Effects of Climate Change on Corals Relevant to the Pacific Islands

Leo X.C. Dutra, CSIRO, Australia, and The University of the South Pacific (USP), Fiji; Michael D.E. Haywood, CSIRO, Australia; Shubha Shalini Singh, USP, Fiji; Susanna Piovano, USP, Fiji; Marta Ferreira, USP, Fiji, University of Porto, Portugal; Johanna E. Johnson, Co2O Pacific, Cairns and Vanuatu, James Cook University, Australia; Joeli Veitayaki, USP, Fiji; Stuart Kininmonth, USP, Fiji, University of Oslo, Norway; Cherrie W. Morris, USP, Fiji.

EXECUTIVE SUMMARY

In the Pacific island region, anthropogenic-induced ocean warming is impacting coral reefs through thermal coral bleaching (Adjeroud et al., 2009; Cumming et al., 2000; Davies et al., 1997; Kleypas et al., 2015; Lovell et al., 2004; Mangubhai, 2016; Obura and Mangubhai, 2011; Rotmann, 2001) and by reducing coral calcification rates (high confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014) and by reducing coral calcification rates (high confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014). Ocean acidification is also affecting calcification rates (low confidence) (De'ath et al., 2009; Nurse et al., 2014).
systems of resource governance in the Pacific are often associated with healthy reefs (Hoffmann, 2002) and coastal communities depend heavily on coral reefs for food, income and livelihoods. Therefore, management and adaptation options must consider and build on the regional diversity of governance systems to enable community-based initiatives and cross-sectoral cooperation, taking into account traditional knowledge that can inform sustainable solutions to problems (Aswani et al., 2017; Morrison, 1999; Remling and Veitayaki, 2016; Veitayaki, 2014) and allow the involvement of a broader section of the community. Such an inclusive approach will offer enhanced opportunities to develop and implement measures to reduce non-climate pressures and develop early warning systems, to identify potential refuges for coral reef communities (Karnauskas and Cohen, 2012) and also to test coral farming, assisted colonisation and shading or other climate mitigation techniques (Barros and Field, 2014; Coelho et al., 2017).

Introduction

Coral reefs are the dominant coastal habitat in the tropical Pacific, representing more than 25% of reefs globally – nearly 66,000 km² (Wilkinson, 2004; Wilkinson, 2008). Many Pacific Islands and Territories (PICTs), including French Polynesia, Kiribati and Palau have at least double the reef area than land area (SPC data). Corals are the fundamental reef ecosystem engineers because they construct the framework that supports over 600 species of calcifying corals, 4,000 species of fish, as well as a high diversity of invertebrates, macroalgae and marine megafauna totalling approximately 830,000 species of multicellular animals and plants worldwide, or 32 percent of all named marine species (Allen, 2008; Fisher et al., 2015; Wilkinson, 2008). Coral reefs form a mosaic of habitats along with mangroves and seagrasses, which sustains a diversity of organisms, greater fish productivity, a variety of industries (e.g. fisheries and tourism), also more effectively protecting the coastline against erosion (Veitayaki et al., 2017) when these habitats are adequately inter-connected (Guannel et al., 2016; Moberg and Folke, 1999; Zann, 1994).

The distribution of corals is limited by physical and biological factors. Physical factors include water temperature, pH, light, turbidity/sedimentation, salinity, and water depth (Aronson and Precht, 2016), while biological factors include predation (e.g. the Crown-of-Thorns-Starfish (COTS) and Drupella spp.; both well-known coralivores (Berthe et al., 2016; Bruckner et al., 2017), intra and inter-specific competition (e.g. competition between corals and algae, and between different coral species for space), reproductive and regenerative capacity, and the ability to cope with pollutants, nutrients and sediments (Guinotte et al., 2003; Kleypas et al., 1999; Rogers, 1990). This means that alterations to any of these factors can seriously threaten the existence of corals.

Growing human populations in most PICTs, along with changes in lifestyle put enormous pressure on coral reefs and connected habitats. In addition to an increasing demand for food, people also want increased standards of living and, to do so, they build infrastructure such as piped water and sewerage facilities, but also better housing, roads and a range of foodstuffs and consumer goods. Despite the beneficial effects on corals of sewerage systems and better housing, increased land clearing and alteration of riverine and littoral vegetation for construction, waste disposal, and mining, negatively affect water quality, coral reefs and connected habitats, leading to the decline of corals and associated organisms (Morrison, 1999; Remling and Veitayaki, 2016; Veitayaki and Holland, *in press*; Zann, 1994).

Since the 1970s there has been a growing body of evidence showing the deterioration of coral populations around the world and in the Pacific Ocean due to both climatic and non-climatic drivers. Widespread temperature-related bleaching events have been recorded world-wide and in the Pacific Ocean (Hughes et al., 2017b; Lough, 2012; Mangubhai, 2016; Obura and Mangubhai, 2011). Cyclones are becoming stronger (low confidence (Elsnner et al., 2008)), oceans are becoming more acidified (medium confidence) (Barros and Field, 2014; Bates et al., 2014; Dore et al., 2009; IPCC, 2014; Johnson et al., 2016b), and sea level is gradually rising (Dean and Houston, 2013; Jevrejeva et al., 2009). These events cause negative effects on coral reefs and adjacent ecosystems upon which corals depend (e.g. seagrasses and mangroves) (Albert et al., 2017; Guannel et al., 2016; Hassenruck et al., 2015), and are expected to increase in the future due to increased carbon dioxide (CO₂) emissions and consequent global warming (high confidence) (Gattuso et al., 2015).
The most important non-climatic drivers affecting Pacific corals include overfishing (Hughes et al., 2007; Jackson et al., 2001; Rasher et al., 2012), human-induced pollution, shore modification (Bell et al., 2011), nutrientification (Wiedenmann et al., 2013), increase in sedimentation and turbidity (Dadhich and Nadaoka, 2012; De’ath and Fabricius, 2010; Haywood et al., 2016; Sheridan et al., 2014), and increase in the incidence of COTS outbreaks (Berthe et al., 2016; Hughes et al., 2017a; Uthicke et al., 2015). Other impacts include recreational and tourism-related impacts, such as the construction of resorts, water catchment dams, roads, and even man-made islands, along with trampling, tourism handling, and anchor damage, which have brought substantial ecological shifts in coral communities over time, but also unprecedented social, economic and cultural changes within Pacific communities (Ayala, 2005; Engelhardt, 2005:176; Kininmonth et al., 2014; Morris et al., 2008; Morris, 2009; Movono et al., 2018; Sykes and Morris, 2009). Climatic drivers can work synergistically with other non-climate pressures such as nutrient enrichment to further impact corals (Chazottes et al., 2017; Wiedenmann et al., 2013; Wooldridge et al., 2017). Coral growth depends on the intrinsic immune response and repair mechanisms in reef-building corals (D’Angelo et al., 2012). Increase in temperature and nutrient enrichment, along with ocean acidification can affect corals’ immune response, thus increasing the susceptibility of corals to diseases and affecting coral survivability and growth (Aronson and Precht, 2016; Hassenruck et al., 2015; Maynard et al., 2015a). Moreover, synergistic effects between ocean acidification (low aragonite saturation) and nutrient loading are far more effective at driving coral macrobioerosion than ocean acidification alone (DeCarlo et al., 2015). This has important consequences for corals and reefs because it diminishes coral growth rates, thus compromising reef structures.

Coral responses to climatic and non-climatic pressures are similar and include bleaching (expulsion of zooxanthellae that live in their tissue (Aronson and Precht, 2016; Chazottes et al., 2017)), reproductive and growth impairments (Albright and Mason, 2013; Fabricius et al., 2017; Sheridan et al., 2014), and coral-algal phase shifts (from coral-dominated to algaedominated reefs) (Done, 1992; Hughes et al., 2007). The end result of sustained stresses on corals is a simplification of coral community structure and reductions in live coral cover (Bruno and Selig, 2007) and species coral trait diversity (Darling et al., 2013), which have resulted in habitat losses (Aronson and Precht, 2016; Brown et al., 2017a). The rate and extent of coral loss in the Pacific is greater than expected (Bruno and Selig, 2007) and have caused negative social-ecological consequences, such as decreased fish catches and coastal protection, and biodiversity loss (Adam et al., 2014). These consequences are very relevant to PICT due to the reliance of the majority of their population on coastal and marine resources for cultural reasons, income and food (Morrison, 1999).

