other laboratory methods (PCR, culture or serology) was piloted from 2007 to September 2009. The purpose was to determine the number of notifications which could be confirmed by laboratory testing for pertussis toxin IgG antibodies in oral fluid (OF) samples (32). Based on the evaluation of the pilot which suggested a 32% increase in confirmation of cases through OF testing, particularly in children aged 5-9 years (33), a national OF testing service was rolled out by the Bordetella Reference Laboratory from January 2013. OF testing was previously offered to notified cases aged between 5 to <17 years, where duration of cough was >14 days. In order to improve the ability to ascertain
cases in preschool children and monitor the overall impact of the maternal programme, from May 2018, oral fluid testing for notified cases of pertussis has been extended to all children aged 2 to <17 years who have not received a pertussis-containing vaccine in the preceding year. The OF kits are available from HPTs and should be sent out following notification of a suspected case in the target age group. It should be noted that the OF assay is less sensitive than the serological assay. As with the serological assay, OF testing is also potentially confounded by recent vaccination (as described above) and therefore OF testing should only be undertaken a minimum of 1 year after the most recent dose of pertussis containing vaccine and any results should be interpreted accordingly. As very few pertussis cases arise within a year of the preschool booster being administered, extending the youngest age eligible for OF testing to two years of age should exclude few cases from OF testing. OF testing enables better case ascertainment and confirmation in an age group where serology testing is unlikely to be performed.

The OF test offers practical and clinical advantages to confirm suspected cases in pertussis outbreaks but HPTs are required to discuss this with RVPBRU before use in outbreak situations.

1.4.5 PHE Laboratory services for \textit{B. pertussis} diagnosis

Tests are available as follows from PHE laboratories:

1. **PCR**: For all age groups presenting <21 days after symptom onset, PCR for pertussis is available free of charge from PHE specialist microbiology services (SMS) laboratories in Birmingham, Bristol, Cambridge, Leeds, Manchester, Newcastle and London. PHE SMS laboratories should be contacted directly for details of services provided. \textit{B. pertussis} PCR positive specimens and/or DNA extracts from the PHE SMS laboratories should be forwarded to RVPBRU for further characterisation. PCR positive specimens are also requested from other NHS or commercial providers.

2. **Serology**: Suitable for older children and adults with more than 14 days history of cough and at least one year after the most recent dose of pertussis vaccine (including any dose administered in pregnancy). The serological service provided by RVPBRU is a charged for test.

3. **Oral fluid testing**: This service is for notified cases aged 2 to <17 years, with a history of more than 14 days of cough and at least one year after the most recent dose of pertussis vaccine. The test kit is available from PHE HPTs upon notification of suspected cases. Testing is performed by RVPBRU.

A summary of these options is detailed in Table 1.

For the Bordetella reference services provided by the RVPBRU (pertussis serology; submission of \textit{B. pertussis} isolates; submission of PCR positive respiratory specimens), the appropriate request form (currently PHE R3 Vaccine Preventable Bacteria Section)
must be used. The request forms for the OF test (Appendix 4) are supplied with the testing kit. For the investigation of suspected clusters, outbreaks, or incidents of pertussis infection, RVPBRU can be contacted for advice on the most appropriate testing methods.

Table 1: Summary of characteristics of microbiological tests for pertussis

<table>
<thead>
<tr>
<th>Test method</th>
<th>Patient criteria</th>
<th>Sample</th>
<th>Access</th>
<th>RVPBRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture</td>
<td>Suspected cases in all age groups with cough <21 days duration</td>
<td>NPS/NPA/PNS</td>
<td>NHS laboratories</td>
<td>Confirmed isolates to be sent to RVPBRU</td>
</tr>
<tr>
<td>PCR</td>
<td>Suspected cases in all age groups with cough <21 days cough duration</td>
<td>NPS/PNS preferred; throat swab acceptable for community patients</td>
<td>Regional PHE laboratories</td>
<td>Positive samples to be referred to RVPBRU</td>
</tr>
<tr>
<td>OF</td>
<td>Suspected cases aged 2 to <17 years with cough >14 days* duration</td>
<td>OF kit</td>
<td>OF kit sent to patient upon notification to PHE HPT</td>
<td>Samples tested and reported by RVPBRU</td>
</tr>
<tr>
<td>Serology</td>
<td>Suspected cases in older children/adults with cough >14 days* duration</td>
<td>Serum</td>
<td>Charged for service at RVPBRU</td>
<td>Samples tested and reported by RVPBRU</td>
</tr>
</tbody>
</table>

* Antibody levels confounded by recent vaccination. Recommended for those who have not received a dose of pertussis vaccine in the preceding year

1.5 Rationale for public health action

Outbreaks of pertussis can occur in households and in institutional settings. If outbreaks are detected at an early stage, prompt action including chemoprophylaxis and vaccination of close contacts can limit the spread (34,35) and may also be of benefit in reducing transmission to those who are most at risk of severe or complicated infection such as infants and young children. Therefore this is recommended in settings where there is a vulnerable person or an individual who may facilitate ongoing transmission to vulnerable groups. As such, a list of priority groups for public health action has been defined. This has been updated from earlier guidance and is based upon identifying groups who are either:
Group 1. At increased risk of severe or complicated pertussis (‘vulnerable’)
Group 2. At increased risk of transmitting infection to individuals in group 1 (see below)

Appendix 1 details the flow of appropriate public health actions.

Cases of parapertussis do not require public health action.

Group 1:

Groups at increased risk of severe or complicated pertussis (‘vulnerable’)

Young, unimmunised infants (particularly those prematurely born, under three months of age, or born to unimmunised mothers) (36) are at greatest risk of severe complications, hospitalisation and death following *B. pertussis* infection. Partially immunised infants are not fully protected, although disease severity may be reduced. In a study of 201 hospitalised infants (<6 months of age), the median duration of hospitalisation was significantly shorter (4 versus 11 days; p=0.03) for those who had received at least 1 dose of vaccine previously, when compared with those who were unimmunised (37).

Serious complications such as pneumonia, syncope and rib fracture can occur in older individuals but there is little evidence to suggest that any specific clinical groups are at increased risk of pertussis or its complications (38–40). Pregnant women are not considered at increased risk of severe disease compared with non-pregnant women. The relative immunosuppression of pregnant women to viral disease in the third trimester does not appear to be replicated with bacterial infections such as *B. pertussis* (41), although symptoms in late pregnancy may be more intense due to constraints on pulmonary function.

Current evidence suggests that immunocompromised individuals are not at higher risk of complications from pertussis (42). Those with underlying immunosuppression may be less likely to mount a sufficient immune response to vaccination (43) but there is little evidence of increased severity of illness (single case reports only) (44–46). A number of case studies have also described prolonged illness in patients with HIV infection (47–49) but pertussis infection among HIV infected individuals is again not thought to be particularly common (50). It might be expected that some underlying long-term conditions, such as asthma, congestive heart failure or chronic obstructive pulmonary disease, would exacerbate illness following pertussis infection, but there is little evidence to support this (51–53).

