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Glossary/ Acronyms

Active Travel Physically active modes of transport. Traditionally this means walking and cycling
but can also include electric assist bikes (e-bikes), scooters, roller skates/blades, and
other such modes.

CRA Comparative Risk Assessment — a relatively simple health impact modelling method,
alternatives are life tables (including proportional multistate life table, PMSLT) and
longitudinal microsimulation.

DFT Department for Transport.

DALY Disability Adjusted Life Year. Measure of health burden compared against age
specific ‘ideal’ life expectancy. DALY = YLD + YLL.

Domain Physical activity is traditionally conceptualised as occurring across multiple domains
e.g. leisure and occupational.

DRF Dose response relationship. How a change in exposure changes the risk of an
outcome over a range of exposure values.

GBD Global Burden of Disease (provides data for all countries in the world and on age and
gender specific burden (YLLs and YLDs) from a vast range of diseases. For England
we have regional data available.

HEAT The World Health Organization Health Economic Assessment Tool

HSE Health Survey for England. HSE is an annual survey looking at the health and
lifestyles of people all over the England.

ICT Impacts of Cycling Tool (http://www.pct.bike/ict/) (Department for Transport
funded project with Cambridge as lead academic institution).

Lag The time between a change in exposure and a change in the risk of disease.

Life Table A method for calculating changes to life expectancy following changes in age specific
risk of death.
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1. Introduction

Metabolically Equivalent Tasks. A body mass adjusted measure of energy
expenditure.

the MET rate above the resting metabolic rate, i.e. the MET rate minus 1. This avoids
including the background resting rate when estimating the volume of PA. Value of 1
is the resting metabolic rate.

Medical Research Council.
Moderate to vigorous physical activity.

National Travel Survey designed to monitor long-term trends in personal travel and
to inform the development of policy.

Non-vigorous physical activity.
Physical Activity.

Population Attributable Fraction. PAF is the proportional reduction in population
disease or mortality that would occur if exposure to a risk factor were reduced to an
alternative ideal exposure scenario

Propensity to Cycle Tool (http://www.pct.bike/) (Department for Transport funded
project with Cambridge as lead academic institution).

Public Health England.

Proportional Multi State Life Table. An alternative to CRA. Preferable for allowing for
competing causes of death and thus for calculating events over time. Allows
incorporation of morbidity unlike a traditional life table.

Quality Adjusted Life Year.

Relative Risks quantify the strength of effect of an exposure on an outcome.
Value of a Statistical Life (the metric currently used in WebTAG and HEAT).
Value of Statistical Life Year (e.g. DALY or QALY).

Transport analysis guidance from DfT.

World Health Organization.

Years Lived with Disability. One of two elements of DALY, together with YLL.

Years of Life Lost. One of two elements of DALY, together with YLD.

This report describes a method to estimate the health benefits of walking and cycling interventions

through physical activity. Method is illustrated by calculating impact for one scenario. The overall

aim of this document is to provide input into the refresh of the WebTAG guidance for England on

physical activity.

Before describing the method this report will provide background on what we know about physically

activity and health; physical activity, transport and health; and how the health benefits of transport

related walking and cycling are calculated (Part 2). Part 3 summarizes current methods used in



WebTAG and the WHO HEAT tool. Part 4 described proposed method to estimate walking and
cycling related economic benefits and part 5 summarizes our recommendations and future research
ideas. In the Appendix we describe alternative dose-response functions, uncertainties and run
sensitivity analyses.

This report is accompanied by spreadsheet model that follows the recommendation from part 4 and
Analytica model that contains all sensitivity analysis from Appendix.

2. Literature review

This section summarizes the current state and direction of the science on physical activity and
health. The focus is on evidence relevant for estimate physical activity related health benefits from
changes to how people travel. The review brings out issues that cannot be included within the
forthcoming WebTAG update but which may be of relevance for future developments.

2.1. Physical activity and health

Physical activity is a complex multidimensional behaviour, which includes several sub-dimensions;
frequency, duration, and rate of energy expenditure required to produce muscular work. The
epidemiology of physical activity has developed over the past 60 years, from the first aetiological
observations of differential rates of coronary heart disease in London bus drivers and conductors
(Morris et al., 1953) to cohort studies linking individual exposures and outcomes (Paffenbarger et al.,
1978) (Consortium, 2012; Wen et al., 2011). It is now widely accepted that an inverse association
exists between physical activity and several disease outcomes, and a recent meta-analysis estimated
physical inactivity to be responsible for 5.3 (of 57) million deaths worldwide, similar to the burden of
tobacco smoking and obesity (Lee et al., 2012).

The majority of the evidence linking PA to health outcomes comes from cohort studies of self-
reported PA and objectively measured health outcomes. In these studies groups of people answer
guestions about their PA and are then followed up over time allowing us to compare the disease
event rates in people with different levels of PA. The findings from the studies are statistically
adjusted to allow for other differences between the groups that might affect disease risk, e.g.
smoking. Systematic reviews use explicit methods to search the research literature and include all
the relevant studies of sufficient size and quality. These studies can then be quantitatively
synthesised in meta-analysis in which results from multiple studies are statistically combined
together to reduce the uncertainty one gets with any one study.

Studies combining a meta-analysis within a systematic review provide the best evidence linking
physical activity to each health end point. Some meta-analyses include methods to estimate the
dose response relationship, i.e. how much a unit change in PA leads to a change in the risk of
disease.

A recent systematic review with meta-analysis found that physical activity was associated with lower
risks of adverse outcomes including all-cause mortality, cardiovascular disease, ischemic heart,
disease, stroke, depression, dementia, type 2 diabetes, total cancer, colon cancer, breast cancer, and
lung cancer (Golubic, 2014).



Our confidence in a causal relationship between changes in PA and health outcomes is further
enhanced by studies that have randomly assigned people to PA interventions. Such trial evidence is
in principle stronger than observational evidence because other factors that differ between the
groups should be averaged out through the process of randomisation. However, most of the
randomised trials on physical activity are small and only look at shorter term outcomes. They are
often conducted in high risk groups and in some cases combine physical activity interventions with
other lifestyle interventions, such as dietary interventions. Broadly these studies show that
increased physical activity reduces cardio-metabolic risk factors for chronic disease (such as blood
pressure, cholesterol, and blood glucose) and also the risk of developing diabetes in high risk groups.
(e.g. (Gillies et al., 2007)).Thus while these studies are of value in supporting a causal relationship
they are of limited use in providing values that can be used in health impact modelling of changes to
transport in the general population.

On the other hand cohort studies provide information about these relationships in the general
population, and across a whole range of exposures. One limitation of this literature, as mentioned
previously, is that the evidence from cohort studies overwhelmingly comes from self-reported PA.
The many different tools used to measure PA vary considerably in what they cover and how active
they find populations to be. However, we are beginning to see an evidence based emerging linking
objectively measured PA to health endpoints. Already we have some evidence linking objectively
measured PA to cardio-metabolic risk factors. The literature on hard disease end points will increase
rapidly over the next few years due to studies such as UK Biobank in which objective PA has just
been recorded on 100,000 participants (using accelerometers). Objective measures of activity
typically include continuous monitoring over a week (which can be argued to be reasonably
representative for that person’s activity). As this evidence becomes available it will vastly improve
the precision by which we can link PA to health outcomes. The overall picture of benefits from being
physically active on the risk of chronic diseases will not change but the exact benefit from different
doses of PA and the range of diseases associated may change, most likely towards bigger effects as
measurement error in physical activity behaviours tends to attenuate associations.