It is clear from the literature that the widespread and deleterious effects of non-climate drivers on corals, climate change is currently the strongest driver affecting coral dynamics (Aronson and Precht, 2016) exacerbating non-climate pressures, which together are causing unprecedented changes in coral communities and connected habitats (high confidence) (Brown et al., 2017a; Hoffmann, 2002; Johnson, 2017; Maata and Singh, 2008; Maynard et al., 2015b; Mayor, 1924; Morrison, 1999; Singh et al., 2009; Zann, 1994).

Scope and aims of the review
This review will discuss impacts of climate change on corals according to standardised metrics. We use the Representative Concentration Pathways (RCP) scenarios, which provide socio-economic, technological, land-use, emissions of greenhouse gases, and environmental descriptions of possible futures. RCP are used as input for climate model runs and as a basis for assessment of possible climate impacts and mitigation options (van Vuuren et al., 2011).

This chapter is limited in scope to a desktop literature review on the impacts of climate change on corals relevant to the Pacific Island Countries and Territories (PICTs). The review also deals with non-climate drivers because of the synergistic effects they have with climate drivers affecting Pacific corals. The geographical focus of the review centres on Fiji, Kiribati, Nauru, Papua New Guinea, Samoa, Solomon Islands, Tonga, Tuvalu, and Vanuatu. The review is structured as follows: firstly, we provide a general overview of observed changes on corals associated with non-climate drivers; secondly, we present observed changes on coral populations related to climate drivers, followed by the observed synergistic effects of non-climate and climate drivers on corals; thirdly, we offer the qualitative level of confidence in the science for current and future changes on corals; and, lastly we offer pressing knowledge gaps, risks and socio-economic impacts and an overview on adaptation options relevant to the Pacific islands.
What is Already Happening?

1. Observed changes: non-climate pressures on corals

Pollution, overfishing and direct physical impacts have been degrading coastal coral reefs in the Pacific for centuries (Hughes et al., 2017a). Globally, over eighty-percent of marine pollution originates from land-based wastewater, sediment and nutrients delivered via waterways (UNEP 2008). In PICTs, most of the pollutants relevant to corals are associated with sewage, domestic and industrial waste, marine debris, ship-based pollution (e.g. oil, antifouling paints, dumped or abandoned waste from fishing vessels) (Richardson et al., 2017), agricultural fertilizers, sediment, pesticides and organochlorine compounds, trace metals, and a range of emerging pollutants such as pharmaceuticals, personal care products, and microplastics (Lovell et al., 2004; Morrison, 1999; Nuttall and Veitayaki, 2015; South et al., 2004). These pollutants are known to have adverse effects on corals, even when released at low levels (Haynes and Johnson, 2000; Pinto et al., 2010; United Nations Environment Programme, 2017). Below we present a summary of the effects of each of these on corals.

Physical impacts: trampling, anchor damage, aquarium trade, and dynamite impacts

Tourism-related and fishing impacts, such as trampling and coral breakage due to reef gleaning and coral manipulation by SCUBA and skin divers and fishers are known to have decreased live coral cover and growth, which causes also a reduction in fish abundance (Rodgers and Cox, 2003; Sulu, 2004; Tilmant, 1987). The problem is aggravated when large numbers of tourists are taken to the reefs during snorkelling activities, such as the case in Fiji (e.g. Yasawa and Mamanuca Islands) (Lovell and Sykes, 2004:34). The construction of tourism infrastructure (e.g. resorts, roads, dams, artificial islands) also influence catchment dynamics and may increase sediment and nutrient runoff into coral reefs (refer to land-based runoff section).

Anchor damage impacts are associated with the deployment and retrieval of anchors, as well as the movement of the anchor rode, which can cause damage to corals, seagrasses and other benthic ecosystems (Kininmonth et al., 2014). Overall, data suggests that anchor damage in the Southwest Pacific is relatively low (Sulu, 2004), but it is recognised that in reefs heavily used for subsistence fishing, anchors can cause some damage to small sections of the reef due to the use of ‘reef hook’ grapple anchors and concrete blocks (Lovell and Sykes, 2004:34).

The aquarium trade is an important economic activity in the Pacific (Morris, 2009; Sulu, 2004). It involves the collection of fish and corals and is largely carried out using best practices on a small scale and does not pose a major threat to corals. However, the collection of ‘live rock’ involves the breakage of the reef framework in order to collect coralline algae, which are also exported. This is a more damaging activity that needs to be properly managed (Morris et al., 2008; Morris, 2009; Sykes and Morris, 2009).

Dynamite fishing exists but is not frequently used in the Pacific. Its use has been diminishing in PICTs due to its relative high costs, legislation in place to ban it, and growing awareness about the damage it causes on marine life (Morris, 2009; Samuelu and Sapatu, 2009; Sykes and Morris, 2009).

Both tourism-related and anchor damage impacts have caused ecological shifts in coral communities, also affecting social, economic and cultural issues in the Pacific (Ayala, 2005; Engelhardt, 2005:176; Kininmonth et al., 2014; Morris et al., 2008; Morris, 2009; Movono et al., 2018; Sykes and Morris, 2009). If properly managed such impacts can be mitigated or contained (Hall, 2001).

Domestic and Industrial waste

Sewage disposal leads to increase in nutrients and organic matter (Dubinsky and Stambler, 1996). Nutrients act as fertilisers for macroalgal growth, which can outcompete corals for space, while organic matter stimulates proliferation of oxygen-consuming microbes. These may negatively impact corals and other reef organisms, either directly by anoxia, or by related hydrogen sulphide production (Dubinsky and Stambler, 1996). Sewage contamination was considered a serious problem in Pohnpei (Federated States of Micronesia) (Morrison, 1999), Fanga’uta Lagoon (Tonga) (Morrison, 1999; Zann, 1994), and Suva Lagoon (Fiji) (Morrison et al., 2013; Naidu et al., 1991; Veitayaki, 2010; Zann, 1994), leading to increased macro and turf algae biomass, high abundances of herbivorous sea urchins (Echinometra mathaeae and Tripneustes gratillus) and detrital-feeding holothurians, and decline of corals (Zann, 1994). Other areas in Fiji with known water quality problems are Nadi Bay and Lautoka harbours (from shipping, domestic and industrial wastes, organic wastes from a sugar mill) and Levuka harbour (discharges from a tuna cannery) (Zann, 1994). In the 1990s lead,
pesticides, hydrocarbons, chemical wastes from industries, and PCBs from old transformers were considered as potentially serious problems in Tonga (Zann, 1994), while in Port Vila (capital of Vanuatu) low organochlorine contamination in sediments was reported (Morrison, 1999).

Marine debris and plastics
Large concentration of marine debris and plastics (mainly sourced from land) occur in the centre of the Pacific Ocean Gyres (Howell et al., 2012; Maes and Blanke, 2015; Martinez et al., 2009). In the ocean, plastic litter will fragment in smaller particles termed microplastics (particles less than 5 mm, even though no scientific definition has been established) (Hall et al., 2015; Reichert et al., 2018). In the early 1990s, marine debris, including plastic waste and litter, was identified as a major and growing hazard to fish, marine mammals, turtles, sea birds, coral reefs, and even human activities in PICTs (Morrison, 1999; Pichel et al., 2007; Veitayaki, 2010; Zann, 1994). However, little action has been taken to deal with this threat.

