

### **Highways England**

### Climate Adaptation Risk Assessment Progress Update - 2016

November 2016

#### Contents

| Fore | eword                              | 3  |
|------|------------------------------------|----|
| 1.   | Introduction                       | 4  |
| 2.   | Background                         | 5  |
| 3.   | Climate Change Trends and Hazards  | 7  |
| 4.   | Highways England's Vulnerabilities | 10 |
| 5.   | Risk Assessment Methodology        | 11 |
| 6.   | Vulnerability Scores               | 13 |
| 7.   | Options Analysis                   | 15 |
| 8.   | Adaptation Plans                   | 18 |
| 9.   | Adaptation Timeline                | 19 |
| 10.  | Interdependencies                  | 20 |
| 11.  | Reviews                            | 22 |
| 12.  | Conclusions and Next Steps         | 24 |

#### Appendices

- Appendix 1 Vulnerabilities and Adaptation Actions
- Appendix 2 Methodology Matrices and Formulae
- Appendix 3 Example Risk Scoring Process

### Foreword

Highways England is the new company set up to operate and improve the nation's strategic road network. Comprising over 4,300 miles of motorways and major A-roads, the network is one of the country's most important infrastructure assets. A resilient and effective strategic road network is a vital part of a strong growing economy. It is our duty to keep it safe and operable by addressing risks posed by climate change. This Climate Change Adaptation Progress Update is our first such publication.

This report highlights to our stakeholders the work we have been doing to adapt, and the plans we have in place, to address the risks we identified through our risk assessment processes. By adapting the way we do things, we will ensure that we continue to deliver a resilient road network for our customers and meet our performance expectations.

The 2015-2020 roads period will be a time of significant investment in our roads. Through this investment, we will improve the condition of the network's assets and increase the network's ability to cope with change. Our assets are designed for a long service life using rigorous standards to produce infrastructure that lasts. The strategic road network is here to stay and it is our responsibility to make sure it will continue to serve our customer's needs both now and into the future.

## 1. Introduction

Highways England, formerly the Highways Agency, is the new government owned company set up from April 2015 to operate and improve the 4,300 miles of motorway and major A-roads that form the strategic road network. Our primary role is to deliver a better service for road users and to support a growing economy. We recognise that we all have an important part to play in minimising the causes and managing the risks associated with a changing climate. With this in mind, our report focuses on our climate resilience. That is, how we are changing the way we do things and the decisions we make to prepare for the potential effects of climate change.

As a government owned company, we operate under the direction and guidance of the Secretary of State for Transport described in the Highways England Licence<sup>1</sup> and the Department for Transport's Road Investment Strategy<sup>2</sup>. The licence sets out our duties and obligations and states that Highways England should:

"Adapt its network to operate in a changing climate, including assessing, managing and mitigating the potential risks posed by climate change to the operation, maintenance and improvement of the network"

Our delivery plan for 2015-2020<sup>3</sup> sets out in detail how we will deliver the strategic vision set out in the Road Investment Strategy, how we will measure our success, and how we will identify future goals and plans to keep improving our customers' and neighbours' experience of the network. The eight areas in which our performance will be measured are:

- 1. Making the network safer;
- 2. Improving user satisfaction;
- 3. Supporting the smooth flow of traffic;
- 4. Encouraging economic growth;
- 5. Delivering better environmental outcomes;
- 6. Helping cyclists, walkers, and other vulnerable users of the network;
- 7. Achieving real efficiency; and
- 8. Keeping the network in good condition.

To achieve our objectives in each of these areas, we need to understand how changes in the climate can impact our operations and the network, and then address our vulnerabilities to these risks where we can.

<sup>&</sup>lt;sup>1</sup> Department for transport (2015) Highways England: Licence.

https://www.gov.uk/government/uploads/system/uploads/attachment\_data/file/431389/strategic-highways-licence.pdf <sup>2</sup> Department for Transport (2015) Road Investment Strategy for the 2015/16-2019/20 Road Period.

https://www.gov.uk/government/uploads/system/uploads/attachment\_data/file/408514/ris-for-2015-16-road-period-webversion.pdf

<sup>&</sup>lt;sup>3</sup> Highways England (2015). Delivery Plan 2015-2020.

https://www.gov.uk/government/uploads/system/uploads/attachment\_data/file/424467/DSP2036-

<sup>184</sup> Highways England Delivery Plan FINAL low res 280415.pdf

### 2. Background

#### **Our Climate Change Adaption Strategy**

Highways England is committed to understanding and assessing the risks posed to the strategic road network from a changing climate, and taking appropriate management action to mitigate these risks. As the Highways Agency, we developed a climate change strategy and adaptation framework<sup>4</sup> which continues to guide Highways England's adaptation strategy today. The framework provides a consistent approach to assessing and understanding the risks posed to the strategic road network. Highways England's Adaptation Framework Model (see Figure 1) provides a seven stage process that identifies our activities, which will be affected by a changing climate, determines associated risks and opportunities, and identifies preferred options to address them.

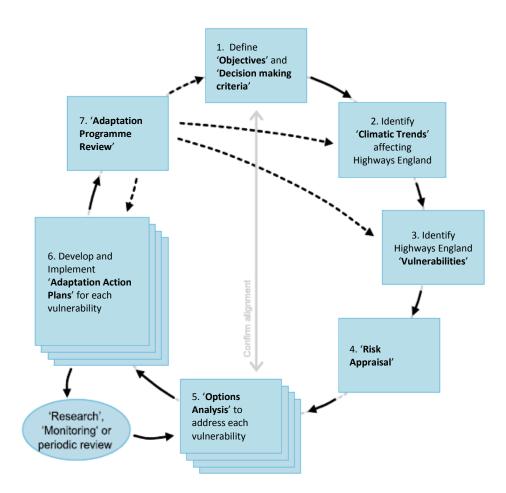



Figure 1: Climate Change Adaptation Framework Model

<sup>&</sup>lt;sup>4</sup> Highways Agency. Climate Change Adaption Strategy and Framework. <u>http://assets.highways.gov.uk/about-us/climate-change/CCAF\_Strategy\_and\_Vol\_1\_Rev\_B\_Nov.pdf</u>

#### **Climate Adaptation Risk Assessments**

The Climate Change Act 2008 gives the Department for Environment Food and Rural Affairs (Defra) the power to request that certain organisations report on how they are adapting to climate change. These reports should include:

- The current and future predicted impacts of climate change on the organisation; and
- Proposals for adapting to climate change.

Organisations, primarily from the energy, transport and water sectors, including Highways England (then the Highways Agency), produced their first round reports between 2010 and 2011. The first round of reports provided a detailed assessment of the climate change risks identified by the reporting organisations, as well as the plans and activities that would be undertaken to prepare for these risks.

#### **Progress Updates**

The second round of reporting is being conducted on a voluntary basis and is intended to provide an update on the progress made by first round reporting authorities. New organisations have also been invited to provide full risk assessments. Highways England is voluntarily providing a progress update. This includes a summary of the 2011 risk assessment, an update on adaptation work achieved to date and our plans going forward:

- Chapter 3-5: A summary of the 2011 risk assessment;
- Chapter 6: A validation of the risk assessment scores;
- Chapter 7-11: A progress update on our adaptation journey; and
- Chapter 12: Our plans going forward.

This report is intended to fulfil both Highways England's on-going commitment to the adaptation reporting power, and provide our stakeholders, including our employees, supply chain and our customers, with an overview of the work we have achieved to prepare our organisation and the network for the future impacts of climate change.

# 3. Climate Change Trends and Hazards

The climatic changes likely to affect our business areas and activities over the next century are summarized in this chapter. We have considered the climate change projections and hazards, which have the potential to affect our business and users of the network. Reviewing climate projections forms stage 2 of our climate adaptation framework (Figure 1).

From first-hand experience, we know that some of our services are sensitive to current weather events. These services, plus others, are likely to become increasingly vulnerable as the climate changes in the future. We need to know what those changes are, in order to be able to prepare for them.

#### Weather Event Case Study: A303 at Deptford, Wiltshire. 2014

The A303 trunk road provides a key strategic route between the M3 near Basingstoke and the A30 near Honiton in Devon, which in turn links to the M5 at Exeter. As it passes through Wiltshire, the A303 is a mix of single and dual carriageway, with one of the dual carriageway sections located at the junction with the A36 at Deptford.

Following an extended period of heavy rainfall over December and into January 2014, large volumes of groundwater began to run off from adjacent agricultural land, on the edge of Salisbury Plain, onto lane 1 of the eastbound A303 just west of its junction with the A36. Due to the exceptionally high groundwater levels in the area, and the rate of flow onto the eastbound carriageway, the floodwater overwhelmed the road's drainage system. The eastbound carriageway was closed to traffic just after 7 a.m. on 9th January, including the eastbound entry slip road from the A36. Eastbound traffic was diverted into Salisbury and then back to the A303, which added some 12 miles to road user's journeys, although there was no significant queuing of traffic on the A303.

By early evening on 10th January Highways England had removed the central reservation barrier and established a contraflow on the westbound carriageway, allowing traffic to remain on the A303 and travel past the flooded area in both directions. Traffic remained unable to join the A303 eastbound from the A36 until 16th January. The contraflow remained in place until late on 21 January, when the groundwater flows had reduced sufficiently to allow the eastbound A303 to safely reopen, some 12 days after it had closed. During this time the contraflow enabled traffic to continue using the A303 without any appreciable delay in either direction.

Source: Transport Resilience Review, 2014. https://www.gov.uk/government/uploads/system/uploads/attachment\_data/file/335115/transport-resilience-review-web.pdf The UK Climate Impacts Programme (UKCP09) provides the latest projections on the future climate of the UK. UKCP09 data informed the Highways Agency Climate Change Adaptation Strategy (2010) and our Climate Risk Assessment (2011) and remains the best available published information. As such, we continue to use UKCP09 projections to inform decision making today.

There is a high degree of uncertainty related to climate projections; we therefore take a cautious approach by considering a high emissions scenarios. Headline projected climate changes suggests that England will experience the following trends up to 2080:

| Warmer summers                          | <ul> <li>Temperatures will increase across England</li> <li>Average summer temperature between 2.2°C and 6.8°C higher in the south.</li> <li>Hottest day between 8°C and 12°C higher</li> </ul> |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drier summers                           | <ul> <li>Reduced precipitation in summer</li> <li>Greatest reductions in south east England,<br/>which could see 40% less rain in summer</li> </ul>                                             |
| Warmer, wetter winters                  | <ul> <li>Precipitation will increase across England in winter</li> <li>Rainfall will increase most in western England, which could see up to 33% increase in winter</li> </ul>                  |
| Reduced number of frost<br>and fog days | <ul> <li>Fewer frost days and fog events will generally<br/>be a positive impact for Highways England</li> </ul>                                                                                |
| Sea level rise                          | •Sea level around the UK is projected to rise between 12cm and 76cm by 2095                                                                                                                     |
| Reduced cloud cover                     | •Less cloud cover in summer will lead to increased UV exposure, especially in southern England                                                                                                  |
| Increase in Extreme<br>Weather Events   | <ul> <li>Increase in extreme weather events such as<br/>heatwaves and flooding</li> </ul>                                                                                                       |

Figure 2: Headline Projected Climate Change Impacts from UKCP09

Using the UKCP09 projections, and research from the Conference of European Directors of Roads<sup>5</sup> (CEDR), we have highlighted climate change hazards with potential to impact our services and network users. We have categorised the hazards into primary climatic changes and secondary climatic change impacts, as shown in Table 1. Climate change hazards were used to identify Highways England vulnerabilities', which are listed in Appendix 1.

| Climate change hazards – Significan  | ce to Highways England                                                                      |                         |
|--------------------------------------|---------------------------------------------------------------------------------------------|-------------------------|
| Primary climatic changes             | Secondary climatic change impacts                                                           | Importance<br>for users |
| Increase in average temperature      | Longer growing season<br>Reduction in fog days in winter<br>Reduction of icy days in winter | Low                     |
| Increase in maximum temperature      | Extreme summer temperatures                                                                 | High                    |
| Increase in winter rainfall          | Flooding<br>Increase in snowfall                                                            | High                    |
| Reduction in summer rainfall         | Reduction in soil moisture                                                                  | Low                     |
| More extreme rainfall events         | Flooding                                                                                    | High                    |
| Increased wind speed for worst gales | Wind speed more frequently exceeding operational limits                                     | High                    |
| Sea level rise                       | Higher Frequency of extreme storm surges                                                    | Low                     |

#### Table 1 Climate change hazards

#### **Thresholds for Action**

Key to optimising the value of UKCP09 is identifying operational or other thresholds that are important to Highways England. It is important to know when these thresholds might be reached in order to determine priorities and timescales for action. Examples might include (but are not limited to):

- Incidence of ground frost;
- Temperatures above which asphalt surfaces rut or stripping occurs; and
- The length of the frost-free season (allowing reduction in winter maintenance standby requirements).

Where the information we have is not currently sufficient to inform the threshold for action, our risk appraisal methodology and options appraisal process identifies the need for further monitoring or research. Subsequently, a programme of research and monitoring actions are underway. For example, we have commissioned a report on the economic impacts of flooding to increase our knowledge in this area.

<sup>&</sup>lt;sup>5</sup> Conference of European Directors of Roads (2012).

http://www.cedr.fr/home/fileadmin/user\_upload/Publications/2013/T16\_Climate\_change.pdf

### 4. Highways England's Vulnerabilities

Stage 3 of the Highways England adaptation framework (see Figure 1) is the identification of vulnerabilities. Vulnerabilities are the Highways England activities that could be affected by climate change. Whilst our assets are receptors of climatic events, it is the ways in which we design, maintain, operate and manage our assets that are defined as vulnerabilities. This distinction has been made to reflect that it is the way that Highways England works that needs to be adapted to meet the challenges of a changing climate, so we can continue to meet the needs of our customers and operate an effective and safe network.

Our list of vulnerabilities (see Appendix 1) presents the (primary) changes to the climate and the (secondary) associated impacts. Each vulnerability was considered, in turn, to identify if and how it will be affected by climate change and whether this will put our objectives, as set out in the Licence and Road Investment Strategy, at risk. Each vulnerability was then assigned into one of the following categories:

- Defining and managing network strategy and planning
- Design and construction of new and replacement assets
- Maintenance and management of existing assets
- Managing network operations
- Internal business management

The vulnerabilities were also assigned to the area of our organisation for which they are concerned with so that the appropriate technical experts could consider them. Table 2 shows the number of vulnerabilities we identified in each of our core business areas. These are the same as those presented in our 2011 risk assessment.

| Area               | N | umber of Vulnerabilities Identified |  |  |  |  |  |  |  | Vulnerability |  |  |                          |  |  |
|--------------------|---|-------------------------------------|--|--|--|--|--|--|--|---------------|--|--|--------------------------|--|--|
| Drainage           |   |                                     |  |  |  |  |  |  |  |               |  |  | Score<br>(see Chapter 5) |  |  |
| Geotechnics        |   |                                     |  |  |  |  |  |  |  |               |  |  | High                     |  |  |
| Pavements          |   |                                     |  |  |  |  |  |  |  |               |  |  | Medium                   |  |  |
| Structures         |   |                                     |  |  |  |  |  |  |  |               |  |  | Low                      |  |  |
| Traffic Management |   |                                     |  |  |  |  |  |  |  |               |  |  |                          |  |  |
| 'Other'            |   |                                     |  |  |  |  |  |  |  |               |  |  |                          |  |  |

#### Table 2 - Vulnerabilities identified across each business area

# 5. Risk Assessment Methodology

This report provides a progress update regarding the adaptation activities we have undertaken, following the completion of our 2011 risk assessment. It does not focus on the risk appraisal methodology itself, as we continue to use the same process. This chapter, therefore, provides a summary of our current risk appraisal process, stage 4 of the adaptation framework (see Figure 1).

Since 2011, transport industry literature on climate change adaptation, such as the Conference of European Directors of Roads RIMAROCC methodology<sup>6</sup>, has helped to validate our approach to risk assessment and compare our identified risks with those of other European road operators. The objectives of our risk assessment methodology, stage 1 of our adaptation framework, are to:

- Provide a means of consistently scoring the vulnerabilities to form a ranking;
- Enable Highways England to determine where to focus efforts in adapting to climate change; and
- Provide a basis for future planning and prioritisation.