Given the lack of evidence to support an increased risk of severe pertussis infection among individuals with long-term disease or those who are immunosuppressed, the list of ‘vulnerable’ individuals at increased risk of severe or complicated disease has been updated.
In light of the high effectiveness of the maternal pertussis vaccine programme in preventing disease for those infants less than 2 months of age, the definition for those vulnerable infants has been amended as follows:

- unimmunised infants (born ≤32 weeks) less than 2 months of age regardless of maternal vaccine status OR
- unimmunised infants (born >32 weeks) less than 2 months of age whose mothers did not receive maternal pertussis vaccine after 16 weeks and at least 2 weeks before delivery OR
- infants aged 2 months or over who are unimmunised or partially immunised (less than three doses of DTaP/IPV/Hib/HepB up to 1 year of age) regardless of maternal vaccine status

Group 2:

Groups at increased risk of transmitting pertussis to those at risk of severe or complicated infection

a. Pregnant women

Parents and particularly mothers are found to be a frequent and important source of pertussis infection amongst young infants (54–58). In a US study of infants with reported pertussis, over 70% had been infected by their mother or another family member, the majority of whom were aged 20 years or more (59). A further study of infants admitted to a UK paediatric intensive care unit with respiratory complications, demonstrated that 20% had laboratory evidence of pertussis and half of these were infected from an adult family member (60). More recent data from the current national outbreak in England identified mothers as the source of infection in 38% of confirmed infant cases during 2012, where a source was known (unpublished data). Women in the later stages of pregnancy may be at particular risk of transmitting pertussis to newborn infants. Although pertussis in pregnant women is not thought to be more severe than in other adults, and no obstetric or foetal adverse outcomes have been described (50), mother to infant transmission at the time of, or shortly after, birth has been described (61,62) and is often associated with severe neonatal illness (63–65). In a Dutch study of 201 infants hospitalised with pertussis 46 (23%) of the index cases were mothers, of whom 14 (22%) had onset of symptoms during pregnancy (37).

Given the increased risk of ongoing transmission to newborn infants, women in the later stages of pregnancy are considered to be a priority group for public health action and post-exposure prophylaxis. Previous guidance recommended post exposure prophylaxis to any woman exposed in the last month of pregnancy. However, to allow for preterm delivery, the delay between exposure and outcome, and the protection conferred to the infant from maternal vaccination, this has been revised to be any
pregnant woman exposed >32 weeks gestation who has not received a maternal pertussis vaccine at least one week prior to exposure (66).

b. Healthcare workers

In addition to parents, other adults in close contact with vulnerable young infants including healthcare workers may be responsible for transmission (67). Serological studies suggest that infection in healthcare workers can be frequent, but often unrecognised (68). Outbreaks in healthcare settings may be prolonged due to waning immunity in adults, with multiple opportunities for secondary and tertiary transmission. As such, specific guidance for the public health management of pertussis incidents in healthcare settings is also available (69). Likely transmission from healthcare worker to patient and vice versa has frequently been described (70–73) although the greatest risk of nosocomial transmission is likely to be from a healthcare worker to a patient or other member of staff. A five year analysis of clusters of pertussis infection in France revealed that the most frequent reports of healthcare associated clusters were from paediatric, maternity and neonatal units (74).

Due to the risk of ongoing transmission to individuals vulnerable to severe or complicated pertussis, healthcare staff and any other individuals working with infants or pregnant women are therefore considered a priority group for public health action in these guidelines.

1.6 Use of antibiotics in the treatment and prevention of pertussis

UK guidelines published in 2002 recommend chemoprophylaxis with erythromycin in households with vulnerable contacts within 21 days from the onset of disease (34). Prior to the widespread use of newer macrolides, erythromycin was recommended as the drug of choice for the prophylaxis and treatment of pertussis, except for infants below one month. Erythromycin has a limited effect in improving the clinical course of the illness especially if administered beyond 2-3 weeks after the onset of symptoms. Treatment is therefore primarily aimed at eradicating B. pertussis from cases and preventing secondary transmission. However, studies investigating the use of antibiotics for preventing onward transmission have only demonstrated efficacy if treatment is given within 7-14 days of onset of illness (75–77). Erythromycin is poorly tolerated, causing gastrointestinal side-effects in up to 30% of patients (78,79) which may lead to non-compliance with therapy (34). A 1998 UK review of the use of erythromycin in the management of persons exposed to pertussis reported little effect in preventing secondary transmission, which was limited to close prolonged household type contact. Effects of erythromycin were modest, short term and associated with gastrointestinal side-effect (34).
As a result, the use of chemoprophylaxis in the UK has been limited to households with vulnerable contacts where the risk of severe complications and/or ongoing transmission is high (2). This compares with the US approach of recommending more widespread use of chemoprophylaxis to all household contacts and other close contacts regardless of age and immunisation status (80).

1.6.1 Treatment of suspected cases

In a 2007 Cochrane systematic review of antibiotics for pertussis, the authors concluded that although antibiotic therapy for cases was effective in eliminating *B. pertussis*, it did not alter the subsequent clinical course of the illness (87). Short-term antibiotics (azithromycin for 3-5 days; clarithromycin or erythromycin for 7 days) were as effective as long term (erythromycin for 10-14 days) in eradicating *B. pertussis* from the nasopharynx (RR 1.02, 95% CI 0.98, 1.05) but had fewer side-effects (RR 0.66, 95% CI 0.52, 0.83). Since publication of the Cochrane review, more recent studies have demonstrated that early treatment of cases (within 7-14 days of onset) can prevent onward transmission (75–77).

Newer macrolides such as azithromycin and clarithromycin are now the preferred choice for the treatment and prophylaxis of pertussis, with clarithromycin being the preferred antibiotic for use in neonates. Both antibiotics offer the advantages of improved absorption, a longer half-life, good in vitro activity against *B. pertussis* and a better side-effect profile (66). In addition, these agents involve less frequent dosing and shorter duration of therapy. A number of studies have established the safety and efficacy of newer macrolides for eradicating *B. pertussis* (81,82). The improved side-effect profile has also been shown to improve compliance with treatment (83). Prior to 1994, erythromycin resistance in *B. pertussis* was not observed, however since then resistance has been reported in the US and Taiwan and recently in France (84). From 2001 to 2009, UK *B. pertussis* isolates were tested against three agents, erythromycin, clarithromycin and azithromycin and all isolates (n=583) were found to be fully susceptible to all three agents tested (85).

For those patients where a macrolide is contra-indicated or is not tolerated, co-trimoxazole is effective in eradicating *B. pertussis* from the nasopharynx and can serve as an alternative agent, although it is unlicensed for chemoprophylaxis (86–88).

1.6.2 Prophylaxis for close contacts

The Cochrane review concluded that there was insufficient evidence to determine the benefit of prophylactic treatment of pertussis contacts (87). In the two trials included in the review, which investigated the effectiveness of chemoprophylaxis with erythromycin, clinical symptoms in the treatment group were slightly less severe (not statistically significant) than the placebo group (79,89). The number of contacts that became culture-positive were less in the erythromycin group (3/142, 2.1%) compared to
placebo (8/158, 5.1%) but this difference was not statistically significant (RR 0.42; 95% CI 0.11, 1.54) (79). Although there have been no specific studies of prevention of secondary transmission using these newer macrolides, their biological effect is considered to be similar to erythromycin.

In summary, post-exposure chemoprophylaxis for contacts over 6 months of age did not significantly improve clinical symptoms or the number of cases developing culture positive \textit{B. pertussis}, although timing of prophylaxis was thought to be a critical factor. Whilst early administration may improve the efficacy of chemoprophylaxis in preventing secondary transmission, this requires a clinical diagnosis, which is likely to be a challenge given that adolescents and adults who are often the source of infection, generally do not seek timely health advice.

1.6.3 Use of antibiotics in pregnant women

The primary purpose for treating cases with antibiotics is to eradicate \textit{B. pertussis} from the nasopharynx and prevent secondary transmission. Antibiotics are unlikely to have any clinical benefit unless administered in the early stages of the illness. Although there is no evidence of harm, avoidance of all drugs in the first trimester of pregnancy is generally advised (90). Erythromycin may be offered to treat women early in pregnancy but this is only likely to be of any clinical benefit if it can be administered in the early stages of the illness. For women diagnosed with pertussis in the last month of pregnancy, erythromycin is recommended to prevent transmission to her infant. Potential concerns regarding an association between maternal erythromycin therapy (in late pregnancy) and infant hypertrophic pyloric stenosis have largely been refuted (91–93). Therefore, while these guidelines recommend the use of erythromycin to treat cases in the last month of pregnancy, its use in earlier stages of pregnancy should be a clinical decision based on the likely clinical benefit for the woman and the presence of any vulnerable close contacts.