However, even when we have objective data linking PA to hard health end points there will still be a
challenge in using this for modelling population health outcomes. This is because our estimates of
how active real world populations are will still be largely derived from self-report and other limited
measures employed in routine surveillance systems.

One way to assemble a “complete record” from this self-report data is to map subjective data
sources to objective data. This can be done in large datasets with both subjective and objective data.
Based on this we can then map both the estimates used in the cohort studies and the estimates we
have for the population under consideration. This is particularly important in the case of transport
where we may be using representative travel surveys to estimate population levels of active travel.
While such surveys are good at capturing walking and cycling behaviours they differ significantly
from the surveys used to inform the cohort study estimates of the association between PA and
disease risk.

Within the next couple of years it should be possible to do this by standardising the different self-
report tools to an objective measure. This could perhaps be analogised to upscaling a TV signal from
standard or high definition to 4K resolution; it should appear to be the same program (answer) and



will gradually improve as 4K becomes the broadcast standard. As objective data from the cohort
studies becomes available this can then become the source of our information on the dose-response
relationships between PA and the various health outcomes. Eventually it should become possible to
use new techniques to directly estimate the PA and change in PA of free-living whole populations.

2.2. Domains of physical activity

Physical activity can be conceptually separated out into different domains, usually leisure, work, and
household. Transport is sometimes described as a separate domain and sometimes as part of
leisure.

The self-report instruments used to measure physical activity were designed to facilitate the
cognitive process required for recall, and therefore typically only include a small subset of the
activities a person actually does, and in many cases only leisure-time activities. Occasionally,
information about activities for transport is analysed separately or included in the summary measure
for leisure-time activity but often not considered at all. It is also the case that activities that are used
regularly by a minority in most countries, such as cycling, have a smaller evidence base than
activities used more widely, such as walking. It is also the case that work related activity and some
household related activities have traditionally not been measured well.

Although further research is still needed it is likely that the total amount of PA that an individual
undertakes is more important than their activity in any one given domain.

2.3. Measuring of physical activity

The total volume of PA can be measured as METs hour or mMET hours per week. The MET
component is a measure of the intensity of an activity, the rate of energy turnover per unit time; we
multiply by time (hours per week) to calculate total energy spent in a week. When the focus is
physical activity we used the unit mMMET as the measure of the intensity of an activity; this only
considers the energy turnover rate over and above the resting metabolic rate. Thus this allows us to
combine time spent in activities of different intensity into one metric.

If we accept that there is a non-linear relationship between PA and health outcomes then to
estimate how a change in PA leads to a change in disease risk requires estimating the total volume of
PA of the individual, not just the volume in one domain.

Equally the observation of non-linearity also makes it more important that we accurately map the
different tools used to measure PA in the population of interest to that used in the cohort studies.
For example if one tool estimates the same population is twice as active as another then any change
in the activity of the population will be estimated to produce a smaller change in disease risk when
using the tool that gives the higher activity estimates.

Thus, whilst using non-linear dose response relationships is more realistic, it does require more care
when applied to prevalence data or it may not produce reliable estimates of impact.

2.4. Dose response meta-analyses studies

Traditionally most of the meta-analyses looking at the association of PA and disease end points have
reported a single effect estimate comparing high versus low activity populations. However, when



modelling the health impacts of changes to active travel we need to know not just about the
difference between high and low exposure groups but what the incremental benefits of a small
change in PA are. The method for combining studies to estimate the association between different
levels of PA and health outcomes is called a dose-response meta-analysis.

There are comparatively few dose response meta-analyses of PA. The MRC Epidemiology Unit is
currently undertaking a series of dose-response meta-analyses looking at the relationship between
leisure time PA and various diseases. We have published the analyses for type 2 diabetes in
Diabetologia (see Figure 1 below). The remaining analyses on cardio-vascular diseases, cancer,
mental health, and mortality will be completed over the next few months. The approach used in
these meta-analyses has been to attempt to standardise as many of the self-report measures as
possible to allow the inclusion of the largest possible number of studies in the final effect estimates.
Although requiring more assumptions this has advantages of providing a single estimate to use,
unlike other dose response meta-analyses that have produced multiple estimates based on different
ways of measuring PA (e.g. (Aune et al., 2015)).
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Figure 1: DRF relationship between LTPA and incidence of type 2 diabetes (Smith et al. 2016, Figure
2A).

Previously a systematic overview of the relationship between PA and health outcomes was
published in (Woodcock et al., 2009) and a dose response meta-analyses looking at the association
between walking and cycling and all-cause mortality were published in (Paul Kelly et al., 2014). The
estimates from these studies have formed the basis of a number of subsequent health impact
modelling studies (e.g. (Gotschi et al., 2015; Maizlish et al., 2013; Woodcock et al., 2014), including
the 2014 WHO HEAT tool (Kahlmeier et al., 2014).

The evidence from the largest individual studies and the dose response meta-analyses that have
been completed clearly suggests that the relationship between PA and health outcomes is non-linear
with the greatest benefits arising from increases in the least active people, e.g.(Wen et al., 2011,



Woodcock et al., 2011) (Aune et al., 2015)(Paul Kelly et al., 2014). This finding has important
implications for how we choose to model PA.

2.5. Physical activity benefits and age

Age is an important consideration when modelling the health impacts of changes to PA. Mortality
rates and the risk of most disease increase with age. However, the pattern is not uniform across all
diseases. For example dementia risk increases rapidly at older ages, while depression affects a much
wider age range.

If we use an impact metric based on counting deaths then a premature death at any age counts
equally. However, using a metric based on life years recognises that a death at a younger age will
result in more years of life lost than a death in old age. For morbidity it will depend on the disease
duration, i.e. if it is shorter than expected life expectancy. If it is shorter then age is immaterial to the
value of the health gain from averting the disease incidence.

The current use of mortality rates based on youth to middle age excludes the high death rates in the
old and the low death rates in the young. It is unclear how users of WebTAG version 2014 currently
handle behaviour change amongst older people and children. It might be suspected that they often
have little information on the age of the population changing behaviour. It is also likely that for most
cycling interventions behaviour change among older age groups is not the norm. Currently in
England around 9% of cycling trips by adults are by those aged 65 years or over, this compares with
17% in the Netherlands. However, walking is much more common at older ages and some policies
may affect age groups differentially.

Rather than using an average value that implicitly assumes no behaviour change amongst older
adults a better solution would the use scheme specific data or if not available routine data on who
walks and cycles at the moment. In the PCT we used routine data to apply age specific estimates
from the Census 2011 on the cycling population and for the Go Dutch scenario on the age structure
of Dutch cycle commuters. An approach that allowed inclusion of disease risk and mortality rates at
all ages would be stronger than one based on a mid-life average if it could be supported by data.

It should also be noted that cycling is more common among men and walking among women and
that men have higher mortality rates than women.

As well as older adults there is the more difficult question of how to include children. Thankfully
children do not generally suffer from the diseases associated with inactivity. Furthermore among the
few who do suffer from the same diseases the aetiology may differ (e.g. higher genetic component)
and it cannot be assumed that increases in PA would reduce the disease risk to the same extent.

However, increasing PA in children is a part of the government’s Cycling and Walking Investment
Strategy and so is seen as important in policy and has public support.

Although clinical disease is unusual inactivity can still lead to a worse cardio-metabolic risk profile in
childhood and adolescence. A systematic review found that there was moderate evidence that
higher physical activity was associated with lower overweight and obesity, better motor skill
development, and cognitive development in infants; while in toddlers there was moderate evidence
of improved bone and skeletal health; and in pre-schoolers there was evidence of lower overweight



and obesity, psychosocial health, and cardio-metabolic indicators (Timmons et al., 2012). Another
systematic review, in older children, found evidence that physical activity reduced cholesterol, blood
pressure, overweight and obesity, potentially improved bone mineral density, and may reduce risk
of depression (Janssen and Leblanc, 2010). A pooled analysis of objectively measure PA data from
multiple studies found that higher PA in children aged 4 to 18 was associated with improved cardio-
metabolic risk factors but not with a lower waist circumference (Ekelund et al., 2012).