Plastic marine debris threaten corals (Reichert et al., 2018) because they ingest particles such as microplastics leading to either malnourishment/starvation or the plastic may be toxic to the corals (Hall et al., 2015). This can cause negative effects on coral health, through bleaching and tissue necrosis (Reichert et al., 2018). It is known that entanglement with plastic debris increases coral susceptibility to diseases (Lamb et al., 2018). However, coral responses to microplastic ingestion vary due to different cleaning mechanisms and feeding interaction (Lamb et al., 2018; Reichert et al., 2018). The condition of microplastics (presence/absence of microfilms) also influence coral ingestion rates and thus, their response to microplastics (Allen et al., 2017). Microplastic pollution occurs all over the Pacific with records including New Caledonia and Chesterfield Islands (Maes and Blanke, 2015), as well as Fiji’s main Island Viti Levu, where all samples collected from the water column, sediment traps, fish guts and bottom sediments between 2015-17 contained microplastic (Ferreira, M. unpublished data).

Ship-based pollution (e.g. oil and antifouling paints)
Sea transport that relies on fossil fuels is crucial for PICT as it moves people, goods and resources (Holland et al., 2014; Newell et al., 2017; Nuttal et al., 2014). Oil spills are therefore a constant risk in the region. The effects of oil spills (and dispersants used in clean-up operations) on corals include extensive death of corals and prolonged cessation of growth and reproduction, through the decrease in the number of female gonads per polyp, impairment of reproduction due to planulae abortion, change in tentacle motion, and in mucus excretion and photosynthesis of zooxanthellae, defective reproductive tissue, degeneration and loss of zooxanthellae, and degeneration of mucus excretion cells and muscle bundles, inhibition of planulae settlement and metamorphosis (Dubinsky and Stambler, 1996).

The exposure of corals to antifouling paints (Tributyl tin (TBT) and copper-based) can cause decreased growth rates and reduced abundance of branching species (Dubinsky and Stambler, 1996), inhibit coral fertilization and larval metamorphosis (Negri and Heyward, 2001). Antifoulant contamination is thought to cause major mortality of resident coral communities and have a negative impact on the recovery of adult populations to other stressors (Smith et al., 2003). Suva (capital of Fiji) is the main commercial, shipping and industrial centre of the South Pacific (Morrison et al., 2013), where TBT from antifouling paints, and other pollutants have contributed to the decline of coral reefs in the region since the 1990s (Zann, 1994). In fact, in the 1990s, Suva Harbour had the highest levels of TBT in sediments among PICTs (Lovell et al., 2004; Morrison, 1999).

Land-based runoff
In PICTs, the modernisation of traditional villages via transition from semi-subsistence to commercial-oriented activities is often associated with the increased and unregulated use of pesticides and other farming chemicals, such as fertilisers, along with land clearing, changes in land use, introduced trees, and infrastructure construction, which increase sediment and nutrient runoff into coastal waters thereby causing coral reef decline (McCaulay et al., 2012; Nuttall and Veitayaki, 2015; Remling and Veitayaki, 2016; Veitayaki, 2018). Agricultural runoff threatens approximately 25% of the total global reef area with further increases projected for the coming decades (Fowler et al., 2013). Rangeland grazing, mining and logging (extensive clearing), along with land clearing for urban development (housing, roads, etc.) are the main contributors of sediment, while intensive cropping (e.g. sugarcane) and horticulture are the main contributors of nutrients, herbicides and pesticides (e.g. carbaryl, naphthol, chloropyrifos and organochlorine pesticides) (Dubinsky and Stambler, 1996; Erftemeijer et al., 2012). Most of these pollutants are delivered through waterways during periods of high flows, and flood plumes often carry elevated
concentrations of several pollutants, simultaneously exposing near-shore reef systems to toxic combinations of chemicals (van Dam et al., 2011).

Increased sedimentation can negatively affect corals through direct burial, which depletes oxygen and leaves corals in darkness, abrasion and by reducing light penetration, which is essential for photosynthesis by zooxanthellae (Dubinsky and Stambler, 1996; Rogers, 1990). This results in reduced skeletal growth rates, species diversity, and recruitment, and reproductive impairment (Haywood et al., 2016; Rogers, 1990; Wicks et al., 2012). Increased sediment runoff may also expose corals to a variety of other contaminants, such as nutrients and heavy metals, which interfere with coral fertilisation (copper and zinc sulphates), larvae development and cause coral bleaching (Dubinsky and Stambler, 1996). Poor agricultural land-use practices (e.g. land clearing and slash-and-burn agriculture, logging, and slope cultivation of sugar cane and ginger) have resulted in serious erosion of topsoil in many agricultural areas, leading to increased sedimentation in coral reef areas (Zann, 1994). For example, coral reefs in inner Vava’u (Tonga) have been affected by sediment run-off from coastal roads and earth works and the construction of causeways (Zann, 1994). The almost total clearing of Upolu’s coastal forests (Samoa) for copra (coconut) plantations between 1870 and 1960 caused serious soil erosion of steep cultivated slopes in catchments of Western Samoa; the death of some of the leeward reefs in Western Samoa may date from this period (Lovell et al., 2004; Zann, 1994).

There has been some research to determine whether or not Marine Protected Areas (MPAs) have the ability to offer some protection to corals from indirect stressors, such as increased sedimentation, through enhanced resilience. However, a five-year study in the Solomon Islands comparing the response of fish and corals to increased sedimentation both inside and outside MPAs showed management afforded little benefit (Halpern et al., 2013).

Release of excess nutrients into coastal waters causes eutrophication (Cloern, 2001), resulting in macroalgae proliferation, algal blooms (Kuffner and Paul, 2004), and the creation of hypoxic or anoxic ‘dead zones’ (Diaz and Rosenberg, 2008), which can kill large numbers of organisms, such as fish (Lotze et al. 2006). Nutrients, herbicides and pesticides can kill or impair corals (through abnormalities, blemishes, necrotic patches, and increased incidence of diseases) (Al-Moghrabi, 2001; Bruno et al., 2003; Furby et al., 2014; Haapkyla et al., 2011; Kuta and Richardson, 2002; Redding et al., 2013; Sato et al., 2016; Voss and Richardson, 2006), and have been linked to declines in coral cover in reef ecosystems around the world (Dubinsky and Stambler, 1996; Restrepo et al., 2016). The direct effects of nutrients (nitrogen (N) and phosphorous (P)) on corals are diverse. Nutrients can increase a) the amount of chlorophyll a within zooxanthellae cells, b) zooxanthellae density within coral hosts, and c) chlorophyll a density per unit area of coral (Shantz and Burkepile, 2014). Nutrients reduce calcification and increases photosynthetic rates, while P alone can increase calcification with little effect on photosynthetic rates. The effects of nutrients on coral communities depend on taxa, enrichment source and nutrient identity (Shantz and Burkepile, 2014). Poor water quality is also related to COTS outbreaks (Berthe et al., 2016; De’ath et al., 2012; Vanhatalo et al., 2017). In Fiji, increased erosion associated with land clearing, and poor agriculture practice has led to increased nutrient levels resulting in seagrass and macroalgae expansion in less flushed, leeward reefs (Zann, 1994). The coral decline in the Fanga’uta Lagoon (Tonga) was associated with high levels of DDT (Morrison, 1999; Zann, 1994) and eutrophication, which also contributed to the advance of seagrasses and mangroves (Zann, 1994).

Overfishing

Coral reef overfishing reduces the abundance and size of fish with consequences for reproduction. Effects of overfishing on coral reefs include reduction in: a) live coral cover, b) calcareous and coralline algae cover, c) diversity of substratum, and d) topographic complexity. In countries that target herbivorous species (as is the case in many PICTs), overfishing can also accelerate bioerosion, facilitate the growth of macroalgae, and reduce biodiversity and fish productivity (Doropoulos et al., 2013; McManus and Polsenberg, 2004; Sandin et al., 2008; Stuhldreier et al., 2015) (see Science Review 2018: Fish and Shellfish and Coastal Fisheries, and Oceanic Fisheries papers).

Population growth, increased commercialisation, promotion of fisheries development projects and the live reef fish trade are currently increasing demand for reef fish in PICTs and thus increasing reef fishing pressure in the region (Cinner and McClanahan, 2006; Nuttall and Veitayaki, 2015; Veitayaki, 1995, 2018; Veitayaki and South, 1997). Available data indicate that more than two thirds of the reef fishes and invertebrates are taken for subsistence (Bell et al., 2017; Zeller et al., 2015) and overfishing of reef resources is common throughout the Pacific (Pinca et
al. 2010; see also Science Review 2018: Fish and Shellfish and Coastal Fisheries, and Oceanic Fisheries papers). The primary driver of the decline in reef fisheries is small-scale local fisheries that target reef fish and invertebrates for food, with the demand for fish growing as populations increase in most PICTs (Bell et al., 2017; Veitayaki and Leda, 2016; Williams et al., 2015).

