

Decommissioning Programmes

Draft for Consultation

Jacky Wellhead Platform

Subsea Installation and Associated Pipelines

Document Control

Approvals

Document ID		ITH-JKY-DCOM-PLN-001	
	Name	Signature	Date
Prepared by	S. Scott	Stand forth	11/11/2016
Reviewed by	S. Finch	SACIL	7/04/2017
Approved by	J. Airnes	Atom.	11/04/2017
Updated by	J Gordon	JEH .	21/12/2017
Reviewed by	J Ogilvie	phy gru	21/12/2017
Approved by	A Bertram	Mon	21/12/2017

Revision Control

Revision No	Reference	Changes/Comments	Issue Date
0	Develop outline programme	Incorporate CA feedback	06/10/2016
A1	First draft	Incorporate comments from internal/external review, ES and CA updates	24/03/2017
A2	Draft to BEIS	Review	10/04/2017
А3	Consultation	Updated further to BEIS comments	28/07/2017
A4	Final draft	Updated further to BEIS comments	21/12/2017
A5		Updated further to BEIS comments	
C1	Issued for Use		

Distribution List

Name	Company	No of Copies
Helen McArthur	BEIS	1
A Piggott	The National Federation of Fishermen's Organisation	1
J Watt	Scottish Fishermen's Federation	1
R James	Northern Irish Fish Producers Organisation	1
J Wrottesley	Global Marine Systems Limited	1

INST =	= Installations P/L = Pipelines	Page Number	INST	P/L
Conte	Contents			
1.	Table of Terms and Abbreviations	5	✓	✓
2.	Table of Figures and Tables	6	✓	✓
3.	Table of Appendices	7	✓	✓
1.0	Executive Summary	8		
1.1	Combined Decommissioning Programmes	8	✓	✓
1.2	Requirement for Decommissioning Programmes	8	✓	✓
1.3	Introduction	8	✓	✓
1.4	Overview of Installations/Pipelines Being Decommissioned	9	✓	✓
1.5	Summary of Proposed Decommissioning Programmes	10	✓	✓
1.6	Field Location Including Field Layout and Adjacent Facilities	11	✓	✓
1.7	Industrial Implications	13	✓	✓
2.0	Description of Items to be decommissioned	13		
2.1	Installations: Surface Facilities – Jacky Wellhead Platform	13	✓	
2.2	Installations: Subsea Including Stabilisation Features	15	✓	
2.3	Pipelines: Including Stabilisation Features	16		✓
2.4	Wells	18	✓	
2.5	Drill Cuttings	18	✓	
2.6	Inventory Estimates	18	✓	✓
3.0	Removal and Disposal Methods	20		
3.1	Topsides	20	✓	
3.2	Monopile/Jacket Decommissioning Overview	22	✓	
3.3	Installations: Subsea and Stabilisation Features	24	✓	
3.4	Pipelines	24		✓
3.5	Pipeline Stabilisation Features	26		✓
3.6	Wells	26	✓	
3.7	Drill Cuttings	27	✓	

INST =	Installations P/L = Pipelines	Page Number	INST	P/L
3.8	Waste Streams	28	✓	✓
4.0	Environmental Impact Assessment (Environmental Statement)	30		
4.1	Environmental Sensitivities (Summary)	30	✓	✓
4.2	Potential Environmental Impacts and their Management	33	✓	✓
5.0	Interested Party Consultations	35	✓	✓
6.0	Programme Management	36		
6.1	Project Management and Verification	36	✓	✓
6.2	Post-Decommissioning Debris Clearance and Verification	36	✓	✓
6.3	Schedule	37	✓	✓
6.4	Costs	38	✓	✓
6.5	Close Out	38	✓	✓
6.6	Post-Decommissioning Monitoring and Evaluation	38	✓	✓
6.7	Management of Residual Liability	38	✓	✓
7.0	Supporting Documents	39	✓	✓
8.0	Partner Letter of Support	40	✓	✓

Terms and Abbreviations

Abbreviation	Explanation
BEIS	Department for Business, Energy and Industrial Strategy
CA	Comparative Assessment
СоР	Cessation of Production
CSV	Construction Support Vessel
DCR	Design and Construction Regulations 1996
DSV	Diving Support Vessel
EIA	Environmental Impact Assessment
ES	Environmental Statement
ESP	Electrical Submersible Pump
GMS	Global Marine Systems Limited
GOR	Gas Oil Ratio
HLV	Heavy lift Vessel
HSE	Health and Safety Executive
IPR	Interim Pipeline Regime
LAT	Lowest Astronomical Tide
LSA	Low Specific Activity
MEG	Monoethylene Glycol
MLT	Mid Line Tee
MODU	Mobile Offshore Drilling Unit
MPA	Marine Protected Areas
NFFO	The National Federation of Fishermen's Organisations
NIFPO	The Northern Ireland Fish Producer's Organisation
NORM	Naturally Occurring Radioactive Material
NUI	Normally Unattended Installation
OGA	Oil and Gas Authority
OGUK	Oil & Gas United Kingdom
OSPAR	Oslo and Paris Commission
OIW	Oil in Water
P and A	Plug and Abandon
PETS	Portal Environmental Tracking System
PMT	Project Management Team
PON	Petroleum Operations Notice

Abbreviation	Explanation
PPL	Polypropylene
PWA	Pipeline Works Authorisation
SFF	The Scottish Fishermen's Federation
SAC	Special Areas of Conservation
SCI	Site of Community Importance
SPA	Special Protection Areas
te	Tonne
UKCS	United kingdom Continental Shelf
WBM	Water Based Mud
WI	Water Injection

Figures and Tables

Figure No.	Description	Page
1.1	Jacky Field Location in UKCS	11
1.2	Jacky Field Layout	12
1.3	Adjacent Facilities	13
2.1	Jacky Wellhead Plaform	14
2.2	Jacky Mid line T Structure	15
2.6.1	Pie Chart of Installations Inventory Estimates	19
2.6.2	Pie Chart of Pipelines Inventory Estimates	19
3.0	Ithaca Waste Hierarchy	20
3.1	Jacky Topsides	22
3.2	Jacky Monopile, Base and Suction Piles	23
3.8.1	Pie Chart Installations Inventory Disposition	29
3.8.2	Pie Chart Pipelines Inventory Disposition	29
6.1	Gantt Chart of Project Plan	37
Table No.	Description	Page
1.1	Installations Being Decommissioned	9
1.2	Installation Section 29 Notice Holder Details	9
1.3	Pipelines Being Decommissioned	9
1.4	Pipeline Section 29 Notice Holder Details	10
1.5	Summary of Decommissioning Programmes	10
1.6	Adjacent Facilities	12
2.1	Surface Facilities Information	13

Table No.	Description	Page
2.2	Subsea Installations and Stabilisation Features	15
2.3	Pipelines/Umbilical Information	16
2.4	Subsea Pipelines Stabilisation Features	17
2.5	Well Information	18
2.6	Drill Cuttings Piles Information	18
2.7	Installations Inventory Estimates	18
2.8	Pipelines Inventory Estimates	19
3.1	Cleaning of Topsides for removal	21
3.2	Topsides Removal Method	21
3.3	Jacket removal Method	22
3.4	Installations: Subsea and Stabilisation Features	24
3.5	Pipeline or Pipeline Groups Decommissioning Options	24
3.6	Outcomes of Comparative assessment	25
3.7	Pipeline Stabilisation Features	26
3.8	Well Plug and Abandonment	26
3.9	Drill Cuttings Decommissioning Options	27
3.10	Waste Stream Management Methods	28
3.11	Inventory Disposition	28
3.12	Re-use, Recycle and Disposal Aspirations for Material Recovered Onshore	28
4.1	Environmental Sensitivities	30
4.2	Environmental Impact Management	33
5.1	Summary of Stakeholder Comments	35
6.1	Provisional Decommissioning Programmes Costs	38
7.1	Supporting Documents	39

Appendices

Appendix	Description	Page
A.1	Public Notice	40
B.1	Pipeline Approaches at Jacky As Built Drawing	43
B.2	Pipeline Approaches at Mid Line T As Built Drawing	44
B.3	Pipeline Approaches at Beatrice Bravo As Built Drawing	45
B.4	Pipeline Approaches at Beatrice Alpha As Built Drawing	46
C.1	Waste Inventory	47

1.0 EXECUTIVE SUMMARY

1.1 Combined Decommissioning Programmes

This document contains two decommissioning programmes for each set of associated notices served under Section 29 of the Petroleum Act 1998. The Decommissioning Programmes are for:

- 2 Jacky Field Installations
- 5 Jacky Field Pipelines

1.2 Requirement for Decommissioning Programmes

In conjunction with public, stakeholder and regulatory consultation, the decommissioning programmes are submitted in compliance with national and international regulations and BEIS guidelines. The schedule outlined in this document is for a 7 year decommissioning project plan due to begin in 2017 with the detailed engineering for removal of the Jacky Wellhead Platform and associated subsea equipment.

Installations:

In accordance with the Petroleum Act 1998, the Section 29 notice holders of the Jacky Field (see Table 1.2) are applying to the Department for Business, Energy and Industrial Strategy for approval to decommission the installations detailed in Section 2.1 and 2.2 of this programme. (See also Section 8 - Partner Letter of Support).

Pipelines:

In accordance with the Petroleum Act 1998, the Section 29 notice holders of the Jacky Field pipelines (see Table 1.4) are applying to the Department for Business, Energy and Industrial Strategy for approval to decommission the pipelines detailed in Section 2.3 of this programme. (See also Section 8 – Partner Letter of Support).