To make certain that we continue to meet our objectives, there are several ways in which we need to be able to prioritise risk. Prioritisation is based on a combination of the following and other factors:

- Risks that have the greatest potential effect on users;
- Risks expected to materialise first; and
- Risks with the greatest uncertainty for which further research would be beneficial.

The risk appraisal methodology sets out a series of steps to enable the above priorities to be considered. There are four primary criteria against which all vulnerabilities are appraised, as shown in Table 3. These risk categories are referred to throughout the appraisal process.

| Primary criteria     | Definition                                                           |
|----------------------|----------------------------------------------------------------------|
| Uncertainty          | Compound measure of current uncertainty in climate change            |
|                      | predictions and the effects of climate change on the asset/activity. |
| Rate of climate      | Measure of the time horizon within which any currently predicted     |
| change               | climate changes are likely to become material, relative to the       |
|                      | expected life/time horizon of the asset or activity.                 |
| Extent of disruption | Measure taking account of the number of locations across the         |
|                      | network where this asset or activity occurs and/or the number of     |
|                      | users affected if an associated climate-related event occurs.        |
|                      | Therefore, an activity could be important if it affects a high       |
|                      | proportion of the network, or a small number of highly strategic     |
|                      | points on the network.                                               |

#### Table 3 Primary criteria for risk appraisal

<sup>&</sup>lt;sup>6</sup> Conference of European Directors of Roads (2010). <u>http://www.fehrl.org/index.php?m=32&mode=download&id\_file=10736</u>

| Severity of disruption | Measure of the recovery time in the event of a climate-related event<br>e.g. flood, or landslip. This is separate from 'how bad' the actual |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                        | event is when it occurs, e.g. how many running lanes you lose; it                                                                           |
|                        | focuses on how easy/difficult it is to recover from the event, i.e. how                                                                     |
|                        | long it takes to get those running lanes back into use.                                                                                     |

The process for appraising each vulnerability is shown in Figure 3.

| 1. Identify vulnerabilities                              | Identify Highways England's vulnerabilities to Climate Change                                                                                                                                                  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Appraise vulnerabilities against the primary criteria | <ul> <li>Use the matrices (see appendix 2) to assign four qualitative<br/>scores to each vulnerability for uncertainty, rate of climate<br/>change, extent of disruption and severity of disruption</li> </ul> |
| 3. Convert the scores                                    | • Covert the scores to numerical values (see appendix 2)                                                                                                                                                       |
| 4. Prioritise vulnerabilities                            | <ul> <li>Use formulae (see appendix 2) to calculate an indicator score for<br/>each vulnerability. Scores fall between 0 and 1.</li> </ul>                                                                     |
| 5. Rank the risks                                        | <ul> <li>Use the indicator scores to rank the risks.</li> <li>A complete list of ranked Highways England vulnerabilities is in Appendix 1.</li> </ul>                                                          |
| 6. Next steps - Options<br>analysis                      | <ul> <li>Ranked priorities are taken into Stage 5 - Options analysis where<br/>decide which option is most appropriate to address the<br/>vulnerabilitity</li> </ul>                                           |

Figure 3 Highways England risk appraisal process (Stage 4 of the Highways England Adaptation Strategy Model)

An example of how we applied the risk assessment methodology to a vulnerability is included in Appendix 3. The output of the risk appraisal methodology is a fully ranked and prioritised list of vulnerabilities which were taken to stage 5 of our adaptation framework, Options Analysis.

# 6. Vulnerability Scores

#### **Vulnerability Scores**

This chapter provides a summary of the vulnerabilities identified through the 2011 risk assessment process, using the methodology described in Chapter 4.

Table 44 contains some of the most highly disruptive and time critical with high confidence vulnerabilities. Consideration of adaptation action planning becomes a priority when the threshold, a score of 0.44 or above, has been reached. These areas of our activities have been the focus for adaptation planning; however adaptation planning has not been limited to these. See Appendix 1 for the full table of vulnerabilities and adaptation actions.

Climate Action Target Aspect Category Area Risk Risk Structures Wind actions (loads) applied to 0.67 Monitor (including Design for increased scour risk Low 0.67 Do Minimum gantries) Design of bearings and 0.44 Do Minimum Design + expansion joints construction of Pavements 0.44 Design of foundations Development of future new + proof designs replacement Update operating Low assets + Skid Resistance procedures Maintenance and **Existing Foundations** 0.44 Monitor management of Low **Existing Concrete** 0.67 Update operating existing assets procedures Drainage Surface Water Drainage 0.44 Development of future Attenuation 0.44 proof designs Outfalls 0.44

Table 4: Highly disruptive and time critical vulnerabilities where there is a high confidence the risk will occur together with the target risk ambition following action.

#### Validation of Vulnerability Scores

As part of our progress update, we have undertaken a validation check of the risk assessment scores from our 2011 risk assessment. This is to check whether the criteria they are based on, or our activities which are being assessed, should change in any significant way.

Our vulnerability scores are based on a discrete number of criteria, as described in Table 3 (see Chapter 5). The validation process highlighted that the key influence on the scoring of

these criteria is the accuracy of climate projections. As outlined in Chapter 3 of this report, the latest climate projections available are UKCP09. Given that the projections have not changed since the 2011 risk assessment, it is not considered necessary to revisit the risk scores based on the criteria which make up the scores.

The validation process did highlight however, that since the 2011 risk assessment was completed, a significant change has occurred to Highways England. We are now a government owned company rather than a government agency. This has resulted in changes to the structure of our organisation and the objectives we work towards; although it must be noted this has not changed the boundaries of our control and the areas for which we are responsible.

In light of our organisation's revised objectives, an internal review has been held to ensure the current list of vulnerabilities is appropriate to Highways England as an organisation and to check if any new vulnerabilities need to be added. The result of this review was that the current list of vulnerabilities is still considered sufficient and appropriate for Highways England.

# 7. Options Analysis

A Highways England technical specialist was assigned to each vulnerability, to identify potential adaptation options.

For each vulnerability, six adaptation options were considered using the broad themes outlined below. These are similar to the measures identified by the ROADAPT guidelines<sup>7</sup> as the 'building blocks of an adaptation strategy':

- Do minimum;
- Monitor;
- Update operating procedures;
- Development of future proof designs;
- Develop contingency plans; and
- Retro-fit solutions.

A systematic evaluation process was then applied to all options, to identify the most effective actions to address and minimise the risk to the vulnerability.

Appendix 1 provides the full list of climate change vulnerabilities identified in the 2011 Climate Change Risk Assessment and the corresponding adaptation actions chosen to address them. An explanation of the decision making process and an example of each of the adaptation options are provided below.

#### **Do minimum**

After completion of the options analysis process, a number of vulnerabilities were considered to already have sufficient measures in place that address this risk. It is often the case that the requirements placed on our construction and maintenance supply chain are already rigorous enough, and historical design practice has often been to err on the side of caution. Therefore, in instances where a 'do minimum' approach has been selected, the thresholds or tolerances involved are considered already suitable to cope with the current climate change projections.

**Example from Geotechnics**: An increased frequency of soils and sub soils drying out, followed by increases in extreme precipitation, could destabilise material and lead to erosion. This is not considered a significant risk in the design and construction of new and replacement Geotechnics assets, because erosion at present is limited to a few isolated areas. Existing specifications allow for the use of topsoil retention systems where deemed relevant and any risks are already addressed on a project specific basis.

<sup>7</sup> Conference of European Directors of Roads (2015). Road for today, adapted for tomorrow – Guidelines. <u>http://www.cedr.fr/home/fileadmin/user\_upload/en/Thematic\_Domains/Strat\_plan\_3\_2013-</u> <u>2017/TD1\_Innovation/I1\_Research/TGR\_TPM/Transnational\_calls/CEDR\_Call\_2012/CEDR%20Call%202012%20Climate%20</u>

<sup>2017/</sup>TD1\_Innovation/I1\_Research/TGR\_TPM/Transnational\_calls/CEDR\_Call\_2012/CEDR%20Call%202012%20Climate%20 Change/ROADAPT/ROADAPT\_integrating\_main\_guidelines.pdf

#### **Monitor**

Monitoring was considered the most appropriate option for vulnerabilities where we do not yet have sufficient data to inform other actions. By monitoring the situation we will increase our understanding of the vulnerability and the opportunities that exist to address it.

**Example from Pavements**: During extended periods of hot, sunny conditions, asphalt can become susceptible to permanent deformation affecting profile. In the case of hot rolled asphalt surface course (not used at present on the trunk roads) with added pre-coated chippings, this may affect texture depth. The thin surfacing materials in the current standard are considered adequate to meet the impact of climate change as they are not susceptible to the projected increases in temperature. However, to ensure robustness of the standards on surfacing materials, we research how these materials are performing on the network by monitoring the performance of thin surfacing. A small group of experts visit various sites to examine their relative performance, including the climate change impact on the material's behaviour. The main purpose of this research is to ascertain the factors and thresholds involved which cause the sudden failure of thin surfacing.

#### **Update operating procedures**

Updating operating procedures involves changing the way we do things to take account of the impacts of climate change.

**Example from Pavements**: Prolonged periods of dry weather, followed by rainfall, will lead to a reduction in skid resistance due to oil and detritus build-up on the carriageway. Conversely, prolonged periods of wet weather will lead to a reduction in skid resistance due to the wet surface reducing adhesion between tyres and the surfacing. Higher average summer temperatures may also adversely affect skid resistance as measurements for resistance on asphalt surfacing are lower at higher temperatures. A review into the current skid policy to ensure that it is fit for purpose taking into account predicted climate change has been conducted and a new skid policy for maintenance assessments was published in 2015<sup>8</sup>.

#### **Development of future proof designs**

New and improved assets on the network are designed according to technical standards and specifications which are followed by our construction and maintenance contractors. Future proofing these designs involves providing additional capacity or functionality. These updated requirements could apply to all 'designs', e.g. designs for new structures or new roads, as well as the designs for maintenance, renewal and improvement works when these are implemented within the normal cycle for such activities. Typically it will be appropriate to adopt a precautionary approach in future-proofing designs, so that the asset/activity will perform satisfactorily throughout its life in the event of climatic changes.

<sup>&</sup>lt;sup>8</sup> Highways England (2015). Design Manual for Roads and Bridges HD 28 Volume 7, Section 3, Part 1. <u>http://www.standardsforhighways.co.uk/ha/standards/dmrb/vol7/section3/hd2815.pdf</u>

**Example from Drainage**: Updates are currently being undertaken to the Design Manual for Roads and Bridges (DMRB) guidance to ensure that all new drainage assets are provided on a consistent basis, using updated critical design storm guidance, to assure serviceability and minimise the risk. Provision of clear, unambiguous assessment & design guidance in DMRB Volume 11, Section 3, Part 10 (HD45)<sup>9</sup> and DMRB Volume 4, Section 2, Part 1 (HA106)<sup>10</sup> will ensure consistency of design approach for new and improved assets, providing robust design parameters to accommodate climate change parameters. Implementation of formal guidance will improve network resilience in the event of extreme events. Guidance on the run off from adjacent land is already included in HA106, which allows for run off from external catchments.

#### **Develop contingency plans**

Development of contingency plans involves the pre-planned response for when/if climate change risks are realised so that their immediate effects can be managed. This option is applied where nothing can reasonably be done to mitigate an identified risk, during the period until other measures are put in place, or where there is a residual risk, despite adaptation actions being employed.

Contingency plans have not been considered necessary at this stage for any of the vulnerabilities identified. We will, however, continue to monitor our vulnerabilities and update contingency plans where they are considered necessary and appropriate.

#### **Retro-fit solutions**

A retro-fit solution is proactively applying modifications to existing assets/activities outside of the 'normal' cycle for renewal/replacement. For example, replacing/fitting additional equipment or components or providing additional provision/capacity to existing assets before its renewal/replacement becomes critical. Retrofitting could potentially be applied everywhere on the network, or just at high risk sites. Work could start now, or only once climate change effects meet certain threshold criteria. Where the criteria for such a threshold it not yet fully understood monitoring is necessary.

Through the options analysis process, we have not yet identified a situation where retrofitting has been considered the most appropriate option available. Highways England has a programme of regular renewal and improvement schemes in place; therefore retro-fitting is un-likely in many cases to be the most cost effective option of adaptation.

 <sup>&</sup>lt;sup>9</sup> Highways England (2015). Design Manual for Roads and Bridges HD45 Volume 11, Section 3, Part
 10. <u>http://www.standardsforhighways.co.uk/ha/standards/dmrb/vol11/section3/hd4509.pdf</u>

<sup>&</sup>lt;sup>10</sup> Highways England (2004). Design Manual for Roads and Bridges HA106 Volume 4, Section 2, Part 1. <u>http://www.standardsforhighways.co.uk/ha/standards/dmrb/vol4/section2/ha10604.pdf</u>

# 8. Adaptation Plans

The outcome of the options analysis process was the creation of adaption plans. These draw together the preferred options that would be taken forward from the categories set out in Chapter 7. Each adaptation plan takes the form of a database of actions which is monitored to ensure committed actions are achieved by targeted completion dates.

We have embedded a culture of climate change adaptation planning across Highways England, by giving ownership of the adaptation plans to the areas of our operations at risk from climate change. Figure 4 shows the topics these plans currently cover; the relative size of each circle represents the number of adaptation actions we are currently undertaking related to each topic area:

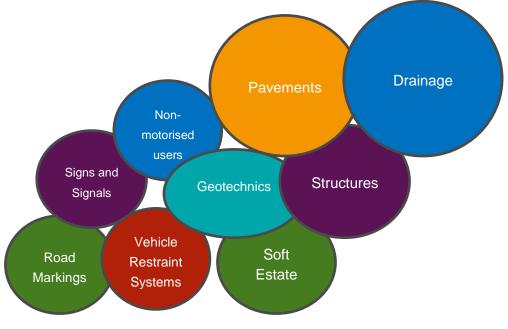
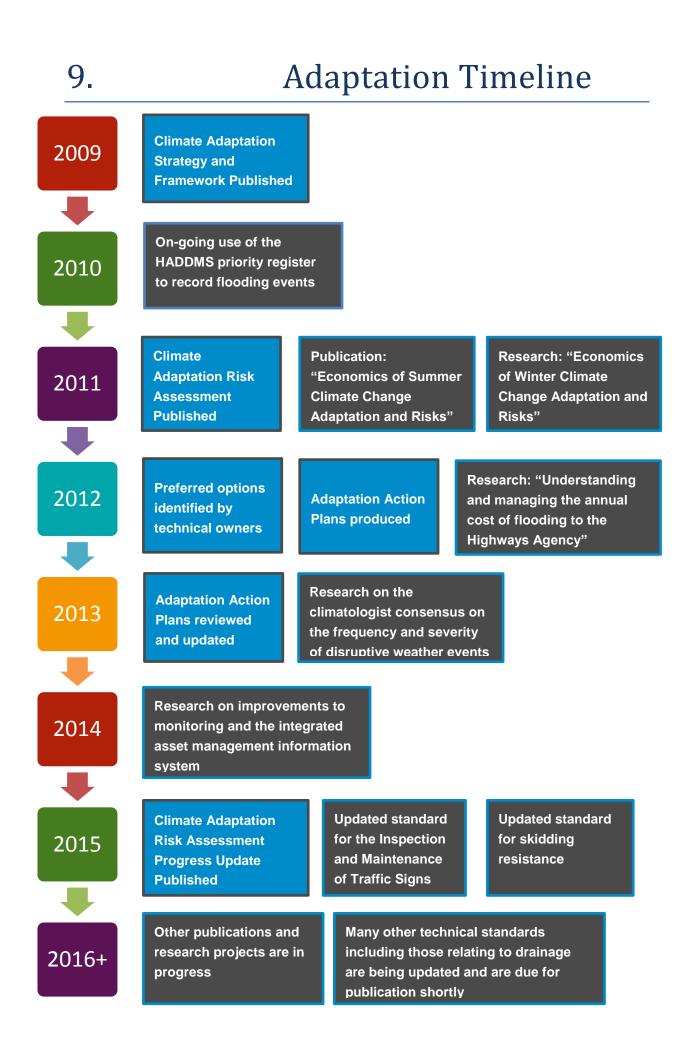




Figure 4 – Adaptation Plan Areas

For some risks it was decided that doing the minimum is appropriate because the rigorous design standards or procedures we have are already sufficient to cope with the predicted impacts of climate change. For example following a review, the standards for Vehicle Restraint Systems were considered to be sufficient to cope with the risks posed by climate change and thus a do minimum approach was agreed. In other cases it has been considered necessary to take action to ensure we are prepared. For example, updating the DMRB or the Manual of Contract Documents for Highway Works (MCHW) to ensure new designs and projects are prepared for the future climate.