Conclusion on effects of non-climate drivers on corals

It is widely acknowledged that non-climate drivers are damaging corals all over the world (Halpern et al., 2008; Rasher et al., 2012). Increased land-based pollution (sediments, nutrients, chemicals) is a key driver of coral degradation worldwide (Rogers, 1990) and in the Pacific (Lal, 2016), along with overfishing (Jackson et al., 2001) and increase in the incidence of COTS outbreaks (Berthe et al., 2016). In addition to causing the decline of coral communities, these non-climate drivers also limit the recovery capacity of coral assemblages (Aronson and Precht, 2016; Jackson et al., 2001). The synergistic effects of overfishing, excessive nutrients and sediments, and pollution on corals are extremely negative (Dubinsky and Stambler, 1996; Haywood et al., 2016; Rasher et al., 2012; Rogers, 1990; Wicks et al., 2012).

One of the major concerns in PICTs is the lack of baseline data and long-term monitoring programmes addressing water quality and (over)fishing effects on corals for adequate system understanding on cause-effect relationships and proper assessment of non-climate impacts on corals and management actions (Zann, 1994). It is important to note that by effectively managing non-climate impacts on corals, communities can boost the capacity of reef ecosystems to survive climate change (Hughes et al., 2017a).

2. Observed changes: climate pressures on corals

Despite the detrimental effects of non-climate drivers on coral communities, accelerating climate change is currently the strongest driver affecting coral dynamics (Aronson and Precht, 2016). Sea level rise, high ocean temperatures, ocean acidification and the synergistic effects that climate drivers have with one another and with non-climate drivers are currently causing widespread negative effects on PICT corals. For example, calcification rates are affected by both ocean pH and temperature. Current maximum calcification rates are just 2-3 °C below the maximum temperature corals can withstand before thermal bleaching (Evenhuis et al., 2015). When corals bleach, calcification is further suppressed because photosynthetic products from the zooxanthellae are essential for the calcification process (Evenhuis et al., 2015).

Sea level rise

Despite the evident negative effect of sea level rise (SLR) on Pacific islands and atolls (Nurse et al., 2014), it may also provide some opportunities to corals. SLR effects on corals are complex and not straightforward to understand because corals grow vertically and, in principle, additional depth provides extra ‘accommodation space’, in which corals could expand in intertidal areas and also colonise new inundated areas – provided that suitable substrate is available (van Woesik et al., 2015; Woodroffe and Webster, 2014) – thus increasing live coral cover (Albert et al., 2017). Evidence from Tuvalu strongly suggest that Pacific islands can persist on reefs under SLR rates around 4mm.yr⁻¹ (commensurate with RCP 2.6 scenario) (Kench et al., 2018). However, it is unclear whether islands will continue to maintain their sizes under rising seas of up to 0.82m by 2100 (RCP 8.5) (Kench et al., 2018). Under such scenario it is more likely than not that rising seas will inundate coastal areas and promote coastal erosion (Barros and Field, 2014; Kench et al., 2018), thus increasing turbidity and sedimentation in coastal waters negatively affecting corals and other reef organisms (Brown et al., 2017a; Brown et al., 2017b; De’ath and Fabricius, 2010). In addition to this, a recent study comparing the accretion rates of coral reefs in the Indian and Atlantic Oceans showed that without sustained ecological recovery, very few reefs in either ocean would be able to track the projected sea level rise under RCP4.5 or RCP8, potentially resulting in reef submergence. This will lead to changes in wave energy regimes, increasing sediment mobility, shoreline change and island overtopping (Perry et al., in press). Human-induced SLR is associated with the melting of polar ice sheets and water expansion as a result of increased water temperatures (IPCC, 2014), which itself cause negative effects to corals (see below) and have already caused the displacement of PICT people (Reuter, 2017).

Increase in Ocean Temperatures

Sea surface temperature (SST) plays an integral role in the growth of corals by influencing their skeletal density, extension and calcification rate (Carricart-Ganivet, 2004). Scientists have high confidence that anthropogenic-induced ocean warming is impacting coral reefs through thermal coral bleaching (Adjero et al., 2009; Cumming et al., 2000; Davies et al., 1997;
Kleypas et al., 2015; Lovell et al., 2004; Mangubhai, 2016; Obura and Mangubhai, 2011; Rotmann, 2001) and by increasing bioerosion (Chaves-Fonnegra et al., 2017), reducing coral calcification rates (De’ath et al., 2009; Nurse et al., 2014) and influencing mass coral spawning events over large geographical areas (Keith et al., 2016).

Coral bleaching impacts coral species differently depending on the species of the coral host affected and its zooxanthellae symbiont (Hoadley et al., 2015). This means that coral species and their symbionts respond and adapt differently to rising SST (Barshis et al., 2013; Berkelmans and van Oppen, 2006; Oliver and Palumbi, 2011). Bleaching also affects colony size (favours smaller size corals), the time of coral spawning (Paxton et al., 2016), slows down swimming of coral larvae and reduces the number of viable recruits (Singh, 2018).

Coral reef bleaching events have increased dramatically since the early 1980s. Most of these have been caused by anomalous increases in SST, reduced cloud cover, higher than average air temperatures and higher than average atmospheric pressures (Glynn, 1983; Hoegh-Guldberg, 1999; Hoegh-Guldberg et al., 2007; Hughes et al., 2003; McGowan and Theobald, 2017; Nunn, 1990), which are associated with El Niño or La Niña events. Six distinct peaks in bleaching have occurred worldwide between 1976 and 2016 (Le Nohaic et al., 2017; Oliver et al., 2009). The 1997-98 El Niño and the 1998-99 La Niña were the most severe and spatially extensive on record (Oliver et al., 2009). The recent severe thermal coral bleaching events in 2015-16 have caused extensive habitat and biodiversity losses around the world and in the Pacific (Anthony et al., 2017; Gardner et al., 2017; Le Nohaic et al., 2017). Interestingly, the south-western Pacific islands were little affected by the mass coral bleaching resulting from the 1998 El Niño – possibly due to under-reporting (Oliver et al., 2009) – but were heavily impacted by the subsequent strong La Niña event in 2000 (Cumming et al., 2000) and the 2015-16 El Niño (Mangubhai, 2016; Wolanski et al., 2017).

Some examples of coral bleaching for locations relevant to this review include the northern and southern parts of Papua New Guinea (PNG) in early 1998 (Goreau et al., 2000), Lihir Island group in March 1996 (Done, 1996), February-March 2001 (Rotmann, 2001) and February 2006 (Flynn, 2006). Also in PNG, coral bleaching was recorded in the Milne Bay Province in February 1996 (Davies et al., 1997). Thermal coral bleaching was registered throughout the Fijian archipelago during the first half of 2000 (Cumming et al., 2000), and around Gau Island and the Vatu-i-ra seascape in 2015-16 (Mangubhai, 2016). In 2016, increased thermal stress reduced oxygen concentrations in seawater promoting mass fish kills on the Coral Coast of Fiji, where water temperatures were as high as 35 °C (Singh, 2018). In Samoa, bleaching and extensive coral mortality were recorded at Ofu Island in 1994 and 2015 (Craig et al., 2001; Thomas and Palumbi, 2017), Palolo Deep Marine Park (Western Samoa) in 1987-1988, and a major episode occurred around Upolu and Savai’i between April and July 1991 (unpublished data) (Zann, 1994). In Kiribati, the greatest thermal stress event reported in the coral reef literature occurred at the Phoenix Islands in January 2003, which persisted for 4 years causing extensive coral bleaching and mortality (Obura and Mangubhai, 2011). Still in Kiribati, extensive coral bleaching occurred at the Gilbert Islands in 2004 and 2009 (Carilli et al., 2012). In Moorea (French Polynesia), extensive coral bleaching and mass mortality were registered in 1978, 1982, 1998, and 2003 (Riegl et al., 2015). Seawater temperatures as high as 30 °C were reported in Vanuatu causing widespread fish kills (Johnson et al., 2016a).