1.3 Introduction

Jacky is a low GOR Oil reservoir lying in block 12/21c of the UK sector of the Central North Sea, and was proven by the drilling and testing of the 12/21c-6 appraisal well in May 2007. Jacky Field was developed as a tie back to the existing Beatrice Area facilities in 2008-09 when the appraisal well was re-entered and completed as production well (12/21c - J01) with first oil achieved in April 2009. Production ceased in 2014 due to declining rates and equipment failures (ESPs). The Cessation of Production notification was submitted in 2014 and approved on the 20th August 2014 by the Oil & Gas Authority.

The facilities in the Jacky Field comprise the Jacky Wellhead Platform which is a normally unattended installation (NUI) positioned over the well locations with a topsides production tree and production manifold in 40m water depth. Production was exported through a platform riser and subsea pipeline to the Beatrice Alpha (AP) platform. The installation also included a water injection well (12/21c - J02) with facilities consisting of a water injection tree and header with injection water provided from Beatrice Alpha (AP) by subsea pipeline. A further appraisal well (12/21c - J03) was drilled and was suspended. There are also production and water injection spur pipelines via a mid-line tee structure which supported the Beatrice Bravo installation

Following public, stakeholder and regulatory consultation the decommissioning programmes will be submitted in full compliance with BEIS guidelines. The decommissioning programmes explain the principles of the removal activities and are supported by an environmental impact assessment. The decommissioning programmes for the pipelines and power cable are supported by a comparative assessment.

1.4 Overview of Installations/Pipelines Being Decommissioned

1.4.1 Installations

Table 1.1: Installations Being Decommissioned				
Field: Jacky		Production Type (Oil/Gas)	Oil & Gas	
Water Depth (m)	40m	40m UKCS block		
	Surface Installa	ations		
Number	Туре	Topsides Weight (Te)	Jacket including suction piles Weight (Te)	
1	Wellhead Platform (NUI)	663	950	
Subsea I	Installations	Number of Wells		
Number	Туре	Platform Subsea		
1	Midline tee Structure including protection frame, Ballast weights, isolation valves and piping.	3	0	
Drill Cuttings piles		Distance to median	Distance from nearest UK coastline	
Number of Piles	Total Estimated volume (m ³)	km	km	
3	800	262	19	

Table 1.2 Installations Section 29 Notice Holders Details				
Section 29 Notice Holders Registration Number Equity Interest (%)				
DYAS UK LIMITED	04024945	47.5%		
ITHACA ENERGY (UK) LIMITED SC272009 52.5%				

1.4.2 Pipelines

Table 1.3: Pipelines Being Decommissioned				
Number of Pipelines / Umbilicals	4/1	(See Table 2.3)		

Table 1.4: Pipelines Section 29 Notice Holders Details					
Section 29 Notice Holders Registration Number Equity Interest (%)					
DYAS UK LIMITED	04024945	47.5%			
ITHACA ENERGY (UK) LIMITED	SC272009	52.5%			

1.5 Summary of Proposed Decommissioning Programmes

	Table 1.5: Summary of Decommissioning Programmes					
Selected Option	Reason for Selection	Proposed Decommissioning Solution				
1. Topsides						
Complete removal for reuse or recycling.	Possible re-use for similar development	Topsides facilities are flushed to remove hydrocarbons < 10mg/l. Topsides will be separated from monopile jacket by removing/cutting the bolts at the flange connection and lifting the topsides structure clear of the monopile jacket and placing on a barge for transportation onshore for reuse or recycling.				
2. Jackets						
Complete removal for possible re-use or recycling (Including suction piles)	Possible re-use for similar development	Monopile jacket and suction piles to be completely removed by reverse installation procedure. In the event of practical difficulties the regulator will be contacted and alternative methods discussed and agreed. Removal either by DSV or HLV and placing on a barge for transportation onshore for re-use or recycling.				
3. Subsea Installations						
Mid Line Tee structure, complete removal for reuse or recycling.	To remove all seabed structures and leave a clean seabed. Complies with OSPAR requirements	Mid Line Tee structure including protection frame and piping is flushed <10mg/l. OIW. Tie in spools will be disconnected and the structure to be completely removed in a single lift by CSV and returned onshore for reuse or recycling.				
4. Pipelines, Flowlines	& Umbilicals					
Full or partial removal of: 6" Production pipeline, including spur from MLT to Beatrice Bravo 8" WI pipeline, including spur from MLT to Beatrice Bravo 6" Power Cable	Minimal seabed disturbance, lower energy usage, reduced risk to personnel	The 6" production pipeline, including the spur from the MLT to Beatrice Bravo, 8" water injection pipeline including the spur from MLT to Beatrice Bravo and 6" Power Cable will be disconnected and left in situ, with the ends re-buried as indicated by the CA and recommended by the SFF. Surveys indicate pipelines and power cable will remain buried to > 1m depth. Degradation will occur over a long period within seabed sediment, not expected to represent a hazard to other users of the sea.				
5. Wells						
Abandon Wells in accordance with HSE DCR 1996 and OGUK Guidelines for the Suspension and Abandonment of Wells Issue 5 July 2015.	Meets BEIS and HSE regulatory requirements	Jacky wells will be plugged and abandoned using a jack up drilling rig. A PON5, Marine Licence and PETS will also be submitted to BEIS for application to abandon the wells.				

Selected Option Reason for Selection Proposed Decommissioning Solution					
	Reason for Selection	Proposed Decommissioning Solution			
6. Drill Cuttings					
Leave in place to degrade	Cuttings piles are small from	Left undisturbed on seabed to disperse naturally.			
naturally	top hole section only and				
drilled with WBM, cuttings					
	have dispersed around each				
	wellhead and fall below both				
	of OSPAR 2005/6 thresholds				
7. Interdependencies					
Topsides, wellheads, pipeli	ne tie in spools and MLT can or	nly be removed after well P and A. Tie in spools at both			
Beatrice AP and Bravo require removal prior to the jacket decommissioning for these assets.					

1.6 Field Location Including Field Layout and Adjacent Facilities

Figure 1.1: Jacky Field Location in UKCS

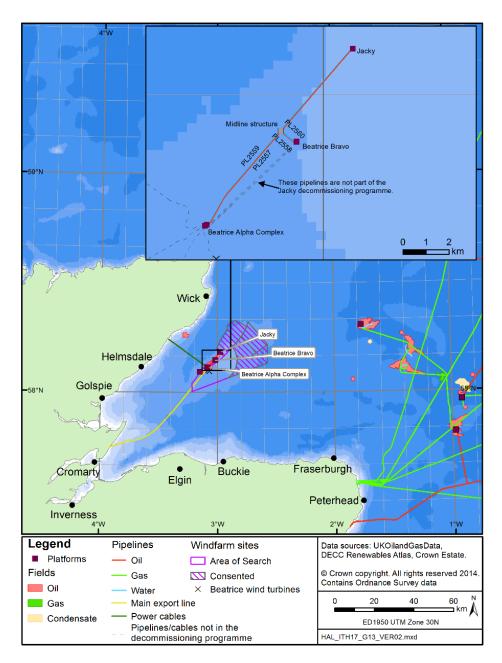
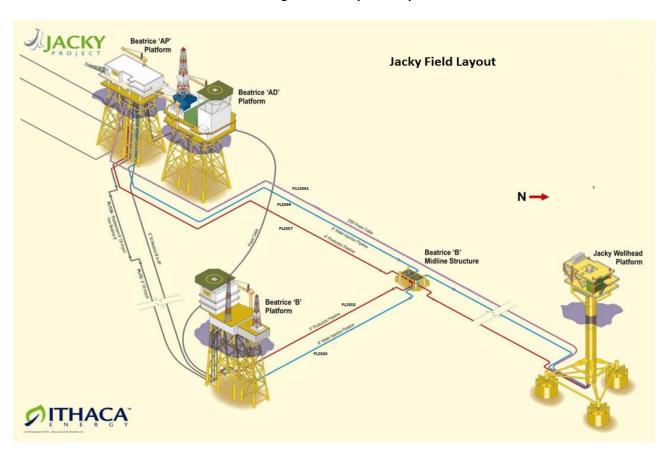



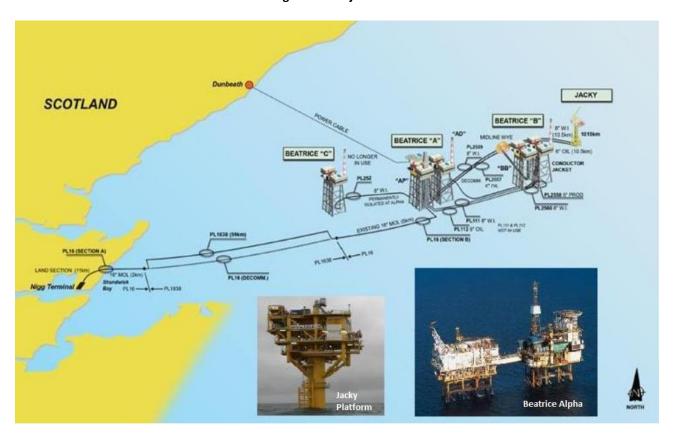
Figure 1.2: Jacky Field Layout

	Table 1.6 List of Adjacent Facilities							
Owner	Name	Туре	Distance/Direction	Information	Status			
Repsol Sinopec	Beatrice Alpha	Platform	10km South West	Gas/liquids Production	Out-of-use			
	Beatrice Bravo	Platform	6km South	Gas/liquids Production	Out-of-use			
	Beatrice Charlie	Platform	15km South West	Water Injection	Out-of-use			
	Beatrice Wind Turbines	Wind Turbines	10km South West	Power supply	Out-of-use			

Impacts of Decommissioning Proposals

Jacky pipelines and power cable cross over Bravo redundant pipelines and the Bravo power supply cable.

Beatrice complex decommissioning activity may be in progress during planned Jacky decommissioning.