It is also likely that PA at a young age has an influence on behaviour in middle age, as habits are
maintained or re-established later in life. However, modelling long term effects comes with
considerable uncertainty, and will be very sensitive to the assumptions made on the maintenance of
such behaviour. Furthermore, discounting will reduce the value of any such benefits.

Values used in economic appraisal come in the main from willingness to pay. Thus it may be
appropriate for the future development of appraisal to look for alternative ways to give an economic
expression the widely held view that children being active and not overweight is valuable.

2.6. Time Lags

The cohort studies that form the majority of the evidence base for PA typically measure PA at one
point in time and then track the occurrence of health outcomes prospectively thereafter. These
analyses implicitly assume that each individual remain at that exposure level for the duration of
follow-up. Thus they tell us little about the time lag between a change in PA and a change in disease
risk. Overall the evidence on the effects of change of PA is limited. The evaluation of exposure
change requires repeated measurement of the exposure. Unfortunately even when we do have
multiple measurements any difference between two measurements is a function both of true
change over the time period plus a not insignificant error component which generally leads to an
attenuation of the effect.

Currently WebTAG 2014 and HEAT assume a build up to full reduction in risk of premature death
occurs over five years. In an earlier modelling study (Jarrett et al., 2012) we assumed a 3-2 year lag
period before 50% of the effect on new cases was achieved (8 years before full effect achieved). For
depression, ischaemic heart disease, and cerebrovascular disease, we assumed a delay of 2 years
before 50% of the effect on new cases was achieved (6 years before full effect achieved). For
dementia, breast cancer, and colon cancer, we assumed a delay of 17 years before 50% of the effect
on new cases was achieved (20 years before full effect achieved). All-cause mortality is likely to be a
combination of the different diseases, with the majority of the reduction in events coming from
changes in cardiovascular disease.

While the cohort studies do not provide direct evidence there is some indication from other sources
that benefits occur relatively quickly. If all other factors were kept constant (including diet and
resting metabolic rate), increasing PA by a 20-min brisk walk (4 METs), it would take a 75-kg person
about 3 months to lose 1 kilogram of body fat. There are also exercise intervention studies in people
at high risk. Generally these have found changes in cardio-metabolic risk factors occur in a matter of
months e.g.(Dickinson et al., 2006)(Umpierre et al., 2011). However, these are insufficient to provide
a robust evidence base for health impact modelling of hard disease end points in the general
population.



With intervention studies in the general population the situation is even more difficult as the
affected population will change over the duration of the intervention.

2.7. Transport & physical activity

Transport provides an important opportunity for physical activity. Walking is already the most
popular form of activity and is often maintained into older ages (Strain et al., 2016) Walking has
been found to be the largest contributor to PA in all age groups and both sexes (apart from men 35-
44) (Bélanger et al., 2011), although the contribution is sensitive to the relative value placed on
different activities. (Roberts et al., 2016). Walking tends to increase with age in women. (Roberts et
al., 2016). Regional differences exist in PA in England, with lower activity levels in the North (Roberts
et al., 2016).

Cycling currently makes a much smaller contribution to population levels of PA, but it does make a
major contribution to the PA of those that use it. Although there is potential to increase both
walking and cycling in the population, cycling has considerably greater higher because of the low
base (in most places) and the greater distance which can be covered on a bike. The potential reach
of e-bikes could be greater still. However it does need to be recognised that achieving Dutch
propensity to cycle would (all other things being equal) result in less walking. An analysis of the
health benefits of the English population achieving the walking and cycling time of the Dutch and the
Swiss found similar benefits from achieving the high cycling and lower walking time of the Dutch as
with the high walking and medium cycling of the Swiss (G6tschi et al., 2015). This was not a
propensity analysis and so did not assume trip distances and numbers were a constant.

Recently stronger evidence is emerging that changes to the built environment can lead to mode shift
(Heinen et al., 2015) (Goodman, 2013) and increases in PA (Panter et al., 2015) (Goodman et al.,
2014). Findings from the Commuting and Health in Cambridge study suggest that increases in travel
related PA are not compensated by reductions in other areas.

2.8. Measuring health effects: Disability-adjusted life years (DALY)

Global Burden of Disease (GBD) studies provide three measures of disease burden YLLs, YLDs, and
DALYs. These metrics can all be described as health gap measures (Murray et al., 2000), that is the
gap between the health of a population as it is against a reference population. The simplest metric is
YLLs. For a given age group YLLs divided by deaths gives average expected life expectancy. YLDs are
more complicated being based on a disease weight and a disease duration. DALYs are the sum of
YLDs and YLLs.

The YLL and YLD values relates to the avoided events in one year. However, the benefits are then
accrued over time. Thus the benefits can be described as occurring in one accounting year. To give
an example if an average 40 year old person avoids dying in 2016 they gain an approximate extra 40
plus years of life. All of us must die but a death at any age from a preventable cause can be seen as
premature and policy should aim to reduce such deaths. Because the YLL is based on age specific life
expectancy this is recognised and there is a loss of life for a death at any age.

Traditionally in transport economics with a focus on road traffic injuries the relevant metric has been
premature deaths averted. However, with physical activity and changes affecting the kind of chronic



diseases that will eventually catch up with us all if we live long enough it may be more appropriate
to consider the amount of extra life that is gained from an intervention.

When modelling YLLs changes to YLLs and YLDs it needs to be noted that YLLs gained will not all be in
good health. Thus although there will be a direct reduction in YLDs through lower age specific risks
because life expectancy will increase there will also more people at older ages when risks are higher.
In consequence the number of people with a disease at one point in time may be higher or lower
(noting that the total population size is now also larger). Care therefore needs to be taken if one
adds YLD gains to YLLs without adjustment.

DALYs are not age weighted or discounted in the current version GBD. This followed considerable
debate and criticism of the discounting applied in earlier versions (Mathers et al., 2013). It would be
possible to apply discounting to YLLs as the length of time over which the benefit is accrued is
known. However, without data on the disease duration it would not be possible to apply to YLDs.
Age weighting would be one way to incorporate that years of life will not all be in good health and
could be retrospectively applied to the data.

DALYs and QALYs are based on different conceptual principles. As mentioned previously a DALY is a
measure of disease burden against a reference population and health gains are reductions in this
disease burden. A QALY is a measure of additional years gained moving forward with no reference
population. In practical applications the same value of a statistical life year has been applied to both
DALYs and QALYs. We would recommend that decisions on if this appropriate should be taken at a
cross departmental level.

2.9. Existing scientific health impact assessment models/assessment of active transport

Two recent systematic reviews, (Doorley et al., 2015)(Mueller et al., 2015) have reviewed and
synthesized the recent development in active travel health impact assessment research. Below is a
short summary of the key findings.

Mueller et al. (2015) reviewed studies conducting health impact assessment (HIA) of a mode shift to
active transport on grounds of associated health benefits and risks. They identified 30 studies of
which 18 were from Europe (four from UK), seven from US and five from Australia and New Zealand.
Most of the studies (28/30) estimated the health effects through physical activity. Traffic injuries
(21/30), air pollution (17/30) and noise (3/30) were other commonly estimated pathways. A variety
of health impact modelling approaches and indicators were used.