SST acts synergistically with nutrients and sediments amplifying bleaching effects and also influencing the recovery period from bleaching. As a result, corals currently sheltered from effects of excessive nutrients and elevated temperatures will be the most at risk from ocean acidification (Riegl et al., 2015).

Ocean acidification
Ocean acidification is the increase of partial pressure of CO₂ and associated decline in seawater pH (Enochs et al., 2016) (see Science Review 2018: Ocean Acidification paper). For scleractinian corals, probably the most significant consequence of ocean acidification is the decrease in the concentration of carbonate ions (CO₃²⁻). As coral's skeletons are made from the mineral phase of calcium carbonate, called aragonite, the saturation state of aragonite (Ωarg) is often related to rates of calcification (Evenhuis et al., 2015). Increases in atmospheric CO₂ concentrations are negatively correlated with Ωarg, which decreases the rates of coral calcification (Pandolfi et al., 2011).

Present-day aragonite saturation levels are postulated to be close to the point where it can weaken coral skeletons and slow coral growth. Weaker reef systems will be far more susceptible to other pressures including bioerosion, eutrophication, coral disease, intense storms and bleaching because coral skeletons
become more fragile (Meissner et al., 2012; Nuttall and Veitayaki, 2015; van Hooidonk et al., 2014).

Our review did not identify any field studies pointing to conclusive cause-effect relationships attributable to anthropogenic ocean acidification and weakening of coral skeletons in the Pacific Ocean. However, there is emerging evidence of the impacts of ocean acidification on coral reefs (Barros and Field, 2014). It is likely that, in many places, responses of corals to more acidified waters are not yet outside natural variability and may be influenced by local issues and mechanisms (e.g. circulation patterns and pollution) (Barros and Field, 2014).

Field observations of reefs growing in more acidified waters suggest that reduced pH promotes changes in the abundance and structure of coral communities (Enochs et al., 2015; Enochs et al., 2016; Fabricius et al., 2011), threatening the ecosystem functioning of coral reefs (Done, 1992; Hughes et al., 2007; Mumby, 2009; Wild et al., 2011). However, the literature offers mixed responses of corals to more acidified waters. For instance, a reef in Palau (Nikko Bay) growing in waters with pH of 7.8 has coral cover 2 to 6 times higher than other coral reefs around the island growing in waters with higher pH (Golbuu et al., 2016), whereas in PNG a recent decrease of 0.1 units in pH may have affected coral diversity and recruitment (Fabricius et al., 2011), and the abundance of crustose coralline algae (CCA) – an inducer of coral larvae settlement (Fabricius et al., 2015). These negative effects on corals most likely facilitate macroalgae growth, causing a shift from a coral-dominated to algal-dominated state (Enochs et al., 2015). In PNG massive Porites dominate reefs with pH > 7.8 and no distinct evidence of calcification exists in places with pH ≤ 7.7 (Fabricius et al., 2011), which is consistent with a switch from net calcification to net dissolution of coral reefs at a pH of roughly 7.8 (Enochs et al., 2016). Similar effects of more acidified waters on corals were also registered in waters of Japan and the Northern Mariana Islands (Enochs et al., 2015; Enochs et al., 2016; Fabricius et al., 2011).

Several laboratory studies suggest that more acidified waters impair calcification and accelerate the dissolution of coral skeletons thus weakening coral skeletons, and triggering stress-response mechanisms, which affect the rates of tissue repair, feeding rate, reproduction, and early life-stage survival (D’Angelo et al., 2012; Enochs et al., 2015; Fabry et al., 2008; Kroeker et al., 2010). Possible responses of reef building corals to reduced calcification include a) decreased linear extension rate and skeletal density (Cooper et al., 2008), b) the maintenance of physical extension rate, but reduced skeletal density, leading to greater erosion (Szmant and Gassman, 1990), and c) maintenance of linear extension and density but greater investment of energy diverting resources from other processes such as reproduction (Albright and Mason, 2013; Szmant and Gassman, 1990).

Extreme events

In PICTs, cyclones regularly contribute to changes in island geomorphology (Duvat and Pillet, 2017), causing extensive damage to corals by exacerbating nearshore biogeochemical changes associated with land-use, runoff, and human activities (Levin et al., 2015). These include physical damage through wave action which breaks corals (with branching and foliaceous growth forms being more vulnerable to wave damage), and associated flood events which cause substantial soil erosion leading to increased sediment and nutrient runoff into coral reefs (Veitayaki, in press), which creates a non-optimal environment for coral recovery (Gardner et al., 2005; Guillemet et al., 2010; Zann, 1994). Since most of the coral fragments are washed into unfavourable environments, and these scleractinian corals take years to reach spawning age, breaking them off often results in the death of the coral fragment (Cheal et al., 2002; Gardner et al., 2005). Reefs stressed by pollution, overfishing and other human influences may be slower to recover after cyclones (Zann, 1994).

Despite the fact that cyclones are part of ocean-atmosphere tropical dynamics, there is evidence of a correlation between an increase in SST and associated increase in the intensity of tropical cyclones, and increased coral stress (Elsner et al., 2008; Nott and Walsh, 2015; Terry, 2007). The proportion of intense tropical cyclones (category 4-5) versus weaker cyclones (category 1-2) has increased substantially in the last 40 years, which coincides with most of the current anthropogenic warming (Holland and Bruyere, 2014).

The physical destruction associated with cyclones has been identified as an important feature of coral reef ecosystems, because it opens up space in the reef for new settlement which increases biodiversity (Adjeroud et al., 2009; Connell, 1978; Connell, 1997). Some of the observed impacts of high-intensity cyclones in PICTs include the loss of coral reef and mangrove areas after TC Pam in Vanuatu (Johnson et al., 2016a), and TC Winston in Fiji (Mangubhai, 2016). In 1991 cyclone Val caused widespread damage to the
coral reefs around American Samoa and a subsequent increase in coral recruitment following the cyclone (Mundy, 1996). Widespread coral destruction was seen in New Caledonia after TC Erica (1993), where the reefs took more than 3 years to recover (Guillemot et al., 2010). Although the same trend of coral destruction was expected on all reefs that lay in the path of the category 5 TC Winston in Fiji, this was not the case. Winston, caused widespread physical damage to coral reefs around the Vatu-i-ra passage (Mangubhai, 2016), and Navakavu reefs near Suva (K.J. Brown and L.X.C Dutra, pers. obs.) resulting in a severe decline in fish and coral assemblages, while in other sites surveyed in the Coral Coast (Singh, 2018), there was little or no damage to the reefs. The coral reefs that were not directly on the path of the eye of the cyclone but that have been affected indirectly, seemed to have recovered better and more rapidly (Singh, 2018).

Conclusions on impacts of climate drivers on corals
Simultaneous climate change drivers, such as sea-level rise, ocean warming, acidification and more frequent high-intensity cyclones, act together with local changes (e.g., pollution, eutrophication, overfishing) (high confidence), leading to interactive, complex and amplified impacts for species and ecosystems, which complicates marine management regimes (Barros and Field, 2014; Valmonte-Santos et al., 2016). The ability of corals to adapt naturally to changes in community composition and structure appears limited and insufficient to offset the detrimental effects of climate change (Barros and Field, 2014). Our review indicates that the current understanding of climate change effects on corals and adaptation mechanisms is very limited and requires additional field and laboratory studies to fully comprehend adaptation mechanisms, tolerance and ecological consequences of climate drivers, especially under low emission scenarios (RCP2.6).

What Could Happen?

