

Department for Environment, Food and Rural Affairs

The Expert Committee on Pesticide Residues in Food (PRiF)

School Fruit and Vegetable Scheme Report on Pesticide Residues Monitoring: Summer Term 2017

Published: November 2017

Contents

Summary Findings	1
Background to the School Fruit and Vegetable Scheme by the Deptarment of Health	2
Part 1: Introduction	4
Part 2: Assessing the results	5
Part 3: The Results	7
Apples	7
Bananas	7
Carrots	8
Raisins	8
Strawberries	9
Sugarsnap peas	9
Sweet peppers	10
Tomatoes	10
Appendix A: Summary of results	11
Appendix B: Summary of residues over the MRL and non-approved uses	12
Appendix C: Pesticides sought and found in individual commodities	13
Appendix D: HSE Assessment of Risk	53
Appendix E: Supplier Details	58
Contact Details	69

Summary Findings

During the 2017 Summer term 62 samples of fruit and vegetables were analysed as part of the Department of Health's School Fruit and Vegetable Scheme testing programme. We surveyed 11 apple samples, 14 banana samples, 4 carrot samples, 6 raisin samples, 6 strawberry samples, 6 sugarsnap pea samples, 6 sweet pepper samples and 9 tomatoe samples.

The samples were collected between May and July 2017. All of samples either contained no detectable residues of any of the pesticides we were looking for or contained residues below the maximum residue level (MRL) for those pesticides. 13 samples did not contain any detectable pesticide residues. 49 samples contained residues at or below the relevant MRLs. 41 samples contained residues of more than one pesticide.

The Chemicals Regulation Division of the Health and Safety Executive (HSE) carried out a risk assessment screen for each residue and food combination to identify residue levels that would lead to intakes above the relevant reference doses. None of the residues detected in this report would be expected to have an effect on health.

PRiF have considered these results and have had an opportunity to comment on the findingsand HSE risk assessments. None of the residues found was likely to result in any adverse health effects for school children.

Information on the pesticide residues found in produce from various points across the food supply chain can be found in the <u>PRiF Quarterly and Annual Reports</u>.

We would like to thank all those individuals and organisations who helped to put this report together. These include the PRiF Secretariat and scientific staff (both based at HSE), the suppliers who provided the samples, and the laboratory staff who undertook the analysis.

Parl Brats

Dr Paul Brantom Chairman Committee on Pesticide Residues in Food

Background to the School Fruit and Vegetable Scheme by the Deptarment of Health

The School Fruit & Vegetable Scheme entitles all four to six year old children in fully state funded infant, primary and special schools in England to a piece of fruit or vegetable each school day. The scheme is led by the Department of Health and is managed by NHS Supply Chain.

About NHS Supply Chain's relationship with suppliers

Procurement

The supply chain for fruit and vegetables supplied to the School Fruit and Vegetable Scheme (SF&VS) is managed by NHS Supply Chain on behalf of the Department of Health. Contracts are let in accordance with EU Public Procurement Directives. The contracts are for specified time periods, and for named commodities such as apples, pears, soft citrus, bananas, strawberries, cocktail tomatoes and carrots.

Supply Calendar

To ensure the quality remains high contracts have been awarded to a number of UK contractors from producer organisations to major producers and growers. Contractors will source products depending on seasonal availability, throughout the world. The supply calendar is provided to tenderers so that prospective contractors can quote based on realistic volumes. The calendar is seasonally based on the UK climate.

Specifications

Products are purchased from producers and importers who source in accordance with a strict specification designed to ensure safe and nutritious food is provided to schools. Producers work to Good Agriculture Practice standards. These standards incorporate Integrated Pest Management and Integrated Crop Management. The Schemes suppliers follow policy in relation to MRLs and any associated EU amendments. NHS Supply Chain request and receive written submissions from all the Scheme's suppliers to this effect. The specifications for supply to the SF&VS have been drawn up with advice from the Food Standards Agency and Department of Environment, Food and Rural Affairs, HSE, Horticultural Marketing Inspectorate, National Farmers Union and the Fresh Produce Consortium.

Monitoring by the suppliers

Separately to the results in this report, as a condition of their contracts all suppliers agree to undertake a monitoring programme to ensure that any pesticide residues in the produce supplied are below the Maximum Residue Level (MRL). Suppliers must be able to demonstrate 'due diligence' with regard to potential fruit or vegetable contamination with pesticide residues, for example, by complying with codes of practice such as the Fresh Produce Consortium's current Control of Pesticides Code of Practice. Suppliers must liaise closely with growers/packers and undertake appropriate risk-based pesticide residue testing. The minimum requirement for testing is one test per source (packhouse) per season. The laboratories used to conduct the test must be UKAS accredited and participate in the FAPAS proficiency scheme specific to fruit and vegetables.

About Department of Health's checks for pesticide residues

One of the key measures of quality control for produce supplied under the SF&VS relates to pesticide residues. In common with other produce supplied to the general public, these fruit and vegetables must comply with 'permitted levels' called Maximum Residue Levels (MRLs). MRLs are set for hundreds of different pesticides, although at most only a handful of these will be used on a particular fruit or vegetable. They are specified as a numeric value - typically in the range of 0.01 to 5 milligrams of pesticide per kilogram of fruit or vegetable.

Department of Health work with HSE to check that SF&VS produce complies with MRLs. Samples of scheme fruit and vegetables are obtained from contracted supply companies and subjected to a detailed scientific analysis. The sampling programme ensures that all suppliers contracted to supply fruit and vegetables under the Scheme for a particular term are targeted; samples are collected in approximate proportion to the number of designated 'consumption days'.

Each sample is tested for over 370 pesticides. Where possible the range of pesticide sought is the same as that being sought as part of the national monitoring programme overseen by the Expert Committee on Pesticide Residues in Food (PRiF). This list is updated each calendar year which means that direct comparisons with previous surveys is not possible for any new pesticides which have been added to the list.

The results for each sample are carefully scrutinised to determine whether any residues comply with MRLs and whether they would be likely to affect the health of consumers including schoolchildren.

MRLs are set to include residues found in the whole fruit and vegetable (skin and flesh). The samples, even of fruit or vegetables that would generally be peeled before consumption, are not peeled before analysis. The results reported are for the whole fruit and vegetable including the skin.

If a product is found to have exceeded the legal limits HSE will assess the risk to consumers from eating this produce. The result is reported immediately to NHS Supply Chain. They will notify the producer and the grower and ask for a full explanation of why the limit has been exceeded. NHS Supply Chain will assess the response from the producer, and with advice from HSE, will determine whether any future products from this grower should be sourced for the SF&VS.

Department of Health February 2015

Update from Department of Health

This will be the final report of the School Fruit and Vegetable Scheme. For the future, the Department of Health has decided to require suppliers to the School Fruit and Vegetable Scheme to provide more stringent evidence of full compliance with all relevant legislation before produce is supplied to the Scheme, together with a written declaration of compliance and a fuller programme of checks within the supplier audit programme. This will be supported by a newly-agreed protocol for the speedy and effective handling of any incidents that may come to light. **Department of Health November 2017**

Part 1: Introduction

Pesticides and Food Safety

Food safety is important. Modern food production processes have given us plentiful supplies of a wide range of good quality and reasonably priced produce.

One of the ways to deliver plentiful supplies of reasonably priced, safe, nutritious, quality produce is to carefully control the environment in which foodstuffs are produced. In the food industry of today the production environment can be controlled from the preparation of seeds used for crops, through growth and harvesting to transport, preparation, packaging and retail of the produce.

One aspect of pest, disease or weed control can be the use of pesticides. They help farmers and growers improve the production of foodstuffs by, for example, preventing weeds inhibiting the growth of the crop, or insects destroying or infesting them. Pesticides can also be used to help protect seeds, or enable storage of crops after they have been harvested.

As pesticides are used to control unwanted pests, weeds and diseases, they can potentially also harm people, wildlife and the environment. This is why the UK, in common with most other countries, imposes legally enforceable conditions as to how and when pesticides can be used. No pesticide can be supplied or used on a food crop in the UK without Government authorisation. To obtain this authorisation the manufacturer of the pesticide must show that it does not present a concern for people's health or the environment.

Once the authorisation has been granted, Government authorities carry out follow-up checks to ensure that the authorisation is providing the necessary degree of protection to users, consumers and the environment, and that those who use pesticides are complying with conditions specified within it. It is known that the use of pesticides on crops may lead to traces (residues) of these chemicals in food and they are expected to be found in the monitoring programme.

The Government authority responsible for checking pesticides in foodstuffs is the Health and Safety Executive. The Expert Committee on Pesticide Residues in Food oversees and provides an independent check on this work. This work was done previously by the Pesticide Residues Committee.

The Defra Expert Committee on Pesticide Residues in Food

The Expert Committee on Pesticide Residues in Food (PRiF) was established in 2011. Members of the Committee have a broad range of expertise relating to the food supply industry. The main function of the Committee is to oversee Government's £2 million pesticide residues surveillance programme.

Dr Paul Brantom is an independent consultant in toxicological risk assessment. The Committee also includes members with expertise in toxicology and food production and supply as well as two public interest members.

Information on the membership of the PRIF is also available on the PRIF's website.

Since 1 January 2005 the Health and Safety Executive (HSE) has been contracted by the Department of Health to undertake pesticide residue monitoring of produce supplied under the School Fruit and Vegetable Scheme (SF&VS). In accordance with the supply calendar HSE arrange for suppliers to submit samples on a regular basis, making sure that each supplier is tested at least once per term. HSE has requested that PRiF consider the results and examine the risk assessments from this monitoring.

Part 2: Assessing the results

The sampling programme is designed to check that:

- · specified pesticide MRLs are being respected;
- users of pesticides are complying with conditions of use specified in the authorisation;
- dietary intakes of residues are within acceptable limits.

Once the analytical results are completed, the findings are assessed to determine if the residues found pose a risk to consumers.

When assessments are carried out

Single Residues

- All results are screened by HSE to check for intakes above the Acute Reference Dose (ARfD)
- Where intakes above the ARfD are identified, we consider a detailed risk assessment prepared by HSE (at Appendix D of this report).
- Our observations and the follow-up action taken are summarised in the section for that food.

Multiple Residues

- Risk assessments are also carried out for residues of more than one pesticide from the same category/class of particular categories of pesticides, which have a similar toxicological mode of action (such as organophosphorus/carbamate, captan/folpet, triazoles or carbendazim/thiophanate methyl), are screened by HSE to check for intakes above the combined Acute Reference Dose (ARfD).
- Where combined intakes above the combined ARfD are identified, we consider a detailed combined risk assessment prepared by HSE (at Section II of this report).
- Our observations and any follow-up action taken are summarised in the section for that food commodity.

Risk assessment - conclusions

- Where, in the light of current knowledge and considering the usual level of scientific uncertainty (or precaution) the intake will not cause ill health the conclusion will say no effect on health is expected.
- Where, in the light of current knowledge and considering a slightly higher level of scientific uncertainty (or less precaution) the intake is not likely to cause ill health, the conclusion will be less definite and state that an effect on health is unlikely.
- Where scientific uncertainty is greater more information is provided.

Residues in UK produce of pesticides which are not approved for use on that crop in the UK.

- All residues found in UK-produced foods are checked by HSE to make sure the pesticide is approved for use.
- Where no UK approval is identified, details of the sample are referred to HSE's Enforcement Section for follow up. NHS Supply Chain would be informed before referral.
- Our observations and any follow-up action taken to date are summarised in the section for that food commodity. We may have to withhold details of samples while investigations are underway, in which case the details will be published in a later report.

Residues above the MRL, after taking into account measurement uncertainty

- Samples containing residues above the MRL are listed at Appendix B, and those which are clearly above the MRL after taking into account measurement uncertainty of plus or minus 50% are highlighted.
- Our observations and any follow-up action taken are summarised in the section for that food commodity.

Residues in organic food

- We monitor pesticide residues in all the UK food supply, including organic food.
- We are not responsible for checking compliance with the rules associated with organic production. However, when we do detect residues in an organic food we explain whether or not those residues indicate a breach of the rules and inform Defra's Organic Farming Branch in addition to NHS Supply Chain.

Brand Name Annex

- Full brand name details for every sample included in this report are published in a brand name annex. Within this annex, samples with results of interest are highlighted.

Part 3: The Results

Apples

Full details of pesticides sought and residues detected are in Table 2 at page14 Suppliers details are in the Brand Name Annex at page 59

Results

• 11 samples were tested for up to 360 pesticide residues

Eating

- 2 samples came from the UK
- 7 samples were imported from non-EC countries
- 2 samples imported from the EC
- All samples contained residues
- All of the samples contained residues below the relevant MRL
- 11 samples contained residues of more than one pesticide

Conclusions

The laboratory detected 15 different pesticide residues. Following the Health and Safety Executive (HSE)'s risk assessment, we do not expect these residues to have an effect on health.

Bananas

Full details of pesticides sought and residues detected are in Table 3 at page 19 Suppliers details are in the Brand Name Annex at page 60

Results

- 14 samples were tested for up to 368 pesticide residues
- 14 samples were imported from non-EC countries
- 3 samples tested did not contain any detectable residues
- 11 of the samples contained residues below the relevant MRLs
- 11 samples contained residues of more than one pesticide

Conclusions

The results are for bananas tested whole, including the peel. MRLs for bananas are set on that basis. The risk assessment also assumed that the whole fruit, including the peel, was eaten.

The laboratory detected 4 different pesticide residues. Following the Health and Safety Executive (HSE)'s risk assessment, we do not expect these residues to have an effect on health.

Carrots

Full details of pesticides sought and residues detected are in Table 4 at page 24 Suppliers details are in the Brand Name Annex at page 61

Results

• 4 samples were tested for up to 370 pesticide residues

<u>Fresh</u>

- 4 samples came from the UK
- All samples contained residues
- All of the samples contained residues below the relevant MRL
- 1 samples contained residues of more than one pesticide

Conclusions

The laboratory detected 6 different pesticide residues. Following the Health and Safety Executive (HSE)'s risk assessment, we do not expect these residues to have an effect on health.