We will continue to monitor all our vulnerabilities to ensure the option for adaptation that we have chosen remains the most suitable, and that the network remains resilient.

Since publishing our climate risk assessment in 2011, we have made significant progress towards ensuring our strategic road network is resilient to climate change. A timeline of our actions is provided in Chapter 9.



### 10. Interdependencies

#### **Stakeholder Engagement**

To effectively manage the wider uncertainties and opportunities that climate change presents, Highways England is committed to maximising value from stakeholder engagement. We have close links with a large number of stakeholders, including owners of other UK infrastructure systems.

Some of our other key relationships include freight organisations, local authorities, technology and innovation partners, sustainability and environmental bodies and motorway service operators. The launch of Highways England has presented an opportunity to strengthen relationships with these existing stakeholders and to work with new ones. Engagement with our stakeholders and neighbours provides us with an opportunity to work together to increase our reliance to climate change and share examples of good practice. To formalise our agreed understanding with our stakeholders we have a number of longstanding Memorandums of Understanding's, for example with Natural England, the Freight Transport Association and the Environment Agency. These Memorandums of Understanding ensure that we have common objectives and provide a resilient and safe network. We also continue to seek to deepen our relationships with our supply chain to deliver outcomes more effectively.

#### **Environment Fund Partnership Projects**

Highways England is delivering a designated Environment Fund that will be used to improve environmental outcomes in a number of areas including flood risk, landscape, carbon, cultural heritage, noise and biodiversity. This will include funding for partnership projects; these are projects where we work with our stakeholders to identify where joint action and funding will be the most effective method to achieve the desired environmental outcome. For example where flooding is an issue on part of the network it may also be an issue for adjoining land owners; by working together we are much more likely to be able to deliver a solution that increases ours and our stakeholder's resilience, both now and into the future.

#### **European Road partnerships**

Contributions have been made to the CEDR research and technical group programmes. Information has been shared among the member road authorities to support the CEDR report on Adaptation to Climate Change published in 2012<sup>11</sup>. Risks relating to climate change have been shared and received, along with proposed adaptation planning and examples of good practice. We also continue to learn from our European counterparts through their contributions to CEDR publications, most recently the 'Roads for today, adapted for

<sup>&</sup>lt;sup>11</sup> Conference of European Directors of Roads (2012). Adaptation to Climate Change. <u>http://www.cedr.fr/home/fileadmin/user\_upload/Publications/2013/T16\_Climate\_change.pdf</u>

tomorrow – guidelines'<sup>12</sup>. This report sets out methods and approaches for the climate risk assessment of roads, from which we can make comparisons and align our own risk assessment process where beneficial.

#### National Transport and Infrastructure Systems

The strategic road network is made up of over 4,300 miles of motorways and major A-roads in England. It makes up just 3% of the total roads in England, yet carries nearly a third of all road traffic and two-thirds of large goods vehicle traffic. The economic and strategic value that the network provides makes it one of the most important infrastructure assets in the UK. The importance of adapting the network for future climate change is therefore of paramount importance to the UK. However, the network, and its resilience cannot be viewed in isolation due the numerous interdependencies that exist between the strategic road network and the wider transport and infrastructure systems.

The risks that climate change poses to infrastructure assets could include, at its worst, severance of infrastructure links and potentially prohibit the safe use of infrastructure. This could necessitate changes in how people use infrastructure and ultimately lead to the need to switch transport mode, alter energy use or limit their use of communications. Highways England needs to understand how impacts on all infrastructure assets, not just the strategic road network, could affect its users and their safety.

Use of the network is facilitated by access from local roads managed by Local Highways Authorities. Furthermore, our customers often travel along motorways and trunk roads to reach the next part of their journey; for example to reach train stations, sea ports or airports. It is therefore important that Highways England and other transport operators are aware of the wider resilience of the transport system and how the implications of climate change for one part of the system can have wider implications. For example a decrease in capacity in one transport mode may result in users choosing an alternative transport method. We must work together with the Department for Transport (DfT), infrastructure owners and transport operators to consider climate change adaptation from the strategic to the local level. In light of this, we have signed a Memorandum of Understanding's with Transport for Greater Manchester to ensure a strategic approach to the management of highways across the city region.

The safe operation of the network involves the use of communication systems to monitor conditions and inform road users. It also involves the use of energy to operate technology assets such as lighting and variable message signs. The continued resilience of the road network is therefore intrinsically linked to the resilience of energy and communications infrastructure. We therefore continue to consider the wider resilience of our operations where possible. For example in the event a control centre in one area being unable to operate, another control centre will temporarily be able to cover both areas.

<sup>12</sup> Conference of European Directors of Roads (2015). Road for today, adapted for tomorrow – Guidelines. <u>http://www.cedr.fr/home/fileadmin/user\_upload/en/Thematic\_Domains/Strat\_plan\_3\_2013-</u> 2017/TD1\_Innovation/I1\_Research/TGR\_TPM/Transnational\_calls/CEDR\_Call\_2012/CEDR%20Call%202012%20Climate%20 Change/ROADAPT/ROADAPT\_integrating\_main\_guidelines.pdf

## 11. Reviews

This chapter looks at published reports on resilience and adaptation progress in the transport sector. We intend here to demonstrate how we have taken on board the advice and guidance of such literature to further improve our adaptation programme.

#### Managing climate risks to well-being and the economy – Adaptation Sub-Committee (ASC) Progress Report

The Adaptation Sub-Committee's Progress Report 2014 is part of a series of reports to assess how England is preparing for the risks and opportunities of climate change and shows how the National Adaptation Programme prepared under the Climate Change Act is being implemented. The report looks at the resilience of national infrastructure including the strategic road network. There are three broad areas where improvement was advised. Below is a brief overview of this advice and a summary of the work that is underway or actions that have been achieved which address these concerns.

#### 1) Detailed actions plans had not been published.

Detailed action plans are in place within the relevant business areas. These plans are internal technical documents that record the risk score, options appraisal process and the targeted adaptation option. Appendix 1 of this report provides an overview of the work on-going with regard to each vulnerability.

#### 2) No Publically available information on resilience spending plans

As part of the first roads period there will be significant investment to address resilience with a specific focus on flooding and pollution through measures to attenuate and improve flood resilience on the strategic road network. This investment is part of a £300m designated environment fund. We published plans for this fund in our Delivery Plan<sup>13</sup> which noted the following areas of focus:

- Improving resilience to flooding and reducing flood risk to communities adjacent to the network. Activity will focus on addressing all identified high priority flood risk locations recorded in our Drainage Data Management System;
- Improving water quality through better environmental protection and specifically improving surface and groundwater quality by addressing priority locations of known pollution;
- Reviewing opportunities for specific measures to contribute to a coherent and resilient ecological network; and
- Working with our stakeholders to identify opportunities for delivering wider environmental benefits in partnership with other land-owners, and communities.

<sup>&</sup>lt;sup>13</sup> Highways England Delivery Plan 2015-2020.

https://www.gov.uk/government/uploads/system/uploads/attachment\_data/file/424467/DSP2036-184\_Highways\_England\_Delivery\_Plan\_FINAL\_low\_res\_280415.pdf

3) Progress with implementing resilience measures is not reported for the strategic road network

This report is intended to report our progress with implementing resilience measures for the strategic road network.

#### **Transport Resilience Review - Department for Transport (DfT)**

The DfT's Transport Resilience Review<sup>14</sup>, published in 2014 in response to extreme weather experience during the winter of 2013/2014, provided an independent review of the UK's transport network's ability to cope with extreme weather, a key impact of climate change. The report notes that the majority of the strategic road network was designed and constructed to modern engineering standards, and therefore has a good level of physical resilience to extreme weather compared to other transport infrastructure assets.

The Transport Resilience Review does, however, provide us with specific recommendations to increase our resilience. These included recommendations for Highways England to:

"Consult with the Freight Transport Association, Road Haulage Association and other affected groups in developing proposals to restrict vulnerable vehicles from using exposed sections of the strategic road network" and "Work with the Met Office to agree how best to utilise the improving granularity of wind forecasts to give the best possible wind forecast information to lorry fleet operators".

We are reviewing the effectiveness of trials to identify whether the Commercial Vehicle Incident Prevention Programme could deliver improved management of High Sided Vehicles during high winds.

"Conduct a flooding risk assessment exercise using the newly updated Environment Agency flood risk maps and other data to identify potential flood risk locations on the strategic road network, to supplement its log of actual flooding events" and "Complete its drainage asset inventory".

We are producing a new Flood Risk Strategy. In addition to this, we are also increasing our drainage asset inventory and condition data coverage to better understand the condition of drainage assets on the strategic road network.

"Review the range and wording of messages displayed on variable message signs" and "Continue to improve and refine the content of its website."

We included the objective "To understand the overall information provision that is given to road users about the weather ranging from roadside infrastructure to the winter driving campaign" in our Severe Weather Programme for 2015/16.

<sup>&</sup>lt;sup>14</sup> Department for Transport (DfT) 2014. Transport Resilience Review.

https://www.gov.uk/government/uploads/system/uploads/attachment\_data/file/335115/transport-resilience-review-web.pdf

### 12. Conclusions and Next Steps

Overall, it has been considered that the risks and vulnerabilities set out in our 2011 Climate Change Risk Assessment remain unchanged. Our climate change adaptation review process has highlighted that many of the vulnerabilities identified during the first round report are already being addressed through our current programmes, improvements and planning activities. The review has also, in some cases, identified where this is not the case and has resulted in us undertaking further action to correct this. There are a number of next steps we will now take to continue our efforts to adapt to climate change, as outlined below.

#### Communication

We are producing a communications plan which will help to continue embedding adaptation in all areas of the organisation and communicate this to those that work with us. We will communicate the work we have done, the work we are continuing to do and encourage future adaptation planning to take place where necessary. The communication plan will also identify how all our staff are able to contribute to this process, by continually questioning and reviewing the way in which we do things.

#### **Monitoring the Risks**

To make sure our vulnerabilities are prioritised accurately, we will continue to monitor any changes in climate projections and update our risk scores accordingly.

#### **Continue to Adapt**

In many cases, climate change adaptation is inherently considered as part of our current standards, practices and procedures to ensure the resilience of the network. In addition to this, we have a number of specific adaptation actions that are on-going and will be delivered in the near future, as well as longer term research and monitoring which will inform future adaptation. We will continue to maintain and improve a resilient network that continues to serve its customer's needs both now and into the future.

# Appendix 1

#### List of Vulnerabilities and Our Adaptation Progress

The table within this appendix captures the following information:

#### • Activity category

The broad function of the business that is considered.

- Area The particular asset type such as pavements, drainage, structures or geotechnics.
- Aspect The specific business activity within the business area.
- **Primary climatic change** The actual change in climate that could impact on the aspect.
- Secondary climatic change The effects brought about by the primary climatic change.
- Highways England risks A description of risks to Highways England from climate change.

#### • Vulnerability score

A score of between 0 and 1 (based on vulnerabilities which are highly disruptive, time critical with high confidence).

#### • The adaptation option

The chosen option for adapting to climate change (Do minimum, Monitor, Update operating procedures, Development of future proof designs, Develop contingency plans or Retro-fit solutions).

The reference to the specific Highways England's internal Adaptation actions plans is included in blue.

#### • The progress of the adaptation option

The level of progress that has been made in adapting this aspect to climate change:

- Not applicable: Adaptation options have not yet been considered necessary
- In progress: Adaptation option is underway and due for completion soon
- On-going: Adaptation option is an on-going process

Completed: Adaptation option has been achieved

| Activity<br>category                                              | Area      | Aspect                                                    | Primary<br>climatic<br>changes                                                | Secondary<br>impacts of<br>climate change            | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Score | Adaptation action                                                                                                                                                                                                                                                                      | Progress of action |
|-------------------------------------------------------------------|-----------|-----------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Design and<br>construction of<br>new and<br>replacement<br>assets | Pavements | Design of<br>foundations                                  | Increase in winter<br>precipitation<br>Decrease in<br>summer<br>precipitation | Change in ground<br>water level and soil<br>moisture | Costs are associated with<br>designing/constructing pavements<br>with foundations more resilient to<br>climate change impacts. This<br>includes effectively<br>designing/maintained drainage<br>network to remove sub-surface<br>moisture.                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.44  | Development of Future<br>Proof Designs<br>Interim advice note on<br>pavement foundations will be<br>updated and incorporated<br>into HD25.<br>DC01 Design of foundations                                                                                                               | In<br>progress     |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Pavements | Materials<br>specification and<br>construction<br>details | Increase in mean<br>temperature<br>Increase in<br>extreme<br>temperature      |                                                      | Areas of the network most<br>susceptible to extreme<br>temperatures (e.g. higher<br>temperatures for southern regions)<br>will be at risk from a greater degree<br>of surface failure or deterioration<br>under periods of extreme<br>temperature. Revised standards can<br>be adopted to treat this risk. EME2<br>pavement specification has been<br>introduced to manage this specific<br>risk and used on parts of the current<br>network.<br>There is a cost to procuring<br>materials that withstand higher<br>temperatures. Business<br>management costs are involved in<br>changing materials specification and<br>defining changes to construction<br>practices. | 0.44  | Monitor<br>Gather feedback from<br>surfacing contractors through<br>liaison with the mineral<br>products association (MPA),<br>and monitor performance of<br>thin surfacing on the<br>network.<br>Pavements DC02 Laying new<br>asphalt materials<br>Pavements MM03 Existing<br>asphalt | On going           |

| Activity<br>category                                              | Area      | Aspect                                                                                                                       | Primary<br>climatic<br>changes                                           | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Score | Adaptation action                                                                                                                                                                         | Progress<br>of action |
|-------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                   |           |                                                                                                                              |                                                                          |                                           | For concrete pavements, thermal<br>gradients can create uneven<br>internal stresses which can then<br>give rise to curling or warping,<br>sometimes called hogging, of the<br>slabs. These can be compounded<br>by loading from passing traffic.<br>Large changes in temperature<br>generate thermal contraction and<br>expansion of the slabs which, if not<br>taken into consideration at the<br>design stage, can generate<br>unacceptably large longitudinal<br>internal stresses and excessive<br>movements at joints.                                                                                                                                                                                                                          |       | Update Operating<br>Procedures<br>Update HD32/HD38 to<br>ensure that requirements for<br>joint sealants are included in<br>new forms of contract.<br>Pavements MM04 Existing<br>concrete. | In<br>progress        |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Pavements | Construction -<br>laying surface<br>dressing,<br>microsurfacing,<br>HMB and other<br>temperature<br>susceptible<br>materials | Increase in mean<br>temperature<br>Increase in<br>extreme<br>temperature |                                           | During extended periods of hot,<br>sunny conditions, asphalt can<br>remain workable for a considerable<br>time, making it difficult to maintain<br>profile during compaction and, in the<br>case of hot rolled asphalt surface<br>course with added pre-coated<br>chippings; it may be difficult to<br>achieve the required texture depth.<br>The newly laid surfacing layers of a<br>pavement may also maintain<br>temperatures after opening to traffic<br>that are high enough to allow<br>excessive rutting and the rapid<br>embedment of any chippings, with<br>the latter again causing a reduction<br>of texture depth. These conditions<br>would be compounded in conditions<br>where traffic intensity is high and<br>speeds are restricted | 0.15  | Monitor<br>Gather feedback from<br>surfacing contractors through<br>liaison with the mineral<br>products association (MPA)<br>Pavements DC02 Laying new<br>asphalt materials              | On going              |