Future climate change and impacts on corals
The extent of impacts of climate change on corals will depend on how close reality will be to future RCP CO₂ emission scenarios (Gattuso et al., 2015). However, common across all RCP scenarios is that atmospheric CO₂ concentrations will continue to rise, at least in the coming decades, thus increasing ocean temperatures and acidity (high confidence) (see Science Review 2018: Fish and Shellfish and Coastal Fisheries, and Oceanic Fisheries, Sea Level Rise, Sea Surface Temperature, Ocean Acidification and Extreme Events papers for predictions, Evenhuis et al., 2015; Gattuso et al., 2015; Hoegh-Guldberg et al., 2011; IPCC, 2014). Increased temperatures are also expected to increase the intensity of TC (low confidence) (Elsner et al., 2008). By 2100, the greatest impacts from climate change on corals will likely occur as the result of increased temperature stress, ocean acidification, increased sedimentation and turbidity from more extreme events (e.g. rainfall and cyclones), rising sea level, and physical damage from the combination of rising sea levels and more severe cyclones (Johnson et al., 2017; United Nations Environment Programme, 2017).

The future is uncertain but PICT coral reefs will most likely substantially change – rather than completely disappear – as a result of climate change and associated changes in the sea- and landscape, which will impact livelihoods (Hughes et al., 2003). As most of the impacts of climate change on corals from the literature are related to increased SST, ocean acidification and cyclone damage, we detail these three major threats below, followed by a review on synergistic effects of climate and non-climate drivers on corals.

Sea surface temperature
Higher SST predicted in all RCP scenarios will increase the extent, frequency and severity of coral bleaching events (van Hooidonk et al., 2016), the incidence of coral diseases, and the potential for mass coral mortality (high confidence) (IPCC, 2014; Langlais et al., 2017; Maynard et al., 2015a; Reisinger et al., 2014; Ruiz-Moreno et al., 2012; Sheridan et al., 2014). In addition, increased SST can alter growth patterns, body size, immune defence, feeding behaviour, and reproductive success of corals (Bonesso et al., 2017; Riegl et al., 2015; Ruiz-Moreno et al., 2012), and may even affect mesophotic, deep-sea and cold-water coral distribution (although evidence of the direct effect of climate change is less clear) (Hoegh-Guldberg et al., 2017). Changes are expected to become substantial from 2050 (or earlier) under a high emission scenario (Figure 1). Hence, higher SST will potentially lead to declines in coral populations, which will cause unprecedented changes in coral reefs and associated habitats (high confidence) (Figure 1, Hughes et al., 2017a; IPCC, 2014; Morrison, 1999). A similar phenomenon occurred in Espiritu Santo (Vanuatu) during the early Holocene (Beck et al., 1997).
The literature offers, however, some potential benefits of warmer waters to corals. For example, although highly speculative, in the short term, rising average temperatures could promote coral growth and compensate partially for long-term shifts in aragonite concentration, as some corals (e.g. *Porites*) have shown an increase in calcification rates associated with an increase in ocean temperature (~0.10 °C per decade) between 1990 and 2010 (Hughes et al., 2017a). Warmer waters may also facilitate the expansion of the geographical range of corals into higher latitudes, and cause shifts in species composition in response to differences in susceptibility to climate and non-climate drivers (Hughes et al., 2017a; Woodroffe et al., 2010).

Ocean acidification
Ocean acidification is expected to increase in the future under all RCP scenarios (IPCC, 2014). Variability in responses due to local environmental conditions and species composition is likely to be substantial (Chan and Connolly, 2013), which along with lack of evidence of contracting geographical range of calcifying species towards the Equator (Hughes et al., 2017a) contribute to the low confidence on the effects of ocean acidification on corals (Barros and Field, 2014; IPCC, 2014; Johnson et al., 2016b).

Recent modelling suggests that under RCP2.6, CO₂ concentrations are expected to be around 450 ppm by 2100, where pH will likely be between 7.9 and 8.1 (an average decline of 0.07 pH units from Present day mean ocean pH (Gattuso et al., 2015)) in most tropical oceanic waters. For medium- to high-emission scenarios (RCP4.5, 6.0, and 8.5), ocean acidification poses far more risks to coral reefs. For example, under RCP8.5, CO₂ concentration in the sea is expected to reach 450 ppm by 2030 – 2050 (Salvat and Allemand, 2009) and a decline of 0.33 units of pH is expected by 2100 (Gattuso et al., 2015), which would seriously threaten corals and other calcifying organisms. Such an increase in ocean acidification is expected to impact on coral physiology (calcification rates, ability to repair tissues and growth), behaviour (feeding rate), reproduction (early life-stage survival, timing of spawning) as well as weaken calcified structures, and alter coral stress-response mechanisms (Fabricius et al., 2015; Fabricius et al., 2011), with impacts on population dynamics of individual species from phytoplankton to animals (medium to high confidence). The vulnerability of reef-building corals to ocean acidification has potentially detrimental consequences for fisheries and livelihoods (Barros and Field, 2014).

Sea level rise and cyclones
Rising sea level would allow minimum shore zone for mangrove development or shore stability; with an early period of increased coastal erosion and destabilizing sedimentation as catchment streams and shorelines adjusted to new and changing base levels, thus negatively affecting corals (Dutra and Haworth, 2008). Therefore, widespread degradation of corals is expected due to coastal erosion associated with SLR.

The observed destruction that high intensity tropical cyclones have caused to corals in PICT is well known (Adjeroud et al., 2009; Guillemet et al., 2010; Mangubhai, 2016). However, the observed increase in Category 4–5 cyclones may not continue at the same rate with future global warming. Following an initial climate increase in intense cyclone proportions a saturation level will be reached beyond which any further global warming will have little effect (Holland and Bruyere, 2014).

Synergistic climate and non-climate drivers
Climate change impacts, such as increased SST and sea level, and changes in ocean chemistry, ocean circulation, rainfall and storm patterns are expected to compound existing anthropogenic pressures on coral reefs from habitat degradation due to development, resource extraction, overfishing and pollution. Interactions between climate and localized stressors such as pollution are expected to create particularly
damaging synergies, adding to concerns about coral reefs globally (Bridge et al., 2013). For example, corals exposed to nutrients, turbidity, sedimentation, or pathogens have been shown to be more susceptible to thermal bleaching, or less able to survive and recover a bleaching episode, or an acute disturbance, such as a cyclone (Hoegh-Guldberg et al., 2007). This is because fertilization and larval recruitment in corals are particularly sensitive to environmental conditions (Lam et al., 2015), and because macroalgal growth rates increase in nutrient-rich waters, thus outcompeting corals (McCook, 1999).

Predicted changes in drought and flood regimes may exacerbate nearshore biogeochemical changes associated with land-use, runoff, and human activities (Levin et al., 2015), increasing nutrient and sediment loads to corals. Warmer waters will potentially increase the incidence and extent of COTS outbreaks in the Pacific (Zann, 1994) because it likely ‘pushes’ well-fed larvae faster to settlement (Uthicke et al., 2015). Ocean warming and acidification may also enhance the success of COTS juveniles, because more acidified waters facilitate growth and feeding rates on coralline algae (Kamya et al., 2016; Kamya et al., 2017; Uthicke et al., 2015) although the affects have been shown to be variable depending upon the genetic makeup of the COTS (Sparks et al., 2017). Warmer and more acidified waters can also facilitate the poleward migration of COTS (Kamya et al., 2017) following the expected migration of corals, but in contrast to their coral prey, COTS juveniles appear to be highly resilient to future ocean change (Kamya et al., 2016).

Coral bleaching is exacerbated by ocean acidification, which impairs coral calcification and the recovery potential of coral species (Anthony et al., 2017). Coral bleaching also facilitates bioerosion by sponges (Carballo et al., 2013). Plastic pollution can act alone or synergistically with increased SST and more acidified waters to increase the incidence of coral diseases (Lamb et al., 2018). Coastal reef fisheries are generally considered overexploited in most PICT (Matthews et al., 1998; Valmonte-Santos et al., 2016), which negatively affect coral reef ecology due to ongoing pressures as a result of human population growth, which further increase fishing effort and catch, thus facilitating macroalgal growth.

The literature offers very little information on climate change impacts on corals associated with a low-emission scenario (RCP2.6), due to technical and other issues (Hughes et al., 2017a). Climate change impacts on corals are often tested in the laboratory using values associated with a high emission scenario (RCP8.5) (Hughes et al., 2017a), which are summarised below.

