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FOREWORD

Computational modelling is essential to our 
future productivity and competitiveness, for 
businesses of all sizes and across all sectors of the 
economy. Modelling can help drive performance 
improvement of products and services, achieve 
productivity and efficiency gains, and create new 
innovative smart products and services. From the 
design of jet engines to new drug development and 
manufacture, digital design and modelling will be 
crucial to the UK’s future competitiveness. 

In high-value manufacturing, modelling supports 
innovation in product and process design, reducing 
the need for physical prototypes and testing, and 
leading to more efficient processes and quality 
products. In in the retail sector models are 
increasingly being used to offer new services to 
enhance the consumer experience. In healthcare, 
modelling can be used to improve the effectiveness 
of treatments and diagnoses. Scientific models, 
based on the natural laws of physics, handle a 
massive amount of data to provide our daily 
weather forecasts. These are just a handful of the 
many applications of computational modelling, 
and as this report illustrates, the power of 
computational modelling, already significant, is set 
to grow dramatically. 

The UK is world-leading in many areas of modelling 
across our excellent research and industrial 
base. This puts us in an enviable position to take 
advantage of the opportunities offered by advances 
in modelling, and it is essential that we continue 
to support the advancement of the skills, research 
and innovation needed for the UK to remain 
at the forefront of the development and use of 
advanced modelling. 

Rt Hon Greg Clark MP
Secretary of State for Business,  
Energy and Industrial Strategy
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PREFACE

Rapid growth in the availability of data and 
computing power and new methods for modelling 
complex systems are transforming our capability in 
modelling. Working with a panel of experts from 
business and academia, the Council for Science and 
Technology has been looking at UK computational 
modelling capability and how it could be better 
leveraged in both the public and private sector. Our 
aim for this report is to demystify computational 
modelling, to demonstrate our capabilities, and to 
consider steps which could be taken to fully exploit 
these capabilities both now and into the future. 

Modelling can be used for a variety of different 
purposes, and the report starts with a discussion 
of some of these different purposes. It goes on 
to discuss the key steps in developing a good 
model, and to provide a summary of the different 
techniques that are used. Together these 3 opening 
chapters provide a guide to how models can be 
used, but also how they should not be used.

A key message is the importance of close 
engagement between the customer and the modeller 
throughout the modelling process, with clarity on 
user needs essential to getting good modelling 
outcomes. At the same time the importance of 
model users’ understanding of the strengths and 
limitations of a model cannot be understated. 
Improper use of a model or misinterpretation of 
model outputs can come at a high cost, damaging 
trust and credibility which is then hard to restore. 

Computational modelling has changed dramatically 
over the last decade, and Chapter 4 considers the 
future opportunities and challenges. Modelling, 
already ubiquitous, will become even more so, 

increasingly embedded in the design and operation of 
our public services, business processes and national 
infrastructure, highlighting the importance of support 
for new skills, standards and collaborations to match 
our increasing reliance on complex modelling. 

Chapters 5 to 9 look at modelling through the 
lenses of different public and private sectors: 
public policy; business and manufacturing; cities 
and infrastructure; finance and economics; and the 
environment. We have been necessarily selective 
here, aiming to provide a flavour of the range of 
uses and decisions where modelling can be applied. 
The sheer range of modelling applications means 
it would not be possible for a short report to be 
exhaustive in its coverage.

Computational modelling provides us with 
a powerful toolkit. This report contains 7 
recommendations which we believe would help 
ensure the UK is well placed to take full advantage 
of the opportunities offered by advances in 
modelling capability, as well as ensure resilience 
to potential vulnerabilities which increasing use of 
modelling exposes. 

We are deeply grateful to the authors of the 
report chapters; experts from academia and 
industry from across the UK, whose collective 
knowledge, expertise and insight helped to 
shape the report’s recommendations. We would 
also particularly like to thank Rowan Douglas, 
who provided the impetus for this report 
while a member of the Council for Science and 
Technology, and who has remained a strong 
advocate subsequently as a member of the expert 
panel guiding its development.

Sir Mark Walport
Government Chief Scientific Adviser and  
co-Chair of the Prime Minister’s Council  
for Science and Technology

(April 2013 to September 2017).

Dervilla Mitchell CBE 
Member of the Prime Minister’s Council  
for Science and Technology and Arup UKMEA 
Region Chair.
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EXECUTIVE SUMMARY AND RECOMMENDATIONS

Introduction
This report is about modelling — specifically 
computational modelling, a fundamental 
capability of increasing importance. It helps us 
to extract value from data and ask questions 
about behaviours; and then use the answers 
to understand, design, manage and predict the 
workings of complex systems and processes, 
including robotic and autonomous systems.

Modelling is as old as known human civilisations, 
long used as a way to portray and understand 
the world. Many of the earliest surviving human 
artefacts are physical models, from toys to symbolic 
representations placed in graves. Architects have 
used models to market their designs to clients 
for many centuries, a notable example being the 
model of St Paul’s Cathedral constructed for 
Sir Christopher Wren.

Humans are natural modellers — we carry models 
of our world in our minds. Our memories are 
significantly comprised of a mental model of the 
world in which we live, and our personal history of 
our experiences within that world. We navigate by 
means of maps: mental maps and the physical maps 
that we create. 

During the last half century, widespread access 
to computers has transformed mapping. Our 
smartphones present us with maps that help us 
to navigate and locate the transport systems and 
other services and products that we use on a 
daily basis. We use these mapping models without 
even considering that they are models, and we 
are increasingly dependent on the technology that 
delivers them.

Computational models are essential to analyse 
and explain complex natural systems varying in 
size from the very small, such as the workings of 
a bacterium, to the very large, such as planetary 
weather and climate systems or the workings of 
stars and galaxies. They are equally valuable for the 
analysis and explanation of enormously complex 
human systems, varying from the behaviour of 

crowds to the workings of economic and business 
services and manufactured products. One of 
the new capacities of computational modelling 
is the ability to integrate models at different 
scales and of different types, for example to link 
hydro-meteorological models to maps of physical 
infrastructure to help decide where to place 
flood defences.

Analysis and explanation are just the starting point 
for the utility of models. Models enable us to make 
decisions. They can help us to visualise, predict, 
optimise, regulate and control complex systems. 
The 2050 Energy Calculator is an example of a 
model that enables non-specialists to easily visualise 
how complex variations in the energy mix can help 
us to meet 2050 carbon emissions targets and to 
explore the effects of altering different policies that 
affect carbon emissions. Non-specialists can then 
become rapidly acquainted with the trade-offs in 
managing complex systems. 

In the built and engineered world, manufactured 
products can be simulated as part of the design 
process before they are physically created, saving 
time, money and resources. Buildings and their 
infrastructure can be modelled, and those models 
can be used not only to maximise the efficiency 
and effectiveness of the design and build processes, 
but also to analyse and manage buildings and their 
associated infrastructure throughout their whole 
working lifespan. In the public sector, policies 
can be tested before they are implemented, 
exposing potential unanticipated consequences and 
preventing their occurrence. 
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Modelling is a ubiquitous and powerful tool kit 
that is rapidly evolving, and it is important that 
policymakers have a good understanding of what 
it can achieve and where the technology is going. 
Like any tool kit, though, it is important to know 
which tool to apply to which problem, and to be 
conversant with the safety instructions. Models can 
enlighten or deceive, depending on the fit between 
the tool and the application. Models are always 
simplifications, and it is not easy to make the right 
ones. It is important also to recognise that this 
rapid evolution in modelling does not mean that a 
complex model is a better model. Indeed, in some 
circumstances simple models may perform better 
than more complex models. Models should be no 
more, and no less, complex than they need to be. 

The majority of modelling is still undertaken using 
spreadsheets enhanced by implementation in 
software, and this remains a valuable activity. But 
modelling is going through a revolution. This is 
driven by factors that include a dramatic increase 
in the availability of data; and an equally dramatic 
increase in the availability of computing power, 
coupled with the growth of cloud computing, 
which means that modellers do not need to 
possess their own compute infrastructure in order 
to undertake some types of computationally 
intensive modelling. Together, these factors enable 
modelling to be a much more powerful tool than 
it has hitherto. The same factors are also driving 
the development of machine learning and artificial 
intelligence, types of modelling that can predict 
accurate outcomes from complex systems, though 
those predictions may require alternative standards 
of robustness and approaches to understanding.

Modelling technologies are like any other 
technology: they are neither intrinsically good nor 
bad. Models can lead or mislead. Modelling can be 
applied well or misapplied. This Blackett Review is 
one of a series of reports from the Government 
Office for Science that have 3 aims. The first of 
these is to demystify complex evolving technologies 
for the policymaking community and for those 
who are interested in how these emerging 
technologies are making important impacts on 
society. Secondly, they start to identify the potential 
checks and balances that are necessary to maximise 
the beneficial effects of these technologies and 
minimise potential harms. Thirdly, they provide 

recommendations that are aimed at government, 
the public and the private sectors to maximise the 
beneficial impacts that technology can have in the 
development of government policy, on the delivery 
of public services, and on economic growth 
and development.

For this report on modelling, the Government 
Office for Science has worked closely with 
the Prime Minister’s Council for Science and 
Technology in its preparation, drafting and delivery. 
The chapters have been written by experts in 
computational modelling and its applications, in a 
style that should be accessible to non-experts. We 
are extremely grateful to these experts for their 
thoughtful contributions.

How	to	be	an	intelligent	customer	for	
computational	modelling
The first 3 chapters of the report provide an analysis 
of the reasons for modelling and an explanation 
of the processes of making and using models, 
followed by a description of modelling techniques. 
These chapters are aimed at those in the public 
and private sectors who could benefit from the use 
of computational models. They provide a guide to 
what models can and cannot do. Importantly, they 
provide a group of linked recommendations that 
can be summarised under the rubric ‘How to be 
an intelligent customer for models’.

The first recommendation of the report is an 
injunction to decision-makers:

Recommendation 1: Decision-makers should 
consider how analysis using models might be 
able to help in making difficult decisions.

This is important because a lack of awareness of 
the potential of models to help with problem-
solving means that they are underused. While 
models can be powerful assistants in decision-
making, they can also be dangerous and misleading 
if misused and misapplied. 

So it follows that decision-makers need to be 
intelligent and challenging customers for modellers 
— and that modellers themselves need to provide 
guidance on the appropriate use of models to 
maximise the benefits and minimise the potential 
harms of using poor or inappropriate models for 
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making important decisions. Decision-makers 
should understand that models may not resolve 
uncertainty in difficult decisions but may illustrate 
how large it might be and how it might come 
about.

So the second recommendation is aimed at 
helping decision-makers to be expert customers 
and modellers to provide the appropriate models 
to their customers. Modellers need to be guided 
by a clear articulation of the purposes of the 
model’s analysis, and a model designed for one 
purpose may not always be suitable for another. 
Policymakers need to be clear about the questions 
they want answered. Equally, models need to be 
appropriately quality assured and come with clear 
specifications that set out when and how they 
were created, how they have been verified and 
validated, what is their purpose, and what are  
their limitations.

Recommendation 2: Decision-makers need to 
be intelligent customers for models, and those 
that supply models should provide appropriate 
guidance to model users to support proper use 
and interpretation. This includes providing suitable 
model documentation detailing model purpose, 
assumptions, sensitivities, and limitations, and 
evidence of appropriate quality assurance.

Those that use models should be well informed 
about what type of model might help them, along 
with the strengths and limitations of the models, 
in order to maximise the effectiveness of their 
application and avoid their misapplication.

These recommendations are supported by 
checklists within this report that set out the key 
questions that policymakers should ask about 
models. For example, what data are available and 
how robust are they? What assumptions are being 
made? All models are simplifications and only 
as good as the assumptions and data that they 
operate upon. As assumptions and data can change 
over time, care needs to be taken to track changes 
that could alter the conclusion or action resulting 
from a model. All models should be regularly 
reviewed while they remain in use. 

These checklists are related to and follow on 
from the important work and recommendations 
by Sir Nicholas Macpherson’s review of quality 

assurance of government analytical models and 
the associated ‘Aqua Book: guidance on producing 
quality analysis for government’ of 2015. This was 
one of the products of the work commissioned 
by government following the failure in 2012 of the 
InterCity West Coast franchise competition, where 
the dominant issue was a model that started life for 
one purpose but was poorly adapted for another. 

The	future	of	modelling
Chapter 4 considers the future of modelling, and 
chapters 5 to 9 look at modelling through the 
frames of different public and private sectors. 
Modelling technologies are developing extremely 
rapidly and there are some important drivers for 
this. Some sectors have large markets that are 
driving developments. One of these is gaming — 
computer gaming has swept the world — and 
the attention of many people has switched from 
games in the real world to games played on 
computer screens and virtual reality headsets in 
virtual modelled worlds. Some of the companies 
involved have realised the power of these models 
to tackle policymakers’ real-world problems, and 
are now modelling the real world as well as created 
worlds. The UK company Improbable is one such 
company, and has recently received $500 million in 
investment from Softbank. 

Other sectors are driving forward advanced 
modelling, including high-performance engineering 
and construction. The ability to simultaneously 
solve multiple differential equations means that it 
is possible to design and test complex components 
of cars, ships and planes. Individual components 
of a car or jet engine can be simulated, tested and 
optimised before they are ever built, providing 
large cost, resource and efficiency gains. The 
importance of Formula One motor racing goes 
far beyond the race track, as its requirements for 
ever increasing gains in efficiency and speed are 
increasingly applied to much more humble vehicles. 
Building information modelling has transformed the 
construction, monitoring and management of highly 
complex buildings and other physical infrastructure, 
leading to a business model paradigm shift from 
construction to whole-life asset management. 
Critical software and hardware systems require 
new types of models, especially for cybersecurity, 
performance, and reliability. Numerous new 
techniques have been developed over the past 
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few decades, and more work is needed to make 
the techniques more usable, more scalable and 
more able to address the evolving demands in this 
challenging area. 

In boardrooms, modelling is being used as a 
strategic tool to provide key insights for the 
direction of companies. Major advances in the 
efficiency, productivity and competitiveness 
of the retail, finance and insurance sectors are 
being driven by the application of models. In the 
retail and service sector, complex logistics and 
supply chains can be monitored, optimised and 
managed using advanced models. And rather 
than considering crowds as aggregates of uniform 
humans, an extensive panoply of human variation 
can be encompassed using agent-based modelling. 
The perfectly efficient but virtually impossible 
Homo economicus, behaving as the equations of a 
rational economist might predict, can be modelled 
as variable individuals in the form of Homo sapiens 
(or perhaps Homo imperfectus). And some of the 
potential limitations of even the most sophisticated 
modelling have been seen in the financial sector 
where many in the economics community would 
acknowledge that their models have given a 
false sense of security with respect to complex 
system risks. This points to the need for more 
sophisticated models that take into account the 
diversity of human behaviours.

On top of all of these powerful business drivers 
to improve modelling are the technologies of 
machine learning and artificial intelligence. Among 
the expert group that developed the report, there 
was a lively debate as to whether this was really 
modelling or not, since the algorithms developed 
within machines may be entirely unrelated to the 
actual mechanisms underlying complex processes, 
and may provide no understanding of how these 
work. But they can have important predictive 
power, though their sensitivity to shocks and 
sudden changes may be uncertain. We decided 
that these should be included, together with the 
factors that intelligent customers should consider 
when using such ‘black box’ models. As part of this 
evolving area of technology, not only will machines 
build models, but models will in turn help to 
train machines. Models are already important in 
training people: think of driving simulators, or flight 
simulators. In medicine, models are training medical 

students and surgeons. This is an area of huge 
potential development.

Looking slightly further into the future, 
computational modelling could undergo a further 
transformation if the promise of quantum computing 
is realised. We do not consider this in this report, 
and the interested reader is referred to a previous 
Blackett Review from the Government Office for 
Science on the future of quantum technologies, 
‘The Quantum Age: technological opportunities’.

Modelling is tackling ever more complex systems, 
and this is coupled with the increased complexity 
of the technological and physical infrastructure 
that underpins human societies. Our infrastructure 
can no longer be viewed as disconnected assets 
(roads, railways, houses, gas, electricity), or even 
as merely interconnected components. Much of 
the infrastructure on which the large majority 
of people depend in technologically advanced 
societies is best thought of as a system of systems 
— and it is information technology that wires it all 
together. The move towards the Internet of Things, 
enabled by 5G protocols for telecommunications, 
has the potential to generate massive amounts of 
information; modelling will be essential to analyse 
and understand this information, as well as to 
assure cybersecurity and interoperability.

Models are also becoming embedded within the 
workings of this infrastructure. For example, a 
model of a traffic system can know, in real time, 
the speed and location of vehicles based on the 
position of each vehicle’s SIM card. The model can 
then adjust and optimise traffic flows accordingly. 

What does this explosion in the development 
of modelling technologies and techniques mean 
for the uptake of the technologies and their 
application? Another striking feature of the expert 
group that worked together on the development 
of this report is that they did not come from a 
small community that knew each other in advance. 
It was obvious from working with this group that 
there is enormous potential for interdisciplinary, 
intersectoral interactions for the development and 
application of modelling. The cross-fertilisation of 
ideas between industries and academia, along with 
a mutual appreciation of different sectors’ needs in 
modelling skills, is vital to create a healthy ecosystem 
that can spawn new start-ups, high-tech industries 
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and high-value jobs, helping the UK to be in a 
strong competitive position internationally. 

Recommendation 3 is about skills, research 
and development. If the UK, with an economy 
dominated by increasingly advanced services and 
manufacturing, fails to remain in the forefront 
of the modelling revolution, then there may be 
severe economic consequences. There is a need to 
develop a new, broad discipline of modelling, which 
would also include data science, and embed it in 
application domains and industrial sectors.

Enabling infrastructure, including availability of 
data and compute power, is important. While 
cloud computing has opened up new possibilities 
for modelling, some types of computationally 
intensive modelling can only be undertaken using 
high performance computers. Ensuring appropriate 
national facilities are available to both academia and 
industry will be essential.

Recommendation 3: The Department for 
Business, Energy and Industrial Strategy (BEIS), 
as part of the implementation of the Industrial 
Strategy, should work with UK Research and 
Innovation, businesses, universities, learned 
societies and research institutes to consider how 
to support the skills, research and innovation 
needed for the UK to remain in the forefront of 
advanced modelling technologies. 

The next recommendation is about the uptake of 
modelling technologies. There is a significant danger 
that modelling capability advances far faster than 
the capacity to use it by those who might benefit 
the most. 

Recommendation 4: Government should consider 
whether there is a need for a centre of expertise 
for modelling for the public and private sectors, to 
promote exchange of expertise and independent 
critique of models.

This could be a physical centre or a distributed 
network. The model of hubs that has been 
developed by the Engineering and Physical Sciences 
Research Council (EPSRC) for quantum technologies 
could be a useful illustrative example of how 
this could be achieved. The Alan Turing Institute 
could form an important node in a networked 

solution, and ideally this recommendation could 
be implemented without the need for a large new 
investment in bricks and mortar.

The fifth recommendation of this report is about 
regulation and governance. With the advent and 
rapid growth of machine learning and artificial 
intelligence, there is a need to consider the 
governance and possible regulation of the use of 
‘black box’ predictive models of complex systems 
that show utility for prediction, even if we cannot 
understand the detailed workings of the model 
(a bit like human brains!). The UK government, 
through the policy work of the Department 
for Digital, Culture, Media and Sport (DCMS), 
is considering issues around the governance of 
artificial intelligence systems. In this it is working 
with the Royal Society and British Academy on 
the implications of their report on governance, 
‘Data management and use: Governance in the 
21st century’.

Recommendation 5: Government and the 
corporate sector need to consider how to govern 
and where necessary regulate the use of advanced 
models of complex systems. This recommendation 
fits with the ongoing work of DCMS on the policy 
implications of artificial intelligence. 

The final 2 recommendations of the report are 
about the resilience and security of models. 
There is an important corollary of the pervasive 
embeddedness and use of models in complex 
infrastructure. The increased efficiency that these 
models can generate — for example, by enabling 
increased movement and higher density of traffic 
on the ground or in the air, or in reducing the 
holding of stocks in supply chains or shops — may 
be correlated with a loss of resilience to system 
failures. When a just-in-time supply chain fails, 
stocks of the end product may fall extremely 
quickly. If these are essential foods, fuel or 
microchips, the consequences may be severe.

Cybervulnerability is another obvious risk. 
Embedded models may be vulnerable to disruption, 
corruption and to ‘spoofing’, the insertion of false 
information that could cause a model to misbehave. 
The consequences of the misbehaviour of a model 
could be much worse than from a model that 
ceases all of its outputs. 
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Recommendation 6: Customers of models that 
affect important infrastructure, supplies, goods 
or services, should ensure that these can be and 
are used to test the resilience of these systems to 
shocks or failures. 

Recommendation 7: The models, sensors and 
other elements that control complex systems 
should be secure by default against threats such 
as cyberattacks. This is a domain where the 
development of standards and testing regimes, 
coupled with further research and horizon 
scanning will become increasingly important. 
There is an opportunity here for the UK to play 
an important role, working with international 
partners.

It is important to appreciate that the UK is 
extremely good at the development and 
application of computational modelling. In order to 
continue to be in the forefront of the technologies 
underpinning advanced modelling, we need to 
nurture the skills pipeline and to ensure that 
research and development in academia engages 
effectively with the needs of industry. The UK 
must provide the catalytic environment for this 
to succeed.

And finally, decision-makers in the public and 
private sectors are making extremely important 
decisions about complex human and natural 
systems. If they are to make good decisions, they 
need the best decision support. Computational 
modelling matters.
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Chapter 1: 

WHY MODEL?
In order to deal with an increasingly 
complex world, we need ever more 
sophisticated models. Mathematical or 
computational models can help us to select 
policies and make decisions more wisely, by 
understanding the complicated and often 
counterintuitive potential consequences of 
our choices. Models have different kinds of 
uses, so effective deployment requires both 
the customer and the modeller to be aware 
of their capabilities and limits.
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WHY MODEL?

Introduction
We all model, all the time. In the widest sense, a 
model is any representation or concept that helps 
us to understand the world whenever common 
sense or direct observations are inadequate. 
Models are tools that help us to translate our 
experiences into an anticipation of future events, 
enabling us to make decisions about what to do.

Models can also act as a testbed for ideas. To 
understand the aerodynamics of a new car design, 
for example, one could study how a scale model 
performs in a wind tunnel. These days, however, the 
model would exist within a computer simulation 
that calculates the airflow at a fine level of detail, 
allowing rapid experimentation. These kinds of 
complicated computational models have spread far 
beyond the domains of engineering and science: 
they are widely used in finance, economics, and 
business management; and are increasingly applied 
in areas as diverse as public policy and construction.

Computational models can help us to deal with 
an increasingly complex world that is changing 
quickly, often in unexpected ways. Increasing 
computational power and the greater availability of 
data has enabled the development of new kinds of 
computational model. These allow us to do virtual 
‘what if?’ experiments about our world before 
we try things out for real. This presents huge new 
opportunities, which we must strive to grasp.

It takes time and effort to develop good models, 
but once achieved they are incredibly valuable, 
repaying the investment many times over. Just as 
physical tools and machines extend our physical 
abilities, models extend our mental abilities, 
enabling us to understand and control systems 
beyond our direct intellectual reach. This is why 
they will have such a radical impact: not just 
improving efficiency and planning, but stretching 
out experimentation and control in unexpected 
ways to completely new areas of our lives. 
Computational models will change the way we 
interact with our world, maybe allowing completely 

new ways of living and working to emerge (see 
Chapter 4).

To use this power well requires some 
understanding. Computational modelling is a 
complex tool, so it is important to know when best 
to deploy it, and for what purposes. Indeed, making 
the right decisions when commissioning a model is 
as important as the more technical aspects of the 
model’s development. Consequently, this chapter 
will answer some fundamental questions: What is 
a model? Why is modelling so pertinent right now? 
How can we apply such models? What kinds of 
questions can models answer? 

Models can help to comprehend 
a complex world that is beyond 
immediate understanding.

What	are	models?
A model is any structure that we use to find out 
about something we deal with. This is in contrast 
to situations when we just try to understand things 
directly. When modelling is used in science and 
engineering, it augments our capabilities in several 
ways. Building a model requires us to make explicit 
its assumptions and boundaries, and that makes it 
possible to share and use the model more widely, 
and to test it more rigorously. It becomes possible 
to create a narrative about why things happen, and 
what might happen, which can then be used to 
inform and explain a decision.

Common sense tends to lead us to directly 
compare our ideas about the world with our 
observations. But the comparisons involved in 
scientific or engineering models are done in 
several stages (see Fig. 1). First, observations are 
formalised into data via measurement; then models 
are compared to that data; and, finally, the models 
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deliver greater understanding. Computational 
models are computer programs that act to 
represent and ‘animate’ the processes one is 
concerned with. These encode key mathematical, 
logical or causal relationships. 

Intuitive understanding expressed in normal language

Observations of the system concern

Models of the processes 
in the system

Data obtained by 
measuring the system
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Figure 1: Common-sense vs. scientific (and 
engineering) comparisons
Bruce Edmonds

Due to the increasing availability of data, knowledge 
and computational methods, these explicit models 
enable us to answer questions about very complex 
systems. The results can challenge established thinking 
or pre-existing assumptions, and may provide wholly 
new insights. If your pre-existing mental model is that 
longer prison sentences do not reduce crime, for 
instance, then a well-founded model would help to 
show under what conditions that assumption is (or is 
not) likely to be true.

In this report we concentrate on computational 
models. We do not discuss biological models 
(where another species is used as a model for human 
biology), or intuitive mental models, but ones where 
computational power is used to improve our ability 
to understand and control systems we deal with. 

For example, a model used to explore future 
scenarios for long-term flooding risk due to climate 
change in the UK involves several interdependent 
systems that describe aspects of the climate, 
demography, markets and human behaviour. Under 
these circumstances, the model can provide insights 

into the range of plausible futures; it can be used to 
test potential high-level policy responses; and it may 
also serve as a powerful tool for communicating the 
likely distributions and nature of risk.

The extra effort involved in making 
a mathematical or computational 
model allows for rigorous checking 
that can give it greater reliability.

Why	is	this	important	now?
Much of the world today is too complex to 
understand directly without models. For example:
• The computational power that people carry 

around in their smartphones creates complex 
webs of cooperation with little central authority, 
whose consequences are often unclear.

• Many of the systems we rely on combine social 
and technological factors in new ways, such as 
social networking tools that enable new ways of 
behaving and cooperating.

• Access to data, and the range of data available, 
are spurring efforts to develop new ways to 
exploit these data for commercial purposes, 
whose ultimate impact is unknown.

• The complexity and micro-detail of modern 
engineering means that humans may be 
incapable of checking plans, requiring 
computational approaches.

• In a globalised and connected world, systems 
that are far away and seemingly unconnected 
can have a big impact on our lives. 

• In a world where fiscal resources are diminishing 
in relation to the useful ways of spending them 
(such as healthcare), understanding the trade-
offs involved is hard.

However, these challenges also come with new 
opportunities:
• The growing availability of data supports the 

construction and checking of computational 
models.
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• Technology and computer power have 
improved to the point where they can start to 
attack some of these emerging challenges at a 
fine level of detail.

• Agent-based simulations — which model 
each person as a separate interacting entity 
— have matured to the point that they can 
be applied to important social, ecological and 
economic questions.

• Machine-learning systems, which autonomously 
learn to recognise patterns in data, show the 
potential to create new types of insight and 
prediction (see Chapter 3).

• Techniques for visualisation, simulation and 
communication enable increasingly effective 
interfaces between complex models, decision-
makers and other users.

Mathematical modelling has been around for a long 
time. What’s new is the ability to do extensive 
computational calculations — to ‘animate’ these 
models. This allows computational models to 
illuminate fresh aspects of life, and guide new 
areas of policy. Models that are already being 
developed include:
• A detailed model of the housing market that 

allows planners to assess the impact of specific 
initiatives or housing plans.

• Integrated transport models that enable the 
targeting of planned changes to the infrastructure 
so that they are most effective, as well as 
assessing the impact on different kinds of traveller.

• Crime models that enable police to notice when 
a new pattern or kind of crime is emerging, 
allowing them to respond at the early stages of 
its development.

• Socio-ecological models that help to plan paths 
and tourist amenities in ecologically sensitive 
areas so that the impact of visitors is minimised.

• Models of how information spreads through the 
internet and beyond, which could help to deliver 
government health messages more effectively 
to the segments of the population that most 
need them.

• Fine-grained models of cities that integrate the 
architecture, the inhabitants and the weather 

so that responses to bio-chemical attack can be 
accurately directed.

• Interactive analysis and visualisation of social 
networks that could help the security services 
to identify terrorist threats and hence focus 
their effort more effectively.

One of the key benefits of these kinds of model is 
that they have the ability to identify the particular 
risks, areas, subpopulations, and times when 
intervention might make a difference, allowing 
policymakers to customise micro-interventions 
that are targeted only where and when they 
are effective. 

Computational models have the 
potential to help manage our lives 
in a more targeted manner.

Do	I	need	a	computational	model?
Given the effort it takes to make and check a good 
model, why might one decide that this effort is 
worthwhile? There are a number of different reasons, 
including some or all of the following:
• The complexity of the system means that the 

risks and consequences of any choice cannot be 
anticipated on the basis of common sense or 
experience. There may be too many detailed 
interactions to keep track of, or the outcomes 
may be too complicated and interwoven to 
calculate easily.

• It is infeasible or unethical to do experiments 
with the target system.

• One needs to integrate reliable knowledge 
from different sources into a more complex 
whole to understand the interactions between 
the systems.

• One needs to be able to engage with a range 
of stakeholders in order both to ensure that 
decisions are well founded, and that they are 
capable of being communicated effectively to 
win trust.
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• One needs to be prepared for possible future 
outcomes in a complex situation.

Good models are compelling. That means they 
are valuable, especially to leaders in the public 
sector who need to make decisions about complex 
situations, and give a public account of them 
(see Chapter 5). However, models may also be 
misapplied. As the ‘Review of quality assurance 
of government analytical models’ (commonly 
known as the Macpherson review) found in 2013, 
once a model exists, it may be used for purposes 
beyond that for which it was originally designed, 
and it may continue to be used long after the 
time when it should have been replaced1. This 
and related issues are discussed in more detail in 
Chapter 2, which looks at the process of using a 
model to aid decision-making within the context of 
an organisation.

Building a good model can take a 
lot of effort — but having no model 
can be worse.

The amount of effort invested in a model depends 
to some extent on what is at stake. The assurance 
of global climate change models, involving the 
formal processes of the Intergovernmental Panel 
on Climate Change (IPCC)2 and thousands of 
contributors over many years, is different from 
the assurance needed for, say, a small Excel-based 
model to calculate the cost of building a school. 
In other words, the strength of the science that 
underlies a model needs to be up to the job it is 
being used for.

In most cases, the alternative to the careful use of 
a good model is an unexamined future. As the rest 
of this report shows, the power of good modelling, 
already immense, is set to grow significantly, showing 
how such models allow us to explore what was 
previously unexamined.

How	to	choose	and	use	models	for	
different	purposes
A model is not a picture of the world, but a kind of 
tool — a knowledge tool. It helps us to track what 
would happen to intricate interactions that we 
could not hold in our mind, and for which solvable 
mathematics is not adequate. The catch-all term 
‘model’ includes many different kinds of tools, each 
designed for a different purpose. Using the right 
tool for the right job can leverage understanding of 
complex systems that are otherwise unobtainable. 
However, applying a model designed for one 
purpose to a completely different purpose simply 
causes confusion (see ‘Some confusions of purpose’, 
p18). For this reason, it is important that users of 
models are aware of these various purposes, and 
can ensure that they are using the right tool for 
their goals. 

How one builds, checks and interprets a model 
depends on its purpose; this is true even if the 
same model is used for different purposes. 
Knowing one’s purpose is the cornerstone for the 
effective use of modelling. The rest of this chapter 
explores some of the most common purposes 
for models, to help users ‘consume’ model results 
more intelligently, and also explains how to ensure 
the model is up to the job (ie to ‘validate’ it). The 
purposes covered are:
• Prediction or forecasting
• Explanation or exploration of future scenarios
• Understanding theory
• Illustration or visualisation
• Analogy

Some of the key purposes, and particular risks, of 
these models are summarised in Table 1 (see p23).

using the right model for the right 
job is essential to avoid confusion 
and misunderstanding.
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SOME	CONFUSIONS	OF	PURPOSE

It should be clear that establishing a model for one purpose does not justify its use for another, and 
anything else risks confusion and unreliability. If it is being suggested that a model can be used for 
another purpose, it has to be separately justified for this new purpose. To drive home this point further, 
here are some common confusions of purpose:
•  Illustration  Understanding theory.