Beatrice offshore windfarm installation activity may be in progress during planned Jacky decommissioning.

Moray offshore windfarm installation activity may be in progress during planned Jacky decommissioning.

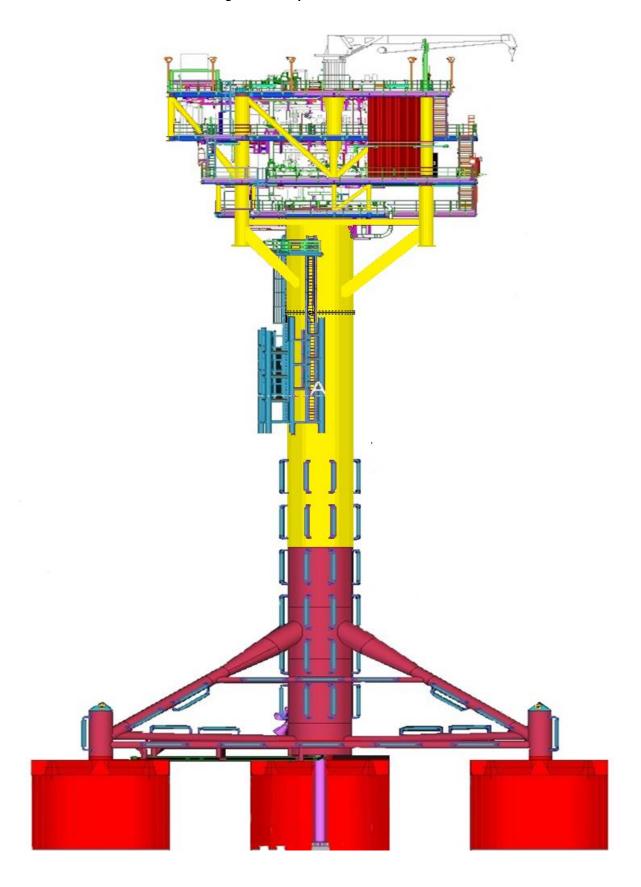
Ithaca has commenced disussions with the Beatrice operators — Repsol and both Wind Farm companies to identify any potential collaboration opportunities. All parties have agreed to continue discussions and keep each other appraised of activities in the area.

Figure 1.3: Adjacent Facilities

1.7 Industrial Implications

The work to decommission the Jacky Field installation and pipelines will be largely completed from a Diving Support Vessel (DSV) or a Heavy Lift Vessel (HLV). Well plug and abandonment operations will be completed using a jack up drilling rig.

It is Ithaca's intention to use existing framework agreements for the decommissioning of the subsea installations and stabilisation features. Ithaca will also seek to combine Jacky decommissioning activities with other development or decommissioning works should the opportunity be available. The decommissioning schedule is comprised to provide flexibility within the programme.


2. Description of Items to be decommissioned

2.1 Installations: Surface Facilities – Jacky Wellhead Platform

	Table 2.1: Surface Facilities Information									
				Topsides/Facilities		Jacket				
Name	Facility Type	Location		Weight (Te)	No of modules	Weight (Te)	Number of legs	Number of piles	Weight of piles (Te)	
	Small	WGS84 Decimal	58.184° 2.980°	663	1	596	Mono pile	3 Suction Piles	354	
Jacky	fixed Steel	WGS84 Decimal Minute	58°11.037'N 2°58.794'W							

Figure 2.1 Jacky Wellhead Platform

2.2 Installations: Subsea including Stabilisation Features

	Table 2.2: Subsea Installations and Stabilisation Features						
Subsea installations including Stabilisation Features	Number	Size/Weight (Te)	Location		Location Com		Comments/Status
Midline Tee Structure including protection frame. Ballast weights	4	11.5m x 8m x 2.6m Total 75te 4 x 3.14te Total 12.56te	WGS84 Decimal WGS84 Decimal Minute	58.152° 3.033° 58° 09.096'N 03° 01.986'W	Production lines flushed with treated seawater to <20mg/l OIW. Midline tee structure will be disconnected, recovered and returned onshore for re-use or recycling. (Including ballast weights)		
Concrete mattresses	N/A						
Grout bags	N/A						
Frond Mats	28	140kg each 4te	WGS84 Decimal	58.184° 2.980°	Exposed		
			WGS84 Decimal Minute	58°11.037′N 2°58.794′W			

Fig 2.2 Jacky Mid line T Structure

2.3 Pipelines Including Stabilisation Features

				Table 2.3: Pipel	lines/Umbilical I	nformation			
Description	Pipeline Number (as per PWA)	Diameter (inches)	Length (km)	Description of Component Parts	Product Conveyed	From – To End Points	Burial Status	Pipeline Status	Current Content
Production Pipeline	PL2557	6"	10.5	Rigid steel pipe with 40mm SPU insulation Midline tee structure	Oil; Gas	Jacky riser connection to Beatrice Alpha (AP) riser	Trenched and buried	IPR	Flushed <10mg/I OIW Treated sea water
Production Pipeline Spur	PL2558	6"	0.8	Rigid steel pipe with 40mm SPU insulation	Oil; Gas	Beatrice Bravo riser to Midline tee structure	Trenched & Buried	IPR	Flushed <10mg/I OIW Treated sea water
Water injection pipeline	PL2559	8"	10.5	Rigid steel pipe with 3 layers PPL Insulation Manifold	Treated sea water	Beatrice Alpha (AP) Riser to Jacky riser	Trenched and buried	IPR	Treated sea water
Water injection pipeline spur	PL2560	8"	0.8	Rigid steel pipe with 3 layers PPL Insulation	Treated sea water	Midline structure to Beatrice Bravo Riser	Trenched & Buried	IPR	Treated sea water
Power Cable	PLU2561	3"	10.5	Flexible armoured cable	Power	Beatrice Alpha (AP) to Jacky Wellhead Platform	Trenched and buried	Isolated	N/A

Table 2.4 Subsea Pipelines Stabilisation Features							
Stabilisation Feature	Total Number	Weight (Te)	Locations	Exposed/Buried/Condi tion			
Concrete mattresses	145	5te each 725te	Jacky wellhead platform, mid line T structure, Beatrice Bravo and Alpha approaches.	Exposed A total of 47 mattresses at the Jacky WHP (8), MLT (4) and Beatrice AP approaches (35) are buried under rock			
Grout bags	113	20kg each 2.3te	Jacky wellhead platform, midline tee structure, Beatrice Bravo and Alpha approaches.	Exposed			
Gabion bags	2	2te	Mid line T	Exposed			
Rock Dump	44	11882te	Jacky wellhead platform, midline tee structure, Beatrice Bravo and Alpha approaches.	Exposed			
Formwork	0	0	Not applicable	Not applicable			
Frond Mats	0	0	Not applicable	Not applicable			
Other: Power cable tether and clump weight	1	75te	Beatrice Alpha approach	Exposed			

2.4 Wells

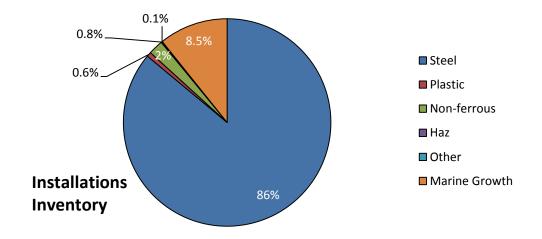
Table 2.5 Well Information					
Wells	Designation	Status	Category of Well		
12/21c - J01	Oil/Gas Production	Shut in	PL 3/3/3		
12/21c - J02	Water Injection	Shut in	PL 3/3/3		
12/21c - J03	Suspended	Shut in	PL 3/3/3		

For details of well categorisation see OGUK Guidelines for the Suspension or Abandonment of Wells Issue 5, July 2015

2.5 Drill Cuttings

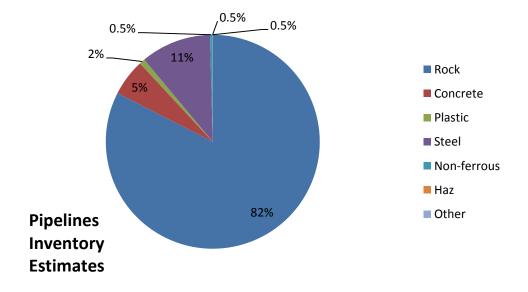
(See Section 3.7 for further information)

Table 2.6 Drill Cuttings Piles Information						
Wells	Location of Pile Centre (Latitude/Longitude)				Seabed Area (m²)	Estimated volume of cuttings (m ³)
12/21c-J01	58.184° 2.980°	58°11.037′N 2°58.794′W	28	231		
12/21c-J02	58.184° 2.980°	58°11.037′N 2°58.794′W	32	268		
12/21c-J03	58.184° 2.980°	58°11.037′N 2°58.794′W	36	301		


Note: Drill cuttings from water based mud for each well top hole sections, cuttings from lower sections were drilled using oil based mud and were disposed of onshore therefore no oil release potential possible.

2.6 Inventory Estimates

Table 2.7 Installations Inventory Estimates					
Material	Mass (te)	Material	Mass (te)		
Steel	1644	Rubber	1		
Aluminium	26	PCBs	None		
Stainless Steel	4	Residual oils	0.05kg		
Copper	9	Other	1*		
Lead	1	Paint	1**		
Zinc	1	Marine growth	205		
Plastics	11	Mercury	0.012kg		
Rockwool	1	Hazardous	3		
* Butyl Rubber, Ceramics, CFCs, Sulphuric acid and wood. ** Estimate		Total	1909		


Figure 2.6.1 Pie Chart of Installations Inventory Estimates

Total Tonnage = 1909te

Table 2.8 Pipelines Inventory Estimates			
Material	Mass (te)	Material	Mass (te)
Steel	1534	Rock	11884
Aluminium	1	Concrete	802
Copper	54	Hazardous	2
Other non ferrous	1	Residual Oil	1kg
Plastics	122	Paint	1*
*Estimate		Total	14401

Figure 2.6.2 Pie Chart of Pipelines Inventory Estimates

Total Tonnage 14401te

3.0 Removal and Disposal Methods

Potential for reuse of the Jacky wellhead platform and mid line tee structures are being actively pursued.