In all studies that included PA the benefits were greater than the harms and in all but one study the
physical activity benefits were main driving force behind the result (Figure 2 below). Mueller et al.
(2015) concluded that “net health benefits of active travel are substantial, irrespective of
geographical context”. However, it should be noted that almost all the studies were in high income
settings.
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Figure 2: Figure 2 from Mueller et al. (2015) study showing different health pathways contribution to
estimated health impact of a mode shift to active transportation for different studies.

Doorley et al. (Doorley et al., 2015) reviewed 19 studies, of which nine were considering pedestrian
and 17 cycling scenarios. They also found that the results of the studies were dominated by the
physical activity benefits. Of interest to this report they noted that the different approaches used to
estimate physical activity benefits can lead to substantially different results. Doorley et al. (Doorley
et al., 2015) identified that there is a need to further study and refine the relationship between
physical activity and health for modelling studies.

3. Active mode health effects — current methods
3.1. Current Active mode appraisal

The current version of WebTAG includes guidance on how to predict the change in the risk of
premature mortality due to active travel. The UK is ahead of most countries in including these
important impacts within appraisal. The health economic benefits typically make up a substantial
part of the business case for investing in walking and cycling. Thus improving the process for
generating these estimates and making sure they are based on the latest and best evidence is
critical.

The current approach to estimate active mode health benefits are described in TAG Unit A4.1 (Social
Impact Appraisal) and TAG Unit A5.1 (Active Mode Appraisal). Unit A5.1 gives guidance on how to
estimate and report impacts of active travel. Section 3 described the key impact of the active travel:
(i) physical activity impacts, (ii) absenteeism impacts, (iii) journey quality impacts, (iv) accident
impacts, (v) environmental impacts, (vi) decongestion and indirect tax impacts, and (vii) time saving
impacts on active mode users. Details on how to calculate these impacts are in different TAGs. For
example, the physical activity impacts (i) are described in TAG Unit A4.1. The appendix B describes
some examples on how to calculate different key figures.

The physical activity impacts are calculated by using the relative risks of 0.72 for cyclists and 0.78 for
pedestrians corresponding to 36 and 29 minutes of cycling and walking per day, respectively. These
relative risks are based on Andersen et al. 2000 and WHO 2011, and are adopted from the WHO



Health economic assessment tools (HEAT) for walking and for cycling. The relative risks for cycling
and walking above and below these durations are interpolated and extrapolated linearly as shown in
the Appendix B of the TAG Unit A5.1.

The physical activity impacts are calculated using the mortality rate of the age group 15-64 year old,
following the approach used in earlier version of the HEAT. The background mortality was assumed
to be 0.0024 deaths, based on average mortality rate by ONS 2007. Gender and age differences are
not directly taken into account. The economic impacts are calculated by multiplying the expected
deaths with the value of a prevented fatality (£1,643,572 in TAG Unit A5.1 appendix example). To
calculate the time spent walking and cycling, the cycling and walking speed are selected by the user
but are not assumed to affect the intensity of the physical activity (thus a faster speed will lead to a
shorter duration and smaller health benefit).

TAG Unit A5.1 also contains information on how to predict increase in the number of trips due to
investment and how to turn these estimates to cycling and walking times. In the example in the
appendix B new investment is assumed to generate 546 and cycling and 50 walking trip per day. To
estimate the number of individual affected, 90% of the trips are assumed to be part of a return
journey. The lengths of the trips are assumed to be 3.9 km and 1.15 km for cycling and walking trips,
respectively, based on NTS data. Just over one quarter (27.3%) are assumed to replace car trips. The
current approach also assumes 10% annual reduction in the walking and cycling after the initial
investment.

3.2. WHO HEAT-tool

WHOQ’s Health Economic Assessment Tools for walking and cycling (HEAT) is a tool developed to
support evidence based decision-making and caters in particular to transport planners with little or
no expertise on health matters and epidemiologic methods. HEAT is intended to be designed such
that it should be universally applicable requiring only very basic input data on (changes in) walking or
cycling. However, experience has found that users can sometimes still struggle with providing the
data required.

Users can enter the amount of walking or cycling in various formats (i.e. duration, distance, trips,
steps). Various input and/or default parameters then serve to convert the input data into estimates
of long term walking or cycling estimates (i.e. days cycled per year, number or people to benefit). All
parameters other than the input data on walking and cycling are provided as default values, with the
option for users to enter their own data. For assessments of differences (e.g. between scenarios) or
changes over time, the assessment is conducted twice.

The web interface does not allow users to enter the data in one page and simultaneously compare a
range of scenarios. Because walking and cycling are considered separately any mode shift between
these modes requires a separate HEAT calculation.

HEAT is being developed and continuously improved through an expert consensus process. At
consensus meetings, a larger group of external experts and the core group discuss the next steps
and aim to agree on key features and parameters of the new addition. The core group then tackles
the technical implementation based on the decisions at the consensus meeting.



The WebTag 2014 method is based on an older version of HEAT. The most relevant changes adopted
in the most recent version of HEAT are that current version uses relative risks for all-cause mortality
of 0.9 and 0.89 for 11.25METhrs/week of cycling and walking, respectively, based on a recent meta-
analysis of 14 studies on walking and 7 studies on cycling ((P. Kelly et al., 2014)). HEAT also provides
an option to distinguish three crude age groups (young, all, elderly), which will result in the use of
age-specific mortality rates. Aside from the updated RR estimates, this feature is likely to have the
largest influence on the results (depending on how much an assessed population deviates from the
general population in terms of age/mortality risk).

4. New proposed method

Below we will describe a new proposed method to estimate the health benefits of walking and
cycling interventions through physical activity. The method is illustrated by calculating impacts for
the same basic scenario as the one in WebTAG unit 5.1 (Active mode appraisal) document Example
Walking and Cycling Case Study in Appendix B (page 13 onward in the document). The attached
Spreadsheet model and the attached Analytica model uses this method to estimate physical activity
benefits for cycling and walking.

The main upgrades we proposed are:

e To estimate health benefits for five different age groups and for both gender separately. The
literature review and our earlier expertise (e.g. (Woodcock et al., 2014)) indicate that health
benefits of physical activity vary by gender and age and therefore we want to introduce
these for the calculation.

o The time spent walking and cycling is converted to METhs and the health benefits are
calculated based on changes in METhs per week. This method will allow further
development of the method by integrating different physical activities to same calculation.

e The RRs are based for the Kelly et al. meta-analysis that predicted cycling and walking
specific changes in all-cause mortality. Kelly et al. forms the basis of the 2014 update of the
WHO HEAT tool.

The main advantage of this approach is its simplicity. Mortality impact can be calculated without
information from background physical activities making the calculation simpler than in other
approaches (see appendix for illustration of alternative approaches). Method is also similar to the
HEAT tool, making results more comparable. It is also flexible allowing for future improvements.

4.1. Estimating demand for scenario

The scenario in WebTAG unit 5.1 described an investment project that would increase cycling and
walking. The project would start in year 2010 and be completed in 2012. Benefits are followed 20
years starting from the end of the project (until 2032). As described in Table B1 (WebTAG unit 5.1),
the investment project is estimated to increase usage with 546 new cycling trips and 50 new walking
trips per day. This is the main input data for the scenario.

From the number of new trips, the number of individuals affected by the project is calculated using
the same methods as described in WebTAG unit 5.1. For all new trips, 90% of the trips are assumed
to involve a return journey. Based on this assumption, the number of individuals affected by the
project is calculated with the following equation:



Individual users = (546 new cycling trips * (90% / 2)) + (546 trips * 10%) = 300 users.