That makes it tempting to misapply a model that was designed as an illustration or playful 
exploration, and use it instead for the purpose of understanding theory. However, understanding 
theory involves extensive testing of a model to check its behaviour and assumptions. An illustration, 
however suggestive, is not that rigorous. For example, it may be that an illustrated process only 
appears under very particular circumstances.

 A neat illustration of an idea often suggests a mechanism. 

•	 	Analogy  Explanation. Once one has immersed oneself in a model, there is a danger that the 
world begins to look like this model. However, just because one can view some phenomena in a 
particular way does not make it a good explanation.

•  Explanation Prediction. A model that establishes an explanation traces a (complex) set of 
causal steps from the model set-up to outcomes that compare well with observed data. It is thus 
tempting to suggest that one can use this model to predict the data. However, establishing that a 
model is good for prediction requires its testing against unknown data many times — this goes way 
beyond what is needed for explanation.

 

There is a natural progression in the purpose of a model as understanding develops: from illustration 
to description, from description to explanations, and from explanations to prediction. Mature science 
links all of these together in well-defined ways. However, to get there each stage requires its own 
justification, and probably a complete re-working of the model for each purpose. 

Prediction	or	forecasting
Almost all scientific models ‘predict’ in the weak 
sense of being able to calculate an anticipated 
result from a given set of variables. This form of 
prediction is undeniably useful: indeed, it is often 
considered to be the gold standard of science. 
For example, the ideal gas law predicts that at a 
fixed pressure, the increase in the volume of a 
gas is proportional to its increase of temperature. 
This law was formulated long before scientists 
discovered why it worked. 

A stronger form of prediction goes further 
than this, because it correctly anticipates future 
outcomes that are unknown to the modeller 
(some describe this as ‘forecasting’). This sort 
of prediction is notoriously difficult for complex 
systems, and can even be misleading. If we truly 
do not know what is going to happen, it is better 
to be aware of that, rather than be under a false 
impression that we have a workable prediction.

To be useful, these predictive models must be 
reliable enough to produce a legitimate forecast 
under some known (but not necessarily precise) 
set of conditions. Judging what is ‘reliable enough’ 
will depend on the case and the use — if one only 
needs to know the desirable direction of change, 
then this direction is all that needs to be predicted 
reliably. Without this, it would not be clear when 
the model could be used. Moreover, the model’s 
anticipation of future events must offer a useful 
degree of accuracy, which will depend upon its 
purpose (eg weather forecasting).

For example, a machine-learning model could be 
trained, based on large amounts of data, to predict 
how someone will vote based on their Facebook 
profile. However, if it is unclear why the model 
works — a so-called ‘black box’ model, where 
the way it predicts is not easy to understand — 
it may not be possible to know the conditions 
under which it can be guaranteed to produce an 
accurate result.



WHY MODEL?

19

A useful prediction does not have to be a ‘point’ 
prediction of a future event3: indeed, for complex 
systems it rarely is. A model might also predict that 
a particular thing will not happen; or the existence 
of something (a distant planet, for example); or 
something about the shape or direction of trends 
or distributions; or even qualitative facts. 

In order to ensure that a model does indeed 
predict well:
• The aspects that need to be predicted should 

be well described and appropriate.
• The model should be tested on several cases 

where it has successfully predicted data 
unknown to the modellers.

• It should be clear what aspects it predicts, 
when the model can be used to predict, how 
accurately it predicts, and any other caveats 
that a user of the model should be aware of. 
For example, it may be a range of values that 
is predicted.

• The model’s specification should be distributed 
so that others can check it and assess how well 
it predicts.

‘Black box’ models can be useful, 
but they are also risky, because 
the basis of their predictive power 
is opaque.

Explanation	or	exploration
Particularly when considering very complex 
phenomena, such as biological or social systems, 
one needs to understand why something occurs 
— in other words, we need to explain it. In this 
context, explanation means establishing a possible 
causal chain, from a set-up to its consequences, 
in terms of the mechanisms in a model. This 
degree of understanding is important for managing 
complex systems as well as understanding when 
predictive models might work. With many 
phenomena, explanation is generally much easier 
than prediction.

The set-up of the model is important, because 
that limits how the outcomes are explained. For 
example, a model of a stock market that assumed 
its traders were rational could only ever explain 
stock market outcomes (such as crashes) in terms of 
that rational behaviour, because this limit was built 
into the model. The resulting explanation is usually 
a generalisation of what happens in the runs of the 
model. Models that involve complicated processes 
can thus support complex explanations that are 
beyond the capabilities of natural language reasoning. 

For example, a good model of disease spread may 
not be able to predict exactly where and when 
outbreaks will occur, but it might provide a good 
understanding of how the underlying processes 
interact and thus help direct policies to contain 
any outbreak.

In order to improve the quality and reliability of the 
explanation, one must:
• Ensure that the mechanisms built into the 

model relate to what is known about the target 
phenomena in a clear manner.

• Be transparent about what aspects of the target 
data are being explained.

• Probe the model to find out the conditions 
for the explanation holding true, by making 
unimportant changes to the model and seeing if 
the same outcomes still occur.

• Do experiments to check that the explanation 
does, in fact, hold for your model.
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Models that explain why things 
happen can be very useful, even if 
they cannot predict the outcomes 
of particular choices.

Understanding	theory
To understand the general properties of a 
mathematical model, one can study its underlying 
mathematics. To do the same for a complex 
simulation model, we need to run the code — but 
this only gives one possible outcome from one set 
of initial parameters. Simulations can be used to 
explore the results of some mechanisms where 
analytic mathematics is infeasible.

One might spend some time illustrating the 
mechanisms within a model, but the crucial part is 
to test the resulting ideas about what outcomes 
they produce under what conditions. This approach 
can be used to provide evidence for a hypothesis; 
but it can also be used to refute a hypothesis, 
by exhibiting a concrete counter-example. It is 
important to note that although any model has to 
have some meaning for it to be a model, this does 
not necessarily imply anything about real systems, 
because it is an exploration of theory only.

Many (but not all) economic models are 
theoretical, because they examine what would 
happen under theoretical conditions. They 
might include assumptions that people behave 
in a perfectly rational way, for example, or that 
everybody has perfect access to all information. 
If the theory of these models is general enough, 
they might be later developed into explanatory or 
predictive models.

In order to ensure a theory is well understood: 
• One needs to check the model thoroughly.
• One needs to be precise about the specification 

of the model and its documentation. Where 
possible, this should be made publicly available.

• It should undergo a very thorough sensitivity 
check, by trying various versions with extra 
noise added, for example.

• One must be very careful about not over-
claiming what the model says about the 
observed world.

it is dangerous to interpret 
an exploration of theory as a 
conclusion about how the real 
world works. 

Illustration	or	visualisation
Sometimes one wants to communicate ideas about 
complex systems, and an illustration or visualisation 
is a good way of doing this. A well-crafted model 
can help people to see these complex interactions 
at work and hence appreciate these complexities 
better. If the theory is already represented as a 
model (designed for understanding theory, or 
explanation) then the illustrative model might well 
be a simplified version of this (see Chapter 7).

An illustrative model usually relates to a specific 
idea or situation. Crucially, it is just an illustration 
— it cannot be relied upon for predicting or 
explaining. Instead, the clarity of the illustration 
is of over-riding importance, not its veracity or 
completeness. As such, any documentation should 
make clear that the purpose of the model is for 
illustration only, and perhaps provide pointers 
to fuller models that might be useful for other 
purposes. 

One striking example of an illustrative model was 
produced by the American digital computing and 
system dynamics pioneer Jay Forrester in his book 
‘World Dynamics’4. It was subsequently elaborated 
in a 1972 report called ‘The Limits to Growth’5 
that was released by the global thinktank the 
Club of Rome and in subsequent studies6. These 
models vividly highlighted the dangers of unlimited 
economic and population growth.
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Before these models, the view was that growth 
was exclusively good, and that there were 
effectively no limits to the Earth’s ‘carrying 
capacity’, its scope for supporting human activity. 
Such limits were deemed irrelevant because they 
were far off, or non-existent, or unknowable 
because they were susceptible to change. 

The models provided an explicit illustration of how 
different elements of the complex global system 
could interact (see Fig. 2). Industrial output and 
population size — two aspects of the ‘human 
activity footprint’ on Earth — reinforce one 
another to create further, exponential, growth. 
However, the models made a clear and compelling 
case for the idea that limits relating to resource 
consumption and environmental degradation 
were real, and placed a limit on human activity. 
This would exert a balancing effect on growth, 
working as a brake that would be felt on a 
relevant timescale. 

Carrying capacity has many elements, and consists 
of a multitude of limits. Technical fixes addressing 
one limit merely allow growth to bump up against 
others. Carrying capacity can be eroded when 
exceeded by human activity — for example, 
overharvesting fish depletes the breeding stock that 

is the basis for future harvests. Efforts to address 
these limits are also hampered by a misperception 
of exponential growth and delays in perception and 
action, such that carrying capacity may be eroded 
before markets or governments respond. 

The Club of Rome’s global modelling work was 
illustrative, highlighting potential consequences 
of interactions between the Earth’s and human 
systems. It attracted much comment and criticism, 
for example, concerning its technical aspects and 
whether it could be seen as predictive. It was 
effective in communicating ideas about a complex 
system and triggering public debate about the 
merits of unlimited growth.

Today, these ideas are widely accepted and form a 
central part of public debates. The IPCC is just one 
of many international agencies monitoring a range 
of limits and the ‘human footprint’. The ‘Limits to 
Growth’ models continue to communicate the idea 
that the global system needs rapidly to be brought 
back into equilibrium if there is to be a smooth 
transition to sustainability, or we risk an ‘overshoot 
and collapse’ mode (see Fig. 3). 
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Figure 2: A simplified causal map of the key feedback loops in the Club of Rome’s modelling studies. Links marked 
‘s’ produce changes in the same direction while ‘o’ links produce changes in the opposite direction. Growth effects 
increase the human activity footprint, which in turn reinforces further growth (left; ‘R’ represents a reinforcing 
feedback effect). However, the Earth’s carrying capacity is itself diminished by that very footprint, and braking 
effects come into play (right; ‘B’ represents a balancing feedback effect.).
Refs 4 & 5 / David C Lane



WHY MODEL?

22

Human
Activity
Footprint

Time Time

Footprint

Carrying Capacity

Footprint

Carrying Capacity

Time

(a) (b) (c)

Figure 3: The Club of Rome’s ‘Limits to Growth’ modelling studies questioned the notion that growth was limitless 
(a), and instead suggested that if it were not curbed to a sustainable level fairly early (b) then the human footprint 
would exceed the Earth’s carrying capacity, leading to a collapse (c).
Refs 4 & 5 / David C Lane

Analogy	
Playing about with models in a creative but informal 
manner can provide new insights about complex 
systems. Here, the model is essentially a way of 
thinking about things, and it can be very powerful 
in this regard. However, the danger is that people 
confuse a useful way of thinking about things with 
something that is true. As such, any documentation 
must be very clear that the purpose of the model 
is merely to provide a new way of thinking about 
things, and not, for example, to offer definitive 
predictions about the real world. The risk of 
misinterpretation means that careful consideration 
is needed before such models are released for 
public consumption.

The FloodRanger simulation7, developed by the 
government’s ‘Future Flooding’ Foresight project, 
is a good example of a model that provides a 
useful way to think about complicated problems. It 
requires the player to try to run a local authority 
for as many years as possible, balancing investment 
in flood defence, housing and other public goods. 
This helped decision-makers and publics get a 
better intuitive feel for the technical and social 
aspects of the complex system.

Thinking about a system in a 
particular way does not make it true, 
but it may provide new insights into 
how the system might behave.

Other	Purposes
This chapter clearly does not cover all possible 
uses for a model. Some uses could come under a 
number of the above categories, depending exactly 
on what is being claimed. A ‘what if?’ analysis 
could be predictive (if A is the case then B will 
happen, otherwise C will happen), but it could 
be a theoretical exploration of an explanatory 
model (the model provides a good explanation 
of something observed, then we explore what 
happens in the model if we change something). 
Similarly, producing a scenario could be an 
illustration of what could happen, or just a useful 
way of thinking about issues. On the other hand,  
to optimise some quality using a model, one needs 
to be able to predict the outcomes from the 
various possibilities.
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Table 1: A brief summary of modelling purposes

Model		
Purpose

Essential		
Features

Particular		
Risks	

Prediction Anticipates unknown data Conditions of application unclear 

Explanation	 Uses plausible mechanisms to 
match outcome data in a well-
defined manner

Model is ‘brittle’, so minor changes in the set-up 
result in a bad fit to explained data

Understanding	
theory

Systematically maps out or 
establishes the consequences of 
some mechanisms

Mistakes in the model specification; 
inadequate coverage of possibilities

Illustration Shows an idea clearly Over-interpretation to make theoretical or 
empirical claims

Analogy Maps to what is being modelled 
in a plausible but flexible way and 
provides new insights

Confusion between a way of thinking about 
something and the truth — this model gives no 
support to empirical claims

What	kinds	of	questions	can	models	answer?
It is very useful to frame one’s expectations of a 
model in terms of a specific question. In general, 
the more precise the question, the better the 
outcome of modelling — that’s because the 
modellers have a precise goal to aim at, which 
helps ensure that there is no misunderstanding 
about whether this is feasible. In fact, it is often 
the case that users find the process of precisely 
formulating their question and their goals for 
modelling to be as useful as the resulting model 
and the answers it gives.

After a model is evaluated for the first time, the 
iteration of this goal-setting process offers further 
benefits (see Chapter 2). This is why it’s often 
more productive to see an early version of a 
model rather than wait for a mature version before 
evaluating it, an approach called rapid prototyping.

However, not all purposes can be framed as the 
answer to a question. The kinds of questions 
that models can answer and the quality of those 
answers will depend on many things, including: the 
reliability of the underlying science; the amount and 
quality of the relevant data; and, importantly, the 
purpose of the model.

Table 2 gives some examples of the kinds of 
questions or objectives that might be appropriate 
for each kind of model.

Posing specific questions is 
the first stage in getting good 
modelling outcomes.
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Table 2: Different model purposes, and examples of the kinds of questions they might help to answer.

Model	Purpose Example	Questions	or	Objectives

Prediction What will happen if we do this? Do we need to close schools to stop this 
epidemic? What is the optimum interest rate for GDP growth? 

Explanation	 What kinds of processes are behind the growth in unemployment rate?  
Why didn’t badger culling eliminate TB among cattle herds in culled areas?

Understanding	theory What are the theoretical consequences of a particular set of mechanisms 
and structures? In a perfect market, what would happen if we changed the 
bidding mechanism?

Illustration Developing a scenario to frame a discussion on planning for the far future. 
Making clear the kinds of consequences if people do not keep to specific 
hygiene advice.

Analogy Is there an alternative way of considering this problem? Is everybody that 
is part of this meeting thinking in the same way? Are there any new insights 
that we have not yet considered?
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Chapter 2: 

MAKING AND 
USING MODELS
Creating a model requires far more 
than just raw data and technical skills. 
A close collaboration between model 
commissioners, developers, users and 
reviewers provides an essential framework 
for developing and using an effective model. 
This chapter offers a best-practice guide 
to that process, which is vital for building 
confidence in any model.
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MAKING AND USING MODELS

Introduction
Models have many technical aspects — including 
data, mathematical expressions and algorithms 
— yet these are not sufficient for a model to 
be useful. In order to get the best out of a 
model, its users must work closely with model 
developers throughout its creation and subsequent 
application. This is an essential factor in establishing 
confidence about what a model can and cannot 
do. This chapter offers a guide to navigating this 
process, by considering the key steps involved in 
commissioning, building and using models.

We should also add a general warning about models. 
Models often work very well in stable circumstances 
but fall apart when the world changes.

How	do	I	get	a	good	model?
Models used for evidence-based policymaking 
often rely on past data to provide insights about 
the potential future consequences of decisions. A 
good model will offer assurance that those insights 
are correct, through a process of ‘validation’. This 
helps to build confidence in a model — having 
well-grounded confirmation that it is trustworthy 
for its particular purpose. 

What goes into a model partly depends on 
the state of knowledge it draws from. Hence, 
the quality of a model, and the confidence we 
might have in it, will depend on the quality of its 
underlying theory and its data.

A model needs to use data that are fit for 
purpose. Some of the data may be known to be 
accurate, while some may require best guesses and 
judgements. It is important to access and elicit data 
in ways that leave model users able to judge the 
degree of certainty to which the model commits 
them. Even if there is great uncertainty about the 
system being modelled, a model can still be valuable 
as an agreed description of the situation. Enabling 
users to understand and appreciate caveats is an 
essential element in building confidence.

The question then becomes: How do we make 
sure we are building a good model that commands 
justified confidence? There is a wide range of 
factors that help to support building confidence in 
a model, including:

• clarity about what the model does and how 
it does it

• agreement about the assumptions made by 
the model

• the reliability of the knowledge that 
underpins the model

• the extent to which the model has been 
empirically validated

• having good quality-assurance processes 
• the timeliness and applicability of results 
• having procedures to maintain the model as 

the context changes
• having effective ways of communicating the 

results, and the assumptions on which they 
are based, to its users 

We consider some of these factors in more detail 
in the remainder of the chapter.

a model is only as good as the 
knowledge, data and assumptions 
that underpin it.

Asking	the	right	question
It is important to make sure that a model is dealing 
with the right issue and helping to ask the right 
question. Even a high-quality model will not be 
helpful if it relates to an issue that is not the main 
concern of the user. Conversely, asking a model to 
answer more and more detailed questions can be 
counterproductive, because it requires ever more 
features of the real system to be included in the 
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model. This can lead to a project getting bogged 
down in unnecessary detail, or generating models 
that cannot be easily understood. Models need 
to be ‘requisite’ — they must have an identified 
context and purpose, with a well-understood 
knowledge base, users and audience, and possibly 
developed within a particular time constraint1. 

Who	does	what?
Although a very simple model might be the work 
of one person, usually a team of people will be 
involved, and it is important to be clear about the 
individuals’ roles2. There will be at least an owner, 
or commissioner: the person whose responsibility 
it is to specify what the model is expected to do, 
provide the resources needed to get the model 
built, and sometimes monitor how the model is 
used. There will be model developers, whose 
job is to design, build and validate the model; and 
analysts who will generate results from the model. 
Developers and analysts are often, but not always, 
the same people. There will also be the model’s 
users: those who have the problem or question 
that the model is designed to answer. And it is good 
practice to have a reviewer or quality assurer, 
someone external to the team whose task is to 
audit the model and the way it has been developed 
to ensure that it meets appropriate quality standards 
and is fit for purpose — standards which vary 
according to the importance and risk of the area. 
Each of these roles may be carried out by several 
people — for example, a large model might need a 
team of developers, and the review might be carried 
out by a group of peer reviewers. In all but the 
most modest models, however, there should be at 
least one person for each role, because the skills 
required for each are very different. 

Specifying	a	model
Sometimes it is possible to be precise about what 
a model is going to be used for, and therefore what 
it needs to contain, before the model is created. 
One can then write a specification and hand it over 
to a group of professional model developers. This 
situation can arise when dealing with a logistical or 
operational question, where there is a great deal 
of certainty about the system and clarity about 
what the model should output. Examples include 
simulating the operation of a reservoir and optimising 
an oil refinery’s output using linear programming. 

Much more often, however, the situation to be 
modelled is complex; the processes to be modelled 
are uncertain; and the questions to be answered 
are vague. In such cases, model commissioners 
need to stay very close to the modelling process, 
getting involved in the iterative process of deciding 
what should be included and how it is represented. 
Such models will often produce a range of results 
and may identify possible tipping points. This is 
usually the best approach if one is concerned 
with strategic or policymaking questions; dealing 
with one-off issues; addressing uncertainty about 
the consequences of actions; or is unclear about 
appropriate ways of judging what a system does. In 
these cases, those involved in the process need to 
exercise their collective judgement. For example, 
in making the case for Crossrail 2 (a proposed 
railway across London), working groups of model 
developers, policymakers and decision-makers had 
to meet on a regular basis — sometimes weekly 
— in order to build, validate and understand the 
new models being used to analyse the proposal’s 
potential impacts on the economy.

a model should be seen as a 
process, rather than an outcome.

Finding	the	data
Finding the right data and assessing their quality 
can be a complicated task that usually needs to be 
undertaken by experts in the field, in consultation 
with commissioners and users. All too frequently, 
one does not discover exactly what data one 
needs until the model has been built, so it often 
becomes an iterative process of finding data and 
developing the model. However, there are a few 
helpful distinctions to be made that will enable a 
model commissioner to ask model developers the 
right questions.

The first distinction is between the data one needs 
in order to specify and build the model; the data 
that will be used to check the model’s output; and 
the data needed for day-to-day use of the model. 
The second distinction is about the different levels 
at which the model operates. Detailed and complex 
models may have three distinct levels: the micro-
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level, describing how the smallest components 
of the model behave (for example, the cars in a 
traffic model); the meso-level, describing how the 
components are linked together (for example, the 
road layouts); and the macro-level, covering the 
properties of the system as a whole (for example, 
the funding for new road infrastructure). The 
micro-level may be determined by the science 
behind the model, by qualitative evidence, or by 
‘big data’ analyses. The meso-level might reflect the 
structure of the system. And the macro-level may 
include data such as aggregate statistics over a long 
period of time. Sometimes it is acceptable to use 
closely-related proxies for these data.
Many models are intended to explain or predict the 
outcomes of processes that take place over time. 
For such models, we usually need data that have 
been collected over a period (referred to as time-
series data, or longitudinal data). However, such 

data are often difficult to obtain, not least because 
of the time it takes to gather the dataset. For 
example, data for a model about the added value of 
different types of school requires the children to be 
assessed as they enter the school, and again when 
they leave several years later. When using time-
series data, one must be careful that definitions 
have not changed in the intervening period, making 
data points measured at different times not strictly 
comparable. And if one is using data collected at 
two points in time from the same individual or 
organisation, one must consider the effects of those 
who stop participating during the data collection 
period, which may lead to a biased sample (see 
‘Seeing the world through a hazy lens’, below). It is 
also important to be careful when using data from 
one period — for example, historical Census data 
— to predict what might happen in the future, if 
things the model has held constant have changed. 

SEEING	THE	WORLD	THROUGH	A	HAZY	LENS

Much modelling concentrates on understanding a dynamical process, whether that is the flow of energy 
through an ecosystem or the transmission of a pathogen through a population. However, if model 
outputs are to be compared to data, then consideration needs to be given to an additional issue: the 
data generation process. The data that are observed may be influenced by factors other than the process 
of interest. Two common, but quite distinct factors are: the socioeconomic factors that influence data 
generation by individuals; and the frequency of data collection and how it is collected. 
For example, the behaviour of people seeking healthcare — which would influence the number of 
cases observed at healthcare facilities — may differ by age, gender and socioeconomic behaviour. If 
individuals from poor households are less likely to seek treatment, for instance, then a model that only 
considers the transmission process and not the health-seeking behaviour will underestimate the burden 
of disease in poor households. 
Another example of the influence of data collection is in air pollution monitoring, where the frequency 
and timing of samples and positioning of the monitors might change over time. Samples might have been 
taken early in the morning during the 1980s, but mid-morning in the 1990s; and from a city centre street 
rather than an arterial road. Proxies might be introduced or changed: instead of taking an air quality 
sample, the number of lorries passing might be counted (as a proxy for air quality). All these factors need 
to be considered when defining model inputs and comparing data with model outputs. Inferring the data 
generation processes may be particularly difficult when unstructured citizen science and crowdsourcing 
are used to collect data. 
An analysis of surveillance data collected during the 2009 to 2010 influenza A/H1N1 pandemic further 
illustrates these points. It relied on coupling a deterministic mathematical transmission model with a 
statistical description of the reporting process2. The limited timescale of the data analysed meant that the 
research avoided an even greater challenge: the problem posed by analysing time-series data in which 
the data collection processes changes within the time period.
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it is important to be careful when 
using data from one period to 
predict what might happen in the 
future, if things the model has held 
constant have changed. 

Building	a	model
Designing and building a model has some of the 
characteristics of software development and many 
of the same techniques and tools can be used. 
There are two basic approaches: one can either 
attempt to specify in detail what the model should 
do and then construct it to match that specification; 
or one can build the model in a much more iterative 
fashion, starting with a very basic and simple model 
and incrementally improving it, meanwhile checking 
that it matches the users’ requirements. These 
requirements may themselves change as the users 
improve their understanding of the problem and 
how the model can help. 

Nowadays, few models are written directly in a 
general purpose programming language. Instead, 
any of a large variety of ‘frameworks’, ‘libraries’, 

or ‘applications’ are used. Some of these are 
commercial; others are free and open source. 
For example, many models are written using 
spreadsheet software such as Microsoft Excel, 
while MATLAB is a popular choice for linear 
programming, Vensim or iThink for system 
dynamics, R for general mathematical models, 
NetLogo for agent-based models and PRISM 
for Markov chains and probabilistic models (see 
Chapter 3). 

Because it helps to have expert knowledge and 
experience of these frameworks, model building 
is often out-sourced to consultancies, or is the 
responsibility of specialised teams of in-house 
developers. The downside of out-sourcing is that 
barriers to communication may arise, especially 
when the commissioner and the developer are 
in different organisations with different cultures 
and different priorities. In some circumstances, 
a ‘participatory modelling’ approach may be 
particularly fruitful (see ‘Participatory modelling’, 
below and overleaf)

Regardless of the development approach and the 
location of the developers, it is essential that design 
decisions are logged and the development process 
is documented. A version-control system will also 
be needed to track changes to the model code. All 
this documentation will be an important input into 
the model’s quality assurance review. 

PARTICIPATORY	MODELLING

How a model is built and used partly depends on the issue it deals with. Some models deal with 
topics where there is a lot of well-established information available, such as engineering problems, or 
manufacturing issues, or aspects of natural science. Modelling the flow of oil within porous rocks, for 
example, in order to answer the very specific question of where to drill to get the most oil for the 
lowest cost, is a technically complex but fairly well understood problem. 
Such modelling work can be ‘done from a distance’: highly skilled engineers and geologists are able to 
work with modellers to create very large models whose results are reported up the chain of command 
within an organisation. Model recommendations are likely to be accepted because of the focused 
nature of the question; because such issues have been modelled effectively many times before; because 
the data used to build the model are robust; and because those building the models have credibility in 
the organisation. 
In contrast to this approach, recent decades have seen modelling increasingly used in a ‘participatory’ 
manner. Participatory modelling — also known as ‘group model building’, or ‘model co-design’ — 
can involve a wide range of computational (and non-computational) modelling approaches, but is 
particularly well-developed in the area of system dynamics (see ‘System dynamics’ in Chapter 3, p42) 
and can also be used with discrete event simulation (see Chapter 6, p77). Participatory modelling 
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means that a model is directly built and used by the people who are interested in the question it tries 
to answer. This is particularly effective in new situations that are only partly understood; when there is 
doubt about what might be done; and when a team needs to explore different options. Participatory 
modelling therefore helps to develop a (collective) way of thinking about a situation.
Participatory modelling has a range of overlapping benefits. Firstly, when senior decision-makers are 
directly involved, it becomes easier to create a model that reflects not just available objective data but 
also estimates based on informed judgements, or even best guesses and working assumptions about 
what is going on. When modelling is used to elicit such information, the resulting model becomes an 
extension of a group’s understanding of the world, a manifestation of a shared ‘mental model’. The value 
is in making such mental models explicit: ideas in a model are openly stated and so can be challenged 
and corrected. Such models can also be simulated, and this leads to the second benefit. 
Humans are poor at answering ‘what if?’ questions when a high degree of complexity is involved. 
Computational models do this with ease, rigorously deducing the consequences of a set of assumptions. 
When a model shows an unexpected behaviour, this is not seen as something that can be ignored. The 
participatory approach creates models that are known to contain assumptions that its builders believe to be 
correct — so if a model behaves in a surprising way, this gives users a chance to learn something new, to 
improve their intuition about what the effects of a policy might be, and to bring to life the idea of  
‘policy design’.
This use of models to experiment with different ideas, rehearse alternative policies and explore a 
range of scenarios brings us to the third benefit of participatory modelling. Using a model in this way 
may prompt a change in participants’ mental models as they understand the consequences of different 
actions and, together, become committed to them. This is the ultimate point of participatory modelling: 
not to provide an answer, but to create a process through which people can interact and play with a 
model, learning for themselves about the complex dynamics of a system in which they are embedded. 
This can improve their intuition and create a new mental model, which can then become the shared 
basis for action. 
The increasing use of participatory modelling derives from a number of factors. One is the availability 
of fast computers and modelling packages with attractive user interfaces and compelling visualisation 
opportunities; another is the increased understanding of effective methods for facilitating group 
processes. However, the most significant factor is the greater appreciation that models can play an 
important role in high-level policymaking, offering support for senior managers when exploring issues 
of strategic rather than merely tactical or operational 
significance (see Chapter 4, p52 and Chapter 6, p78). 
There is often a lack of understanding of how flexible 
modelling can be, and this is one reason why it is 
sometimes resisted in higher levels of organisations. 
While participatory modelling can be useful right across 
this spectrum, it is most effective as a means of bringing 
modelling into the sphere of strategic discussions 
conducted by senior managers. There needs to be a 
better understanding of the different roles that a model 
can play in decision-making and policymaking, from 
providing an answer to a specific question to allowing 
creative exploration and discussion about very broad areas of concern.

A participatory modelling session, here  
using the system dynamics approach, David C Lane
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Documenting	a	model
A model will be all but useless if it lacks 
documentation. Several different kinds of 
documentation are needed:

• Documentation of the model code, sufficient 
to explain in detail what it does and how it 
does it. Some of this will be integrated into 
the code as comments, but there will also 
need to be separate documents intended 
for developers.

• Documentation aimed at analysts, who may 
want to change model parameters but not the 
model code. Such documentation will need to 
explain how to run the model, the computing 
system it needs, supporting software if any, 
and the various files that the model requires 
as inputs and generates as outputs.

• Documentation for users. This may include 
presentations, tutorials and user guides, 
aimed at people who want to use the 
model but do not need to know about its 
mechanics. While the documentation should 
be comprehensible to non-experts, it should 
include an explanation of the assumptions 
on which the model is based, as well as its 
objectives and limitations.

All this documentation takes time to prepare, 
possibly more time than building the model 
itself. But it is essential, because one needs to 
assume that the original developers, reviewers, 
users and even the commissioner may move 
on to other roles, taking their knowledge and 
expertise with them. Moreover, if a decision that 
relies on the model is challenged, internally or 
externally, by public opinion or judicial review, the 
documentation may take on real significance.

Quality	assurance
The validation process checks that we have 
modelled the right thing. This often involves 
testing the model against known data or 
behaviours, to demonstrate that the model is 
faithful and gives the expected outcomes. It is 
also necessary to check that we have modelled in 
the right way, and that the model satisfies (or not) 
properties that are crucial to the system we have 
modelled: this is called verification. For example, 
consider a model of railway track maintenance 

costs. Validation might include comparing the 
model’s results for last year’s costs with the actual 
costs during that time. In contrast, verification 
might involve inspecting the quality of the model 
code — checking we have the correct formulae 
in spreadsheet cells, for example — and verifying 
desirable system properties, such as whether the 
annual costs for the next 5 years will be within a 
given budget, assuming the current rates of faults.

No model can ever be ‘valid’, in the sense of being 
known to be completely right. Rather, tests can 
be performed on a model, each of which adds 
to confidence when they are passed. Models that 
have already been used successfully arrive with a 
level of confidence, but further tests can help. For 
critically important models, it may be desirable 
to commission several independent models from 
different developers and compare the results. 

Models must be correctly formulated for them to 
be credible. They must be also consistent with any 
relevant theories, for example by conforming to a 
physical law. If any form of mathematics or coding 
is involved, then its correctness and reliability must 
be established through model verification. A model 
must be consistent with all that we know, explain 
what has happened in the past, and have plausible 
assumptions. It must have ‘face validity’, that is, 
involve explicit assumptions that are generally 
seen to be reasonable. It must also use the highest 
quality data available (this is called ‘data validity’ — 
see ‘Validating a norovirus model’, overleaf). All this 
helps an organisation or a group of decision-makers 
to have confidence that a model is of high quality2,3,4. 