Raisins

Full details of pesticides sought and residues detected are in Table 5 at page 28 Suppliers details are in the Brand Name Annex at page 62

Results

- 6 samples were tested for up to 361 pesticide residues
- 6 samples were imported from non-EC countries
- All samples contained residues
- All of the samples contained residues below the relevant MRL
- 6 samples contained residues of more than one pesticide

Conclusions

The laboratory detected 17 different pesticide residues. Following the Health and Safety Executive (HSE)'s risk assessment, we do not expect these residues to have an effect on health.

Strawberries

Full details of pesticides sought and residues detected are in Table 6 at page 33 Suppliers details are in the Brand Name Annex at page 64

Results

- 6 samples were tested for up to 358 pesticide residues
- 5 samples came from the UK
- 1 sample imported from the EC
- All samples contained residues
- All of the samples contained residues below the relevant MRL
- 6 samples contained residues of more than one pesticide

Conclusions

The laboratory detected 21 different pesticide residues. Following the Health and Safety Executive (HSE)'s assessment, we do not expect these residues to have an effect on health.

Sugarsnap peas

Full details of pesticides sought and residues detected are in Table 7 at page 38 Suppliers details are in the Brand Name Annex at page 66

Results

- 6 samples were tested for up to 368 pesticide residues
- 4 samples came from the UK
- 2 samples were imported from non-EC countries
- 3 samples tested did not contain any detectable residues
- 3 of the samples contained residues below the relevant MRLs
- 3 samples contained residues of more than one pesticide

Conclusions

The laboratory detected 4 different pesticide residues. Following the Health and Safety Executive (HSE)'s risk assessment, we do not expect these residues to have an effect on health.

Sweet peppers

Full details of pesticides sought and residues detected are in Table 8 at page 43 Suppliers details are in the Brand Name Annex at page 67

Results

• 6 samples were tested for up to 360 pesticide residues

<u>Fresh</u>

- 6 samples imported from the EC
- 2 samples tested did not contain any detectable residues
- 4 of the samples contained residues below the relevant MRLs
- 1 samples contained residues of more than one pesticide

Conclusions

The laboratory detected 2 different pesticide residues. Following the Health and Safety Executive (HSE)'s risk assessment, we do not expect these residues to have an effect on health.

Tomatoes

Full details of pesticides sought and residues detected are in Table 9 at page 48 Suppliers details are in the Brand Name Annex at page 68

Results

• 9 samples were tested for up to 362 pesticide residues

<u>Cocktail</u>

- 9 samples imported from the EC
- 5 samples tested did not contain any detectable residues
- 4 of the samples contained residues below the relevant MRLs
- 2 samples contained residues of more than one pesticide

Conclusions

The laboratory detected 3 different pesticide residues. Following the Health Safety Executive (HSE)'s risk assessment, we do not expect these residues to have an effect on health.

Appendix A: Summary of results

Table 1: Summary of Results

Commodity	Number of samples	Samples with no residues found	Samples with residues at or below MRL	Samples with residues above MRL	UK samples containing non-approved pesticide	Samples with multiple residues
Apples	11	0	11	0	0	11
Bananas	14	3	11	0	0	11
Carrots	4	0	4	0	0	1
Raisins	6	0	6	0	0	6
Strawberries	6	0	6	0	0	6
Sugarsnap peas	6	3	3	0	0	3
Sweet peppers	6	2	4	0	0	1
Tomatoes	9	5	4	0	0	2

Maximum Residue Levels

Maximum Residue Levels (MRLs) reflect levels of pesticides expected in produce, which has been treated in accordance with good agricultural practice. Where pesticides do not give rise to readily detectable residues, or are not approved for use on particular commodities, MRLs are set at the lowest level which can be identified in routine laboratory analysis. Thus, they provide a mechanism for statutory controls on pesticides in produce which is put into circulation and for monitoring correct use of these chemicals.

MRLs are established by the EC Maximum Residues Regulation 396/2005/EC and are enforced in the UK under the Pesticides (Maximum Residue Levels) (England and Wales) Regulations 2008, the Pesticides (Maximum Residue Levels) (Scotland) Regulations 2008 and the Pesticides (Maximum Residue Levels) Regulations (Northern Ireland) 2008.

Appendix B: Summary of residues over the MRL and non-approved uses

Residues over the MRL

None

Measurement uncertainty

In 2009 the Pesticides Residues Committee agreed a policy of applying a default measurement uncertainty value of 50% to all results that measure above the MRL, unless there are particular safety reasons why a more accurate value should be used. If that is considered necessary we will explain why.

Using a measurement uncertainty value of 50% means the residue detected could be plus or minus 50% of the stated value. The PRiF will continue to apply this policy, so only when the lowest estimated level is above the MRL do the PRiF consider this result as an exceedance.

This uncertainty only applies to measurement of the size of residue. The identity of the pesticide detected has been confirmed.

Where the measured value does not exceed the MRL when measurement uncertainty is taken into account the value will not be highlighted as an exceedance in the Supplier Details section. The actual measured value will be used throughout the report and will be followed up with suppliers by HSE but with due reference to the implications of measurement uncertainty.

Further information about measurement uncertainty can be found on the PRiF website.

* Maximum Residue Levels set at the LOD (LOD MRL)

These MRLs are set at a default level, i.e. at the limit of determination (LOD) where analytical methods can reasonably detect the presence of the pesticide. Either insufficient trials data are available on which to set a maximum residue level or there may be no use of the pesticide on that crop in the EU. However they may be permitted elsewhere.

UK Non-approved Uses

None

Appendix C: Pesticides sought and found in individual commodities sampled between May and July 2017

Table 2a:	Analysis of apples sampled from May - June 2017
Table 2b:	Residues found in apples sampled from May - June 2017
Table 2c:	Pesticides sought but not found in apples sampled from May - June 2017
Table 3a:	Analysis of bananas sampled from May - June 2017
Table 3b:	Residues found in bananas sampled from May - June 2017
Table 3c:	Pesticides sought but not found in bananas sampled from May - June 2017
Table 4a:	Analysis of carrots sampled from May 2017
Table 4b:	Residues found in carrots sampled from May 2017
Table 4c:	Pesticides sought but not found in carrots sampled from May 2017
Table 5a:	Analysis of raisins sampled from June – July 2017
Table 5b:	Residues found in raisins sampled from June – July 2017
Table 5c:	Pesticides sought but not found in raisins sampled from June – July 2017
Table 6a:	Analysis of strawberries sampled from June – July 2017
Table 6b:	Residues found in strawberries sampled from June – July 2017
Table 6c:	Pesticides sought but not found in strawberries sampled from June – July 2017
Table 7a:	Analysis of sugarsnap peas sampled from June – July 2017
Table 7b:	Residues found in sugarsnap peas sampled from June – July 2017
Table 7c:	Pesticides sought but not found in sugarsnap peas sampled from June – July 2017
Table 8a:	Analysis of sweet peppers sampled from June 2017
Table 8b:	Residues found in sweet peppers sampled from June 2017
Table 8c:	Pesticides sought but not found in sweet peppers sampled from June 2017
Table 9a:	Analysis of tomatoes sampled from May – July 2017
Table 9b:	Residues found in tomatoes sampled from May – July 2017
Table 9c:	Pesticides sought but not found in tomatoes sampled from May – July 2017

The quantity of produce sampled is determined by EC Commission Directive 2002/63/EC:

- A sample of apples must weigh a minimum 1.2kg and contain at least 12 apples.
- A sample of bananas must weigh a minimum 1.2kg and contain at least 12 bananas.
- A sample of carrots must weigh a minimum 1.2kg and contain at least 12 carrots.
- A sample of raisins must weigh at least 1.2 kg.
- A sample of strawberries must weigh at least 1.2 kg.
- A sample of sugarsnap peas must weigh at least 1.2 kg.
- A sample of sweet peppers must weigh at least 1.2 kg
- A sample of tomatoes must weigh at least 1.2 kg and consist of at leave 12 tomatoes.

All of the produce in a sample must be of the same variety and must be from the same batch of the commodity. MRLs are set to include residues found in the whole fruit (skin and flesh). The samples are not peeled before analysis. The results reported are for the whole fruit including the skin.

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
APPLES, EATING UK: 2 sam	iples analysed	
boscalid	<0.01 (i.e. not found)	0
(MRL = 2)	0.03, 0.07	2
captan (sum)	<0.02 (i.e. not found)	0
(MRL = 10)	0.1, 0.2	2
cyprodinil	<0.02 (i.e. not found)	1
(MRL = 2)	0.05	1
dithianon	<0.02 (i.e. not found)	1
(MRL = 3)	0.03	1
dodine	<0.02 (i.e. not found)	1
(MRL = 0.9)	0.04	1
fludioxonil	<0.01 (i.e. not found)	1
(MRL = 5)	0.04	1
methoxyfenozide	<0.01 (i.e. not found)	1
(MRL = 2)	0.05	1
myclobutanil	<0.01 (i.e. not found)	1
(MRL = 0.6)	0.02	1
pyraclostrobin	<0.01 (i.e. not found)	1
(MRL = 0.5)	0.02	1
APPLES, EATING Imported	(Non-EC): 7 samples analysed	
chlorantraniliprole	<0.01 (i.e. not found)	4
(MRL = 0.5)	0.02 - 0.04	3
dithiocarbamates	<0.05 (i.e. not found)	0
(MRL = 5)	0.08 - 0.3	7
fludioxonil	<0.01 (i.e. not found)	4
(MRL = 5)	0.02 - 1.1	3
indoxacarb	<0.01 (i.e. not found)	5
(MRL = 0.5)	0.01, 0.03	2
thiacloprid	<0.01 (i.e. not found)	3
(MRL = 0.3)	0.01 - 0.03	4
APPLES, EATING Imported	(EC): 2 samples analysed	
captan (sum)	<0.02 (i.e. not found)	1
(MRL = 10)	0.2	1
dithianon	<0.02 (i.e. not found)	1
(MRL = 3)	0.03	1
flonicamid (sum)	<0.01 (i.e. not found)	1
(MRL = 0.3)	0.03	1

Table 2a.Analysis of APPLES sampled from May to June 2017

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
trifloxystrobin	<0.01 (i.e. not found)	1
(MRL = 0.7)	0.04	1

(1)

Imported (EC) samples of apples were from France (1), Germany (1). Imported (Non-EC) samples of apples were from South Africa (7). UK samples of apples were (2).

Residues were distributed by country of origin, as follows:

	, , , , , , , , , , , , , , , , , , ,
boscalid	UK (2)
captan (sum)	Germany (1), UK (2)
chlorantraniliprole	South Africa (3)
cyprodinil	UK (1)
dodine	UK (1)
dithiocarbamates	South Africa (7)
dithianon	France (1), UK (1)
flonicamid (sum)	France (1)
fludioxonil	South Africa (3), UK (
indoxacarb	South Africa (2)
methoxyfenozide	UK (1)
myclobutanil	UK (1)
pyraclostrobin	UK (1)
thiacloprid	South Africa (4)
trifloxystrobin	Germany (1)
-	,

Residues were found in all of the 2 UK eating samples Residues were found in all of the 7 Imported (Non-EC) eating samples Residues were found in all of the 2 Imported (EC) eating samples

Table 2b.Residues found in APPLES sampled from May to June 2017

Residues (2-6 compounds) were found in 11 of the 11 samples as follows:

Number of residues	Sample ID	Type of APPLES						F	Residue	es found	d (mg/kg)						Country of
Tesiques		AFFLE3	BOS	CAPS	CTP	CYD	DOD	DTC	DTN	FLC	FLUD	IDX	MXF	MYC	PYC	THC	TRFL	origin
(2)	5572/2017	EATING	-	-	-	-	-	0.08	-	-	-	-	-	-	-	0.02	-	South
	5574/2017	EATING	-	-	0.04	-	-	0.2	-	-	-	-	-	-	-	-	-	Africa South Africa
	5724/2017	EATING	-	-	-	-	-	0.1	-	-	0.05	-	-	-	-	-	-	South Africa
	5605/2017 5610/2017	EATING EATING	-	- 0.2	- -	- -	- -	- -	0.03 -	0.03 -	-	- -	- -	- -	- -	- -	- 0.04	France Germany
(3)	5570/2017	EATING	-	-	0.02	-	-	0.2	-	-	-	-	-	-	-	0.02	-	South Africa
	5571/2017	EATING	-	-	-	-	-	0.2	-	-	0.02	-	-	-	-	0.01	-	South Africa
	5729/2017	EATING	-	-	-	-	-	0.3	-	-	-	0.03	-	-	-	0.03	-	South Africa
(4)	5573/2017	EATING	-	-	0.02	-	-	0.1	-	-	1.1	0.01	-	-	-	-	-	South Africa
(5)	5721/2017	EATING	0.03	0.1	-	0.05	-	-	-	-	0.04	-	0.05	-	-	-	-	UK
(6)	5607/2017	EATING	0.07	0.2	-	-	0.04	-	0.03	-	-	-	-	0.02	0.02	-	-	UK

The abbreviations used for the pesticide names are as follows:

BOS	boscalid	CAPS	captan (sum)	CTP	chlorantraniliprole
CYD	cyprodinil	DOD	dodine	DTC	dithiocarbamates
DTN	dithianon	FLC	flonicamid (sum)	FLUD	fludioxonil
IDX	indoxacarb	MXF	methoxyfenozide	MYC	myclobutanil
PYC	pyraclostrobin	THC	thiacloprid	TRFL	trifloxystrobin