This is the number of new users after the investment is done. In baseline we assume that number of
new users stay constant for the duration of the follow-up period In the Appendix we describe
sensitivity analysis that take both decrease and increase in usage into account.

Note: WebTAG unit 5.1 also assumed small increase in baseline number of cyclists and pedestrians
but this was not taken into account in these calculations.

4.2. Age and gender split

As described earlier in this report (chapter 2.5.), we wanted to take into account differences in
health benefits by age and gender. The literature review and our earlier expertise (e.g. Woodcock et
al., 2014) indicate that health benefits of physical activity vary by gender and age. Currently WebTAG
does not recommend taking into account age or gender differences in the calculation. However,
impacts are applied to mortality rates derived from a subset of the population (15-64 years old),
following a similar approach to the WHO HEAT tool (Kahimeier et al., 2014).

To estimate the age and gender distribution of the new cyclists and pedestrians, we multiplied the
number of new users by the average age and gender split of cycling and walking trips, estimated
from the National Travel Survey (NTS) (Table 1). The values in Table 1 are based on data analysis on
current trips with a) walking and b) cycling as the main mode, and they showed that 74% of the
cycling trips are done by males, and 55% by people in the age group 20-49. For walking, gender and
age differences are smaller.

Clearly it is better to use scheme specific data if this is available from e.g. an intercept survey. Users
also need to consider the nature of their intervention. For example an intervention targeted at
commuters will mainly those of working age.

Table 1: Gender and age split of the observed main-mode cycle and walking trips in England NTS
2012-14.

Cycling Walking

Age Male Female | Total Male Female | Total
group

0-19 16% 4% 20% 15% 15% 30%
20-49 39% 16% 55% 17% 24% 41%
50-64 13% 5% 18% 7% 9% 16%
65-80 5% 1% 6% 5% 5% 10%
80+ 1% 0% 1% 1% 1% 2%
Total 74% 26% 100% 45% 54% 99%

In the example scenario with 300 new cyclists and 27 new pedestrians we would have following age
structure (Table 2).

Table 2: Age and gender split of new cyclist and pedestrians.

‘ ‘ Cycling ‘ ‘ Walking




Age Male Female | Total Male Female | Total
group

0-19 48 12 60 4 4 8
20-49 117 48 165 5 7 11
50-64 39 15 54 2 2 4
65-80 15 3 18 1 1 3
80+ 3 0 3 0 0 1
Total 222 78 300 12 15 27

4.3. Average time cycling and walking per person

We used the NTS data to predict the mean distance of cycling and walking trips by age and gender
(Table 3). For both cycling and walking we excluded top 1% of the trips in order to limit the influence
of outliers. See Appendix for sensitivity analysis results. Based on this data, the user can calculate
increased time spent walking and cycling.

Again if the user has information on trip distances then these should be used in preference.

Table 3: Observed mean distance (miles per trip) of main mode cycling and walking trips in England
NTS 2012-2014.

Cycling Walking

Age Male Female | Male Female
group

0-19 1.81 1.55 0.68 0.64
20-49 3.73 2.49 0.74 0.67
50-64 3.92 2.33 0.76 0.73
65-80 2.79 1.71 0.73 0.68
80+ 2.04 1.05 0.6 0.53

To calculate the mean distance per person we need to take into account the fact that 90% of the
trips involve a return journey (as described earlier). This is calculated with the following equation
(for 20-49 year old male cyclists):

Distance = (1-90% + 90% x 2) x 3.73 miles/trip = 7.09 miles per person per day

The health benefits of cycling and walking are calculated based on weekly activity. We estimate the
average weekly activity by assuming that new users have 220 ‘active days’ per year (active days refer
to number of days (per year) that new user is assumed to be using e.g. new pathway). This same
assumption is used in WebTAG unit 5.1. From this we estimate that average new user is active 4.22
days per week (220/365 * 7) and we calculate the total distance covered by cycling and walking by
multiplying the average distance of the trip with the active days per week. For 20-49 year old male
cyclists the calculation is following:

Distance cycled per week per person = 7.09 miles per person x 4.22 days cycled per week = 29.90
miles per person per week.



The estimated cycling and walking distances are converted to cycling and walking time by using the
speed data from NTS. Table 4 described observed speed of main mode cycle and walking trips
(miles/hour) in England, based on NTS 2012-2014. Also for this we excluded top 1% of the trips.

Table 4: Observed speed of main mode cycling and walking trips (miles/hour) in England NTS 2012-

2014.

Cycling Walking
Age Male Female | Male Female
group
0-19 6.12 4.45 2.55 2.53
20-49 9.12 7.22 2.74 2.6
50-64 8.91 7.07 2.62 2.49
65-80 7.48 5.99 2.49 2.35
80+ 7.99 4.2 2.11 2.04

The total time spent cycling or walking is then calculated from this data by dividing the distance per
week by the speed (e.g. for 20-49 year old male cyclists):

Time cycling per week = 29.90 miles per week per person / 9.21 miles/h = 3.28 h/week.
See Table 5 for average walking and cycling times per age and gender.

Table 5: Average cycling and walking times per person per. Unit: h/week.

Cycling Walking

Age Male Female | Male Female
group

0-19 2.37 2.79 2.14 2.03
20-49 3.28 2.76 2.17 2.07
50-64 3.53 2.64 2.33 2.35
65-80 2.99 2.29 2.35 2.32
80+ 2.05 2.00 2.28 2.08

4.4. Marginal METs

In most of the different dose-response models (see Appendix) time spent walking and cycling is
converted to METs or marginal METs (see definition in Glossary) by multiplying the time spent
walking and cycling with the average MET value of walking and cycling. Table 7 defines the average
METs and mMETs used in the calculations. Both values are based on the updated 2011 Compendium
of Physical Activities (https://sites.google.com/site/compendiumofphysicalactivities/) which
combines current scientific knowledge on various physical activities impact to METs.

Table 6: Average METs and marginal METs used in the calculations.

Cycling Walking
MET 6.8 3.3




With the average METs we can estimate average physical activity increase in METh/week by
multiplying the average cycling times with the average METs (e.g. for 20-49 year old males):

Average METh/week =3.28 h/week x 6.8 MET = 22.29 METh/week.
Table 7 shows the average METh/week and mMETh/week used in these calculations.

Table 7: Average MET and mMET increase per person due to cycling and walking.

Cycling Walking

MET mMET
Age Male Female Male Female
group
0-19 16.12 18.99 7.05 6.69
20-49 22.29 18.80 7.14 6.82
50-64 23.98 17.96 7.67 7.76
65-80 20.33 15.56 7.76 7.65
80+ 13.92 13.63 7.52 6.87

4.5. Dose-response function and population-attributable fraction

The mortality impact was calculated using the relative risks (RRs) for all-cause mortality for walking
and cycling. These RRs are based on Kelly et al. 2014 study which estimated RR for walking and
cycling, as well as different shapes of the dose-response relationship. From the RRs reported in the
article we used the log-linear RRs. For walking and cycling the RR per 11.25 METh/week activity were
0.90 (95% confidence interval 0.85-0.95) and 0.90 (0.86-0.94), respectively (see Figure 3 for
illustration). These RRs are assumed to sufficiently take into account other forms of physical activity
so that we can estimate health benefits of cycling and walking directly, without taking other forms of
physical activity into account. Benefits are capped for RR values of 0.70 and 0.55 for walking and
cycling, respectively, following similar approach used in HEAT (WHO 2014). See Appendix for other
possible methods.
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Figure 3: Illustration of the DRF for walking and cycling, based on Kelly et al. 2014. Benefits are
capped for RR values of 0.70 and 0.65 for walking and cycling, respectively, following similar
approach used in HEAT (WHO 2014).