Sharing the details of a model and its code as 
part of its development is good practice. External 
scrutiny and challenge ultimately leads to a more 
robust model. The level of formality with which 
this is done will depend on the use the model is 
intended for. A formal external peer review or 
audit would be justified for highly complex models; 
models that inform decisions affecting public safety, 
and models that have significant financial bearing. 
For models that are relatively simple, or of low 
impact, informally sharing the model details with 
expert colleagues would be more proportionate. 
A more detailed discussion of the principle of 
proportionality in model quality assurance can be 
found in ‘The Aqua Book: guidance on producing 
quality analysis for government’3.
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VALIDATING	A	NOROVIRUS	MODEL

Norovirus is an enteric pathogen that causes 
nearly 3 million cases of intestinal illness each 
year in the UK. Staff from the Food Standards 
Agency worked with an external consultant to 
build a system dynamics model (see ‘System 
dynamics’ in Chapter 3, p42) of the mechanisms 
underlying the transmission of norovirus 
through the human population. They were 
having great difficulty getting a particular value 
for one aspect of the model: the scientific 
literature seemed to offer a wide range 
of estimates. 
The model had been built in close cooperation 
with Food Standards Agency experts, who 
acknowledged that it represented their ideas in 
an open and comprehensible way — in other 
words, it had ‘face validity’. When the team 
considered the troublesome value in terms of 
the causal mechanisms that result in norovirus 
infection, they realised that the different 
estimates in the scientific literature were 
actually the result of calculating slightly different 
things. By providing a formal way of thinking 
about the spread of disease, new insights were 
gained. Having discovered this, it was possible 
to select a better estimate for the specific 
parameter. In this way, the ‘data validity’ of the 
model was increased because the ‘face validity’ 
of the model was high.

Uncertainty
Our world is full of unexpected events that give 
rise to uncertainty. These range from completely 
new and unexpected processes — such as the 
emergence of crypto-currencies based on block 
chain technologies — to deviations in well-
understood values, such as an unexpected fall 
in unemployment. They can affect the quality of 
models, which has an impact on how models are 
used and even how they are constructed. Some 
of these unexpected events might be within the 
scope of a model and have only a minor impact on 
the results, but there will always be things beyond 
this scope that cannot be anticipated. 

There are many ways in which uncertainty can 
arise. These include: errors in measuring or 
estimating; inherent chance events in the system 
being modelled; an underappreciation of the 
diversity of events in a system; ignorance about a 
key process, such as how people make decisions; 
chaotic interactions in the system such that 
even a small change can switch behaviours into 
another mode; and the complexity of the model’s 
behaviour itself, which model developers may not 
fully understand.

It is important to consider the uncertainties in 
the data that underpin a model, and the level 
of uncertainty that might be acceptable in the 
model’s answers. Moreover, a complex model 
can sometimes act as an ‘uncertainty amplifier’, so 
that the uncertainty in the results is much greater 
than the uncertainty in the setup of the model 
and the data it uses. Sometimes the uncertainty in 
the results can be gauged from an analysis of the 
uncertainty in its inputs and the structure of the 
model, but in many cases one needs to try the 
model out many times with different inputs to see 
how sensitive it is to these factors (this is called a 
sensitivity analysis). 

Just as there are different kinds of uncertainty 
that affect a model, there are different kinds of 
uncertainty in model outcomes. The answers 
a model gives might be basically correct, but 
somewhat prone to a degree of error. In other 
cases, the outcomes might suddenly vary sharply 
when the inputs change, or shift from a smoothly-
changing continuum to an ‘on/off ’ output. The 
kinds of uncertainty in model outcomes affect how 
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it can be used reliably. If a model outcome is being 
used as a single baseline for planning the cost of a 
project in the short run, it may not matter if it is a 
little off; but if the model is predicting linear rather 
than exponential cost increases over a long time 
frame, this may cause major problems.

Consequently, it is vital that the uncertainty in a 
model’s results is communicated together with 
the main results. A graph with a single black line 
implies a precise prediction, whereas a graph 
with an increasing band of grey implies a forecast 
with areas of greater and lesser uncertainty (see 
Chapter 8, p94). Indeed, any graph at all implies 
that the numerical values coming from the model 
are meaningful. This may be misleading, because 
some models — such as those used to identify 
risks — will project a range of qualitatively 
different outcomes, but not the probabilities or 
levels of seriousness of these outcomes. When 
communicating model results, therefore, it is 
important that the key caveats and assumptions are 
not separated from the main conclusions. Users’ 
reactions to model results can depend on how 
they are presented and visualised.

The user experience of a model, 
and effective communication 
of a model’s results - including 
uncertainties - should be considered 
at the earliest stages of model 
scoping, and be an integral part of 
the model development process.

Communicating	a	model
While the process of modelling greatly increases 
one's understanding of a problem, the true value 
of a model only becomes apparent when it 
is communicated. The communication of a model’s 
results is the final and potentially most important 
part of the modelling process: the user interface or 
visualisation is the only contact those not directly 
working on it will have with a model. Rather like 
the executive summary of a report, a visualisation 
must encapsulate all that is important to know 
about the underlying model. It must somehow 
communicate the model’s results and (ideally) its 
assumptions to the intended audience, who may 
base important decisions on their understanding of 
the visualisation. Consequently, even at the scoping 
stage it is crucial to consider who the user of a 
model will be, and how best to tell them about it.

Making educated simplifications and assumptions 
is an inherent part of the modelling process, as is 
the presence of some uncertainty in model results. 
Given the compelling nature of well-designed 
visualisations and user interfaces, it is vital that they 
do not misrepresent the reliability of the results 
they communicate — just as an executive summary 
must be representative of the conclusions and 
caveats of the underlying report.

The appropriate method of communication will 
depend on the intended audience, which may 
comprise decision-makers, engineers and designers, 
but in some cases may include the public, business 
people and academics. Each of these groups may 
be better engaged by quite different approaches 
when communicating the model’s results and 
assumptions. Such approaches may include tables, 
graphs, animations, visualisations, web pages 
or online interactive calculators (such as the 
government’s 2050 Energy Calculator5). Choosing 
the appropriate mode of communicating a model’s 
result — and then doing so effectively — is a skill 
that requires deep understanding of the model, 
and of the interests, background and frames of 
reference of each type of potential user (see 
Chapter 3). The ideal way to do this is to involve 
users and visualisation experts from the start of 
the development of the model.
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Maintenance
Once a model has been created and used 
successfully, it often seems to take on a life of its 
own and become separated from its purpose and 
context. Unless resources have been put into place 
to support the maintenance of the model, however, 
it may become gradually less effective. There are at 
least three reasons for this:

• Users are reluctant to abandon the model. 
Yet if appropriate maintenance activities have 
not been put in place, the model’s results 
may become less and less accurate because 
the system being modelled has changed. 
This can be very dangerous, leading to quite 
erroneous conclusions. The fact that the 
model has been successful in the past can 
bolster confidence in its credibility, without 
anyone realising that the model no longer fits 
the world that it is modelling.

• The model’s use has changed. While the 
model would have been tested to give good 
results for its original purpose, the quality 
assurance may not guarantee its validity 
following ‘creep’ in the way it is being used. 
In addition, as staff involved in the model 
move on to other projects, the original 
understanding of the models’ assumptions, 
scope and limitations may get lost.

• Model accretion. If extra parameters or 
routines are added to the model to deal with 
new demands or new data, the model may 
eventually become so complicated that it is 
difficult for anyone to understand it and use 
it correctly.

These dangers can be avoided, or at least 
ameliorated, by scheduling regular reviews of the 
model to check that it remains fit for purpose, and 
to ensure that the documentation remains relevant. 
The review may conclude that the model should be 
retired or re-written: this happened in the case of 
the International Energy Agency’s model of energy 
systems, MARKAL6, and the pension simulator 
PENSIM7. To ensure that such reviews do take 
place, models should have long-term owners with 
responsibility for their continued maintenance.

all models should be regularly 
reviewed while they remain in use.
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MAKING	AND	USING	MODELS:	A	CHECKLIST

This checklist is inspired by the government’s ‘Scope development checklist’8, and includes some of the 
questions that need to be answered before and during the creation and use of a model. 
WHAT

What topic is to be addressed?
• What is the issue or issues under consideration?
• If there is more than one issue, how are they related?
• What is the context of the issue?
• What are the specific questions that need to be answered and can modelling address them?

What is the scope of the model?
• What must the model cover?
• What can be excluded from the model?
• What is the minimum viable scope that can be used as a starting point for the model?

What output and follow up is required?
• What kind of outputs or results might answer the questions raised?
• What format should be used to present the results?
• What controls are in place to make sure the model is not used incorrectly?

HOW

How will the model be designed and built?
• What level of detail is needed for the model in each of its frames of reference?
• What accuracy is required in the output?
• What should be the trade-off between accuracy, simplicity and robustness?
• What modelling techniques will be used, and why those? Which alternatives were considered? 
• How do the chosen modelling techniques have an impact on the accountability of decisions?

What data and assumptions will the model be based on?
• What data are available and how robust are they?
• Are there judgments about the quality of the data that will need to be made?
• How accurate are the available data, and how does that match with the required accuracy of the 

outputs?
• How will each of the assumptions be justified?
• What alternative assumptions could be made?

What quality assurance procedures will be followed?
• What verification procedures will be used to check that the model works as expected?
• How will the model be validated, and what data will be used for doing so?
• Is there a schedule of reviews to ensure that the model remains up to date?

How will the results be communicated? 
• What methods will be used to communicate with users?
• What are their needs and abilities to appreciate the model and what it provides?
• Are visualisations, dynamic graphs and movies appropriate to convey the messages of the model 

and, if so, have resources been set aside to create these?
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WHO

Who will be involved?
• Who will be the users of the model?
• Who will have overall responsibility for the model, its development and its use?
• Who will provide the data and the knowledge required to build the model?
• Who will develop the model?
• Who are the stakeholders (in other words, who is interested in the issue, who could contribute, 

who can influence and who will be impacted)?
• How will stakeholders be involved, and at what stage can they be most useful?
• Do the stakeholders all have the same concerns and questions about the issue? If not, what are 

their perspectives, and which frames of reference are to be considered?
• Who will provide quality assurance?
• Who will determine when the model is no longer useful?

What resources are available?
• Has anything similar been done before? If so, what can be learned from it?
• Is there a schedule of reviews to ensure that the model remains up to date?
• Are sufficient skills and expertise available and, if not, how can this be managed?
• What is the timescale for the work?
• What resources (time and money, for example) are available?
• Is it necessary and affordable to build a model, or could some other approach be used that requires 

fewer resources?
• What would be the consequences if the work were carried out at all, or the start were delayed?

WHAT	SHOULD	USERS	ASK	ABOUT	A	MODEL?

• Does the model offer answers to the problems that I have, that is, could it be useful to me?
• Are the assumptions it makes ones that I agree with?
• If the model offers an explanation or prediction, has the model been validated sufficiently against 

empirical data (or in any way at all)?
• Is the model documented so that I can understand how it works?
• Is the model output clear and comprehensible?
• Does the model output seem plausible when compared with other sources of information?
• Has the degree of uncertainty in the model output been properly recorded and its 

implications recognised?
• Is the model being used for its original intended purpose or, if not, is the new purpose compatible 

with the design of the model?
• Have other stakeholders or users been involved in the model design and use and, if so, do they 

agree that the model is useful?
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Chapter 3:

MODELLING  
TECHNIQUES 
The multitude of different mathematical and 
computational modelling techniques can 
often appear overwhelming. This chapter 
offers a simple introduction to some core 
techniques, explaining the various questions 
they can answer, their strengths and 
weaknesses, and the key role that framing 
plays in getting the best out of a model.
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MODELLING TECHNIQUES

Introduction
Models are tools that describe and assess the 
behaviours of an existing or intended system. 
They can help to make decisions about a course 
of action, or evaluate the merits and differences 
between designs. There is a cornucopia of different 
mathematical and computational modelling 
techniques to choose from. This chapter offers 
some simplified definitions of common techniques 
that should help model users to evaluate which 
models are best suited to a particular purpose, and 
their likely demand on human or computational 
resources. A deeper understanding of different 
types of models can also help to evaluate the 
choices made by modellers.

The primary value of a model lies in the questions 
you can ask it. But the process of developing a 
model is often just as valuable, because it forces 
clear thinking about the purpose of the model, 
the assumptions, the preconditions and levels of 
abstraction (see Chapter 1). Stakeholders often 
have very different perspectives on the purpose 
and role of a model (see Chapter 2); these need 
to be recognised and brought together as part of 
the model development process. One of the most 
effective ways to do that is to consider the model’s 
frames of reference — the perspectives being 
modelled, and their context. 

Framing
Frames of reference allow multiple perspectives 
and different levels of concern to be balanced 
within model development and analysis. No model 
is complete: every model presents a view, usually 
termed an abstraction, of a more complex system. 
Its utility is in representing the essentials of that 
view as precisely and simply as possible, for chosen 
frames of reference. 

Common frames of reference include: 
Geographic. This covers spatial and topological 
relationships, such as the locations of adjacent 
underground stations, the positions of emergency 
exits, or the distance between drains in a 
sewerage system.

Temporal. This includes the expected certainty of 
the model over time: weather forecasting becomes 
less certain the further we look into the future, 
for example, while navigation models become less 
precise as we move away from the position where 
we last verified our location.

Physical. This relates to underlying natural science 
and governing laws, such as those that govern 
water flow, heat transfer, or atmospheric physics.

Security. Models may focus on threats and their 
mitigations, such as access controls — which 
prevent unauthorised persons or systems from 
physically entering or digitally accessing a system — 
and encryption methods that encode data so it can 
only be accessed via keys.

Privacy. This covers aspects such as anonymity, 
identity, the authentication of personally identifiable 
information, and controls on intended and 
unintended disclosures.

Legal. This encompasses the obligations, 
permissions and responsibilities for different 
components.

Social. Communication and interaction 
relationships between humans involved in the 
system, and between humans and underlying 
technologies.

Economic. These models concern quantitative 
aspects of resource consumption, production 
and discovery, such as energy, money, or 
communication bandwidth.

Failures. This considers the relationships between 
components that can fail or operate incorrectly 
including fail-safe mechanisms and redundancies.
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Each frame (or frames) of reference may require a 
different type of model and analysis, and all kinds 
of framing demand judgements about the scales to 
be adopted, from the coarse to the fine-grained. It 
is important to recognise that a model developed 
to address one frame of reference may not be at 
all suitable for another frame; worse, the use of the 
model in another frame can be positively misleading. 
For example, using a costing model for rail ticket 
sales to assess the order in which to upgrade 
signals, or the impact of lengthening trains by adding 
carriages, could give very misleading results. This 
is because the costing model would not include 
details of how signals depend on each other, or the 
loads that rails are designed to withstand. 

Choice of modelling technique will 
depend on the purpose and role of 
a model.

Modelling	techniques
Models come in many forms, intended for many 
kinds of application. They range from Excel 
spreadsheets for economic forecasting, to statistical 
models for bioinformatics or differential equations 
for jet engines. By selecting a particular modelling 
technique, we are defining a set of abstractions 
and assumptions about the system being modelled. 
The choice of technique also determines how 
observations are represented in the model, as 
well as the formalisms (or languages) for defining 
models. Many models incorporate several 
techniques, depending on their function.

The following list of modelling techniques briefly 
explores some of their key features. 

1. Spreadsheets 

Spreadsheet models are extremely popular. 
They define arithmetic and logical relationships 
between inputs and outputs, encoded as formulae 
in spreadsheet cells. The basic functionality of a 
spreadsheet is simple and intuitive, though many 
advanced features can be complex and subtle. 
Usually a range of analysis tools is provided within a 

spreadsheet application, such as sensitivity analysis, 
and charts or graphs for visualising results. One 
drawback of spreadsheets is that it can be difficult 
to catch errors in formulae — this is because 
the values in cells are displayed to the user, not 
the underlying formulae. Each cell needs to be 
inspected manually, and possibly repeatedly, to 
check that the underlying formula is correct. 

2. Deterministic/non-deterministic

In a deterministic model, a particular set of 
inputs or initial conditions always produces one 
specific output (spreadsheets are an obvious 
example of a deterministic model). In contrast, a 
non-deterministic model can deliver several possible 
outputs from a given set of inputs. If you run a 
non-deterministic model today, and then run it again 
tomorrow with the same inputs, you may obtain 
different answers. Determinism in models is often 
highly valued, because it allows us to make absolute 
assertions about behaviour. Differential equations, 
for example, are essentially deterministic models 
that can describe physical or economic systems. 

However, many aspects of the physical world are 
fundamentally non-deterministic, and it may not be 
useful to try to model them in a deterministic way. 
For example, human behaviour is fundamentally 
non-deterministic. So a model of how a person 
might exit a building in an emergency would 
contain choices of routes; and a simulation of an 
evacuation might involve random selection of these 
choices across a population of simulated individuals. 

3. Dynamic/static 

In a dynamic model, output changes over time. 
Conversely, a static model has no inherent concept 
of time. For instance, spreadsheets are static models, 
whereas differential equations are dynamic models, 
because they represent the rate of change over time. 

Dynamic models rely on important concepts such 
as feedback; equilibrium (also known as steady 
state); stiffness; and non-linearity. 

• Feedback: outputs of a system are fed back 
into the system as inputs. 

• Equilibrium: variables no longer change 
with time. A system may never reach an 
equilibrium, although if does, then we can 
model that equilibrium with a static model.
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• Stiffness: when the model’s numerical 
methods need to make very small step 
changes, which consequently take a long time 
to run through, it is known as a ‘stiff ’ system.

• Non-linearity: in a non-linear system, changes 
in the output are not proportional to changes 
in the input, which can lead to unpredictable 
and counterintuitive behaviour. Many physical 
systems are non-linear, including the weather, 
which makes forecasting difficult. 

A dynamic model would be used to assess how the 
volume of water in a reservoir depends on changes 
in customer demand and weather conditions over 
time; how the power output of a wind turbine 
depends on changing wind speed; or how different 
social groups make decisions or participate in 
an auction.

4. Discrete/continuous

In a discrete model, objects or events can only 
be assigned mathematical values from a list of 
numbers that go up in steps — a series of integers, 
for example. By contrast, a continuous model 
involves representations that are ‘smooth’ and 
‘dense’, because they can take any numerical value. 

We most often meet this distinction when 
considering how things change over time. If we 
treat time as discrete, then events simply occur 
at fixed points, one after another. But if we treat 
time as continuous and dense, then each event 
may occur at any time, and potentially for only an 
infinitesimally short amount of time. Differential 
equations underpin continuous models that are 
commonly used to describe physical systems and 
forecast economic changes. 

It is possible to combine both discrete and 
continuous aspects into a single hybrid model. For 
example, we could have discrete states occurring 
over continuous time. Imagine a model of a door 
that has only two discrete states — open and 
closed — and continuous time transitions between 
them. These transitions can occur at different 
speeds: we can open a door quickly, yet close it 
more slowly. 

5. Stochastic

A stochastic (also called probabilistic or statistical) 
model has an inherent element of random, or 
uncertain, behaviour. Consequently, the events 
being modelled are assigned probabilities. 
This can be viewed as a special case of a non-
deterministic model in which the probabilities are 
known. A stochastic model often represents, or 
approximates, a data generating process. 

For example, rolling two dice produces a random 
score from 2 to 12, and a series of throws 
generates a data set. By assigning a probability to 
each of the possible outcomes for a throw, a model 
can replicate that data set. Stochastic models are 
very common: examples include models of online 
shopping behaviours, weather forecasting, failures 
of components in a jet engine, and the transmission 
and treatment of infectious diseases. Differential 
equations are sometimes extended to stochastic 
differential equations, for example, to add a 
representation of noise in the system. 

6. Markovian 

Markov models are named after Russian 
mathematician Andrey Markov. They are stochastic 
models in which the next state of a process 
depends only on the current state, rather than on 
previous states. In other words, the probability of 
the next step depends only on the current state 
and not on a path (or history) up to that state. 
This is an extremely valuable approach, because 
it makes it easier to use the model for reliable 
prediction. The simple model of a door described 
above is Markovian, because whether or not we 
can open the door (and the speed at which we do 
it) depends only on the current state of the door 
(open or closed), not how many times it has been 
opened or closed in the past. A popular form of 
Markovian model is a Markov chain, which can have 
either discrete time transitions between states 
(called a discrete-time Markov chain, DTMC) or 
continuous time transitions between states (called 
a continuous-time Markov chain, CTMC). 
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7. Individuals/population 

An individuals model represents each individual 
explicitly, whereas a population model collectively 
represents large groups of individuals. For example, 
scientists might choose to model the behaviour 
of several individual fishes; or instead model the 
activities of a large shoal.

An individuals model is useful when you need 
to track each individual through a system, or if 
individuals vary significantly in their behaviour. 
However, the models can become unwieldy if too 
many individuals are modelled, in which case a 
populations model is likely to be more useful. A 
common populations technique, applicable when 
individuals exhibit a finite number of possible traits, 
is to develop a counter-abstraction model that 
records the number of individuals with each trait. 
For example, a counter-abstraction model of people 
in a constituency might record the numbers of: 
children; male adults aged 65 and under; female adults 
aged 65 and under; male adults aged over 65; and 
female adults aged over 65. If the model is dynamic, 
then these counts would change over time. 

8. Logics 

Models can be represented explicitly in a set of 
formal logical statements. For example, a model 
can use a simple propositional or predicate logic, 
which might state that if a certain condition holds, 
then a variable has a certain value. Or it may use a 
temporal logic, which include the concept of time 
and so allows statements such as: if a certain event 
happens, then another event will surely follow 
it. There are numerous logics that allow for easy 
expression of other concepts, such as stochastic 
logics. Automated reasoning and analysis tool exist 
for most logics, including computer programs such as 
theorem provers and model checkers. The principal 
benefit of applying a logic approach is that it allows 
inference from the model through general rules of 
mathematical proof, so we can reason about the 
correctness of models or show the equivalence of 
models. The downside is that this sort of inference 
can be complex and, although many automated 
tools are available, the process can be daunting. 
Logic-based models are often applied in modelling 
computer and communication systems where (in 
some circumstances) there is a close relationship 
between logic, computation and communication. 

9. Automata and algebraic models

Automata and process algebras allow simple and 
elegant representations of multiple processes 
that occur at the same time, and that possibly 
send messages to each other. Originally intended 
to model computation, especially in distributed 
computer systems, they have more recently been 
applied to subjects from molecular biology to traffic 
congestion. The underlying languages of the models 
are algebraic, which set up laws that define how the 
different operators (a sequence or choice between 
events, for example) relate to each other. Process 
algebra models may be stochastic; they can also 
be discrete or continuous. More recent process 
algebras also include concepts of spatial location. 
Their advantages and disadvantages are similar to 
those of logic frameworks, and indeed there are 
often strong correspondences between algebraic 
and logical representations.

10. Complex and emergent systems 

Systems of numerous interacting agents can be 
difficult to model, especially when the behaviour 
of the whole system cannot be derived from 
the behaviour of the individuals, or if the system 
self-organises (see ‘System dynamics’, overleaf). 
Typical examples include social insects, extremely 
large telecommunications networks (including 
the internet), transportation networks, and 
stock markets. 

These systems are often tackled using agent-
based models, typically containing a large set of 
autonomous ‘agents’ that each represent individuals 
or groups with similar characteristics. These 
agents can have differing levels of autonomy; if it 
is important for an agent to have explicit reasons 
for making one choice over another, for example, 
then we often model with so-called BDI agents 
that include representations of each agent’s 
beliefs, desires and intentions. Analysis typically 
combines verification using both logics and large-
scale simulations, enabling modellers to explore 
emergent properties or predict when tipping 
points will be reached. Such explorations are often 
very computationally intensive, but recent advances 
in high-performance computing and cloud-based 
computing have the potential to making them more 
viable (see Chapter 8).
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SYSTEM	DYNAMICS	

System dynamics (SD) modelling is a computer simulation approach that can used to find effective 
policies for guiding organisations, and it is applied widely in business and in government. It can reveal how 
behaviour changes over time, helping policymakers to explore the question “What would happen if...?”
System dynamics unpicks how complex chains of cause and effect, information feedback loops, 
guiding policies, delays and non-linear relationships can come together to make systems behave in a 
counterintuitive way. It is useful for exploring the unanticipated consequences of policies, as well as 
designing and then exploring the effects of different policies that aim to improve things. System dynamics 
models take an aggregate view of organisations, concentrating on how the different elements — 
departments, ministries and so on — interact. The focus is not on obtaining forecasts of precise behaviour 
over time, but on understanding the structural source of general patterns, or modes of behaviour. 
System dynamics is best suited to questions such as: 
• Will a company expand steadily or might it overreach its capacities and spiral into decline? 
• Can oscillations in company inventory, headcount and profitability be explained by existing policies, 

and can different policies calm those oscillations? 
• How might climate change affect hospital operations, in terms of waiting times, doctor utilisation and 

treatment cancellations?
• Why do some policies seem to produce no effect, such as the minimal impact that some new roads 

have on reducing travel times? 
• How did a child protection system spiral into increasingly rigid compliance, making it ineffective (see 

Chapter 5, p63)? 
• Can the global system grow forever, or will it bump into limits (see Chapter 1, p21)? 
• Will investment in a new healthcare treatment or manufacturing technology produce rapid benefits, 

or will benefits occur much later?

System dynamics usually involves the simulation of a fully-formulated mathematical model, although 
purely qualitative system mapping — ‘systems thinking’ — can also yield some of the benefits of the 
approach. It can be ‘done from a distance’, using published data to offer a rigorous diagnosis that 
supports policy debates in the public arena. However, in recent decades system dynamics has proven 
most effective when practised in a ‘participatory’ manner, also called group model building. This involves 
a series of meetings in which decision-makers share their views and together build a model of their 
organisational challenges (see ‘Participatory modelling’ in Chapter 2, p29/30). The result is a system 
dynamics model whose content is well-understood and which holds their confidence. In this way, 
groups can use system dynamics models to experiment with different ideas, rehearse alternative policies 
and explore a range of scenarios. This may prompt a change in participants’ mental models that can 
generate a greater commitment to action. Europe has a particular strength in this form of participatory 
system dynamics, and increasing use of system dynamics models for strategic issues and used by senior 
managers is an emerging feature (see Chapter 4, p52 and Chapter 6, p78).
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11. Game theory

Game theoretic models are based on maximising 
the benefits gained by individuals — known as 
their utility function — which may, for example, 
represent desirable outcomes such as wealth. They 
can model cooperative games (where players form 
coalitions); non-cooperative (where individuals’ 
decisions and their time crucially affects the game 
outcome); or zero-sum (where one player’s gain is 
the other player’s loss). 

Game theoretic models are commonly applied 
in economics (see Chapter 8), political science, 
psychology, computer science and biology, and 
are an obvious formalism for modelling adversarial 
situations that characterise many security scenarios. 
Examples include two-player games that represent 
a computer-system administrator defending a 
segmented network against an attacker; and 
multiple-player games for auctions of wireless 
spectrum or for allocating game wardens to 
combat elephant poachers. 

12. Machine learning 

Machine learning is an artificial intelligence (AI) 
technique based on algorithms that are able to 
modify how they work in response to data. This 
effectively enables them to learn from experience, 
in order to produce more accurate or insightful 
results (see ‘Machine learning’, alongside and 
overleaf). Indeed, the terms ‘model’ and ‘algorithm’ 
are often conflated in machine learning. 

The primary use of machine learning is to develop 
models that classify or make predictions based on 
(past) data, which offers enormous value when 
there is already a strong foundation of existing 
science or knowledge. The model may go through 
a training phase, using an initial data set, before the 
algorithm(s) are applied to actual test data. 

But the algorithms offer no indication of causality, 
or the underlying mechanisms of the system, 
and so may not provide explanations. On 
their own, they may offer little to advance our 
understanding, and this has important implications 
for accountability of decision-making. Example 
applications include online credit card fraud 
detection, and image analysis for counterfeit 
money detection, tumour classification, and 
facial recognition. 

MACHINE	LEARNING	

Machine learning (ML) involves a family of 
statistical techniques that can detect patterns 
in large amounts of data to infer trends and 
predict outcomes. This enables us to deal with 
new, previously unseen, situations by assuming 
that the same patterns will continue to apply. 
Crucially, ML does not necessarily require an 
understanding of the mechanisms that caused 
those patterns — as such, it can be thought of 
as form of ‘hypothesis-free modelling’.
Conversely, traditional mathematical and 
computational modelling needs more than 
just data. These models depend on prior 
knowledge or hypotheses about the system 
being modelled. The modeller can tackle more 
complex problems by simplifying (or ‘abstracting 
away’) details that are not important to the 
problem being solved. In this framework, the 
model needs far less data (and therefore less 
computing power) because it is augmented 
by the modeller’s prior understanding of the 
system’s underlying mechanisms. Traditional 
models are particularly well suited to tasks 
such as predicting events that have never 
happened before, or understanding the reasons 
why something will happen (see Chapter 1). 
Furthermore, models can be coupled to provide 
deeper insights into more complex problems, 
something that is not possible with ML.
However, ML comes into its own when the 
system being modelled is a ‘black box’ — in 
other words, we have no prior knowledge or 
intuition about how the system works. For 
example, imagine building an automated system 
that can identify a handwritten number ‘9’. 
We cannot precisely define what makes a ‘9’ 
in all different handwriting styles, but we know 
it when we see it, and can provide countless 
examples. This problem is better tackled with 
ML than a traditional model.
ML is sometimes conflated with artificial 
intelligence (AI). But AI is a broader term that 
expresses the ability for machines to make 
(by some measure) ‘intelligent’ decisions, and 
it encompasses the effects of a number of 
other disciplines, including ML and traditional 
modelling. 
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How	machine	learning	works
The key concept here is learning: the programmer must provide a training data set that includes a 
very large number of data points. This is perfectly possible if a system produces a lot of data, and if 
patterns are not obfuscated by contextualisation or interaction. So ML is generally good at classification 
problems, such as identifying whether an image depicts a cat. ML is only good at predicting the future if 
previous patterns in the data are expected to continue.
ML’s need for enormous amounts of data may be considered a weakness, but the proliferation of data in 
the modern world actually makes it a strength. While modelling requires deep understanding of a domain, 
access to data relaxes the need for this understanding, allowing us to derive insights into a problem.
ML can tackle problems of medium complexity that come with a very large data set, such as machine 
translation. Given a data set consisting of documents in English, along with their Spanish translations, a 
ML program can easily map from English sentences to Spanish sentences. Extracting the grammar of the 
language is more difficult, but possible with modern forms of deep learning — a type of ML that uses 
neural networks to discern hidden structure in the data, below the obvious surface patterns. However, 
understanding the deeper subtleties of language, such as nuance and appropriateness, would require 
even more training and data. 
The limitation of ML is that as the complexity of the task increases, so the data requirement grows 
exponentially. For very complex problems, all the data on the planet would be insufficient to train the 
model. Consequently, ML requires vast amounts of memory and computational power, as well as data. 
Another limitation is that when decisions are derived from the statistical analysis of an enormous data 
set in this way, the reasoning behind the decision can be opaque, making them hard to audit.
ML also struggles whenever it is difficult to pin down how the environment and wider interactions of a 
system modifies its behaviour. For example, ML is successful at predicting narrowly-scoped consumer 
behaviour, but capturing how these behaviours interact with a broad range of other factors in a national 
economy is not possible with ML. Understanding highly dynamic interactions between systems with 
limited training data is beyond ML capabilities.