Higher SST will increase the incidence of thermal coral bleaching with some Pacific nations experiencing annual severe bleaching before 2040 (e.g. Nauru, Guam, Northern Marians Islands) and all nations experiencing severe annual bleaching by 2050 under RCP8.5 (van Hooidonk et al., 2016). This trend is already evident with the largest coral bleaching event in the Pacific documented in many nations during the 2016 summer, and the Great Barrier Reef experiencing two successive severe bleaching events in 2016 and 2017.

While a lower emissions scenario (RCP4.5) adds 11 years to the global average year of severe annual bleaching, 75% of reefs will still experience annual bleaching before 2070. Spatial patterns of bleaching are variable, with high latitude reefs faring better than reefs near the equator (van Hooidonk et al., 2016). Only significant mitigation of greenhouse gas emissions (RCP2.6) will delay the onset of annual bleaching until 2100.

The area of the Pacific Ocean with suitable chemistry for coral growth will decrease by 15% by 2050, with conditions declining to marginal and only some areas in the Central Pacific being ‘adequate’ for coral growth by 2100 (Johnson et al., 2017; Lenton et al., 2015). By 2050, Ω is expected to be ~3 (Johnson et al., 2016b), which will result in poor conditions for coral growth across much of the region (Chan and Connolly, 2013; Hoegh-Guldberg et al., 2007).

The combined effects of increased coral bleaching and ocean acidification are expected to reduce live coral cover by 50–75% by 2050, and as much as 90% by 2100 using RCP8.5 (Freeman et al., 2013; Hoegh-Guldberg et al., 2011). Global reef habitat loss was predicted to be 60% by 2100 using RCP4.5(Freeman et al., 2013). This will intensify the competition between reef-building corals and non-calcareous macroalgae as coral cover, growth and calcification continue to decrease (Cooper et al., 2008; De’ath et al., 2009). Macroalgae are likely to outcompete corals for space and become a dominant feature of reefs by 2100 (De’ath et al., 2012).

Coral reefs and adjacent ecosystems such as mangroves and seagrasses are intrinsically linked through sediment capture, localised pH buffering and
linked life cycles of some fish species (Albert et al., 2017; Atkinson et al., 2016). Together, the three habitats substantially improve coastline protection than any one habitat alone (Guannel et al., 2016). Therefore, any declines in any of the three ecosystems will most likely affect the other two. Mangrove areas in some locations are projected to decline due to sea-level rise (where there are barriers to landward migration) (Veitayaki et al., 2017), more intense cyclones, and changes in rainfall patterns (Waycott, 2011). Seagrasses have already shown sensitivity to the effects of increased turbidity due to flooding (McKenzie et al. 2012) and their area is expected to decrease by 5–35% by 2050 due to increased runoff from more extreme rainfall as well as increases in cyclone intensity (Waycott, 2011).

Recent research has demonstrated that the combination of ocean acidification (low aragonite saturation) and nutrient loading is ten times more effective at driving coral macrobioerosion than ocean acidification alone (DeCarlo et al., 2015). This has significant implications for corals and reefs, resulting in slower growth rates and compromised reef structures. The Pacific island region will experience similar changes and, if emissions are not seriously curbed and restricted to the levels of a ‘low-emission’ scenario (RCP2.6) coral calcification is expected to decline along with reef area and structural integrity.

Despite the heterogeneity in responses of coral to ocean acidification (Comeau et al., 2014), even a slight decrease in aragonite saturation level may weaken the skeletons of calcareous organisms and shells. In this state, reef systems will be far more susceptible to other pressures including eutrophication, coral disease, storms and bleaching, which are also projected to increase in frequency due to climate change (Meissner et al., 2012; van Hooidonk et al., 2014). The interaction between ocean acidification and locally high nutrient loading also accelerates coral reef loss (DeCarlo et al., 2015).

Chapter Conclusions
The synergistic and cumulative impacts of extreme events caused by climate change, such as thermal coral bleaching, floods and tropical cyclones, and the chronic impacts of poor water quality, will continue to be major drivers of future reef degradation in the Pacific Ocean (Johnson et al., 2013). Impacts of climate change drivers in isolation, or in combination with non-climate drivers, include reduced areas of living coral, increased macroalgal cover, compromised reef structure, higher incidence of COTS and disease outbreaks, reduced species diversity, and lower fish abundance.

Confidence Assessment

What is already happening

The scores are based on the significant body of experimental and in situ evidence and scientific consensus on how corals are: (i) sensitive to different climate variables; (ii) responding to changing climate variables, particularly to increased SST, intense storms and reduced pH; and (iii) how they are likely to respond to future climate change. The consensus is very high with minimal disagreement that climate change is happening and affecting corals in PICT, in particular with regards to evidence of increased thermal-induced coral bleaching and COTS outbreaks, and increased incidence of high-intensity cyclones. The data used in global projections is still strong however, with limitations with regards to a) data specific for PICTs to couple regional and global scale models, b) lack of baseline data for climatic and non-climatic drivers. Overall, this results in substantial uncertainties around the level and extent of impacts of ocean acidification. As instrumentation is deployed and effects are enhanced this will rapidly change.

What could happen in the future

The future remains relatively uncertain because it is still impossible to predict the exact amount of CO₂ emissions in the next decades, and thus the exact extent of impacts associated with higher SST, ocean acidification, and cyclones. Most of the studies about coral responses to climate change use values from ‘worse case scenarios’ (RCP8.5) and very few deal
with projections associated with a low-emission scenario (RCP2.6). This leaves important knowledge gaps on how corals can cope with or adapt to human-induced climate change under a low emission scenario.

Knowledge Gaps

1. Socioecological linkages to complex changes in environment. This is a recent trend but there is relatively high consensus about socio-economic and governance issues affecting resource sustainability and adaptation.
2. Species tolerance within a multidimensional non-stationary niche. This was a priority identified by the authors of this chapter.

Models of the likely shifts in coral species distributions, and the effects of climate-induced changes in species composition on ecosystems and maintaining coral-dominated reefs to identify refugia and potential areas of habitat losses and to assist in regional and community planning. There is high consensus on the influence of climate change on coral reef ecosystems but there is still high uncertainty on how the reef ecosystem will cope with these changes, especially when non-climate drivers are considered.

Socio-economic Impacts

Our review identified that climate pressures will exacerbate non-climate pressures (e.g. pollution and overfishing) (high confidence) (Aronson and Precht, 2016; Sheridan et al., 2014; Wild et al., 2011) and negatively affect corals. Predicted coral decline will cause unprecedented socio-economic changes with consequences to human populations from across the Pacific Ocean in coral reef and associated habitats (high confidence) (Hughes et al., 2017a; IPCC, 2014; Morrison, 1999).

There are significant socio-economic implications in PICTs from the combined effects of population growth and reef degradation due to climate change (Johnson et al., 2016b). Coral degradation directly affects the livelihoods of Pacific Islanders through reduced local income and inflow of foreign exchange due to the decline of fisheries. Current projections anticipate declines in reef fisheries productivity of as much as 10-20% in the western Pacific under climate change due primarily to habitat degradation (Pratchett et al. 2011, Bell et al. 2016). Decline in fisheries will increase food insecurity (given the high levels of dependency Pacific Islanders have on reef fishes for subsistence) (Zeller et al., 2015). Reef degradation will also affect reef-based tourism (Sajjad et al., 2014), reduce coastal protection, increase the risk of property damage (Guannel et al., 2016), and promote negative effects on aesthetics, cultural connections between traditional communities and their marine environments, spiritual values, and other ecosystem services that contribute to human wellbeing (Hughes et al., 2017a; Johnson et al., 2016b).

A regional assessment of all 22 PICTs (Johnson et al., 2016b) found that nations with large reef areas and predominately coastal communities had the highest relative vulnerability to climate change impacts on reefs because of high reef to land area, dependence of household incomes on coastal fisheries (for food and livelihoods), aquaculture (for jobs) and tourism (for jobs and contribution to GDP), and low education standards. Based on this assessment, the most vulnerable PICTs to climate change are: Solomon Islands, Kiribati, Papua New Guinea (PNG), Federated States of Micronesia (FSM), Tonga and Tuvalu. The PICTs that had the lowest relative vulnerability to climate change impacts on reefs and the goods and services they provide are: Niue, Commonwealth of the Northern Mariana Islands (CNMI), Tokelau, New Caledonia and Guam.