Wastes generated during decommissioning will be segregated and recorded by type and periodically transported onshore to licensed waste contractors. Steel and other recyclable metals are estimated to account for the greatest proportion of the materials inventory.

Ithaca has adopted a waste hierarchy that aligns with the principles of the EU Waste Framework Directive and associated legislation, see figure 3.0 for details. With the "reduce" option unavailable at this stage in the Jacky development, in line with the waste hierarchy, the re-use of an installation (or parts thereof) is therefore first in the order of preferred disposal options considered.

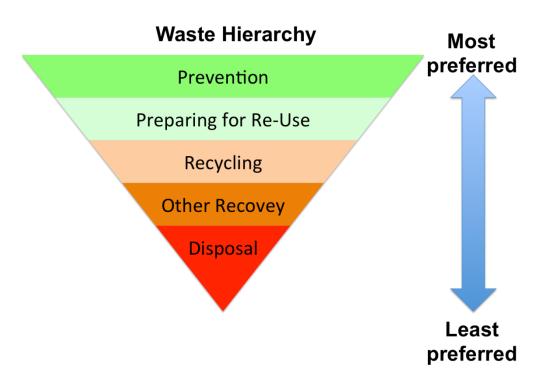


Fig 3.0 Ithaca Waste Hierarchy

The subsea production equipment is relatively modern and it may be possible to re-use elsewhere.

3.1 Topsides decommissioning Overview

The Jacky WHP is a normally unmanned tripod platform with a central column platform. It is positioned over the well location with a topsides tree and production manifold, see figure 3.1 for illustration.

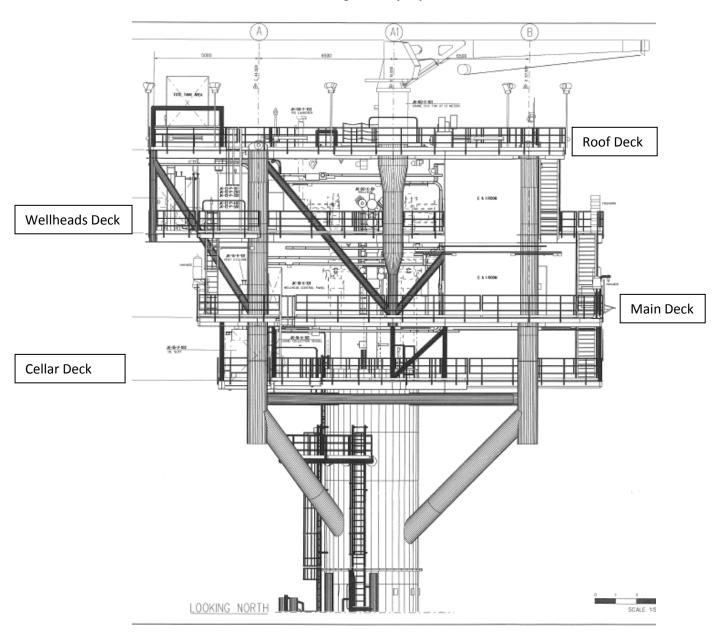
In preparation for CoP the topsides production pipework was flushed with treated seawater to <10mg/ml OIW content.

All chemicals and hydraulic fluids were decanted and sent onshore for disposal at a licensed site.

Table 3.1 Cleaning of Topsides for Removal		
Waste Type	Composition of Waste	Disposal Route
Onboard Hydrocarbons	Process Fluids	Hydrocarbons were removed during pipeline flushing to Beatrice Alpha for processing.
Other Hazardous Materials	Chemicals and Lubricants	Chemicals and lubricants were flushed, decanted and transported to Nigg Oil Terminal for treatment and disposal. NORM is not expected, if present will be disposed of in accordance with the appropriate permit.
Original paint coating		May cause toxic fumes/dust if cutting/blasting or grinding. Appropriate safety measures will be employed. Painted items will be disposed of onshore with consideration given to any toxic components.
Asbestos and ceramic fibre	<u> </u>	Ceramic fibre will be disposed of via an appropriately licenced waste management contractor

Removal methods: the topsides will be completely removed and returned to shore. Possible methods of removal are outlined in Table 3.2.

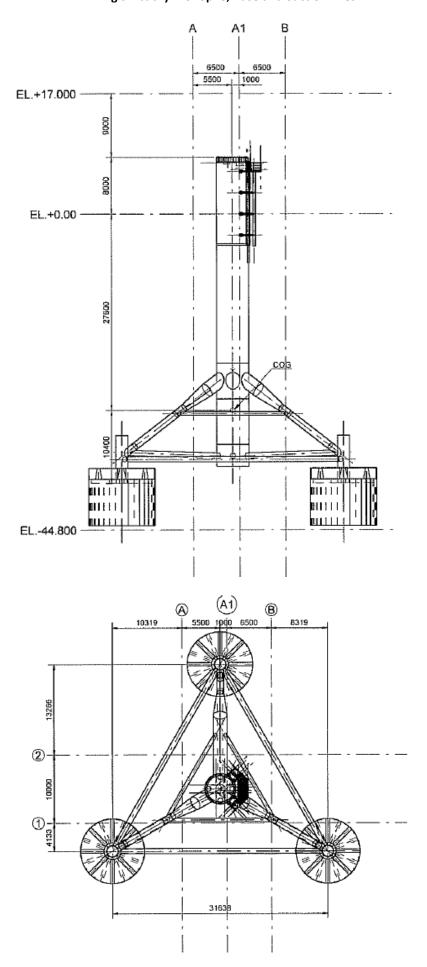
Table 3.2 Topsides Removal Method


1) Semi-Submersible Crane vessel ☑; 2) Monohull Crane Vessel ☑; 3) Sheer Leg Vessel ☑; 4) Jack up Work Barge ☑;

5) Piece small or large ☑; 6) Complete with jacket ☑;

Proposed Method	Description
onshore.	Single lift removal by HLV/ barge Removal of topsides separately as complete unit and transportation to onshore for preparation for re-use or recycling. A final decision on the disposal route will be made following a commercial tendering process.

Fig 3.1 Jacky Topsides


3.2 Monopile/Jacket Decommissioning Overview

In preparation for CoP the production riser was flushed with treated seawater to <10mg/ml OIW content.

	Table 3.3 Jacket Removal Method		
1) Semi-Submersible Crane vessel ☑; 2) Monohull Crane Vessel ☑; 3) Sheer Leg Vessel ☑; 4) Jack up Work Barge ☑; 5) Piece small or large ☑; 6) Complete with jacket ☑;			
Proposed Method	Description		
onshore.	Single lift removal by HLV/ barge. Removal of monopile jacket by reverse installation, will be recovered complete with the suction piles and transported onshore for preparation for re-use or recycling. The top of the monopile is rigged to the crane and the suction piles are released by pumping water into the top of each can. The removal of the suction piles is not expected to result in either large depressions in, or mounds on, the seabed, with only minimum seabed disturbance expected Refer to section 3 of the EIA for full explanation. A final decision on the disposal route will be made following a commercial tendering process.		

Fig 3.2 Jacky Monopile, Base and Suction Piles

3.3 Installations: Subsea and Stabilisation Features

Table 3.4: Installations: Subsea and Stabilisation Features			
Subsea installations and stabilisation features	Number	Option	Disposal Route (if applicable)
Well completions including ESP's, Cables, Tubing and top 4.5m section of casings.	3	Fully recovered (UK) as part of MODU (Jack up) campaign to P and A wells	Return to shore for re-use or recycling. Destination will be dependant on contracts.
Midline Tee Structure including ballast weights.	1	Fully Recovered (UK)	Return to shore for re-use or recycling. Destination will be dependant on contracts.
Template	n/a		
Wellhead protection structure	n/a		
Tree	n/a		
Concrete mattresses	n/a		
Sand and grout bags	n/a		
Formwork	n/a		
Frond Mats	28	Fully recovered (UK) It is intended that the frond mats be recovered to shore, however in the event of practical difficulties BEIS will be consulted and a comparative assessment submitted.	Recover to onshore for re- use or recycling. Destination will be dependant on contracts.
Rock emplacement	n/a		
Other	n/a		

3.4 Pipelines

Decommissioning Options:

*Key to Options:

Remove - reverse reeling
 Remove - Reverse S lay
 Remedial removal
 Remedial trenching
 Partial Removal
 Leave in place
 Other
 Remedial rock-dump

Table 3.5 Pipeline or Pipeline Groups Decommissioning Options				
Pipeline or Group (as per PWA)	Condition of line/group (Surface laid/Trenched/ Buried/ Spanning)	Whole or part of pipeline/group	Decommissioning Options* considered	
PL2557	Trenched/Buried	Whole	1,4,5,6,9	
PL2558	Trenched/Buried	Whole	1,4,5,6,9	
PL2559	Trenched/Buried	Whole	1,4,5,6,9	
PL2560	Trenched/Buried	Whole	1,4,5,6,9	
PLU2561	Trenched/Buried	Whole	1,4,5,6,9	

Comparative Assessment Method:

Ithaca developed a framework for conducting a Comparative Assessment using qualitative and quantitative data to evaluate the alternative decommissioning options outlined in table 3.5. This framework draws from OSPAR 98/3 and BEIS's Decommissioning guidance. A methodology and scoring system was used to assess the relative performance of each of the potential decommissioning options for the pipelines and power

ITH-JKY-DCOM-PLN-0001 Rev. A5 Page 24 of 50

cable, with results presented in the Matrix in Appendix A and discussed in Section 6 of the Jacky Decommissioning Comparative Assessment.