Hybrid	approaches
The ‘traditional modelling’ and ‘machine learning’ paradigms explained above are extremes on a 
spectrum. A modern approach to modelling most problems will combine aspects from both of these 
approaches. Nowhere is this more prevalent than in agent-based modelling, which explores the 
interactions between many individual units that each represent components of a larger system. These 
units may be constructed or controlled by ML, or by more traditional hypothesis-led models.
This type of modelling potentially creates enormous amounts of data, and statistical and optimisation 
methods are invaluable in helping to calibrate, validate and analyse the model and its outputs. Many of 
these statistical and optimisation tools are part of the ML toolkit, so there is some significant crossover 
between these areas of modelling.
One example of this hybrid style of modelling is the way in which computers play games such as Go 
or chess. The machine is programmed with a model based on the underlying rules of the game, which 
enables the machine to know how to play; then ML is used to teach the strategy of the game, so that 
the machine can play it well.
This also illustrates an interesting trend. Although ML currently relies on access to large amounts of 
training data, the scale and nature of the data may change as these technologies evolve. For example, 
simulations can be used to generate data to train a system, an approach employed by DeepMind to 
support the development of its Go-playing AlphaGo program, where the simulation played itself to 
generate massive amounts of new data. 
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In addition, the hybrid approach is useful for modelling a smaller number of complicated systems that 
have very complicated interactions. One example would be climate models, which couple atmospheric 
circulation, atmospheric chemistry, oceanographic, topological and vegetation models. Coupling these 
models is notoriously difficult, and calibrating the whole simulation is incredibly challenging.
A hybrid approach may not be suitable if we have neither data, nor a well-formed understanding of the 
system. This is true in many cases of modelling human behaviour, which is not nearly as well understood 
as, for example, physics. In this situation, neither ML nor traditional modelling techniques is going to help. 

Interpretability
Hybrid ML models are often used in design and optimisation, to find the best way to achieve a desired 
outcome. When designing such models, it is important to consider whether a human or a machine will 
ultimately make a decision based on its outcome. Machines make decisions by analysing a number of 
options and determining the optimal one. In contrast, humans will try to analyse the causality of why 
a certain choice results in a given outcome. Therefore, models for humans generally need to be more 
interpretable — in other words, the reason that a choice produces a certain outcome from the model 
needs to be understandable.
Well-executed ML systems can generate highly accurate results that can be readily incorporated into 
live services, but the complexity of their analytical structures means that they may have difficulty 
explaining why a particular result has been obtained. In some applications (for example computing 
insurance premiums) it is important that automated decisions are explainable and non-discriminatory. 
In April 2017, results from the Royal Society’s public dialogue exercise on ML indicated that public 
responses to, and expectations of, ML systems vary greatly according to the context in which these 
systems operate1. For example, in areas where decisions have a significant personal or social impact 
— criminal justice, for example — the demand for an explanation is likely to be higher. In other 
circumstances, different standards of transparency may be required, as long as governance structures 
can provide sufficient assurance. Indeed, there may be a strong incentive to use the ML system, 
especially in matters of safety or health diagnostics. When and whether transparency is required, what 
type of explanation is necessary, and how to achieve this, are all complex questions, which society 
will need to tackle on a case-by-case basis. These concerns are reflected in the EU’s General Data 
Protection Regulation, which comes into effect in 2018 and effectively creates a ‘right to explanation’ for 
customers who have received automated individual decisions. In contrast to this, in many cases, people 
do not appear to care that everyday decisions — such as recommended search results, news feeds, 
products or travel routes — are driven by ML. 
The creation of more interpretable systems is an area of active research. A variety of different 
approaches to achieve interpretability are being developed, such as:
• Tackling a task as a pipeline of models — where the output of one serves as an input to another — 

so that the sequence of changes can be analysed.
• Adopting a two-system approach, where a system optimised for accuracy works alongside another 

optimised for explanation.
• Creating new interfaces between ML systems and human-machine dialogue systems2.
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13. Ensemble Modelling

Ensemble modelling involves running two or 
more related (but different) models, and then 
combining their results into a single result. This can 
reduce uncertainty and improve the robustness 
of the models’ output. For example, ensembles 
are widely used in meteorology and numerical 
weather prediction, which forecast weather based 
on current weather conditions in atmosphere-
ocean models. Due to the inherent uncertainty of 
these systems, small changes in initial temperature 
or wind values lead to dramatically differing model 
outputs when extended to forecasts of several 
days to weeks. Running a range of models, whose 
starting parameters are drawn from probability 
distributions observed in nature, is now a routine 
approach, and this is embedded in operational 
weather forecasting, for instance. Global climate 
models may also use ensemble modelling to 
study the sensitivity of modelled climate change 
consequences for the coming century, under 
different scenarios of greenhouse gas emissions. The 
aim of such approaches, which may even include 
ensembles of ensembles, is to better understand 
model uncertainties when trying to create realistic 
simulations of future weather patterns, and so 
better support evidence-based policymaking.

Combining	techniques
Modelling techniques are often combined to 
provide more powerful and domain-specific 
techniques. A simple example is a dynamic 
population model that uses differential equations. 
A more complex example is hybrid automata: 
dynamic models with discrete states and transitions 
between them. Each discrete state is modelled 
with a set of differential equations that describe the 
continuous behaviour that applies during that state. 
Many techniques are combined with uncertainty, 
yielding stochastic differential equations, stochastic 
process algebras, stochastic logics, stochastic 
hybrid automata, and so on. One drawback of 
some combinations, such as hybrid automata, is 
that analysis can be complex and may be poorly 
supported by automated tools. 

Choice	of	techniques	
Factors such as the modellers’ experience, and 
the resources available, obviously influence model 
selection. But the choice of technique(s) depends 
crucially on stakeholder questions, which depend 
on and influence the frames of reference. 

For a given set of stakeholder questions, it 
may be possible (or even necessary) to apply 
many different models, with different types of 
dependencies between them. For example, the 
assumptions for one model might be derived 
from the outcomes of another model; or a given 
question might only be answerable through a 
synthesis of models. 

Figure 1 illustrates some of the linkages between 
system purpose, stakeholder questions, frames 
of reference, and models, using a smart water-
distribution network as an example. In water 
networks, pumping treated water from reservoirs 
to supply zones and storage tanks consumes 
most of the energy budget for a utility. ‘Smart’ 
use of tanks and reservoirs, and shifting pumping 
schedules to cheaper tariff periods, can result in 
savings. Modelling can offer assurance that the 
smart system is designed to deliver these savings 
while meeting regulatory and consumer demands. 
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automata models of
individual sensors

process algebra
models of sensor
communications

machine learning
for pipe fault
detection

agent-based model 
for autonomous
pump control

partial differential 
equations of water
flows in pipes

hybrid automata
model of water
pressure

DTMC model
of pipe damage

Purpose
Monitor and control pumping, valves, 
and communication. Minimise pumping 
costs, pipe degradation and leakage, satisfy 
customer demands and water pressure

Frames
geographic: pipeline
physical: water flows with discrete 
shut off/on; pipe degradation
economic: data buffers at node; data
bandwidth; cost of pipe maintenance
legal: detect and report anomalies and 
leaks within time specified by regulator

Stakeholder questions
What is lowest pressure that can meet
demand and keep water clean, the highest 
pressure that minimises pipe damage, 
the minimal data rate that meets legal 
requirements for reporting leaks?

Relevant models  

Figure 1: Modelling for a smart water-distribution network.
Science of Sensor Systems Software, http://www.dcs.gla.ac.uk/research/S4/ 

Model	analysis
Just as there are many types of model, there 
are also different ways to ask questions and 
obtain answers from models. Indeed, the type of 
question we can ask is fundamentally linked to the 
modelling technique.

One of the most common types of analysis is 
simulation, usually over a time period, in which case 
we often say we are ‘running’ the model. If the 
model is deterministic, there is only one simulation 
result; and the output of a static model, such as 
a spreadsheet, depends entirely on the values 
assumed for any input parameters.

But if the model is non-deterministic then there are 
many possible answers, which will take many runs 
to reveal. Similarly, a stochastic model will require 
many runs to achieve a meaningful prediction. 
Determining just how many runs are required 

can be difficult, as is how to interpret them. One 
popular method for stochastic simulation is to take 
the average over all runs (known as the Monte 
Carlo approach). 

Another type of analysis uses logic to formulate 
questions. For example, we can use a temporal 
logic to ask a series of questions, such as: for all 
possible behaviours of the system, “will this event 
ever occur?”, “how likely is it that this event will 
occur within the next 3 days?”, and “if a certain 
event occurs sometime in the future, is it always 
followed by another particular event within 3 
hours?”. There are many other types of logic, 
such as those based on performance metrics that 
analyse how resources are consumed or produced. 
Similarly, system dynamics modelling can also help 
decision-makers to explore ‘what if?’ questions (see 
‘System dynamics’, p42).

http://www.dcs.gla.ac.uk/research/S4/
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The	role	of	data
Data are observations that can provide evidence 
for a model. The exact role of data depends on 
how they were obtained, and the purpose of the 
model. For example, if the model aims to offer 
rigorous explanation or predict future outcomes 
of an existing system — human behaviour, say, 
or a biological system or an engineering material 
— then we use data to validate the model. In this 
case, the modelling and experimentation processes 
(and research communities) need to be closely 
aligned. If, on the other hand, the purpose of the 
model is to specify a system design, or define how 
an intended system is required to behave, then 
we use data to validate the system against the 
model. In other words, after the system has been 
implemented, we check that it behaves in the same 
way as the model, and again, experimentation and 
modelling need to be aligned. 

There is a further role for data when we are 
confident about the essential structure of the 
model, but do not know the bounds of some 
parameters. In this case, we can use data to fine-
tune parameters such as the duration or speed of 
an event. In all cases, care and expert judgement 
about interpreting validation results are required, 
especially when the model has been generated 
by machine learning, or if the data are sparse, or 
when we cannot experiment with the deployed 
system. For example, air traffic systems are so 
crucial to modern life that we cannot experiment 
with various parameters — such as frequency of 
landings, or proximity of aircraft — if we want to 
validate against a model. 

Conclusion
The UK leads internationally in almost all the 
areas of modelling discussed in this chapter. It is 
particularly strong in probabilistic models; climate 
change and weather forecasting; modelling solid 
and fluid mechanics; and algebraic and logic models, 
where UK researchers invented many of the 
first process algebraic formalisms and automated 
reasoning tools. Meanwhile, the recently-
established Alan Turing Institute, headquartered 
at the British Library, will add to our capabilities in 
machine learning. That puts the UK in an excellent 
position to build on its expertise, and exploit the 
best modelling techniques for the widest variety 
of tasks. 
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Chapter 4: 

THE FUTURE  
OF MODELLING
Modelling is changing fast, thanks to the 
rapid growth in computing power, the 
explosion in available data, and the greater 
ability of models to tackle extremely 
complex systems. This presents a range of 
future opportunities, which could transform 
policymaking and business operations. But 
it also raises fresh challenges, not least 
the increasing need for the new skills and 
collaborations that will underpin the future 
of modelling.
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THE FUTURE OF MODELLING

Introduction
Over the past decade, modelling has experienced 
radical changes. It has become more data intensive, 
more highly automated and more frequently used 
in decision-making. These changes have been 
driven by our capability to build more complex 
systems that require modelling; greater availability 
of more extensive types of data; and enabling 
technologies such as low-cost computer hardware. 
These factors will continue to push modelling in a 
number of different directions that present huge 
opportunities, but also threats that flow from the 
complexity of modelling. An example is weather 
prediction: it is improved through sophisticated, 
data-intensive modelling, but can only be used 
reliably for major tasks such as flood prediction 
when decision-makers are alert to the assumptions 
and limits of the underlying models.

In the future, there will be a greater need for 
reliable, predictive models that are relevant to 
the large-scale, complex systems that we want 
to understand or wish to construct. The ubiquity 
of computation will make it more common to 
deploy models that simulate real systems more 
accurately and more extensively. While larger and 
more sophisticated models will add to predictive 
capability, they will also allow us to get a better 
grasp on the limits to prediction, fundamental 
uncertainties, and the capacity for tipping points 
and technological lock in.

Some models will work closely with (perhaps be 
embedded in) operational systems and derive data 
from them, potentially in real time. These data may 
come from the many sensors and actuators that 
are now being added to systems, and we will see 
new forms of modelling emerge as a consequence. 
This will provide more accurate prediction and 
enable us to apply more sophisticated control 
systems, using greater levels of automation than 
we have seen before. It also will create new 
approaches to assessing risks in systems, through 
quantification of error ranges and alternative 
outcomes. Yet as the use of modelling grows, it 

increases the risk that models could be poorly 
constructed, misused or misunderstood. We 
need to reinforce modelling as a discipline, so that 
misconstruction is less likely; we need to increase 
understanding of modelling in all domains (not 
only in engineering specialisations), so that the 
misuse of models is reduced; and we need to 
bring policymakers closer to modelling, so that 
misunderstanding is less common.

The following sections offer a glimpse of the 
challenges and potential rewards of modelling 
over the coming decade, and the ways in which 
modelling could change.

Large-scale	availability	of	data	about	individuals	
will	transform	modelling	
When we model a population of individuals today, 
we often attempt to make predictions using 
aggregate models that are based on assumptions 
about hypothetical, ‘average’ members of the 
population. Although this is simpler and less 
intrusive, it also relies on assumptions that are 
difficult to validate about what comprises an 
‘average individual’. But in the future, we may 
find it easier to obtain data on large numbers 
of individuals directly. This already takes place 
across a raft of commercial operations (collecting 
information on spending habits, for example) 
and in the public sector (through collection 
of healthcare and administrative data). As a 
consequence, styles of modelling are emerging that 
model individuals and then generalise from that 
to the parameters we need to run our models. 
This data-intensive style of modelling has already 
proved its value in areas such as the prediction of 
consumer behaviour, and new opportunities may 
emerge as homes and cities are increasingly fitted 
with sensors that are connected to the internet, 
monitoring energy use in homes, traffic volume and 
a host of other variables.
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increasing availability of data 
is changing what and how we 
can model.

Modelling	will	span	many	scales,	and	many	levels	
of	detail	
It is already common to have models of the 
components within a system — with each model 
potentially operating at different levels of detail 
and reliability — and to understand how these 
components combine. Often, however, they do not 
combine in such a way that the behaviour of the 
larger system is simply the sum of the behaviours 
of its parts. As various modelling communities 
come together, bringing expertise from different 
disciplines and sharing approaches to model 
design, we will see more sophisticated ways to 
link models in ways that describe entire systems at 
multiple levels of detail. This is already happening in 
medicine, where diagnostic analyses and treatments 
are increasingly based on models that correlate 
each person’s genomic and phenotypic features to 
predicted outcomes of treatment. These models 
apply at different scales of human physiology, and 
no universal ‘human model’ exists, yet greater 
integration between models will be a key aspect 
of the move towards precision medicine. Another 
area is the atomic scale behaviour of materials, 
where there is a large body of modelling research 
and a need for greater system integration and 
interactions with experimentation. 

More	models	will	be	built	by	computers	
Many of the problems that we want to solve are 
too complex, or the underlying mechanisms too 
poorly understood, for a team of humans to build 
a model that can predict future behaviour. In some 
of these cases, we may instead use a computer 
system that can construct models from data. This 
process is broadly known as automated inference, 
and includes machine learning. These models have 
the capacity to reveal unexpected results, but it 
may be hard to guarantee that their mechanisms 
continue to operate reliably in the face of new 
evidence and (because we, as humans, do not have 

a clear idea of how they were derived) they may 
be hard for us to integrate with broader bodies of 
established knowledge. Nevertheless, these will be 
powerful tools for modellers. 

The Automatic Statistician project at the University 
of Cambridge provides a good example of what is 
being developed in this area. It is using automated 
selection strategies to choose good models of 
real-world statistical data, ranging from airline 
passenger numbers to unemployment figures. 
It then interprets the model’s results in easy-
to-understand ways, including human-readable, 
automatically-generated reports.

Models	will	help	to	train	computers
When computers learn from real-world data, 
they suffer from a fundamental limitation: they 
must have sight of both positive and negative 
examples from the real world in order to build 
a model that generalises from the examples and 
thus learns effectively. But negative examples can 
be hard to find in the real world, because these 
are often the system failures that we try to avoid. 
Generalising without enough knowledge of the 
range of possible failures can sometimes lead to 
catastrophic or embarrassing events, even for the 
most advanced statistical methods. Statisticians 
and big data engineers are starting to understand 
the value of simulations that generate verisimilar 
data representing failure. This will result in a better 
understanding of the failure conditions for systems 
(and models of systems) and perhaps lead to faster 
learning machines. Understanding the trade-offs 
between model complexity and learning safety will 
play a key role in the penetration of such smart 
systems in our everyday life. It also means there 
is a need to consider how to govern and regulate 
the use of advanced models of complex systems; 
this fits with the ongoing work of the government’s 
Department for Digital, Culture, Media and Sport 
on the policy implications of artificial intelligence.
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Figure 1: A city simulation can reveal how a power cut 
might affect the mobile telecommunications network 
(top) and traffic-light system (and therefore pedestrian 
and vehicle behaviour — above).
Improbable

Figure 2: A city simulation involves many different 
layers of infrastructure.
Improbable

New	technologies	will	change	modelling	paradigms	
As we develop new ways to compute, these will 
extend the possibilities for modellers and generate 
new needs for modelling. For example, computers 
whose operations are based on quantum theory 
(built as specialist quantum simulators) will soon 
become available. They may allow us to develop 
new modelling systems that are able to predict the 
properties of materials or pharmaceuticals, and will 
make scenario planning for finance, defence, and 
medical diagnosis more tractable. 

Modelling	will	be	used	for	strategic	and	
policy-level	issues
Modelling has its historical roots in scientific 
discovery, and has found success in logistical 
and operational sciences, but in recent decades 
it has been able to contribute to high-level 
organisational planning. It will increasingly be 
used for ‘systems thinking’: adding more detail to 
potential future scenarios, analysing the possible 
outcomes of policy interventions, and assisting 
strategic decision-making by coordinating the 
interdependent parts of complex organisations. 
As models become more pervasive as components 
for decision-making, we will need to give greater 
thought to each model’s role in the argument; the 
assumptions upon which models are based; the 
validity of inferences drawn from it; and the extent 
of verification of its structure.

One area where this could have a significant impact 
is in modelling that affects important infrastructure, 
supplies, goods or services. Customers of these 
models could use them to test the resilience of 
these systems to shocks or failures, for example 
(see Figs. 1 and 2).
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Senior	decision-makers	will	increasingly	
become	involved	in	modelling
A willingness to engage directly in modelling — 
both to manage complexity, and to motivate 
organisations — will increasingly be seen as 
an indicator of sound strategic management. 
Advanced modelling software and established 
methods of group problem-solving will bring 
modelling into the boardroom. It will be used 
as a way of communicating strategic vision and 
creating organisational commitment to a course 
of action. This means that decision-makers need 
to be intelligent customers for models, and those 
that supply models should provide guidance for 
model users on appropriate use and interpretation. 
This includes following good practice in model 
development (following sound engineering practices 
in design, validation and verification — see Chapter 
2), and providing certification appropriate model 
documentation, including evidence of quality 
assurance, based on standards set by peers in  
their community.

More	systems	will	become	part	of	models	and	
more	models	will	become	part	of	systems	
More of the structure of engineered systems is 
built in software. In telecommunications systems, 
for example, much of the switching and routing 
that was once done by hardware is now done 
by software. This means that for some systems, 
the software that will be used in components 
of the deployed system can be incorporated in 
a model used to predict the behaviour of the 
aggregate system built from those components. 
For example, one can build accurate models of 
telecommunications systems using software that 
is directly comparable to the software deployed 
in those systems. This improves the accuracy of 
modelling, because it is using a close copy of the real 
system components. This will change the dynamic 
between modelling and deployment of systems.

Conversely, computational models are built in 
software, so a model may become the heart of a 
deployed system. If the model is dynamic, then an 
online model could be used; not only would it be 
tightly coupled with the deployed system, it would 
also be updated as the system evolves in time. This 
brings modellers closer into the development cycle 
for systems. Rather than modelling being a separate 

activity from systems engineering, models become 
part of online system monitoring and control, and 
systems become part of online modelling. 

Such online models may be used for managing 
systems, or for alerting humans and other 
systems when the system deviates from expected 
behaviour. For example, they could monitor fault 
detection and self-repair systems in jet engines, or 
keep track of the policies governing user access to 
computer networks. Similarly, trading models could 
be built into financial transaction systems, which 
would, for example, ensure that trading behaviours 
stayed within safe envelopes set by standard 
financial models.

Modelling will underpin the design 
and operation of our digital and 
smart infrastructure.

Ubiquitous	sensors	will	create	new	areas	
of	application	for	modelling.
Sensors, actuators and processors are becoming 
more ubiquitous and more intelligent. But 
extracting reliable information from the systems 
that use them remains far from straightforward. 
This is because sensors are noisy; they decalibrate; 
or they may become misplaced, moved, 
compromised, and generally degraded over time, 
both individually and as networks. Yet these systems 
are growing more autonomous and intelligent, with 
system lifetimes spanning decades. They are also 
becoming more important to our everyday lives, 
underpinning the large-scale engineering of smart 
cities, autonomous vehicles, and the internet of 
things. Modelling must ensure the reliability, security 
and integrity of sensor-based systems. It will help 
to determine the appropriate density of sensors 
and actuators to deploy, while machine-learning 
techniques could detect and classify abnormal 
sensor readings. Meanwhile, spatial and dynamic 
models will assure confidentiality, security and 
performance of data communication. To achieve 
this, given the unreliability of data from fielded 
sensors, will require more resilient, probabilistic 
styles of modelling.
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Advanced modelling techniques can allow us to 
ask deeper questions about the systems we are 
designing, or have already deployed, and engender 
confidence in the answers. This will consequently 
improve decision-making. To achieve this, modelling 
approaches and data formats must also be able to 
interact securely with each other. While some of 
these requirements are being actively researched 
today, they are far from solved, and in most cases 
common standards are still far off. Moreover, the 
models, sensors and other elements that control 
complex systems should be secure by default 
against threats such as cyberattacks. This is a 
domain where standards and testing regimes will 
become increasingly important, and there is an 
opportunity for the UK to play an important role in 
developing these alongside international partners.

Models	will	require	more	extensively	linked	data	
Models will cover ever-larger segments of reality. 
Where models require data, these data will 
need to be drawn from multiple data sets, which 
requires reliable and traceable data linkage. Some 
data may be derived not from measurement 
but from models, requiring additional links to 
derived data. One of the domains in which this 
is most needed is healthcare, where targeting 
of treatments is made more effective by 
characterising patients according to a variety of 
features (genotypic, phenotypic, environmental) 
and building models to relate these.

Some	models	will	be	oriented	more	
towards	humans	
Large swathes of human experience already 
are based on modelling — just think about the 
computer game industry, for instance. This has 
built up expertise in constructing models with 
the purpose of making their behaviours appear 
realistic to human observers, creating a culture of 
human-oriented modelling. For models of humans 
or human populations, we become interested in 
the persona or character presented by a model, 
and human empathy with this becomes an issue. 
We also have a greater opportunity, as individuals, 
to supply data that could be used to stimulate 
modelling. For example, one might provide access 
to personal data that, once de-identified, could 
be used in medical or healthcare modelling that 
ultimately improves patient outcomes. This is an 
opportunity but also a challenge, because there 
are deep social and ethical issues around the 
ownership of data and monopolies on models 
derived from personal data. In these situations, 
we have a duty of care to the individuals supplying 
modelling data, enacted through governance 
controls.

Models	will	help	to	train	humans	
Simulators are already used to train jet pilots and 
Formula One drivers. High-fidelity models, using 
both hardware and software, will soon be used in 
conjunction with virtual reality and ‘gamification’ to 
train next-generation doctors, military personnel, 
and police forces. Schoolteachers will make use 
of simulations and models to train their pupils 
from a young age, with benefits in areas ranging 
from STEM subjects to personal health. This has 
the potential to reduce costs and risks, while 
promoting quantifiable standards of performance. 
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More	application	areas	and	more	cross-fertilisation	
We have already seen significant cross-fertilisation 
between modelling for computer and autonomous 
systems, and modelling for life sciences. Models 
of computer networks have been adapted to 
describe aspects of molecular biology, while models 
of swarming insects have been used to inform 
the design of autonomous drones. As future 
application areas for modelling grow, so too will the 
possibilities for cross-fertilisation. There could be 
synergies between modelling for financial markets 
and medical diagnostics, or urban transportation 
systems and electronic chip design. This kind of 
cross-fertilisation could be stimulated by a centre 
of excellence for modelling that includes the public 
and private sectors.

Models	are	the	only	way	to	understand	properties	of	
many	complex	systems	
We increasingly build complex systems that 
potentially behave in so many different ways 
that these behaviours cannot be explored in any 
depth. Nevertheless, commerce or human life 
may depend on their properties, and models can 
undoubtedly help us to make difficult decisions 
in areas that include policymaking, commerce, 
healthcare and more. The internet itself is an 
example of a complex, engineered system on 
which much of our developed world now depends, 
and which is continuously modelled and monitored 
in order to explore its behaviours and monitor its 
performance (see Fig. 3). 

Figure 3: The internet is the largest and most complicated thing that humans have ever produced, and it is 
constantly growing and changing. This visualisation is based on a simulation of the ‘backbone’ of the internet, which 
can help to reveal how the behaviour of individual machines at the micro-scale can lead to complex emergent 
behaviours at the macro-scale.
Improbable
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For situations like this, we need a reliable means 
of constructing comparatively simple models that 
yield accurate predictions of the behaviours of the 
complex systems they describe. Defining these 
sorts of abstract models is a huge challenge. To 
ensure that the UK remains in the forefront of 
advanced modelling technologies, government 
should work with UK Research and Innovation, 
businesses, universities, learned societies and 
research institutes to support the skills, research 
and innovation that underpin modelling.

Conclusion
The areas we have described are major areas 
of opportunity and challenge for modelling. All 
of them require advances in scientific insight, 
engineering and organisation. Some of them will 
have profound impacts, and we have already 
seen revolutionary change to our finance 
industry through the use of model-based trading 
and negotiation systems that have swept away 
traditional styles of operation. Although the 
mathematical foundations of many areas of 
modelling are well established, the interaction 
between modelling and computation is creating 
a much more complex landscape with huge new 
opportunities for data and compute-intensive 
modelling, but also greater challenges for 
those who wish to apply modelling rapidly and 
appropriately in design and decision-making.
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Chapter 5: 

MODELLING IN  
PUBLIC POLICY
Models enhance the quality of democratic 
decision-making. They can offer cost-
benefit analyses of various policy options, 
manage risk and uncertainty, or predict how 
economic and social factors might change in 
the future. This chapter presents a series of 
case studies that demonstrate the vital roles 
played by models in the making and delivery 
of policy, and also explores what actions 
could be taken to exploit the considerable 
untapped potential in this area.
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MODELLING IN PUBLIC POLICY

Introduction
Modelling is already widespread in public sector 
decision-making and delivery, although its use is 
not often visible in public debate. Done well, and 
for the reasons made clear throughout this report, 
the public sector has the opportunity to increase 
greatly the extent to which modelling is used to 
make policy more robust. That is because potential 
outcomes will be better informed and tested, and 
also because the decision-making process will allow 
for new forms of engagement and accountability. 
Put simply, models can enhance the quality of 
democratic decision-making. 

In this chapter, we set out the various uses of 
modelling in the public sector, along with illustrative 
case studies that explore the potential of modelling. 
These focus on the types of computational models 
with which this report is largely concerned. 
However, we start more generally, by describing 
the distinctive features of modelling in a public 
sector setting.

Modelling can enhance the quality 
of democratic decision-making.

Features	of	public	policy	modelling	
To get the greatest benefit from public policy 
modelling, those involved must deal effectively 
with two sets of features that apply particularly 
strongly to this sector. These features require a 
degree of sophistication on the part of both expert 
modellers and expert policymakers as they work 
together (see also Chapter 2).

The first set of features concerns the characteristics 
of the system being modelled:

1. Significant public policy questions are rarely 
solved by applying insights from a single 
academic or practitioner discipline. They often 
require cross-disciplinary approaches, and 
combinations of social and physical sciences. 

2. The existence of multiple stakeholder groups, 
together with the complexity of the problems, 
means that many models need to analyse a 
wide range of consequences and assess them 
using a range of criteria. This can mean that 
a single policy area has many definitions of 
success, which might include, for example, 
economic outcomes, distributional fairness and 
health outcomes. 

3. In many cases, government is making decisions 
with long-term consequences. In areas such as 
climate change, pensions, energy or physical 
infrastructure, the requirement for the models 
is to make the best possible use of what we 
know from historical evidence to inform 
decisions whose effects will be felt for many 
decades in the future. In addition to developing 
insightful models, this also requires careful 
handling of substantial uncertainty and  
the presentation of alternative potential  
future outcomes.

4. The stakes are sometimes very high: 
policies may directly affect individual lives, 
national security or human wellbeing.  
This leads to high expectations about the 
quality assurance processes that models  
should undergo. 



MODELLING IN PUBLIC POLICY

59

The second set of features concerns the process of 
modelling itself:

5. Models can be powerful agents for convening 
stakeholders across debates, including those 
around highly contested issues, and across 
delivery systems. This is not only about 
drawing on a wide range of knowledge, 
perspectives and judgement — and not only 
about getting the ‘right’ answer — but about 
doing all these things in ways that underpin and 
reinforce democratic accountability.

6. Where the outcomes at stake are significant, 
models can be designed to address the 
interests of a wide range of stakeholders. 
From the very beginning of the process, 
therefore, modellers and users must pay 
particular attention to choices about what is 
included or excluded and why, and to making 
explicit the assumptions underlying the model.

7. Important models need to be designed in 
ways that are open to scrutiny, interrogation, 
and curiosity from their target audience. 
In some cases, giving away ‘control’ of the 
model may be a powerful way to inform 
wider debate and secure well-placed public 
trust and confidence in a decision. In others, 
what matters is designing-in the capacity for 
effective visualisation and communications to 
the key audiences.

8. Some models — for example, those associated 
with demography or the environment — 
effectively become part of the virtual critical 
national infrastructure. Continuity and 
consistency may then be important, meaning 
that models need to be durable, and also that 
the data on which they rely must continue to 
be collected. 

Table 1: The case studies in this chapter, and the features they most strongly illustrate.

Modern	
slavery

Child	
protection

Defence Water	
Abstraction	

Horizon	
2020	

Flood	
risk

Civil	
emergencies

Home-
lessness

1.	Cross	
disciplinary

ü ü ü ü ü

2.	Range	of	
success	criteria

ü ü ü ü

3.	Substantial	
uncertainty

ü ü ü ü

4.	High	stakes	
scrutiny

ü ü ü ü ü

5.	Reinforcing	
accountability

ü ü ü

6.	Convening	
power

ü ü ü ü ü

7.	Enabling	
scrutiny

ü ü ü ü ü

8.	Continuity	
and	consistency

ü ü ü
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The	uses	of	public	policy	models
A wide range of models is already used in 
government and are embedded in many areas 
of policy. The ‘Review of quality assurance of 
government analytical models’ (commonly known 
as the Macpherson review1) presents a long list 
of business-critical models, ranging from simple 
spreadsheets to very complicated models, which 
are used in making investment decisions, planning, 
forecasting, and the appraisal of policy options. 

Modelling investment decisions is a well-known 
technique in business, where forecasts of benefits 
are set against known costs and the whole 
is discounted to establish rates of return and 
cost-benefit ratios. In policy, analyses may also look 
at the financial costs and benefits, but it is often 
necessary to include non-financial elements such 
as the value of time; judgements also need to be 
made about, for example, the value of an accident, 
noise, the effect on the environment, and so on 
(see Chapter 9). 

Chapter 1 discusses the factors that ensure well-
founded use of modelling for the purposes of 
predicting or forecasting. For example, in transport, 
a range of computational modelling techniques 
is used to consider the behavioural impacts 
associated with the introduction of a proposed 
intervention, such as improving a road. These focus 
on understanding how the number of journeys 
made would change and what the corresponding 
benefits are. These can include both direct and 
indirect effects. Direct effects consider the specific 
location where the intervention is introduced, for 
example, a new motorway scheme. Such a scheme 
may be expected to improve conditions for existing 
users, saving time, enhancing safety and reliability, 
and improving air quality for residents. However, 
there may also be indirect effects: for example, 
traffic that would previously have travelled on 
parallel routes may choose to use the motorway. 
These indirect effects can also be appraised to 
consider the overall impact of the intervention. 
Both types of effect have been modelled, and 
extensive guidance is provided by the Department 
for Transport’s WebTAG (Web Transport Analysis 
Guidance)2. As for all other cases, computational 
and quantitative analysis of uncertainty needs to be 
presented carefully; models can rarely, if ever, cope 
with the full range of ‘what if?’ future possibilities 

presented by a real-world policy question. But, 
without a good model, the decision-maker is much 
less well informed. 