| Activity<br>category                                              | Area                                  | Aspect                                                  | Primary<br>climatic<br>changes               | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Score | Adaptation action                                                                                                                                                                                                                                                                                                       | Progress of action |
|-------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Design and<br>construction of<br>new and<br>replacement<br>assets | Structures<br>(including<br>gantries) | Thermal actions<br>(loads) applied to<br>superstructure | Increase in<br>extreme<br>temperature        |                                           | Provided information is known prior<br>to the design, then design can<br>accommodate projected<br>temperature changes. However,<br>more expensive components like<br>joints, bearings, paint systems etc<br>may be required. Also, greater care<br>will be required to set the gaps, to<br>ensure that movement does not<br>cause a problem. This may require<br>rescheduling works to night or at<br>specific times of the year. Gantries<br>and minor structures should not be<br>affected as the design standards<br>require a reduced design life (30<br>years) and it is unlikely that climate<br>change impacts will be present<br>significant risks over this period. | 0.22  | Monitor<br>The potential impact of<br>temperature changes on<br>structures is considered low<br>as the extreme temperatures<br>do not greatly exceeding the<br>existing design guidance.<br>Therefore adaptation action<br>is to continue to monitor.<br>Structures DCMM01 Thermal<br>actions applied to superstructure | On going           |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Structures<br>(including<br>gantries) | Wind actions<br>(loads) applied to<br>superstructure    | Increase in wind<br>speed for worst<br>gales |                                           | There is a potential for minor<br>structures and gantries to have to<br>be designed larger, to withstand<br>larger loads (more expensive).<br>The effect on bridges should be<br>minimal, as wind is rarely a<br>dominant load. There is an<br>increased risk of disruption to<br>construction work – (unable to<br>operate in high winds).                                                                                                                                                                                                                                                                                                                                  | 0.67  | Monitor<br>The potential impact of wind<br>actions on structures is<br>considered low as the<br>extreme temperatures do not<br>greatly exceeding the<br>existing design guidance.<br>Therefore adaptation action<br>is to continue to monitor.<br>Structures DCMM02 Wind<br>actions applied to superstructure           | On going           |

| Activity<br>category                                              | Area                                  | Aspect                                                                                            | Primary<br>climatic<br>changes                                                | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                            | Score | Adaptation action                                                                                                                                                                                                                                              | Progress<br>of action |
|-------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Design and<br>construction of<br>new and<br>replacement<br>assets | Structures<br>(including<br>gantries) | Increased thermal<br>range giving rise<br>to increased earth<br>pressures for<br>integral bridges | Increase in mean<br>temperature<br>Increase in<br>extreme<br>temperature      |                                           | May require more excavation of<br>material and replacement with<br>stronger fill material, leading to<br>increased costs and amount of<br>waste.                                                                                   | 0.15  | Do Minimum<br>Design guidance already<br>allows for temperature<br>changes and the range is<br>considered generous.<br>Review in 25 years.<br>Structures DCMM03 Increased<br>thermal range giving rise to<br>increased earth pressures for<br>integral bridges | N/A                   |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Structures<br>(including<br>gantries) | Earth pressures<br>used in design<br>affected by<br>change in ground<br>water level               | Increase in winter<br>precipitation<br>Decrease in<br>summer<br>precipitation | Change in ground water level              | Possible larger ground movement/<br>heave may occur. This could mean<br>additional drainage and stronger<br>materials are required, which in turn<br>would have cost/time implications.                                            | 0.07  | Do Minimum<br>Existing design guidance<br>already takes this into<br>account.<br>Structures DCMM04 Earth<br>pressures used in design<br>affected by change in ground<br>water level                                                                            | N/A                   |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Structures<br>(including<br>gantries) | Foundation<br>settlement<br>affected by<br>change in ground<br>water level                        | Increase in winter<br>precipitation<br>Decrease in<br>summer<br>precipitation | Change in ground water level              | Possible larger ground movement/<br>heave may occur, again meaning<br>additional drainage, stronger<br>materials may be required<br>(cost/time). More robust foundations<br>would need to be designed for<br>increased settlement. | 0.07  | Do Minimum<br>New designs are already<br>conservative and there is no<br>evidence for existing<br>structures being affected.<br>Structures DCMM05 Foundation<br>settlement affected by change in<br>ground water level                                         | N/A                   |

| Activity<br>category                                              | Area                                  | Aspect                                                                                                                                  | Primary<br>climatic<br>changes          | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                              | Score | Adaptation action                                                                                                                                                                                                                                                                                                                                                                                | Progress of action |
|-------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Design and<br>construction of<br>new and<br>replacement<br>assets | Structures<br>(including<br>gantries) | Design for<br>increased scour<br>risk for<br>foundations                                                                                | Increase in<br>extreme<br>precipitation | Flooding                                  | Additional design considerations<br>required. More extensive works with<br>time and cost implications.                                                                                                                               | 0.67  | <b>Do Minimum</b><br>Existing processes for<br>inspection of bridges should<br>be adequate to detect<br>problems and monitoring,<br>flood emergency plans or<br>retrofitting would be<br>implemented on specific<br>structures based on these<br>assessments. Current<br>guidance has been reviewed<br>and no updated are required.<br>Structures DCMM06 Increased<br>scour risk for foundations | N/A                |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Structures<br>(including<br>gantries) | Design of<br>structure drainage                                                                                                         | Increase in<br>extreme<br>precipitation |                                           | May require additional drainage,<br>larger components and more<br>extensive works. Detailing may<br>need to be changed to shed<br>additional water. This represents an<br>additional cost.                                           | 0.11  | <b>Do Minimum</b><br>Structures drain into the<br>network drainage. Network<br>drainage is covered by its<br>own action plans.<br>Structures DCMM07 Structure<br>drainage                                                                                                                                                                                                                        | N/A                |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Structures<br>(including<br>gantries) | Use of<br>temperature<br>sensitive<br>components or<br>materials in<br>construction or<br>rehabilitation (e.g.<br>FRP<br>strengthening) | Increase in<br>extreme<br>temperature   |                                           | There should not be any risks<br>associated with new structures as<br>designers should set appropriate<br>performance requirements.<br>Increases in extreme temperatures<br>could mean that certain materials<br>may not be useable. | 0.22  | Development of Future<br>Proof Designs<br>Update design requirements,<br>including technical standards<br>and specifications to provide<br>additional capacity/<br>functionality.<br>Structures DCMM08 Use of<br>temperature sensitive<br>components or materials in<br>construction or rehabilitation<br>(e.g. FRP strengthening)                                                               | In<br>Progress     |

| Activity<br>category                                              | Area                                  | Aspect                                                   | Primary<br>climatic<br>changes                                                                                                   | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                             | Score | Adaptation action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Progress<br>of action |
|-------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Design and<br>construction of<br>new and<br>replacement<br>assets | Structures<br>(including<br>gantries) | Design of<br>bearings and<br>expansion joints            | Increase in<br>extreme<br>temperature                                                                                            |                                           | Larger bearings would be required,<br>with additional provision for transfer<br>of loads/moments from deck to<br>abutment/piers. These would be<br>more difficult to install and may<br>require adjustment before<br>installation. Time and cost<br>implications.                                                                                                                                   | 0.44  | Do Minimum<br>Existing review procedures<br>of design standards are<br>adequate for a do minimum<br>approach.<br>Structures DCMM09 Bearings<br>and expansion joints                                                                                                                                                                                                                                                                                                                                                                                                | N/A                   |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Structures<br>(including<br>gantries) | Climatic<br>constraints on<br>construction<br>activities | Increase in<br>extreme<br>temperature<br>Increase in<br>extreme<br>precipitation<br>Increase in wind<br>speed for worst<br>gales |                                           | We can assume that under extreme<br>temperature, certain construction<br>activities may be required to be<br>undertaken at night to keep project<br>build to schedule. This will incur<br>higher programme costs (e.g. labour<br>and illumination). We can also<br>assume that extreme<br>precipitation/gale force winds have<br>the potential to alter construction<br>activities and cause delay. | 0.07  | Monitor<br>The Specification for<br>Highway Works already<br>prescribes how certain<br>construction activities (for<br>example concreting) should<br>be carried out in, for<br>example, high or low<br>temperatures. Climate<br>change impacts will be<br>monitored and updates to<br>operating procedures and<br>contingency plans produced<br>when necessary.<br>Structures DCMM10 Climatic<br>constraints on construction<br>activities<br>Structures DCMM11 Optimum<br>timing of maintenance<br>interventions in response to<br>changes in deterioration rates | On going              |

| Activity<br>category                                              | Area     | Aspect                                                                                                                         | Primary<br>climatic<br>changes                                                                                           | Secondary<br>impacts of<br>climate change                                              | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Score | Adaptation action                                                                                                                                                                                                                                                                                                                                                                  | Progress<br>of action |
|-------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Design and<br>construction of<br>new and<br>replacement<br>assets | Drainage | Surface water<br>drainage systems.<br>Cross-culverts.<br>Road-edge<br>drainage.<br>Attenuation<br>Outfalls<br>Drainage ditches | Increase in winter<br>precipitation<br>Decrease in<br>summer<br>precipitation<br>Increase in<br>extreme<br>precipitation | Flooding<br>Change in ground<br>water level<br>Frequency of<br>extreme storm<br>surges | In the design and construction of<br>new and replacement Highways<br>England drainage assets, the risks<br>include:<br>Congestion and accidents<br>An increased risk of flooding<br>impacts the performance of the<br>network, including congestion and<br>incidents (safety).<br>Third party flooding<br>There are risks associated with<br>flooding of third party land from the<br>network.<br>Pollution<br>With a reduction in mean<br>precipitation, drainage dilution levels<br>will be more concentrated due to<br>receiving water courses carrying<br>less water.<br>Cross asset deterioration<br>Flooding increases the rate of<br>deterioration of other assets. | 0.44  | Development of Future<br>Proof Designs<br>There are various updates<br>on-going to guidance and<br>standard documents that will<br>ensure the design and<br>construction of future<br>drainage assets takes<br>account of climate change<br>consistently and adequately.<br>Drainage DC07 Capacity of<br>drainage system<br>Drainage DC08 Increased<br>flooding from adjacent land | Inprogress            |

| Activity<br>category                                              | Area        | Aspect                     | Primary<br>climatic<br>changes                                               | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                     | Score | Adaptation action                                                                                                                                                                                                                                                                   | Progress of action |
|-------------------------------------------------------------------|-------------|----------------------------|------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Design and<br>construction of<br>new and<br>replacement<br>assets | Geotechnics | Erosion                    | Increase in winter precipitation                                             | Flooding                                  | This is not a significant risk in the<br>design and construction of new and<br>replacement geotechnics assets.<br>Any risks are addressed on a<br>project specific basis.                                                                                                                   | 0.15  | <b>Do Minimum</b><br>Erosion at present is limited<br>to the granular deposits<br>across the network in a few<br>isolated areas. Existing<br>documentation already<br>allows for erosion control to<br>be put in place where felt to<br>be appropriate.<br>Geotechnics DC03 Erosion | N/A                |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Geotechnics | Stability of<br>earthworks | Increase in<br>extreme<br>temperature<br>Increase in winter<br>precipitation |                                           | In the design and construction of<br>new and replacement geotechnical<br>assets, the risks to the stability of<br>earthworks from an increase in<br>extreme temperature are not likely<br>to be an issue with respect to<br>stability of new earthworks.                                    | 0.11  | <b>Do Minimum</b><br>Current design practice is to<br>adopt a conservative<br>approach with respect to<br>long-term groundwater<br>levels, taking into account<br>any potential climate change<br>impacts.<br>Geotechnics DC04 Stability of                                         | N/A                |
|                                                                   |             |                            | Increase in<br>extreme<br>precipitation                                      |                                           | The risks from an increase in winter<br>precipitation and an increase in<br>extreme precipitation are the need<br>to ensure that the design<br>incorporates appropriate drainage<br>measures to deal with the<br>anticipated precipitation both in the<br>temporary and permanent condition |       | earthworks                                                                                                                                                                                                                                                                          |                    |

| Activity<br>category                                              | Area              | Aspect                                                    | Primary<br>climatic<br>changes                                                  | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Score | Adaptation action                                                                                                                                                                                                                                                                                                                                                                                                      | Progress<br>of action |
|-------------------------------------------------------------------|-------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Design and<br>construction of<br>new and<br>replacement<br>assets | Geotechnics       | Earthworks<br>stability and<br>compaction                 | Increase in<br>extreme<br>temperature<br>Decrease in<br>summer<br>precipitation | Reduction in soil<br>moisture             | As above - in the design and<br>construction of new and<br>replacement geotechnical assets,<br>the risks to the stability of<br>earthworks from an increase in<br>extreme temperature are not likely<br>to be an issue with respect to<br>stability of new earthworks.<br>Risks to compaction relate to the<br>need for greater compactive effort<br>being required with potential<br>increased costs, delays etc. This is<br>not considered a significant risk as it<br>is already dealt with on a project-<br>specific basis | 0.11  | <b>Do Minimum</b><br>Current practice and<br>documentation already<br>allows for variations to<br>compaction processes during<br>construction.<br>Geotechnics DC05 Earthworks<br>stability and compaction                                                                                                                                                                                                              | N/A                   |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Geotechnics       | Earthworks<br>construction<br>across existing<br>landslip | Increase in winter<br>precipitation.<br>Increase in<br>extreme<br>precipitation | Change in ground<br>water level           | This is a rare event and unlikely to<br>be significant given the programme<br>of works for the coming years.                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.22  | <b>Do Minimum</b><br>The number of potential sites<br>around the network is very<br>small and the existing<br>geotechnical processes as<br>set out in HD22 are<br>sufficiently robust to identify<br>existing landslides so that<br>the appropriate design<br>measures can be adopted<br>taking into account any<br>climate change aspects.<br>Geotechnics DC06 Earthworks<br>construction across existing<br>landslip | N/A                   |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Signs and signals | Stability                                                 | Increase in<br>extreme<br>precipitation.                                        |                                           | Minimal wind loading risks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1   | Development of Future<br>Proof Designs<br>Technical Directive TD 25/01<br>has been replaced by a new<br>standard TD25/15.                                                                                                                                                                                                                                                                                              | Complete              |
|                                                                   |                   |                                                           | Increase in wind<br>speed for worst<br>gales                                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Other DC09 Signs and Signals -<br>Stability                                                                                                                                                                                                                                                                                                                                                                            |                       |

| Activity<br>category                                              | Area             | Aspect                   | Primary<br>climatic<br>changes                                                 | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                             | Score | Adaptation action                                                                                                                                                                                                                                                                                                                                                 | Progress<br>of action |
|-------------------------------------------------------------------|------------------|--------------------------|--------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Design and<br>construction of<br>new and<br>replacement<br>assets | Technology       | Wind loading             | Increase in wind<br>speed for worst<br>gales                                   |                                           | The wind loading standards<br>incorporate site specific criteria,<br>based on a number of factors<br>including wind direction, altitude and<br>topography. No significant risk<br>within service life of the asset. | 0.1   | <b>Do Minimum</b><br>The impact of Climate<br>Change on the technology<br>asset will require greater<br>consideration in its<br>specification and design, as<br>well as the increasing<br>demands on its use to<br>support operational<br>measures in times of crisis.<br>This will be considered in the<br>future due to the short design<br>life of technology. | N/A                   |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Road<br>markings | Design/specificati<br>on | Increase in winter<br>precipitation<br>Increase in<br>extreme<br>precipitation |                                           | No significant risks associated with<br>the design and specification of road<br>markings.                                                                                                                           | 0.15  | Development of Future<br>Proof Designs<br>Identify to industry what<br>performance classes we will<br>specify over the next 5 years<br>to align production with<br>demand. Look to revise<br>existing standards to enable<br>adoption of new materials or<br>alternative sources by the<br>end of 2020.<br>Other DC11 Road markings<br>Design / specification     | In<br>Progress        |