Antibiotics are also recommended for women exposed during pregnancy. In these circumstances, chemoprophylaxis is only recommended for women exposed after 32 weeks of pregnancy, who have not received a pertussis containing vaccine more than one week and less than five years prior (see section 1.7.1). Since the introduction of the temporary maternal vaccination programme in England, coverage has been consistently above 50%, peaking at over 60% in December 2014. Therefore many pregnant women exposed after 32 weeks are likely to have received the vaccine and therefore will not require chemoprophylaxis. Given that it takes at least one week to develop an antibody response from a pertussis booster dose in adults, pregnant contacts (32+ weeks gestation) who have received a pertussis containing vaccine within the past one week will still require chemoprophylaxis.
1.7 Post-exposure vaccination

1.7.1 History of pertussis vaccination

In the UK, use of pertussis-containing vaccines at the time of exposure has been recommended for unvaccinated or partially immunised contacts up to 10 years of age to provide long term protection (16). More recently, a number of studies have demonstrated the safety and immunogenicity of a combined tetanus/low dose diphtheria vaccine/low dose acellular pertussis (Tdap) vaccine in adolescents and adults (94–96). Two licensed low dose acellular pertussis containing vaccines (Repevax® and Boostrix®-IPV) are suitable for boosting in adolescents and adults in the UK. However, due to current supply shortages of Repevax® and Boostrix®-IPV vaccines, post exposure vaccination may not be feasible where large numbers of contacts are involved and it would be important to check that stocks are available before considering vaccination in these circumstances.

Although duration of immunity following initial acellular pertussis vaccination has not been clearly established, a recent review based on limited studies suggested duration of protection for 5-6 years (97). Persistence of immunity for 6-9 years after a booster administered in the second year of life was reported for children receiving a 3-component acellular pertussis vaccine (98).

In October 2001, a booster dose of an acellular pertussis-containing vaccine was introduced into the UK routine schedule for children aged between 3 years 4 months and 5 years. Children born before November 1996 would have been eligible for only 3 primary doses of (whole cell) pertussis-containing vaccine during infancy. In these individuals in particular, protection is likely to have waned (99). Therefore, in the event of exposure, contacts over 10 years (many of whom would only have been eligible to receive a 3-dose primary course), whether they be unvaccinated, partially or fully immunised, are likely to benefit from a dose of pertussis-containing vaccine, especially given their role in transmission.

To determine the potential value of vaccination as part of an outbreak control strategy in adults, the immediate immune response to vaccination in adult healthcare workers at the time of exposure has been investigated (35). Of the 106 healthcare staff immunised during a 2006 US outbreak, Tdap antibody responses were noticeable at one week following vaccination with more than 50% of subjects showing a response to filamentous haemagglutinin, pertactin and fimbriae and 46% showing a booster response to pertussis toxoid (35). By two weeks between 88% and 94% showed a booster response, depending on the specific pertussis antigen. Vaccine effectiveness could not be determined in this study because there was no unvaccinated control population (100). However, the data suggest early Tdap vaccination may be valuable in
preventing illness and transmission among adults in outbreak settings, reducing susceptibility of the population within 1-2 weeks.

One concern regarding the use of pertussis-containing vaccines in children over ten years is increased rates of severe local reactions, including Arthus-type reactions, if Tdap (Tetanus, diphtheria and pertussis) containing vaccine is administered too soon after a previous Td-IPV vaccine in older children and adults, either as part of the adolescent booster (which is offered to all 14 year olds in the UK), as a booster prior to travel or as part of the post exposure management for diphtheria or tetanus (101,102). In pre-licensure clinical trials of Tdap in adolescents, those who had received doses of a diphtheria or tetanus toxoid-containing vaccine during the preceding 5 or 10 years were excluded (103). However, a Canadian study, which investigated the safety of administering a dose of Tdap at intervals less than five years after paediatric DTaP or Td concluded that Tdap can be safely administered at intervals of more than 18 months since a previous Td vaccine (104). Two smaller Canadian post-licensure safety studies in adolescents have also shown acceptable safety when Tdap is administered at intervals less than five years (105,106). Based on these findings, Canada’s National Advisory Committee on Immunization (NACI) concluded that there is no evidence of increased risk of severe adverse events for Canadian adolescents after receiving diphtheria and tetanus toxoid-containing vaccines at intervals of less than five years (106). In 2006, the US Advisory Committee on Immunization Practices (ACIP) recommended that adolescents who had received Td booster vaccine should receive Tdap for added protection, preferably with a five year interval to reduce the risk of local and systemic reactions, although an interval of less than 5 years may be used (104).

More recently, the authors of a randomised, double-blind study in France, which assessed the safety of Tdap-IPV administered one month after vaccination with Td-IPV in 500 healthy adults, concluded that Tdap-IPV may be administered to adults as little as one month after Td-IPV without significantly increasing the frequency or severity of side-effects relative to considerably longer vaccination intervals (107).

1.7.2 Current pertussis vaccination recommendations

Based on the currently available evidence, these PHE guidelines recommend extending the offer of post-exposure vaccination with pertussis containing vaccine beyond unimmunised or partially immunised contacts below 10 years of age. In households where there is a clinically suspected or confirmed case of pertussis and a close contact in a priority group (as defined in section 2.6) pertussis containing vaccine should also be offered to all household contacts over 10 years of age, who have not received a dose of pertussis containing vaccine in the last five years and no Td-IPV vaccine in the preceding month (see section 2.6.3).

The duration of immunity following immunisation with pertussis-containing vaccines is not fully established (97,98) but the relatively high incidence of laboratory-confirmed
pertussis in the 10-14 year age group during re-emergence of the disease in 2012 suggests that protection from the booster lasts less than 10 years (108). As such, the period for which previous doses of pertussis containing vaccine should be considered has been revised from 10 years to 5 years. No upper limit of age for adult vaccination is specified in the summary of product characteristics (SPC) for Repevax® or Boostrix®-IPV (94) and the limit of 64 years for booster vaccination referred to in the previous pertussis guidance (1) has also been removed.

1.7.3 Use of vaccination in pregnant women

Post-exposure vaccination in pregnancy is important and specifically recommended in the following individuals who have not received a pertussis containing vaccine in the previous 5 years.:

- for women exposed to pertussis after 32 weeks, OR
- for women exposed to pertussis at any stage of pregnancy if they are at risk of transmitting to ‘vulnerable’ individuals in ‘Group 1’ eg a healthcare worker

It is important that all pregnant women from 16 weeks gestation onwards have been vaccinated or scheduled for vaccination in line with the maternal programme.

Although many pregnant women in the UK may not have been eligible for the pre-school booster, some may have received adult or adolescent booster doses overseas. In addition, the recent introduction of a temporary programme to offer pertussis containing vaccine to all pregnant women in the UK (109) means that women who have been vaccinated routinely after 16 weeks gestation in their current pregnancy will not require post-exposure vaccination if exposed later in that pregnancy. Post-exposure chemoprophylaxis in pregnant women is not recommended when pertussis vaccination has been administered at least one week earlier in that pregnancy.

In addition to the temporary programme to vaccinate pregnant women in the UK (15), updated recommendations by the ACIP in the US in 2012 (110) recommend that pregnant women receive a Tdap vaccine regardless of their previous vaccine history, in every pregnancy, ideally between 27 and 36 weeks. Ireland, Argentina, Israel and some parts of New Zealand and Australia also recommend the use of pertussis-containing vaccine during pregnancy (111–115).