Computational models may also be used to better 
understand and manage risk and uncertainty. 
One of the advantages of models is that they 
can be ‘run’ over and over again, each time using 
different assumptions or calibrations. This illustrates 
and allows users to assess the range of possible 
outcomes, and study how the sensitivity of those 
outcomes depends on changes in the model 
inputs. For example, in developing decarbonisation 
policies for our electricity supply, it is important to 
forecast the effect of subsidy schemes for different 
forms of renewable energy generation, but it is 
not possible to make exact predictions of the way 
the stakeholders will act and the effects of those 
actions in the electricity market. However, one 
can construct models such as the Department for 
Business, Energy and Industrial Strategy (BEIS) UK 
Times Model (UKTM)3, which indicate the possible 
consequences of deviations from the desired 
optimum and the likely risks. 

Planning and forecasting involves modelling how  
a variable of interest may evolve in the future. For 
example, time-series modelling is used to predict 
how the economy will develop4 and to set tax 
policy in the context of such models. Demographic 
models are used to forecast future birth and 
death rates5, migration and movement patterns. 
These models are based on historic data that are 
projected forwards in time. For example, data can 
tell us how birth rates per woman have changed 
over time, and this can be used to predict  
future rates. 

Time-series modelling can work its way into 
appraisal systems that are not at first sight using 
this technique. For example, transport guidance 
mandates the use of software called TEMPRO6 for 
forecasting the numbers of transport users. This 
is a postcode-based forecast of the number of 
trips (journeys from one place to another) taking 
into account national projections of population, 
employment, housing and car ownership. Models 
are also often used when government needs to 
decide which one of several policy options to 
implement, a process known as options appraisal7. 
For example, the Department for Environment, 
Food and Rural Affairs (Defra) uses several models 
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to appraise the importance and extent of the need 
for badger culling, and its impact on cattle herds 
and animal and public health. The work put into 
these models has not prevented a debate on the 
effectiveness and indeed the value of such culling. A 
significant challenge in such models is on the validity 
and relevance of the data. A model is only as good 
as the data that informs it, and in areas such as 
these even the collection of data can be difficult 
and open to challenge as being unrepresentative or 
only locally relevant. 

A related example is the modelling that was used 
in 2001 to inform government about the potential 
impacts of different extents and timings of culling 
to control the unfolding foot-and-mouth disease 
epidemic (see ‘Using modelling in civil emergencies’, 
p70/71). The results were released publicly by the 
Government Chief Scientific Adviser to demonstrate 
the scientific basis for the policy decision. 

Models can also be used to perform policy analysis 
operating with a mix of the purposes outlined 
in Chapter 1, including explaining, understanding 
theory, illustrating and providing analogies. This 
involves the exploration and rigorous testing of 
alternative policies in order to understand their 
consequences over time. Considering possible 
‘side effects’, or wrestling with the counter-intuitive 
behaviour of complex human systems, are major 
cognitive challenges; as such, modelling can organise 
the thinking of senior decision-makers to help 
them explore different policies. Such work can 
be attached to specific decisions and be highly 
quantitative, merging into options appraisal (see 
above), or may concern general policy direction 
and be largely qualitative, giving decision-makers 
improved understanding of general trends, long 
response lags and ‘modes of behaviour’, or helping 
them to debate appropriate performance measures 
and identify the most important policy levers.

a wide range of models is already 
used in government and are 
embedded in many areas of policy, 
but there is still much untapped 
potential to model social systems 
more effectively, and to combine 
social and technological insights.

Conclusion
There is still much untapped potential to model 
social systems more effectively, and to combine 
social and technological insights. This could be 
exploited through a number of actions:

• A review of the future needs for strategic 
data collection and curation, including with 
respect to international data flows, could 
take account of the potential of new forms 
of modelling, including machine learning. It 
should build on the government’s significant 
investment in improving safe access to 
administrative and publicly funded research 
data, and on safe data sharing.

• A programme for professions, including the 
policy profession inside the Civil Service, 
could improve the training provided for 
policymakers who use models, and their 
providers. The aim should be to ensure that 
all policymakers, at all levels, understand what 
modelling in its various forms can contribute. 
The training should particularly take account 
of the need to combine a range of disciplinary 
approaches and ways of using models, and 
the need to design models that are readily 
accessible, well maintained, quality assured 
and support democratic decision-making.

• Establishing one or more centres of expertise 
in modelling public policy would provide 
an invaluable resource that government 
could consult for advice and training, and 
which would act as standard-bearers for 
the quality of UK policy modelling on the 
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international stage. This centre of expertise 
could be charged with conducting a review 
of the higher education courses, degrees 
and research centres in the UK that aim to 
produce modellers and knowledge related 
to modelling, with the aim of assisting 
and increasing the availability of staff and 
expertise and catalysing new areas of training 
and education relating to public policy work. 
It should also run a related programme to 
develop and improve techniques and tools 
relevant to policy modelling, including work 
to bring together advances in policy analysis, 
machine learning and the use of big data for 
model calibration.

• The ‘Aqua Book’ (Guidance for producing 
quality analysis for government8) should 
continue to be enhanced, to ensure that it 
remains current with the state of the art.

• A publication that showcases the uses of 
modelling in government, and for supporting 
public policy decision-making, should be 
targeted at citizens and decision-makers. 
It would make clear the extent to which 
models are already used in government and 
their potential to enhance policymaking.

MODERN	SLAVERY	AND	HUMAN	TRAFFICKING	

Modern slavery encompasses servitude, forced and compulsory 
labour, and human trafficking. Tackling it is a priority for the 
government, and the landmark Modern Slavery Act 2015 put 
the UK at the forefront of international efforts to eliminate this 
scourge9. Crucial to all this was a Home Office estimate of the 
number of potential victims in the UK. Previous estimates were 
either based only on numbers of known victims, or were very 
tenuous ‘guesstimates’. The research provided the first scientific 
approach to the quantification of what is, for many reasons, often 
a deeply hidden crime. It built on the National Crime Agency’s 
(NCA) Strategic Assessment, which collates data from a wide range of sources. In 2013, the NCA was 
made aware of 2,744 potential victims of modern slavery, but this omits a much larger ‘dark figure’ of 
unreported cases. 
To estimate the dark figure, modellers used a technique called multiple systems estimation10. This is a 
generalisation of the classical ‘mark-recapture‘ method for counting fish in a pond: catch 100 fish, mark 
them, release them, then catch another 100, and count how many are in both catches. In the case of 
modern slavery, the various ‘catches’ were lists provided by the police, local authorities, government 
agencies, non-governmental organisations, and the general public. The key to the modelling is to 
analyse the overlaps between the various lists, making mathematical assumptions that are at least 
approximately reasonable.
This approach led to a 95% confidence interval of 10,000 to 13,000 potential victims in 2013. This is 4 
or 5 times those known to various organisations. It is regarded as a world-leading breakthrough, and 
was the keystone of the launch of the government’s Modern Slavery Strategy in 2014. The methodology 
has been replicated in the Netherlands and has been presented to the UN Statistical Commission, as 
part of the government’s aim to promote much better international knowledge and action. 
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THE	CHILD	PROTECTION	SYSTEM	

Bad parenting and child abuse can do damage that lasts a lifetime. 
In 2010, the government commissioned ‘The Munro Review of Child 
Protection’11, 12, 13, a study for the Department for Education about 
the child protection sector in England. The government believed 
that even though previous reviews had been well intentioned, they 
had not worked. There was a wish to understand past and future 
policies in a holistic way using system dynamics modelling12 (see 
‘System dynamics’ in Chapter 3, p42). 
Published papers, numerical data and expert interviews revealed a 
broad diagnosis that was modelled and visualised diagrammatically 
(see Fig. 1). This showed that an initial belief in a prescriptive 
approach to working had the side effect of making it harder to 
acknowledge problems and failures while also making prescription 
more attractive. This created a reinforcing effect — a ‘vicious circle’ 
— that increased the commitment to a prescriptive approach and 
so led to the emergence of a ‘tick-box culture’ of compliance. This 
‘compliance addiction’ phenomenon, though initially developed 
for and grounded in the child protection sector, has since been 
generalised — as shown here — and is seen to apply to a diverse  
range of organisations, from universities to banks.

R

Perceived Procedural
Effectiveness of 

Prescriptive Approach

Target Level of
Procedural
Prescription

Ability to
Acknowledge Errors

Availability of ‘We just
followed the rules’ Defence

Compliance
Enforcement

Scope for Dealing with Variety
of Circumstances Using
Professional Judgement

Compliance with
Prescriptions

S

S

O

O

O

O

S

Figure 1: System model of the logical and causal relationships underlying the ‘compliance addiction’ phenomenon. 
Links marked ‘s’ produce changes in the same direction while ‘o’ links produce changes in the opposite direction. 
The result is a positive feedback loop, or reinforcing effect (‘R’).
Ref. 14

A second part of the child protection review involved the building of a very detailed model of the 
range of processes operating in the sector. This involved a ‘participatory modelling’ approach (see 
‘Participatory modelling’ in Chapter 2, p29/30) as a group of child protection practitioners and researchers 
worked together to represent the logical and causal relationships of the sector using a computational 
modelling tool (see Fig. 2). This work was triangulated using extensive mathematical analysis of data from 
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children’s services department across England. By considering different areas of processes and activities but 
also linking them together, this model allowed the review to consider both the individual jigsaw pieces 
of which the sector was built and also grasp the overall picture that emerged.
This model was used to analyse the intended and unintended consequences of previous policies, 
including feedback effects, and diagnosed the sector’s difficulties. It was then used to develop and test 
alternative policies, by using the model to consider the consequences of any changes, even if these 
consequences were felt in a part of the system far away from the recommended point of change. 
Following directly from this modelling work, 15 recommendations for change were made in the final 
report, changes which fitted together in a coherent, integrated way. This integrated set had a number of 
core ideas that involved rolling back central prescription, placing a greater emphasis on the appropriate 
exercise of professional judgment, and increasing the role of social work professionalism and expertise. 
The government accepted all recommendations, seeing them as representing a fundamental system-
wide change.
The Minister (Parliamentary Under Secretary of State for Children and Families) wrote to the heads 
of all agencies and organisations involved in child protection, stating that “The Government accepts 
[the] fundamental argument” and outlined how it would support the “move towards a child protection 
system with less central prescription and interference, where we place greater trust and responsibility 
in skilled professionals at the front line”. 
The recommendations have been implemented via changes in the law, changes in the inspection regime, 
and changes in the culture of the child protection sector. For example, the Office for Standards in 
Education, Children’s Services and Skills (Ofsted) developed and published a new inspection framework 
that shifted the focus away from specific tasks or activities on to the actual effectiveness of help for 
children and families. The government published revised statutory guidance. This reduces prescription 
— replacing 700 pages with 90 pages 
— and instead concentrates on rules 
for cooperation between the different 
organisations and agencies involved in 
child protection but leaving most other 
activities to the professionals themselves. 
Lastly, the recommendation to appoint 
a Chief Social Worker for Children 
was implemented. Social workers are 
now encouraged to spend more time 
with children and families, building 
relationships, applying their continuously 
developing expertise and using 
their judgements. 

Figure 2: Child protection practitioners and researchers participate 
 in the construction of a computational model of the processes and 

 activities that make up the child protection system in England. 
Ref. 12 / David C Lane
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DEFENCE	MODELLING	

Modelling played a crucial role for Britain during World War 2. 
During this period the modelling field of ‘operational research’ was 
established; its prime mover was Patrick Blackett, whose role is 
celebrated in the series of government reviews of which this report 
forms a part. 
Modelling was critical in creating the air defence system that 
resisted attacks during the Battle of Britain15, 16. Modern analysis 
says that the innovative technology of radar multipled the RAF’s 
effectiveness by 10. Additionally, operational research work done 
on communicating and integrating radar and visual sightings meant 
that a range of defence assets could be coordinated in the best way 
to intercept enemy aircraft. This gave an additional doubling of the 
RAF’s effectiveness, an overall multiplier of 20. When the Luftwaffe attacked in 1941, Britain had the 
most effective air defence system in the world.
Two further contributions concern the Battle of the Atlantic, as Britain fought off German attempts 
to sink ships and sever its supply lines. Building on work conducted during World War 1, modelling 
helped to determine the best size for a shipping convoy. This involved treating a convoy as a circle, 
radius R; the number of merchantmen in the convey then depends on the area, proportional to R2. 
The perimeter that must be patrolled by defending Royal Navy ships to prevent U-boat incursions is 
the circumference, proportional to R. Hence merchantmen per Royal Navy ship is proportional to R2 
divided by R: that is, R. It follows that convoys should be as large as possible. 
Modelling also helped to develop strategies to sink more U-boats. RAF Coastal Command aircraft 
typically searched the Atlantic for surfaced Nazi submarines and attacked with depth charges, but 
their results were poor. By modelling the trajectory of the aircraft, the time when the U-boat crew 
might detect the attack, and how quickly a submarine could dive, operational researchers discovered 
that their depth charges were set to explode too deep: bombs were sinking to a depth below the 
U-boats before exploding. Changing the depth setting produced such a noticeable increase in U-boat 
destruction that the Nazis thought the British had a new weapon. The model explained the previously 
observed poor performance and suggested a solution that improved things.
The value of modelling became clear early in the war, and groups of operational research modellers 
were formed in all of the UK’s armed services, contributing to land, sea and air engagements. After 
the war, the modelling techniques that had been developed went on to be applied in industrial and 
commercial settings17. Today, operational researchers continue to apply modelling to organisational 
problems, and the UK has its own Government Operational Research Service18.
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AGENT-BASED	MODELLING	AND	WATER	ABSTRACTION	REFORM	

The abstraction of water from rivers and aquifers is controlled by a 
licensing regime established in the 1960s. The government wished 
to reform the system so that it would provide better incentives for 
abstractors to manage water efficiently and work together to make 
best use of water. 
Assessing the costs, risks and benefits of the different ways of 
reforming the system was very complex. It needed to take into 
account: 
• The interactions between a complex natural system and 

abstractors (including the public water supply, power producers, 
farmers, and industry) 

• That economic, social and climate conditions will change in ways 
that we cannot predict

• The complex way that the new measures would influence 
individual abstractor behaviours on a day-by-day, year-by-year basis

Agent-based modelling (see Chapter 3, p41) was ideally suited to exploring how the existing and 
proposed reforms might operate. A multidisciplinary team worked with a wide range of experts and 
stakeholders to develop an agent-based economic behavioural model integrated with catchment 
hydrological models on a daily time-step basis. This was used to explore how the reforms might work in 
practice. It showed the possibility of many unanticipated and often unwelcome effects, and so enabled 
the design of the reforms to avoid these19.
The work was carried out for Defra, the Environment Agency, the Welsh Government and Natural 
Resources Wales by a consortium led by Risk Solutions, and including HR Wallingford, London 
Economics, Amec, Wilson Sherriff and Vivid Economics. 
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APPRAISING	POLICY	OPTIONS	FOR	HORIZON	2020	

The European Commission is expecting to spend around 
€77 billion on research and development through its Horizon 
2020 programme between 2014 and 2020. Horizon 2020 supports 
a myriad of cross-European research projects aimed at ensuring 
Europe produces world-class science, removing barriers to 
innovation and making it easier for the public and private sectors 
to work together in delivering innovation. It is the successor 
to the previous, rather smaller programme, called Framework 
Programme 7. When Horizon 2020 was being designed, the 
Commission wanted to understand how the rules for the Framework Programme 7 could be adapted 
for Horizon 2020 to optimise it for current policy goals, such as increasing the involvement of small and 
medium enterprises (SMEs). 
An agent-based model, INFSO-SKIN, was built to evaluate possible funding policies20. The simulation 
model was set up to reproduce the funding rules, the funded organisations and projects, and the 
resulting network structures of the Framework Programme 7 This model, extrapolated into the 
future without any policy changes, was then used as a benchmark for further experiments. Against this 
baseline scenario, several policy changes that were under consideration for the design of the Horizon 
2020 programme were then tested, to answer the following questions: 
• What if there were changes to the thematic scope of the programme? 
• What if there were changes to the funding instruments? 
• What if there were changes to the overall amount of programme funding? 
• What if there were changes to increase SME participation? 

The results of these simulations revealed the impact that these changes might have on Horizon 2020’s 
goals to support excellent science, provide industrial leadership and tackle societal challenges, and 
ultimately informed the design of Horizon 2020. Thus an explanatory model was used to explore a 
series of ‘what if?’ alternatives.
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EXPLORING	FUTURE	RISK	FROM	FLOODING	IN	THE	UK

The UK Foresight project on the future of flood risk21, initially 
published in 2004, provided insight into the scale and nature of the 
significant future uncertainties deriving from the risk of flooding in 
the UK. It did so by taking climate models developed by the Met 
Office Hadley Centre for Climate Science and Services in Exeter, 
and combining them with historic data sets of economic damage 
in England and Wales, along with assumptions on future trends 
in demography and growth. It also developed its own models 
of the drivers, pathways and impacts of flood risk; these were 
underpinned by sustained investments in the development of a 
range of models from different sources and disciplines. Since major 
infrastructure decisions have impacts on very long timescales, the 
project developed long-term scenarios out to 2080. Presenting the 
outputs of the model as scenarios helped to put limits on the scale 
of the uncertainties. The models outputs could be used to illustrate 
a variety of types of impact in addition to cost-benefit analyses, 
including differences by geography and potential effects on social 
inequality (see Fig. 3). 
Also deploying the power of good visualisation, the project 
demonstrated the value of using scenarios to test policy 
assumptions and inform decisions. HM Treasury cited the work 
when announcing an increase in Defra’s budget. Similar modelling 
informed the Thames 2100 project to review the future of the 
Thames Barrier. In one case, the modelling suggested that the level of investment could be reduced 
significantly compared to the amount initially proposed, while maintaining the targeted levels of safety. 
Illustrating the UK’s leadership in the application of modelling to policy, the same approach was adopted 
— with the support of the original experts — by the Chinese government to review flood risk in 
the Shanghai Basin. A software-based simulation game, Flood Ranger, was also developed from the 
original model, and used in public engagement by the Environment Agency and others to help local 
communities develop insights into long-term trade-offs from different patterns of investment. The work 
then informed the 2015 report, ‘Climate Change: A Risk Assessment’22, by the UK Special Envoy for 
Climate Change.
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Figure 3: Modelling illustrated the possible distribution of average annual damage from flooding across England 
and Wales in the 2080s. The maps represent changes in risk under four different scenarios: darker red signifies 
greater increases in damage, while green signifies a reduction.
Ref. 21
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USING	MODELLING	IN	CIVIL	EMERGENCIES	

In times of civil emergency, the responsible government department 
or the Cabinet Office may, in consultation with the Government 
Office for Science, activate a Scientific Advisory Group for 
Emergencies (SAGE). SAGE supports ministers in Cobra (the 
government’s emergency response committee) by providing 
evidence, sometimes in the space of a few hours, to inform 
immediate decisions.
SAGE aims to provide timely and coordinated scientific advice 
by bringing together key experts. In doing so, it typically draws 
on existing models or rapidly-deployed modelling expertise. For 
example, when faced with decisions about responses to the Fukushima nuclear emergency in Japan, 
the government turned to SAGE, which drew on global weather models, together with expertise 
in nuclear science and health, to determine the relative risks to individuals of staying in Tokyo or 
attempting to leave23. 
Operating over longer timescales, epidemiological models were central to planning the international 
responses to the recent Ebola outbreak. These models were dynamic and deterministic, based on 
systems of differential equations, and once established as explanatory models they were used to 
explore possible future outcomes. They drew on pre-existing insights, but were constantly updated 
during the outbreak to help ensure immediate feedback on the effectiveness of interventions and to 
direct resources. Modelling was also used retrospectively to assess the impacts of testing strategies for 
individuals suspected to have Ebola virus disease (EVD), which will inform policy for future outbreaks 
(see Fig. 4)24. 

Figure 4: The incidence of Ebola virus disease (EVD) in Sierra Leone. Grey bars show the number of EVD cases 
observed per week during the outbreak. The red line shows the expected incidence of cases if the polymerase 
chain reaction (PCR) was the only method used to test for EVD. Lines of other colours show how various 
alternative approaches to diagnosis, such as rapid diagnostic tests, could have reduced the overall number of cases. 
For example, if RDT with 99% diagnostic sensitivity and 99% diagnostic specificity were available at the time, their 
exclusive use for testing (orange line) could have reduced the total number of Ebola cases by over 40%.  
Ref. 24
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The government also relied on models to forecast the spread of infection in ash trees (Hymenoscyphus 
fraxineus), and to develop options to manage the risks. The fungus was first reported in the UK in 2012, 
arriving after spores were either blown over the English Channel or imported into plant nurseries. 
Estimates of the scale and distribution of the impacts informed a range of responses, including the 
banning of imports later in 2012 and subsequent investigation of the genetic composition of trees in the 
UK and around the world that have forms of natural resistance. 
Modelling also played a vital role in the government’s response to foot-and-mouth disease in the early 
2000s. Predictions produced by researchers at Imperial College London showed the impact of three 
different culling scenarios (see Fig. 5), and underpinned the decision to undertake not only faster culling 
on farms where foot-and-mouth disease had been identified, but in addition to cull at neighbouring 
farms within 48 hours of the identification25. Similar to the Ebola case, this was a dynamic and 
deterministic system of differential equations, but intended to predict the outcome of different actions.

Figure 5: During the foot-and-mouth outbreak in 2001, modelling showed the impact of various culling 
strategies, based on existing data up to 29 March. Policy C was adopted, and the daily incidence of cases 
declined as predicted over the following months.
Ref. 25

In cases of emergency, urgent advice typically draws on pre-existing models, updating or extending or 
combining them where possible. In particular, decision-making will probably need to draw on modelling 
originating in both the natural and the social sciences26. Increasingly, well-founded decisions draw on 
both established modelling and on new forms of data access, including satellite-derived data. Insights 
derived from social media and other publicly available sources are likely to be increasingly valuable as a 
complement to the models27.
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CAN	YOU	BUILD	A	MODEL	TO	PREDICT	HOMELESSNESS	FROM	CHILDHOOD?	

The 1970 British Cohort Study (BCS70) has followed the lives 
of more than 17,000 people born in England, Scotland and 
Wales in a single week in 1970. It has collected information on 
their health, physical, educational and social development, and 
economic circumstances28.
The Department for Communities and Local Government (DCLG) 
used the data from this study to explore whether there are risk 
factors for someone becoming homeless that can be traced 
back to childhood and the teenage years. DCLG analysts found 
that there were several childhood factors associated with future 
homelessness; the strongest predictors were truancy and being 
raised in care.
The analysis was used to assign a ‘risk of homelessness’ to each individual in the cohort, based on 
a 5-point scale. This relied on using a statistical algorithm that was based on a set of 10 predictor 
variables. Each variable was weighted according to its hypothesised importance in predicting future 
homelessness; these variables included history of truancy and eligibility for free school meals.
In this statistical predictive model, those cases assigned to the high-risk category were 15 times more 
likely to become homeless by the age of 34 than the low-risk group (see Fig. 6), suggesting that it might 
be possible to target homelessness prevention activities at those most at risk of future homelessness. 
This demonstrates the value of longitudinal studies and long-term datasets, and has influenced local 
authorities to build the findings into their own data systems risk assessment models.
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Figure 6: Percentage of the BCS70 birth cohort that became homeless before the age of 34, depending on their 
risk assessment category DCLG
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Chapter 6: 

MODELLING IN  
BUSINESS AND 
MANUFACTURING
Models underpin a wide variety of business 
activities, enabling innovative high-quality 
design and manufacturing, more efficient 
supply chains and greater productivity. 
Modelling can also improve businesses’ 
organisational efficiency, commercial 
productivity and profitability. The UK is a 
world-leader in using models in business,  
but it faces a major skills shortage. 
This could be tackled through greater 
collaboration between academia and 
industry, for example, or by initiatives that 
provide more opportunities for businesses 
to sponsor students.
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Introduction
The UK currently performs strongly as the 11th 
largest manufacturing nation in the world1, in a 
global market worth £6.7 trillion. Manufacturing 
represents an important contribution to the UK 
economy, making up 11% of the UK gross value 
added (GVA) and 54% of UK exports, directly 
employing 2.6 million people and accounting 
for over 70% of investment in research and 
development. Modelling tools underpin the 
optimisation of manufacturing functions and 
production processes, which are crucial to the 
sustainable growth of the manufacturing sector 
in the UK. At the highest level, modelling can 
drive performance improvements of products 
and services, achieving productivity and efficiency 
gains, and enabling the creation of innovative smart 
products and services. 

The nature of models used across industry, from 
engineering to the service sector, varies hugely, but 
they fit into three broad categories. 

1. Complex models aimed at modelling physical 
reality. These models can be very accurate, 
such as modelling the detailed dynamics of gear 
backlash in a gearbox. However, the complexity 
of some systems may naturally contain large 
uncertainties, for example problems involving chaos 
or turbulence such as weather prediction. This type 
of model is often constrained by the computational 
power available.

2. Reduced physical models, which capture 
behaviour at a specific scale. These are much more 
efficient models, but they risk being used out of 
context, and can have large uncertainties because 
they capture less complexity.

3. Representative models that fit data and trends, 
often called ‘black box’ models. These models are 
typically built using artificial intelligence, machine 
learning or stochastic methods (see Chapter 3), 

and often carry large uncertainty due to limited 
knowledge of how to represent underlying 
mechanisms. Increasingly, when only part of a 
system is well understood, so-called ‘grey box’ 
models are developed, combining physical and 
black-box models to improve overall accuracy.

This chapter offers some examples of how 
modelling is used in business, and the opportunities 
that it offers for the future.

Performance	and	‘competitive	edge’
New and emerging industries are often able to 
use relatively coarse ‘back of the envelope’ models. 
Within well-established manufacturing and retail 
industries, however, advanced modelling is required 
to achieve the small percentage improvements that 
can have significant effects on performance and 
profitability. Advanced modelling and simulation 
within these sectors are therefore required to 
maintain competiveness where small margins make 
big differences (see Table 1, p76). 

The need for high performance is particularly 
evident in motorsport, where the UK is recognised 
as the worldwide centre of expertise. The pinnacle 
of this sport is the highly competitive Formula 
One industry, which has an annual revenue of 
£2 billion in the UK and helps the country to 
maintain a strong international role in engineering 
competitive performance. These companies 
constantly apply advanced aerodynamics modelling 
on high performance computers to simulate the 
complex, turbulent flow of air past a vehicle (see 
Fig. 1). The motivation behind this predictive and 
explanatory modelling is that a 2% improvement 
in aerodynamic performance means the difference 
between being first or tenth in a Formula One 
race; a 0.3% performance difference is what 
separates first and third places (see Fig. 2). In 2016, 
Siemens acquired one of these simulation software 
providers, CD-adapco, for $1 billion in order to 
“sharpen its focus on growth in digital business”.
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Figure 1: Advanced aerodynamics modelling of flow 
past the Elemental RP1 track car. 
Nektar++ and LCS-fast 

Figure 2: Front wing design of Formula One cars from 1988 and 2017. The greater understanding of the cars’ 
aerodynamics has allowed for more intricate geometrical designs to achieve greater performance.
McLaren Racing 

Modelling aerodynamics, materials and mechanics 
is also important in the commercial aviation sector. 
For example, a return flight to New York produces 
roughly one tonne of CO  per passenger2. A 1% 
improvement in the jet en

2
gine performance, or in 

the reduction of aerodynamic drag, naturally leads 
to lower fuel burn that has an enormous benefit 
both in terms of tackling climate change and the 
economics of aviation. 

Modelling is also relevant to the UK’s £175 billion 
retail sector. Large grocery chains typically hold 
stock for three days within their logistics chain, 
so even small improvements in stock handling 
and logistics through forecaster and optimisation 
modelling can save hundreds of millions of pounds, 
potentially benefiting consumers and maintaining 
retailers’ competiveness. Equally, models can be 
used to test the resilience of such ‘just in time’ 
supply chains to shocks or failures.
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Industry Modelling	 Gain	in	Performance	
Automotive	and	
aerospace

Complex physical problems are 
modelled to improve efficiency or 
weight, and reduce environmental 
factors such as noise

The accumulation of many small efficiency gains 
help to meet regulatory requirement on noise 
or emissions, and make the products more 
attractive to consumers

Retail Modelling of the supply chain 
ensures that the right components 
or products are available at the 
most opportune time 

Lowering the storage requirements of products, 
while optimising their availability, improves 
manufacturing efficiency and cuts the time to 
delivery

Construction Building Information Modelling 
(BIM) uses complex 3D models 
that enable more efficient methods 
to design, create and maintain our 
built assets

BIM helps to maximise the lifetime performance 
of buildings and infrastructure, increasing 
efficiency and value for money

 
Table 1: Examples of efficiency gains through modelling

Efficiency	and	productivity
Consumers increasingly expect bespoke services, 
delivered quicker and cheaper than ever before. 
In many sectors, this is coupled with pressure 
from regulatory bodies to improve quality and 
safety standards. To compete in this dynamic 
environment, businesses need to go beyond lean 
practices and embrace modelling and simulation 
tools to shorten their development cycles, 
reduce costs and enhance their quality and safety 
processes. In Formula One, for example, before 
the in-season testing ban came into effect in 
2009, a team would test but not race 90% of 
their manufactured prototypes parts, such as 
front and rear wings on the car. Now the reverse 
is true: using complex aerodynamic models to 
gather performance data, the virtual parts are 
tested by drivers in high-fidelity simulators. Only 
those components that demonstrate increased 
performance in the simulator are manufactured and 
raced, thus improving efficiency and reducing costs.

Major advances in the efficiency, 
productivity and competitiveness 
of the retail, finance and insurance 
sectors are being driven by the 
application of modelling. 

Modelling is used extensively in the design of 
supermarkets, a sector in which stores vary 
considerably in terms of size, location, and the way 
customers use them. For example, a supermarket 
chain may offer as many as 500 different wines for 
sale. Models are therefore used to understand how 
customers compare and contrast different wines. 
For instance, is the grape, vintage or the country of 
origin more important to peoples’ decision-making? 
This is a statistical model, a hybrid of continuous 
and discrete elements as well as some game 
theory, and it ultimately shows the ‘decision tree’ 
that reflects customers’ perceptions of different 
wines. In other words, it explains the customer’s 
thinking and predicts their aggregate reaction 
to changes.

The overall model of how customers perceive the 
differences between wine can be used to optimise 
the sub-selection of wines available in a small 
convenience store. While the biggest out-of-town 
stores can offer every different wine option, the 
small store may only have room for 10 different 
bottles. The selection available can be tuned to 
give customers the greatest possibility that they 
will find a wine that they like. This tuning also takes 
into account factors such as the demographics of 
the local customer base and the typical way that 
the store is used — for example, whether it is a 
neighbourhood store, or located at a transport hub 
and used primarily by commuters.
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Advertising agencies have built regression models 
of the impact of advertising on brand awareness, 
recall and purchase patterns for decades. More 
recently, the advent of ‘viral’ marketing, social 
media and neuroscience has lead to a search for 
new metrics and more concern about complex 
systems. Increased effort has been put into 
establishing how consumers affect each other, 
and epidemiological models have been applied to 
cascades of purchasing fashions, for example. Media 
companies have concentrated on the identification 
of networks of influence and the role of ‘mavens’ 
who may be influential in such networks. Others 
have denied that such nodes exist. It is probable 
that this topic produces more uses of complex 
systems models than any other, and Hal Varian, 
who has specialised in such information economies, 
is now Chief Economist at Google.

In high-value manufacturing, the application of 
modelling tools such as finite element analysis and 
computational fluid dynamics, combined with the 
increasing availability of real-time data, has a range 
of benefits. It supports innovation in product 
and process design, defines process parameters, 
identifies failure mechanisms and reduces expensive 
physical testing, leading to robust manufacturing 
processes and quality products. Discrete event 
simulation enables the optimisation of a production 
facility, while detailed cost-modelling provides an 
estimate of investment requirements that can 
underpin a business case. 

In addition, the requirement from regulatory 
bodies to improve quality assurance and safety 
is also a catalyst for many industries to embrace 
modelling tools. For example, in the manufacturing 
of pharmaceutical products such as inhaler pumps, 
quality testing of the filling, clamping and packaging 
processes is usually undertaken through batch 
weighing and statistical sampling methods. This can 
be very costly, as entire batches must be discarded 
when discrepancies are found. Using system 
models and appropriate sensors to measure 
key inputs such as pressures and forces, high-
speed localised processing (referred to as edge 
processing) can identify anomalous behaviour in 
machines. Early warning signs then flag current and 
predicted events, and take automated action by 
removing individual ‘bad apples’ at source. This can 
also inform a human operator to take appropriate 
maintenance action on a machine before a failure 
occurs, therefore minimising downtime for the 
production line. 