| Activity<br>category                                              | Area        | Aspect                          | Primary<br>climatic<br>changes                                            | Secondary<br>impacts of<br>climate change                 | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Score | Adaptation action                                                                                                                                                                                                 | Progress of action |
|-------------------------------------------------------------------|-------------|---------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Design and<br>construction of<br>new and<br>replacement<br>assets | Soft estate | Capital investment<br>landscape | Increase in mean<br>temperature<br>Decrease in<br>summer<br>precipitation | Longer growing<br>season<br>Reduction in soil<br>moisture | Cultural heritage may be affected by<br>the drier summers through exposure<br>to greater extremes in weather (i.e.<br>dryer summers - dryer soil<br>conditions, more cracking and<br>exposure to the elements; potential<br>for some assets to be exposed to<br>increased subsidence issues).<br>Potential for increased costs to<br>mitigation works to try and prevent<br>this<br>Drainage will be affected with the<br>increased need for greater<br>attenuation ponds and greater land<br>take which may have a greater<br>environmental impact and could<br>result in greater mitigation needs as<br>a result.                                                                                                                                                | 0.22  | Monitor<br>Monitor relevant guidance<br>and research involving<br>various species and habitat<br>types as well as their<br>management requirements.<br>Other DC12 Soft estate - capital<br>investment, landscape. | On going           |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Soft estate | Capital investment<br>ecology   | Increase in mean<br>temperature<br>Decrease in<br>summer<br>precipitation | Longer growing<br>season<br>Reduction in soil<br>moisture | There are a number of potential<br>risks to habitats to consider over a<br>period of time. The Defra White<br>Paper looks at the importance of our<br>soft estate acting as habitat<br>corridors. Climate change may<br>result in more migration of species<br>both along our Strategic Road<br>Network and across it. Risk is more<br>migration may result in more<br>road deaths and potential safety<br>related issues resulting in the<br>requirement for more mitigation to<br>compensate - greater costs.<br>Climate change could result in more<br>species rich grassland areas which<br>results in less maintenance<br>frequencies and less costs. Local<br>providence will change over time<br>which may have an impact what can<br>or should be planted. | 0.07  | Monitor<br>Monitor relevant guidance<br>and research involving<br>various species and habitat<br>types as well as their<br>management requirements.<br>Other DC13 Soft estate - capital<br>investment, ecology    | On going           |

| Activity<br>category                                              | Area                                            | Aspect            | Primary<br>climatic<br>changes                                                 | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                     | Score | Adaptation action                                                                                                                                                                                                                                                                                             | Progress of action |
|-------------------------------------------------------------------|-------------------------------------------------|-------------------|--------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Design and<br>construction of<br>new and<br>replacement<br>assets | NMU<br>facilities<br>(Non<br>Motorised<br>User) | Shelter provision | Increase in<br>extreme<br>temperature<br>Increase in winter<br>precipitation   |                                           | No significant risks identified for<br>shelter provision In the design and<br>construction of new and<br>replacement NMU facilities.                        | 0.11  | <b>Do Minimum</b><br>Highways England does not<br>provide shelter areas. Any<br>shelter areas on the SRN are<br>owned by local councils.<br>Highways England is<br>however upgrading certain<br>areas around bus shelters in<br>order to comply with equality<br>legislation.<br>Other DC14 Shelter provision | N/A                |
| Design and<br>construction of<br>new and<br>replacement<br>assets | NMU<br>facilities<br>(Non<br>Motorised<br>User) | Underpass         | Increase in winter<br>precipitation<br>Increase in<br>extreme<br>precipitation |                                           | No significant risks identified that<br>relate to underpasses in the design<br>and construction of new and<br>replacement NMU facilities.                   | 0.22  | <b>Do Minimum</b><br>There is no need to change<br>NMU policy/standards<br>because drainage standards<br>are being updated and will<br>take into account NMU<br>facilities.<br>Other DC15 Underpass<br>provision                                                                                              | N/A                |
| Design and<br>construction of<br>new and<br>replacement<br>assets | NMU<br>facilities<br>(Non<br>Motorised<br>User) | Drainage design   | Increase in winter<br>precipitation<br>Increase in<br>extreme<br>precipitation |                                           | No significant risks have been<br>identified that relate to drainage<br>design, in the design and<br>construction of new and<br>replacement NMU facilities. | 0.11  | Do Minimum<br>Cycle paths include<br>drainage, often in the form of<br>filter drains. Highways<br>England will continue to<br>advise supply chain on<br>maintenance.<br>Other DC16 Drainage design<br>Drainage DC07 Capacity of<br>drainage system                                                            | N/A                |

| Activity<br>category                                   | Area      | Aspect          | Primary<br>climatic<br>changes                                                | Secondary<br>impacts of<br>climate change                        | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Score | Adaptation action                                                                                                                                                                                                                                                            | Progress<br>of action |
|--------------------------------------------------------|-----------|-----------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Maintenance<br>and<br>management of<br>existing assets | Pavements | Skid resistance | Increase in winter<br>precipitation<br>Decrease in<br>summer<br>precipitation | Flooding                                                         | Skid resistance of the surface<br>course decreases significantly in<br>areas where it is flooded.<br>The impact of flooding is not<br>significant if drainage network<br>capacity is adequate and is<br>regularly maintained.<br>Decrease in summer precipitation<br>can lead to a build up of particulates<br>in the road surface which, when the<br>first rainfall event occurs, creates a<br>surface which could compromise<br>skid resistance of the surface<br>course.                                                                                                                                                                                                                                                                                                                                                                                            | 1     | Update Operating<br>Procedures<br>Review the current skid<br>policy to ensure that it is fit<br>for purpose taking into<br>account predicted climate<br>change. Publish new skid<br>policy (HD28/15).<br>Pavements MM01 Skid<br>resistance                                   | Complete              |
| Maintenance<br>and<br>management of<br>existing assets | Pavements | Foundations     | Increase in winter<br>precipitation<br>Decrease in<br>summer<br>precipitation | Change in ground<br>water level<br>Reduction in soil<br>moisture | Ineffective sub-surface drainage can<br>lead to saturation of the unbound<br>pavement construction, loss of fine<br>material, settlement and premature<br>pavement failure. Apart from the<br>effect of water on the strength of the<br>subgrade, prolonged water<br>saturation will also have adverse<br>effects on the stability of granular<br>foundation layers and can result in<br>substantial deformation. Where<br>cracks propagate through the<br>pavement layers, water ingress into<br>the lower layers and the subsequent<br>action of the traffic will cause<br>pumping of material from the lower<br>layers. This both decreases the<br>support from the lower layers and<br>weakens the material. Large<br>changes in moisture content can<br>cause soil to expand and shrink<br>substantially, causing the<br>pavements above to heave and<br>subside. | 0.44  | Monitor<br>Develop tools to monitor<br>foundation condition, i.e.<br>traffic speed deflectometer<br>network level surveys.<br>Traffic speed deflectometer<br>needs further research to<br>enable different pavement<br>layers to be assessed.<br>Pavements MM002 Foundations | On going              |

| Activity<br>category                                   | Area      | Aspect                 | Primary<br>climatic<br>changes                                                                                     | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Score | Adaptation action                                                                                                                                                                         | Progress<br>of action |
|--------------------------------------------------------|-----------|------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Maintenance<br>and<br>management of<br>existing assets | Pavements | Integrity of materials | Increase in mean<br>temperature<br>Increase in<br>extreme<br>temperature<br>Decrease in<br>summer<br>precipitation | Reduction in soil<br>moisture             | Concrete pavements:<br>Thermal gradients in concrete<br>pavements can create uneven<br>internal stresses which can then<br>give rise to curling or warping,<br>sometimes called hogging, of the<br>slabs. These can be compounded<br>by loading from passing traffic.<br>Large changes in temperature<br>generate thermal contraction and<br>expansion of the slabs which, if not<br>taken into consideration at the<br>design stage, can generate<br>unacceptably large longitudinal<br>internal stresses and excessive<br>movements at joints. With the<br>requirement to cover concrete<br>surfaces with asphalt, higher<br>temperatures in the underlying<br>concrete may be created. The<br>specific effects on concrete of an<br>overlying layer at a higher<br>temperature have yet to be<br>assessed. Compression failures<br>have also been noticed where a<br>series of transverse joints have not<br>been constructed satisfactorily and<br>so do not allow any thermal<br>movement. Overall ride quality<br>would be poor and potentially<br>compromise safety and road user<br>comfort. | 0.67  | Update Operating<br>Procedures<br>Update HD32/HD38 to<br>ensure that requirements for<br>joint sealants are included in<br>new forms of contract.<br>Pavements MM04 Existing<br>concrete. | On going              |

| Activity<br>category                                   | Area      | Aspect      | Primary<br>climatic<br>changes                                           | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Score | Adaptation action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Progress of action |
|--------------------------------------------------------|-----------|-------------|--------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Maintenance<br>and<br>management of<br>existing assets | Pavements | Maintenance | Increase in mean<br>temperature<br>Increase in<br>extreme<br>temperature |                                           | During extended periods of hot,<br>sunny conditions, asphalt can<br>remain workable for a considerable<br>time, making it difficult to maintain<br>profile during compaction and, in the<br>case of hot rolled asphalt surface<br>course (not used at present on the<br>trunk roads) with added pre-coated<br>chippings, it may be difficult to<br>achieve the required texture depth.<br>The newly laid surfacing layers of a<br>pavement may also maintain<br>temperatures after opening to traffic<br>that are high enough to allow<br>excessive rutting and the rapid<br>embedment of any chippings, with<br>the latter again causing a reduction<br>of texture depth. These conditions<br>would be compounded in conditions<br>where traffic intensity is high and<br>speeds are restricted. Overall ride<br>quality would be poor and<br>potentially compromise safety and<br>road user comfort. | 0.44  | Monitor<br>Gather feedback from<br>surfacing contractors through<br>liaison with the mineral<br>products association (MPA),<br>and monitor performance of<br>thin surfacing on the<br>network.<br>The thin surfacing materials<br>in the current standard are<br>generally adequate to meet<br>the impact of climate change<br>as they are not susceptible to<br>higher temperatures. To<br>ensure robustness of the<br>standards on surfacing<br>materials research is<br>ongoing into how these<br>materials are performing on<br>the network.<br>Pavements MM03 Existing<br>asphalt | On going           |

| Activity<br>category                                   | Area                                  | Aspect                                                  | Primary<br>climatic<br>changes                                           | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Score | Adaptation action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Progress<br>of action |
|--------------------------------------------------------|---------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Maintenance<br>and<br>management of<br>existing assets | Pavements                             | Resurfacing                                             | Increase in mean<br>temperature<br>Increase in<br>extreme<br>temperature |                                           | As aboveDuring extended periods<br>of hot, sunny conditions, asphalt<br>can remain workable for a<br>considerable time, making it difficult<br>to maintain profile during<br>compaction and, in the case of hot<br>rolled asphalt surface course (not<br>used at present on the trunk roads)<br>with added pre-coated chippings, it<br>may be difficult to achieve the<br>required texture depth. The newly<br>laid surfacing layers of a pavement<br>may also maintain temperatures<br>after opening to traffic that are high<br>enough to allow excessive rutting<br>and the rapid embedment of any<br>chippings, with the latter again<br>causing a reduction of texture<br>depth. These conditions would be<br>compounded in conditions where<br>traffic intensity is high and speeds<br>are restricted. Overall ride quality<br>would be poor and potentially<br>compromise safety and road user<br>comfort.<br>A risk of maintenance liability<br>increasing to meet the current<br>/future standards. | 0.15  | Monitor<br>Gather feedback from<br>surfacing contractors through<br>liaison with the mineral<br>products association (MPA),<br>and monitor performance of<br>thin surfacing on the<br>network.<br>The thin surfacing materials<br>in the current standard are<br>generally adequate to meet<br>the impact of climate change<br>as they are not susceptible to<br>higher temperatures. To<br>ensure robustness of the<br>standards on surfacing<br>materials research is<br>ongoing into how these<br>materials are performing on<br>the network.<br>Pavements MM03 Existing<br>asphalt | On going              |
| Maintenance<br>and<br>management of<br>existing assets | Structures<br>(including<br>gantries) | Thermal actions<br>(loads) applied to<br>superstructure | Increase in<br>extreme<br>temperature                                    |                                           | Some structures may fail to operate<br>within original design parameters.<br>This may induce failures meaning<br>additional works would then be<br>required to strengthen them.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.22  | Monitor<br>The potential impact of<br>temperature changes on<br>structures is considered low<br>as the extreme temperatures<br>do not greatly exceeding the<br>existing design guidance.<br>Therefore adaptation action<br>is to continue to monitor.<br>Structures DCMM01 Thermal<br>actions applied to superstructure                                                                                                                                                                                                                                                                | On going              |

| Activity<br>category                                   | Area                                  | Aspect                                                                                            | Primary<br>climatic<br>changes                                                | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                        | Score | Adaptation action                                                                                                                                                                                                                                                                                             | Progress<br>of action |
|--------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Maintenance<br>and<br>management of<br>existing assets | Structures<br>(including<br>gantries) | Wind actions<br>(loads) applied to<br>superstructure                                              | Increase in wind<br>speed for worst<br>gales                                  |                                           | Additional loading may be applied to<br>structures (generally for smaller<br>structures and gantries). This may<br>induce greater deflections and there<br>will be the risk that signs might be<br>unreadable, cameras may be<br>affected or that certain elements<br>could fail. Assessments may need<br>to be carried out to determine<br>requirements/risk. | 0.67  | Monitor<br>The potential impact of wind<br>actions on structures is<br>considered low as the<br>extreme temperatures do not<br>greatly exceeding the<br>existing design guidance.<br>Therefore adaptation action<br>is to continue to monitor.<br>Structures DCMM02 Wind<br>actions applied to superstructure | On going              |
| Maintenance<br>and<br>management of<br>existing assets | Structures<br>(including<br>gantries) | Increased thermal<br>range giving rise<br>to increased earth<br>pressures for<br>integral bridges | Increase in mean<br>temperature<br>Increase in<br>extreme<br>temperature      |                                           | Additional loading may be applied<br>to structures. This may induce<br>greater stress within structures,<br>increasing the risk of deterioration.                                                                                                                                                                                                              | 0.22  | Do Minimum<br>Design guidance already<br>allows for temperature<br>changes and the range is<br>quite generous. Review in 25<br>years.<br>Structures DCMM03 Increased<br>thermal range giving rise to<br>increased earth pressures for<br>integral bridges                                                     | N/A                   |
| Maintenance<br>and<br>management of<br>existing assets | Structures<br>(including<br>gantries) | Earth pressures<br>used in design<br>affected by<br>change in ground<br>water level               | Increase in winter<br>precipitation<br>Decrease in<br>summer<br>precipitation | Change in ground water level              | Possible larger ground movement/<br>heave may occur which would result<br>in additional drainage, stronger<br>materials being required - cost/time<br>implications.                                                                                                                                                                                            | 0.07  | Do Minimum<br>Existing design guidance<br>already takes this into<br>account.<br>Structures DCMM04 Earth<br>pressures used in design<br>affected by change in ground<br>water level                                                                                                                           | N/A                   |

| Activity<br>category                                   | Area                                  | Aspect                                                                     | Primary<br>climatic<br>changes                                                | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                      | Score | Adaptation action                                                                                                                                                                                                                                                                                                                                                                         | Progress<br>of action |
|--------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Maintenance<br>and<br>management of<br>existing assets | Structures<br>(including<br>gantries) | Foundation<br>settlement<br>affected by<br>change in ground<br>water level | Increase in winter<br>precipitation<br>Decrease in<br>summer<br>precipitation | Change in ground<br>water level           | May reduce headroom and cause<br>differential settlement. It could result<br>in an additional stress being<br>induced into the structure, causing<br>failure of components.  | 0.07  | <b>Do Minimum</b><br>New designs are already<br>conservative and there is no<br>evidence for existing<br>structures being affected.<br>Structures DCMM05 Foundation<br>settlement affected by change in<br>ground water level                                                                                                                                                             | N/A                   |
| Maintenance<br>and<br>management of<br>existing assets | Structures<br>(including<br>gantries) | Management of<br>increased scour<br>risk for<br>foundations                | Increase in<br>extreme<br>precipitation                                       | Flooding                                  | Greater requirement for assessment<br>and inspection to manage<br>structures. Shorter<br>intervention/strengthening intervals<br>required to protect existing<br>structures. | 0.67  | Do Minimum<br>Existing processes for<br>inspection of bridges should<br>be adequate to detect<br>problems and monitoring,<br>flood emergency plans or<br>retrofitting would be<br>implemented on specific<br>structures based on these<br>assessments. Current<br>guidance has been reviewed<br>and no updated are required.<br>Structures DCMM06 Increased<br>scour risk for foundations | N/A                   |
| Maintenance<br>and<br>management of<br>existing assets | Structures<br>(including<br>gantries) | Management of structure drainage                                           | Increase in<br>extreme<br>precipitation                                       |                                           | Increased risk of blockages,<br>affecting large areas and causing<br>disruption. May require replacement<br>of existing drainage at regular<br>intervals –Cost/disruption.   | 0.11  | <b>Do Minimum</b><br>Structures drain into the<br>network drainage. Network<br>drainage is covered by its<br>own action plans.<br>Structures DCMM07 Structure<br>drainage                                                                                                                                                                                                                 | N/A                   |