Although pregnant women themselves are not thought to be at any greater risk of severe or complicated infection (80), the rationale for vaccination during pregnancy is to provide direct passive protection to vulnerable newborn infants through transplacental transfer of antibody. Studies of antibody response suggest that a maximum response to pertussis containing vaccines is not achieved until 14 days after vaccination, and as such, post-partum vaccination may not provide timely protection for newborn infants during the most vulnerable period (116).
All subclasses of IgG are transferred from mother to infant across the placenta, primarily during the third trimester of pregnancy (117). Data from the pre-vaccine era suggest that maternal antibodies may provide at least short-term protection, for newborn infants, the proportion of deaths being lower in children less than one month of age when compared with those aged 1-3 months (118). Transplacental transfer of pertussis IgG antibody has been demonstrated with concentrations in the newborn (119,120) or cord serum samples (121–123) reflecting those in the mother. Indeed, higher concentrations of pertussis antibodies have been demonstrated in cord blood for newborn infants of vaccinated when compared with unvaccinated mothers (41,123). These are said to have a half-life of approximately six weeks and so if boosted to sufficiently high levels are likely to provide time-limited, passive protection for newborn infants prior to administration of the first childhood pertussis-containing immunisation at age eight weeks (119,124). Evaluation of the maternal vaccination programme in England has demonstrated a more than 90% reduction in the risk of disease in infants up to 3 months of age when the mothers were vaccinated more than one week prior to delivery compared to infants of unvaccinated mothers, though the reduction between 2 to 3 months attributable to vaccination was unclear (19,20).

The main rationale for offering post exposure vaccination to pregnant women is different to the main rationale for offering vaccination routinely to all pregnant women. In the post-exposure situation the vaccine is given to reduce the risk of the infant (prior to their own routine pertussis immunisation) getting exposed to maternal pertussis infection, hence vaccination being given to those exposed late enough in pregnancy (>32 weeks). The current temporary programme to vaccinate all pregnant women (from week 16 of pregnancy) will be continued until at least 2019 when the programme will be reviewed by the JCVI.

If a woman has had confirmed or suspected whooping cough during pregnancy, she should still be offered the pertussis vaccine as not all women may make sufficiently high levels of antibodies following natural infection to ensure high levels can be passed across the placenta to the infant. As high levels of antibodies are made following vaccination, offering vaccine from 16 weeks of pregnancy should ensure that optimal antibody levels can be passed to her baby.

Appendix 5 details the strength of evidence for the various chemoprophylaxis and vaccination strategies, which are highlighted in Appendix 1.
Part 2: Case definitions, management and investigation of suspected cases of pertussis and their close contacts

2.1 Case definition

Suspected case of pertussis:
- any person in whom a clinician suspects pertussis infection or
- any person with an acute cough lasting for 14 days or more, without an apparent cause plus one or more of the following:
 - paroxysms of coughing
 - post-tussive vomiting
 - inspiratory whoop

AND
- absence of laboratory confirmation
- no epidemiological link to a laboratory confirmed case

Confirmed case of pertussis:
- Any person with signs and symptoms consistent with pertussis with:-
 - *B. pertussis* isolated from a respiratory sample (typically an NPA or NPS/PNS (or throat swab) or
 - anti-pertussis toxin IgG titre >70 IU/ml from a serum or >70 aU from an OF specimen (19) (in the absence of vaccination within the past year⁹) or
 - *B. pertussis* PCR positive in a respiratory clinical specimen

Epidemiologically linked case of pertussis:
- a suspected case with signs and symptoms consistent with pertussis, but no laboratory confirmation, who was in contact with a laboratory confirmed case of pertussis in the 21 days before the onset of symptoms

⁹ This is currently under review and will be modified as more data is available
2.2 Recommended details to be recorded when a case is reported

Caller details:

- name, address, designation and contact number

Demographic details:

- name, date of birth, sex, ethnicity, NHS number
- address including postcode
- contact details including phone number
- occupation (if applicable)
- place of work/education (if applicable)
- GP name and contact details (including address and phone number)

Clinical/epidemiological details:

- clinical information – onset dates, cough (including duration), presence of inspiratory whoop/apnoea/post-tussive vomiting, complications, treatment
- need for admission to hospital (including dates where relevant)
- pertussis immunisation history* (including dates)
- pregnancy status
- contact with confirmed or suspected case
- any close contacts within a priority group including:
 - healthcare workers in high-risk settings
 - unimmunised infants born after 32 weeks but less than 2 months of age whose mother did not receive pertussis vaccine after 16 weeks and at least 2 weeks prior to delivery
 - unimmunised infants born \(\leq 32 \) weeks and less than 2 months of age regardless of maternal vaccine status
 - unimmunised or partially immunised aged 2 months and over regardless of maternal vaccine status
 - pregnant women >32 weeks and have not received pertussis vaccine at least a week prior to exposure
- context: household, school, healthcare setting (including name)

* including pertussis vaccines administered to mother during pregnancy for cases born after 30 September 2012
2.3 Risk assessment for the index case

The positive predictive value (PPV) of a clinical diagnosis of pertussis is not very high, particularly among adolescents and adults who may present with atypical features. However, the PPV will increase during periods of heightened pertussis activity and will vary with age. Risk assessment should be based on a combination of clinical and epidemiological factors such as clinical presentation, vaccination history and epidemiological links. Management of the index case and any vulnerable contacts should proceed based on this risk assessment without waiting for the results of laboratory testing and prompt public health actions to prevent onward transmission should be considered.

2.4 Laboratory confirmation and public health action

Appropriate public health action should not wait for laboratory results as negative results cannot be used to exclude pertussis infection. In the event of an outbreak, the local HPT and the testing laboratory should be informed in order that testing can be appropriately prioritised.

Please contact RVPBRU on 0208 327 7327 and discuss with senior staff prior to sending serological specimens for priority testing. Please note, these services are not available outside of regular working hours at PHE Colindale, see user manual for details.

2.4.1 Recommendations for testing

Infants and children under the age of two years:

- **PCR** testing is recommended for infants and children with suspected pertussis in the early stages of the illness and <21 days post cough onset
- if local laboratory facilities permit, **culture** should also be performed. Please ask local laboratory for any putative B. pertussis isolates (pure cultures) to be sent to RVPBRU for confirmation
- in those who present late, **serology** can be undertaken (>14 days post cough onset) but is not usually recommended for infants under 12 months as the antibody response of infants may not be typical of that seen in older children and adults. Serology is not recommended in children who have received a pertussis containing vaccine in the previous year as the results may be confounded by recent vaccination and therefore is unlikely to be useful in children under the age of two years. Liaise with local NHS or regional PHE microbiologist, HPT staff, or RVPBRU for further advice.
Children aged from two years of age and adults:

- **PCR** is recommended in the early stages of illness (<21 days post cough onset) and within 48 hours of antibiotic therapy
- if local laboratory facilities permit, **culture** should also be performed. Please ask local laboratory for any putative *B. pertussis* isolates (pure cultures) to be sent to RVPB Ref for confirmation
- **for children aged 2 to <17 years**, **OF or serology** is recommended for notified cases where the onset of cough is greater than 14 days **AND** who have not been immunised against pertussis in the previous year
- **for children aged 17 or older and adults**, **serology** is recommended where the onset of cough is greater than 14 days **AND** who have not been immunised against pertussis in the previous year.

2.4.2 Swab types and sampling for culture and PCR

The posterior nasopharynx should be sampled using a NPS/PNS [typically flexible ultrafine twisted wire shaft with nylon/Rayon swab]. The Copan style swab is also acceptable; or an NPA.

