UK Standards for Microbiology Investigations

Bile Solubility Test

Issued by the Standards Unit, Microbiology Services, PHE

Bacteriology – Test Procedures | TP 5 | Issue no: 3 | Issue date: 11.11.14 | Page: 1 of 13
Acknowledgments

UK Standards for Microbiology Investigations (SМИs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations-steering-committee).

The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content.

For further information please contact us at:

Standards Unit
Microbiology Services
Public Health England
61 Colindale Avenue
London NW9 5EQ
E-mail: standards@phe.gov.uk

Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories

UK Standards for Microbiology Investigations are produced in association with:

Logos correct at time of publishing.
Contents

ACKNOWLEDGMENTS .. 2
CONTENTS .. 3
AMENDMENT TABLE .. 4
UK STANDARDS FOR MICROBIOLOGY INVESTIGATIONS: SCOPE AND PURPOSE 5
SCOPE OF DOCUMENT ... 8
INTRODUCTION ... 8
TECHNICAL INFORMATION/LIMITATIONS ... 8
1 SAFETY CONSIDERATIONS ... 9
2 REAGENTS AND EQUIPMENT .. 9
3 QUALITY CONTROL ORGANISMS .. 9
4 PROCEDURE AND RESULTS ... 9
APPENDIX: BILE SOLUBILITY TEST ... 11
REFERENCES .. 12

NICE has accredited the process used by Public Health England to produce Standards for Microbiology Investigations. Accreditation is valid for 5 years from July 2011. More information on accreditation can be viewed at www.nice.org.uk/accreditation.

For full details on our accreditation visit: www.nice.org.uk/accreditation.
Amendment Table

Each SMI method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from standards@phe.gov.uk.

New or revised documents should be controlled within the laboratory in accordance with the local quality management system.

<table>
<thead>
<tr>
<th>Amendment No/Date.</th>
<th>6/11.11.14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue no. discarded.</td>
<td>2.3</td>
</tr>
<tr>
<td>Insert Issue no.</td>
<td>3</td>
</tr>
<tr>
<td>Section(s) involved</td>
<td>Amendment</td>
</tr>
<tr>
<td>Whole document.</td>
<td>Hyperlinks updated to gov.uk.</td>
</tr>
<tr>
<td>Page 2.</td>
<td>Updated logos added.</td>
</tr>
<tr>
<td>Introduction.</td>
<td>This section has been reviewed and updated with references.</td>
</tr>
<tr>
<td>Technical information/limitations.</td>
<td>This section has been updated with useful information on Bile Solubility testing.</td>
</tr>
</tbody>
</table>
UK Standards for Microbiology Investigations #:
Scope and Purpose

Users of SMIs

- SMIs are primarily intended as a general resource for practising professionals operating in the field of laboratory medicine and infection specialties in the UK.
- SMIs provide clinicians with information about the available test repertoire and the standard of laboratory services they should expect for the investigation of infection in their patients, as well as providing information that aids the electronic ordering of appropriate tests.
- SMIs provide commissioners of healthcare services with the appropriateness and standard of microbiology investigations they should be seeking as part of the clinical and public health care package for their population.

Background to SMIs

SMIs comprise a collection of recommended algorithms and procedures covering all stages of the investigative process in microbiology from the pre-analytical (clinical syndrome) stage to the analytical (laboratory testing) and post-analytical (result interpretation and reporting) stages.

Syndromic algorithms are supported by more detailed documents containing advice on the investigation of specific diseases and infections. Guidance notes cover the clinical background, differential diagnosis, and appropriate investigation of particular clinical conditions. Quality guidance notes describe laboratory processes which underpin quality, for example assay validation.

Standardisation of the diagnostic process through the application of SMIs helps to assure the equivalence of investigation strategies in different laboratories across the UK and is essential for public health surveillance, research and development activities.

Equal Partnership Working

SMIs are developed in equal partnership with PHE, NHS, Royal College of Pathologists and professional societies.