| Activity<br>category                                              | Area                                  | Aspect                                                                                                                    | Primary<br>climatic<br>changes                                                                                                   | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                     | Score | Adaptation action                                                                                                                                                                                                                                                                                                                                                                                                                          | Progress of action |
|-------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Maintenance<br>and<br>management of<br>existing assets            | Structures<br>(including<br>gantries) | Management of<br>temperature<br>sensitive<br>components or<br>materials (e.g.<br>epoxies used in<br>FRP<br>strengthening) | Increase in<br>extreme<br>temperature                                                                                            |                                           | An increase in extreme temperature<br>would require increased<br>assessment, ongoing<br>inspections/monitoring and may<br>require strengthening/replacement.                                                                                                                                                                                | 0.22  | Development of Future<br>Proof Designs<br>Update design requirements,<br>including technical standards<br>and specifications to provide<br>additional capacity/<br>functionality.<br>Structures DCMM08 Use of<br>temperature sensitive<br>components or materials in<br>construction or rehabilitation<br>(e.g. FRP strengthening)                                                                                                         | In<br>Progress     |
| Design and<br>construction of<br>new and<br>replacement<br>assets | Structures<br>(including<br>gantries) | Management and<br>maintenance of<br>bearings and<br>expansion joints                                                      | Increase in<br>extreme<br>temperature                                                                                            |                                           | Would require increased<br>assessment and ongoing<br>inspections/monitoring. May require<br>replacement of bearings or<br>strengthening the bridge.                                                                                                                                                                                         | 0.44  | Do Minimum<br>Existing review procedures<br>of design standards are<br>adequate for a do minimum<br>approach.<br>Structures DCMM09 Bearings<br>and expansion joints                                                                                                                                                                                                                                                                        | N/A                |
| Maintenance<br>and<br>management of<br>existing assets            | Structures<br>(including<br>gantries) | Climatic<br>constraints on<br>maintenance<br>activities                                                                   | Increase in<br>extreme<br>temperature<br>Increase in<br>extreme<br>precipitation<br>Increase in wind<br>speed for worst<br>gales |                                           | Under extreme temperature, certain<br>maintenance activities may be<br>required to be undertaken at night,<br>to keep work to schedule, thus<br>incurring higher programme costs<br>(e.g. labour and illumination).<br>Extreme precipitation/gale force<br>winds have the potential to alter<br>construction activities and cause<br>delay. | 0.04  | Monitor<br>The Specification for<br>Highway Works already<br>prescribes how certain<br>construction activities (for<br>example concreting) should<br>be carried out in, for<br>example, high or low<br>temperatures. Climate<br>change impacts will be<br>monitored and updates to<br>operating procedures and<br>contingency plans produced<br>when necessary.<br>Structures DCMM10 Climatic<br>constraints on construction<br>activities | On going           |

| Activity<br>category                                   | Area                                  | Aspect                                                                                                                         | Primary<br>climatic<br>changes                                                                                           | Secondary<br>impacts of<br>climate change                                              | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Score | Adaptation action                                                                                                                                                                                                                                                                                                                                                                                                                                        | Progress<br>of action |
|--------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Maintenance<br>and<br>management of<br>existing assets | Structures<br>(including<br>gantries) | Optimum timing of<br>maintenance<br>interventions, in<br>response to<br>changes in<br>deterioration rates                      | Increase in mean<br>temperature<br>Increase in winter<br>precipitation<br>Reduction in<br>snowfall                       |                                                                                        | Risks to the optimum timing of<br>maintenance interventions include<br>increased inspections/monitoring;<br>strengthening works or more<br>frequent maintenance required, and<br>a shorter lifespan of structures than<br>expected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05  | <b>Do Minimum</b><br>There is no obvious risk as a<br>result of temperature<br>changes that impact either<br>the safety or serviceability of<br>the network. A reduction in<br>the use of de-icing salts will<br>be beneficial and slow down<br>rates of deterioration.<br>Structures DCMM11 Optimum<br>timing of maintenance<br>interventions in response to<br>changes in deterioration rates                                                          | N/A                   |
| Maintenance<br>and<br>management of<br>existing assets | Drainage                              | Surface water<br>drainage systems.<br>Cross-culverts.<br>Road-edge<br>drainage.<br>Attenuation<br>Outfalls<br>Drainage ditches | Increase in winter<br>precipitation<br>Decrease in<br>summer<br>precipitation<br>Increase in<br>extreme<br>precipitation | Flooding<br>Change in ground<br>water level<br>Frequency of<br>extreme storm<br>surges | <ul> <li>In the maintenance and<br/>management of existing assets, the<br/>risks include:</li> <li>Congestion and accidents</li> <li>An increased risk of flooding<br/>impacts the performance of the<br/>network, including congestion<br/>and incidents (safety).</li> <li>Third party flooding</li> <li>There are risks associated with<br/>flooding of third party land from<br/>the network.</li> <li>Pollution</li> <li>With a reduction in mean<br/>precipitation, drainage dilution<br/>levels will be more<br/>concentrated due to receiving<br/>water courses carrying less<br/>water.</li> <li>Cross asset deterioration</li> <li>Flooding increases the rate of<br/>deterioration of other assets.</li> </ul> | 0.44  | Monitor:<br>Highways England have<br>continued to use the<br>Highways England Drainage<br>Data Management System<br>(HADDMS) to record flooding<br>events and inform the<br>prioritisation of drainage<br>assets to be upgraded to<br>cope with existing and future<br>flooding<br>Drainage MM08 Capacity of<br>drainage system<br>Drainage MM09 Increased<br>flooding from adjacent land<br>Drainage MM10 Flooding of third<br>parties from HE drainage | On going              |

| Activity<br>category                                   | Area        | Aspect                                                             | Primary<br>climatic<br>changes                                                 | Secondary<br>impacts of<br>climate change   | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                      | Score | Adaptation action                                                                                                                                                                                                                                                                                                                                                                                                                                 | Progress of action |
|--------------------------------------------------------|-------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Maintenance<br>and<br>management of<br>existing assets | Geotechnics | Increased scour<br>and erosion of<br>earthworks                    | Increase in winter<br>precipitation<br>Increase in<br>extreme<br>precipitation | Flooding                                    | There is a risk to the geotechnics<br>asset of scour and erosion resulting<br>from flood waters.                                                                                                                                                                                                                                                                                                                                             | 0.22  | Do Minimum<br>Erosion of existing<br>earthworks is insignificant at<br>present with only a few<br>isolated examples. Any<br>potential increase due to<br>increased precipitation is<br>likely to be limited and will be<br>identified during the regular<br>earthworks inspections<br>linked to work being<br>undertaken with respect to<br>flooding hotspots on the<br>network.<br>Geotechnics MM05 Increased<br>scour and erosion of earthworks | N/A                |
| Maintenance<br>and<br>management of<br>existing assets | Geotechnics | Stability of slopes,<br>change in water<br>levels/pore<br>pressure | Increase in<br>extreme<br>temperature<br>Increase in winter<br>precipitation   | Flooding<br>Change in ground<br>water level | In the maintenance and<br>management of existing<br>geotechnical assets, the risks to the<br>stability of slopes from flooding<br>include:<br>Increased erosion and instability at<br>the base of embankments.<br>The risks to slope stability from<br>increased precipitation are linked to<br>increased pore pressures/water<br>levels which can give rise to a<br>reduction in the factor of safety and<br>a greater risk of instability. | 0.11  | <b>Do Minimum</b><br>Slope stability is well<br>understood. Existing regular<br>inspections are sufficient.<br>Geotechnics MM06 Stability of<br>slopes, change in water levels/<br>pore pressure                                                                                                                                                                                                                                                  | N/A                |
| Maintenance<br>and<br>management of<br>existing assets | Geotechnics | Drainage ditches                                                   | Increase in winter<br>precipitation<br>Increase in<br>extreme<br>precipitation |                                             | Risk of volume of water exceeding the capacity of ditches.                                                                                                                                                                                                                                                                                                                                                                                   | 0.22  | This aspect is considered as<br>part of drainage.<br>Drainage MM08 Capacity of<br>drainage system                                                                                                                                                                                                                                                                                                                                                 | N/A                |

| Activity<br>category                                   | Area                 | Aspect                                                    | Primary<br>climatic<br>changes                                                                                           | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                               | Score | Adaptation action                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Progress<br>of action |
|--------------------------------------------------------|----------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Maintenance<br>and<br>management of<br>existing assets | Geotechnics          | Earthworks<br>construction<br>across existing<br>landslip | Increase in winter<br>precipitation<br>Increase in<br>extreme<br>precipitation                                           | Change in ground<br>water level           | This represents a very limited part<br>of the asset. The risk here relates to<br>a reduction in the factor of safety<br>and higher probability of instability.                        | 0.33  | Do Minimum<br>Such locations are rare on<br>the network. Each Managing<br>Agent should assess the<br>specific situation as part of<br>their regular HADGMS<br>inspection and risk<br>assessment. It is very difficult<br>to predict the effect of<br>increased precipitation and,<br>more importantly, identify the<br>need for pro-active measures<br>to address any perceived<br>risk.<br>Geotechnics MM07 Earthworks<br>construction across existing<br>landslip | N/A                   |
| Maintenance<br>and<br>management of<br>existing assets | Signs and signals    | Renewal and repair                                        | Increase in mean<br>temperature<br>Increase in<br>extreme<br>temperature<br>Increase in wind<br>speed for worst<br>gales |                                           | Minimal risks to the Highways<br>England's signs during their design<br>life.                                                                                                         | 0.1   | Development of Future<br>Proof Designs<br>Technical Directive TD 25/01<br>has been replaced by a new<br>standard TD25/15.<br>Other MM11 Signs - renewal<br>and repair                                                                                                                                                                                                                                                                                               | Complete              |
| Maintenance<br>and<br>management of<br>existing assets | Restraint<br>systems | Renewal                                                   | Increase in mean<br>temperature<br>Increase in winter<br>precipitation                                                   |                                           | Prime risk is workforce safety No<br>other significant risks identified to<br>the renewal of restraint systems as<br>part of the maintenance and<br>management of the existing asset. | 0.2   | <b>Do Minimum</b><br>Existing review process of<br>design guidelines is sufficient<br>and is reviewed every 5<br>years.<br>Other MM12 Vehicle restraint<br>systems - renewal                                                                                                                                                                                                                                                                                        | N/A                   |

| Activity<br>category                                   | Area                 | Aspect    | Primary<br>climatic<br>changes                                                          | Secondary<br>impacts of<br>climate change                 | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Score | Adaptation action                                                                                                                                                                                                                         | Progress of action |
|--------------------------------------------------------|----------------------|-----------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Maintenance<br>and<br>management of<br>existing assets | Restraint<br>systems | Repair    | Increase in<br>extreme<br>precipitation<br>Increase in wind<br>speed for worst<br>gales | Flooding                                                  | Prime risk is workforce safety No<br>other significant risks identified to<br>the repair of restraint systems as<br>part of the maintenance and<br>management of the existing asset.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1   | Do Minimum<br>VRS does not cause<br>incidents, it mitigates injuries.<br>Actions to be taken in<br>regards to other DMRB<br>standards to prevent vehicles<br>leaving the carriageway.<br>Other MM13 Vehicle restraint<br>systems – repair | N/A                |
| Maintenance<br>and<br>management of<br>existing assets | Soft estate          | Landscape | Increase in mean<br>temperature<br>Decrease in<br>summer<br>precipitation               | Longer growing<br>season<br>Reduction in soil<br>moisture | The risks involved here with existing<br>soft estate make-up of species and<br>landscape character is the potential<br>for certain species to become<br>unstable and potentially a safety risk<br>if not managed properly. (i.e. beech<br>will become susceptible to drought<br>conditions and become a safety<br>issue as a result<br>requiring removal along some parts<br>of the SRN.) A removal of certain<br>species may result in more<br>exposure to the SRN and noise<br>which will need to be mitigated<br>against. (i.e. greater exposure to<br>noise could result in more<br>complaints and the risk for the need<br>of greater number of environmental<br>barriers to compensate for this<br>increase.) | 0.22  | Monitor<br>Monitor relevant guidance<br>and research involving<br>various species and habitat<br>types as well as their<br>management requirements.<br>Other MM14 Soft estate - capital<br>investment, landscape                          | On-going           |

| Activity<br>category                                   | Area                                            | Aspect     | Primary<br>climatic<br>changes                                                                                                   | Secondary<br>impacts of<br>climate change                 | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                         | Score | Adaptation action                                                                                                                                                                                                              | Progress of action |
|--------------------------------------------------------|-------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Maintenance<br>and<br>management of<br>existing assets | Soft estate                                     | Ecology    | Increase in mean<br>temperature                                                                                                  | Longer growing<br>season<br>Reduction in soil<br>moisture | Change in climate may well have an<br>impact on existing ecological<br>habitats. Climate change may result<br>in more migration of species both<br>along our Strategic Road Network<br>and across it. Risk is more<br>migration may result in more<br>road deaths and potential safety<br>related issues resulting in the<br>requirement for more mitigation to<br>compensate - greater costs. The<br>same applies to cultural heritage<br>and drainage issues. | 0.22  | Monitor<br>Monitor relevant guidance<br>and research involving<br>various species and habitat<br>types as well as their<br>management requirements.<br>Other MM15 Soft estate - capital<br>investment, ecology                 | On-going           |
| Maintenance<br>and<br>management of<br>existing assets | NMU<br>facilities<br>(Non<br>Motorised<br>User) | Off road   | Increase in<br>extreme<br>temperature<br>Increase in winter<br>precipitation<br>Increase in<br>extreme<br>precipitation          | Flooding                                                  | Risk of NMUs experiencing flooding off-road.                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.11  | <b>Do Minimum</b><br>Any off road cycle paths or<br>facilities are provided with<br>filter drains.<br>Other MM16 Off road                                                                                                      | N/A                |
| Managing<br>network<br>operation                       | Managed<br>motorways                            | Technology | Increase in<br>extreme<br>temperature<br>Increase in<br>extreme<br>precipitation<br>Increase in wind<br>speed for worst<br>gales | Flooding                                                  | The main risk identified is<br>accessibility to roadside cabinets<br>(electrical).<br>Our technology has been designed<br>to withstand the weather related<br>impacts for the duration of its<br>service life, which, dependent on<br>asset type will be between 15-50<br>years.                                                                                                                                                                                | 0.22  | <b>Do Minimum</b><br>Highways England is aware<br>of the need to adapt to<br>climate change and suggests<br>this will be considered in the<br>future due to the short design<br>life of technology.<br>Other DCMM12 Technology | N/A                |

| Activity<br>category             | Area                 | Aspect           | Primary<br>climatic<br>changes                                                          | Secondary<br>impacts of<br>climate change           | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Score | Adaptation action                                                                                                                                                     | Progress<br>of action |
|----------------------------------|----------------------|------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Managing<br>network<br>operation | Managed<br>motorways | Traffic Officers | Increase in<br>extreme<br>precipitation<br>Increase in wind<br>speed for worst<br>gales | Flooding<br>Frequency of<br>extreme storm<br>surges | <ul> <li>Flooding could impact the Traffic Officer Service (TOS) in the following ways:</li> <li>Ability of TOS to access the network and carry out duties</li> <li>The TOS is not meant to help motorists in conditions of severe flooding (not equipped with life preservers or specific training). These are dangerous conditions which are for the emergency services to respond to. There are however expectations placed upon onroad Traffic Officers (TOS) to operate in flooded areas.</li> <li>There is an increased risk to TOs of high sided vehicle blow-overs and flying debris, including loads detached from vehicles and third party structures blowing onto the network.</li> </ul> | 0.22  | Monitor<br>Monitor impact of changes in<br>rain, snow and wind speeds.<br>If required, update operating<br>procedures.<br>Traffic management MNO1<br>Traffic Officers | On-going              |