Initially all decommissioning options were considered at a screening meeting to establish potential options to consider for risk assessment: Options 2, 3, 7 & 8 were discounted during screening as unsuitable as discussed in the CA report.

The assessment workshop objectives were to assess the technical feasibility and risk of major operations failure for all identified decommissioning options for the associated pipelines.

The list below contains the options considered during the multidisciplinary assessment workshop consisting of experienced in house and external participants.

- 1) Remove reverse reeling
- 4) Remedial removal
- 5) Remedial Trenching
- 6) Partial Removal
- 9) Remedial rock-dump

Outcome of Comparative Assessment:

Following the above exercise the table below catalogues the preferred options for the decommissioning of the pipelines.

Table 3.6: Outcomes of Comparative Assessment			
Recommended Option*	Justification		
6	Sections between Jacky – Mid Line T and Alpha are trenched and buried, (to > 0.6.m) with rock dump and will be left in situ. All exposed tie-in spools matresses and grout bags will be disconnected/recovered and removed by crane to DSV or support vessel and returned onshore for re-use or recycling (where possible) or disposal. Pipeline ends will be buried, (to > 0.6m). This will cause some minor disturbance to the seabed local to the removal site, however the environmental effect is judged to be minimal. Alpha riser will be removed with the jacket by Repsol Sinopec.		
6	Section between Mid Line T and Bravo is trenched and buried (to > 06.m) with rock dump and will be left in situ. All exposed tie-in spools matresses and grout bags will be disconnected/recovered and removed by crane to DSV or support vessel and returned onshore for recycling (where possible) or disposal. Pipeline ends will be buried (to > 0.6m). This will cause some minor disturbance to the seabed local to the removal site, however the environmental effect is judged to be minimal. Bravo riser will be capped and will be removed with the jacket by Repsol Sinopec.		
6	Sections between Jacky – Mid Line T and Alpha are trenched and buried (to > 0.6m) with rock dump and will be left in situ. All exposed tie-in spools matresses and grout bags will be disconnected/recovered and removed by crane to DSV or support vessel and returned onshore for recycling (where possible) or disposal. Pipeline ends will be buried (to > 0.6m). This will cause some minor disturbance to the seabed local to the removal site, however the environmental effect is judged to be minimal. Alpha riser will be removed with the jacket by Repsol Sinopec.		
6	Section between Mid Line T and Bravo is trenched and buried (to > 0.6m) with rock dump and will be left in situ. All exposed tie-in spools matresses and grout bags will be disconnected/recovered and removed by crane to DSV or support vessel and returned onshore for recycling (where possible) or disposal. Pipeline ends will be buried (to > 0.6m). This will cause some minor disturbance to the seabed local to the removal site, however the environmental effect is judged to be minimal. Bravo riser will be removed with the jacket by Repsol Sinopec.		
	Recommended Option* 6 6		

Pipeline or Group	Recommended Option*	Justification
PLU2561	6	Power cable will be cut at both ends. The end sections along with the exposed matresses grout bags and tether/clump weight will be recovered to a CSV for return onshore for re-use or recycling (where possible) or disposal. The free ends will be buried > 0.6m and protected by repositioned rock dump.

3.5 Pipeline Stabilisation Features

Table 3.7 Pipeline Stabilisation Features				
Stabilisation features	Number	Option	Disposal Route	
Concrete mattresses	145	Fully recovered (UK) It is intended that the exposed mattresses be recovered to shore, however in the event of practical difficulties BEIS will be consulted and a comparative assessment submitted.	Recover onshore for recycling (where possible) or disposal.	
Grout bags	113	Fully recovered (UK) It is intended that the grout bags be recovered to shore, however in the event of practical difficulties BEIS will be consulted and a comparative assessment submitted.	Recover onshore for re-use recycling (where possible) or disposal.	
Gabion bags	2	Full recovered (UK) It is intended that the gabion bags be recovered to shore, however in the event of practical difficulties BEIS will be consulted and a comparative assessment submitted.	Recover onshore for re-use or recycling.	
Frond mats	20		N/A	
Rock Dump	11882te	To remain in place	N/A	
Other Power cable tether and clump wieght	1	Fully recovered (UK)	Recover onshore for re-use or recycling.	

3.6 Wells

Table 3.8: Well Plug and Abandonment

The Jacky field consists of one production well, one water injection well and one previously drilled well that is currently suspended. The wells which remain to be abandoned, are listed in Section 2.4 (Table 2.5) will be plugged and abandoned in accordance with HSE DCR 1996 and Oil and Gas UK Guidelines for Abandonment of Wells. Issue 5, July 2015.

A PON5/Portal Environmental Tracking System (PETS)/Marine Licence application will be submitted in support of any such work that is to be carried out.

3.7 Drill Cuttings

Drill Cuttings Decommissioning Options:

Table 3.9 Drill Cuttings Decomm	ssioning Optic	ons	
How many drill cuttings piles are present?			3
Tick options examined:			
☐ Remove and re-inject ✓ Leave in place ☐ Co	over \square Relocat	e on seabed	
✓ Remove and treat onshore ☐ Remove and treat offshore	\square Other		
Review of Pile characteristics	Pile 1	Pile 2	Pile 3
How has the cuttings pile been screened? Desktop exercise	Υ	Υ	Y
Dates of sampling (if applicable)	N/A	N/A	N/A
Sampling to be included in pre-decommissioning survey?	N	N	N
Does it fall below both OSPAR thresholds?	Υ	Υ	Υ
Will the drill cuttings pile have to be displaced in order to remove the jacket?	N	N	N
What quantity (m ³) would have to be displaced/removed?	N/A	N/A	N/A
Will the drill cuttings pile have to be displaced in order to remove any pipelines?	N	N	N
What quantity (m ³) would have to be displaced/removed?	N/A	N/A	N/A
Have you carried out a Comparative Assessment of options for the Cuttings Pile?	Υ	Υ	Y

Comparative Assessment Method:

The well programme for the Jacky field was developed to allow discharge of drill cuttings for the top hole sections only which were completed using water based mud. Lower hole sections that required oil based mud systems utilised a skip and ship regime. All lower hole sections completed had the drill cuttings removed to onshore for treatment and disposal

The discharged drill cuttings at each of the wellheads were from the top hole sections of the wells only which were completed using a water based mud. These piles do not contain any oil based mud cuttings and the piles have dispersed.

It was therefore accepted to consider the options to either to leave in place or remove and treat onshore.

Outcome of Comparative Assessment:

Given the evidence that localised repopulation by incumbent flora and fauna had effectively reclaimed the area. The decommissioning team chose the option to leave in place as this was considered the most environmentally friendly option.

3.8 Waste Streams

	Table 3.10 Waste Stream Management Methods		
Waste Stream	Removal and Disposal method		
Bulk liquids	Production system including pipelines, manifold and risers are flushed with treated sea water <10mg/l OIW Pipeline ends will be capped and any residual fluids from within the subsea facilities will be released to the marine environment under permit prior to removal to shore. Further cleaning and decontamination will take place onshore prior to re-use/recycling.		
Marine growth	Removed offshore and disposed of according to BEIS guidelines. Residual marine fouling will be removed onshore at a recognised and certified disposal contractor's base. Disposed as waste according to SEPA guidelines.		
NORM/LSA	NORM is not expected, however NORM/Benzene checks will continue as part of the clean-		

ITH-JKY-DCOM-PLN-0001 Rev. A5

Scale	up/disposal process. Any NORM encountered will be dealt with and disposed of in accordance with guidelines.
Asbestos	N/A
Waste	
Other	Will be recovered to shore and disposed of according to guidelines, company policies and under
hazardous	the appropriate permit.
wastes	
Onshore	Appropriate licensed sites will be selected. Facility chosen by removal contractor must
Dismantling	demonstrate proven disposal track record and waste stream management throughout the
sites	deconstruction process and demonstrate their ability to deliver innovative recycling options.

	Table 3.11 Inventory Disposition							
Inventory	Total Inventory Planned Tonnage to Tonnage shore Planned Left in							
Installations	UK	1909	1756	155*				
Pipelines	UK	14403	639	13763**				

^{*} Assumed 75% of Marine growth removed during offshore cleaning is left in situ

All removed materials will be returned onshore for re-use or recycling. Ithaca actively pursued a possible re-use opportunity for some of the topsides , risers, monopile jacket (complete with suction piles) and the Mid Line T structure which is currently no longer considered viable however these will be revisited closer to actual disposal date.

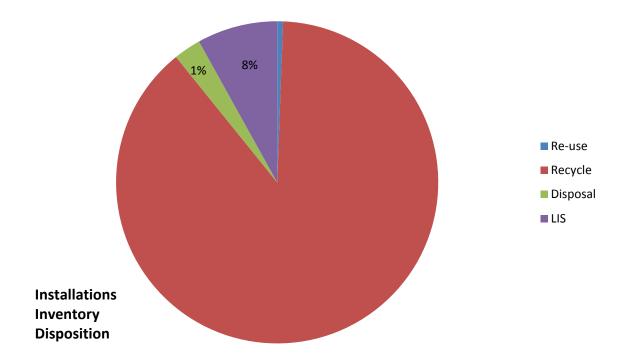
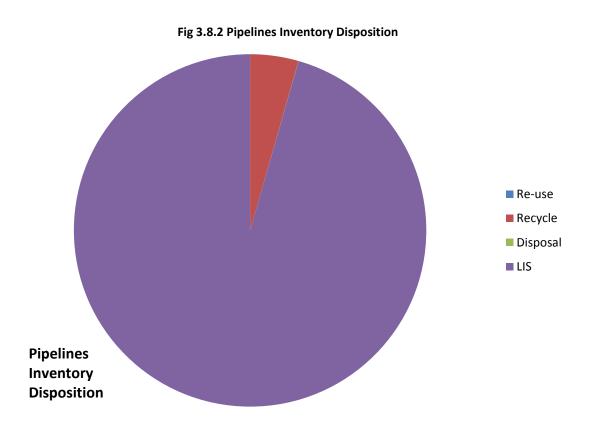

All recovered material will be transported onshore for re-use recycling or disposal. It is not possible to predict the quantity of materials that will be re-used as this will depend entirely on market conditions. The figures in Table 3.12 are best case.