Table 2c. Residues sought but not found in APPLES sampled from May to June 2017

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.02) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.02) acrinathrin (0.02) alachlor (0.01) aldicarb (sum) (0.01) allethrin (0.02) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (sum) (0.01) asulam (0.02) atrazine (0.01) azinphos-ethyl (0.02) azinphos-methyl (0.02) azoxystrobin (0.01) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenox (0.02) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) bixafen (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (sum) (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butoxycarboxim (0.01) cadusafos (0.01) carbaryl (0.01) carbendazim (sum) (0.01) carbetamide (0.02) carbofuran (sum) (0.001) carboxin (0.02) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenvinphos (0.01) chlorfluazuron (0.01) chloridazon (0.01) chlorobenzilate (0.02) chlorothalonil (0.01)

ethirimol (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01) etridiazole (0.02) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.02) fenhexamid (0.02) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyrazamine (0.01) fenpvroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate (sum) (0.01) fipronil (sum) (0.005) fluazifop-p (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.02) fluroxypyr (sum) (0.02) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (sum) (0.01) fonofos (0.01) formetanate (0.01) fosthiazate (0.01) furalaxyl (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01) hexaconazole (0.01) hexazinone (0.02)

nuarimol (0.01) ofurace (0.01) oxadiargyl (0.01) oxadiazon (0.02) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.02) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) penflufen (0.01) pentanochlor (0.01) penthiopyrad (0.01) permethrin (sum) (0.01) phenmedipham (0.02) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (sum) (0.01) propaguizafop (0.02) propargite (0.01) propetamphos (0.01) propham (0.02) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.01) prosulfuron (0.01) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridalyl (0.01)

chlorotoluron (0.01) chlorpropham (0.01) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.02) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cvanazine (0.02) cvazofamid (0.01) cycloate (0.01) cyflufenamid (0.01) cyfluthrin (sum) (0.02) cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (sum) (0.02) cyproconazole (0.01) cyromazine (0.02) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.02) demeton-S-methyl (0.01) desmedipham (0.02) diafenthiuron (0.02) diazinon (0.01) dichlobenil (0.01) dichlofluanid (0.01) dichlorprop (sum) (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) dieldrin (sum) (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (sum) (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.02) disulfoton (sum) (0.01) diuron (0.01) emamectin (0.01) endosulfan (sum) (0.01) endrin (0.02) EPN (0.01) epoxiconazole (0.01) EPTC (0.01) ethiofencarb (parent) (0.01) ethion (0.01)

hexythiazox (0.01) imazalil (0.02) imazaguin (0.01) imidacloprid (0.01) iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopvrazam (0.01) isoxaben (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01)lufenuron (0.02) malathion (sum) (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) mecarbam (0.01) mepanipyrim (0.01) mephosfolan (0.02) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (sum) (0.02) metalaxyl (sum) (0.01) metamitron (0.01) metazachlor (0.02) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.02) metsulfuron-methyl (0.01) mevinphos (sum) (0.01) molinate (0.01) monocrotophos (0.01) monolinuron (0.01) monuron (0.01)napropamide (0.02) nitenpyram (0.01) nitrofen (0.02) nitrothal-isopropyl (0.01) novaluron (0.01)

pyridaphenthion (0.01) pyrifenox (0.02) pyrimethanil (0.01) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.02) quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) resmethrin (sum) (0.02) rimsulfuron (0.01) rotenone (0.01) simazine (0.02) spinetoram (0.01) spinosad (sum) (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.02) sum of butocarboxim and butocarboxim sul (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) tepraloxydim (0.02) terbufos (0.01) terbufos (sum not definition) (0.01) terbuthylazine (0.02) terbutryn (0.02) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.02) thiamethoxam (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.02) triasulfuron (0.02) triazamate (0.01) triazophos (0.01) triclopyr (0.02) tricyclazole (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.01) triticonazole (0.01) vinclozolin (0.01) zoxamide (0.01)

Analysis of BANANAS sampled from May to July 2017 Table 3a.

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range					
BANANA, Imported (Non-EC): 14 samples analysed							
azoxystrobin	<0.01 (i.e. not found)	7					
(MRL = 2)	0.03 - 0.8	7					
mazalil	<0.02 (i.e. not found)	4					
(MRL = 2)	0.2 – 1	10					
myclobutanil	<0.01 (i.e. not found)	13					
(MRL = 2)	0.1	1					
thiabendazole	<0.02 (i.e. not found)	10					
(MRL = 5)	0.07 - 0.3	4					

Imported (Non-EC) samples of bananas were from Colombia (4), Costa Rica (1), Cote d'Ivoire (6), Dominican Republic (3).

Residues were distributed by country of origin, as follows: azoxystrobin imazalil Costa Rica (1), Cote d'Ivoire (6) Colombia (4), Cote d'Ivoire (6) myclobutanil Costa Rica (1) thiabendazole Colombia (4)

No residues were found in 3 of the 14 Imported (Non-EC) samples

Table 3b.Residues found in BANANAS sampled from May to July 2017

Number of residues	Sample ID	Resid	ues fo	und (mg	g/kg)	Country of origin
	-	AZOX	IMZ	MYC	TBZ	
(2)	5614/2017	-	0.3	-	0.2	Colombia
	5615/2017	-	0.2	-	0.07	Colombia
	5616/2017	-	0.4	-	0.3	Colombia
	5617/2017	-	0.4	-	0.3	Colombia
	5544/2017	0.03	-	0.1	-	Costa Rica
	5584/2017	0.6	0.7	-	-	Cote d'Ivoire
	5585/2017	0.8	0.6	-	-	Cote d'Ivoire
	5586/2017	0.2	1	-	-	Cote d'Ivoire
	5587/2017	0.2	0.7	-	-	Cote d'Ivoire
	5588/2017	0.2	0.2	-	-	Cote d'Ivoire
	5589/2017	0.3	0.3	-	-	Cote d'Ivoire

Residues (2-2 compounds) were found in 11 of the 14 samples as follows:

The abbreviations used for the pesticide names are as follows:

AZOX	azoxystrobin	IMZ	imazalil	MYC	myclobutanil
TBZ	thiabendazole				

Table 3c. Residues sought but not found in BANANAS sampled from May to July 2017

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2,4-D (sum) (0.01) 2.4-DB (0.01) 2-phenylphenol (0.02) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.02) acrinathrin (0.02) alachlor (0.01) aldicarb (sum) (0.01) allethrin (0.02) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (sum) (0.01) asulam (0.02) atrazine (0.01) azinphos-ethyl (0.02) azinphos-methyl (0.02) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.001) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenox (0.02) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) bixafen (0.01) boscalid (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (sum) (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (0.02) captan (sum) (0.02) carbaryl (0.01) carbendazim (sum) (0.01) carbetamide (0.02) carbofuran (sum) (0.001) carbosulfan (0.001) carboxin (0.02) chlorantraniliprole (0.01) chlorbufam (0.01) chlordane (sum) (0.01)

ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01) etridiazole (0.02) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaquin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.02) fenhexamid (0.02) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyrazamine (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate (sum) (0.01) fipronil (sum) (0.005) flonicamid (sum) (0.01) fluazifop-p (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.02) fluroxypyr (sum) (0.02) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) folpet (sum) (0.01) fonofos (0.01) formetanate (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.001) halofenozide (0.01)

nitenpyram (0.01) nitrofen (0.02) nitrothal-isopropyl (0.01) novaluron (0.01) nuarimol (0.01) ofurace (0.01) oxadiargyl (0.01) oxadiazon (0.02) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.02) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) penflufen (0.01) pentanochlor (0.01) penthiopyrad (0.01) permethrin (sum) (0.01) phenmedipham (0.02) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (sum) (0.01) propaguizafop (0.02) propargite (0.01) propetamphos (0.01) propham (0.02) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proguinazid (0.01) prosulfocarb (0.01) prosulfuron (0.01) prothioconazole (0.01) prothiofos (0.01)

chlorfenapyr (0.01) chlorfenvinphos (0.01) chlorfluazuron (0.01) chloridazon (0.01) chlorobenzilate (0.02) chlorothalonil (0.01) chlorotoluron (0.01) chlorpropham (0.01) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.02) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cyanazine (0.02) cyazofamid (0.01) cycloate (0.01) cycloxydim (0.02) cyflufenamid (0.01) cyfluthrin (sum) (0.02) cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (sum) (0.02) cyproconazole (0.01) cyprodinil (0.02) cyromazine (0.02) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.02) demeton-S-methyl (0.01) desmedipham (0.02) diafenthiuron (0.02) diazinon (0.01) dichlobenil (0.01) dichlofluanid (0.01) dichlorprop (sum) (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) dieldrin (sum) (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (sum) (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.02) disulfoton (sum) (0.01) dithiocarbamates (0.05)

halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01) hexaconazole (0.01) hexazinone (0.02) hexythiazox (0.01) imazaquin (0.01) imidacloprid (0.01) indoxacarb (0.01) ioxynil (0.01) iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01)lufenuron (0.02) malathion (sum) (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) mecarbam (0.01) mepanipyrim (0.01) mephosfolan (0.02) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (sum) (0.02) metalaxyl (sum) (0.01) metamitron (0.01) metazachlor (0.02) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.02)

pymetrozine (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridalyl (0.01) pyridaphenthion (0.01) pyrifenox (0.02) pyrimethanil (0.01) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.02) quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) resmethrin (sum) (0.02) rimsulfuron (0.01) rotenone (0.01) simazine (0.02) spinetoram (0.01) spinosad (sum) (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.02) sum of butocarboxim and butocarboxim sul (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) tepraloxydim (0.02) terbufos (0.01) terbufos (sum not definition) (0.01) terbuthylazine (0.02) terbutryn (0.02) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiacloprid (0.01) thiamethoxam (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.02) triasulfuron (0.02) triazamate (0.01) triazophos (0.01) triclopyr (0.02) tricyclazole (0.01) trifloxystrobin (0.01)

diuron (0.01) dodine (0.02) emamectin (0.01) endosulfan (sum) (0.01) endrin (0.02) EPN (0.01) epoxiconazole (0.01) EPTC (0.01) metsulfuron-methyl (0.01) mevinphos (sum) (0.01) molinate (0.01) monocrotophos (0.01) monolinuron (0.01) monuron (0.01) napropamide (0.02) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.01) triticonazole (0.01) vinclozolin (0.01) zoxamide (0.01)

Table 4a.Analysis of CARROT during May 2017

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range					
CARROT, FRESH UK: 4 samples analysed							
azoxystrobin	<0.01 (i.e. not found)	3					
(MRL = 1)	0.01	1					
boscalid	<0.01 (i.e. not found)	1					
(MRL = 2)	0.01 - 0.08	3					
difenoconazole	<0.01 (i.e. not found)	3					
MRL = 0.4)	0.01	1					
prodione	<0.01 (i.e. not found)	3					
MRL = 10)	0.02	1					
inuron	<0.01 (i.e. not found)	3					
(MRL = 0.2)	0.01	1					
ebuconazole	<0.01 (i.e. not found)	3					
(MRL = 0.4)	0.07	1					

UK samples of carrot were (4).

Residues were distributed by country of origin, as follows:

azoxystrobin	UK (1)
boscalid	UK (3)
difenoconazole	UK (1)
iprodione	UK (1)
linuron	UK (1)
tebuconazole	UK (1)

Residues were found in all of the 4 UK fresh samples

Table 4b.Residues found in CARROT sampled during May 2017

Residues (1-5 compounds) were found in 4 of the 4 samples as follows:

Number of residues	Sample ID	Type of CARROT		Resid	lues fou	nd (mg	/kg)		Country of origin
	-		AZOX	BOS	DIFC	IPR	LNR	TBC	
(1)	5508/2017	FRESH	-	0.01	-	-	-	-	UK
	5509/2017	FRESH	-	0.01	-	-	-	-	UK
	5510/2017	FRESH	-	-	-	-	0.01	-	UK
(5)	5635/2017	FRESH	0.01	0.08	0.01	0.02	-	0.07	UK

The abbreviations used for the pesticide names are as follows:

AZOX	azoxystrobin	BOS	boscalid	DIFC	difenoconazole
IPR	iprodione	LNR	linuron	TBC	tebuconazole

Table 4c. Residues sought but not found in CARROT sampled during May 2017

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.02) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.02) acrinathrin (0.02) alachlor (0.01) aldicarb (sum) (0.01) allethrin (0.02) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (sum) (0.01) asulam (0.02) atrazine (0.01) azinphos-ethyl (0.02) azinphos-methyl (0.02) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.001) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenox (0.02) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) bixafen (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (sum) (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (0.02) captan (sum) (0.02) carbaryl (0.01) carbendazim (sum) (0.01) carbetamide (0.02) carbofuran (sum) (0.001) carbosulfan (0.001) carboxin (0.02) chlorantraniliprole (0.01) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenvinphos (0.01) chlorfluazuron (0.01) chloridazon (0.01) chlormequat (0.02) chlorobenzilate (0.02)

ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01) etridiazole (0.02) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaquin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.02) fenhexamid (0.02) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyrazamine (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate (sum) (0.01) fipronil (sum) (0.005) flonicamid (sum) (0.01) fluazifop-p (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.02) fluroxypyr (sum) (0.02) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) Folpet (sum) (0.01) fonofos (0.01) formetanate (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.001) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01) nitenpyram (0.01) nitrofen (0.02) nitrothal-isopropyl (0.01) novaluron (0.01) nuarimol (0.01) ofurace (0.01) oxadiargyl (0.01) oxadiazon (0.02) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.02) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) penflufen (0.01) pentanochlor (0.01) penthiopyrad (0.01) permethrin (sum) (0.01) phenmedipham (0.02) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (sum) (0.01) propaquizafop (0.02) propargite (0.01) propetamphos (0.01) propham (0.02) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proguinazid (0.01) prosulfocarb (0.01) prosulfuron (0.01) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01)

chlorothalonil (0.01) chlorotoluron (0.01) chlorpropham (0.01) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.02) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cyanazine (0.02) cyazofamid (0.01) cycloate (0.01) cycloxydim (0.02) cyflufenamid (0.01) cyfluthrin (sum) (0.02) cyhalofop-butyl (sum) (0.01) cvmoxanil (0.01) cypermethrin (sum) (0.02) cyproconazole (0.01) cyprodinil (0.02) cyromazine (0.02) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.02) demeton-S-methyl (0.01) desmedipham (0.02) diafenthiuron (0.02) diazinon (0.01) dichlobenil (0.01) dichlofluanid (0.01) dichlorprop (sum) (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) dieldrin (sum) (0.01) diethofencarb (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (sum) (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.02) disulfoton (sum) (0.01) dithiocarbamates (0.05) diuron (0.01) dodine (0.02) emamectin (0.01) endosulfan (sum) (0.01) endrin (0.02) EPN (0.01) epoxiconazole (0.01) EPTC (0.01) ethiofencarb (parent) (0.01)

hexaconazole (0.01) hexazinone (0.02) hexythiazox (0.01) imazalil (0.02) imazaquin (0.01) imidacloprid (0.01) indoxacarb (0.01) ioxynil (0.01) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cvhalothrin (0.02) lenacil (0.01) lindane (0.01) lufenuron (0.02) malathion (sum) (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) mecarbam (0.01) mepanipyrim (0.01) mephosfolan (0.02) mepiquat (0.02) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (sum) (0.02) metalaxyl (sum) (0.01) metamitron (0.01) metazachlor (0.02) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.02) metsulfuron-methyl (0.01) mevinphos (sum) (0.01) molinate (0.01) monocrotophos (0.01) monolinuron (0.01) monuron (0.01)myclobutanil (0.01) napropamide (0.02)

pvridalvl (0.01) pyridaphenthion (0.01) pyrifenox (0.02) pyrimethanil (0.01) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.02) quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) resmethrin (sum) (0.02) rimsulfuron (0.01) rotenone (0.01) simazine (0.02) spinetoram (0.01) spinosad (sum) (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.02) sum of butocarboxim and butocarboxim sul (0.01) tau-fluvalinate (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) tepraloxydim (0.02) terbufos (0.01) terbufos (sum not definition) (0.01) terbuthylazine (0.02) terbutryn (0.02) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.02) thiacloprid (0.01) thiamethoxam (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.02) triasulfuron (0.02) triazamate (0.01) triazophos (0.01) triclopyr (0.02) tricyclazole (0.01) trifloxystrobin (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.01) triticonazole (0.01) vinclozolin (0.01) zoxamide (0.01)