| Activity<br>category             | Area                 | Aspect                      | Primary<br>climatic<br>changes                                                                                                   | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Score | Adaptation action                                                                                                                                                                                                                | Progress<br>of action |
|----------------------------------|----------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Managing<br>network<br>operation | Managed<br>motorways | Regional Control<br>Centres | Increase in<br>extreme<br>temperature<br>Increase in<br>extreme<br>precipitation<br>Increase in wind<br>speed for worst<br>gales | Flooding                                  | An increase in mean and extreme<br>temperatures would affect the<br>energy consumption used within the<br>RCCs for climate control (air<br>conditioning). This directly impacts<br>the facilities management costs for<br>each of Highways England's seven<br>Regional Control Centres.<br>There is a risk that lanes used for<br>hard shoulder running (HSR) are<br>more vulnerable to flooding effecting<br>functionality of managed<br>motorways.<br>There is a potential flooding risk to<br>some RCCs. Site specific risk<br>assessments would need to be<br>conducted to determine the level of<br>risk. Continuity procedures are in<br>place whereby the work of an RCC<br>could be undertaken by another<br>RCC in the event of part/full closure.<br>However, managed motorways<br>operations are not transferable. | 0.22  | Do Minimum<br>Current regional control<br>centre leases end in<br>2019/20, flooding and<br>climate change impacts will<br>be considered when looking<br>to extend leases.<br>Traffic management MNO2<br>Regional Control Centres | N/A                   |

| Activity category                | Area                   | Aspect                               | Primary climatic                                                                                                                                                         | Secondary<br>impacts of                             | Highways England risks<br>resulting from identified                                                                                                                                                                                                                                                                                                          | Score | Adaptation action                                                                                                                                                                                                                                                | Progress of action |
|----------------------------------|------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                                  |                        |                                      | changes                                                                                                                                                                  | climate change                                      | climatic changes                                                                                                                                                                                                                                                                                                                                             |       |                                                                                                                                                                                                                                                                  |                    |
| Managing<br>network<br>operation | Incident<br>management | Breakdowns                           | Increase in mean<br>temperature<br>Increase in<br>extreme<br>temperature<br>Increase in wind<br>speed for worst<br>gales                                                 |                                                     | <ul> <li>There is a risk of more incidents due to:</li> <li>Vehicles having broken down/overheated</li> <li>A higher frequency of vehicle fires</li> <li>Smoke drifting across carriageways from wildfires</li> <li>HGV blow-overs</li> <li>Flying debris</li> </ul>                                                                                         | 0.22  | Monitor<br>Monitor impact of changes in<br>rain, snow and wind speeds.<br>This information will be used<br>to assess if an increase in<br>resources/equipment is<br>required.<br>Traffic management MNO3<br>Breakdowns                                           | On-going           |
|                                  |                        |                                      |                                                                                                                                                                          |                                                     | Increased danger of secondary<br>incidents if vehicles are blown into<br>hard shoulder                                                                                                                                                                                                                                                                       |       |                                                                                                                                                                                                                                                                  |                    |
|                                  |                        |                                      |                                                                                                                                                                          |                                                     | There is a risk to road users unable<br>to exit the network if stuck in a<br>queue (e.g. at a time of extreme<br>temperature).                                                                                                                                                                                                                               |       |                                                                                                                                                                                                                                                                  |                    |
| Managing<br>network<br>operation | Incident<br>management | Road user<br>incidents/<br>accidents | Increase in winter<br>precipitation<br>Decrease in<br>summer<br>precipitation<br>Increase in<br>extreme<br>precipitation<br>Increase in wind<br>speed for worst<br>gales |                                                     | <ul> <li>Increased risk of more incidents caused by ice:</li> <li>Specific risk posed by skidding vehicles to those working on the network</li> <li>Risk of traction-related incidents</li> <li>Other causes of incidents: <ul> <li>Spray</li> <li>Aquaplaning</li> <li>Losing control on standing water</li> <li>Overturned vehicles</li> </ul> </li> </ul> | 0.07  | Do Minimum<br>Highways England will<br>continue to put road safety at<br>the top of the agenda and set<br>targets to reduce the number<br>of people killed or seriously<br>injured on the network.<br>Traffic management MNO4<br>Road user incidents / accidents | N/A                |
| Managing<br>network<br>operation | Incident<br>management | Third party<br>incidents             | Increase in<br>extreme<br>precipitation<br>Increase in wind<br>speed for worst<br>gales                                                                                  | Flooding<br>Frequency of<br>extreme storm<br>surges | Increased risk to those working on network                                                                                                                                                                                                                                                                                                                   | 0.22  | Traffic management MNO5 Third party incidents                                                                                                                                                                                                                    |                    |

| Activity<br>category             | Area                       | Aspect          | Primary<br>climatic<br>changes                                                                     | Secondary<br>impacts of<br>climate change           | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                                                                                                                            | Score | Adaptation action                                                                                                                                                                                                                                    | Progress of action |
|----------------------------------|----------------------------|-----------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Managing<br>network<br>operation | Restricting<br>network use | High winds      | Increase in wind<br>speed for worst<br>gales                                                       |                                                     | High winds will require us to close<br>structures/roads to high sided<br>vehicles and motorcycles more<br>frequently. There is a risk in the<br>absence of a structured method for<br>restricting access to vulnerable<br>vehicles as opposed to fully closing<br>a stretch of the network.                                                                                                                                                                                                        | 0.1   | Update Operating<br>Procedures The Severn<br>Crossing already has a<br>filtering process. Similar<br>procedures are being<br>considered for the Dartford<br>crossing and other locations<br>where required.<br>Traffic management MNO6 High<br>winds | On-going           |
| Managing<br>network<br>operation | Restricting<br>network use | Flooding        | Increase in<br>extreme<br>precipitation<br>Increase in wind<br>speed for worst<br>gales            | Flooding<br>Frequency of<br>extreme storm<br>surges | There may be a need to open up<br>diversion routes if parts of the<br>network become flooded.<br>There is a risk of Local Authority<br>routes gridlock if parts of strategic<br>network are closed – a reputational<br>risk for Highways England if we are<br>seen to be the "cause".<br>The majority of our roads are at a<br>higher elevation than local roads<br>which means that if SRN roads are<br>flooded, it is likely that the adjacent<br>local authority roads will also be<br>flooded. | 0.44  | Adaptation considered by<br>design, construction and<br>maintenance vulnerabilities<br>relating to drainage.<br>Traffic management MNO7<br>Flooding                                                                                                  | N/A                |
| Managing<br>network<br>operation | Education                  | Motorised users | Increase in mean<br>temperature<br>Increase in winter<br>precipitation<br>Reduction in<br>snowfall | Reduction in icy<br>days in winter                  | Education aims to transfer decision<br>making responsibilities to the road<br>user. Highways England<br>communicates travel information<br>and advice throughout the year but<br>especially at times of adverse winter<br>conditions. There is a risk that road<br>users will not heed advice given.                                                                                                                                                                                               | 0.33  | Do Minimum<br>Continue to inform network<br>users as appropriate.<br>Traffic management MNO8<br>Motorised users                                                                                                                                      | N/A                |

| Activity<br>category                                            | Area                   | Aspect                    | Primary<br>climatic<br>changes                                                                                                   | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                  | Score | Adaptation action                                                                                                                                                                             | Progress<br>of action |
|-----------------------------------------------------------------|------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Managing<br>network<br>operation                                | Education              | Non-motorised<br>users    | Increase in mean<br>temperature<br>Increase in winter<br>precipitation<br>Reduction in<br>snowfall                               | Reduction in icy<br>days in winter        | Risk of NMUs failing to change<br>behaviour as a result of education.                                                                                    | 0.33  | Do Minimum<br>Continue to inform network<br>users as appropriate.<br>Traffic management MNO9 Non-<br>motorised users                                                                          | N/A                   |
| Managing<br>network<br>operation                                | Education              | Worker safety             | Increase in mean<br>temperature<br>Increase in<br>extreme<br>temperature<br>Increase in winter<br>precipitation                  |                                           | The risk here is a lack of<br>appreciation of skid risk/out of<br>control vehicle danger for those<br>working on the hard shoulder and<br>wider network. | 0.22  | Development of future<br>proof designs<br>Review uniform and<br>equipment used by traffic<br>officers and workers on road.<br>Update if required.<br>Traffic management MN10<br>Worker safety | On-going              |
| Managing<br>network<br>operation                                | Education              | Highways<br>England staff | Increase in<br>extreme<br>temperature<br>Increase in<br>extreme<br>precipitation<br>Increase in wind<br>speed for worst<br>gales | Flooding                                  | The risk to Highways England is the<br>ability of staff to conduct 'business<br>critical' activities.                                                    | 0.22  | Do Minimum<br>Contingency plans are in<br>place.<br>Traffic management MN11<br>Highways England staff                                                                                         | N/A                   |
| Defining and<br>managing<br>network<br>strategy and<br>planning | Development<br>control | Development<br>control    |                                                                                                                                  |                                           | Risk that development on any given site could exacerbate local risks.                                                                                    | 0.05  | <b>Do Minimum</b><br>To be determined on a case<br>by case basis through EIA<br>and other processes.                                                                                          | N/A                   |
| Defining and<br>managing<br>network<br>strategy and<br>planning | Demand<br>management   | Demand<br>forecasting     |                                                                                                                                  |                                           | No significant risks identified                                                                                                                          | 0.33  | N/A                                                                                                                                                                                           | N/A                   |

| Activity<br>category                                            | Area                    | Aspect                               | Primary<br>climatic<br>changes                                                                                                                              | Secondary<br>impacts of<br>climate change | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                 | Score | Adaptation action                                                                                                   | Progress<br>of action |
|-----------------------------------------------------------------|-------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------|-----------------------|
| Defining and<br>managing<br>network<br>strategy and<br>planning | Demand<br>management    | Influencing travel<br>behaviour      | Increase in mean<br>temperature<br>Increase in winter<br>precipitation<br>Decrease in<br>summer<br>precipitation<br>Increase in<br>extreme<br>precipitation |                                           | Highways England communicates to<br>road users through a number of<br>channels. We already provide<br>advice to drivers on travelling in<br>extreme weather conditions and<br>work closely with partners to<br>manage demand of the network<br>through a range of initiatives aimed<br>at influencing travel behaviour. | 0.11  | Not carried forward at this stage.                                                                                  | N/A                   |
| Defining and<br>managing<br>network<br>strategy and<br>planning | Land<br>management      | Soft estate                          | Increase in mean<br>temperature<br>Increase in<br>extreme<br>temperature<br>Decrease in<br>summer<br>precipitation                                          |                                           | Local variation of risks in the level<br>and type of landscape and ecology<br>strategies required.                                                                                                                                                                                                                      | 0.22  | Not carried forward at this stage.                                                                                  | N/A                   |
| Defining and<br>managing<br>network<br>strategy and<br>planning | Strategic<br>resilience | Critical<br>geographic<br>importance | Increase in<br>extreme<br>temperature<br>Increase in<br>extreme<br>precipitation<br>Increase in wind<br>speed for worst<br>gales                            | Flooding                                  | There is a risk that flooding of the<br>strategic road network would<br>compromise its strategic resilience.                                                                                                                                                                                                            | 0.67  | N/A<br>Adaptation considered by<br>design, construction and<br>maintenance vulnerabilities<br>relating to drainage. | N/A                   |
| Defining and<br>managing<br>network<br>strategy and<br>planning | Network<br>resilience   | Impact from third parties            | Increase in winter<br>precipitation<br>Increase in<br>extreme<br>precipitation                                                                              | Change in ground water level              | A risk that actions of third parties<br>could impact the Highways<br>England's asset e.g. extreme<br>precipitation could exceed drainage<br>capacity from adjacent land and<br>cause flooding impact to the<br>network.                                                                                                 | 0.67  | N/A<br>Adaptation considered by<br>design, construction and<br>maintenance vulnerabilities<br>relating to drainage. | N/A                   |

| Activity<br>category                                            | Area                               | Aspect                                                                      | Primary<br>climatic<br>changes                                                                                          | Secondary<br>impacts of<br>climate change           | Highways England risks<br>resulting from identified<br>climatic changes                                                                                                                                                                                                                                                                                                                | Score | Adaptation action                                                                     | Progress<br>of action |
|-----------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------|-----------------------|
| Defining and<br>managing<br>network<br>strategy and<br>planning | Network<br>resilience              | Demand and<br>operation (rail<br>systems fail)                              | Increase in<br>extreme<br>temperature<br>Increase in winter<br>precipitation<br>Increase in<br>extreme<br>precipitation |                                                     | Risk of cascade failure whereby the<br>failure of one asset/infrastructure<br>type e.g. rail would change the<br>demand for the highways<br>infrastructure – leading to a<br>negative impact on the reliability<br>and safety of journeys.                                                                                                                                             | 0.67  | Not carried forward at this stage.                                                    | N/A                   |
| Defining and<br>managing<br>network<br>strategy and<br>planning | Investment<br>appraisal            | Identifying best<br>ways of investing<br>resources/investm<br>ent appraisal |                                                                                                                         |                                                     | Risk to investment appraisal if climate projections are not considered.                                                                                                                                                                                                                                                                                                                | 1     | Not carried forward at this stage.                                                    | N/A                   |
| Defining and<br>managing<br>network<br>strategy and<br>planning | Budgeting<br>(spending<br>reviews) | Budgeting<br>(spending<br>reviews)                                          |                                                                                                                         |                                                     | No risks associated directly with spending reviews                                                                                                                                                                                                                                                                                                                                     | 0.67  | N/A                                                                                   | N/A                   |
| Defining and<br>managing<br>network<br>strategy and<br>planning | Network<br>performance             | Monitoring and standards                                                    | Increase in<br>extreme<br>precipitation<br>Increase in wind<br>speed for worst<br>gales                                 | Flooding<br>Frequency of<br>extreme storm<br>surges | For existing (especially older)<br>assets, there is a risk that existing<br>standards will not tolerate the future<br>climatic conditions.                                                                                                                                                                                                                                             | 0.11  | N/A<br>Adaptation considered in<br>specific areas such as<br>pavements or structures. | N/A                   |
| Internal<br>business<br>management                              | Facilities<br>management           | Facility energy                                                             | Increase in mean<br>temperature                                                                                         | Reduction in icy<br>days in winter                  | For Highways England's estate, an<br>increase in the mean temperature<br>would affect the energy<br>consumption used within the offices<br>for climate control (air<br>conditioning/heating). This directly<br>impacts the facilities management<br>costs for each of the 8 offices, the<br>National Traffic Information Service,<br>7 Regional Control Centres and 35<br>outstations. | 0.11  | Not carried forward at this stage.                                                    | N/A                   |

| Activity<br>category                                            | Area                   | Aspect                 | Primary<br>climatic<br>changes                                                 | Secondary<br>impacts of<br>climate change   | Highways England risks<br>resulting from identified<br>climatic changes                                                                                               | Score | Adaptation action                                                                                                   | Progress<br>of action |
|-----------------------------------------------------------------|------------------------|------------------------|--------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------|-----------------------|
| Internal<br>business<br>management                              | Staff costs            | Staff numbers          |                                                                                |                                             | No significant risks identified to staff<br>numbers as a consequence of<br>climate change with Civil Service<br>and Highways England business<br>continuity in place. | 0.67  | N/A                                                                                                                 | N/A                   |
| Defining and<br>managing<br>network<br>strategy and<br>planning | Property<br>management | Property<br>management | Increase in winter<br>precipitation<br>Increase in<br>extreme<br>precipitation | Change in ground<br>water level<br>Flooding | There is a risk that some of the<br>Highways England estate is at risk<br>of flooding.                                                                                | 0.11  | N/A<br>Adaptation considered by<br>design, construction and<br>maintenance vulnerabilities<br>relating to drainage. | N/A                   |

# Appendix 2

# **Risk Appraisal Matrices and Prioritisation Formulae**

This appendix comprises the matrices and formulae required to calculate the scores for each vulnerability appraisal.