Based on these RRs the change in mortality for the scenario was calculated with following equation:
Change in mortality = exp((In(RR))/11.25 METH/week) x scenario METh/week)

For 20-49 year old male cyclist, using the values in Table 7, the change in background mortality
would be:

RR for given cycling level = exp((In(0.90) /11.25) x 22.29) = 0.81.
From this RR we calculate population attributable fraction (PAF) with equation:
PAF = (1.0-RR)/1=1-RR=1.0-81=0.19

Thus, this scenario assumes that 19% of all-cause mortality could be avoided in this age and gender
groups if those new users cycled an additional 3.28 h per week (Table 5).

4.6. Number of deaths and YLLs

The number of deaths avoided by age and gender was estimated by multiplying the change in
background mortality with the background mortality for that age and gender group. Table 8 shows
the background mortality rates data for the UK population. Death rates were calculated by dividing
number of deaths in given age and gender groups with the total population of that groups. Data was
obtained from the Global Burden of Disease 2015 study results for England. For comparison, current
WebTAG unit 5.1 uses average mortality rate of 0.0024, which is average for age group 15-64 in
England and Wales.



Table 8: Background mortality rates by age and gender, and the current background mortality rate
used in the WebTAG unit 5.1.

Age group Male Female

0-19 0.00042 0.00032
20-49 0.00118 0.00071
50-64 0.00627 0.00419
65-80 0.02459 0.01669
80+ 0.11471 0.09948
WebTAG unit 5.1 (2014) mortality rate 0.0024 0.0024

At this stage of calculation we assumed that cycling and walking would not decrease mortality in the
youngest age group (0-19) by setting the mortality impact for that age group to be zero.

The resulting number of deaths avoided for year 2012 is presented in Table 9 for our example
scenario. The number of deaths avoided were converted to YLLs by estimating from GBD 2015 study
the average YLL loss of one death. To account effect of discount, these YLLs were discounted so that
the YLLs gained in future were discounted with same 1.5% discount as economic benefits (see later
chapter). Number of YLLs could then be estimated by multiplying the number of deaths with
discounted YLLs. The discounted and undiscounted YLLs for each age and gender group are
presented in Table 10.

Table 9: Number of deaths avoided per year due to increased cycling.

Age Male Female | Total

group
0-19 0.00 0.00 0.00

20-49 0.03 0.01 0.03

50-64 0.05 0.01 0.06
65-80 0.06 0.01 0.07
80+ 0.04 0.00 0.04
Total 0.18 0.02 0.20

Table 10: Average discounted and undiscounted YLL loss per death, predicted from GBD 2013 study
results for England.

Discounted YLLs Undiscounted YLLs
Age Male Female | Male Female
group
0-19 47.7 48.0 81.7 82.8
20-49 34.1 33.6 47.2 45.9
50-64 23.7 23.7 28.9 29.0
65-80 15.1 14.3 16.6 16.3
80+ 5.8 5.8 6.4 5.7




4.7. Economic impacts and discount

The YLLs were converted to monetary impacts by multiplying the YLLs with the costs of life year
value of £60 000. This value was proposed by DfT after the Initial project report in June 2016. The
future monetary benefits were also discounted by using 1.5% discount rate, proposed by DfT. The
discounting for each follow up year was estimated by following equation:

Discount % in given year = ((1/(1+1.5%))*number of years).

Table 11 shows the discount percentage for each year and the total economic health benefits for
each year for cycling.

Table 11: Economic benefits for the cycling in the given example scenario. The project is assumed to
start 2010 and be fully operational in 2012.

Year | Effectiveness of the | Discount | Number of Number of Economic benefits
infrastructure deaths avoided | YLLs avoided

2010 | 0% 100% 0.00 0.00 £ -
2011 | 0% 99% 0.00 0.00 £ -
2012 | 100% 97% 0.21 3.92 £ 228,476.34
2013 | 100% 96% 0.21 3.92 £ 225,099.84
2014 | 100% 94% 0.21 3.92 £ 221,773.25
2015 | 100% 93% 0.21 3.92 £ 218,495.81
2016 | 100% 91% 0.21 3.92 £ 215,266.81
2017 | 100% 90% 0.21 3.92 £ 212,085.52
2018 | 100% 89% 0.21 3.92 £ 208,951.25
2019 | 100% 87% 0.21 3.92 £ 205,863.31
2020 | 100% 86% 0.21 3.92 £ 202,820.99
2021 | 100% 85% 0.21 3.92 £ 199,823.64
2022 | 100% 84% 0.21 3.92 £ 196,870.58
2023 | 100% 82% 0.21 3.92 £ 193,961.16
2024 | 100% 81% 0.21 3.92 £ 191,094.74
2025 | 100% 80% 0.21 3.92 £ 188,270.68
2026 | 100% 79% 0.21 3.92 £ 185,488.35
2027 | 100% 78% 0.21 3.92 £ 182,747.15
2028 | 100% 76% 0.21 3.92 £ 180,046.45
2029 | 100% 75% 0.21 3.92 £ 177,385.66
2030 | 100% 74% 0.21 3.92 3 174,764.20
2031 | 100% 73% 0.21 3.92 £ 172,181.48
2032 | 100% 72% 0.21 3.92 £ 169,636.93
Sum 448 82.38 £ 4,151,104.13




Total monetary benefits for this) scenario (including also walking) are £4.2 million, after discounting.
In the WebTAG unit 5.1 scenario the total benefits of same scenario were estimated to be £1.3
million. The main reason for this difference is that in WebTAG unit 5.1 scenario 10% annual
reduction for walking and cycling was assumed. If we assume 10% annual reductionin number of
new users, this method would estimate benefits of £1.9 million (see appendix).

Thus, this method estimates larger economic benefits. This is mainly because the calculation takes
into account health benefits of older age groups, while the earlier calculation did not take into
account benefits for age group over 64 years old. Table 12 bellows shows how the benefits of the
scenario divide between age and year. The second oldest age group (65-80) contributed 29% to total
health benefits, despite only making 6% of cycling trips.

Table 12: Percentage of the benefits by different age groups.

Age Kelly et
group al. 2014
log-
linear
0-19 0%
20-49 28%
50-64 37%
65-80 29%
80+ 7%
Total 100%

5. Conclusions and future directions

In this report we propose and illustrate a refreshed method to calculate the physical activity benefits
of walking and cycling. Based on our expertise on the health impact assessment of walking and
cycling, and to most recent literature, we proposed that the WebTAG Unit 5.1 will be updated with
following fashion:

Calculation would involve benefits for all adults, including people 65 years old or older.
Calculation would take into account age and gender split of current cyclists and pedestrians,
assuming that this provides information on who is likely to take up walking and cycling.

3. The calculation would include information on trip distances and speed of cyclists and
pedestrians to calculate time spend cycling and walking more precisely.

4. To calculate health benefits by converting the time spend cycling and walking to METs. This
will allow future development of the method with more updated dose-response functions,
currently under preparation in MRC Epidemiology unit (Cambridge).

5. To calculate YLLs by multiplying number of avoided deaths with the average YLL saved by
age and gender to that age group.

Our comparison of results and sensitivity analysis (see appendix) showed that the calculation of

economic benefits is sensitive to some of the input values and assumptions. The calculation was
highly sensitive to the annual reduction of users (see appendix) and our results propose that this
value should be further examined.



Our sensitivity analysis also showed that assumed active days per year is an important input value
for the calculation. Current value is 220 days a year, based on number of the working days per year.
As described in WebTAG 5.1, this is conservative assumption and doesn’t take into account weekend
travel.