The list of participating societies may be found at https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories. Inclusion of a logo in an SMI indicates participation of the society in equal partnership and support for the objectives and process of preparing SMIs. Nominees of professional societies are members of the Steering Committee and Working Groups which develop SMIs. The views of nominees cannot be rigorously representative of the members of their nominating organisations nor the corporate views of their organisations. Nominees act as a conduit for two way reporting and dialogue. Representative views are sought through the consultation process.

SMIs are developed, reviewed and updated through a wide consultation process.

#Microbiology is used as a generic term to include the two GMC-recognised specialties of Medical Microbiology (which includes Bacteriology, Mycology and Parasitology) and Medical Virology.
Quality Assurance

NICE has accredited the process used by the SMI Working Groups to produce SMIs. The accreditation is applicable to all guidance produced since October 2009. The process for the development of SMIs is certified to ISO 9001:2008.

SMIs represent a good standard of practice to which all clinical and public health microbiology laboratories in the UK are expected to work. SMIs are NICE accredited and represent neither minimum standards of practice nor the highest level of complex laboratory investigation possible. In using SMIs, laboratories should take account of local requirements and undertake additional investigations where appropriate. SMIs help laboratories to meet accreditation requirements by promoting high quality practices which are auditable. SMIs also provide a reference point for method development.

The performance of SMIs depends on competent staff and appropriate quality reagents and equipment. Laboratories should ensure that all commercial and in-house tests have been validated and shown to be fit for purpose. Laboratories should participate in external quality assessment schemes and undertake relevant internal quality control procedures.

Patient and Public Involvement

The SMI Working Groups are committed to patient and public involvement in the development of SMIs. By involving the public, health professionals, scientists and voluntary organisations the resulting SMI will be robust and meet the needs of the user. An opportunity is given to members of the public to contribute to consultations through our open access website.

Information Governance and Equality

PHE is a Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions.

The development of SMIs are subject to PHE Equality objectives https://www.gov.uk/government/organisations/public-health-england/about/equality-and-diversity. The SMI Working Groups are committed to achieving the equality objectives by effective consultation with members of the public, partners, stakeholders and specialist interest groups.

Legal Statement

Whilst every care has been taken in the preparation of SMIs, PHE and any supporting organisation, shall, to the greatest extent possible under any applicable law, exclude liability for all losses, costs, claims, damages or expenses arising out of or connected with the use of an SMI or any information contained therein. If alterations are made to an SMI, it must be made clear where and by whom such changes have been made.

The evidence base and microbial taxonomy for the SMI is as complete as possible at the time of issue. Any omissions and new material will be considered at the next review. These standards can only be superseded by revisions of the standard, legislative action, or by NICE accredited guidance.

SMIs are Crown copyright which should be acknowledged where appropriate.
Suggested Citation for this Document

Scope of Document

The test is used specifically to presumptively differentiate between *Streptococcus pneumoniae* (bile soluble) and other α-haemolytic streptococci (not bile soluble).

This SMI should be used in conjunction with other SMIs.

Introduction

The bile solubility test is used to determine the ability of bacterial cells to lyse in the presence of bile salts, within a specified time and temperature. *S. pneumoniae* possesses an autolytic enzyme, an amidase, which lyses the cell’s own wall during division. The addition of bile salts (sodium deoxycholate) activates the autolytic enzyme and the organisms rapidly autolyse. Other α-haemolytic streptococci do not possess such an active system and therefore do not dissolve in bile.

The bile solubility test may be performed in two different ways: using a cell suspension or by applying the Bile solubility Reagent directly to the colony.

Technical Information/Limitations

The test should not be performed on old cultures, as the active enzyme may be lost but rather on young, viable cells. Therefore, colonies resembling *S. pneumoniae* which are not bile soluble should be further identified using another method.

Additional tests are recommended for incompletely lysed strains of *S. pneumoniae*.

Normal autolysis of *S. pneumoniae* may be inhibited by a high concentration of bile salts being used. Evaporation may cause the reagent to become more concentrated, therefore affecting the test.