 Uncertainty - Scores for uncertainty are determined from a review of climate change trends information and from expert opinion of how well the effect of climate change on a particular vulnerability is understood. Two sub-indicators corresponding to the uncertainty levels in climate change predictions and in climate change effects are assigned a High/Medium/Low score and the overall uncertainty score is determined using the table below:

|                                                   |        | Uncertainty level - effects of climate change on<br>asset/activity |        |     |  |  |  |
|---------------------------------------------------|--------|--------------------------------------------------------------------|--------|-----|--|--|--|
|                                                   |        | High                                                               | Medium | Low |  |  |  |
| limate                                            | High   | н                                                                  | н      | М   |  |  |  |
| Uncertainty level – Climate<br>change predictions | Medium | н                                                                  | М      | L   |  |  |  |
| Uncertainf<br>change pr                           | Low    | М                                                                  | L      | L   |  |  |  |

2. **Rate of Change** - The time horizon for climate change effects to become material is determined using predicted climate change trends. The asset life/activity time horizon sub-indicator reflects the duration of the consequences of decisions concerning the vulnerability.

|                                                                 |                                                  | Asset life / activity tim  | e horizon                   |
|-----------------------------------------------------------------|--------------------------------------------------|----------------------------|-----------------------------|
|                                                                 |                                                  | Short-term (< 30<br>years) | Longer-term (><br>30 years) |
| nate<br>ecome                                                   | Short-term (up to 2020)                          | н                          | н                           |
| Time horizon for climate<br>change effects to becom<br>material | Mid-to-longer term<br>(between 2020 and<br>2080) | М                          | н                           |
| Time hori<br>change e<br>material                               | Longer-term (beyond<br>2080)                     | L                          | М                           |

3. **Extent of Disruption** - In determining the extent of disruption it is important to take account of the spatial variation of the relevant climatic event. A risk event associated with extreme temperatures for example may have localised events but these may well occur at several places on the network at the same time thereby increasing the extent of disruption.

| Score  | Criterion: Extent of Network Affected                                                  |
|--------|----------------------------------------------------------------------------------------|
| High   | >80% of network / users affected, or any specific<br>highly strategic routes/locations |
| Medium | 20-80% of network / users affected                                                     |
| Low    | <20% of network / users affected                                                       |

4. **Severity of Disruption** - For vulnerabilities that are sensitive to extreme events, such as flooding, the severity of disruption is a measure of how long it takes to restore network functionality. It is not a measure of the duration of the event itself, as this is not under Highways England's control.

|        | Criterion: Severity of Disruption |
|--------|-----------------------------------|
| High   | Disruption time > 1 week          |
| Medium | Disruption time 1 day-1 week      |
| Low    | Disruption time <1 day            |

5. **Scoring Conversion** - The above High, Medium and Low scores must be converted into numerical scorres using the conversion table below, before moving onto the final table to calculate the final vulnerability scores.

| H/M/L Score | Numerical Score |
|-------------|-----------------|
| Н           | 3               |
| М           | 2               |
| L           | 1               |

6. **Formulae to prioritise vulnerabilities** - The purpose of the prioritisation of vulnerabilities is to inform timescales for action and provide priority areas for early focus in devising adaptation strategies. Typically in undertaking a risk appraisal it is possible to identify priority areas through considering a composite measure of extent and severity. This is not the case here. There are several reasons why a vulnerability could be a priority for action. Thus, rather than developing a single league table of vulnerabilities, a series of tables that reflect different reasons for action are established.

| Prioritisation criteria                               | Indicator score                                                                                                          |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Time-criticality                                      | [Rate of climate change] divided by 3                                                                                    |
| High extent                                           | [Extent of disruption] divided by 3                                                                                      |
| High disruption duration                              | [Severity of disruption] divided by 3                                                                                    |
| Potential research need (asset or activity)           | [Uncertainty level - effects of climate change<br>on asset/activity*] divided by 3                                       |
| Highly disruptive, time-critical with high confidence | [Rate of climate change] x [Extent of<br>disruption] x [Severity of disruption] x ( 4 -<br>[Uncertainty] ) divided by 81 |

\* Use Section 2.2 of vulnerabilities appraisal form. This will provide a score of high, medium or low. Use the scoring conversion matrix to determine a score of 3, 2 or 1.

# Appendix 3

# **Example of a Completed Risk Appraisal**

Appendix 3 uses vulnerability DC01 'Design and construction of new and replacement assets' to demonstrate how the risk appraisal methodology was applied. The methodology process is summarised by figure 1; we will describe the considerations made for each of these stages to appraise DC01



Figure 1 Methodology Flow Diagram

## Step 1 Complete the vulnerability schedule

Follow Stage 3 of the Highways England Climate Change Adaptation Model to complete the vulnerability schedule, as shown in Table 1.

#### Table 1 Example vulnerability

| Ref  | Vulnerability<br>activity category                    | Area                 | Aspect            |
|------|-------------------------------------------------------|----------------------|-------------------|
| DC01 | Design and construction of new and replacement assets | Highway<br>alignment | Improved drainage |

# 2. Appraise the primary criteria

#### Step 2 Appraise the vulnerability against the primary criteria

The Vulnerabilities Assessment Form (VAF) and matrices (see Appendix 2) were used to appraise the primary criteria. The VAF provides a series of dropdown menus from which the most appropriate responses were selected. The primary criteria are;

- Uncertainty;
- Rate of change;
- Extent of disruption (network / users affected); and
- Severity of disruption.

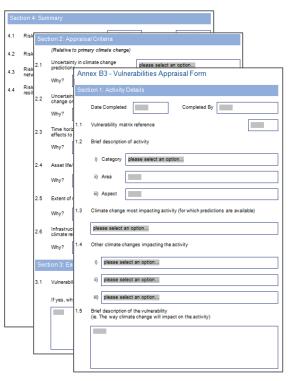



Figure 2 Vulnerability Appraisal Form

Firstly, a high level description of DC01 was entered into the VAF. The climatic changes that will impact DC01 were then selected.

| 1.2 |                                           | Design + construction of new + replacement assets Highway alignment Improved drainage most impacting activity (for which predictions are available)                                                                             |
|-----|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.3 | ii) Area<br>iii) Aspect<br>Climate change | Highway alignment Improved drainage                                                                                                                                                                                             |
| 1.3 | iii) Aspect<br>Climate change             | Improved drainage                                                                                                                                                                                                               |
| 1.3 | Climate change                            |                                                                                                                                                                                                                                 |
| 1.3 |                                           | most impacting activity (for which predictions are available)                                                                                                                                                                   |
|     | increase in ext                           |                                                                                                                                                                                                                                 |
|     |                                           | reme precipitation                                                                                                                                                                                                              |
| 1.4 | Other climate cl                          | hanges impacting the activity                                                                                                                                                                                                   |
|     | i) flooding                               |                                                                                                                                                                                                                                 |
|     | ii) increase i                            | n winter precipitation                                                                                                                                                                                                          |
|     | iii) frequency                            | of extreme storm surges                                                                                                                                                                                                         |
|     |                                           | n of the vulnerability<br>mate change will impact on the activity)                                                                                                                                                              |
|     | surface water (<br>(Adjust method         | cipitation will lead to more frequent flooding and occurrence of<br>due to insufficient drainage and crossfall requirements for design.<br>dology in route choice and carriageway crossfall to avoid and deal<br>surface water) |

Figure 3 Vulnerability Description and Impacting Climate Changes

# Uncertainty

The Highways England risk assessment is sensitive to the uncertainties in the climate change models, which are used to determine asset vulnerability. Embedded within the risk assessment is an uncertainty criterion which evaluates:

- The confidence of climate change predictions; and
- The climate change impact on the asset/activity.

Using the climate trends identified in Stage 2, the uncertainty matrix and expert opinion, it was determined that the uncertainty of effects of climate change on DC01 is **Low**. This qualitative score was entered in the tool.

| 2.1 | .1 Uncertainty in climate change predictions                   |                             | Low                                                                                             |
|-----|----------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------|
|     | Why?                                                           | More intense rainfall and f | looding predicted.                                                                              |
| 2.2 | 2.2 Uncertainty in effects of climate change on activity/asset |                             | Low                                                                                             |
|     | Why?                                                           |                             | and levels couple with higher rainfall intensity ighway alignment on floodplains and crossfall. |

#### Figure 4 Uncertainty

# Rate of climate change

The rate of change matrix was used to determine two qualitative scores for DC01. Within the rate of change matrix, there are two sub-indicators:

1. The time horizon for climate change effects to become material.

This is determined using predicted climate change trends and the likely timescale these trends are expected to impact on the vulnerability. That is, it reflects the likely time period within which something different needs to be done. For DC01 it was determined that the time horizon for climate change to become material was **short term**.

2. The asset life/activity time horizon.

This is assessed against two broad categories; Short-term (defined as less than 30 years) and Longerterm (defined as greater than 30 years). It reflects the duration of the consequences of decisions concerning the vulnerability. For example, decisions about the design criteria for new 'structures' typically have consequences that remain throughout the design life of the asset, 120 years, and would be assessed as longer-term. For DC01, the asset life/activity time horizon was determined as **longer term**. The qualitative scores were entered in the tool.

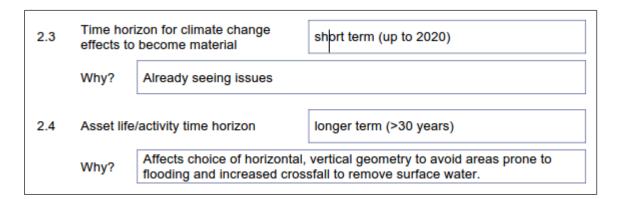



Figure 5 Rate of Climate Change

# **Extent of disruption**

Next the extent of disruption matrix was used to determine a score for DC01. When determining the extent of disruption it is important to take account of the spatial variation of the relevant climatic hazard. Some vulnerabilities may be sensitive to relatively localised hazards such as extreme rainfall.

Alternatively, the vulnerability may be highly correlated over a large area, as may be the case for extreme temperatures. Therefore, a risk event associated with extreme temperatures may well occur at several places on the network at the same time thereby increasing the extent of disruption.

For DC01, it was determined that <20% of network/users are likely to be affected by flooding. The qualitative score was entered into the VAF.



#### Figure 6 Extent of disruption

# Severity of disruption

The severity of disruption is a measure of how long it takes to restore network functionality. It is not a measure of the duration of the event itself, as this is not under Highways England control. Responsive actions following extreme events can be particularly disruptive because their timing cannot be controlled. In the cases of vulnerabilities that give rise to managed interventions, such as maintenance actions, the severity of disruption is a measure of how much disruption would arise if current practices are retained. For managed interventions, the degree of disruption can typically be controlled to a degree that is not possible for responsive actions following extreme climatic events.

Using the severity of disruption matrix, DC01 was assessed to take between 1 day and 1 week for any disruption to be removed from the network. The qualitative score was entered into the VAF.

| 2.6 |      | ture disruption (following a elated event) | 1 day - 1 week |
|-----|------|--------------------------------------------|----------------|
|     | Why? | Event lasts less than one w                | eek.           |

#### Figure 7 Severity of Disruption

# **Early adaptation**

Even if a vulnerability receives a low risk-ranking based on the vulnerability scoring, it may still be sensible to undertake early adaptation. Vulnerabilities are flagged as early adaptation advisable if any of the following criteria are met:

- 1) long lead-time needed to plan adaptation (e.g. to enable research or required changes to policy/standards to be introduced);
- significant planning/smoothing will be needed because many different locations on the network need to be worked on (e.g. lengthy national programme of works needed in order to adapt); or,

 adaptation is concerned with a long-life, expensive asset where it is suspected that there will be clear benefit derived from future-proofing new designs now (e.g. because marginal cost implications to future-proof now, but very expensive to address retrospectively).

It was determined that it was advisable for DC01 to be flagged as 'early adaptation advisable', and this was recorded in the VAF.

| Sect | tion 3: Early Adaptation                                                                                                                                                                                               |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.1  | Vulnerability identified for early adaptation Yes                                                                                                                                                                      |
|      | If yes, why?                                                                                                                                                                                                           |
|      | The issue can be addressed in full or part by modification of design standards which will prevent maintenance and recovery issues further down the line. (Review design standards and prepare revisions in due course) |
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |

#### Figure 8 Early Adaption Identification

# 3. Convert the scores

### **Step 3 Convert the scores**

The VAF automatically converts the qualitative risk appraisal scores into numerical scores using the scoring conversion matrix (see Appendix 2). For vulnerability DC01, the scores are as follows.

| 4.1       Risk associated with uncertainty       Iow         4.2       Risk associated with rate of change       high         4.3       Risk associated with extent of network/users affected       Iow |   |   |        | on 4: Summary                       | Sec |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--------|-------------------------------------|-----|
| A 3 Risk associated with extent of low                                                                                                                                                                  | 1 | 1 | low    | Risk associated with uncertainty    | 4.1 |
| 4.3 low                                                                                                                                                                                                 | 3 | 3 | high   | Risk associated with rate of change | 4.2 |
|                                                                                                                                                                                                         | 1 | 1 | low    |                                     | 4.3 |
| 4.4 Risk associated with infrastructure medium                                                                                                                                                          | 2 | 2 | medium |                                     | 4.4 |

## **Step 4 Prioritise the vulnerabilities**

The purpose of the prioritisation of vulnerabilities is to inform timescales for action and provide priority areas in devising adaptation strategies. There are several reasons why a vulnerability could be a priority for action. Five league tables, therefore, have been developed to reflect the different reasons for prioritising action.

To generate the league tables, a set of formulae is applied to each of the prioritisation criteria's numerical scores as produced in the VAF. This provides a new set of scores known as 'indicator scores', and each has a value between 0 and 1. The calculations for DC01 are illustrated below:

| Prioritisation<br>criteria                                        | Indicator score formulae                                                                                                  | Indicator score formulae for DC01 | Indicator score for DC01 |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|
| Time-criticality                                                  | [Rate of climate change]<br>divided by 3                                                                                  | 3 divided by 3                    | 1                        |
| High extent                                                       | [Extent of disruption]<br>divided by 3                                                                                    | 1 divided by 3                    | 0.33                     |
| High<br>disruption<br>duration                                    | [Severity of disruption]<br>divided by 3                                                                                  | 2 divided by 3                    | 0.67                     |
| Potential<br>research                                             | [Uncertainty level of the<br>effects of climate change on<br>asset/activity*] divided by 3                                | 1 divided by 3                    | 0.33                     |
| Highly<br>disruptive,<br>time-critical<br>with high<br>confidence | [Rate of climate change] x<br>[Extent of disruption] x<br>[Severity of disruption] x (4 –<br>[Uncertainty]) divided by 81 | 3 x 1 x 2 x(4-1) / 81             | 0.22                     |

#### Table 2 Formulae for Vulnerability Prioritisation

\* Use Section 2.2 of vulnerabilities appraisal form. This will provide a score of high, medium or low. Use the scoring conversion matrix to determine a score of 3, 2 or 1.

## **Step 5 Rank the risks**

When the indicator scores have been calculated, they are placed into five league tables; one for each of the prioritisation criteria. Any vulnerability that is identified as 'early adaptation action advisable' is highlighted within the league tables.

Below is an excerpt from the time-critical league table. DC01 had an indicator score of 1.00 and was also highlighted as early adaptation advisable.

| 4-1: Time-critical |                                                      | Early adaption action advisable |                                                                  |     |
|--------------------|------------------------------------------------------|---------------------------------|------------------------------------------------------------------|-----|
| Ref                | Category                                             | Area                            | Aspect                                                           | Sco |
| BM01               | Internal business management                         | Facilities management           | facility energy                                                  | 1.0 |
| BM02               | Internal business management                         | Staff Costs                     | Staff numbers                                                    | 1.0 |
| BM03               | Defining + managing network<br>strategy + planning   | Property management             | Property management                                              | 1.0 |
| DC01               | Design + construction of new +<br>replacement assets | Highway alignment               | Improved drainage                                                | 1.0 |
| DC05               | Design + construction of new +<br>replacement assets | Structures (including gantries) | Thermal actions (loads) applied to<br>superstructure             | 1.0 |
| DC06               | Design + construction of new +<br>replacement assets | Structures (including gantries) | Wind actions (loads) applied to<br>superstructure                | 1.0 |
| DC09               | Design + construction of new +<br>replacement assets | Structures (including gantries) | Foundation settlement affected by<br>change in groundwater level | 1.0 |

6. Next step -Options analysis

### Step 6 Next steps - Options analysis

The vulnerabilities identified as priorities for action are taken forward into Stage 5 of the Highways England Adaptation Strategy Model – Options analysis.