Adaptation Options

The history of coral reef evolution shows that they are resilient and adaptable to environmental changes, for example in sea level and sedimentation (Albert et al., 2017; Camoin and Webster, 2015; Done et al., 2007). Similarly, human communities in PICTs have been adapting to changes and managing reef ecosystems through traditional practices, such as temporal closures and seasonal bans, for centuries (Reenberg et al., 2008; Remling and Veitayaki, 2016; The Locally-Managed Marine Area (LMMA) Network, 2014; Veitayaki, 2014; Veitayaki and Holland, in press). However, the capacity of the coupled human-reef ecosystems to persist and adapt is under threat because non-climate threats will be exacerbated with changes in climate (Bellwood et al., 2004; Hoffmann, 2002).

Acclimatisation or adaptation of corals to climate change depends on intrinsic characteristics of both coral and zooxanthellae species (Dandan et al., 2015), as well as on governance and other social-economic characteristics, such as education and poverty. For the
sake of presentation and summarising information we divide adaptation options in two main groups. These are: a) direct interventions to reduce non-climate stresses, and b) socio-economic, governance, and technological interventions, which are discussed in detail below.

Direct interventions to reduce non-climate stresses

Decisions about the most appropriate options for PICTs to adapt to the effects of climate change must take into account the many other drivers that affect the ability of coral reefs to maintain their structure and function, and support local communities (Gillett and Cartwright, 2010). A range of practical adaptation options have been identified by Bell et al (2013; 2011) and Johnson (2013), unless otherwise specified. These include managing land use and vegetation in catchments to reduce the transfer of sediments and nutrients into coral reefs, the prevention of marine pollution, and improve waste management. Also, as corals are impacted by climate change, their functioning and recovery mechanisms will depend on the abundance and diversity of fish that support coral recruitment and settlement, such as herbivores. At the same time, sustainable reef fisheries depend on healthy coral reef habitats to support fish and invertebrates. Actively managing reef fisheries via reducing fishing effort and improving enforcement on gear, catch restrictions and quantity, and enforcement of non-take areas (Edgar et al., 2014) are therefore essential to improve overall coral health and support reef resilience (Clua and Legendre, 2008; Jackson et al., 2001). This can be enhanced through the combination of Natural Resource Management and aquaculture techniques to reduce wild fish catches, increase the supply of fish to the wild (seeding), and support food production to PICT (Dey et al., 2016).

Direct manipulation of species, via the alteration of the composition of ecosystems to increase the proportion of species that are more tolerant to climate drivers, such as heat-tolerant species that bleach and die at higher temperatures or species that recover faster, can be potentially beneficial to corals in a changing world (Hughes et al., 2017a). Assisted colonisation and shading have been proposed but remain untested at scale (Barros and Field, 2014).

Mangrove and seagrass habitats re-vegetation facilitate their migration landward as sea level rises, while the removal of barriers to migration, such as infrastructure is beneficial to corals due to their connectedness (Albert et al., 2017; Guannel et al., 2016). Assisted recovery of corals through measures that facilitate genetic adaptations and/or physical interventions, such as coral farming and transplantation may also be necessary to improve coral conditions across the Pacific (Hughes et al., 2017a; van Oppen et al., 2015). Improving water quality to minimise COTS outbreaks, and developing alternative control measures, could prevent further coral decline, but would probably only be successful in localised areas (Nakamura et al., 2016). Such strategies can, however, only be successful if climatic conditions are stabilised, as losses due to bleaching and cyclones will otherwise increase (De’ath et al., 2012).

Direct socio-economic, governance, and technological interventions

Future human and ecosystem adaptation can only be achieved when population growth is addressed in some PICTs (Butler et al., 2014). Reducing poverty or encouraging shifts in social norms, improving governance systems, and using modern approaches to reef conservation that merge traditional knowledge and practices with scientific and technological advances can produce positive social and ecological outcomes (Hughes et al., 2017a; Veitayaki, 2014; Veitayaki and Holland, in press). Hughes et al. (2017a) propose that options include the introduction of technological innovations such as the introduction of social norms to reduce pollution and harmful practices on coral reefs, and encourage voluntary compliance with formal and informal environmental rules. In social systems, shifts in the composition of society — for example, through enhanced education and a reduction in poverty — can also increase resilience to strong drivers such as climate change (Hughes et al., 2017a).

Climate change can be partially offset by collective action and cooperative measures in local and regional management interventions that help minimise pollution and overfishing, control human population size, consumption and access to markets (McCook et al., 2010). Cooperation between governments, organisations and communities will improve human-reef resilience to climate change (Morrison, 1999).

At the community level, adaptation must build on local knowledge and be integrated with science, which will be of great value for environmental management, particularly when scientific data are lacking (Aswani and Ruddle, 2013; Leon et al., 2015). In fact, reefs with traditional systems of resources management in PICTs are healthier because the harvest of marine resources
is better controlled (Hoffmann, 2002). When conservation measures are in line with traditional governance structures and values, local coastal communities are more likely to engage in and adopt conservation programs (Walter and Hamilton, 2014).

The interdependencies between corals, non-climate and climate drivers point to the critical importance of an ecosystem-based approach to fisheries management throughout the Pacific (Welch 2016). The use of climate-informed, community-based ecosystem approaches to fisheries management (CEAFM) (SPC 2010, Heenan et al. 2015) is essential to maintain the role of key functional groups on reefs. CEAFM approaches should be based on primary fisheries management (Cochrane et al. 2011) intended to protect reef habitats and keep the harvest of reef fish and invertebrates within sustainable bounds.

Any intervention in PICTs should therefore pay attention to people’s development aspirations, potential social, economic and environmental benefits, local dynamics of village governance, social rules and protocols, and traditional forms of knowledge that can inform sustainable solutions (Remling and Veitayaki, 2016). It is important for policy makers to understand the cultural influences that have helped shape current social norms and decision-making processes, and the ways in which adaptations to climate change can be developed and sustained (Nunn, 2009). It is extremely important that in the future PICT governments should take on ownership of the climate-change adaptation process to a greater degree than they do at present (Nunn, 2009).

The Pacific offers several examples of local initiatives that have been successful in improving coral communities, but it is still unclear how to bring together top-down global-scale climate change mitigation and bottom-up local initiatives to maximise the perceived benefits of improving the condition of coral ecosystems in the Pacific region. A clear lesson from the literature is that tenure systems and associated political systems differ substantially across PICTs (Aswani et al., 2017). As a result, one cannot simply extrapolate adaptation measures and strategies similarly across the Pacific. Local environmental, social and governance contexts must be considered when rolling out adaptation programmes in the Pacific.

It is also important that climate change must be addressed in terms of current pressing challenges to livelihoods, future risks and how to address these (Remling and Veitayaki, 2016; Veitayaki and Holland, in press). Building capacity is essential to improve local understanding about the complexities involved in climate change and adaptation, as well as to help communities better prepare for the future. Such capacity should be built around practical discussions on receding shorelines and processes to rehabilitate coastal habitats and protect local forests, water catchment areas and food sources. Coastal communities in PICTs understand well that only a healthy environment can support their basic needs for food and clean water in the long term, and have drawn connections to broader environmental changes such as climate change (Remling and Veitayaki, 2016; Veitayaki, in press).

Citation

Please cite this document as:

The views expressed in this review paper do not represent the Commonwealth Marine Economies Programme, individual partner organisations or the Foreign and Commonwealth Office.

References

Bruckner, A.W., Coward, G., Bimson, K., Rattanawongwan, T. (2017) Predation by feeding aggregations of Drupella spp. inhibits the recovery of
reeds damaged by a mass bleaching event. *Coral Reefs* 36, 1181-1187.

Fabricius, K.E., Noonan, S.H.C., Abrego, D., Harrington, L., De’ath, G. (2017) Low recruitment due to altered settlement substrata as primary constraint