For hospitalised cases **NPS/PNS/NPA are the recommended specimens.**
For primary care cases **if NPS/PNS are not available, throat swabs may be used (please check with regional laboratory for exact requirements for acceptable swab types).** A template for informing primary care about testing (See Appendix 6)
2.5 Case management

2.5.1 Exclusion

Children with suspected, epidemiologically linked or confirmed pertussis should be excluded from schools or nurseries for 48 hours following commencement of recommended antibiotic therapy or for 21 days from onset of symptoms (in those who are not treated with appropriate antibiotics) (125). Cases (suspected, epidemiologically linked or confirmed) amongst staff working in nursery and school setting should also be excluded for 48 hours following commencement of recommended antibiotic therapy (or for 21 days from onset of symptoms if not treated) if they report active uncontrollable coughing. For other cases, consideration should be given to reallocate their work for 48 hours from commencement of appropriate antibiotic therapy to reduce the risk of ongoing transmission if they report active coughing where potential exposure cannot be minimised by adherence to good respiratory hygiene.

If the case is a healthcare worker, or patient in a healthcare setting, see PHE Guidelines for management of pertussis incidents in healthcare settings (69) for further details. For cases working in other settings, contact with ‘vulnerable’ individuals (as defined in section 1.6) should be avoided for 48 hours from commencing appropriate/recommended antibiotic therapy or for 21 days from onset of symptoms (in those who are not treated).

2.5.2 Antibiotic therapy

The decision to offer antibiotics and the choice of treatment is a clinical decision. Ideally antibiotics should be administered as soon as possible after onset of illness in order to eradicate the organism and limit ongoing transmission. The effect of treatment on reducing symptoms, however, is limited or lacking especially when given late during the disease. For suspected, epidemiologically linked or confirmed cases, recommended antibiotic regimens are summarised in Table 2. Antibiotics are not recommended or thought to be beneficial after three weeks of symptoms.

Clarithromycin is the preferred agent for use in infants below 1 month of age.
Azithromycin may be used although there are limited data in this age group.
Azithromycin and clarithromycin are the preferred antibiotics in children over 1 year and adults given the adverse effects associated with erythromycin. For individuals in whom macrolides are contra-indicated or not tolerated, co-trimoxazole may be used although this is not licensed in infants below 6 weeks of age.

Erythromycin is the preferred antibiotic for treating women in the last month of pregnancy to prevent ongoing transmission to their infant. While erythromycin can be administered for treatment earlier in pregnancy, this needs to be a clinical decision based on the likely clinical benefit for the woman. Use of erythromycin before the last
month of pregnancy would only be of value for treatment if administered early in the course of the illness. Although any potential concern regarding the use of erythromycin in pregnancy has been largely refuted, avoidance of all drugs in the first trimester is generally advised.

2.5.2 Immunisation

It is important that unvaccinated and partially immunised cases up to 10 years of age complete their course of primary immunisation and booster vaccine once they have recovered from their acute illness, following the PHE guidance document 'Vaccination of individuals with uncertain or incomplete immunisation status'.

Pregnant women who have been diagnosed with pertussis (at any stage of pregnancy) and have not been vaccinated after 16 weeks of pregnancy, should be offered a dose of pertussis containing vaccine in line with national recommendations. Pregnant women diagnosed with pertussis before 16 weeks gestation should wait until they reach 16 weeks of pregnancy (and ideally following the detailed ultrasound scan) to have the vaccine.
Table 2: Recommended antibiotic treatment and post exposure prophylaxis by age groupb

<table>
<thead>
<tr>
<th>Age group</th>
<th>Clarithromycin*</th>
<th>Azithromycin*</th>
<th>Erythromycin</th>
<th>Co-trimoxazolec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonates (<1 month)</td>
<td>Preferred in neonates 7.5mg/kg twice a day for 7 days</td>
<td>10mg/kg once a day for 3 days</td>
<td>Not recommended due to association with hypertrophic pyloric stenosis</td>
<td>Not licensed for infants below 6 weeks</td>
</tr>
<tr>
<td>Infants (1 month – 12 months) & Children (>12 months)</td>
<td>1 month to 11 years: 7.5mg/kg twice a day for 7 days</td>
<td>1 to 6 months: 10mg/kg once a day for 3 days</td>
<td>1 to 23 months: 125mg every 6 hours for 7 days</td>
<td>6 weeks to 5 months: 120mg twice a day for 7 days</td>
</tr>
<tr>
<td></td>
<td>Under 8kgs 62.5mg twice a day for 7 days</td>
<td>12 to 19kg 125mg twice a day for 7 days</td>
<td>2 to 7 years: 250mg every 6 hours for 7 days</td>
<td>6 months to 5 years: 240mg twice a day for 7 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-11kg 62.5mg twice a day for 7 days</td>
<td>8 to 17 years: 500mg every 6 hours for 7 days</td>
<td>6 to 11 years: 480mg twice a day for 7 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-19kg 125mg twice a day for 7 days</td>
<td></td>
<td>12 to 17 years: 960mg twice a day for 7 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20-29kg 187.5mg twice a day for 7 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30-40kg 250mg twice a day for 7 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 to 17 years: 500mg twice a day for 7 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adults</td>
<td>500mg twice a day for 7 days</td>
<td>500mg once a day for 3 days</td>
<td>500mg every 6 hours for 7 daysd</td>
<td>960mg twice a day for 7 days</td>
</tr>
<tr>
<td>Pregnant womend</td>
<td>Not recommended</td>
<td>Not recommended</td>
<td>Preferred antibiotic - not known to be harmful</td>
<td>Contraindicated in pregnancy</td>
</tr>
</tbody>
</table>

* Doses can be doubled in severe infections
b Please note that the doses for treatment and prophylaxis are the same

b The above information has been taken from BNF 75 (March 2018) and BNF for Children 2017-18. The recommendation to use azithromycin for infants less than six months of age is based on advice from experts on the Pertussis Guidelines Group and CDC Guidelines. Azithromycin and co-trimoxazole doses are extrapolated from treatment of respiratory tract infections.
c Consider if macrolides contra-indicated or not tolerated.
d For pregnant contacts, a risk assessment would need to be done to looks at the risk and benefits of antibiotic therapy/prophylaxis. The aim of treating/prophylaxing women in pregnancy is to prevent transmission to the newborn infant, and should be considered in those who have not received a pertussis containing vaccine more than one week and less than five years prior. Where possible, pregnant women should begin treatment at least three days prior to delivery.
2.6 Contact management

Management of contacts should proceed for all clinically suspected, epidemiologically linked and laboratory confirmed cases.

Definition of close contacts
Family members or people living in the same household are considered close ‘household contacts’. Contacts in institutional settings with an overnight stay in the same room, e.g., boarding school dormitories, during the infectious period should also be considered close contacts. Other types of contact, e.g., contact at work or school, would generally not be considered close contact although each situation would need to be assessed on an individual basis where vulnerable contacts are involved. For the definition of a significant exposure in a healthcare setting, please refer to PHE Guidelines for the Public Health Management of Pertussis Incidents in Healthcare Settings (69).

Definition of contacts considered as priority groups for public health action
These include individuals who are themselves at increased risk of complications following pertussis (Group 1) as well as those at risk of transmitting the infection to others at risk of severe disease (Group 2).

Group 1

Individuals at increased risk of severe complications (‘vulnerable’):

- unimmunised infants (born after 32 weeks) less than 2 months of age whose mothers did not receive pertussis vaccine after 16 weeks of pregnancy and at least 2 weeks prior to delivery
- unimmunised infants (born ≤ 32 weeks) less than 2 months of age regardless of maternal vaccine status
- unimmunised and partially immunised infants (less than 3 doses of vaccine) aged 2 months and above regardless of maternal vaccine status

Contacts of parapertussis do not require public health action.
2.6 Exclusion of contacts

Exclusion for asymptomatic contacts is NOT required.