Table 5a.	Analysis of RAISINS sampled from June to Ju	aly 2017

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
FVS RAISINS, Imported (N	on-EC): 6 samples analysed	
azoxystrobin	<0.01 (i.e. not found)	3
MRL = 15)	0.01 - 0.02	3
oscalid	<0.01 (i.e. not found)	1
MRL = 25)	0.03 - 0.2	5
hlorantraniliprole	<0.01 (i.e. not found)	5
MRL = 5)	0.02	1
yprodinil	<0.02 (i.e. not found)	1
MRL = 15)	0.08 - 0.2	5
enbutatin oxide	<0.02 (i.e. not found)	5
MRL = 10)	0.1	1
envalerate (sum)	<0.01 (i.e. not found)	4
MRL = 1.5)	0.01, 0.04	2
udioxonil	<0.01 (i.e. not found)	3
MRL = 25)	0.01 - 0.05	3
luopyram	<0.01 (i.e. not found)	5
MRL = 7.5)	0.01	1
nidacloprid	<0.01 (i.e. not found)	5
MRL = 5)	0.03	1
ndoxacarb	<0.01 (i.e. not found)	0
MRL = 10)	0.01 - 0.04	6
prodione	<0.01 (i.e. not found)	0
MRL = 100)	0.01 - 0.4	6
ımbda-cyhalothrin	<0.02 (i.e. not found)	1
MRL = 1)	0.02 - 0.05	5
netalaxyl (sum)	<0.01 (i.e. not found)	2
MRL = 10)	0.03 - 0.05	4
nethoxyfenozide	<0.01 (i.e. not found)	1
MRL = 5)	0.04 - 0.08	5
nyclobutanil	<0.01 (i.e. not found)	5
MRL = 5)	0.01	1
yrimethanil	<0.01 (i.e. not found)	0
MRL = 25)	0.2 - 0.3	6
ebuconazole	<0.01 (i.e. not found)	4
MRL = 2.5)	0.01, 0.02	2
,	,	_

Imported (Non-EC) samples of sfvs raisins were from Turkey (6).

Residues were distributed by con azoxystrobin boscalid chlorantraniliprole cyprodinil	untry of origin, as follows: Turkey (3) Turkey (5) Turkey (1) Turkey (5)
Fludioxonil	Turkey (3)
fenbutatin oxide	Turkey (1)
fenvalerate (sum)	Turkey (2)
fluopyram	Turkey (1)
indoxacarb	Turkey (6)
imidacloprid	Turkey (1)
iprodione	Turkey (6)
lambda-cyhalothrin	Turkey (5)
metalaxyl (sum)	Turkey (4)
methoxyfenozide	Turkey (5)
myclobutanil	Turkey (1)
pyrimethanil	Turkey (6)
tebuconazole	Turkey (2)

Residues were found in all of the 6 Imported (Non-EC) samples

Table 5b.Residues found in RAISINS sampled from June to July 2017

Residues (6-13 compounds) were found in 6 of the 6 samples as follows:

Number of residues	Sample ID							Re	esidues fo	ound (n	ng/kg)								Country of
Teslutes		AZOX	BOS	CTP	CYD	FLUD	FNBT	FNV	FPYM	IDX	IMI	IPR	LCY	MTX	MXF	MYC	PYM	TBC	origin
(6)	5773/2017	-	0.03	-	-	-	-	-	-	0.03	-	0.01	0.05	0.05	-	-	0.2	-	Turkey
(7)	5727/2017	-	-	-	0.2	0.02	-	-	-	0.04	-	0.4	0.03	-	0.07	-	0.2	-	Turkey
(8)	5775/2017	-	0.2	-	0.2	-	-	-	0.01	0.02	0.03	0.1	-	-	0.04	-	0.2	-	Turkey
(11)	5725/2017	0.01	0.09	-	0.2	0.01	-	-	-	0.03	-	0.2	0.02	0.03	0.07	-	0.3	0.01	Turkey
(12)	5774/2017	0.01	0.06	0.02	0.2	0.05	-	0.04	-	0.02	-	0.06	0.03	0.03	0.04	-	0.3	-	Turkey
(13)	5734/2017	0.02	0.1	-	0.08	-	0.1	0.01	-	0.01	-	0.4	0.03	0.05	0.08	0.01	0.2	0.02	Turkey

The abbreviations used for the pesticide names are as follows:

AZOX	azoxystrobin	BOS	boscalid	CTP	chlorantraniliprole
CYD	cyprodinil	FLUD	fludioxonil	FNBT	fenbutatin oxide
FNV	fenvalerate (sum)	FPYM	fluopyram	IDX	indoxacarb
IMI	imidacloprid	IPR	iprodione	LCY	lambda-cyhalothrin
MTX	metalaxyl (sum)	MXF	methoxyfenozide	MYC	myclobutanil
PYM	pyrimethanil	TBC	tebuconazole		-

Table 5c. Residues sought but not found in RAISINS sampled from June to July 2017

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.02) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.02) acrinathrin (0.02) alachlor (0.01) aldicarb (sum) (0.01) allethrin (0.02) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (sum) (0.01) asulam (0.02) atrazine (0.01) azinphos-ethyl (0.02) azinphos-methyl (0.02) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenox (0.02) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) bixafen (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (sum) (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (sum) (0.02) carbaryl (0.01) carbendazim (sum) (0.01) carbetamide (0.02) carbofuran (sum) (0.001) carboxin (0.02) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenvinphos (0.01) chlorfluazuron (0.01) chloridazon (0.01) chlorobenzilate (0.02) chlorothalonil (0.01)

ethion (0.01) ethirimol (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01) etridiazole (0.02) etrimfos (0.01) ETU (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaquin (0.01) fenbuconazole (0.01) fenhexamid (0.02) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpvrazamine (0.01) fenovroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fipronil (sum) (0.005) flonicamid (sum) (0.01) fluazifop-p (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.02) fluroxypyr (sum) (0.02) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (sum) (0.01) fonofos (0.01) formetanate (0.01) fosthiazate (0.01) furalaxyl (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01) hexaconazole (0.01) hexazinone (0.02)

oxadiazon (0.02) oxadixyl (0.01) oxamvl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.02) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) penflufen (0.01) pentanochlor (0.01) penthiopyrad (0.01) permethrin (sum) (0.01) phenmedipham (0.02) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (sum) (0.01) propaquizafop (0.02) propargite (0.01) propetamphos (0.01) propham (0.02) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proguinazid (0.01) prosulfocarb (0.01) prosulfuron (0.01) prothioconazole (0.01) prothiofos (0.01) PTU (0.01) pymetrozine (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridalyl (0.01) pyridaphenthion (0.01)

chlorotoluron (0.01) chlorpropham (0.01) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.02) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cvanazine (0.02) cvazofamid (0.01) cycloate (0.01) cyflufenamid (0.01) cyfluthrin (sum) (0.02) cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (sum) (0.02) cyproconazole (0.01) cyromazine (0.02) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.02) demeton-S-methyl (0.01) desmedipham (0.02) diafenthiuron (0.02) diazinon (0.01) dichlobenil (0.01) dichlofluanid (0.01) dichlorprop (sum) (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) dieldrin (sum) (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (sum) (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.02) disulfoton (sum) (0.01) diuron (0.01) dodine (0.02) emamectin (0.01) endosulfan (sum) (0.01) endrin (0.02) EPN (0.01) epoxiconazole (0.01) EPTC (0.01) ethiofencarb (parent) (0.01)

hexythiazox (0.01) imazalil (0.02) imazaguin (0.01) inorganic bromide (20) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) kresoxim-methyl (0.01) lenacil (0.01) lindane (0.01) linuron (0.01)lufenuron (0.02) malathion (sum) (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) mecarbam (0.01) mepanipyrim (0.01) mephosfolan (0.02) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (sum) (0.02) metamitron (0.01) metazachlor (0.02) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.02) metsulfuron-methyl (0.01) mevinphos (sum) (0.01) molinate (0.01) monocrotophos (0.01) monolinuron (0.01) monuron (0.01)napropamide (0.02) nitenpyram (0.01) nitrofen (0.02) nitrothal-isopropyl (0.01) novaluron (0.01) nuarimol (0.01) ofurace (0.01) oxadiargyl (0.01)

pyrifenox (0.02) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.02) quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) resmethrin (sum) (0.02) rimsulfuron (0.01) rotenone (0.01) simazine (0.02) spinetoram (0.01) spinosad (sum) (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.02) sum of butocarboxim and butocarboxim sul (0.01) tau-fluvalinate (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) tepraloxydim (0.02) terbufos (0.01) terbufos (sum not definition) (0.01) terbuthylazine (0.02) terbutryn (0.02) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.02) thiacloprid (0.01) thiamethoxam (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.02) triasulfuron (0.02) triazamate (0.01) triazophos (0.01) triclopyr (0.02) tricyclazole (0.01) trifloxystrobin (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.01) triticonazole (0.01) vinclozolin (0.01) zoxamide (0.01)

STRAWBERRIES, UK: 5 sam	pies analysed	
azoxystrobin	<0.01 (i.e. not found)	2
(MRL = 10)	0.02 - 0.03	3
boscalid	<0.01 (i.e. not found)	2
(MRL = 6)	0.1 - 0.4	3
bupirimate	<0.01 (i.e. not found)	2
(MRL = 2)	0.07 - 0.3	3
cyprodinil	<0.02 (i.e. not found)	3
(MRL = 5)	0.03, 0.1	2
ethirimol	<0.01 (i.e. not found)	3
(MRL = 0.2)	0.02	2
fenamidone	<0.01 (i.e. not found)	4
(MRL = 0.04)	0.02	1
fenhexamid	<0.02 (i.e. not found)	1
(MRL = 10)	0.1 - 0.9	4
fenpyrazamine	<0.01 (i.e. not found)	3
(MRL = 3)	0.02, 0.3	2
fludioxonil	<0.01 (i.e. not found)	1
(MRL = 4)	0.03 - 0.08	4
fluopyram	<0.01 (i.e. not found)	2
(MRL = 2)	0.04 - 0.2	3
mepanipyrim	<0.01 (i.e. not found)	2
(MRL = 3)	0.03 - 0.09	3
myclobutanil	<0.01 (i.e. not found)	1
(MRL = 1)	0.02 - 0.04	4
penconazole	<0.01 (i.e. not found)	4
(MRL = 0.5)	0.01	1
pyraclostrobin	<0.01 (i.e. not found)	2
(MRL = 1.5)	0.02 - 0.06	3
pyrimethanil	<0.01 (i.e. not found)	4
(MRL = 5)	0.4	1
quinoxyfen	<0.01 (i.e. not found)	4
(MRL = 0.3)	0.01	1
tebufenpyrad	<0.01 (i.e. not found)	4
(MRL = 1)	0.01	1
thiacloprid	<0.01 (i.e. not found)	3
(MRL = 1)	0.01, 0.06	2
trifloxystrobin	<0.01 (i.e. not found)	2

Table 6a.Analysis of STRAWBERRIES sampled from June to July 2017

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
MRL = 1)	0.03 - 0.1	3
STRAWBERRIES, Imported	(EC): 1 samples analysed	
ooscalid	<0.01 (i.e. not found)	0
MRL = 6)	0.09	1
dimethomorph	<0.01 (i.e. not found)	0
MRL = 0.7)	0.01	1
nepanipyrim	<0.01 (i.e. not found)	0
MRL = 3)	0.06	1
oyraclostrobin	<0.01 (i.e. not found)	0
MRL = 1.5)	0.01	1

Imported (EC) samples of strawberries were from Belgium (1). UK samples of strawberries were (5).

