Polycyclic aromatic hydrocarbons (Benzo[a]pyrene)

Incident Management

Key Points

Fire
- non-combustible, practically insoluble in water
- can cause explosions when mixed with strong oxidisers, chlorate, perchlorates, permanganates and nitrates
- decomposes when heated and emits fumes and acrid smoke

Health
- benzo[a]pyrene and other PAHs are thought to be of low toxicity following acute exposure

Environment
- hazardous to the environment; inform the Environment Agency of substantial incidents where appropriate
Hazard Identification

Standard (UK) dangerous goods emergency action codes

Not given.
Classification, labelling and packaging (CLP)*

Benzo[a]pyrene

<table>
<thead>
<tr>
<th>Hazard class and category</th>
<th>Skin Sens. 1</th>
<th>Skin sensitizer, category 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muta. 1B</td>
<td>Germ cell mutagen, category 1B</td>
<td></td>
</tr>
<tr>
<td>Carc. 1B</td>
<td>Carcinogen, category 1B</td>
<td></td>
</tr>
<tr>
<td>Aquatic Acute 1</td>
<td>Chronic hazard to the aquatic environment, category 2</td>
<td></td>
</tr>
<tr>
<td>Aquatic Chronic 1</td>
<td>Acute hazards to the aquatic environment</td>
<td></td>
</tr>
<tr>
<td>Repr. 1B</td>
<td>Toxic to reproduction, category 1B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazard statement</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>H317</td>
<td>May cause an allergic skin reaction</td>
</tr>
<tr>
<td>H340</td>
<td>May cause genetic defects</td>
</tr>
<tr>
<td>H350</td>
<td>May cause cancer</td>
</tr>
<tr>
<td>H400</td>
<td>Very toxic to aquatic life</td>
</tr>
<tr>
<td>H410</td>
<td>Very toxic to aquatic life with long lasting effects</td>
</tr>
<tr>
<td>H360FD</td>
<td>May damage fertility. May damage the unborn child</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal words</th>
<th>Danger</th>
</tr>
</thead>
</table>

Classification and labelling according to the CLP (Chemical Safety and Packaging Law) directive.
Implemented in the EU on 20 January 2009

Reference

Specific concentration limits

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Hazard class and category</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>C ≥ 0.01 %</td>
<td>Carc. 1B</td>
<td>H350</td>
</tr>
</tbody>
</table>

Reference
Physicochemical Properties

Benzo(a)pyrene

<table>
<thead>
<tr>
<th>Property</th>
<th>Value/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS number</td>
<td>50-32-8</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>252</td>
</tr>
<tr>
<td>Formula</td>
<td>C\textsubscript{20}H\textsubscript{12}</td>
</tr>
<tr>
<td>Common synonyms</td>
<td>3,4-Benzpyrene; Benzo(d,e,f)chrysene, Note; polyaromatic hydrocarbons are now also commonly referred to as polycyclic hydrocarbons</td>
</tr>
<tr>
<td>State at room temperature</td>
<td>Pale-yellow crystals</td>
</tr>
<tr>
<td>Volatility</td>
<td>Vapour pressure negligible at 25°C</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.4 (water = 1)</td>
</tr>
<tr>
<td>Vapour density</td>
<td>8.7 (air = 1)</td>
</tr>
<tr>
<td>Flammability</td>
<td>Non-combustible</td>
</tr>
<tr>
<td>Lower explosive limit</td>
<td>-</td>
</tr>
<tr>
<td>Upper explosive limit</td>
<td>-</td>
</tr>
<tr>
<td>Water solubility</td>
<td>Practically insoluble in water</td>
</tr>
<tr>
<td></td>
<td>When mixed with strong oxidisers, chlorate, perchlorates, permanganates and nitrates can cause explosions. Incompatible with nitrogen dioxide and ozone</td>
</tr>
<tr>
<td>Reaction or degradation products</td>
<td>Decomposes when heated and emits fumes and acrid smoke</td>
</tr>
<tr>
<td>Odour</td>
<td>Faint aromatic odour</td>
</tr>
</tbody>
</table>

References

Reported Effect Levels from Authoritative Sources

No acute exposure effect levels could be found following a review of authoritative sources.
Published Emergency Response Guidelines

Emergency response planning guideline (ERPG) values

<table>
<thead>
<tr>
<th></th>
<th>Listed value (ppm)</th>
<th>Calculated value (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERPG-1*</td>
<td>Not given</td>
<td></td>
</tr>
<tr>
<td>ERPG-2†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERPG-3‡</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to 1 hour without experiencing other than mild transient adverse health effects or perceiving a clearly defined, objectionable odour

† Maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to 1 hour without experiencing or developing irreversible or other serious health effects or symptoms which could impair an individual’s ability to take protective action

‡ Maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to 1 hour without experiencing or developing life-threatening health effects

Acute exposure guideline levels (AEGLs)

<table>
<thead>
<tr>
<th></th>
<th>ppm 10 min</th>
<th>30 min</th>
<th>60 min</th>
<th>4 hours</th>
<th>8 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEGL-1*</td>
<td>Not given</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEGL-2†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEGL-3‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Level of the chemical in air at or above which the general population could experience notable discomfort

† Level of the chemical in air at or above which there may be irreversible or other serious long-lasting effects or impaired ability to escape

‡ Level of the chemical in air at or above which the general population could experience life-threatening health effects or death
Exposure Standards, Guidelines or Regulations

Occupational standards

<table>
<thead>
<tr>
<th></th>
<th>LTEL (8-hour reference period)</th>
<th>STEL (15-min reference period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>mg/m³</td>
<td>ppm</td>
</tr>
<tr>
<td>WEL</td>
<td>Not given</td>
<td></td>
</tr>
</tbody>
</table>

WEL – workplace exposure limit, LTEL – long-term exposure limit, STEL – short-term exposure limit

Reference

Public health guidelines

<table>
<thead>
<tr>
<th>Drinking water standard</th>
<th>WHO guideline value</th>
<th>Air quality guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benzo[a]pyrene: 0.01 µg/L*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polycyclic aromatic hydrocarbons: 0.1 µg/L†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzo[a]pyrene: 0.7 µg/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2, 0.12 and 0.012 ng/m³ for an excess lifetime cancer risk of 1:10,000, 1:100,000 and 1:1,000,000 respectively</td>
<td></td>
</tr>
</tbody>
</table>

Reference

* For substances that are considered to be carcinogenic, the guideline value is the concentration in drinking-water associated with an upper-bound excess lifetime cancer risk of 10⁻⁵ (one additional case of cancer per 100 000 of the population ingesting drinking-water containing the substance at the guideline value for 70 years). Concentrations associated with estimated upper-bound excess lifetime cancer risks of 10⁻⁴ and 10⁻⁶ can be calculated by multiplying and dividing, respectively, the guideline value by 10.

† The specified compounds are:
— benzo(b)fluoranthene;
— benzo(k)fluoranthene;
— benzo(ghi)perylene;
— indeno(1,2,3-cd)pyrene.

The parametric value applies to the sum of the concentrations of the individual compounds detected and quantified in the monitoring process.

The Water Supply (Water Quality) Regulations 2016
The Private Water Supplies (England) Regulations 2016 and The Private Water Supplies (Wales) Regulations 2017
Health Effects

Immediate signs or symptoms of acute exposure

Benzo[a]pyrene and other PAHs are thought to be of low toxicity following acute exposure.
Decontamination at the Scene

Summary

The approach used for decontamination at the scene will depend upon the incident, location of the casualties and the chemicals involved. Therefore, a risk assessment should be conducted to decide on the most appropriate method of decontamination.

Following disrobe, improvised dry decontamination should be considered for an incident involving PAH’s, unless casualties are demonstrating signs or symptoms of exposure to caustic or corrosive substances.

People who are processed through improvised decontamination should subsequently be moved to a safe location, triaged and subject to health and scientific advice. Based on the outcome of the assessment, they may require further decontamination.

Emergency services and public health professionals can obtain further advice from Public Health England (Centre for Radiation, Chemical and Environmental Hazards) using the 24-hour chemical hotline number: 0344 892 0555.

Disrobe

The disrobe process is highly effective at reducing exposure to HAZMAT/CBRN material when performed within 15 minutes of exposure.

Therefore, disrobe must be considered the primary action following evacuation from a contaminated area.

Where possible, disrobe at the scene should be conducted by the casualty themselves and should be systematic to avoid transferring any contamination from clothing to the skin. Consideration should be given to ensuring the welfare and dignity of casualties as far as possible.

Improvised decontamination

Improvised decontamination is an immediate method of decontamination prior to the use of specialised resources. This should be performed on all contaminated casualties, unless medical advice is received to the contrary. Improvised dry decontamination should be considered for an incident involving chemicals unless the agent appears to be corrosive or caustic.