2.6.2 Chemoprophylaxis of contacts

Given the limited benefit of chemoprophylaxis, antibiotic prophylaxis should only be offered to close contacts when both of the following conditions apply:

- onset of disease in the index case is within the preceding 21 days AND
- there is a close contact in one of the priority groups as defined above

Where both these conditions are met, ALL close contacts of a confirmed case (regardless of age and previous immunisation history) should be offered chemoprophylaxis. The dose of antibiotics for use as chemoprophylaxis is the same as for the treatment of cases (see Table 1). Chemoprophylaxis is NOT required where there are no close contacts in the priority groups defined in section 2.6, or for healthy contacts. Pregnant women exposed after 32 weeks pregnancy (group 2a) should be offered erythromycin, if they have not received a pertussis containing vaccine within the past five years. For pregnant contacts who have received a pertussis containing vaccine within the past one week, chemoprophylaxis would still be indicated given the delay in antibody response. For individuals who fall into groups 2b, 2c or 2d who happen to be pregnant as well, chemoprophylaxis and vaccine is recommended at any stage of pregnancy. A further dose of pertussis containing vaccine will be required after 16 weeks of pregnancy. For pregnant women with suspected or confirmed pertussis, who are still infectious at delivery (ie within 21 days of onset), the newborn infant should be
offered chemoprophylaxis with clarithromycin or azithromycin regardless of the mother’s vaccination status.

2.6.3 Immunisation of contacts

Immunisation should be considered for those who have been offered chemoprophylaxis:

- unimmunised and partially immunised contacts up to the age of 10 years should complete the schedule with the appropriate vaccine
- a booster dose of pertussis containing vaccine is recommended for individuals aged 10 years or older (for pregnant women see Section 1.7.3), who have not received a dose of pertussis-containing vaccine in the last five years and no Td-IPV vaccine in the preceding month.

2.7 Special situations

2.7.1 Outbreaks

Where disease transmission is widespread, the benefit of wider chemoprophylaxis is likely to be of limited value. In the event of a hospital or community outbreak, an outbreak control team should be convened at the earliest opportunity and the local HPT informed. The priority in these circumstances is active case finding and therefore a less specific case definition should be used to ensure no cases are missed. Once laboratory confirmation of pertussis infection has been demonstrated in a cluster (eg school), it is not usually necessary to perform extensive additional testing.

An appropriate hospital incident control team is likely to include:

- director of infection prevention and control
- hospital microbiologist (if different)
- infection control nurse
- consultant/s from relevant clinical specialties
- occupational health physician/nurse
- Screening and Immunisation team representative
- HPT representative
- communications leads (from PHE and acute trust as necessary)

For community outbreaks, include the relevant individuals listed above plus:

- director of public health or their nominated representative
- GPs or GP representative
- NHS England or clinical commissioning group representative
- school nursing service representative for a school outbreak
Where appropriate, relevant lead public health microbiologist, field epidemiologist, RVPB RU and PHE Colindale Immunisation Department representatives should also be included.

Expert advice on outbreak investigation and management is available from Immunisation Services, NIS Colindale, PHE (020 8200 6868/4400) and on laboratory investigation from the Respiratory and Vaccine Preventable Bacteria Reference Unit (0208 327 7327).

2.7.2 Healthcare settings

Healthcare workers can be an important source of pertussis transmission to high-risk patients, particularly infants and pregnant women in the later stages of pregnancy (>32 weeks gestation).

Specific guidance for the public health management of pertussis incidents in healthcare settings (69) is available on the PHE website.

2.7.3 Nursery and school settings

Confirmed and suspected cases should be excluded from nursery or school for 48 hours from commencing appropriate/recommended antibiotic therapy or for 21 days from onset of symptoms (in those who are not treated). Asymptomatic contacts do NOT need to be excluded.

In certain circumstances, wider chemoprophylaxis and vaccination for a school/nursery outbreak may be considered by the outbreak control team and may be informed by a number of factors including:

- duration of the outbreak and thus the likely benefit of chemoprophylaxis and/or vaccination
- presence of a clearly defined group who can be identified for chemoprophylaxis and/or vaccination
- practicality and feasibility of widespread chemoprophylaxis and/or vaccination
- acceptability and compliance with antibiotics
- residential setting eg boarding school, children’s respite care homes. Once a single case of pertussis has arisen in a boarding school setting it is highly likely that further cases will arise because of the enhanced opportunities for transmission

Where there has been more than one case reported from an educational institution, other parents should be informed in order to raise awareness including emphasising the groups at risk of severe infection and to encourage timely reporting of further cases to
enhance case finding. Regardless of these control measures, this should be used as an opportunity to remind parents about routine immunisations and ensure children are up to date.
Acknowledgements

Written by Gayatri Amirthalingam and the Pertussis Guidelines Group.

Pertussis Guidelines Group

Gayatri Amirthalingam, consultant epidemiologist, Immunisation Service, NIS, PHE Colindale
Colin S Brown, locum consultant in infectious diseases & medical microbiology, Reference Microbiology Services, PHE Colindale and Royal Free Hospitals NHS Foundation Trust
Helen Campbell, senior clinical scientist, Immunisation Service, NIS, PHE Colindale
Meera Chand, consultant microbiologist, Reference Microbiology Services, PHE Colindale and Guy’s & St Thomas’ NHS Foundation Trust
Laura Craig, immunisation nurse specialist, Immunisation Service, NIS, PHE Colindale
Norman Fry, head and clinical scientist, Vaccine Preventable Bacteria Section; deputy head, Respiratory and Vaccine Preventable Vaccine Bacteria Reference Unit (RVPBRU), Reference Microbiology Services, PHE Colindale
Liz Miller, consultant epidemiologist, Immunisation Service, NIS, PHE Colindale
Mary Ramsay, consultant epidemiologist, head of Immunisation Service, NIS, PHE Colindale

The following individuals provided specialist advice:

Eliza Alexander, regional public health microbiologist, PHE NC London
Orla Geoghegan, specialist pharmacist (antimicrobials), St Mary’s Hospital, London
Paul Heath, professor in paediatric infectious diseases, honorary consultant, St. George’s Hospital, London
John Klein, consultant microbiologist, Guy’s & St Thomas’ NHS Foundation Trust
Albert Misfud, regional public health microbiologist, PHE SE London
Karthik Paranthaman, communicable disease control, PHE South East
Mary Slack, retired consultant microbiologist, RVPBRU, PHE Colindale
Mike Sharland, paediatric infectious diseases consultant, St. George’s Hospital, London

We would like to acknowledge the input of the HPT Vaccine Preventable Disease leads coordinated by Anita Bell, Consultant in Health Protection, PHE NENCL.
Abbreviations

ACIP Advisory Committee on Immunization Practices
aU Arbitrary Units
CDC Centres for Disease Control & Prevention
DTaP/IPV Diphtheria/tetanus/acellular pertussis/inactivated polio vaccine
GP General Practitioner
HPA Health Protection Agency
HPT Health Protection Team
ICT Incident Control Team
IgG Immunoglobulin G
IgM Immunoglobulin M
IU International Units
JCVI Joint Committee on Vaccination and Immunisation
NHS National Health Service
NIS National Infection Service
NPA Nasopharyngeal aspirate
NPS Nasopharyngeal swab
OF Oral fluid
PCR Polymerase chain reaction
PHE Public Health England
PNS Pernasal swab
PT Pertussis toxin
RVPBRU Respiratory and Vaccine Preventable Vaccine Bacteria Reference Unit
SMS Specialist Microbiology Services
SPC Summary of product characteristics
Td/IPV Tetanus/low dose diphtheria/inactivated polio vaccine
Tdap Tetanus, diphtheria and pertussis
UK United Kingdom
WHO World Health Organization
References

38. Cortese MM, Baughman AL, Brown K, Srivastava P. A “new age” in pertussis prevention new opport

Appendix 1: PHE Guidelines for the management of cases and close contacts of pertussis.
Appendix 2: Reporting form for pertussis cases in healthcare workers and clusters in educational settings

Notification of a pertussis case/s in healthcare workers and of pertussis clusters in healthcare, pre-school, school or other educational settings

Please complete this form for:

- any single case in a healthcare worker (HCW) who has direct patient contact and;
- All clusters i.e. two or more cases in a 21 day period in a healthcare, pre-school or educational setting.