One example of good practice in this area, which 
the government should continue to encourage 
and support, is the design and simulation service 
offered by the Manufacturing Technology Centre 
in Coventry3. For start-ups and original equipment 
manufacturers alike, adopting a modelling approach 
early on not only reduces product, process, 
and manufacturing risks, it can reduce product 
development time, manufacturing costs and increase 
the product life-cycle performance. Furthermore, 
virtual validation of the design of an assembly 
process can de-risk manufacturing strategies, 
reduce facility installation and commissioning time, 
and shorten the time to market (see Table 2).

Industry Modelling	 Gain	in	Productivity
Construction Design of airport, cities, shopping 

centres, and so on
Improve the ability of customers to circulate 
more freely, enabling improved use of facility 
and better evacuation in emergencies

Oil	and	gas Estimation of ‘fatigue life’ of pipes 
carrying oil or gas from sea bed to 
sea surface

Optimise life expectancy of pipes and mitigate 
likely failure

Automotive	and	
aerospace	design

Designs and components are 
tested virtually before physical 
prototypes are built

Manufacture and test fewer physical parts 
during costly design phase

Table 2: Examples of performance gains through modelling
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This approach can also be applied to modelling 
business strategy as a company starts and develops. 
While business models beyond spreadsheets 
are still rare, good models have the potential to 
address commercial issues that can make the 
difference between whether a company succeeds 
or not. Opun, for example, is a start-up offering an 
online assurance service that oversees consumers’ 
home-improvement projects. The company’s 
chief executive officer and chief financial officer 
used system dynamics software to model how 
many contractors would have to be lined up to 
get its service off the ground; how the number of 
support staff would have to rise in order to handle 
customer enquiries and manage projects; what sort 
of marketing effort might be needed; and, from 
all this, how revenue, costs and cash flow might 
develop as the business grows. They found this 
‘living business model’ to be easier, faster and more 
reliable than anything they could have achieved 
with spreadsheets — and substantially more useful, 
because it visualised all the interdependencies in 
the system. This model later expanded to cover 
project performance many weeks into the future, 
and to test sensitivities to varying assumptions 
and strategies. Today, the model is in continual 
weekly use, informing the management team’s 
every decision: on pricing, marketing, hiring, 
contractor recruitment, service development and 
geographic expansion.

Royal Dutch Shell has also been a proponent of 
bringing modelling into strategic discussions. This 
includes developing and exploring different future 
scenarios to answer ‘what if?’ questions, encourage 
strategic thinking, and foster a deeper awareness 
among leaders. Modelling is a key part of Shell’s 
business strategy: from scenario planning to 
assess global oil and gas production, and refining 
capacity; to recruitment strategies for computer 
programmers; and the successful launch of its 
biotechnology business.

Smarter	devices	and	services	
The next generation of manufacturing and service 
industries needs to continue to push the boundary 
of innovation through a greater adoption of 
modelling, both in terms of smarter products and 
smarter services. For example, the widespread 
availability of smart phones not only allows 
individual route guidance through applications such 
as Google Maps, but also provides the capability 
and platform for active fleet management. This 
easy and interactive availability of data therefore 
provides opportunities for modelling to enable 
not only new smarter devices, but also smarter 
decision-making. 

The next generation of 
manufacturing and service 
industries needs to continue to 
push the boundary of innovation 
through a greater adoption of 
modelling. 

The modelling of novel smart materials will play a 
key part in tackling big issues such as air pollution, 
by delivering new CO -absorbing materials or 
glazed solar photovolt

2
aic panels that produce 

electricity while allowing light to pass through. 
In medical applications, considerable research 
and modelling work is underway on smart 
materials such as hydrogels for drug delivery and 
tissue engineering.

Within the retail sector, models are increasingly 
being used to offer new services. Online shopping 
models perform a multitude of tasks aimed at 
reducing friction by anticipating a customer’s 
needs, helping customers to find new products, 
and eliminating mistakes. A relatively new service 
offered by supermarkets attempts to predict 
customers’ intentions and help them to avoid 
an extra trip to the store for forgotten items. A 
model is built for every online grocery customer, 
which predicts the items most likely to be 
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purchased should that customer shop the following 
day. This is a dynamic machine-learning algorithm 
that uses data from the customer’s history, and 
data of similar customers’ purchasing habits. When 
that customer next enters the online checkout 
phase, their intended purchases are compared to 
the model’s prediction. After eliminating duplicates, 
the model suggests a balanced selection of half a 
dozen items that the customer may have forgotten 
to include. Typically, one in four customers will 
add one of the forgotten items to their basket. 
This kind of personalisation is aimed at enhancing 
the consumer experience. Other applications are 
conceivable which may be viewed less positively, for 
example differential pricing or choice manipulation. 
All such innovation has consequences for how 
people use and perceive their choices, and models 
will continue to try to capture these.

In the consumer vehicle industry, it is now 
commonplace for cars to have automatic braking 
systems. More recently, advanced features such as 
collision avoidance and automatic parking systems 
are being offered, and these require increasingly 
complex and integrated predictive models. As both 
traditional and emerging car manufacturers move 
towards driverless cars, there will be a greater 
demand for more advanced and robust modelling 
integrated with active monitoring systems. The 
experts needed to design these systems — and 
indeed those mentioned earlier — are in ever-
greater demand, and the UK is now facing a 
skills shortage.

Although such models are predominantly used 
by the biggest companies, we are now starting to 
see these concepts becoming available to small 
and medium enterprises (SMEs), often in the form 
of ‘software as a service’ (SaaS). While still in its 
infancy, there are emerging start-ups concentrating 
on this area, and we can predict the further 
development of a ‘modelling as a service’ (MaaS) 
business sector. 

In order to spread the benefit in productivity 
provided by modelling, the UK should proactively 
look to support the creation of tools and services 
that enable businesses, especially SMEs, to gain 
access to high-quality modelling services, most likely 
through SaaS.

Such services could also provide businesses with 
models that inform business strategy. Modern 
software with compelling visualisation features 
is making it easier for businesses to access the 
rigour that modelling affords when making critical 
decisions. For example, the prioritisation of asset 
investments, often crucial to a company’s growth, 
invariably involves multiple trade-offs that are 
interdependent. Models that help to illustrate the 
potential impact of various investment scenarios 
on the different parts of the business, offering clear 
visualisation of the potential outcomes, can lead 
to more robust investment strategy. Models could 
also inform sales strategy, by modelling consumer 
behaviour using agent-based modelling. One 
leading supermarket chain has commissioned the 
building of such a model to forecast the behaviour 
of shoppers in an artificial environment where they 
are able to react to changing market conditions. 
This will enable the firm’s leadership to examine 
the relative merits of different strategic directions, 
for instance whether to invest in price cuts versus 
new stores, or make a pronounced shift online.

The increased use of modelling across business 
is also likely to mean that some jobs become 
obsolete or automated. While this might be 
considered as a threat in some sectors, it also 
presents an opportunity for modelling-enabled 
decision-making to open up a wider range of job 
opportunities to a broader sector of the work 
force, thereby providing greater mobility and 
possibilities for new job creation. It will therefore 
be important for government to support this 
move, to ensure that the UK remains competitive 
and fully reaps the benefits that a greater use of 
modelling can provide, including the quality of 
work, efficiency, and better delivery of services 
across the UK.
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Conclusion
There is a great demand for qualified modellers 
in all sectors. To address the skills shortage, there 
must be a greater focus and awareness on data 
science and modelling courses within science and 
engineering degrees. Computational modelling 
techniques are being developed and taught in 
many academic disciplines, mainly in computing 
science and software engineering, engineering, 
mathematics, statistics, and economics. There 
is a need to develop a new, broad discipline of 
modelling, which would also include data science, 
and embed it in the application domains and 
industrial sectors. There is an associated need to 
develop a community of modelling researchers, 
working across the new discipline, domains and 
sectors, and charge them with ensuring that 
the UK offers appropriate undergraduate and 
postgraduate courses that highlight the wide 
diversity of problems to which modelling skills 
can be applied. This community, working with the 
national and professional academies, should aim to 
raise the profile of modelling and ensure students 
are motivated to take up the courses on offer.

One opportunity is to encourage more universities 
to offer level 6 and level 7 accredited courses as 
part of the new apprenticeship levy (equivalent 
to bachelor’s and master’s degree qualifications). 
Another opportunity is to make it easier for  
industry to sponsor students in those courses 
throughout their studies — possibly by matching 
part of their apprenticeship levy allowance — in 
order to motivate students to pursue modelling, 
data science and engineering careers.

The cross-fertilisation of ideas between industries 
and academia, along with a mutual appreciation 
of different sectors’ needs in modelling skills, is 
vital to create a healthy ecosystem that can spawn 
new start-ups, high-tech industries and high-value 
jobs, helping the UK to be in a strong competitive 
position internationally. It is important to note 
that a great deal of the advanced modelling within 
machine learning is happening in companies rather 
than academia (see ‘Machine learning’ in Chapter 
3, p43-45), the most prominent UK example 
being DeepMind (sold to Google in 2014 for 
£400 million). Therefore, Catapult centres and 
the Alan Turing Institute should act as catalysts 
for innovation partnerships and champion ‘grand 
challenges’ in modelling. They should also evangelise 
the benefits of modelling, to help policymakers 
and employers understand what is possible and 
enable greater recognition of the use of modelling 
and modellers.
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Chapter 7: 

MODELLING  
CITIES AND  
INFRASTRUCTURE
The science of urban modelling is rapidly 
developing, and modelling is routinely 
used in the retail and transport sectors. 
However, substantial research challenges 
and opportunities remain, particularly 
in dynamics and in deploying new data 
sources. Greater research coordination, 
and policies that make high-quality urban 
models available to local authorities, could 
help to realise the tremendous potential of 
‘urban analytics’.
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MODELLING CITIES AND INFRASTRUCTURE

Introduction
Pilots do much of their training and continuing 
professional development on flight simulators. 
Similarly, those concerned with policy development 
and planning for cities, city regions and inter-city 
infrastructure have their own form of simulator: 
urban models. Such models also have a variety 
of commercial applications, for example in the 
planning of retail centres and their locations. 
Urban modelling has a long history — spanning 
five decades or more — and we now have 
a tremendous opportunity to build on this 
knowledge1, 2. However, this knowledge is not 
systematically applied.

The opportunities are being fuelled by greater 
data availability and increased computing power, 
which can also help urban modellers and model 
users to apply best practice more uniformly. They 
can take advantage of new data sources, such as 
movement data from mobile phones, along with 
our developing understanding of city evolution, 
including the identification of ‘tipping points’. 

There is already considerable investment in urban 
modelling research, but it is very fragmented and 
unfocused. For example, it should contribute 
substantively to the place dimension (Pillar 9) of the 
government’s Industrial Strategy3, but it is actually 
connected to most of the other Pillars.

This chapter considers what aspects of cities and 
infrastructure can be modelled; what applications 
these models could have; the state of the science; 
and the future of urban modelling.

What	is	to	be	modelled?
The Government Office for Science’s Foresight 
project, ‘Future of Cities’4, ran from 2013 to 2016. 
Its work used a framework based on the key 
subsystems that make up a city-regional system:

• people living in cities
• urban economies
• utilities, including materials and energy flows 

• land use and urban form
• infrastructure — broadly interpreted as 

housing, offices, retail, hospitals, schools, 
colleges, universities and transport systems 

The project’s most important (if obvious) 
finding was that these subsystems are highly 
interdependent. Challenges can be articulated in 
each of these areas, including:

• housing a growing and ageing population, and 
providing it with employment and services 

• increasing productivity outside the Greater 
South East

• planning for sustainability and responding to 
climate change

• designing urban forms to meet these 
challenges

• developing transport infrastructure to 
facilitate movement, again consistent with 
higher objectives

• designing governance structures that are 
appropriate for the relevant scales and able 
to tackle interdependence 

This is a formidable agenda, and urban modelling 
underpins the analytics for all the associated policy 
development and planning processes. As part of 
this work, it is important to focus on the activities 
of people living in cities: where they live and work, 
and their use of services, from retail through 
health and education to a whole variety of others. 
The interaction between these different locations 
generates the transport flows. 

Fortunately, this is an area for which modelling is 
well-developed and successful5. Modelling urban 
economies is harder, however, not least because 
of the uncertainties of technological change. The 
modelling of materials and energy flows is feasible, 
but under-developed. Considerable progress has 
been made with the modelling of land use, at least 
in terms of pressures (and hence land prices). In 
many cases, actual development is determined by 
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government action through planning permissions, 
so any model-based analysis has to be embedded 
within the planning system itself. Infrastructure 
changes slowly, and so can be taken as a given for 
short-term forecasting with models. It is feasible 
to model the impact of, say, an infrastructure 

project — a new railway line, for example — but it 
is much more difficult to model the evolution of a 
whole infrastructure system5 (see ‘Challenges and 
opportunities for modelling the built environment’, 
below and overleaf).

CHALLENGES	AND	OPPORTUNITIES	FOR	MODELLING	THE	BUILT	ENVIRONMENT

The built environment consists of an array of objects that includes buildings, roads, railways, pipelines, 
cables, sea defences, dams, refineries, factories, power plants, water, sewage plants and wind turbines. 
These are increasingly complex systems that have many dependencies on, and interfaces with, other 
objects in the built environment.
We are highly dependent on digital representations of these assets to carry out daily business. 
(Such representations are sometimes referred to as ‘digital models’ or ‘data models’, though this 
is a specialist use of the term ‘model’). These models all rely on having suitable data. For instance, 
when the rail industry was privatised, the rail maintenance companies inherited all the data about 
the rail infrastructure. Even though Railtrack owned the rail infrastructure, it had very sparse records 
of its assets, making it difficult to issue maintenance contracts. The Office of Rail Regulation felt 
obliged to make it a license condition for Railtrack to create an asset register, a most basic model of 
its infrastructure. Network Rail, the successor organisation to Railtrack, now has terabytes of data, 
updated frequently and increasingly used to model maintenance requirements.
More generally, the use of 3D models in design has made it possible to accurately visualise an asset 
before it is built. This offers considerable benefits in ‘clash detection’, ensuring that two things are not 
accidentally intended to occupy the same space. Although the visualisation is often thought of as the 
model, it is actually the underlying data that play a crucial role in the model, and the value of the data 
goes far beyond the visual rendering. 
Historically, models of assets have been created and used for a single stage of an asset’s lifecycle. 
Handover from one stage to the next has generally resulted in a loss of intelligence (and therefore 
value) to the recipients. For example, architects’ drawings created in a Computer Aided Design (CAD) 
system might be handed over as paper or PDF files for design and construction. This means that data 
might have to be re-entered for use in systems supporting later lifecycle stages, introducing time, cost 
and the chance of error. 
More recently, various sectors have developed data exchange standards to support the handover of 
data through lifecycle stages and through the supply chain. In the building sector, the current state of 
the art is known as BIM Level 2, which supports the use of standardised spreadsheets (Construction 
Operations Building Information Exchange, COBIE) for specifications and encourages the use of 
industry data models for a richer representation of a building and its component parts. These are 
already reported to be reducing the cost of assets by up to 20%. 
The oil and gas industry is perhaps the most advanced sector in sharing asset models, typically about 
a refinery or an offshore oil rig. It noticed that the end objective was data integration — bringing 
together data from different sources for some new purpose. The solution was ISO 15926, a standard 
for data integration, sharing, and exchange. This has been used to support the development of several 
major projects in the oil and gas industry, delivering significant benefits.
The pattern of interaction here is one of hub-and-spoke, rather than point-to-point. Each system 
develops a single interface to a central ‘integration data model’, rather than creating a fresh model 
for each system. The integration data model can be implemented as a database, but equally can be 
implemented as a messaging system so that data can be shared among different systems.
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The work done in the oil industry suggests that it should be possible to develop a ‘digital twin’ — a 
comprehensive, all-encompassing model — for the natural and built environment, and the processes 
and services that use it. A particularly valuable task of this kind would be to build a digital twin of 
the national infrastructure system, which would facilitate planning in the context of high levels of 
interdependence. This requires a diverse, cross-disciplinary, cross-industry initiative where the aim is 
to use portable data that are entered once and then shared and reused where it is required, in a way 
that is consistent with other data from different sources. This will reduce costs and supply data more 
quickly to dynamic models, thus making their results more reliable. The overarching vision is to provide 
any legitimate data about anything you need, anywhere you need it. They key is to have relevant, clear, 
consistent, timely, complete, accurate, cost-effective and secure information to inform decision-making.

Technical	challenges	to	achieving	truly	integrated	data	
Data models about different things are usually developed separately. The result is that where they 
overlap, they will have modelled the same things in different ways, leading to inconsistency. To achieve 
consistency, you need to represent the same things in the same way. Data models must also be 
‘extensible’, so that other data models can be added to it without changing the existing model. In 
practice, this means anticipating future requirements of the model. 
The most practical way to meet these challenges is to start with a high-level data model of everything, 
which ensures a consistent approach, and then add detail about different areas when they are needed. 
This demands a consistent methodology and clear understanding of the basic categories of the system. 
The technical challenges are mostly about adding data with enough attention to detail to assure the 
quality of the whole. These challenges have either been solved already, or could be solved given our 
current capabilities.

Commercial,	cultural,	governance,	and	funding	challenges
The first non-technical challenge is funding such a development. The problem is that whoever picks 
up the cost, those who hang back and join in later get a free ride. So the incentive is to hang back. 
For example, the process industry (including the oil industry) was given 50% public funding for the 
initial work that led to the development of ISO 15926, but this was withdrawn after 5 years in the 
expectation that sufficient momentum had been developed to sustain the ongoing development 
needed for it to be widely adopted. The UK part of the initiative rapidly collapsed, however, ceding 
leadership to the Dutch and the Norwegians who had continued public funding. Not only is public 
funding critical to establishing such an initiative, it needs to be a long-term commitment in order to 
maintain UK leadership.
The second challenge is cultural. The nature of the engineering industry, with the split between owners 
and contractors, is historically adversarial. This is not a good starting point for developing something 
that necessarily requires collaboration to bring about success.
The third challenge is commercial. The larger part of the gains from exploiting digital twins comes from 
collaborative commercial arrangements focused on the exploitation of the opportunities they bring.
The fourth challenge is trust and security. In sharing data, we need to be sure that those who need 
data can access it easily, but that inappropriate access is barred whenever commercial or security 
considerations arise. This is a precondition for widespread take-up of a data sharing service.
The last challenge is governance. How do you persuade a critical mass of users to adopt asset-modelling 
technology? Government can play a key role by requiring its use for public contracts, but relationships 
with industry, academia, and the professions will also be important to bring digital asset models into 
widespread use.
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The	uses	of	urban	models
Any planning activity can be thought of as involving 
three elements: policy, design and analysis.

Policy is concerned with what has to be achieved, 
and focuses on solving problems to deliver 
objectives. Design is concerned with formulating 
a plan: specifying those elements that can be 
controlled, such as the locations of housing 
development, or the layout and management 
of transport infrastructure (see ‘Challenges and 
opportunities for modelling the built environment’, 
p83/84). The role of modelling lies in analysis: in 
other words, testing alternative plans. In local 
government, model-based analysis — what one 
might term ‘urban analytics’ — can be used to 
test alternative master plans or the impacts of a 
particular scheme, often within the framework of 
a cost-benefit analysis. This kind of analysis also has 
commercial applications. A supermarket retailer, for 
example, can use a model to predict the revenue 
that would be attracted to a proposed store, and 
then test its viability against the capital costs of the 
land and its development. This kind of application is 
now routine6. A transport company could optimise 
its routes and fares. A property developer can 
predict the rents that would be generated in a 
certain kind of project in a particular place. As 
we will see in the following sections, models are 
already available for a wide variety of applications, 
but there are huge opportunities for further 
developments that capitalise on research, new data 
availability, and computing power. 

UK Research and Innovation (UKRI) and associated 
government agencies should ensure that the UK 
has the analytic capabilities — including urban 
modelling — to support policy development 
and planning as it faces the challenges of future 
urban development. All agencies concerned 
with urban development should certainly have 
access to best-practice urban analytics, for 
example. It is important to note that the UK 
suffers a serious skills shortage in this area, and 
the appropriate government agencies, along 
with UKRI, should investigate these and make 
further recommendations on how the gaps can 
be filled. These skills also offer considerable 
export opportunities.

Modelling is an essential tool to 
help understand and manage 
the challenges of future 
urban development.
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The	state	of	the	science
The present state of the science of urban modelling 
can be partly understood in terms of the two 
kinds of complexity postulated by American 
mathematician Warren Weaver7. He distinguished 
between systems of disorganised complexity, 
which contain large numbers of weakly interacting 
elements; and systems of organised complexity, 
which contain large numbers of more strongly 
interacting elements. The modelling of human 
activities is of the first kind, and these models rely 
on a form of statistical averaging. Modelling the 
economy of a city blends both kinds: input-output 
modelling exhibits disorganised complexity, while 
the interactions of public and private sectors shows 
organised complexity. Finally, the evolution of urban 
form and infrastructure in cities is of the second 
type of complexity. 

There are, of course, alternative schools of urban 
modelling. There are differences of theoretical 
approach, of methodology and of scale. Economists 
often develop their own formulations, and 
broadly form two schools — econometricians 
and mathematical economists — and these have 
their manifestations in urban modelling. A shift 
towards studying cities at smaller scales produces 
the currently fashionable approaches of agent-
based modelling (ABM) and microsimulation 
(see Chapter 3). Although all of these different 
approaches may be seen as competitors, they can 
in fact be largely reconciled by recognising that 
they are all underpinned by more or less the same 
probability distributions8.

We can summarise the state of the science as 
follows. Demography is in good order, though with 
some challenges relating to migration. Population 
activity models, and associated spatial interaction 
models, are in reasonably good order. Economic 
input-output modelling is well developed at 
the national level, but poorly developed at the 
city scale — this is mainly due to a lack of data, 
particularly trade data between cities. Transport 
models are highly developed and much used. Some 
attempt has been made to model land use, and 
to recognise interdependence through land-use/
transport-interaction (LUTI) models2. Only the 
transport models have been widely applied in the 
public sector5, and retail models in the commercial 
sector6. The opportunity to incorporate models 

into a wide variety of planning processes — 
notably in health and education in the planning 
of the provision of hospitals or schools — has 
been missed. Whether this is due to lack of skills, 
to fashion or to political timidity, is a matter of 
conjecture and requires further research9.

The working models can forecast effectively in the 
short term, and this is valuable for many purposes. 
But longer-term, direct forecasting with these 
models is impossible. This is partly because the 
systems being modelled are complex, non-linear 
and subject to abrupt changes; and partly for the 
inherent uncertainties associated with factors such 
as migration and technological change. However, 
all is not lost: it is possible to build alternative 
scenarios of longer-term futures, and models can 
then be applied to analyse these scenarios, and 
used to steer paths to good outcomes and to avoid 
bad ones.

It should also be noted that some progress has 
been made towards building models of aspects of 
cities that change slowly, such as the structures of 
retail systems or the gentrification of certain areas, 
the latter being a phase change. It is also possible 
to identify possible phase changes in retail areas, in 
particular the minimum initial size of investment in 
a new major retail centre that is required for it to 
be successful. However, these insights are still very 
much in the research domain8. 

This section has merely provided an overview of 
the science of urban modelling. A more detailed 
survey of the state of the science would provide a 
basis for the development of UKRI research policy 
in this important field. In doing so, UKRI should 
also ensure that their research spending on urban 
modelling projects is undertaken at sufficient scale, 
and with effective coordination, an approach that 
can be achieved without additional funding.
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The	future	of	urban	modelling
The future of applications of urban modelling can 
be developed through four interacting dimensions:

• the availability of new (‘big’) data
• increased computing power
• new research
• skills in applying urban models, especially in 

government

The calibration and testing of urban models 
in the UK has mainly relied on national census 
data, market surveys and local authority data 
(for example, on land use). Yet census data are 
only collected every 10 years, market surveys are 
infrequent and expensive, and local authority data 
are often out-of-date, and are in any case often 
inaccessible to researchers. 

Fortunately, this situation is changing rapidly. 
The government’s open data policy is making 
administrative data available, for example, which 
can be used to update census data. A lot of data is 
also becoming available through sensors of various 
kinds, which can be combined with other sources 
to give good estimates of traffic movement, for 
example. Location data available through mobile 
phones makes it possible to estimate origin-
destination transport flows, thus eliminating the 
need for expensive surveys. These different data 
sources can be integrated (in some cases with 
the help of a modelling base) providing both a 
real-time intelligence system and the possibility 
of real-time model calibration. This can generate 
a comprehensive intelligence system in various 
branches of government, from central to local, and 
also has a variety of commercial uses. These data 
sources are extensive and, when collected at the 
level of individuals, very ‘big’. Increased computing 
power enables these data sets to be cleaned, 
handled and transmuted through modelling.

new data sources open new 
possibilities for modelling in 
real-time.

The models themselves will continue to be refined 
in research programmes, not least because data 
will become available on a long-term time-series 
basis. This could be particularly useful in building 
operational dynamic models, but it would not be 
difficult in principle to build a platform on which 
any of a suite of possible models could be made 
available. These could be tailored for applications 
in fields that have been underdeveloped in 
the past, such as health. The funding of these 
kinds of research programmes is substantial but 
uncoordinated, with at least two research councils 
— the Economic and Social Research Council 
(ESRC) and the Engineering and Physical Sciences 
Research Council (EPSRC) — and Innovate UK having 
unconnected programmes. This research, especially 
in the economy of cities, could be an important part 
of both the Industrial Strategy Challenge Fund and 
the Global Challenges Research Fund, which UKRI 
has an opportunity to coordinate. 

A likely constraint on these developments, as 
already noted, will be the lack of skills. The urban 
modelling community is relatively small and there 
is a need for capacity building in research. There 
is a corresponding lack of skills in government. 
It can be argued that a model-based intelligence 
system would be essential for local government 
(and, for example, for health and police authorities). 
London is probably the only city in the UK that 
has this capacity in its present form. This suggests 
that there is an argument for a central government 
initiative to supply the system centrally for local 
application. Indeed, the ready availability of 
computing power means that it is beginning to be 
possible to build a UK model that is sufficiently 
fine-grained for any local authority to deploy local 
elements of it. The time is ripe for government 
to consider how to ensure that appropriate 
urban analytics capability is available at the city 
and city-regional scales, and to consider the role 
academic institutions can play in helping to enhance 
capabilities in urban analytics.
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Conclusion
The underlying science of city and regional 
modelling is well developed: a growing number 
of models are ready for use in short-term 
forecasting, and for the longer-term exploration of 
future scenarios. Applications are now routine in 
commercial environments like the retail sector, and 
in transport planning in the public sector. However, 
there is considerable scope for development 
in urban planning, by deploying comprehensive 
models that can handle the interdependencies of 
urban development. The UK has the potential to 
be a world leader in urban analytics, and there is 
already interest globally in our approach to data, 
research and analysis of urban systems. To realise 
this potential, we must draw together practice — 
including skills development — and research. This 
could be developed through government action, 
and through research coordination by UKRI.
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Chapter 8: 

MODELLING IN 
FINANCE AND  
ECONOMICS
Models play crucial roles in finance and 
economics, from identifying and managing 
risk to forecasting how economies will 
evolve. Yet major changes are afoot in 
economic modelling, triggered by the global 
economic crisis, the availability of huge data 
sets, and new abilities to model people’s 
behaviour that overturn old certainties. 
There is a pressing need for models to 
adapt to this changing landscape.
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MODELLING IN FINANCE AND ECONOMICS

Introduction
Models are ubiquitous in finance and in economics. 
This is not only because they are essential building 
blocks for their subjects, but also because of 
the policy and regulatory requirements facing 
banks, insurance companies or economic policy 
and management. Models are used to decide 
capital needs, to make loan decisions, to manage 
monetary policy, to assess policy impacts, and to 
evaluate investment decisions in both the private 
and public sectors.

Modelling techniques and theories are both in flux 
at present as the revolutions in data availability 
and modelling methods take hold. This poses a 
significant challenge for teaching and regulation, 
which applies as much to the choices that exist in 
the world as to how they can be modelled. But 
modellers, and model users, must respond to the 
these changes, particularly in their selections of 
model purpose and criteria. Failure to do so will 
further undermine the already weak trust in the 
outcomes of models in these subjects.

This chapter looks at modelling in finance and 
economics through three lenses. The first is that 
of risk identification and management, which is 
fundamental to financial modelling. The second 
is through forecasting and the macro-economy, 
which has been challenged by the events of the 
financial crisis. The third looks at the modelling 
approaches now being applied to the building 
blocks of economic analysis, to study how people 
behave and the extent to which they optimise 
their behaviour.

Risk
In finance, models have always been essential to 
assessing risk and reward, and how risk should 
be priced. Models are used to assess credit risk 
— the chance that a borrower may not repay a 
loan — and to assess the basis of portfolio risks as 
individual assets are put together. Risk modelling 
goes back to at least the sixteenth century, when 
an Italian mathematician called Girolamo Cardano 
published a book about gambling. In modern times, 
the Basel Committee on Banking Supervision has 
issued a series of regulatory recommendations, 
known as the Basel Accords, that set criteria for 
the kinds of models that are appropriate, and the 
data which are necessary to enable models to 
meet the criteria. These rules have grown over 
the years, both before and after the recent global 
financial crisis. 

Some of the key concepts in the suites of models 
that are used to set the capital requirements of 
banks include: the likelihood of default; the size of 
the exposure (the total sum that might be lost in 
an investment); and the loss that might realistically 
occur. Market risk exposures are also modelled 
to estimate operational risk. Taken together, 
these models provide the calculation of capital 
requirements for banks.

The challenge to the standard suites of models 
has been in three areas. The first has been to 
incorporate ‘fat tails’: the fact that the distributions 
of outcomes have higher probabilities of unlikely 
outcomes than normal distributions show1. Such 
results undermine some of the core results of 
financial theory. While the modelling of extremes 
has existed for some time, adjustments in financial 
pricing have so far largely been dealt with by ad 
hoc measures. The existence of such outcomes 
implies two other phenomena: herd behaviour 
(when people join in with a trend) and feedbacks 
across markets. It is well known that one source of 
the financial crash of 2007 to 2008 were models 
which assumed that risk distributions could be 
accurately modelled, and risks removed from the 



MODELLING IN FINANCE AND ECONOMICS

91

system by such means2. This turned out not to be 
true — their forecasts of risk were thus far too 
low. Risks could not be managed out of existence, 
and moreover could be positively correlated 
so that there was cross infection from one risk 
category to another. 

The Bank of England is currently building models 
that attempt to include such feedback mechanisms. 
Instead of all traders having the same motivation, 
the model includes three different groups that 
interact with market makers, as well as being 
disturbed by noise in the system (see Fig. 1). This 
is a deterministic, dynamic model consisting of sets 
of equations; it aims to be predictive, at least of 
upper bounds for some key risks. Such a model will 
produce very different results from the standard 
Capital Asset Pricing Model, where all agents have 
the same motivation.

Value
traders

Passive
funds

Momentum
traders

Market
maker

Investor

Corporate bond market

Noise

Figure 1: The Bank of England is building a model that 
accounts for feedbacks between different actors in 
a market.
Andy Haldane Bank of England3

A second, related, challenge has been to model 
banks’ requirements for capital and liquidity (cash) 
when under stress. Central banks across the world 
are setting out scenarios that banks and insurance 
companies need to be able to survive (see 
‘Insurance regulation’, overleaf). This places large 
and intense modelling requirements on institutions 
that need to show what impacts these different 
scenarios could have. Banks have tested suites of 
models across many areas of business. Such models 
have yet to be tested in reality, and any particular 
scenario is unlikely to be the one that actually 
occurs. Testing such models for robustness is 
therefore extremely hard and will almost certainly 
rest on unchallenged assumptions — those that 
no one thinks could possibly be wrong. In the last 
crisis, this assumption was that wholesale markets 
would never close, only that the price of borrowing 
would change. After all, the markets had never shut 
in the past 200 years. But in 2009, they froze as 
participants decided they could not judge the risks 
of the assets that needed cover.
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INSURANCE	REGULATION

The European Union’s Solvency II Directive for insurance aims to enable an efficient yet adequate 
allocation of capital resources by risk-based analysis. Company solvency capital requirements reflect the 
funds needed in order to ensure that financial ruin occurs no more often than once every 200 years. This 
‘return period’ assessment of risk can be derived for global portfolios by catastrophe models for natural 
hazards (see ‘Natural catastrophe modelling’ in Chapter 9, p106/107). Such capital adequacy modelling 
should cohere operationally with broader processes of enterprise risk management. Ownership of this 
risk management process needs to be demonstrated and understood up to senior management and 
board level, including modelling assumptions and bespoke model adjustments. It’s a tall order.
There have been escalating losses from extreme weather, in particular, which the insurance industry has 
managed successfully (see Fig. 2). This means that regulators, auditors, credit ratings agencies and investors are 
now searching for similar risk-based models to face a gamut of emerging risks such as changing climate 
regimes, water stress, food security, biodiversity loss and attendant macro-economic shocks.