Table 3.12 Re-use, Recycle & Disposal Aspirations for Material Recovered Onshore							
Inventory	Region Re-use Recycle Disposal						
Installations	UK (1,909 Tonnes)	Approx. 1%	Approx. 96%	3%			
Pipelines	UK (639 Tonnes)	Approx. 0%	Approx. 99.7%	0.3%			


Fig 3.8.1 Installations Inventory Disposition

^{**}Includes Rock Dump 11882te

Total Tonnage 1909te

Total Tonnage 14403te

4.0 Environmental Impact Assessment (Environmental Statement)

4.1 Environmental Sensitivities (Summary)

Table 4.1 Environmental Sensitivities						
Environmental Receptor	Main Features					
Conservation interests	The importance of the area for breeding seabirds, wintering and migratory water birds, marin mammals and other features is reflected in the number and variety of designated sites, prote under a variety of national, international and non-statutory provisions. The Inner Moray Firth has also been designated a marine SAC for the presence of bottlenose dolphin. (Year round importance).					
	It is possible that the Inner Moray Firth could be impacted should a large hydrocarbon release occur. However the likelihood of such an event is extremely low and the control and mitigation measures in place will minimise the impact therefore the residual risk to the area is low. No additional conservation management is required.					
Seabed	Seabed sediments at the Jacky installation and along the pipeline route are predominantly medium to coarse sand with shell fragments, but extensive patches of coarse sand, gravel, pebbles and shells are also present. The latter showed minor troughs and ridges, with bands of coarser sediment oriented approximately northwest to southeast. Moving southwest towards Beatrice, sediments in the slightly deeper water (>40m) consisted of medium to fine sand with shell fragments. Along the pipeline route, Station 3 showed a notably coarser substrate, with abundant pebbles and some cobbles. Three boulders/debris were found within 50m of the pipeline route; the closest being some 6.5km from the Jacky installation. The boulders/debris did not exceed 0.5m measurable height.					
	The pipelines and connections have been flushed with treated sea water, therefore only residual volumes of chemicals/hydrocarbons will be released and the quantities covered by permit. The potential impact on the marine environment will be small and changes to the chemical composition of the sediment are low. Impact on the seabed and its associated ecosystem will be short term with rapid recovery. An assessment of the potential impact on the seabed concluded that the significance of the impact is low.					
Fish	The Jacky installation overlaps or abuts reported spawning grounds of eight commercially important fish and shellfish species (cod, herring, lemon sole, plaice, sandeels, sprat, whiting and Nephrops) – see below for summary of periods of spawning. The area also overlaps or abuts reported nursery grounds of eight commercially important species (herring, haddock, lemon sole sprat, whiting, saithe, sandeels and Nephrops). Nursery ground for plaice are present throughout many of the coastal waters of the Moray Firth. These fish populations could be affected by chemical/hydrocarbon releases to the marine environment and of the increased noise. The pipelines and connections have been flushed with treated sea water, therefore only relatively small volumes of chemicals/hydrocarbons will be released and the quantities covered by permit. The potential impact on the fish population has been assessed as of low significance. Given the existing background noise levels and the relatively short duration of the decommissioning activities, the underwater noise levels generated by vessels are unlikely to lead to physiological damage to fish. While the fish may be disturbed by the noise generated in the immediate vicinity of the decommissioning area the noise will be short term and has been assessed as low significance. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	e, ıt				
	4 5 4 4 4 4 3 4 3 1 2 3	_				
	Key: 1 = 1 species spawning, 2 = 2 species spawning, 3= 3 species spawning					
Fisheries	Impacts on fishing industry have been assessed as low significance as the decommissioning activities will be relatively short term. The area will be over trawled to ensure there are no snag hazards post decommissioning. The safety exclusion zone at the wellhead platform will be removed on completion of the project, thereby returning the area available for fishing.					

Environmental Receptor	Y	Main Features											
Marine Mammals	white- bottler coasta the ou comm Given decom to phy may b	The Moray Firth area is important for bottlenose dolphin, harbour porpoise and to a lesser extent white-beaked dolphin and Minke whale. The area supports the only known resident population of bottlenose dolphin in the North Sea and although present year round, highest numbers are seen in coastal waters between May and September. Risso's dolphin and killer whale are also recorded in the outer Moray Firth area. The area also supports important breeding and haul out sites for common and grey seal and both species are likely traverse through the block. Given the existing background noise levels and the relatively short duration of the decommissioning activities, the underwater noise levels generated by vessels are unlikely to lead to physiological damage to marine mammals. While the cetaceans & pinnipeds sighted in the area may be disturbed by the noise generated in the immediate vicinity of the decommissioning area the noise will be short term and has been assessed as low significance.											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
		_		-									
					nonths w				•	•			
Birds	to sur winter suppor	face poing and rt a num	ollution I migra ober of oird vul	is very atory bir designa <i>nerabili</i> t	high the ds and detection to the detecti	roughou contains for their face pollu	the y import bird ass	rear. The tant feed semblage the prop	e region ding area es (breed oosed de	is imp as. The ling and velopm	ortant Moray d winter	ea:	ding, oasts
	accide diesel days. <i>I</i>	ntal lar release Althoug	ge rele occur, h birds	ase of h only sn could b	ydrocarb nall volur	ons. Oil nes can d the rel	spill mo be exp atively	odelling ected to short du	has show remain ration th	wn that on the at dies	should sea su	s would d a worst orface aft d be exp	case er 10
	Jan	Feb	М					ul Aug		Oct	Nov	Dec	
	ļ		ow – 5	Very Hig	gh.			5 5	5	5	5	5	
Other Users of the Sea	Key 1=Very Low – 5 Very High. The Jacky area lies within ICES rectangle 44E6 this area receives considerable fishing effort, primarily from demersal trawlers targeting Nephrops and demersal fish. In 2015, UK landings into Scotland from rectangle 44E6 were worth approximately £2.1m. Fishing effort fluctuates considerably between months and years, although effort seems to be greatest from Jun-Sep and Dec-Jan. Nine shipping routes pass within 10nm of the Jacky platform, although traffic density is low. The development overlaps one Air Force Department area, which may periodically be used for air combat training and high-energy manoeuvres. The Beatrice field contains the closest offshore energy production facilities to the proposed development; the Beatrice B/CSS platform lies 5km to the southwest, while the proposed pipeline route passes 800m northwest of the B/CSS platform and alongside water and oil pipelines before meeting the A platforms to the southwest. Two wind turbines lie 1.6 and 2.3km south-southeast of the Beatrice AP platform. The closest telecommunication cable to the proposed development lies approximately 24km to the east, and an electricity cable runs from the coast near Helmsdale to the Beatrice facility. There are no designated protected wrecks in the area, but several wrecks are known. There is potential for construction activities in the area with the Beatrice offshore windfarm and Moray offshore windfarm developments discussions with both parties are underway to identify any areas of collaboration to reduce vessel activity in the area. In addition decommissioning activities related to the Beatrice field may also provide areas for collaboration and discussions have commenced.							s into uates o and sity is used osest form f the o the cothe e are and entify					

	Table 4.1: Environmental Sensitivities												
Environmental Receptor		Main Features											
Other Users of the Sea	lacky area and there will be a higher than normal level of chinning activity. However the accociat						ociated						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
						hen fish							
Onshore Communities	The impact of the disposal of waste from the decommissioning activities on onshore communities would be slightly beneficial as it will contribute to job continuation. However this is expected to be small as the disposal sites already exist and the volume of waste is relatively small.												
Atmosphere	dilutior conduct vessels significations warmin	Generally conditions offshore provide an environment which leads to the rapid dispersion and dilution of any emissions to atmosphere. The majority of decommissioning activities will be conducted at the field location and emissions can mainly be attributed diesel fuel from the various vessels required. These are likely to be short term durations, highly localised and assessed as low significance. The emission of combustion gases will contribute to global effects (e.g. global warming and acid rain). However given the relatively small volume of gases to be emitted and the control and mitigation measures that will be implemented the significance of the impact is low.											

4.2 Potential Environmental Impacts and their Management

Environmental Impact Assessment Summary:

Overview: Although there is expected to be some environmental impact during the decommissioning of the Jacky infrastructure 12/21c. Long term environmental impacts from the decommissioning activities are expected to be negligible. In addition, incremental cumulative impacts and trans-boundary effects associated with the planned decommissioning activities are expected to be negligible. There will be no planned use of explosives during these activities. We acknowledge that there will be a requirement for an environmental protection plan to be produced and submitted to BEIS should this plan change.