Details for the first cluster case or a single HCW case

<table>
<thead>
<tr>
<th>Notification date</th>
<th>//_____</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPT</td>
<td></td>
</tr>
<tr>
<td>HPZone case reference number</td>
<td></td>
</tr>
<tr>
<td>First name</td>
<td></td>
</tr>
<tr>
<td>Surname</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>DOB</td>
<td></td>
</tr>
</tbody>
</table>

Setting type (eg. maternity ward, ICU, general practice, pre-school, university)

Name of setting (eg hospital name, practice name, school name)

<table>
<thead>
<tr>
<th>Was a sample sent for testing*</th>
<th>Yes / no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was contact tracing undertaken*</td>
<td>Yes / no</td>
</tr>
</tbody>
</table>

If yes – number of contacts

Number of contacts offered prophylaxis

Number of contacts offered vaccine

Were any symptomatic contacts identified*

If yes - number of symptomatic contacts

* Please delete as appropriate

Please complete this form as fully as possible and email to: pertussis@phe.gov.uk

Any queries please contact Sonia Ribeiro on 0208 327 6058 or sonia.ribeiro@phe.gov.uk

Version 1: January 2015
Details for HCW case only

<table>
<thead>
<tr>
<th>Type of HCW (eg practice nurse, midwife, surgeon)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Does this HCW have direct patient contact with infants and/or pregnant women?</td>
<td>Yes / no</td>
</tr>
</tbody>
</table>

Details of all subsequent clinically diagnosed cases with sample submitted for testing

<table>
<thead>
<tr>
<th>Contact/cluster case first name</th>
<th>Cluster case 2</th>
<th>Cluster case 3</th>
<th>Cluster case 4</th>
<th>Cluster case 5</th>
<th>Cluster case 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact/cluster case surname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact/cluster case DOB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample type*</td>
<td>Serum / NP swab / throat swab / oral fluid</td>
<td>Serum / NP swab / throat swab / oral fluid</td>
<td>Serum / NP swab / throat swab / oral fluid</td>
<td>Serum / NP swab / throat swab / oral fluid</td>
<td>Serum / NP swab / throat swab / oral fluid</td>
</tr>
<tr>
<td>HPZone contact reference number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nature of relationship (eg patient, pupil, household)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 3: Enhanced surveillance form

Public Health England Enhanced Pertussis Surveillance
Confidential follow-up of laboratory confirmed B. pertussis

NHS Number: Specimen date:

Please complete as far as possible, ticking appropriate boxes where applicable.

Patient details

<table>
<thead>
<tr>
<th>Patient name:</th>
<th>Sex:</th>
<th>Date of birth://____</th>
</tr>
</thead>
</table>

Ethnicity: White White British □ Mixed □ Asian/Asian British □ Black/Black British □ Other □

Clinical History of Patient

Date of onset of first symptom:__/__/____ Did they have the following complications?

<table>
<thead>
<tr>
<th>Apnoeic attacks:</th>
<th>Yes □ No □ NK □</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convulsions:</td>
<td>Yes □ No □ NK □</td>
</tr>
<tr>
<td>Death:</td>
<td>Yes □ No □ NK □</td>
</tr>
</tbody>
</table>

If yes, date of death:__/__/____

Please indicate if this patient is:

□ Diagnosed with chronic respiratory disease (incl. asthma)
□ Diagnosed with chronic heart disease
□ Diabetic
□ Immunocompromised
□ Pregnant
□ Diagnosed with another condition. Please specify__________________________

Was the patient admitted to hospital? Yes □ No □ NK □

Date admitted:__/__/____ Date discharged:__/__/____

If this patient was admitted please include a copy of the hospital discharge summary with this form.

VACCINATION HISTORY OF CASE. Please complete the table as fully as possible.

How many doses of pertussis vaccine did they receive before onset? 1 □ 2 □ 3 □ 4 □ NK □

<table>
<thead>
<tr>
<th>1st dose</th>
<th>2nd dose</th>
<th>3rd dose</th>
<th>4th dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccination date</td>
<td>Trade name</td>
<td>Manufacturer</td>
<td>Batch Number</td>
</tr>
</tbody>
</table>

MATERNAL INFORMATION (PLEASE COMPLETE FOR INFANTS BORN ON OR AFTER 01/10/2012)

Mother’s Ethnicity: White □ Mixed □ Asian/Asian British □ Black/Black British □ Other □ please specify:__________________________

Mother’s first language: English □ other □

Mother’s date of birth:__/__/____

Mother’s Parity (at time of & including this child’s birth)____________________ Weeks’ gestation at delivery of this child____________________

Was the mother vaccinated against pertussis whilst pregnant with this child?

Yes □ No □ NK □

If yes: Number of weeks gestation at vaccination:______ Date of vaccination:__/__/____

Trade name / manufacturer__________________________ Batch No:__________________________

Pregnancy 1

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Vaccinated with DTaP-IPV in pregnancy</th>
<th>Date of vaccination</th>
<th>Date of birth</th>
<th>Trade name / manufacturer</th>
<th>Batch number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live birth / no live birth</td>
<td>Y / N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pregnancy 2

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Vaccinated with DTaP-IPV in pregnancy</th>
<th>Date of vaccination</th>
<th>Date of birth</th>
<th>Trade name / manufacturer</th>
<th>Batch number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live birth / no live birth</td>
<td>Y / N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pregnancy 3

<table>
<thead>
<tr>
<th>Live birth / no live birth</th>
<th>Y / N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Did the patient have contact with a suspected or known case of pertussis in the month before onset?

<table>
<thead>
<tr>
<th>Any known contact with pertussis</th>
<th>Yes □ No □ NK □</th>
</tr>
</thead>
<tbody>
<tr>
<td>If yes, where was this contact</td>
<td>home □ playgroup □ school □ work □ hospital □ other □</td>
</tr>
<tr>
<td>How old was/were the contact/s</td>
<td><1 □ 1-4 □ 5-9 □ 10-14 □ 15-44 □ 45+ □</td>
</tr>
<tr>
<td>If in the home, who was the contact</td>
<td>mother □ father □ sibling □ other □</td>
</tr>
</tbody>
</table>

Does this patient work as a front line health care worker?

<table>
<thead>
<tr>
<th>Yes □ No □ NK □</th>
</tr>
</thead>
</table>

Completed by (please print):__________________________ Telephone No:__________________________

<table>
<thead>
<tr>
<th>Date: ____________________________</th>
<th>Position: ____________________________</th>
</tr>
</thead>
</table>
Appendix 4: Oral fluid submission form

B. pertussis (Whooping Cough) antibodies in Oral Fluid for notified cases aged 2 to <17 years of age

<table>
<thead>
<tr>
<th>SENDER'S INFORMATION</th>
<th>PATIENT / SOURCE INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP name, address including postcode & telephone (IN BLOCK CAPITALS).</td>
<td>Name of PHE Centre:</td>
</tr>
<tr>
<td>Name of CCDC:</td>
<td>Name of CCDC:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient's postcode</th>
<th>Sex</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of birth</td>
<td>Date of birth</td>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Patient's postcode</td>
<td>Patient's postcode</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE INFORMATION</th>
<th>CLINICAL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Sample taken</td>
<td>Date of onset of coughing:</td>
</tr>
<tr>
<td>Date Sample taken</td>
<td>Date of onset of coughing:</td>
</tr>
</tbody>
</table>

What was the date of the above patient's last whooping cough vaccine? ________

*also known as the 6in1, 6in1, DTP, DTaP, pertussis, Pediacel, Infanrix or Repenex

Instructions for taking and posting the swab:

N.B. Do not take sample until patient has been coughing for more than 14 days

1. In this package you should have the following items:
 - A pink/blue swab (A) inside a clear tube (B) (both in a sealed paper packet)
 - A self-adhesive clear plastic bag (C)
 - A cardboard box (D)
 - A request form (E) and
 - A pre-paid grey plastic envelope (F)

2. Open the paper packet, remove the cup from the clear tube (B) and pull out the pink/blue swab (A) using the handle. Rub the pink/blue sponge swab (A) all along the gumline, a bit like using a toothbrush, for one to two minutes.