Residues were distributed by country of origin, as follows:

azoxystrobin	UK (3)
boscalid	Belgium (1), UK (3)
bupirimate	UK (3)
cyprodinil	UK (2)
dimethomorph	Belgium (1)
ethirimol	UK (2)
fludioxonil	UK (4)
fenamidone	UK (1)
fenhexamid	UK (4)
fenpyrazamine	UK (2)
fluopyram	UK (3)
mepanipyrim	Belgium (1), UK (3)
myclobutanil	UK (4)
penconazole	UK (1)
pyraclostrobin	Belgium (1), UK (3)
pyrimethanil	UK (1)
quinoxyfen	UK (1)
tebufenpyrad	UK (1)
thiacloprid	UK (2)
trifloxystrobin	UK (3)
-	

Residues were found in all of the 5 UK samples Residues were found in all of the 1 Imported (EC) samples

Table 6b.Residues found in STRAWBERRIES sampled from June to July 2017

Residues (4-12 compounds) were found in 6 of the 6 samples as follows:

Number of residues	Sample ID	Sample ID Residues found (mg/kg)									Country of origin											
residues		AZOX	BOS	BUP	CYD	DMR	EHM	FLUD	FMD	FNHX	FNPZ	FPYM	MPY	MYC	PNZ	PYC	PYM	QINO	TEBF	THC	TRFL	
(4)	5739/2017	-	0.09	-	-	0.01	-	-	-	-	-	-	0.06	-	-	0.01	-	-	-	-	-	Belgium
(7)	5722/2017	0.02	-	0.2	0.1	-	-	0.08	-	0.9	-	0.2	-	-	-	-	-	-	-	-	0.1	UK
(8)	5735/2017	0.02	-	-	0.03	-	-	0.04	-	-	0.02	0.06	0.09	0.04	-	-	-	-	-	-	0.05	UK
(9)	5760/2017	-	0.2	0.3	-	-	0.02	0.03	-	0.2	0.3	-	-	0.03	-	0.03	-	-	-	0.01	-	UK
(10)	5759/2017	0.03	0.1	-	-	-	-	0.03	-	0.1	-	0.04	0.04	0.02	-	0.02	-	-	0.01	-	0.03	UK
(12)	5761/2017	-	0.4	0.07	-	-	0.02	-	0.02	0.9	-	-	0.03	0.04	0.01	0.06	0.4	0.01	-	0.06	-	UK

The abbreviations used for the pesticide names are as follows:

AZOX	azoxystrobin	BOS	boscalid	BUP	bupirimate
CYD	cyprodinil	DMR	dimethomorph	EHM	ethirimol
FLUD	fludioxonil	FMD	fenamidone	FNHX	fenhexamid
FNPZ	fenpyrazamine	FPYM	fluopyram	MPY	mepanipyrim
MYC	myclobutanil	PNZ	penconazole	PYC	pyraclostrobin
PYM	pyrimethanil	QINO	quinoxyfen	TEBF	tebufenpyrad
THC	thiacloprid	TRFL	trifloxystrobin		

Table 6c.Residues sought but not found in STRAWBERRIES sampled from June toJuly 2017

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.02) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.02) acrinathrin (0.02) alachlor (0.01) aldicarb (sum) (0.01) allethrin (0.02) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (sum) (0.01) asulam (0.02) atrazine (0.01) azinphos-ethyl (0.02) azinphos-methyl (0.02) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenox (0.02) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) bixafen (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (sum) (0.01) bromuconazole (0.01) buprofezin (0.01) butachlor (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (sum) (0.02) carbaryl (0.01) carbendazim (sum) (0.01) carbetamide (0.02) carbofuran (sum) (0.001) carboxin (0.02) chlorantraniliprole (0.01) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenvinphos (0.01) chlorfluazuron (0.01) chloridazon (0.01) chlorobenzilate (0.02)

EPTC (0.01) ethiofencarb (parent) (0.01) ethion (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01) etridiazole (0.02) etrimfos (0.01) famoxadone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.02) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate (sum) (0.01) fipronil (sum) (0.005) flonicamid (sum) (0.01) fluazifop-p (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.02) fluroxypyr (sum) (0.02) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (sum) (0.01) fonofos (0.01) formetanate (0.01) fosthiazate (0.01) furalaxyl (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01) hexaconazole (0.01) hexazinone (0.02)

nitrothal-isopropyl (0.01) novaluron (0.01) nuarimol (0.01) ofurace (0.01) oxadiargyl (0.01) oxadiazon (0.02) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.02) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) pencycuron (0.01) pendimethalin (0.01) penflufen (0.01) pentanochlor (0.01) penthiopyrad (0.01) permethrin (sum) (0.01) phenmedipham (0.02) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (sum) (0.01) propaguizafop (0.02) propargite (0.01) propetamphos (0.01) propham (0.02) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.01) prosulfuron (0.01) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01)

chlorothalonil (0.01) chlorotoluron (0.01) chlorpropham (0.01) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.02) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cvanazine (0.02) cyazofamid (0.01) cycloate (0.01) cyflufenamid (0.01) cyfluthrin (sum) (0.02) cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (sum) (0.02) cyproconazole (0.01) cyromazine (0.02) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.02) demeton-S-methyl (0.01) desmedipham (0.02) diafenthiuron (0.02) diazinon (0.01) dichlobenil (0.01) dichlofluanid (0.01) dichlorprop (sum) (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) dieldrin (sum) (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (sum) (0.01) dimethoate (sum) (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.02) disulfoton (sum) (0.01) dithiocarbamates (0.05) diuron (0.01) dodine (0.02) emamectin (0.01) endosulfan (sum) (0.01) endrin (0.02) EPN (0.01) epoxiconazole (0.01)

hexythiazox (0.01) imazalil (0.02) imazaguin (0.01) imidacloprid (0.01) indoxacarb (0.01) iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01) lufenuron (0.02) malathion (sum) (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) mecarbam (0.01) mephosfolan (0.02) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (sum) (0.02) metalaxyl (sum) (0.01) metamitron (0.01) metazachlor (0.02) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.02) metsulfuron-methyl (0.01) mevinphos (sum) (0.01) molinate (0.01) monocrotophos (0.01) monolinuron (0.01) monuron (0.01)napropamide (0.02) nitenpyram (0.01) nitrofen (0.02)

pyridalyl (0.01) pyridaphenthion (0.01) pyrifenox (0.02) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.02) quinoclamine (0.01) quintozene (sum) (0.01) resmethrin (sum) (0.02) rimsulfuron (0.01) rotenone (0.01) simazine (0.02) spinetoram (0.01) spinosad (sum) (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.02) sum of butocarboxim and butocarboxim sul (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) tepraloxydim (0.02) terbufos (0.01) terbufos (sum not definition) (0.01) terbuthylazine (0.02) terbutrvn (0.02) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.02) thiamethoxam (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.02) triasulfuron (0.02) triazamate (0.01) triazophos (0.01) triclopyr (0.02) tricyclazole (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.01) triticonazole (0.01) vinclozolin (0.01) zoxamide (0.01)

Table 7a. Analysis of SUGARSNAP PEAS sampled from June to July 2017

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
SUGARSNAP PEAS, UK: 4	samples analysed	
cyprodinil	<0.02 (i.e. not found)	2
MRL = 2)	0.02, 0.03	2
ludioxonil	<0.01 (i.e. not found)	2
MRL = 1)	0.01	2
SUGARSNAP PEAS, Impo	rted (Non-EC): 2 samples analysed	
cyromazine	<0.02 (i.e. not found)	1
MRL = 5)	0.1	1
prodione	<0.01 (i.e. not found)	1
MRL = 2)	0.04	1

Imported (Non-EC) samples of sugarsnap peas were from China (1), Zimbabwe (1). UK samples of sugarsnap peas were (4).

Residues were distributed by country of origin, as follows:

cyprodinil	UK (2)
cyromazine	China (1)
fludioxonil	UK (2)
iprodione	China (1)

No residues were found in 2 of the 4 UK samples No residues were found in 1 of the 2 Imported (Non-EC) samples

Table 7b. Residues found in SUGARSNAP PEAS sampled from June to July 2017

Number of residues	Sample ID		ound (mg FLUD		Country of origin
(2)	5723/2017 5730/2017 5733/2017	0.02	0.01 0.01 -	- - 0.04	UK UK China

Residues (2-2 compounds) were found in 3 of the 6 samples as follows:

The abbreviations used for the pesticide names are as follows:

CYD	cyprodinil	CYZ	cyromazine	FLUD	fludioxonil
IPR	iprodione				

Table 7c.Residues sought but not found in SUGARSNAP PEAS sampled from June toJuly 2017

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.02) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.02) acrinathrin (0.02) alachlor (0.01) aldicarb (sum) (0.01) allethrin (0.02) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (sum) (0.01) asulam (0.02) atrazine (0.01) azinphos-ethyl (0.02) azinphos-methyl (0.02) azoxystrobin (0.01) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.001) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenox (0.02) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) bixafen (0.01) boscalid (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (sum) (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (0.02) captan (sum) (0.02) carbaryl (0.01) carbendazim (sum) (0.01) carbetamide (0.02) carbofuran (sum) (0.001) carbosulfan (0.001) carboxin (0.02) chlorantraniliprole (0.01) chlorbufam (0.01)

ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01) etridiazole (0.02) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaquin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.02) fenhexamid (0.02) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyrazamine (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate (sum) (0.01) fipronil (sum) (0.005) flonicamid (sum) (0.01) fluazifop-p (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.02) fluroxypyr (sum) (0.02) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) folpet (sum) (0.01) fonofos (0.01) formetanate (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.001) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01)

nitrofen (0.02) nitrothal-isopropyl (0.01) novaluron (0.01) nuarimol (0.01) ofurace (0.01) oxadiargyl (0.01) oxadiazon (0.02) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.02) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) penflufen (0.01) pentanochlor (0.01) penthiopyrad (0.01) permethrin (sum) (0.01) phenmedipham (0.02) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (sum) (0.01) propaguizafop (0.02) propargite (0.01) propetamphos (0.01) propham (0.02) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.01) prosulfuron (0.01) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01)

chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenvinphos (0.01) chlorfluazuron (0.01) chloridazon (0.01) chlorobenzilate (0.02) chlorothalonil (0.01) chlorotoluron (0.01) chlorpropham (0.01) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.02) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cyanazine (0.02) cyazofamid (0.01) cycloate (0.01) cycloxydim (0.02) cyflufenamid (0.01) cyfluthrin (sum) (0.02) cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (sum) (0.02) cyproconazole (0.01) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.02) demeton-S-methyl (0.01) desmedipham (0.02) diafenthiuron (0.02) diazinon (0.01) dichlobenil (0.01) dichlofluanid (0.01) dichlorprop (sum) (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) dieldrin (sum) (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (sum) (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.02) disulfoton (sum) (0.01) dithiocarbamates (0.05) diuron (0.01)

heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01) hexaconazole (0.01) hexazinone (0.02) hexythiazox (0.01) imazalil (0.02) imazaquin (0.01) imidacloprid (0.01) indoxacarb (0.01) ioxynil (0.01) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01) lufenuron (0.02) malathion (sum) (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) mecarbam (0.01) mepanipyrim (0.01) mephosfolan (0.02) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (sum) (0.02) metalaxyl (sum) (0.01) metamitron (0.01) metazachlor (0.02) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.02) metsulfuron-methyl (0.01) mevinphos (sum) (0.01)

pyraclostrobin (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridalyl (0.01) pyridaphenthion (0.01) pyrifenox (0.02) pyrimethanil (0.01) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.02) quinoclamine (0.01) auinoxvfen (0.01) quintozene (sum) (0.01) resmethrin (sum) (0.02) rimsulfuron (0.01) rotenone (0.01) simazine (0.02) spinetoram (0.01) spinosad (sum) (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.02) sum of butocarboxim and butocarboxim sul (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) tepraloxydim (0.02) terbufos (0.01) terbufos (sum not definition) (0.01) terbuthylazine (0.02) terbutryn (0.02) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.02) thiacloprid (0.01) thiamethoxam (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.02) triasulfuron (0.02) triazamate (0.01) triazophos (0.01) triclopyr (0.02) tricyclazole (0.01) trifloxystrobin (0.01)

dodine (0.02) emamectin (0.01) endosulfan (sum) (0.01) endrin (0.02) EPN (0.01) epoxiconazole (0.01) EPTC (0.01) ethiofencarb (parent) (0.01)

molinate (0.01) monocrotophos (0.01) monolinuron (0.01) monuron (0.01) myclobutanil (0.01) napropamide (0.02) nitenpyram (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.01) triticonazole (0.01) vinclozolin (0.01) zoxamide (0.01)

Table 8a. Analysis of SWEET PEPPERS sampled during June 2017

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
PEPPERS, FRESH Imported (E	EC): 6 samples analysed	
fluopyram	<0.01 (i.e. not found)	5
(MRL = 2)	0.02	1
triadimefon & triadimenol	<0.01 (i.e. not found)	2
(MRL = 1)	0.02 - 0.06	4

Imported (EC) samples of peppers were from Spain (6).

Residues were distributed by country of origin, as follows:fluopyramSpain (1)triadimefon & triadimenolSpain (4)

No residues were found in 2 of the 6 Imported (EC) fresh samples

Table 8b.Residues found in SWEET PEPPERS sampled during June 2017

Number of residues	Sample ID	Type of PEPPERS	Residues found (mg/kg FPYM TRSP		Country of origin
(1)	5636/2017 5640/2017 5641/2017	FRESH FRESH FRESH	- -	0.02 0.02 0.06	Spain Spain Spain
(2)	5639/2017	FRESH	0.02	0.06	Spain

Residues (1-2 compounds) were found in 4 of the 6 samples as follows:

The abbreviations used for the pesticide names are as follows:

FPYM	fluopyram	TRSP	triadimefon &
			triadimenol

Table 8c.Residues sought but not found in SWEET PEPPERS sampled during June2017

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.02) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.02) acrinathrin (0.02) alachlor (0.01) aldicarb (sum) (0.01) allethrin (0.02) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (sum) (0.01) asulam (0.02) atrazine (0.01) azinphos-ethyl (0.02) azinphos-methyl (0.02) azoxystrobin (0.01) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenox (0.02) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) bixafen (0.01) boscalid (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (sum) (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (sum) (0.02) carbaryl (0.01) carbendazim (sum) (0.01) carbetamide (0.02) carbofuran (sum) (0.001) carboxin (0.02) chlorantraniliprole (0.01) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenvinphos (0.01)

ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01) etridiazole (0.02) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.02) fenhexamid (0.02) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyrazamine (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate (sum) (0.01) fipronil (sum) (0.005) flonicamid (sum) (0.01) fluazifop-p (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.02) fluroxypyr (sum) (0.02) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (sum) (0.01) fonofos (0.01) formetanate (0.01) fosthiazate (0.01) furalaxyl (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) heptachlor (sum) (0.01) heptenophos (0.01)

nitrothal-isopropyl (0.01) novaluron (0.01) nuarimol (0.01) ofurace (0.01) oxadiargyl (0.01) oxadiazon (0.02) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.02) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) penflufen (0.01) pentanochlor (0.01) penthiopyrad (0.01) permethrin (sum) (0.01) phenmedipham (0.02) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (sum) (0.01) propaguizafop (0.02) propargite (0.01) propetamphos (0.01) propham (0.02) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.01) prosulfuron (0.01) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyraclostrobin (0.01)

chlorfluazuron (0.01) chloridazon (0.01) chlorobenzilate (0.02) chlorothalonil (0.01) chlorotoluron (0.01) chlorpropham (0.01) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.02) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cyanazine (0.02) cyazofamid (0.01) cycloate (0.01) cyflufenamid (0.01) cyfluthrin (sum) (0.02) cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (sum) (0.02) cyproconazole (0.01) cyprodinil (0.02) cyromazine (0.02) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.02) demeton-S-methyl (0.01) desmedipham (0.02) diafenthiuron (0.02) diazinon (0.01) dichlobenil (0.01) dichlofluanid (0.01) dichlorprop (sum) (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) dieldrin (sum) (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (sum) (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.02) disulfoton (sum) (0.01) dithiocarbamates (0.05) diuron (0.01) dodine (0.02) emamectin (0.01)

hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01) hexaconazole (0.01) hexazinone (0.02) hexythiazox (0.01) imazalil (0.02) imazaquin (0.01) imidacloprid (0.01) indoxacarb (0.01) iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01)lufenuron (0.02) malathion (sum) (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) mecarbam (0.01) mepanipyrim (0.01) mephosfolan (0.02) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (sum) (0.02) metalaxyl (sum) (0.01) metamitron (0.01) metazachlor (0.02) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.02) metsulfuron-methyl (0.01) mevinphos (sum) (0.01) molinate (0.01) monocrotophos (0.01) monolinuron (0.01)

pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridalyl (0.01) pyridaphenthion (0.01) pyrifenox (0.02) pyrimethanil (0.01) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.02) quinoclamine (0.01) quinoxyfen (0.01) auintozene (sum) (0.01) resmethrin (sum) (0.02) rimsulfuron (0.01) rotenone (0.01) simazine (0.02) spinetoram (0.01) spinosad (sum) (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.02) sum of butocarboxim and butocarboxim sul (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) tepraloxydim (0.02) terbufos (0.01) terbufos (sum not definition) (0.01) terbuthylazine (0.02) terbutryn (0.02) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.02) thiacloprid (0.01) thiamethoxam (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triallate (0.02) triasulfuron (0.02) triazamate (0.01) triazophos (0.01) triclopyr (0.02) tricyclazole (0.01) trifloxystrobin (0.01) triflumizole (0.01) triflumuron (0.01)

endosulfan (sum) (0.01) endrin (0.02) EPN (0.01) epoxiconazole (0.01) EPTC (0.01) ethephon (0.05) monuron (0.01) myclobutanil (0.01) napropamide (0.02) nitenpyram (0.01) nitrofen (0.02) trifluralin (0.01) triforine (0.01) triticonazole (0.01) vinclozolin (0.01) zoxamide (0.01)

Table 9a.Analysis of TOMATOES sampled from May to July 2017

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
TOMATO, COCKTAIL Impo	rted (EC): 9 samples analysed	
chlorantraniliprole	<0.01 (i.e. not found)	6
(MRL = 0.6)	0.01 - 0.02	3
fluopyram	<0.01 (i.e. not found)	7
(MRL = 0.9)	0.04, 0.07	2
pyridalyl	<0.01 (i.e. not found)	8
(MRL = 1)	0.02	1

Imported (EC) samples of tomato were from Spain (4), the Netherlands (5).

Residues were distributed by country of origin, as follows:							
chlorantraniliprole Spain (1), the Netherlands (2)							
fluopyram	the Netherlands (2)						
pyridalyl	the Netherlands (1)						

No residues were found in 5 of the 9 Imported (EC) cocktail samples

Table 9b.Residues found in TOMATOES sampled from May to July 2017

Number of residues	Sample ID	Type of TOMATO	Resid CTP	ues found FPYM	l (mg/kg) PYDL	Country of origin
(1)	5606/2017 5728/2017	COCKTAIL COCKTAIL	0.01 0.02	-	-	Spain the Netherlands
(2)	5609/2017 5719/2017	COCKTAIL COCKTAIL	0.02 -	0.07 0.04	- 0.02	the Netherlands the Netherlands

Residues (1-2 compounds) were found in 4 of the 9 samples as follows:

The abbreviations used for the pesticide names are as follows:

CTP	chlorantraniliprole	FPYM	fluopyram	PYDL	pyridalyl
-----	---------------------	------	-----------	------	-----------

Table 9c.Residues sought but not found in TOMATOES sampled from Mayto July 2017

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2,4-D (sum) (0.01) 2.4-DB (0.01) 2-phenylphenol (0.02) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.02) acrinathrin (0.02) alachlor (0.01) aldicarb (sum) (0.01) allethrin (0.02) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (sum) (0.01) asulam (0.02) atrazine (0.01) azinphos-ethyl (0.02) azinphos-methyl (0.02) azoxystrobin (0.01) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenox (0.02) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) bixafen (0.01) boscalid (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (sum) (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (sum) (0.02) carbaryl (0.01) carbendazim (sum) (0.01) carbetamide (0.02) carbofuran (sum) (0.001) carboxin (0.02) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01)

ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01) etridiazole (0.02) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.02) fenhexamid (0.02) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpvrazamine (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate (sum) (0.01) fipronil (sum) (0.005) flonicamid (sum) (0.01) fluazifop-p (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.02) fluroxypyr (sum) (0.02) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (sum) (0.01) fonofos (0.01) formetanate (0.01) fosthiazate (0.01) furalaxyl (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01)

nitrothal-isopropyl (0.01) novaluron (0.01) nuarimol (0.01) ofurace (0.01) oxadiargyl (0.01) oxadiazon (0.02) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01)oxyfluorfen (0.02) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) penflufen (0.01) pentanochlor (0.01) penthiopyrad (0.01) permethrin (sum) (0.01) phenmedipham (0.02) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (sum) (0.01) propaguizafop (0.02) propargite (0.01) propetamphos (0.01) propham (0.02) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.01) prosulfuron (0.01) prothioconazole (0.01) prothiofos (0.01)

chlorfenvinphos (0.01) chlorfluazuron (0.01) chloridazon (0.01) chlormequat (0.02) chlorobenzilate (0.02) chlorothalonil (0.01) chlorotoluron (0.01) chlorpropham (0.01) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.02) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cyanazine (0.02) cyazofamid (0.01) cycloate (0.01) cyflufenamid (0.01) cyfluthrin (sum) (0.02) cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (sum) (0.02) cyproconazole (0.01) cyprodinil (0.02) cyromazine (0.02) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.02) demeton-S-methyl (0.01) desmedipham (0.02) diafenthiuron (0.02) diazinon (0.01) dichlobenil (0.01) dichlofluanid (0.01) dichlorprop (sum) (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) dieldrin (sum) (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (sum) (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.02)

heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01)hexaconazole (0.01) hexazinone (0.02) hexythiazox (0.01) imazalil (0.02) imazaguin (0.01) imidacloprid (0.01) indoxacarb (0.01) iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01)lufenuron (0.02) malathion (sum) (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) mecarbam (0.01) mepanipyrim (0.01) mephosfolan (0.02) mepiquat (0.02) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (sum) (0.02) metalaxyl (sum) (0.01) metamitron (0.01) metazachlor (0.02) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01)

pymetrozine (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrifenox (0.02) pyrimethanil (0.01) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.02) quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) resmethrin (sum) (0.02) rimsulfuron (0.01) rotenone (0.01) simazine (0.02) spinetoram (0.01) spinosad (sum) (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.02) sum of butocarboxim and butocarboxim sul (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) tepraloxydim (0.02) terbufos (0.01) terbufos (sum not definition) (0.01)terbuthylazine (0.02) terbutryn (0.02) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.02) thiacloprid (0.01) thiamethoxam (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.02) triasulfuron (0.02) triazamate (0.01) triazophos (0.01)

disulfoton (sum) (0.01) dithiocarbamates (0.05) diuron (0.01) dodine (0.02) emamectin (0.01) endosulfan (sum) (0.01) endrin (0.02) EPN (0.01) epoxiconazole (0.01) EPTC (0.01) ethephon (0.05) metribuzin (0.02) metsulfuron-methyl (0.01) mevinphos (sum) (0.01) molinate (0.01) monocrotophos (0.01) monolinuron (0.01) monuron (0.01) myclobutanil (0.01) napropamide (0.02) nitenpyram (0.01) nitrofen (0.02) triclopyr (0.02) tricyclazole (0.01) trifloxystrobin (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.01) triticonazole (0.01) vinclozolin (0.01) zoxamide (0.01)

Appendix D: HSE Assessment of Risk

The sampling programme is designed to enable the regulatory authorities to check that: • specified pesticide MRLs are being respected;

- users of pesticides are complying with conditions of use specified in the authorisation;
- dietary intakes of residues are within acceptable limits.

This section details how risks from dietary intakes are assessed.

When assessments are carried out

A screening assessment is done for each residue and commodity combination to identify residue levels that would lead to intakes above the relevant reference doses. Further information on this screening approach is available on request from HSE. Detailed assessments are then produced for every case where the actual residue level found could lead to an intake by any group above the reference dose

Assessing Dietary intakes

Assessing the acceptability of dietary intakes is complicated. Consumer risk assessments are carried out for both short-term (peak) and long-term intakes. These assessments use information on food consumption collected in UK dietary surveys in conjunction with the residue levels we find. Occasionally, additional pesticide specific information on the losses of residues that occur during preparation and/or cooking of food is also used.

How the assessment is carried out

Short-term intakes (also called NESTIs) are calculated using consumption data for high-level consumers, based on single-day consumption values and the highest residue found in a food commodity. The residue found is multiplied by a variability factor to take account of the fact that residues may vary between individual items that make up the sample analysed. The estimated intake is compared to the Acute Reference Dose (ARfD). This is done for ten consumer groups; adults, infants, toddlers, 4-6 year olds, 7-10 year olds, 11-14 year olds, 15-18 year olds, vegetarians, elderly living in residential homes and elderly living in their own homes.

Long-term intakes (NEDI) are also calculated for high-level consumers, but in this case the consumption data are high-level long-term values rather than peak single-day events, and similarly the residue values used reflect long-term average levels rather than occasional high values. Again these estimates are made for the ten consumer groups. In this case the estimated intake is compared to the Acceptable Daily Intake (ADI). More information on intake assessments is available on <u>HSE's</u> website.

The reference doses (ADI, ARfD) are set by the Expert Committee on Pesticides (ECP), or agreed within the EC (an increasing proportion of UK pesticide authorisations are now carried out in accordance with harmonised EU processes). However, where neither the UK nor the EC has set a reference dose, levels set by regulatory authorities in other countries may be used. For a small number of pesticides the reference doses used have been determined by HSE. These have not been independently peer-reviewed and should therefore be regarded as provisional. Reference dose values are also available on the EU website.

Although MRLs are not safety levels, an MRL would not be established if the residue concentrations measured in the supervised trials used to support the MRL would give rise to health concerns. In most cases residues present at the MRL result in intakes below the ARfD and the ADI. So even if the MRL is exceeded this does not always lead to an intake above the ARfD or ADI.

In addition, an estimated intake that exceeds the ADI or ARfD does not automatically result in concerns for consumer health, because a protective approach is used in setting the ADI and ARfD. In the unusual circumstance of an intake exceeding the ADI or ARfD, an evaluation of the toxicological data is made, and details of this assessment would be presented.

Most consumer intakes are for short-term exposure rather than chronic exposure. This is because in most cases the monitoring data show the majority of samples to contain residues below the reporting limit and so chronic exposure would not present a concern. Long-term risk assessments have been

carried out on a case-by-case basis, but are not routinely reported. Long-term exposure assessments done using median residue levels, rather than using the highest residues found. Therefore, long-term risk assessments would only need to be carried out where PRiF data indicated a high proportion of samples contained residues above the MRL (this would result in a higher median residue level than that previously assessed when setting the MRL), or where there is no MRL and acute toxicology is not considered relevant for the particular pesticide concerned

Where intakes exceed a reference dose, it is necessary for the underlying toxicological studies (animal studies) to be considered to enable the significance of such an exceedance to be understood. Toxicological studies are conducted using different doses to determine the nature of any ill health effects as well as the levels at which such effects can be expected to occur.

Toxicological studies are conducted using test animals to identify the highest experimental dose that causes no detectable adverse effects (the NOAEL). Where there is more than one relevant toxicological study, the lowest appropriate NOAEL for the most sensitive adverse effect is typically used. There is some uncertainty in extrapolating between animals and people and it is therefore important to use a 'safety factor' to account for sources of variation. This safety factor is incorporated (by dividing the NOAEL by the safety factor) in deriving a reference dose, either an ADI or an ARfD, to which consumer intakes are compared. A safety factor therefore extrapolates from the animal testing to the general population. Factors in the order of x100 are commonly used, x 10 for animal to man, and x10 for within human population differences in sensitivity. However, toxicologists may propose different values (e.g. from 5 to 1000) based scientific reasoning in accordance with study designs and the quality of the data that has been generated from the studies.

In order to ensure exposures to pesticides do not pose unacceptable risk to humans a wide range of investigations are performed. Most of these are performed in experimental animals because the only end-points that can be examined in human volunteers are those involving observation or blood and urine sampling. Human volunteer studies involving pesticides are not generated in current regulatory work. There is debate at the international level as to whether human studies that have been generated should be used for risk assessment purposes. In the EU, the policy is not to use these data in assessments; the JMPR chose to apply judgement in the appropriate use of these data if available. PRiF risk assessments will usually refer to test animal species, such as dog, rat, and rabbit. All toxicological work is undertaken based on principles of minimising animal distress. Where scientifically valid human data are available PRiF risk assessments will refer to these as they reduce the uncertainty in the assessment. Therefore, human data is only referred to in more limited circumstances.

Acute (short term) toxicology is not a concern for all pesticides, as some are not acutely toxic. In terms of the pesticides that have been found in fruit and vegetables through the surveillance programme an acute risk assessment would not be necessary on the following: tecnazene, maleic hydrazide, bitertanol, buprofezin, dicloran, diphenylamine, ethoxyquin, furalaxyl, imazalil, iprodione, kresoxim-methyl, myclobutanil, permethrin, pendimethalin, propargite, propyzamide, quintozene, thiabendazole and tolclofos-methyl.