When performing the bile solubility tube test using saline or unbuffered broth, it is essential to adjust the pH to neutral before adding the reagent in order to avoid false negative reactions.

When testing using the plate method, care must be taken not to dislodge the colony being tested, therefore leading to false positive results. Place a drop of the Bile Solubility Reagent on the chosen circled colony.

Care should be taken when working with colonies which are not mucoid as they may give false negative results using the direct colony method.
1 Safety Considerations

Refer to current guidance on the safe handling of all organisms and reagents documented in this SMI.

All work likely to generate aerosols must be performed in a microbiological safety cabinet.

The above guidance should be supplemented with local COSHH and risk assessments.

Compliance with postal and transport regulations is essential.

2 Reagents and Equipment

Colony procedure: 2% solution of sodium deoxycholate in water and pure colonies on either a blood or chocolate agar plate.

Broth procedure: 10% solution of sodium deoxycholate in water and 0.85% solution of sodium chloride in water.

Bacteriological straight wire/loop (preferably nichrome) or disposable alternative.

3 Quality Control Organisms

Positive Control
Streptococcus pneumoniae NCTC 12977

Negative Control
Streptococcus mitis NCTC 10712

Note: These strains have been validated by NCTC to give this result.

4 Procedure and Results

4.1 Colony procedure

- This method works well on large or mucoid colonies, results on other colonies may be more subjective
- Select a well-isolated single colony from a blood or chocolate agar plate. Circle the colony on the bottom of the Petri dish. This will help locate it after testing
- Place one drop of 2% sodium deoxycholate directly on the colony. Incubate at 37°C for up to 30 min. Do not invert the plate. The lid may be left slightly ajar to aid evaporation
- When the reagent has dried examine the area for lysis or disintegration of the original colony

Positive Result

Disintegration of the colony and/or the appearance of a haemolytic zone in the medium where the colony was located
Negative Result
No change

4.2 Broth procedure

- Prepare a heavy suspension of a pure culture in 1.0mL of 0.85% saline.
- Divide the suspension between two tubes (one test and one control).
- Add 0.5mL of 10% sodium deoxycholate to the test suspension and 0.5mL of 0.85% saline to the control.
- Gently mix both suspensions and incubate at 37°C for up to 15 min.
- Examine for evidence of clearing of turbidity in the tube marked test compared with the saline control.

Positive Result
Suspension clears in tube labelled test and remains turbid in control tube.

Negative Result
Suspension remains turbid in both tubes

Note: Partial clearing (partial solubility) is not considered positive for *S. pneumoniae* identification.
Appendix: Bile Solubility Test

Large or mucoid colony from pure culture

Broth procedure

Prepare a heavy suspension of a pure culture in 1.0mL of 0.85% saline. Split evenly into two tubes

Add 0.5mL of 10% sodium deoxycholate (test)

Add 0.5mL of 0.85% saline (control)

Mix and Incubate at 37°C for 15 min at the same time

Positive Suspension clears

Negative Suspension remains turbid

Colony procedure

Place one drop of 2% sodium deoxycholate directly on colony

Inoculate at 37°C for up to 30 min

Examine plate

Positive Colony lysed or disintegrated

Negative No change

Note:

Positive Control: *Streptococcus pneumoniae* NCTC 12977

Negative Control: *Streptococcus mitis* NCTC 10712

The flowchart is for guidance only.
References

3. European Parliament. UK Standards for Microbiology Investigations (SMIs) use the term "CE marked leak proof container" to describe containers bearing the CE marking used for the collection and transport of clinical specimens. The requirements for specimen containers are given in the EU in vitro Diagnostic Medical Devices Directive (98/79/EC Annex 1 B 2.1) which states: "The design must allow easy handling and, where necessary, reduce as far as possible contamination of and leakage from the device during use and, in the case of specimen receptacles, the risk of contamination of the specimen. The manufacturing processes must be appropriate to these purposes".