	Table 4.2: Environmenta	tal Impact Management			
Activity	Main Impacts	Management			
Topsides Removal	Removal of the topsides will cause some localised environmental impact while the lifting and support vessels are active due to noise. This will be a short duration activity.	Removal is a reverse of the installation methodology. Minimal disturbance is caused to the surrounding areas, activities will be planned to be executed as efficiently as possible. Vessels will be manged to minimise the durations required while on board practices will address fuel efficiency, noise and waste management.			
Jacket Removal	Removal of the monopile jacket and suction piles will cause some localised environmental impact at the individual suction can sites. Vessel noise will also have an impact. The effects are expected to be short term and the seabed and associated ecosystem is expected to recover rapidly once activities are complete. Indents on the seabed are not expected as a result of the removal of Jacky.	Removal is a reverse of the installation methodology. Minimal disturbance is caused to the seabed, activities will be planned to be executed as efficiently as possible. Vessels will be manged to minimise the durations required while on board practices will address fuel efficiency, noise and waste management. In the event of practical difficulties in removing the suction piles by reverse installation alternative methods of removal will be discussed and agreed with the regulator.			
Subsea Installations Removal	Removal of Mid line tee structure will cause some localised environmental impact on the seabed due to lifting and temporary laydown of equipment. Vessel noise will also have an impact. The effects are expected to be short term and the seabed and associated ecosystem is expected to recover rapidly once activities are complete.	Decommissioning activities will be planned to be executed as efficiently as possible, minimising disturbance of the seabed in order to reduce the impact on the affected areas. Vessels will be manged to minimise the durations required while on board practices will address fuel efficiency, noise and waste management.			
Decommissioning Pipelines	Removal of the pipeline tie-in spools and Power cable ends will have a localised impact on the seabed. Removal of the tie in spools will require temporary laydown on the seabed. Vessel noise will also have an impact. The effects are expected to be short term and the seabed and associated ecosystem is expected to recover rapidly once activities are complete.	Decommissioning activities will be planned to be executed as efficiently as possible, minimising disturbance of the seabed in order to reduce the impact on the affected areas. Vessels will be manged to minimise the durations required with on board practices will address fuel efficiency, noise and waste management.			

ITH-JKY-DCOM-PLN-0001 Rev. A3 Page 33 of 50

Table 4.2: Environmental Impact Management								
Activity	Main Impacts	Management						
Decommissioning Stabilisation Features	There will be some localised disturbance of the seabed by relocating mattresses and grout bags prior to recovery. Impacts will also be noise from the attendant vessels. The effects are expected to be short term and the seabed and associated ecosystem is expected to recover rapidly once activities are complete.	Decommissioning activities will be planned to be executed as efficiently as possible, minimising disturbance of the seabed in order to reduce the impact on the affected areas. Vessels will be manged to minimise the durations required with on board practices will address fuel efficiency, noise and waste management.						
Decommissioning Drill Cuttings	Minimal – drill cuttings will remain in place to degrade naturally	Drill cuttings do not contain any oil and fall below the OSPAR 2005/6 threshold limits						

ITH-JKY-DCOM-PLN-0001 Rev. A3 Page 34 of 50

5.0 Interested Party Consultations

Consultations Summary:

A scoping document was circulated to interested parties in the Moray Firth area for comment and input to the Environmental Impact Assessment. All comments received are identified and actioned in the Environmental Statement.

During the public consultation period, copies of the Decommissioning Programmes and supporting documents were forwarded to the following Statutory Consultees:

- 1. The Scottish Fishermen's Federation (SFF):
- 2. The National Federation of Fishermen's Organisations (NFFO);
- 3. The Northern Ireland Fish Producer's Organisation (NIFPO):
- 4. Global Marine Systems Limited (GMS).

Meetings and telephone calls have been held with SFF to advise of progress and to provide more detail of the proposals.

Copies of the Decommissioning Programmes were made available for inspection at the: - BEIS Website https://www.gov.uk/guidance/oil-and-gas-decommissioning-of-offshore-installations-and-pipelines and at the following location during office hours.

7-8 Rubislaw Terrace, Aberdeen, AB10 1XE Contact, Angus Bertram 01224 650814 for appointments.

A public notice was published in the Times and Aberdeen Evening Express on xxth xx 2018 (please refer to Appendix A.1 for a copy of the public notice). The public notice gives instructions for representations to be made in writing by Monday xxth xx 2018

Copies were also submitted for consideration to BEIS.

	Table 5.1 Summary of Stakeholder Comments							
Who	Comment	Response						
	Informal Consultations							
Scottish Fisherman's Federation	Informal telephone conversations and a meeting at Ithaca office to present the outline decommissioning programmes							
Partners	High level presentation to partner on the decommissioning programmes	Minor comments on content and decommissioning programmes updated accordingly						
	Statutory Consultations							
National Federation of Fishermen's Organisations								
Scottish Fishermen's Federation								
Northern Irish Fish Producers Organisation								

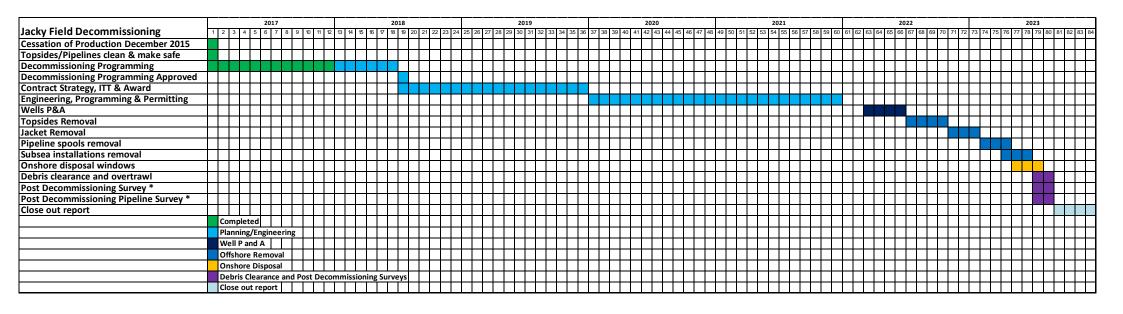
_

	Table 5.1 Summary of Stakeholder Comments							
	Who	Comment	Response					
		Statutory Consultations						
Ma Sy	obal arine stems mited							
Pu	ıblic	Invitation published in local and national newspapers for public notification of decommissioning including offer of decommissioning programmes and updated environmental assessment copies available for review and comment at Ithaca office and on the BEIS website.						

6 Programme Management

6.1 Project Management and Verification

A Project Management team will be appointed to manage suitable sub-contractors for the removal of the installations and pipelines. Standard procedures for operational control and hazard identification and management will be used. The Management team will monitor and track the process of consents and the consultations required as part of this process. Any changes in detail to the offshore removal programme will be discussed and agreed with BEIS.


6.2 Post-Decommissioning Debris Clearance and Verification

A post decommissioning site survey will be carried out around 500m radius of installation sites and 200m corridor along each existing pipeline route. Any seabed debris related to offshore oil and gas activities will be recovered for onshore disposal or recycling in line with existing disposal methods. Independent verification of seabed state will be obtained by trawling the installation sites and pipeline corridors. This will be followed by a statement of clearance to all relevant governmental departments and non-governmental organisations.

6.3 Schedule

Figure 6.1: Gantt chart of Project Plan

^{*}The timing of future surveys will be discussed and agreed with BEIS

6.4 Costs

Table 6.1 – Provisional Decommissioning Programmes costs			
Item	Estimated Cost (£m)		
Topsides and Jacket preparation for removal	Provided to BEIS*		
Pipelines Decommissioning	Provided to BEIS*		
Subsea Installations and Stabilisation Features	Provided to BEIS*		
Well Abandonment	Provided to BEIS*		
Continuing Liability – Future Pipeline and Environmental Survey Requirements	Provided to BEIS*		
TOTAL	Provided to BEIS*		

^{*} An estimate of the overall cost has been provided separately to BEIS

6.5 Close Out

In accordance with the BEIS Guidelines, a close out report will be submitted to BEIS explaining any variations from the Decommissioning Programmes including debris removal and independent verification of seabed clearance and the first post-decommissioning environmental survey.

6.6 Post-Decommissioning Monitoring and Evaluation

A post decommissioning environmental seabed survey, centred on sites of the wellhead platform and midline tee, will be conducted. The survey will focus on chemical and physical disturbances of the decommissioning and be compared with the pre decommissioning survey. Results of this survey will be available once the work is complete, with a copy forwarded to BEIS. All pipeline routes and installation sites will be the subject of surveys when decommissioning activity has concluded. After the surveys have been sent to BEIS and reviewed, a post monitoring survey regime will be agreed by both parties.

6.7 Management of Residual Liability

A full statement on legacy and liability management will be provided in the close out report;

- Ithaca recognises that the parties to the decommissioning programmes will continue to retain ownership of and residual liability for all decommissioned items allowed to remain in-situ through a comparative assessment.
- Ithaca will engage with BEIS on all future legacy and liability matters and requirements.

7.0 Supporting Documents

Table 7.1: Supporting Documents			
Document Number	Title		
ITH-JKY-DCOM-ENS-0001	Environmental Statement		
ITH-JKY-DCOM-ANA-0001	Comparative Assessment		
ITH-JKY-DCOM-STU-0001	Review of Seabed Information		

8.0 Partner Letter of Support

DYAS UK LIMITED

Appendix A.1 Public Notice

PUBLIC NOTICE
The Petroleum Act 1998

Jacky Field Decommissioning Programmes

Ithaca Energy (UK) Limited has submitted, for the consideration of the Secretary of State for Business, Energy and Industrial Strategy, draft Decommissioning Programmes for the Jacky Field facilities, associated pipelines and midline tee structure, in accordance with the provisions of the Petroleum Act 1998.

It is a requirement of the Act that interested parties be consulted on such decommissioning proposals. The items/facilities covered by the Decommissioning Programmes are:

Surface Installations;

Topsides Wellhead platform with/including Monopile Jacket and Suction Piles

Subsea Installations;

• Mid Line Tee Structure

Pipelines;

- Mid Line Tee tie in spools
- Beatrice Alpha, Bravo and Jacky tie in spools
- Power supply cable

Copies of the Decommissioning Programmes can be inspected at the: - BEIS Website https://www.gov.uk/guidance/oil-and-gas-decommissioning-of-offshore-installations-and-pipelines and at the following location during office hours.