Figure 2: Insured catastrophe losses, 1970–2014, in £ billions at 2014 prices
Swiss Re Economic Research & Consulting and Cat Perils

Regulators and practitioners must consider the possibility that models either underestimate or 
overestimate risks. This has been a particular challenge in insurance market modelling, where models 
that require too much capital reduce pay-outs to some members of pension schemes, and leave assets 
sitting in the scheme which are not productively invested. Regulators and firms try to balance the risk 
that the last scheme member to retire has a very large return against the risk that a downturn could 
exhaust the assets in the shorter term. Models look at the cyclical variation as well as the individual risks 
within any group of investors, pension scheme members or borrowers. Such models are of necessity 
based on past experience and incorporate the most recent knowledge and statistical techniques. They 
won’t, however, prevent the future differing from the past.
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In financial markets, the risk-reward trade-off has 
been dominated since the 1970s by the pricing 
models generated by a mathematical result called 
the Black-Scholes formula, and its spinoffs. All 
of these were built on the assumption that the 
original stock price includes the impact of all 
available information, and that negative feedback 
loops would limit potential volatility in stock 
prices. This is the essence of the efficient market 
hypothesis, which says that stock movements 
are random because non-random elements 
are already factored into the price. While the 
financial crisis brought these assumptions into 
disrepute, nothing has yet replaced them. It is clear, 
however, that financial models must recognise that 
negative feedback is not universal, and identify 
the limitations to the context in which pricing 
assumptions are valid.

Applications of ‘big data’ might be able to test 
assumptions in order to make inroads into risk 
modelling across all sectors of finance. Wider 
sources of data are driving fintech (financial 
technology) companies that produce risk algorithms 
to price credit, and to offer peer-to-peer lending. 
A corollary of better risk parameters is that the 
analysis begins to approach certainty. At the 
extreme, if the insurance company can accurately 
predict illness or death, life insurance becomes a 
saving rather than an insurance activity. Insurance 
premiums are based on the analysis of a group risk 
where the individual faces the probability, but not 
the certainty, that they will get sick or die. Insurance 
pools premiums on the basis that there will be 
enough to pay out to those group members on 
whom the event falls. If it is known who these are, 
then the model breaks down; consequently, having 
more data raises the risk of this model failure. For 
example, it is known that women drivers pose 
lower accident risks than men. However, insurance 
firms are forced to treat them the same by EU 
legislation. As more data accumulate other areas of 
fair or unfair treatment will emerge, and modelling 
efforts by new fintech firms are accentuating this 
impact. It is increasingly important, therefore, 
to identify the risks of big data and algorithmic 
decision-making to finance models, especially in 
insurance and credit risks.

Forecasting	and	the	macro-economy
Most people think that forecasting and macro-
economics is at the heart of what economists 
do. The subject is judged on the success of these 
activities, even though they form a relatively small 
part of the total range of economic analysis.

Macroeconomic models are time-series models, 
which look at how an economy evolves and how 
it is structured; some include dynamic features 
(see Chapter 3). They are not just there for 
forecasting, however (see Chapter 1). Olivier 
Blanchard, an economist at the Peterson Institute 
for International Economics in Washington DC 
identifies five types of models: 

• core models illustrating theory
• dynamic general equilibrium models 

examining distortions
• policy models studying impacts and dynamics
• toy models for pedagogy
• forecasting models

Approaches to modelling within these categories 
are increasingly open to challenge. For example, 
the description of how economic agents form 
expectations that inform their decisions has 
immense impact on dynamics and on policy 
impacts, but there is no agreement on how such 
expectations should be categorised and what 
simplifications from messy reality are appropriate 
to any particular problem. Economists typically 
assume that the agents described by a model know 
or learn the ‘true’ model of the economy, and 
form expectations with this. Ironically, economists 
themselves are singularly unable to agree on what 
the model of the economy actually is in reality. 
Moreover, despite decades of intensive econometric 
research, very little agreement exists between the 
models on the size of basic concepts such as the 
public expenditure multiplier5. 

A successful forecast may need very little 
theoretical content, instead relying entirely on 
estimating statistical dynamics and accounting 
identities. But a model may not be trying to 
forecast — it may be trying to identify the 
construction of business cycles and the interaction 
of different elements in the economy as they 
evolve over time. The global financial crisis of 2008, 
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and the failure to predict it, is not seen as failure 
by macro-economic researchers in large part 
because economists have a strong belief in their 
theoretical underpinnings.

There is no doubt, however, that this lacuna has 
opened up more debate about the state of macro-
economics and the extent to which the workhorse 
models, such as dynamic stochastic general 
equilibrium (DGSE) models, are fit for purpose — 
and which purpose they are fit for. Simply providing 
caveats about models, which people may not read 
or understand, does not help public understanding 
or increase trust in the results. 

Ricardo Reis, a practicing macro-economist at 
the London School of Economics, argues that 
there has been huge progress in this area, and 
that researchers are taking the subject forward in 
thinking about the relationship between monetary 
and real economic forces, bringing to bear new 
statistical data and trying to assess the likelihood 
of rare events6. But he does agree that the ability 
to forecast with the standard models is limited, 
and that new forecasting approaches are needed. 
Moreover, he argues that at student level there 
is too little variety and too few alternatives to 
the standard core model available in textbooks. 
Overall, there is a strong case to develop more 
pluralist approaches to macro-economic modelling.

The Bank of England has been producing ‘fan 
charts’ in its Inflation Report almost since its 
inception in 1993 (see Fig. 3). These show the 
Bank’s view of the range of potential outcomes 
for the economy, and more recently a view of the 
range of historical estimates, which have a tendency 
to be revised in the case of GDP. These charts 
dramatically illustrate the level of uncertainty. 
By the end of 2017, for example, inflation could 
be anywhere between 0% and nearly 5%, while 
economic growth could be between -1% and 
4%. The outliers may be unlikely, but they are 
not impossible, which implies that a probability 
distribution is being forecast. 

The uncertainty of outcomes is not just the result 
of possible shocks — by their nature, a shock 
might widen the range still further. These ranges 
are the result of uncertainty about factors such as 
policy, other countries’ evolution, and still more the 
interaction of the behaviours of economic actors. 

Figure 3: Bank of England fan charts published in 
February 2017 show a wide range of possible economic 
outcomes, based on previous data from the Office for 
National Statistics (ONS).
Bank of England

These charts are prepared on the assumption of 
unchanged policies and published by the Bank’s 
Monetary Policy Committee, whose task is to set 
interest rates in the light of these expectations. In 
most scientific areas of enquiry it is not the task of 
the researcher to change the future by analysing 
it. In economics, it is often exactly that task, and 
that increases the difficulty of model validation in 
economics. The purpose of the forecast is to form 
the basis of a decision which is focused on changing 
that future. This is not well understood in many 
quarters and needs to be better articulated.
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Equilibrium	behaviour
If the macro-economy is difficult to understand 
and model, it may be easier to describe and 
model individual behaviour and markets. Here, the 
challenge for modelling is to describe behaviour 
in a rich enough fashion. Traditionally, economists 
have focused on a fictional person — sometimes 
dubbed Homo economicus — who maximises utility 
using maximal information, and is uninfluenced 
by others. Practising economists can be deeply 
irritated by this traditional assumption, which 
they argue is no longer followed by leading edge 
researchers who know that behaviour can vary 
across people and time.

Nonetheless, this approach is still fundamental 
to the starting point of much estimation, 
where individual observations are treated as 
independent, and models are adjusted to ensure 
that an equilibrium can be found. It is particularly 
powerful because a system based on independent 
agents — whether firms or consumers — who 
are unaffected by others’ behaviour generates 
elegant models with optimal solutions where 
no one can be made better off unless someone 
else is made worse off. This optimality is very 
appealing to both analysts and policymakers, and 
on it rests a set of modelling strategies to identify 
distortions to this outcome. These distortions can 
be modelled by competition authorities in order 
to identify remedies: for example, by showing what 
a competitive industry outcome would look like 
and comparing this with the reality. Such modelling 
is sophisticated and powerful, but struggles to 
deal with economies of scale, innovation, and the 
importance of trust7.

The econometric models used in these 
circumstances assign impacts to various causes, 
based on some indicator of interest. They also 
use increasingly complicated techniques, though 
they do tend to focus on independent and linear 
impacts of individual variables. This is a powerful 
approach, supported by statistical tests of relevance 
that can nevertheless obscure its limitations in 
dealing with economic context and the impact of 
one person on another.

Notoriously, the proposition that no one can 
be made better off without another becoming 
worse off is agnostic about income distribution, 
ethical considerations or geography. Economic 
modellers have struggled to include the proposition 
that individuals might either care about or be 
affected by others’ interests. This is beginning to 
change, however, and modellers must continue to 
incorporate agent variability, time and geography 
into economic modelling.

Increasingly, new modelling techniques include the 
impact of one person on another, or the benefits 
that one firm might generate for another, other 
than directly through trade and exchange. Agent-
based modelling tools (see Chapter 3, p41) are now 
becoming more widely available; these describe 
probabilistic rules of behaviour which vary between 
types of agent. Thus there is no maximisation, not 
all agents may care about the same things, and 
there is unlikely to be an equilibrium. There are 
increasing numbers of models in this tradition, 
although we currently lack rules for deciding how 
good they are, either for description, prediction or 
policy purposes. 

Much more work needs to be done to establish 
methods for the validation and quality assurance of 
such models. This is particularly important because 
they produce a different outcome every time they 
are run, due to the probabilistic rules that underpin 
them. Unlike classical economic models, there 
will not be a deterministic or optimal solution. 
Modelling strategies that produce a range of 
potential outcomes are less comfortable for policy 
purposes, but will identify not only the most likely 
outcome, but also the risks of other out-turns. In 
principle this could be helpful, but in practice it may 
cause difficulties if people struggle to understand 
the models’ probabilistic conclusions. 
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Econometric models, by contrast, have developed 
testing criteria over many years and can be 
reliably tested for their robustness, depending on 
how they have been set up. They will produce 
a more certain result, but will also cover fewer 
eventualities. Modellers need to generate 
approaches to considering which techniques are 
relevant to which situations. This is complicated 
by the debate between proponents of different 
approaches to theory. Many economists believe 
that standard textbook models can be tweaked to 
include insights from psychology and behavioural 
analysis. Others consider the problem to be more 
fundamental, and that the behaviours of real 
economic agents are so varied that a different 
starting point should be found. 

Agent-based modelling techniques are at the 
heart of this debate; so too are the insights 
of psychologists Daniel Kahneman and Amos 
Tversky8. They showed that humans do not view 
gains and losses symmetrically; that they discount 
the future heavily; and that they take views on 
fair outcomes which would not be economically 
rational. These discoveries were recognised by 
the Nobel Memorial Prize in Economic Sciences in 
2002. Yet debate continues to rage about whether 
we need to set up markets such that people do 
behave as rational economic persons, or whether 
we need to change the modelling strategies to 
accept that this is just not what happens.

Agent-based modelling allows a discussion about 
different kinds of agents. Some agents may try to 
maximise profits; others only look for ‘good enough’; 
while some agents care about issues outside the 
model, such as the environment (see Fig. 1). 

Models of this type can generate different kinds 
of economic behaviour in respect, for example, 
of energy consumption. It turns out that people 
buying green electricity consume more, as they 
feel good about such spending. Equally, recycling 
programmes sometimes create more waste for 
the same reason. Such effects confound normally 
expected price impacts.

Another technique which can avoid hypothesising 
about behavioural rules too early is based around 
machine learning, where algorithms are used to 
search for patterns in large data sets (see ‘Machine 
learning’ in Chapter 3, p43-45). This partly arises 
out of an interest in financial markets, where 
there are not only large returns to be made by 
doing prediction better, but there are also very 
large data sets that are accurate and not subject 
to revision. Complex forms of pattern seeking can 
be done better and faster by today’s computers 
than by humans. A study that compared nearly 200 
different algorithms on more than 100 challenging 
data sets concluded that machine-learning 
algorithms (such as ‘random forests’ and ‘support 
vector machines’) are not only the most powerful, 
but that techniques more familiar to economists 
(such as ‘logistic regression’) are simply not 
competitive by comparison9. 

Since the global financial crash, economics has 
taken a variety of directions. One is to incorporate 
more details and more data into existing models to 
improve them. Another is to take a more overtly 
political stance and build modelling strategies 
around the need to model alternative economic 
organisation. A third is to suggest that pluralist and 
more institutional analysis is needed to develop 
a different set of hypotheses about economic 
behaviours and the context in which they operate. 
The implications of these techniques for economic 
modelling, whether in theory or in practice, are still 
in their infancy. 

For example, a model of corporate behaviour 
has shown that the assumption of full knowledge 
of market conditions is not consistent with the 
observed ability of firms to survive10. If they 
knew as much as the standard model requires, 
they would not fail so often. This does not tell us 
exactly how each firm is motivated, but it tells us 
something about the context in which they are 
operating. Even if they want to maximise profits, 
they will lack the ability to do so.
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Conclusion
Modelling in economics and finance has become 
ever more complicated, with continuing attempts 
both to improve the standard models and to 
replace them. This is exciting, but it means that 
current analysis is anything but secure. The battles 
over which simplifications are appropriate in 
building a model of a particular phenomenon are 
far from over. Insights from psychology, physics and 
biology abound, but have yet to be incorporated 
into an agreed body of knowledge11.

Outsiders challenge entrenched modes of thinking 
that they see as wrong-headed, while insiders 
insist that the basics are fine, and that refinement 
is an ongoing effort which is making continuing 
strides forward. It is probable that the economic 
and financial systems have become more complex 
over time, with globalisation and trade increasing 
connections and the potential for cascading effects 
across markets and economies. The simplifications 
that seemed reasonable to nineteenth-century 
economists such as Alfred Marshall12, for whom 
marginal impacts could be separated and identified, 
may no longer hold good. Choice is also becoming 
wider and wider, with internet shopping broadening 
availability and price search possibilities. In this 
changing landscape, market models must also evolve 
— or even change completely.
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Chapter 9: 

MODELLING THE 
ENVIRONMENT
Environmental modelling plays an important 
role in guiding government policy and 
business decisions. A series of examples 
illustrates how models are used in situations 
ranging from noise reduction to flood risk 
assessment. These case studies hold some 
key lessons for the public sector, including 
the usefulness of open-access datasets, the 
need to educate the next generation of 
modellers, and the opportunities for risk 
modelling to enhance social resilience to 
severe natural hazards.
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MODELLING THE ENVIRONMENT

Introduction
Environmental modelling provides a computational 
representation of the Earth’s processes at a wide 
variety of spatial scales across land, water and 
air. This allows model users to investigate these 
processes and forecast their responses to both 
natural and human-induced change, informing 
government policy and business decisions about 
societally-important questions associated with 
human development. It may also help to optimise 
designs for our built environment, and to formulate 
response plans for extreme environmental 
situations. The complexity and inherent non-
linearity of environmental systems means that such 
questions must necessarily be approached through 
modelling of various kinds. Modelling techniques 
can be applied internationally, and are exported as 
products and services worldwide.

Modelling the physical world is a cost-effective 
way to predict outcomes and test hypothetical 
‘what if?’ scenarios that compare the likely 
outcomes of interventions, as well as system 
uncertainties such as climate change impacts. By 
varying the environmental input parameters, a 
model can provide a range of different outcome 
scenarios — with associated probabilities — 
that can be compared, and their environment 
consequences assessed.

Integrated modelling approaches that better 
encapsulate observed behaviour and feedbacks 
have become increasingly common, thanks to 
the availability of more powerful computers; 
more data, from field surveys to remote sensing 
networks; and more sophisticated algorithms 
and methodologies. Such integration requires a 
fundamentally multidisciplinary approach, in order 
to adequately consider the complexities and 
inter-relationships of atmospheric, hydrological, 
geomorphological and ecological systems.

The outputs of environmental models can be 
generated at high resolution and across large 
domains — limited only by the computing power 
available — and are often presented as detailed 
colour graphics and animations, which are among 
the most effective way of communicating with non-
experts and decision-makers.

Examples of environmental modelling include:
• Meteorological and hydrological assessments 

of critical infrastructure (such as nuclear 
power plants) that must withstand the 
uncertain future climate over periods of 
decades, and which would cause serious 
consequences for the population and 
environment in the event of failure.

• Air pollution modelling to provide alerts to 
the public via an app or SMS, helping them 
protect their health and ultimately reduce 
costs to public health bodies and the NHS.

• Modelling flows and turbulence around wind 
turbine arrays to determine the optimal 
arrangement for maximum energy output.

• Predicting the complex noise environment 
due to aircraft engines — some not yet in 
production — and other airport sources, to 
help the decision-making process about the 
next runway for south-east England.

• Modelling flood risk in future climate 
scenarios to inform risk management options, 
such as investing in appropriate built defences 
and other protective measures.

Modelling helps to forecast 
environmental conditions and 
inform a wide range of planning 
and policy needs. 
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Validation is an important way to demonstrate 
the robustness of a model’s output. This 
process checks whether the model is fit for the 
purpose for which it was designed, which usually 
involves comparing simulated model results with 
observation and measurement from the real-world 
natural systems under study. For example, how 
did recorded flood levels compare with modelled 
estimates? Remote sensing technologies, from 
drones to satellites, are increasing the opportunities 
for such empirical data collection for validation 
purposes. It should be noted that validation does 
not show that the model represents the absolute 
truth for the system being studied, nor that model 
is necessarily the best available. Rather, “a valid 
model is the one whose scientific or conceptual 
content is acceptable for its purpose”1. 

The following case studies showcase a range of 
applications of environmental modelling at local 
scale — including air quality, noise pollution, and 
flood prevention — and look in particular at the 
specific role of computational fluid dynamics (CFD), 
which is proving to be increasingly powerful. This 
essentially calculates a set of equations to represent 
each little cell of liquid, and (strong turbulence 
aside) is predictive within known bounds.

The case studies also highlight national and 
international scale modelling of the impacts of 
natural catastrophes such as windstorm, flood 
and earthquake, as well as associated societal 
resilience issues such as food security. Models in 
this area tend to rely on techniques that are non-
deterministic, dynamic, continuous, and stochastic; 
they can offer prediction and explanation of the 
phenomena being modelled.

AIR	POLLUTION	MODELLING

Twenty-five years ago, air pollution modelling was quite limited — modelling the emissions from 
a single industrial chimney stack, for example — and was used by only a small number of expert 
users. Today, thanks to the growth in computing power, it has become an essential tool for air 
quality consultants. Modelling is routinely used to assess planning applications and large infrastructure 
developments, for organisations such as Highways England and the Airports Commission. For example, 
achieving UK air quality objectives is one of the main challenges faced in the decision over a new 
runway for south-east England.
Current models, which are developed in the UK and used across the world, are now capable of 
incorporating: 
•	 	multiple sources, including chimney stacks, roads, distributed sources and aircraft engines
•	 	the interaction of sources with buildings, hills and coastal effects 
•	 	nitrous oxides (NOX) chemistry 
•	 	odour
•	 	plume visibility
•	 	deposition of pollutants

These models have integrated graphics and geographical information system (GIS) capabilities, which 
can produce powerful visualisations of the results and enable effective communication. Model input 
and output data are in formats that allow easy integration with other modelling, such as health 
impact assessment.
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Figure 1: Annual average nitrogen dioxide (NO2) concentrations for Greater London (in micrograms per cubic metre).
Cambridge Environmental Research Consultants Ltd

City-scale models are used to test the impacts of measures to reduce emissions, improve air quality 
and determine compliance with the UK’s air quality objectives. They can be nested within a larger 
mesoscale model (such as Defra’s open-source model EMEP4UK, see Fig. 1) to capture the regional-
scale air pollution situation. Such mesoscale models use satellite data and surface monitoring data in 
near real-time to improve their forecasts. City-scale models can provide pollution alerts via the web, 
apps and SMS. In London, for example, two pollution forecasting and alerting services are available: 
London Air2; and the airTEXT system3, a world-leading design that will display alerts at tube stations 
and bus stops as part the Mayor’s air quality plan. 
The UK Met Office and commercial providers use mesoscale models to provide national and 
international emergency response dispersion forecast services, and predictions of haze from biomass 
burning (such as forest fires). At this scale, where global meteorology and global emissions affect the 
model’s output, international cooperation has been particularly important, and UK modelling has greatly 
benefited from EU research funding and collaboration.
The future development of air pollution modelling at a variety of scales will involve the integration 
of improved observational data from satellites and ground-based monitors. Low-cost portable air 
pollution monitors are now gaining traction with the public, but the quality of their measurements is 
not yet sufficient to be used to improve model forecasts. 
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NOISE	MODELLING

Acoustic consultants and researchers use noise modelling to predict noise levels. They operate at a 
wide range of scales — from miniature ultrasonic sources, to large urban areas with multiple noise 
sources such as roads and airports. Noise modelling may also consider underwater sources, such as 
ship engine noise or foundation-piling for off-shore structures; and even vibrations that travel through 
the ground. 
Noise modelling is used in the development of numerous products, from domestic vacuum cleaners to 
jet engines. For example, virtual prototyping of a jet engine design can significantly decrease the time 
and costs associated with the development of quieter engines. Models are routinely used to predict 
noise from new infrastructure projects (see Fig. 2), or from existing sources that could affect new noise-
sensitive development (see Fig. 3). 

Figure 2: Noise contours predicted for a proposed 
petrochemical plant Arup

Figure 3: A ‘heat map’ showing how noise would 
change across noise-sensitive facades as a result of 
a new noise source close by. Arup

Universities, commercial software houses and consultants continue to push the boundaries of noise 
modelling by creating new prediction software, and improving the accuracy of the resulting predictions. 
A small number of specialists are now using sound modelling to produce 3D ‘auralisations’ — simulated 
soundscapes — for concert halls, high-speed railways and other systems. The models can allow users 
to listen to possible options for the acoustic design of a concert hall or theatre, or to understand the 
effect of noise reduction measures for transport schemes. Such demonstrations have been used in 
public consultations by HS2 Ltd and Highways England, with accompanying video of a passing train or 
vehicles, to provide an accessible way for members of the public to experience the sound that a new 
scheme might produce. 
For construction schemes that are under way, live noise measurement has been coupled with mobile 
transmission and computer processing to enable contractors and local authorities to visualise the 
cumulative noise dose experienced at nearby properties through the day. This allows action to be taken 
to control excessive noise, and this approach has been used on Crossrail. The potential also exists for 
almost real-time ‘noise heat-mapping’ of cities using a network of low cost microphones. Data from 
mobile devices could be gathered to rate user’s views on their sound environment, enhancing our 
understanding of noise annoyance and hence health effects. Developers could be advised on how to 
create positive sound spaces and thus improve both wellbeing and property value.
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FLOOD-PROTECTION	MODELLING

Plausible forecasts from climate change scientists say that, in the decades ahead, global sea levels could 
be over one metre higher than present-day levels. Similarly, a reasonable planning assumption is for a 
40% increase in rainfall, with a consequential risk of much bigger river flows and overloaded drainage 
systems. If our cities and towns are to thrive and continue through the 21st century, we should not 
expect 20th century solutions to be sufficient. The changes required for survival will need political 
action, along with investments in infrastructure and risk-reduction measures. They will also require 
whole communities to adapt, and showing people why and how to change through modelling and 
visualisation is an important part of that process.
The UK has extensive capabilities in environmental modelling, covering systems such as the dynamics of 
sea and tides; the concept of ‘super storms’ to stress-test river catchments and drainage systems; and 
hydraulic models that show how water moves and is stored. We can also model physical processes such 
as sediment movement and urban debris; how tree-planting and other natural flood-risk management 
techniques can help to slow the flow of water and reduce flooding impacts; and even the impact on the 
environmental conditions necessary to support diverse ecosystems. 
By integrating different models, we can provide powerful and coherent evidence to inform decision-
making. Figure 4 shows a combination of models for city-wide river and drainage systems, applied to 
a virtual 3D model of Leeds. Concept designs for £50 million of new flood protection infrastructure 
were digitally tested to enable meaningful discussion between politicians and stakeholders about the 
consequences of flooding, and helped support grant and funding applications.

Figure 4: Integrated flooding model of Leeds Arup

Different features have been used to show planners and building owners how proposed flood defences 
would integrate into the existing riverside at a human scale. As part of widespread and continuing 
public consultation about the project, Leeds City Council has released flythrough videos from the 
integrated flood model; these appear on their website, and YouTube site, to explain the concept of the 
scheme and the work involved to the widest possible audience. 
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WIND	MODELLING

Computational fluid dynamics (CFD) is a powerful technique that can model the complex behaviours of 
fluids and gases in the environment, producing insightful visualisations. The rapidly increasing power of 
computers, and innovations in the underlying algorithms, are enabling the application of CFD techniques 
to a diverse range of environmental situations. Indeed, CFD is proving itself to be a crucial component 
of sophisticated ‘multi-physics’ design problems. 
The interaction between the wind and buildings in cities is an important contributor to pedestrians’ 
overall perception of the comfort and quality of outdoor spaces. In recent years, the scale of such 
models has grown from quite limited single-building applications, through to urban neighbourhood and 
city-scale simulations (see Fig. 5).
Wind modelling can also be integrated with solar radiation and thermal modelling to plan new 
metropolitan landscapes, resulting in more walkable, outdoor-orientated urban environments and 
energy-efficient buildings.
The performance modelling of large arrays of wind turbines, where each turbine interacts with and 
influences the behaviour of others, is now able to assist energy-yield optimisation and predict other 
important considerations such as wear and fatigue. This latter issue is a multidisciplinary problem, in 
which wear and tear on turbines is related to the turbulence caused by other turbines; this is, in turn, 
a structural analysis problem tackled by sophisticated numerical models. In maritime and offshore 
applications, CFD is being used to model the complex interactions of extreme waves with structures, 
and the longer-term erosion of wind turbine foundations, for example (see Fig. 6).

Figure 5: Contour plot of wind speed interactions 
with buildings across a city Arup

Figure 6: Wave velocity in the vicinity of a maritime 
structure Arup
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NATURAL	CATASTROPHE	MODELLING

During the late 1980s and early 1990s, losses arising from a series of devastating natural disasters 
threatened the viability of the insurance industry. For example, after Hurricane Andrew hit Florida in 
1992, it generated insured property claims of $15.5 billion and caused 11 company insolvencies. This 
triggered a revolution in risk management across the insurance industry, based on modelling the three 
components of risk: hazard, exposure (portfolios of asset values), and the vulnerability of the latter to 
the former (see Fig. 7).
The London insurance market is still the largest 
global hub for reinsurance (insurance that is 
purchased by an insurance company as a means 
of risk management) and specialty commercial 
insurance, in which participants underwrite 
globally-mobile risk that local markets cannot 
easily accommodate. The City has been able to 
draw on readily available expertise from finance, 
academia, engineering, software technologies 
and regulators in developing catastrophe models, 
which derive probabilistic metrics to assess the 
frequency and severity of loss in order to actively 
manage risk.
Unique and challenging dimensions of these 
catastrophe models include:
•	 	Spatial extent. The models consider national 

(and increasingly international) portfolios of insured assets, such as domestic, commercial, industrial 
and agricultural buildings and contents, as well as business interruption policies. Hazard coverage 
must also go beyond individual river catchment areas or city-based studies, in order to consider the 
broader geographic context. 

•	 	Location of the value at risk. Insurance company data-capture has improved, in terms of both 
completeness and resolution; it is no longer limited to a particular postcode, and can now specify 
risk as an individual latitude-longitude geolocation.

•	 	Limited historical record of hazard. Unlike motor or health insurance claims — which generate 
large volumes of data for statistical analysis — windstorms, earthquakes or flood activity generate 
relatively short-timescale datasets that may only span a century. Statistical methods (such as Monte 
Carlo simulations, see Chapter 3) and physical modelling (such as numerical weather prediction) 
have been used to generate catalogues of many thousands of years of ‘synthetic’ events to bolster 
the historical record, providing sufficient data for more reliable analysis.

•	 	Event-by-event analysis. Unlike many aggregate risk-assessment approaches (such as seismic hazard 
mapping of return period flood outlines), catastrophe models must consider each individual 
intensity footprint of a windstorm, flood envelope or earthquake and match this to both the 
specific geographical distribution of an insured portfolio and the event-based policy wordings for 
deductibles and limits. 

Model results are often expressed as ‘return periods of loss’, the inverse of which is the more 
technically familiar ‘exceedance probability’ (see Fig. 8). For example, a 1-in-200 year loss, which has 
become a benchmark solvency metric across European insurance regulation (see Chapter 8), has a 0.5% 
(1/200) probability of occurring in any given year.

Hazard

ExposureVulnerability
RISK

Figure 7: Catastrophe modelling framework  
Willis Towers Watson
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Figure 8: An exceedance probability curve from a catastrophic loss model Willis Towers Watson

Subsequent natural disasters provide opportunities to test and improve such modelling; these include 
events such as Hurricane Katrina (US, 2005), the Christchurch earthquake (New Zealand, 2011), and 
Storm Desmond’s floods (UK, 2015). This approach helped to ensure that Hurricane Sandy, which 
affected 24 US states in 2012 and cost $35 billion in insured losses, caused no company insolvencies.
Catastrophe models also have a key enabling role to play in tackling the ‘protection gap’ — the growing 
divide between economic and insured losses. This under-insurance places the burden of losses upon 
individuals, firms and finally government as the ‘insurer of last resort’. The influence of atmospheric 
modalities, such as El Niño and La Niña, and climate change scenarios can also be directly incorporated 
into the catastrophe-modelling framework to estimate how likely these are to cause physical damage. 
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AGRICULTURE	AND	FOOD	SECURITY

Environmental risk modelling in the insurance sector is generally concentrated on industrialised 
economies such as Europe and North America. But its methodologies and metrics apply equally to 
low-income economies, where need is often greater from a humanitarian perspective, yet data are 
often scarcer. Over the past ten years, innovative public-private sector initiatives have developed 
regional disaster risk financing instruments where pay-out is triggered by ‘parametric’ index models, 
which use satellite-based remote sensing data as a proxy for detailed on-the-ground data that are often 
not available. One example is operated by the African Risk Capacity (ARC) agency, established in 2012 
by the African Union to augment the disaster risk financing for drought in participating countries, and 
thus protect the food security of their populations. The agency’s Africa RiskView models5 combine 
existing operational rainfall-based early warning models on agricultural drought with data on vulnerable 
populations, to form a standardised approach for estimating the costs of responding to food insecurity 
(see Fig. 9). These are explanatory models that help in the planning of future scenarios. Country-
specific customisation and model calibration have been achieved for over ten countries, by considering 
quantitative and qualitative data such as specific crop types being planted, yield information, and past 
weather-related disaster events. Four drought insurance pay-outs have been triggered so far over 3 
years of operation, and these monies have been made available immediately after an event, greatly 
enhancing the system’s effectiveness.

Figure 9: Rainfall predictions across Africa 
form part of drought and food-security 
modelling provided by African Risk Capacity 
(ARC).

The Africa RiskView software is copyrighted by the 
African Risk Capacity (ARC) Agency and may not 
be used or distributed without the express written 
permission of ARC Agency.

Working groups convened in each ARC country can develop a greater knowledge of natural 
hazards and modelling, which enables better contextualisation and communication of early-warning 
information to decision-makers. Peer learning promotes best practice in both contingency planning and 
implementation, leading to better outcomes. This approach ultimately improves resilience by reducing 
the short-term and long-term socioeconomic impacts of natural disasters. 
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Conclusion
These private-sector examples of environmental 
modelling hold some key lessons for the 
public sector.