3. Place the wet pink/blue swab (A) back inside the clear tube (B), and replace the cap. **Please write the patient’s name, date of birth and today’s date on the label area on the clear tube.**

4. Please now wash your hands.

5. Place the labelled tube (B) containing the pink/blue swab (A) inside the self-adhesive clear plastic bag (C). Push air out of clear plastic bag (C). Remove red strip from top fold down corner and stick down

6. Please complete the date the sample was taken and the clinical information in the request form (E) as shown on picture 5 of the instruction sheet How To Take An Oral Fluid Swab. Please, ensure that the patient’s name and the GP name and address are correct.

7. Place both the completed request form (E) and the clear plastic bag (with the swab) (C) back into the cardboard box (D), and then into the pre-paid grey plastic envelope (F).

8. Seal the pre-paid grey plastic envelope (F). Post as soon as you can in a Royal Mail post box – a stamp is not required.

9. The results should be available from your doctor within a few weeks.

Thank you

If you are unclear about these instructions you can phone 020 8327 7412 within office hours. IF THE PAPER PACKET HAS BEEN OPENED, DO NOT USE THE SWAB, BUT STOP AND RING THE NUMBER ABOVE.
Appendix 5: Table of quality of evidence for recommendations

Strongly recommended on the basis of more than two consistent, well-conceived, well executed studies with control groups or longitudinal measurements.

Recommended on the basis of more than one well-conceived, well executed, controlled, or time series study; or more than three studies with more limited execution.

Indicated on the basis of previous scientific observations and theoretic rationale, but case controlled or prospective studies do not exist.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children with suspected/epidemiologically linked/confirmed pertussis should be excluded from school/nursery for 48 hours from commencing antibiotic therapy.</td>
<td>Indicated</td>
</tr>
<tr>
<td>Suspected/epidemiologically linked/confirmed cases should be treated with antibiotics if within 21 days of onset of symptoms.</td>
<td>Strongly recommended</td>
</tr>
<tr>
<td>Unvaccinated and partially immunised cases and contacts up to 10 years of age should complete their course of primary immunisation and booster vaccine according to the recommended UK schedule.</td>
<td>Indicated</td>
</tr>
<tr>
<td>Chemoprophylaxis should be offered to all close contacts when onset of illness in index case is within the preceding 21 days AND there is a close contact in a priority group present.</td>
<td>Recommended</td>
</tr>
<tr>
<td>For those who are offered chemoprophylaxis, a booster dose of Pertussis containing vaccine is recommended for contacts aged 10 years or above.</td>
<td>Indicated</td>
</tr>
<tr>
<td>Post-exposure vaccination in pregnancy is important and specifically recommended in the following individuals who have not already received a pertussis containing vaccine more than one week and less than five years ago:</td>
<td>Indicated</td>
</tr>
<tr>
<td>- for women exposed to pertussis after 32 weeks, OR</td>
<td></td>
</tr>
<tr>
<td>- for women exposed to pertussis at any stage of pregnancy if they are at risk of transmitting to ‘vulnerable’ individuals in ‘Group 1’, eg a healthcare worker</td>
<td></td>
</tr>
<tr>
<td>It is important that all pregnant women from 16 weeks gestation onwards have been vaccinated or scheduled for vaccination in line with the maternal programme.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 6: Testing for Pertussis in Primary Care

Suspect pertussis in patients with a **cough illness lasting 14 days or more** without an apparent cause **plus one** of the following: (a) paroxysms of coughing; (b) inspiratory ‘whoop’; (c) post-tussive vomiting.

ALL CASES should be notified to your local HPT *(insert phone number/email address)*

When notifying, it is helpful to let the HPT know if the case has had contact with pregnant individuals or children aged under 1 year, including through occupational exposure (e.g. healthcare or nursery settings).

Recommended tests for pertussis testing vary according to the length of time since symptom onset.

- **Less than 2 weeks from symptom onset:** PCR and culture
- **Between 2 and 3 weeks from symptom onset:** PCR and culture **and either** oral fluid kit (if aged 2 to < 17 yrs) **or** serology
- **More than 3 weeks from symptom onset:** Either oral fluid kit (if aged 2 - <17 yrs) **or** serology

Sending a pertussis PCR test – FREE SERVICE

Insert local info:
Please submit samples to your local laboratory as per normal protocol. Samples will then be referred for Pertussis PCR detection your local Public Health Laboratory (PHL). Pertussis PCR testing is not chargeable, when performed at a PHL. Please label clearly for **Bordetella pertussis PCR testing**

PCR testing can be performed on the following specimens:
- **Throat swabs**
 Collected using a virology swab or dry swab in a sterile container
- **Pernasal swabs**
 Use a dry swab with a flexible wire shaft and a rayon / Dacron / nylon bud. A rigid shaft is not suitable. Push the swab along the floor of the nasal cavity, as far towards the posterior wall of the nasopharynx as possible.
- **Nasopharyngeal swabs**
 Use a dry or Copan style nasopharyngeal swab. See the following link for further guidance:
 [CDC video how to take a nasopharyngeal swab.](https://www.cdc.gov/vhf/pertussis/pertussis-how-to.html)
- **Nasopharyngeal aspirate**
 Provide not less than 400microlitres in a sterile container. See the following link for further guidance:
 [CDC video how to take a nasopharyngeal aspirate.](https://www.cdc.gov/vhf/pertussis/pertussis-how-to.html)

Sending a pertussis culture

A nasopharyngeal swab or pernasal swab may be taken for culture. The swab should be placed in a culture medium (ideally charcoal) and submitted to your local microbiology lab. Please clearly label as ‘for pertussis culture’.

Requesting an oral fluid kit – FREE SERVICE

For cases aged 2 years to less than 17 years, notify the case to your local HPT and they will post an oral fluid kit (OFK) directly to the case.

Note that oral fluid testing is not recommended if the case has been immunised against pertussis in the previous year as a positive result cannot be interpreted.

Sending a pertussis serology test

For cases not aged 2 years to less than 17 years, a charged-for serology test using serum can be arranged via your local laboratory and then sent on to the Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU). Form B3 can be used.

Note that serology is not recommended if the case has been immunised against pertussis in the previous year as the result cannot be interpreted.

Managing cases

If **three weeks or less from symptom onset**, treat with appropriate antibiotics once PCR and culture tests have been taken. Exclude the case from school/work until they have completed two days of the antibiotic course. Work with the local HPT to identify and manage vulnerable close contacts. There is no need to prescribe a second course of antibiotics **even if** symptoms are not resolving.

If **more than three weeks from symptom onset**, antibiotics are not required to manage pertussis **even if** the case still has symptoms. No exclusion of the case is necessary.

Further information on the testing for and management of pertussis is available at:

Or please call your local HPT for further advice *(insert relevant contact details)*