7-8 Rubislaw Terrace, Aberdeen, AB10 1XE Contact, Angus Bertram 01224 650814 for appointments

Representations regarding the Jacky Decommissioning Programmes should be submitted in writing to applicant's nominated contact at the above address, where they should be received by closing date xx 2018 and should state the grounds upon which any representations are being made.

Date: xx 2018

Angus Bertram Projects General Manager Ithaca Energy (UK) Ltd 7-8 Rubislaw Terrace Aberdeen AB10 1XE

Copies of Public Notices

The Times

Aberdeen Evening Express

Pipeline Approaches at Jacky Platform as Built Drawing V-LKS 10.274 IV-LKE 10.280 IV-LKE 10.249 IV-LKS 10.243 IV-LKS 10.308 IV-LKE 10.314 IV-LKS 10.340-IV-RDE 10.342-IV-LKE 10.214 IV-LKS 10.208 IV-LKS IV-LKE 10. WHP (Ae-found) 501 283.20mE 6 449 412.29mN Heading: 003*(G) IV-LKE 10.372 → IV-GB 10.374 Legend IV-TTE 10.157 EF-OTH 10.145-SV-SSE 10.388-IV-RDS 10.125 GEODETICS Spheroid International (Hayford) Datum: E050 subsea 7

Appendix B.1
Pipeline Approaches at Jacky Platform as Built Drawing

SITHACA

SCALE 1:500

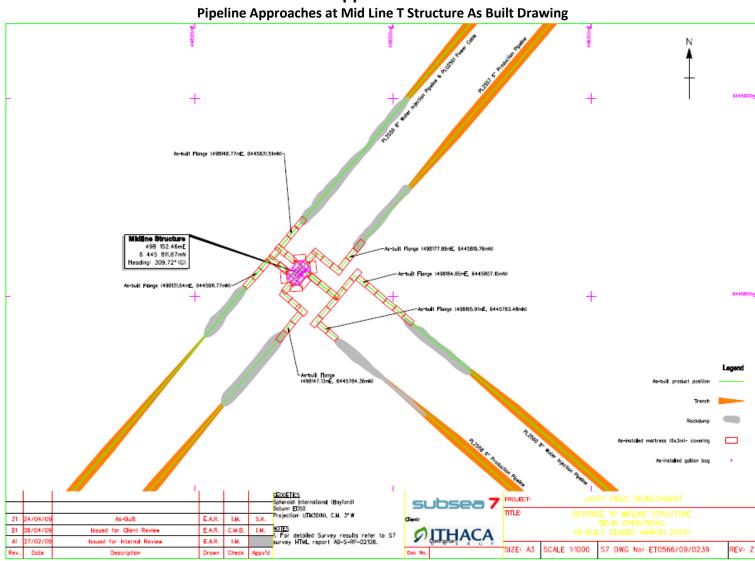
S7 DWG No: ET0566/09/0399

REV: Z1

Projection: UTM3000, C.M. 3°W

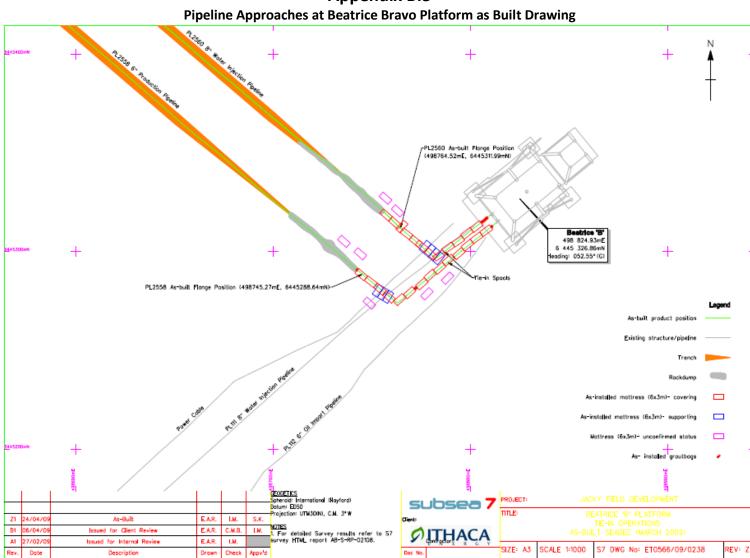
MOTES
1. For detailed Survey results refer to S7 survey HTML report A8-S-RP-02108.

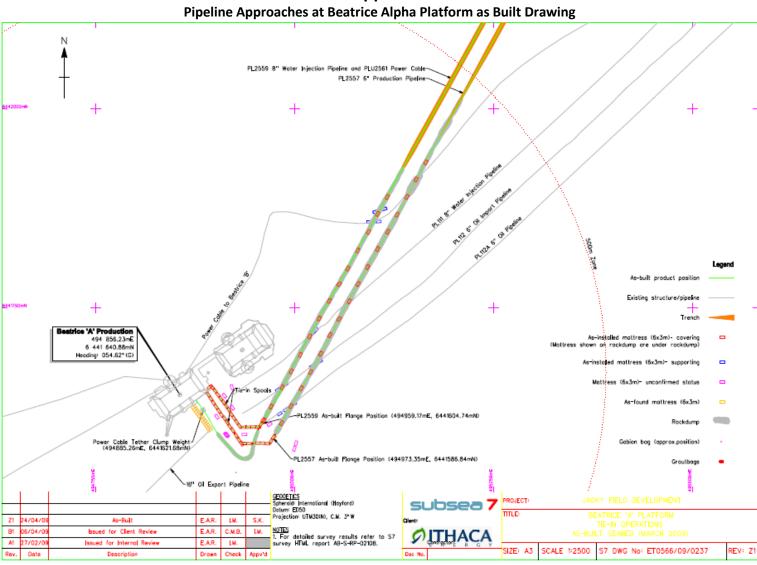
As-built


Issued for Client Comment

B1 06/04/09

E.A.R.


E.A.R.


Appendix B.2

Appendix B.3

Appendix B.4

ipeline Approaches at Beatrice Alpha Platform as Built Drawi

Appendix C

Waste Inventory

Material	Approximate	Location
	Quantity Tonnes	
ABS Plastic	0.13	Topsides junction boxes
Ac 228	0.00	None
Alloy Steel Inconel	0.10	Pipeline gaskets
Aluminium	0.12	VSD Heat sinks
Aluminium Bronze	0.00	None
Americium-241		Present in smoke detectors*
Anodes (total)	27.69	Jacket/MLT/Pipelines
Asbestos Blue	0.00	None
Asbestos White/Brown	0.00	None
Asbestos Total	0.00	None
Batteries NiCd	0.00	None
Batteries Lead	0.00	UPS. Nav aids, see lead
Biocides by type (including TBT)	0.00	None
Brass	0.21	Topsides cable glands
Bronze	0.00	None
Buna	0.00	None
Butyl Rubber	0.09	Topsides cable gland shrouds
Carbon Steel	3178	Combined topsides, jacket, suction piles and subsea installations/pipelines
Cement Powder	0.00	None
Cement	12688	Grout bags, matresses, rock dump and cable clump weight
Ceramics (all types)	0.15	VSD SCR's, HV insulators
CFC/HCFC	0.01	TR HVAC
Chartex/fire protection	0.00	None
Chloro paraffins		*
Chromium		Well tubing *
Copper	63.15	Power and control cables
Copper nickel alloys	1.04	Cable connectors
Cork	0.00	None
Cotton	0.00	None
Diesel	0.00	None
Drill Cutting Residues	0.00	Disharged tophole cuttings using water based mud
EPDM	0.00	None
Ethylene/Polypropylene	0.13	Cables and pipeline insulation

Material	Approximate Quantity Tonnes	Location
Fire Extinguishers		Topsides*
Fire Foam	0.00	None
Brominated Flame Retardants		Fire resistant cables*
Fluorescent Tubes	0.05	Platform wide/ lighting
Formica		TR
Glass		TR
Glycol	0.00	None
Glass Reinforced Plastic (GRP)	0.00	None
Graphite/Charcoal	0.00	None
Gun Metal	0.00	None
Heli-fuel	0.00	None
Hydrocarbons	0.00	See residual
Incoloy	0.10	Pipeline gaskets
Insulation (rockwool)	0.90	TR
Iron (cast)	0.00	None
Lead	0.67	UPS/Navaid batteries
Marine Growth est. quantities soft/hard	205.44	Jacket structure
Mercury	0.00001	Fluorescent tubes, level switches and assumed scale in process pipework
Methanol	0.00	None
NORM Scale	0.00	Process pipework, vessels
Neoprene	0.00	None
Ni-Resist	0.00	None
Nylon		*
Organotin		*
Paint		Paint samples positive for heavy metals, phthalates, chlorinated paraffin*
Pb-210	0.00	N/A
PCB	0.00	N/A
PTFE	0.00	Unknown at this stage
Plastics	0.13	Polyurethene Production pipeline insulation
PVC	0.78	TR Flooring
Radium (Ra-226)	0.00	None
Radium (Ra-228)	0.00	None
Residual HC	0.26	Pipeline flushed 7.63mg/I
Rubber		*
Sewage	0.00	None

Material	Approximate Quantity Tonnes	Location
Smoke Detectors		*
Stainless Steel	4.31	Control cabinets
Satellite	0.00	None
Tin	0.00	None
Titanium	0.00	None
Wood	0.39	TR
Zinc	1.23	Anodes
Approximate Total Weight	16312.17	te