19th of September 2012 – Beijing

 Context and objectives of the Belgian low carbon studies

- Adapting the Low carbon 2050
 Pathways model to another region
- Wallonia can reduce its emissions by 80 to 95% by 2050

Context and objectives of the Belgian low carbon studies

Adapting the Low carbon 2050 Pathways model to another region Wallonia can reduce its emissions by 80 to 95% by 2050

Many (EU) organizations analyze 2050 energy and climate scenarios

ENERGY & CLIMATECHANGE

2050 Pathways Analysis

ROADMAP 2050

Climate Foundation

KLIMAKOMMISSIONEN

NOT EXHAUSTIVE

WWF

COMMUNICATION DE LA COMMISSION AU PARLEMENT EUROPÉEN, AU CONSEIL, AU COMITÉ ÉCONOMIQUE ET SOCIAL EUROPÉEN ET AU COMITÉ DES RÉGIONS

Feuille de route vers une économie compétitive à faible intensité de carbone à l'horizon 2050

France, Germany, United Kingdom Pathways towards a low-carbon economy in 2050

Inited Kingdom a low-carbon 100% RENEWABLE ENERGY BY 2050

-eurelectric

Power Choices

PATHWAYS TO CARBON-NEUTRAL ELECTRICITY IN EUROPE BY 2050 Trajectoires 2020 - 2050 vers une économie sobre en carbone

Source: Organizations' websites, Climact

5

Belgian emissions in 2010 are relatively equally distributed between power, industry, buildings and transport

GHG emissions in Belgium, 2010, %

100% = 132 MtCO₂e

Belgium has reduced its emissions by ~8% since 1990

GHG emissions in Belgium, MtCO2e per year

Belgium needs to massively increase its yearly GHG reduction pace in order to reach its objectives in 2050

GHG emissions in Belgium, MtCO₂e per year

Key objectives of the project « A Low Carbon Roadmap for Belgium »

Understand how to reach 2050 low carbon objectives

- Develop low carbon scenarios integrating existing technologies
- Clarify the required implementation range for key indicators

Engage key stakeholders

 Insure the development of pragmatic and realistic conclusions in strong interaction and with significant buy-in from key stakeholders

Support political decision making

- Encourage a common vision for all
- Support short, medium and long term policies

Context and objectives of the Belgian low carbon studies

Adapting the Low carbon 2050 Pathways model to another region

Wallonia can reduce its emissions by 80 to 95% by 2050

A stakeholders-based approach can be used to develop the model

SOURCE: Climact

6 Many organizations and experts were involved

Interactions

Public organisations	 Project initiated by the regional and federal organisations Project is followed by an "technical support committee"
	 High level expert committee set up to give general direction to the study
Industry	 Jean-Pascal van Ypersele, Vice-président du GIEC Damien Ernst, Université de Liège Isabelle Chaput, présidente Climate Platform FEB-UWE-VOKA-BECI Union wallonne des entreprises
Civil organisations	 EDORA FEBEG ELIA, gestionnaire du réseau de transport de l'électricité ORES, gestionnaire du réseau de distribution de l'électricité
Academic experts	 WWF Belgique DECC (Dpt énergie et changement climatique britannique) Mike Hogan, ancien directeur ECF en charge de la "2050 Roadmap"
	• Working groups and specific consultations on key sectors
Consumers	 Interactions through the communication and the webtool

6 Many organizations and experts were involved

Comité	AWAC	A. Fourmeaux, G. Liebecq, A. Cuvelier				
d'accompagnement	Cabinet Henry	D. Defrise				
	Cabinet Nollet	J. Decrop				
	SPW	M. Schippers				
	SPF	V. van Steenberghe (invité)				
	CWEDD	O. Gulitte				
Comité d'experts	ECF	R. Collyer, D. Acke				
	DECC	J. Kiso				
	RAP	M. Hogan				
	UCL	JP van Ypersele				
	ULG	D. Ernst				
	IEW	M. Cors				
	WWF	S. Vandenplas, J. Vandermosten				
	UWE	D. Paquot, A. Lebrun				
	EDORA	N. Laumont				
	Plateforme Climat	I. Chaput				
	FEBEG	J. Herremans				
		· · · •				