Dithiocarbamate residues

Dithiocarbamate residues are determined as carbon disulphide which is a common product from different dithiocarbamate pesticides; for the risk assessment a precautionary approach is taken: the worse case dithiocarbamate residue is calculated by assuming the residue is derived from ziram ((a molecular weight conversion is applied to estimate the level of residue based on ziram) and this is compared to the ARfD for ziram. Where it can be confirmed that a specific dithiocarbamate was applied the equivalent residue of the specific active substance is estimated and the intake compared to the appropriate reference dose. We only present a detailed risk assessment when either the worst case assessment of intake (based on ziram) leads to an exceedance of the ziram ARfD and it has not been possible to further identify the dithiocarbamate source of the residues, or, when further refined assessments based on a specific knowledge of the dithiocarbamate pesticide applied in practice still lead to an exceedance of the ARfD for the known dithiocarbamate pesticide.

Probabilistic Modelling

The standard calculations of consumer exposure use realistic consumption data and residue levels. However, they tend to overestimate intakes in most circumstances. This is due to the assumptions used; fruit and vegetables would contain high levels of residue in an individual unit and that these would be consumed by high-level consumers. They do not take into account the possible range of residue levels and consumption distributions that may occur in reality. These possible combinations of residues and consumption levels can be taken into account using modelling/simulation techniques to produce probability distributions of residue intake levels to indicate the range of consumer intakes, presented as a probabilistic assessment of consumer exposure. These techniques are not yet routinely used to estimate dietary intakes of pesticide residues in the EC.

Multiple residues

The risk assessment process is not standing still. We are aware that some consumers are concerned by the 'cocktail effect'- the possible implications of residues of more than one chemical occurring in, say, a single portion of fruit or vegetables or the interaction between mixtures of pesticides and veterinary medicines at residue levels.

Where more than one pesticide residue is found in a sample, we produce a separate table which identifies each sample and what was found (see Appendix C). If more than one organophosphate/carbamate is found we will undertake an additional risk assessment. If the combination of pesticides found is either unusual or gives cause for concern then this will be detailed in the report.

The Food Standards Agency (FSA) asked the Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment to assess these concerns. Their Report Risk Assessment of Mixtures of Pesticides and Veterinary Medicines was published in 2002. The Committee concluded that the probability of any health hazard from exposures to mixtures is likely to be small. Nonetheless, it identified areas of uncertainty in the risk assessment process and made recommendations for further work. These fell under the broad headings of regulatory, surveillance, research and public information issues. An action plan to take forward the recommendations has been published on the FSA website. A number of research projects have been commissioned by the FSA to help progress. Details can be <u>found here</u>.

Scientific methodologies have yet to be developed to deal with mixtures from groups of pesticides identified by the Committee. However, the Expert Committee on Pesticides (ECP) has developed an approach for the anticholinesterase compounds. They have also recommended an approach for assessing compounds that might have combined toxicity. This includes a consideration of the proportion of the respective reference doses taken up by the predicted exposures to each active substance. If this is only a small proportion (e.g. <50% if there are two components; <33% for 3 etc) then assuming simple additivity the risks would still be acceptable. However if exposures to each active substance represent a high proportion of the respective reference doses and the total exceeds 100% a more detailed consideration is needed. Details can be <u>found here</u>.

We are keen to ensure our reports reflect consumer concerns. We therefore now regularly assess findings showing multiple residues of organophosphate and carbamate pesticides. Combined assessment is a new development in risk assessment, which is being taken forward at international level. The European Food Safety Authority (EFSA) held a <u>colloquium in 2014</u>.

Further advances in risk assessment methodology will be taken into account in developing the approach to multiple risk assessments in the future.

Assessment of Risk to Human Health

Short-term intake estimates

Screening assessments have been done for all acutely toxic and potentially acutely toxic pesticides to check that predicted intakes are within the ARfD (or ADI, as appropriate, where an ARfD is not available). An acute exposure assessment is not done for pesticides which are not acutely toxic where it has been established that an ARfD is not required. Toxicological endpoints can be found in the DG Sanco EU Pesticides database which is available at http://ec.europa.eu/food/plant/pesticides/eu-pesticides/

The screening assessment uses the internationally agreed approach to short-term (acute) consumer exposure assessment with UK food consumption data as detailed within the UK NESTI model which is available on the HSE website at http://www.hse.gov.uk/pesticides/topics/pesticide-approvals/pesticides-registration/data-requirements-handbook/consumer-exposure.htm.

The screening assessment of all the residues detected in the Summer Term samples, did not indicate any exceedances of the ARfD

Acute risk assessments for samples containing more than one organophosphorus/carbamate or captan/folpet or triazoles or carbendazim/thiophanate methyl following screening assessment.

Some of the samples contained residues of more than one pesticide. Whenever toxicologists expect these to add to each other's affect, (have the same toxicological mode of action), HSE carries out a risk assessment of the combined results. Where the sum of the individual intakes, expressed as a percentage of the respective ARfDs is above 100% then the risk assessment is published in full.

The screening assessment of the samples, which contained more than one pesticide from the above groups, did not indicate any exceedances of the ARfD.

Appendix E: Supplier Details

The Government has decided that brand name information should be published as part of the Government chemical surveillance programme for food. Brand names have been published for most pesticide residue surveys since 1998. This policy was reviewed in 2000/1, when Ministers agreed to its continuation. This policy is employed for the SF&VS monitoring.

The tables give the name and address of the distribution depots from which the produce was collected. The suppliers/brand name is not always available. Similar produce from the same supplier may have been available from other depots. The choice of supplier for each area lies with the Department of Health and not the distributor.

This Appendix lists information for each sample analysed with details of the levels of residues detected.

Apples: residues found between May – June 2017

Sample ID	Date of Sampling	Description	Country of Origin	Distributor	Address	Brand Name	Pesticide residues found in mg/kg (MRL)								
			•	Oreeneell LIK	West Marsh Dood, Cholding		chlorantraniliprole 0.02 (MRL = 0.5)								
5570/2017	18/05/2017	Gala Apples	South	Greencell UK	West Marsh Road, Spalding	None stated	dithiocarbamates 0.2 (MRL = 5)								
			Africa	Ltd	PE11 3UG		thiacloprid 0.02 (MRL = 0.3)								
		0.11	Courth	Oreeneell LIK	West Marsh Dood, Cholding		dithiocarbamates 0.2 (MRL = 5)								
5571/2017	11/05/2017	Golden Delicious Apples	South Africa	Greencell UK Ltd	West Marsh Road, Spalding PE11 3UG	None stated	fludioxonil 0.02 (MRL = 5)								
		Delicious Apples	Anica	Llu	FEIT30G		thiacloprid 0.01 (MRL = 0.3)								
5572/2017	11/05/2017	Gala Apples	South	Greencell UK	West Marsh Road, Spalding	None stated	dithiocarbamates 0.08 (MRL = 5)								
5572/2017	11/03/2017	Gala Apples	Africa	Ltd	PE11 3UG	None stated	thiacloprid 0.02 (MRL = 0.3)								
							chlorantraniliprole 0.02 (MRL = 0.5)								
5573/2017	09/06/2017	Fuji Apples	South	Greencell UK	West Marsh Road, Spalding	None stated	dithiocarbamates 0.1 (MRL = 5)								
5575/2017	09/00/2017	ruji Appies	Africa	Ltd	B6 7BH	None stated	fludioxonil 1.1 (MRL = 5)								
							indoxacarb 0.01 (MRL = 0.5)								
5574/2017	/2017 00/06/2017	Golden	South	Greencell UK	West Marsh Road, Spalding	None stated	chlorantraniliprole 0.04 (MRL = 0.5)								
5574/2017		Delicious App	017 09/06/2017	Delicious Apples	Delicious Apples	Delicious Apples	Delicious Apples	Delicious Apples	Delicious Apples	[/] Delicious Apples	Delicious Apples	Africa	Ltd	B6 7BH	None stated
5605/2017	09/05/2017)17 Apples Franc	Franco	Minor Weir &	Altitude, 206 Deykin Avenue,	None stated	dithianon 0.03 (MRL = 3)							
5005/2017	09/03/2017	Apples	France	Willis Ltd	Witton, Birmingham B6 7BH	None stated	flonicamid (sum) 0.03 (MRL = 0.3)								
							boscalid 0.07 (MRL = 2)								
		7 Gala Apples					_captan (sum) 0.2 (MRL = 10)								
5607/2017	17/05/2017		UK	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	dodine 0.04 (MRL = 0.9)								
5007/2017	17/03/2017		UK				dithianon 0.03 (MRL = 3)								
							myclobutanil 0.02 (MRL = 0.6)								
							pyraclostrobin 0.02 (MRL = 0.5)								
5610/2017	24/05/2017	Elator Applaa	Cormony	Minor Weir &	Altitude, 206 Deykin Avenue,	None stated	_captan (sum) 0.2 (MRL = 10)								
5010/2017	24/03/2017	Elstar Apples	Germany	Willis Ltd	Witton, Birmingham B6 7BH	None stated	trifloxystrobin 0.04 (MRL = 0.7)								
							boscalid 0.03 (MRL = 2)								
				Minor Weir &	Altitude 206 Devikin Avenue		captan (sum) 0.1 (MRL = 10)								
5721/2017	07/06/2017	Gala Apples	UK	Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	cyprodinil 0.05 (MRL = 2)								
							fludioxonil 0.04 (MRL = 5)								
							methoxyfenozide 0.05 (MRL = 2)								
5724/2017	12/06/2017	Coldona Annica	South	Minor Weir &	Altitude, 206 Deykin Avenue,	None stated	dithiocarbamates 0.1 (MRL = 5)								
5724/2017	13/06/2017	Goldens Apples	Africa	Willis Ltd	Witton, Birmingham B6 7BH	None stated	fludioxonil 0.05 (MRL = 5)								
			Couth	Minor Main 9			dithiocarbamates 0.3 (MRL = 5)								
5729/2017 21/06/2	21/06/2017	6/2017 Gala Apples	South	Minor Weir &	Altitude, 206 Deykin Avenue,	None stated	indoxacarb 0.03 (MRL = 0.5)								
			Africa	Willis Ltd	Witton, Birmingham B6 7BH		thiacloprid 0.03 (MRL = 0.3)								

Bananas: residues found between May – July 2017

Sample ID	Date of Sampling	Description	Country of Origin	Distributor	Address	Brand Name	Pesticide residues found in mg/kg (MRL)
		Cavendish	Ivory Coast	JN Fox & Sons	Unit A, The Ridgeway		azoxystrobin 0.6 (MRL = 2)
5584/2017	08/05/2017	Bananas	(Cote d'Ivoire)	UK Ltd	Trading Estate, Iver SL0 9HX	None stated	imazalil 0.7 (MRL = 2)
		Cavendish	Ivory Coast	JN Fox & Sons	Unit A, The Ridgeway		azoxystrobin 0.8 (MRL = 2)
5585/2017	08/05/2017	Bananas	(Cote d'Ivoire)	UK Ltd	Trading Estate, Iver SL0 9HX	None stated	imazalil 0.6 (MRL = 2)
		Cavendish	Ivory Coast	JN Fox & Sons	Unit A, The Ridgeway		azoxystrobin 0.2 (MRL = 2)
5586/2017	08/05/2017	Bananas	(Cote d'Ivoire)	UK Ltd	Trading Estate, Iver SL0 9HX	None stated	imazalil 1 (MRL = 2)
		Cavendish	Ivory Coast	JN Fox & Sons	Unit A, The Ridgeway		azoxystrobin 0.2 (MRL = 2)
5587/2017	08/05/2017	Bananas	(Cote d'Ivoire)	UK Ltd	Trading Estate, Iver SL0 9HX	None stated	imazalil 0.7 (MRL = 2)
		Cavendish	Ivory Coast	JN Fox & Sons	Unit A, The Ridgeway		azoxystrobin 0.2 (MRL = 2)
5588/2017	22/05/2017	Bananas	(Cote d'Ivoire)	UK Ltd	Trading Estate, Iver SL0 9HX	None stated	imazalil 0.2 (MRL = 2)
		Cavendish	avendish Ivory Coast	JN Fox & Sons	Unit A, The Ridgeway		azoxystrobin 0.3 (MRL = 2)
5589/2017	22/05/2017	Bananas	(Cote d'Ivoire)	UK Ltd	Trading Estate, Iver SL0 9HX	None stated	imazalil 0.3 (MRL = 2)
5614/2017	11/05/2017	17 Cavendish		None stated	imazalil 0.3 (MRL = 2)		
5014/2017	11/03/2011	Bananas	Colombia		Bedfordshire LU4 8EN	None stated	thiabendazole 0.2 (MRL = 5)
5615/2017	19/05/2017	Cavendish	Colombia	SH Pratts & Co	Laporte Way, Luton,	None stated	imazalil 0.2 (MRL = 2)
		Bananas			Bedfordshire LU4 8EN		thiabendazole 0.07 (MRL = 5) imazalil 0.4 (MRL = 2)
5616/2017	19/05/2017	Cavendish Bananas	Colombia	SH Pratts & Co	Laporte Way, Luton, Bedfordshire LU4 8EN	None stated	thiabendazole 0.3 (MRL = 5)
		Cavendish			Laporte Way, Luton,		imazalil 0.4 (MRL = 2)
5617/2017	16/06/2017	Bananas	Colombia	SH Pratts & Co	Bedfordshire LU4 8EN	None stated	thiabendazole 0.3 (MRL = 5)
					High Cross Lane East, Little		azoxystrobin 0.03 (MRL = 2)
5544/2017	03/07/2017	Bananas	Costa Rica	Winfresh	Canfield, Dunmow, Essex, CM6 1TH	Del Monte	myclobutanil 0.1 (MRL = 2)
5545/2017	03/07/2017	Bananas	Dominican Republic	Winfresh	High Cross Lane East, Little Canfield, Dunmow, Essex, CM6 1TH	Del Monte	None were detected above the set RL
5546/2017	03/07/2017	Bananas	Dominican Republic	Winfresh	High Cross Lane East, Little Canfield, Dunmow, Essex, CM6 1TH	Del Monte	None were detected above the set RL
5547/2017	03/07/2017	Bananas	Dominican Republic	Winfresh	High Cross Lane East, Little Canfield, Dunmow, Essex, CM6 1TH	Del Monte	None were detected above the set RL