The simplest approach to better quantify this value would be to use continuous count data (one year
of daily counts) from any counter location (preferably several nearby of similar facility type) that
count biking and walking. From this data user could calculate the ratio of "counts during your short
term count period" and the annual average at the counter location. This method can include other
variables, such as weather, or derive adjustment factors for weekday and month. See for example
Lindsey et al. 2016 paper for description how to estimate effect of temperature, precipitation, wind
speed, dew point, and hours of daylight. Online Trail Traffic Calculator tool
(http://www.railstotrails.org/our-work/research-and-information/trail-modeling-and-assessment-
platform/trail-traffic-calculator/) can be applied to estimate these values from existing travel data.

5.1. Future development
Based on the timeline agreed with the Department within this project

End December 2016

e We have not included the loss of PA from a switch from walking to cycling. We can include
this.

e We have only applied discounting to the year in which a death occurs, not to the future live
years gained from that death. If desired we can include this.

e The DfT is responsible for organising an expert advisory group. We are happy to help with
recommendations on who should be invited.

End March 2017

We can produce a version of the Excel model for use on the web. An alternative would be to develop
the model to include all the rest of the WebTAG calculation. This would require a small additional
project and a little more time.

At this point a decision will be needed by DfT about which version (Excel, Analytica, R) that you want
us to work on for the final deliverables.

End May 2017

We can produce regional level propensity estimates and offer these as an alternative for users. We
can also make recommend cations for how the approach can be included within the PCT and ICT.

End July 2017

We have used calculations based on all-cause mortality. We can compare this against disease
specific mortality using the new (unpublished) relative risks we have identified. As indicated in
appendix this change is likely to produce smaller results.

Beyond the project




This method describes how the physical activity benefits can be calculated by estimating changes in
YLLs. In future we would also like to involve diseases, expressed as YLDs. The meta-analysis that we
are currently preparing in MRC Epidemiology Unit will give us dose-response data to do this update
or alternative estimates can be used. However, the relationship between physical activity and
disease burden is not as straightforward as between physical activity and mortality. Therefore
before applying disease specific YLD to the calculation, we propose doing comparative modelling
where we would compare the results of simple comparative risk assessment calculation (similar as
described here) to the proportion multi-state life-table (PMSLT) model that estimates more
realistically relationship between physical activity and diseases. If these two methods provide
different results, as we assume, we can provide conversion factors that would allow to correct this
error in comparative risk assessment calculation. We are happy to present on this approach to the
expert group that the DfT will organise.

A further improvement that could be made is to use regional or even local authority level estimates
of non-travel physical activity, and disease burden. We anticipate this will make a relatively small
difference compared with other choices in the model but it may encourage local decision makers in
the relevance of the approach.

A further issue for discussion is the lack of benefits for getting children cycling and smaller benefits
from women cycling. Getting children active and reducing gender inequity are both widely seen as
good things and the Department may want to consider additional ways to recognise this in the
appraisal process.
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Appendix — description of sensitivity analysis

We performed a number of sensitivity and what-if analyses for the values used in this calculation to
see how sensitive the model is to input value uncertainty and differences in model assumptions (e.g.
dose-response functions). The sensitivity analyses were done with the Analytica version of the model
using Monte Carlo simulation.

The sensitivity analysis was done in two steps: First, we identified uncertain input values and defined
uncertainty distribution for them. Second, we calculated tornado plot sensitivity analysis by
calculating the model with low and high estimate of each input value separately.

Below is the list of the uncertain input values that we identified and defined in the model:

e Return journey uncertainty: In baseline 90% of the trips are assumed to involve return
journey through same road. In a sensitivity analysis +/- 10%-unit uncertainty is assumed for
the return journey (i.e., the percentage of people doing return journey is assumed to be
between 80% and 100%).

e Active days per year: In baseline new cyclists and pedestrians are assumed to be active 220
days per year. For uncertainty we assumed low estimate of 150 days per year and high
estimate of 290 active days per year.

e Speed uncertainty: For mean speed by age and gender (Table 4) we assumed +/- 25%
uncertainty.

e Distance uncertainty: For mean distance by age and gender (Table 3) we assumed +/- 25%
uncertainty.

e  MET uncertainty: For METs we assumed +/- 25% uncertainty around the mean estimate
(Table 6).

e YLL uncertainty: For YLL we assumed +/- 25% uncertainty around the mean estimate (Table
10).

e RR uncertainty: For RR uncertainty we adopted the uncertain distribution from Kelly et al. by
assuming normal distribution. See section 4.5. for values.

Figure Al shows the results for tornado plot sensitivity analysis where the result of the model is
compared with low and high estimates of different input values. The largest uncertainty was related
to RR for cycling, adopted from Kelly et al. 2014 study. This is in line with our earlier studies where
the uncertainty of RRs usually dominates the sensitivity analyses. In this example RR for walking had
insignificant impact because number of new pedestrians were assumed to be small. The assumed
number of active days per year, which is used to estimate the number of days the person is expected
to cycle or walk per week, also had a large impact to results.

Among the other uncertainties, the model was not sensitive to the MET uncertainty for walking or
cycling and only moderately sensitive to other input uncertainties.

Figure A1: Results of the tornado plot sensitivity analysis.
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We also performed a set of what-if calculations to see how model structure or alternative methods
would impact the results. These are described below.

Alternative dose-response functions (DRFs)

For alternative DRFs we estimated the benefits based on Woodcock et al. 2011, a new meta-analysis
currently prepared in MRC Epidemiology unit, and the WebTAG 5.1. (2014) methods. The WebTAG
5.1. (2014) method is based on the RRs adopted from earlier version of the HEAT tool and the results
resembles the current WebTAG unit 5.1 calculations that would involve older age groups, and take

into account age and gender differences in cycling and walking rates and speed. See details of these
methods below.

Woodcock et al. 2011

Woodcock et al. 2011 study estimated RR for non-vigorous physical activity (NVPA) by systematically
reviewing the literature between all-cause mortality and NVPA. Physical activity was aggregated to
marginal METs, described earlier. The RR per 8.6 mMETh/week changes in physical activity was
associated with RR of 0.81. Woodcock et al. 2011 also examined shape of the dose-response
function and predicted different shapes. These are so called power-transformations which vary
between 1 (nearly linear) and 0.25 (most curved).

The calculation of the RR was done with the equation:
RR =RR per ImMETh per week *(mMETh per week in scenario » Power-transformation)
For 10 mMETh/week with power-transformation of 0.50 the RR would be:

RR =0.94 A (10 A 0.50) = 0.82



The challenge for WebTAG is that to use these RRs the user would need to know all the NVPA done
by individuals who walk and cycle (so called background physical activity). For this we can estimate
the background variation in physical activity by using the Health Survey for England (HSE) 2012
physical activity questionnaire. Using this data we could estimate a representative sample of
mMETh/week values. To calculate the PAFs, we first add scenario mMETh/week values to
background mMETh/week values and calculate PAF for the differences. See Table Al for a sample of
the background mMETh/week data for different age groups and the background mMETs/week for
the cycling scenario (see Table 7). This data has been obtained by combining sport, walking and
gardening activities together and aggregating this background physical activity to mMET/week
values.

Table A1: Background mMETh/week values for the English male 20+ year old population, based on
HSE 2012 physical activity questionnaire.