Improvised dry decontamination

- any available dry absorbent material can be used such as kitchen towel, paper tissues (eg blue roll) and clean cloth
- exposed skin surfaces should be blotted and rubbed, starting with the face, head and neck and moving down and away from the body
rubbing and blotting should not be too aggressive, or it could drive contamination further into the skin

all waste material arising from decontamination should be left in situ, and ideally bagged, for disposal at a later stage

Improvised wet decontamination

- water should only be used for decontamination where casualty signs and symptoms are consistent with exposure to caustic or corrosive substances such as acids or alkalis
- wet decontamination may be performed using any available source of water such as taps, showers, fixed installation hose-reels and sprinklers
- when using water, it is important to try and limit the duration of decontamination to between 45 and 90 seconds and, ideally, to use a washing aid such as cloth or sponge
- improvised decontamination should not involve overly aggressive methods to remove contamination as this could drive the contamination further into the skin
- where appropriate, seek professional advice on how to dispose of contaminated water and prevent run-off going into the water system

Additional notes

- following improvised decontamination, remain cautious and observe for signs and symptoms in the decontaminated person and in unprotected staff
- if water is used to decontaminate casualties this may be contaminated, and therefore hazardous, and a potential source of further contamination spread
- all materials (paper tissues etc) used in this process may also be contaminated and, where possible, should not be used on new casualties
- the risk from hypothermia should be considered when disrobe and any form of wet decontamination is carried out
- people who are contaminated should not eat, drink or smoke before or during the decontamination process and should avoid touching their face
- consideration should be given to ensuring the welfare and dignity of casualties as far as possible. Immediately after decontamination the opportunity should be provided to dry and dress in clean robes/clothes

Interim wet decontamination

Interim decontamination is the use of standard fire and rescue service (FRS) equipment to provide a planned and structured decontamination process prior to the availability of purpose-designed decontamination equipment.
Decontamination at the scene references

Clinical Decontamination and First Aid

Clinical decontamination is the process where trained healthcare professionals using purpose-designed decontamination equipment treat contaminated people individually.

Detailed information on clinical management can be found on TOXBASE – www.toxbase.org.

Important note

- once body surface contaminants have been removed or if your patient was exposed by ingestion or inhalation the risk that secondary care givers may become contaminated is very low. Secondary carers should wear standard hospital PPE as a precaution against secondary contamination from vomit and body fluids
- if the patient has not been decontaminated following surface contamination, secondary carers must wear appropriate NHS PPE for chemical exposure to avoid contaminating themselves. The area should be well ventilated

Clinical decontamination following surface contamination

- decontamination is only required if there is surface contamination
- carry out decontamination after resuscitation
- this should be performed in a well-ventilated area preferably with its own ventilation system
- contaminated clothing should be removed, double-bagged, sealed and stored safely
- decontaminate open wounds first and avoid contamination of unexposed skin
- any particulate matter adherent to the skin should be removed and the patient washed with soap and water under low pressure for at least 10 – 15 minutes
- pay particular attention to mucous membranes, moist areas such as skin folds, fingernails and ears

Dermal exposure

- decontaminate (as above) the patient following surface contamination
- supportive measures as indicated by the patient’s clinical condition

Ocular exposure

- if symptomatic immediately irrigate the affected eye thoroughly
- for patients at home, use lukewarm tap water, trickled into the eye or in a small cup held over the eye socket
- in hospital – immediately irrigate eye thoroughly with 1000 mL 0.9% saline or equivalent crystalloid (for example via an infusion bag with a giving set) for minimum of 10 - 15
minutes. Amphoteric solutions are available and may be used. A Morgan Lens may be used if anaesthetic has been given

- refer for ophthalmological assessment if there is doubt regarding the management of corneal damage
- other supportive measures as indicated by the patient’s clinical condition

Inhalation

- other supportive measures as indicated by the patient’s clinical condition

Ingestion

- other supportive measures as indicated by the patient’s clinical condition

Health effects and decontamination references

TOXBASE Skin decontamination - irritants, 05/2012

TOXBASE Eye irritants – features and management, 01/2018

TOXBASE Personal protective equipment and decontamination at the scene or in hospital

This information contained in this document from the PHE Centre for Radiation, Chemical and Environmental Hazards is correct at the time of its publication.

First published: August 2018

For queries relating to this document, please contact: chemcompendium@phe.gov.uk

For all other enquiries, please contact: phe.enquiries@phe.gov.uk