Carrots: residues found during May 2017

Sample ID	Date of Sampling	Description	Country of Origin	Distributor	Address	Brand Name	Pesticide residues found in mg/kg (MRL)
5508/2017	08/05/2017	Nairobi Carrots	UK	Alan Bartlett & Sons	Great Acre Fen, Chatteris, Cambridgeshire PE16 6EG	None stated	boscalid 0.01 (MRL = 2)
5509/2017	15/05/2017	Nairobi Carrots	UK	Alan Bartlett & Sons	Great Acre Fen, Chatteris, Cambridgeshire PE16 6EG	None stated	boscalid 0.01 (MRL = 2)
5510/2017	18/05/2017	Nairobi Carrots	UK	Alan Bartlett & Sons	Great Acre Fen, Chatteris, Cambridgeshire PE16 6EG	None stated	linuron 0.01 (MRL = 0.2)
5635/2017	08/05/2017	Chantenay Carrots	UK	Capespan International Ltd	The Maidstone Studios, New Cut Road, Maidstone, Kent ME14 5NZ	None stated	azoxystrobin 0.01 (MRL = 1) boscalid 0.08 (MRL = 2) difenoconazole 0.01 (MRL = 0.4) iprodione 0.02 (MRL = 10) tebuconazole 0.07 (MRL = 0.4)

Raisins: residues found between June – July 2017

Sample ID	Date of Sampling	Description	Country of Origin	Distributor	Address	Brand Name	Pesticide residues found in mg/kg (MRL)
5773/2017	04/07/2017	Sultanas and Raisins	Turkey	Fruity Packs	Bretts Transport Ltd. Guyhirn, Wisbech, Cambridgeshire PE13 4AG	Fruity Packs	boscalid 0.03 (MRL = 25) indoxacarb 0.03 (MRL = 10) iprodione 0.01 (MRL = 100) lambda-cyhalothrin 0.05 (MRL = 1) metalaxyl (sum) 0.05 (MRL = 10) pyrimethapil 0.2 (MRL = 25)
5774/2017	04/07/2017	Sultanas and Raisins	Turkey	Fruity Packs	Bretts Transport Ltd. Guyhirn, Wisbech, Cambridgeshire PE13 4AG	Fruity Packs	pyrimethanil 0.2 (MRL = 25) azoxystrobin 0.01 (MRL = 15) boscalid 0.06 (MRL = 25) chlorantraniliprole 0.02 (MRL = 5) cyprodinil 0.2 (MRL = 15) fludioxonil 0.05 (MRL = 25) fenvalerate (sum) 0.04 (MRL = 1.5) indoxacarb 0.02 (MRL = 10) iprodione 0.06 (MRL = 100) lambda-cyhalothrin 0.03 (MRL = 1) metalaxyl (sum) 0.03 (MRL = 10) methoxyfenozide 0.04 (MRL = 5) pyrimethanil 0.3 (MRL = 25)
5775/2017	04/07/2017	Sultanas and Raisins	Turkey	Fruity Packs	Bretts Transport Ltd. Guyhirn, Wisbech, Cambridgeshire PE13 4AG	Fruity Packs	boscalid 0.2 (MRL = 25) cyprodinil 0.2 (MRL = 15) fluopyram 0.01 (MRL = 7.5) indoxacarb 0.02 (MRL = 10) imidacloprid 0.03 (MRL = 5) iprodione 0.1 (MRL = 100) methoxyfenozide 0.04 (MRL = 5) pyrimethanil 0.2 (MRL = 25)
5725/2017	13/06/2017	Sultanas and Raisin	Turkey	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	azoxystrobin 0.01 (MRL = 15) boscalid 0.09 (MRL = 25) cyprodinil 0.2 (MRL = 15) fludioxonil 0.01 (MRL = 25) indoxacarb 0.03 (MRL = 10) iprodione 0.2 (MRL = 100) lambda-cyhalothrin 0.02 (MRL = 1) metalaxyl (sum) 0.03 (MRL = 10) methoxyfenozide 0.07 (MRL = 5) pyrimethanil 0.3 (MRL = 25) tebuconazole 0.01 (MRL = 2.5)

Sample ID	Date of Sampling	Description	Country of Origin	Distributor	Address	Brand Name	Pesticide residues found in mg/kg (MRL)
5727/2017	21/06/2017	Raisins	Turkey	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	cyprodinil 0.2 (MRL = 15) fludioxonil 0.02 (MRL = 25) indoxacarb 0.04 (MRL = 10) iprodione 0.4 (MRL = 100) lambda-cyhalothrin 0.03 (MRL = 1) methoxyfenozide 0.07 (MRL = 5) pyrimethanil 0.2 (MRL = 25)
5734/2017	28/06/2017	Raisins	Turkey	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	azoxystrobin 0.02 (MRL = 15) boscalid 0.1 (MRL = 25) cyprodinil 0.08 (MRL = 15) fenbutatin oxide 0.1 (MRL = 10) fenvalerate (sum) 0.01 (MRL = 1.5) indoxacarb 0.01 (MRL = 10) iprodione 0.4 (MRL = 100) lambda-cyhalothrin 0.03 (MRL = 1) metalaxyl (sum) 0.05 (MRL = 10) methoxyfenozide 0.08 (MRL = 5) myclobutanil 0.01 (MRL = 5) pyrimethanil 0.2 (MRL = 25) tebuconazole 0.02 (MRL = 2.5)

Sample ID	Date of Sampling	Description	Country of Origin	Distributor	Address	Brand Name	Pesticide residues found in mg/kg (MRL)
	• •						boscalid 0.4 (MRL = 6)
							bupirimate 0.07 (MRL = 2)
							ethirimol 0.02 (MRL = 0.2)
							fenamidone 0.02 (MRL = 0.04)
		Malling					fenhexamid 0.9 (MRL = 10)
5761/2017	21/06/2017	Centenary	UK	AJ & CI Snell	Windmill Hill, Harewood End,	None stated	mepanipyrim 0.03 (MRL = 3)
5701/2017	21/00/2017	Strawberries	UK	AJ & CI SHEII	Hereford HR2 8JS	None stated	myclobutanil 0.04 (MRL = 1)
		Slidwbernes					penconazole 0.01 (MRL = 0.5)
							pyraclostrobin 0.06 (MRL = 1.5)
							pyrimethanil 0.4 (MRL = 5)
							quinoxyfen 0.01 (MRL = 0.3)
							thiacloprid 0.06 (MRL = 1)
							boscalid 0.2 (MRL = 6)
				Littywood Farm Ltd	Moat House, Littywood Farm, Bradley, Stafford ST18 9DW		bupirimate 0.3 (MRL = 2)
							ethirimol 0.02 (MRL = 0.2)
							fludioxonil 0.03 (MRL = 4)
5760/2017	21/06/2017	Strawberries	UK			None stated	fenhexamid 0.2 (MRL = 10)
				Ltd			fenpyrazamine 0.3 (MRL = 3)
							myclobutanil 0.03 (MRL = 1)
							pyraclostrobin 0.03 (MRL = 1.5)
							thiacloprid 0.01 (MRL = 1)
				Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	azoxystrobin 0.02 (MRL = 10)
							bupirimate 0.2 (MRL = 2)
							cyprodinil 0.1 (MRL = 5)
5722/2017	07/06/2017	Strawberries	UK				fludioxonil 0.08 (MRL = 4)
					······		fenhexamid 0.9 (MRL = 10)
							fluopyram 0.2 (MRL = 2)
							trifloxystrobin 0.1 (MRL = 1)
							azoxystrobin 0.02 (MRL = 10)
							cyprodinil 0.03 (MRL = 5)
						None stated	fludioxonil 0.04 (MRL = 4)
5725/2017	20/06/2017	Strowborrioo	UK	Minor Weir &	Altitude, 206 Deykin Avenue,		fenpyrazamine 0.02 (MRL = 3)
5735/2017	28/06/2017	Strawberries	UN	Willis Ltd	Witton, Birmingham B6 7BH	None stated	fluopyram 0.06 (MRL = 2)
							mepanipyrim 0.09 (MRL = 3)
							myclobutanil 0.04 (MRL = 1)
							trifloxystrobin 0.05 (MRL = 1)

Strawberries: residues found Between June – July 2017

Sample ID	Date of Sampling	Description	Country of Origin	Distributor	Address	Brand Name	Pesticide residues found in mg/kg (MRL)
5739/2017	19/07/2017	Strawberries	Belgium	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	boscalid 0.09 (MRL = 6) dimethomorph 0.01 (MRL = 0.7) mepanipyrim 0.06 (MRL = 3) pyraclostrobin 0.01 (MRL = 1.5)
5759/2017	21/06/2017	Sonata Strawberries	UK	Place UK Ltd	Church Farm, Tunstead, Norwich, Norfolk NR12 8RQ	None stated	azoxystrobin 0.03 (MRL = 10) boscalid 0.1 (MRL = 6) fludioxonil 0.03 (MRL = 4) fenhexamid 0.1 (MRL = 10) fluopyram 0.04 (MRL = 2) mepanipyrim 0.04 (MRL = 3) myclobutanil 0.02 (MRL = 1) pyraclostrobin 0.02 (MRL = 1) tebufenpyrad 0.01 (MRL = 1)

Sugarsnap Peas: residues found Between June – July 2017

Sample ID	Date of Sampling	Description	Country of Origin	Distributor	Address	Brand Name	Pesticide residues found in mg/kg (MRL)
5723/2017	13/06/2017	Sugar Snap Peas	UK	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	cyprodinil 0.03 (MRL = 2) fludioxonil 0.01 (MRL = 1)
5730/2017	13/06/2017	Sugar Snap Peas	UK	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	cyprodinil 0.02 (MRL = 2) fludioxonil 0.01 (MRL = 1)
5731/2017	28/06/2017	Sugar Snap Loose	Zimbabwe	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	None were detected above the set RL
5732/2017	28/06/2017	Sugar Snap Loose	UK	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	None were detected above the set RL
5733/2017	28/06/2017	Sugar Snap Loose	China	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	cyromazine 0.1 (MRL = 5) iprodione 0.04 (MRL = 2)
5738/2017	12/07/2017	Sugar Snap	UK	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	None were detected above the set RL

Sweet peppers: residues found during June 2017

Sample ID	Date of Sampling	Description	Country of Origin	Distributor	Address	Brand Name	Pesticide residues found in mg/kg (MRL)
5636/2017	13/06/2017	Mini Sweet Bite Peppers	Spain	Capespan International Ltd	Maidstone Studios, New Cut Road, Mainstone, Kent ME14 5NZ	None stated	triadimefon & triadimenol 0.02 (MRL = 1)
5637/2017	20/06/2017	Mini Sweet Bite Peppers	Spain	Capespan International Ltd	Maidstone Studios, New Cut Road, Mainstone, Kent ME14 5NZ	None stated	None were detected above the set RL
5638/2017	20/06/2017	Mini Sweet Bite Peppers	Spain	Capespan International Ltd	Maidstone Studios, New Cut Road, Mainstone, Kent ME14 5NZ	None stated	None were detected above the set RL
5639/2017	26/06/2017	Mini Sweet Bite Peppers	Spain	Capespan International Ltd	Maidstone Studios, New Cut Road, Mainstone, Kent ME14 5NZ	None stated	fluopyram 0.02 (MRL = 2) triadimefon & triadimenol 0.06 (MRL = 1)
5640/2017	26/06/2017	Mini Sweet Bite Peppers	Spain	Capespan International Ltd	Maidstone Studios, New Cut Road, Mainstone, Kent ME14 5NZ	None stated	triadimefon & triadimenol 0.02 (MRL = 1)
5641/2017	26/06/2017	Mini Sweet Bite Peppers	Spain	Capespan International Ltd	Maidstone Studios, New Cut Road, Mainstone, Kent ME14 5NZ	None stated	triadimefon & triadimenol 0.06 (MRL = 1)

Tomatoes: residues found Between May – July 2017

Sample ID	Date of Sampling	Description	Country of Origin	Distributor	Address	Brand Name	Pesticide residues found in mg/kg (MRL)
5606/2017	09/05/2017	Cocktail Tomatoes	Spain	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	chlorantraniliprole 0.01 (MRL = 0.6)
5608/2017	17/05/2017	Cocktail Tomatoes	Spain	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	None were detected above the set RL
		Cocktail	the	Minor Weir &	Altitude, 206 Deykin Avenue,		chlorantraniliprole 0.02 (MRL = 0.6)
5609/2017	18/05/2017	Tomatoes	Netherland s	Willis Ltd	Witton, Birmingham B6 7BH	None stated	fluopyram 0.07 (MRL = 0.9)
		Cocktail	the	Minor Weir &	Altitude, 206 Deykin Avenue,		fluopyram 0.04 (MRL = 0.9)
5719/2017	24/05/2017	Tomatoes	Netherland s	Willis Ltd	Witton, Birmingham B6 7BH	None stated	pyridalyl 0.02 (MRL = 1)
5720/2017	07/06/2017	Plum Cocktail Tomatoes	Spain	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	None were detected above the set RL
5726/2017	13/06/2017	Plum Cocktail Tomatoes	Spain	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	None were detected above the set RL
5728/2017	21/06/2017	Cocktail Tomatoes	the Netherland s	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	chlorantraniliprole 0.02 (MRL = 0.6)
5736/2017	03/07/2017	Cocktail Tomatoes	the Netherland s	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	None were detected above the set RL
5737/2017	03/07/2017	Cocktail Tomatoes	the Netherland s	Minor Weir & Willis Ltd	Altitude, 206 Deykin Avenue, Witton, Birmingham B6 7BH	None stated	None were detected above the set RL

Contact Details

About this report: Helena Cooke Chemicals Regulation Division Health and Safety Executive Mallard House Kings Pool 3 Peasholme Green York YO1 7PX

helena.cooke@hse.gov.uk

About the SF&VS: Visit the Scheme's website at:

www.nhs.uk/Livewell/5ADAY/Pages/Schoolscheme.aspx

or email:

becky.farren@dh.gsi.gov.uk

About PRiF: Visit PRiF's website at:

https://www.gov.uk/government/collections/pesticide-residues-in-food-resultsof-monitoring-programme

Or email:

prif@hse.gov.uk