Background Scenario
Individual | 20-49 50-64 65-80 80+ 20-49 50-64 65-80 80+
1 26 87 10 0 48 111 30 14
2 3 34 29 0 25 58 49 14
3 29 0 10 0 51 24 30 14
4 16 0 0 0 38 24 20 14
5 1 0 0 0 23 24 20 14
6 11 19 15 0 33 43 35 14
7 9 0 6 0 31 24 26 14
8 75 0 0 0 97 24 20 14
9 100 0 31 0 122 24 51 14
10 23 0 0 0 45 24 20 14
11 50 2 14 20 72 26 34 34
12 13 0 0 20 35 24 20 34
13 26 0 0 7 48 24 20 21
14 0 19 0 0 22 43 20 14
15 30 0 0 0 52 24 20 14
16 28 0 0 0 50 24 20 14
17 2 6 40 0 24 30 60 14
1000 0 15 0 0 22 39 20 14

The RRs were calculated for each individual with the equation:

RR = RR per 1 mMETh/week * (scenario mMMETh/week » Dose-response shape)
The PAFs were then calculated by following equating:

PAF = (average RRgackground — average RRscenario) / average RRscenario

Rest of the calculation follows similar pattern as in the main example.

New meta-analysis in MRC Epidemiology unit (unpublished)




MRC Epidemiology unit researchers have done a new systematic meta-analysis and dose-response
synthesis of current physical activity literature to estimate the RRs for different exposure levels.
Table A2 below shows an example for this data for the 0 to 10 mMMETh/week exposure to physical
activity. In this data the benefits of physical activity continued until 77 mMETh/week, with no further
benefits of increasing physical activity beyond that level. That doesn’t mean that in reality there
would not be any benefits beyond this, but our data was too uncertain after that point.

Table A2: RR for different mMETh/week values in new, unpublished meta-analysis.

mMETh/week | RR
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The RRs were calculated similarly to the Woodcock et al. 2011 method by using the background and
scenario mMETs/week (Table A1) and calculating PAFs by comparing population before and after the
scenario. See Table A3 for the resulting PAFs by age and gender.

Table A3: PAFs for walking and cycling based on new meta-analysis results, for the example scenario.

Cycling Walking

Age Male Female | Male Female
group

0-19 0.29 0.30 0.17 0.17
20-49 0.16 0.18 0.09 0.11
50-64 0.22 0.21 0.12 0.12
65-80 0.24 0.23 0.13 0.14
80+ 0.25 0.26 0.15 0.16

WebTAG 5.1. (2014) method

The WebTAG 5.1. (2014) method assumed that the reduction in relative risk for cyclists is 0.28
(relative risk of 0.72) at 36 minutes per day and for walkers is 0.22 (a relative risk of 0.78) at 29
minutes per day for seven days a week. These benefits were assumed to reach their maximum after
36 and 29 minutes of cycling and walking per day for cycling and walking, respectively, and the
relationship between RR and walking/cycling time was linear. We used same calculation by adopting
scenario specific cycling and walking times from Table 5, and divided this walking and cycling time



with average number of active days to week to give daily estimate. See Table A4 for the PAFs by
using this method.

Table A4: PAFs for age, gender and mode, following WebTAG 5.1. (2014) method.

Cycling Walking

Age Male Female | Male Female
group

0-19 0.17 0.21 0.14 0.13
20-49 0.23 0.20 0.14 0.13
50-64 0.25 0.19 0.15 0.15
65-80 0.22 0.17 0.15 0.15
80+ 0.15 0.14 0.15 0.14

Different DRFs - results

The results for different DRFs with using same scenario as described in the text are shown in Table
A5. All the alternative methods estimated larger benefits, up to 24% more if we used RRs from the
Woodcock et al. 2011 study. The new meta-analysis results, that will be published in near future,
showed similar health benefits with the WebTAG 5.1. (2014) method. Based on these results we
assume that method proposed in the report is conservative and health benefits could be higher with
other methods. However, differences are still small, when compared to other uncertainties.

Table A5: Economic benefits with different DRF assumptions.

DRF method Monetary benefits Comparison to Kelly et al.
2014 (Baseline)

Kelly et al. 2014 log-linear f 4,151,104.13 100%

Woodcock et al. 2011 non-linear £ 5,211,462.18 126%

WebTAG 5.1. (2014) method f 4,942,367.89 119%

New MRC Epidemiology unit

meta-analysis results £ 5,020,345.25 121%

Lag

WebTAG unit 5.1 (2014) uses five year lags to estimate physical activity benefits due to cycling and
walking. The method presented in this report is without lag because we consider scientific evidence
of lag to be too weak to include it to calculation. To investigate how possible lag would have
changed the results, we rerun the results with 0, 3, 5, 10 and 15 year lags (Table A6). The results
indicate that, when compared with the baseline assumption of no lag, the results would be 13%
smaller with 5 year lag (as used in WebTAG unit 5.1 (2014).

Table A6: The results of the scenario with O to 15 year lags.

Lag Economic benefits % change

No lag
(baseline) | £ 4,151,104.13 100%




3 years £ 3,905,395.23 94%
5 years £ 3,667,639.55 88%
10years | £ 3,095,447.76 75%
15years | £ 2,551,743.63 61%

Decrease in usage

In WebTAG unit 5.1 example scenario it was assumed that usage of new infrastructure will decrease
by 10% every year. This was described as a conservative assumption. In this report we assumed that
usage is constant after the investment.

We illustrated impact of usage changes by calculating the annual benefits of cycling and walking with
different reduction estimates, starting from -10% (i.e. cycling and walking is increased 10% every
year) to 50% reduction every year. Figure 5 shows the results for individual years. The results vary
from £12.0 million (10% increase is usage) to £0.5 million (50% reduction per year). With the 10%
annual reduction the health benefits would be £1.9 million. As noticed in the WebTAG unit 5.1, the
decision on changes in annual usage have significant impact for the results.

Figure A2: Annual monetary benefits per year with different annual reduction estimates. Baseline
assumption was 0% reduction (blue line below).
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Dutch age and gender split

We also tested the calculation by using the age and gender split of cycling trips based on Dutch
national travel survey data. This what-if analysis represents the situation in a high cycling culture



area where the gender and age differences in cycling are smaller than in UK. Table A7 shows the
data. With Dutch age and gender data the economic benefits would be £3.9 million (compared with
£4.2 million in baseline). Further sensitivity analyses would be needed to examine this further but
our current estimation is that omitting of the health benefits for youngest age group (0-19 years old)
and more even gender split reduced overall benefits.

Table A7: Observed split of main-mode cycle trips in Dutch NTS 2012-14 by age and gender.

Age group Male Female Total
0-19 18% 16% 34%
20-49 15% 21% 36%
50-64 8% 11% 18%
65-80 5% 5% 10%
80+ 1% 1% 1%
Total 46% 54% 100%

Different cut-off points for NTSS data

For calculation of the mean distance cycled and walked (Table 3) was calculated by omitting top 1%
of the trips. For sensitivity analysis we calculated the results by assuming no cut-off and by using 10
and 25 mile cut-offs for walking and cycling, respectively. The results are shown in Table A8. As
assumed, no cut-off increased average distance of the trips and consequently economic benefits.
However, changes are small indicating the our calculation is not sensitive for this cut-off value.

Table A8: Economic benefits with different cut-off assumptions.

1% cut-off (baseline) £ 4,151,104.13
No cut-off distance f 4,392,816.46
25/10 mile cut-off £ 4,196,144.69

Follow-up time

The last what-if analysis tested the impact of the follow up period by varying the follow-up time
between 10 and 60 years (baseline value was 20 years). Figure A3 shows the results. Although this
calculation took into account discount of the economic benefits, the benefits increase nearly linearly
when the follow-up time increases. With 60 year follow-up the benefits of the scenario would be
£9.2 million, indicating that follow-up time is significant uncertainty for the calculation.

Figure A3: Total economic benefits for different follow-up periods.
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