1. They encourage and support open access to 
datasets. Environmental models are handling 
increasingly large datasets, and combine varied 
sources to provide new insights that were 
previously unavailable. Encouraging a pre-
competitive space with greater data availability 
helps to share costs, and greater use of this 
approach improves data quality. 

2. Support for education delivers the bright, 
applied and creative modellers of the future. 
Companies often struggle to find suitable 
candidates to employ in technical roles related 
to building models and interpreting results. 
Environmental models have a mathematical 
underpinning and benefit from subject 
matter expertise from a wide range of 
disciplines, as well as effective communication 
across disciplinary boundaries. New 
technologies will also generate innovative new 
modelling methods.

3. Applying a risk perspective can assess and 
enhance social resilience to severe natural 
hazards. The insurance and reinsurance sector 
has made considerable progress in evaluating 
the risks posed by extreme weather. These 
risks now need to be better accounted for 
in the wider financial system, in order to 
inform valuations and investment decisions, 
and to incentivise organisations to reduce 
their exposure. This could be done through 
a requirement for public and private sector 
organisations to report their financial exposure 
to extreme weather at a minimum of 1-in-100 
(1%) per year risk levels6.
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GLOSSARY

Abstraction 

The process of reducing an object, system or 
process to a set of essential characteristics for a 
particular modelling purpose.

Agents 

Agent-based modelling seeks to understand how 
the behaviour of individuals and their interactions 
within a system affects the overall system. Agents 
in this context could range from gas particles to 
human beings, organisations and nation states.

Algorithm 

A series of steps that a computer program works 
through to produce an output. Sometimes used 
interchangeably with model ‘code’, but this may 
be misleading as a model often contains several 
algorithms. 

Artificial Intelligence (AI) 

Systems that are designed to emulate human, or 
rational, thought processes or actions.

Assumptions 

Models are rarely able to represent accurately all 
aspects of the complex process they represent, 
so they need to make appropriate simplifications. 
These simplifications are based on assumptions 
about how particular parts of a process work.

Automation 

The use of algorithms or models to enable a 
process or a system to operate without human 
intervention. 

‘Black box’ model 

A model for which the inputs and outputs are 
visible to the user but its internal workings are not.

Calibration 

The process of fine-tuning a model, through 
adjusting input assumptions, parameters or 
variables, so that model outputs match observed 
reality as closely as possible.

Citizen science 

The involvement of volunteers in science, for 
example to help in large-scale data collection for 
experiments that would otherwise be unfeasible 
due to cost and/or scale. 

Cross-disciplinary 

Involving more than one academic discipline: for 
example, modelling the spread of an infectious 
disease requires understanding both the biological 
and social mechanisms by which a disease spreads. 

Confidence interval 

A range of values indicating the uncertainty (or 
imprecision) in an estimate. A wider confidence 
interval reflects a more uncertain (less precise) 
estimate of the unknown true value.

Differential equations 

These include variables in the same way as any 
other equation, but also the derivatives of those 
variables — that is, terms involving the rate at 
which those variables change.

Digital twin

A computational model of physical assets  
(or processes or systems) that continuously learns 
and updates itself from multiple sources, as the 
physical counterparts change. It acts as a bridge 
between the physical and virtual world, allowing 
analysis (e.g. simulations) that can help to anticipate 
problems and plan for the future.

Empirical 

Having scientifically observed data as its basis, as 
opposed to only being based on theory.

Fidelity 

A measure of model accuracy. This term is used 
in the fluid dynamics community to indicate how 
closely a model reflects what it has been designed 
to model.
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Gamification 

Turning something into a game that one can play, 
such as a business application or to communicate 
issues of social importance.

Internet of Things 

A system in which everyday objects are internet 
nodes in themselves: for example, devices sending 
and receiving information about an individual’s 
environments and habits.

Linear (and non-linear) 

In a linear model, the nature of the relationship 
between variables remains the same when the 
value of the variables changes. In a non-linear 
model, the nature of the relationship between 
variables is changeable depending on a change 
in values. 

Machine Learning 

The technology that allows systems to learn 
directly from examples, data, and experience. 
Machine learning systems are set a task, and given 
a large amount of data to use as examples of how 
this task can be achieved or from which to detect 
patterns. The system then learns how best to 
achieve the desired output. There are three types 
of machine learning system: supervised (where 
data are labelled, to help the systems learn what 
differentiates different datasets); unsupervised 
(where data are not labelled and the system has 
to detect data characteristics and classify datasets 
by itself); and reinforcement learning (where the 
system learns through the positive or negative 
consequences of its decisions, for example which 
moves are important for winning a game).

Model 

An abstraction of some aspect of something we 
observe.

Observations 

Can be of a process, object or behaviour. 
Observations can be used as input data for a 
model, or for verification and validation purposes.

Open source 

Software for which the source code is freely 
available for others to use and modify.

Parameters 

Input for a model which has a constant value and 
which characterises an inherent property of the 
system, object or process being modelled.

Probability distributions 

State the proportion of times each outcome would 
be expected to occur (on average). This only makes 
sense if there is some randomness involved.

Proxy data 

Data that can be inferred from other sources, and 
used in place of the actual data of interest when 
these are unavailable. 

Resolution 

The scale at which a model works and a marker of 
its likely precision (high, or fine, resolution implies 
higher levels of precision). Measures of resolution 
are commonly in units of space (millimetre, metre, 
kilometre) or time (second, hour, day).

Return period 

An indication of how often an event is likely to 
occur. For example, a return period of 100 years 
says that, on average, it is likely to occur once every 
100 years. It does not mean that if an event occurs it 
will not occur again for another 100 years — it may 
be more or less each particular time.

Sensitivity 

A measure of the magnitude of influence of a given 
parameter, assumption or variable. High sensitivity 
to a particular variable means a small change in that 
variable could lead to a substantial change in model 
output.

Simulation 

A model in which the output is calculated for each 
instance. It usually represents a process or system 
that changes over time.

Stochastic 

A process that contains an element of random 
behaviour, and therefore is not precisely 
predictable.

Tipping point 

The point at which a cumulative effect tips a 
system into a new state.
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Uncertainty 

Situations often do not have a single precise 
outcome — they are unpredictable to some 
degree, due to the uncertainty in the system. 
Uncertainty can have a number of sources, such as 
errors in measuring or estimating things, or simply 
because of the random nature of some parts of 
the system being modelled. Model outputs can 
be expressed as a numerical range within which 
the true value is expected to lie. The range can be 
large if the model is not deemed to be accurate 
in its predictive capability or if input data are not 
reliable. 

Validation 

The process of testing whether the model properly 
represents what it is intended to model. Usually 
done by comparing what is being modelled to 
some independent data.

Variables 

The ‘slots’ for input data for a model whose values 
can change, usually causing model output to also 
change.

Verification 

The process of testing that we have modelled in 
the right way: for example, testing that the model 
satisfies (or not) properties that we intended to 
include. 



glossary

115

REFERENCES



reFerenCes

116

REFERENCES

Chapter 1

1. Macpherson N ‘Review of quality assurance 
of Government analytical models: final report’ 
HM Treasury 2013. Available at https://www.
gov.uk/government/publications/review-of-quality-
assurance-of-government-models

2. IPCC ‘Principles and Procedures’. Available at 
http://www.ipcc.ch/organization/organization_
procedures.shtml

3. Watts JT ‘Common Sense and Sociological 
Explanations’ American Journal of Sociology 
2014: volume 120, pages 313–351. Available 
at http://www.journals.uchicago.edu/doi/
abs/10.1086/678271 

4. Forrester JW ‘World Dynamics’ Wright-Allen 
Press (Cambridge, MA) 1971

5. Meadows DH and others ‘The Limits to 
Growth: A report for the Club of Rome’s 
project on the predicament of mankind’ Earth 
Island (London) 1972. Available at  
http://collections.dartmouth.edu/published-
derivatives/meadows/pdf/meadows_ltg-001.pdf 

6a. Meadows DH, Randers J and Meadows DL 
‘Limits to Growth: The 30-year update’ 
Earthscan (London) 2004

6b. Randers J ‘2052: A global forecast for the next 
forty years (a report to the Club of Rome 
commemorating the 40th anniversary of ‘The 
Limits to Growth’)’ Chelsea Green (White 
River Junction, VT) 2012

7. FloodRanger http://www.discoverysoftware.co.uk/
FloodRanger.htm 

Chapter 2

1. Phillips LD ‘A theory of requisite decision 
models’ Acta Psychologica 2012: volume 54, 
pages 29-48

2. Dorigatti I and others ‘A new approach to 
characterising infectious disease transmission 
dynamics from sentinel surveillance: 
Application to the Italian 2009–2010 A/
H1N1 influenza pandemic’ Epidemics 2012: 
volume 4, pages 9-21. Available at http://
www.sciencedirect.com/science/article/pii/
S1755436511000557?via%3Dihub

3. HM Treasury ‘The Aqua Book: guidance on 
producing quality analysis for government’ 
2015. Available at https://www.gov.uk/
government/publications/the-aqua-book-guidance-
on-producing-quality-analysis-for-government

4. National Audit Office ‘Framework to review 
models’ 2016. Available at https://www.nao.org.
uk/report/framework-to-review-models/ 

5. ‘2050 Energy Calculator’ available at 
http://2050-calculator-tool.decc.gov.uk/

6. International Energy Agency ‘A comparison of 
the TIMES and MARKAL models’. Available at 
http://iea-etsap.org/tools/TIMESVsMARKAL.pdf 

7. Emmerson C and others ‘An assessment 
of PenSim2’ Institute for Fiscal Studies 
2004. Available at https://www.ifs.org.uk/
publications/3215 

8. Department for Business, Energy & Industrial 
Strategy ‘Turning a Policy Question into an 
Analytical framework: Scope development 
checklist’ 2015. Available at https://www.gov.
uk/government/publications/scope-development-
checklist

https://www.gov.uk/government/publications/review-of-quality-assurance-of-government-models
https://www.gov.uk/government/publications/review-of-quality-assurance-of-government-models
https://www.gov.uk/government/publications/review-of-quality-assurance-of-government-models
http://www.ipcc.ch/organization/organization_procedures.shtml
http://www.ipcc.ch/organization/organization_procedures.shtml
http://www.journals.uchicago.edu/doi/abs/10.1086/678271
http://www.journals.uchicago.edu/doi/abs/10.1086/678271
http://collections.dartmouth.edu/published-derivatives/meadows/pdf/meadows_ltg-001.pdf
http://collections.dartmouth.edu/published-derivatives/meadows/pdf/meadows_ltg-001.pdf
http://www.discoverysoftware.co.uk/FloodRanger.htm
http://www.discoverysoftware.co.uk/FloodRanger.htm
http://www.sciencedirect.com/science/article/pii/S1755436511000557?via%3Dihub
http://www.sciencedirect.com/science/article/pii/S1755436511000557?via%3Dihub
http://www.sciencedirect.com/science/article/pii/S1755436511000557?via%3Dihub
https://www.gov.uk/government/publications/the-aqua-book-guidance-on-producing-quality-analysis-for-government
https://www.gov.uk/government/publications/the-aqua-book-guidance-on-producing-quality-analysis-for-government
https://www.gov.uk/government/publications/the-aqua-book-guidance-on-producing-quality-analysis-for-government
https://www.nao.org.uk/report/framework-to-review-models/
https://www.nao.org.uk/report/framework-to-review-models/
http://2050-calculator-tool.decc.gov.uk/
http://iea-etsap.org/tools/TIMESVsMARKAL.pdf
https://www.ifs.org.uk/publications/3215
https://www.ifs.org.uk/publications/3215
https://www.gov.uk/government/publications/scope-development-checklist
https://www.gov.uk/government/publications/scope-development-checklist
https://www.gov.uk/government/publications/scope-development-checklist


reFerenCes

117

Chapter 3

1. The Royal Society ‘Public views of Machine 
Learning’ 2017. Available at https://royalsociety.
org/~/media/policy/projects/machine-learning/
publications/public-views-of-machine-learning-
ipsos-mori.pdf

2. The Royal Society ‘Machine learning: the 
power and promise of computers that learn by 
example’ 2017. Available at https://royalsociety.
org/~/media/policy/projects/machine-learning/
publications/machine-learning-report.pdf 

Chapter 5

1. Macpherson N ‘Review of quality assurance 
of Government analytical models: final report’ 
HM Treasury 2013. Available at https://www.
gov.uk/government/publications/review-of-quality-
assurance-of-government-models

2. Department for Transport ‘Transport analysis 
guidance: WebTAG’ 2017. Available at  
https://www.gov.uk/guidance/transport-analysis-
guidance-webtag 

3. UCL Energy Institute ‘UCL model of the UK 
energy system explained - UKTM (UK Times 
Model)’ 2017. Available at https://www.youtube.
com/watch?v=tOV5Q0e_RW0 

4. Office for Budget Responsibility ‘Briefing paper 
No. 5: The macroeconomic model’ 2013. 
Available at http://budgetresponsibility.org.uk/docs/
dlm_uploads/Final_Model_Documentation.pdf 

5. Office for National Statistics ‘Population 
projections’. Available at https://www.ons.
gov.uk/peoplepopulationandcommunity/
populationandmigration/populationprojections 

6. Department for Transport ‘TEMPro 
downloads’ 2017. Available at https://www.gov.
uk/government/publications/tempro-downloads

7. HM Treasury ‘The Green Book: Appraisal 
and Evaluation in Central Government’ 2011. 
Available at https://www.gov.uk/government/
uploads/system/uploads/attachment_data/
file/220541/green_book_complete.pdf

8. HM Treasury ‘The Aqua Book: guidance on 
producing quality analysis for government’ 
2015. Available at https://www.gov.uk/
government/publications/the-aqua-book-guidance-
on-producing-quality-analysis-for-government

9. Home Office ‘Modern Slavery Act 2015’. 
Available at https://www.gov.uk/government/
collections/modern-slavery-bill 

10. Silverman B ‘Modern Slavery: an application 
of Multiple Systems Estimation’ Home 
Office 2014. Available at https://www.gov.uk/
government/publications/modern-slavery-an-
application-of-multiple-systems-estimation

11. Munro E ‘The Munro Review of Child 
Protection. Part One: A Systems Analysis’ 
Department for Education 2011. Available 
at https://www.gov.uk/government/uploads/
system/uploads/attachment_data/file/624949/
TheMunroReview-Part_one.pdf 

12. Lane DC, Munro E and Husemann E ‘Blending 
systems thinking approaches for organisational 
analysis: reviewing child protection in England’ 
European Journal of Operational Research 
2016: volume 251, pages 613–623. 

13 The Operational Research Society: The 
President’s Medal. Available at:  
www.theorsociety.com/Pages/Awards/President.
aspx#2014

14. Lane DC, Munro E and Husemann E ‘The 
Child Protection Jigsaw’ Impact 2016: spring, 
pages 42-45.

15. The Operational Research Society ‘History of 
O.R.’. Available at http://www.theorsociety.com/
Pages/Society/SocietyHistory.aspx 

16. Lane DC ‘High Leverage Interventions: Three 
cases of defensive action and their lessons for 
OR/MS today’ Operations Research 2010: 
volume 58, pages 1535–1547.

17. Kirby, M ‘Operational Research in War and 
Peace: The British Experience from the 1930s 
to 1970’ Imperial College Press (London) 2003

18. Government Operational Research Service 
‘Recruitment’. Available at http://www.
operational-research.gov.uk/recruitment

https://royalsociety.org/~/media/policy/projects/machine-learning/publications/public-views-of-machine-learning-ipsos-mori.pdf
https://royalsociety.org/~/media/policy/projects/machine-learning/publications/public-views-of-machine-learning-ipsos-mori.pdf
https://royalsociety.org/~/media/policy/projects/machine-learning/publications/public-views-of-machine-learning-ipsos-mori.pdf
https://royalsociety.org/~/media/policy/projects/machine-learning/publications/public-views-of-machine-learning-ipsos-mori.pdf
https://royalsociety.org/~/media/policy/projects/machine-learning/publications/machine-learning-report.pdf
https://royalsociety.org/~/media/policy/projects/machine-learning/publications/machine-learning-report.pdf
https://royalsociety.org/~/media/policy/projects/machine-learning/publications/machine-learning-report.pdf
https://www.gov.uk/government/publications/review-of-quality-assurance-of-government-models
https://www.gov.uk/government/publications/review-of-quality-assurance-of-government-models
https://www.gov.uk/government/publications/review-of-quality-assurance-of-government-models
https://www.gov.uk/guidance/transport-analysis-guidance-webtag
https://www.gov.uk/guidance/transport-analysis-guidance-webtag
https://www.youtube.com/watch?v=tOV5Q0e_RW0
https://www.youtube.com/watch?v=tOV5Q0e_RW0
http://budgetresponsibility.org.uk/docs/dlm_uploads/Final_Model_Documentation.pdf
http://budgetresponsibility.org.uk/docs/dlm_uploads/Final_Model_Documentation.pdf
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationprojections
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationprojections
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationprojections
https://www.gov.uk/government/publications/tempro-downloads
https://www.gov.uk/government/publications/tempro-downloads
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/220541/green_book_complete.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/220541/green_book_complete.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/220541/green_book_complete.pdf
https://www.gov.uk/government/publications/the-aqua-book-guidance-on-producing-quality-analysis-for-government
https://www.gov.uk/government/publications/the-aqua-book-guidance-on-producing-quality-analysis-for-government
https://www.gov.uk/government/publications/the-aqua-book-guidance-on-producing-quality-analysis-for-government
https://www.gov.uk/government/collections/modern-slavery-bill
https://www.gov.uk/government/collections/modern-slavery-bill
https://www.gov.uk/government/publications/modern-slavery-an-application-of-multiple-systems-estimation
https://www.gov.uk/government/publications/modern-slavery-an-application-of-multiple-systems-estimation
https://www.gov.uk/government/publications/modern-slavery-an-application-of-multiple-systems-estimation
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/624949/TheMunroReview-Part_one.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/624949/TheMunroReview-Part_one.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/624949/TheMunroReview-Part_one.pdf
http://www.theorsociety.com/Pages/Society/SocietyHistory.aspx
http://www.theorsociety.com/Pages/Society/SocietyHistory.aspx
http://www.operational-research.gov.uk/recruitment
http://www.operational-research.gov.uk/recruitment
http://www.theorsociety.com/Pages/Awards/President.aspx#2014


reFerenCes

118

19. Pocock J and others ‘The Impact of Water 
Abstraction Reform - Final Report’ Defra, the 
Environment Agency, the Welsh Government 
and Natural Resources Wales 2015. Available 
at http://randd.defra.gov.uk/Document.
aspx?Document=13715_WT1563_TheImpactofW
aterAbstractionReform-FinalReport.pdf

20. Ahrweiler P and others ‘Modelling Research 
Policy: Ex-Ante Evaluation of Complex Policy 
Instruments’ Journal of Artificial Societies and 
Social Simulation 2015: volume 18, paper 5. 
Available at http://jasss.soc.surrey.ac.uk/18/4/5.
html

21. Government Office for Science ‘Foresight 
projects’ 2016. Available at https://www.gov.uk/
government/collections/foresight-projects

22. King D and others ‘Climate Change: A Risk 
Assessment’ 2015. Available at http://www.csap.
cam.ac.uk/media/uploads/files/1/climate-change--
a-risk-assessment-v11.pdf 

23. Government Office for Science ‘The role of 
science advice in planning and responding 
to a major UK emergency’ The National 
Archives 2013. Available at http://webarchive.
nationalarchives.gov.uk/20130705045812/http:/
www.bis.gov.uk/go-science/science-in-government/
global-issues/civil-contingencies/role-of-sage 

24. Nouvellet P and others ‘The role of rapid 
diagnostics in managing Ebola epidemics’ 
Nature 2015: volume 528, pages S109 - S116. 
Available at http://dx.doi.org/10.1038/nature16041 

25. Bourn J ‘The 2001 Outbreak of Foot and 
Mouth Disease’ National Audit Office 2002. 
Available at https://www.nao.org.uk/report/the-
2001-outbreak-of-foot-and-mouth-disease/ 

26. The Royal Society ‘Modeling Earth’s Future: 
Integrated assessments of linked human-natural 
systems’ 2013. Available at https://royalsociety.
org/topics-policy/publications/2013/modeling-
earths-future/ 

27. The Royal Society ‘Observing the Earth – 
expert views on environmental observation for 
the UK’ 2015. Available at https://royalsociety.org/
topics-policy/projects/environmental-observation/ 

28. Centre for Longitudinal Studies ‘The 1970 
British Cohort Study’. Available at  
http://www.cls.ioe.ac.uk/page.aspx?&sitesectionid 
=795&sitesectiontitle=Welcome+to+the+ 
1970+British+Cohort+Study 

Chapter 6

1. High Value Manufacturing Catapult  
https://hvm.catapult.org.uk/ 

2. Aviation Environment Federation ‘Carbon 
Footprint Calculator’ http://www.aef.org.uk/
downloads/Carbon_Footprint_Calculator_
including_flights.pdf 

3. Manufacturing Technology Centre  
http://www.the-mtc.org/ 

Chapter 7

1. Wilson A (ed.) ‘Urban modelling’ Routledge 
(London) 2013

2. Batty M ‘The new science of cities’ MIT Press 
(Cambridge, Massachusetts) 2013

3. HM Government ‘Building our Industrial 
Strategy (Green Paper)’ 2017. Available at 
https://beisgovuk.citizenspace.com/strategy/
industrial-strategy/supporting_documents/
buildingourindusgygreenpaper.pdf 

4. Government Office for Science (Foresight) 
‘Future of Cities: Foresight for Cities’ 2016. 
Available at https://www.gov.uk/government/
publications/future-of-cities-foresight-for-cities 

5. Boyce D and Williams H ‘Forecasting urban 
travel, past, present and future’ Edward Elgar 
(Cheltenham) 2015

6. Birkin M, Clarke G and Clarke M ‘Retail 
location planning in an era of multi-channel 
growth’ Routledge (London) 2017

7. Weaver W ‘Science and complexity’ American 
Scientist 1948: volume 36, pages 536-544 

8. Dearden J and Wilson A ‘Explorations in urban 
and regional dynamics’ Routledge (London) 
2015

9. Wilson A ‘New roles for urban models: 
planning for the long term’ Regional Studies, 
Regional Science 2016: volume 3, pages 48-57. 
Available at http://dx.doi.org/10.1080/21681376.20
15.1109474 

http://randd.defra.gov.uk/Document.aspx?Document=13715_WT1563_TheImpactofWaterAbstractionReform-FinalReport.pdf
http://randd.defra.gov.uk/Document.aspx?Document=13715_WT1563_TheImpactofWaterAbstractionReform-FinalReport.pdf
http://randd.defra.gov.uk/Document.aspx?Document=13715_WT1563_TheImpactofWaterAbstractionReform-FinalReport.pdf
http://jasss.soc.surrey.ac.uk/18/4/5.html
http://jasss.soc.surrey.ac.uk/18/4/5.html
https://www.gov.uk/government/collections/foresight-projects
https://www.gov.uk/government/collections/foresight-projects
http://www.csap.cam.ac.uk/media/uploads/files/1/climate-change--a-risk-assessment-v11.pdf
http://www.csap.cam.ac.uk/media/uploads/files/1/climate-change--a-risk-assessment-v11.pdf
http://www.csap.cam.ac.uk/media/uploads/files/1/climate-change--a-risk-assessment-v11.pdf
http://webarchive.nationalarchives.gov.uk/20130705045812/http:/www.bis.gov.uk/go-science/science-in-government/global-issues/civil-contingencies/role-of-sage
http://webarchive.nationalarchives.gov.uk/20130705045812/http:/www.bis.gov.uk/go-science/science-in-government/global-issues/civil-contingencies/role-of-sage
http://webarchive.nationalarchives.gov.uk/20130705045812/http:/www.bis.gov.uk/go-science/science-in-government/global-issues/civil-contingencies/role-of-sage
http://webarchive.nationalarchives.gov.uk/20130705045812/http:/www.bis.gov.uk/go-science/science-in-government/global-issues/civil-contingencies/role-of-sage
http://dx.doi.org/10.1038/nature16041
https://www.nao.org.uk/report/the-2001-outbreak-of-foot-and-mouth-disease/
https://www.nao.org.uk/report/the-2001-outbreak-of-foot-and-mouth-disease/
https://royalsociety.org/topics-policy/publications/2013/modeling-earths-future/
https://royalsociety.org/topics-policy/publications/2013/modeling-earths-future/
https://royalsociety.org/topics-policy/publications/2013/modeling-earths-future/
https://royalsociety.org/topics-policy/projects/environmental-observation/
https://royalsociety.org/topics-policy/projects/environmental-observation/
http://www.cls.ioe.ac.uk/page.aspx?&sitesectionid=795&sitesectiontitle=Welcome+to+the+1970+British+Cohort+Study
http://www.cls.ioe.ac.uk/page.aspx?&sitesectionid=795&sitesectiontitle=Welcome+to+the+1970+British+Cohort+Study
http://www.cls.ioe.ac.uk/page.aspx?&sitesectionid=795&sitesectiontitle=Welcome+to+the+1970+British+Cohort+Study
https://hvm.catapult.org.uk/
http://www.aef.org.uk/downloads/Carbon_Footprint_Calculator_including_flights.pdf
http://www.aef.org.uk/downloads/Carbon_Footprint_Calculator_including_flights.pdf
http://www.aef.org.uk/downloads/Carbon_Footprint_Calculator_including_flights.pdf
http://www.the-mtc.org/
https://beisgovuk.citizenspace.com/strategy/industrial-strategy/supporting_documents/buildingourindustrialstrategygreenpaper.pdf
https://beisgovuk.citizenspace.com/strategy/industrial-strategy/supporting_documents/buildingourindustrialstrategygreenpaper.pdf
https://beisgovuk.citizenspace.com/strategy/industrial-strategy/supporting_documents/buildingourindustrialstrategygreenpaper.pdf
https://www.gov.uk/government/publications/future-of-cities-foresight-for-cities
https://www.gov.uk/government/publications/future-of-cities-foresight-for-cities
http://dx.doi.org/10.1080/21681376.2015.1109474
http://dx.doi.org/10.1080/21681376.2015.1109474


reFerenCes

119

Chapter 8

1. Government Office for Science ‘Blackett 
Review of High Impact Low Probability 
Risks’ 2012. Available at https://www.gov.
uk/government/publications/high-impact-low-
probability-risks-blackett-review 

2. Tett G ‘Fool’s Gold: How Unrestrained Greed 
Corrupted a Dream, Shattered Global Markets 
and Unleashed a Catastrophe’ Simon & 
Shuster (New York) 2009

3. Haldane A ‘The Dappled World’ Bank of 
England 2016. Available at  
http://www.bankofengland.co.uk/publications/
Pages/speeches/2016/937.aspx

4. Blanchard O ‘On the Need for (At Least) Five 
Classes of Macro Models’ Peterson Institute 
for International Economics 2017. Available at 
https://piie.com/blogs/realtime-economic-issues-
watch/need-least-five-classes-macro-models

5. Ramey VA ‘Can government purchases 
stimulate the economy?’ Journal of Economic 
Literature 2011: volume 49, pages 673-685

6. Reis R ‘Is something really wrong with 
macroeconomics?’ LSE 2017. Available at  
http://personal.lse.ac.uk/reisr/papers/17-wrong.pdf

7. Yarrow G ‘Dysfunctions in economic 
policymaking Part I: simple stories, complex 
systems and corrupted economics’ Regulatory 
Policy Institute 2014. Available at  
http://www.rpieurope.org/Publications/Essays_
New_Series/Yarrow_Dysfunctions_in_economic_
policymaking.pdf 

8. Kahneman D and Tversky A ‘Prospect 
Theory: An Analysis of Decision under Risk’ 
Econometrica 1979: volume 47, pages 263-291 

9. Fernández-Delgado M and others ‘Do we 
need hundreds of classifiers to solve real world 
classification problems?’ Journal of Machine 
Learning Research 2014: volume 15, pages 
3133-3181. Available at http://jmlr.org/papers/
volume15/delgado14a/delgado14a.pdf 

10. Ormerod P and Rosewell B ‘What Can Firms 
Know?’ Proceedings of the North American 
Association for Computational Social and 
Organisational Sciences, Pittsburgh, 2003 

11. Coyle D and Haldane A ‘Financial crash: 
what’s wrong with economics?’ Prospect 2014. 
Available at https://www.prospectmagazine.co.uk/
economics-and-finance/financial-crash-whats-
wrong-with-economics

12. Marshall A ‘Principles of Economics’ Macmillan 
(London)1893 

Chapter 9

1. Aral M ‘Environmental Modeling and Health 
Risk Analysis’ Springer (Dordrecht) 2010

2. London Air http://www.londonair.org.uk/
LondonAir/Default.aspx

3. airTEXT http://www.airtext.info/

4. Arup ‘Leeds FAS Issue 04’ 2014. Available at 
https://www.youtube.com/watch?v=jQ-_MZyll94 

5. African Risk Capacity ‘Africa RiskView’. 
Available at http://www.africanriskcapacity.
org/2016/10/31/africa-riskview-introduction/

6. The Royal Society ‘Resilience to Extreme 
Weather’ 2014. Available at https://royalsociety.
org/topics-policy/projects/resilience-extreme-
weather/

https://www.gov.uk/government/publications/high-impact-low-probability-risks-blackett-review
https://www.gov.uk/government/publications/high-impact-low-probability-risks-blackett-review
https://www.gov.uk/government/publications/high-impact-low-probability-risks-blackett-review
http://www.bankofengland.co.uk/publications/Pages/speeches/2016/937.aspx
http://www.bankofengland.co.uk/publications/Pages/speeches/2016/937.aspx
https://piie.com/blogs/realtime-economic-issues-watch/need-least-five-classes-macro-models
https://piie.com/blogs/realtime-economic-issues-watch/need-least-five-classes-macro-models
http://personal.lse.ac.uk/reisr/papers/17-wrong.pdf
http://www.rpieurope.org/Publications/Essays_New_Series/Yarrow_Dysfunctions_in_economic_policymaking.pdf
http://www.rpieurope.org/Publications/Essays_New_Series/Yarrow_Dysfunctions_in_economic_policymaking.pdf
http://www.rpieurope.org/Publications/Essays_New_Series/Yarrow_Dysfunctions_in_economic_policymaking.pdf
http://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
http://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
https://www.prospectmagazine.co.uk/economics-and-finance/financial-crash-whats-wrong-with-economics
https://www.prospectmagazine.co.uk/economics-and-finance/financial-crash-whats-wrong-with-economics
https://www.prospectmagazine.co.uk/economics-and-finance/financial-crash-whats-wrong-with-economics
http://www.londonair.org.uk/LondonAir/Default.aspx
http://www.londonair.org.uk/LondonAir/Default.aspx
http://www.airtext.info/
https://www.youtube.com/watch?v=jQ-_MZyll94
http://www.africanriskcapacity.org/2016/10/31/africa-riskview-introduction/
http://www.africanriskcapacity.org/2016/10/31/africa-riskview-introduction/
https://royalsociety.org/topics-policy/projects/resilience-extreme-weather/
https://royalsociety.org/topics-policy/projects/resilience-extreme-weather/
https://royalsociety.org/topics-policy/projects/resilience-extreme-weather/






© Crown copyright 2018

This publication is licensed under the terms of the Open Government Licence v3.0 except where 
otherwise stated. To view this licence, visit nationalarchives.gov.uk/doc/open-government-licence/version/3

Where we have identified any third party copyright information you will need to obtain permission from 
the copyright holders concerned.

This publication is available at www.gov.uk/go-science

Contact us if you have any enquiries about this publication, including requests for alternative formats, at:

Government Office for Science 
1 Victoria Street 
London SW1H 0ET

Tel: 020 7215 5000

Email: contact@go-science.gsi.gov.uk

http://nationalarchives.gov.uk/doc/open-government-licence/version/3
http://www.gov.uk/go-science
mailto:contact@go-science.gsi.gov.uk

	Computational Modelling: Technological Futures
	Contents
	Acknowledgements
	Executive Summary and Recommendations
	Chapter 1:  Why model?
	Chapter 2:  Making and using models
	Chapter 3: Modelling  techniques
	Chapter 4:  The Future  of Modelling
	Chapter 5:  Modelling in  Public Policy
	Chapter 6:  Modelling in  Business and Manufacturing
	Chapter 7:  Modelling  Cities and  Infrastructure
	Chapter 8:  Finance and  Economics
	Chapter 9:  Modelling the Environment
	Glossary
	References