3 The set of input and levers is flexible and can be easily adapted based on the relevant local characteristics

Source: Climact

3 4 ambition levels are defined for each lever

3 A flexible model in Excel, usable by many, interface can be modified

	De	mand				1	2	3	4		S
	GDP			Yearly Growth assumption	20	•			F.		Ener
		Transport	XII.a	Domestic passenger transport			-				
	ransport			(i) Behaviour	25				Þ		
				(ii) Energy efficiency	25	•		Ē	Þ		
IRANSPORT				(iii) Electrification	35	٠		_	÷.		
			XII.b	Domestic freight	35	•			÷.		
	⊢ ⊢	International	XII.c	International aviation	25	•			Þ		
		Transport	XII.e	International shipping [UNUSED]		•			Þ		
			IX.a	Domestic space heating and hot water							
	s	Residential Heating		(i) Heating / cooling comfort level	2				Þ		
	몽			(ii) Housing thermal efficiency	3				Þ		
HOUSEHOLDS	Ĕ			(iii) Electrification level	3				Þ		
	l St			(iv) Level of innovative heating technolo	3	•			Þ		
	P P	Residential	X.a	Domestic lighting, appliances, and cook	ing						
	-	Lighting &		(i) Demand / Efficiency	2	•	-111		۴		
		Appliances		(ii) Electrification	3	•		III	Þ		
			IX.c	Commercial heating and cooling							
		Commercial		(i) Heat / cooling demand	2	•	-111		۴		
		Heating		(ii) Electrification level	3	•		III	Þ		
				(iii) Level of innovative heating technolo	3	•		III	Þ		
		Commercial	X.b	Commercial lighting, appliances, and ca	terir	g					
		Lighting &		(i) Demand / Efficiency	2	•	-111		۴		
		Appliances		(ii) Electrification	3	•		III	Þ		
			XI.b	Steel Industry							
				(i) Growth of industry output	20				•		Ele
				(ii) Energy Intensity of Output	30	•	_		Þ		
			XI.c	Cement Industry							
	S	Industry		(i) Growth of industry output	20		6		•		
	SS			(ii) Energy Intensity of Output	30	•	-		+	110 TW	h 👘
	ë		XI.d	Lime Industry							
BUSINESS	Busi			(i) Growth of industry output	20	٠	6		•		
				(ii) Energy Intensity of Output	30	٠	-				G av
			XI.e	Glass Industry						90 TW	h Nois
				(i) Growth of industry output	20	٠			•		EMIS
				(ii) Energy Intensity of Output	30	•			•		ENE
			XI.f	Chemicals Industry							
				(i) Growth of industry output	20	•			•	70 TW	h
				(ii) Energy Intensity of Output	30	•			•		
			XI.g	Paper Industry							
				(i) Growth of industry output	20	•	F		•		
				(ii) Energy Intensity of Output	30	•	-		•		
			XI.a	Industrial processes							
				(iii) Carbon Capture & Storage	30	•		6	÷.		

SOURCE: DECC, Climact

4 Scenarios can be built extremely flexibly combining various levels of the key parameters

Outputs are varied based on multiple parameters and can be adapted easily in the Excel model

SOURCE: Climact

5

⁵ One of these impacts is the cost of electricity, which we added to the DECC model

⁵ These outputs can be used to clearly illustrate the impact of the low carbon scenarios

SOURCE: Climact

25

6 A web version which can easily build on the excel tool

WWW. WALLONIEBASCARBONE2050.BE

Context and objectives of the Belgian low carbon studies

Adapting the Low carbon 2050 Pathways model to another region

Wallonia can reduce its emissions by 80 to 95% by 2050

SOURCE: Climact

Our middle-ground scenario shows significant reductions in total primary energy demand, with a significant shift to renewable energy sources

SOURCE: Climact

Scénario C

Julien Pestiaux – jpe@climact.com

