Claim No: HP-2016-000046

IN THE HIGH COURT OF JUSTICE CHANCERY DIVISION PATENTS COURT

BETWEEN:

(1) PHILIPS LIGHTING NORTH AMERICA CORPORATION (a company incorporated under the laws of the USA)

(2) PHILIPS LIGHTING HOLDING B.V. (a company incorporated under the laws of the Netherlands)

Claimants

-and-

(1) MEGAMAN (UK) LIMITED

(2) NEONLITE INTERNATIONAL LIMITED

(3) NEONLITE ELECTRONIC & LIGHTING (HK) LIMITED (a company incorporated under the laws of Hong Kong)

Defendants

ANNEX B – SCHEDULE OF AMENDMENTS OF THE FIRST REQUEST

The proposed conditional amendments to European Patent (UK) No. 1 502 483 (the "**Patent**") of the First Request are as follows:-

Condit	ional An	nendments to the Claims of the Patent			
Old	New	Conditional Amendment			
Claim	Claim				
1	1	An illumination apparatus (200), comprising:			
		at least one LED (104); and			
		at least one controller (204) coupled to the at least one LED (104)			
		and configured to provide D.C. power to the at least one LED (104): $$			
		wherein the controller is configured to receive, from an A.C. power			
		sourcedimmer circuit, an A.C. power-related signal being a dimmer			

		output signal generated by the dimmer circuit based on a standard A.C.
		<u>line voltage but</u> having higher frequency components than athe standard
		A.C. line voltage <u>; and</u>
		wherein the controller is configured to provide said D.C. power
		based on the A.C. power-related signal $\frac{1}{52}$
		characterized in that the at least one controller (204) is configured
		to filter out thesaid higher frequency components.
2		The apparatus of claim 1, wherein the A.C. power source is an (A.C.)
		dimmer circuit.
3	2	The apparatus of claim 21 , wherein the A. C. dimmer circuit is
		controlled by a user interface to vary the power-related signal, and
		wherein the at least one controller is configured to provide an essentially
		non-varying power to the at least one LED (104) over a significant
		range of operation of the user interface.
4	3	The apparatus of claim 32 , wherein the operation of the user interface
		varies a duty cycle of the power-related signal, and wherein the at least
		one controller (204) is configured to provide the essentially non-varying
		power to the at least one LED (104) over a significant range of operation
1		of the user interface notwithstanding variations in the duty cycle of the
	3	power-related signal.
5	. <u>4</u>	The apparatus of claim 32 , wherein the at least one controller (204)
		comprises:
		a rectifier (404) to receive the power-related signal and provide a
		rectified power-related signal;
		a low pass filter (408) to filter the rectified power-related signal;
		and
		a DC converter (402) to provide the essentially non-varying power
		based on the filtered rectified power-related signal.
6	<u>5</u>	The apparatus of claim <u>32</u> , further comprising:
		a screw-type power connector configured to engage mechanically
		and electrically with a conventional incandescent light socket so as to
		couple the apparatus to the A.C. dimmer circuit.
7	<u>6</u>	The apparatus of claim 65 , further comprising:

		a housing, coupled to the screw-type power connector, to enclose				
		the at least one LED and the at least one controller, the housing being				
	~	structurally configured to resemble an incandescent light bulb.				
8	<u>7</u>	The apparatus of claim 76 , wherein the at least one LED (104) includes a				
		plurality of differently colored LEDs.				
9	8	The apparatus of claim 21 , wherein the A.C. dimmer circuit is				
		controlled by a user interface to vary the power-related signal, and				
		wherein the at least one controller is configured to variably control at				
		least one parameter of <u>light</u> generated by the at least one LED (104) in				
		response to operation of the user interface.				
10	<u>9</u>	The apparatus of claim 98, wherein the operation of the user interface				
	5	varies a duty cycle of the power-related signal, and wherein the at least				
		one controller (204) is configured to variably control the at least one				
		parameter of the light based at least on the variable duty cycle of the				
		power-related signal.				
++	<u>10</u>	The apparatus of claim 98 wherein the at least one parameter of the light				
		that is variably controlled by the at least one controller (204) in response				
×.		to operation of the user interface includes at least one of an intensity of				
		the light, a color of the light, a color temperature of the light, and a				
- ^		temporal characteristic of the light.				
12	<u>11</u>	The apparatus of claim 98 , wherein the at least one controller (204) is				
		configured to variably control at least two different parameters of the light				
		generated by the at least one LED (104) in response to operation of the				
		user interface.				
13	<u>12</u>	The apparatus of claim $\frac{1211}{12}$, wherein the at least one controller (204) is				
		configured to variably control at least an intensity and a color of the light				
		simultaneously in response to operation of the user interface.				
-14	<u>13</u>	The apparatus of claim $\frac{1211}{12}$, wherein the at least one LED (204) is				
		configured to generate an essentially white light, and wherein the at least				
		one controller (204) is configured to variably control at least an intensity				
		and a color temperature of the white light simultaneously in response to				
		operation of the user interface.				

15	<u>14</u>	The apparatus of claim 1413 , wherein the at least one controller (204) is
		configured to variably control at least the intensity and the color
		temperature of the essentially white light in response to operation of the
		user interface so as to approximate light generation characteristics of an
		incandescent light source.
16	<u>15</u>	The apparatus of claim 1514 , wherein the at least one controller (204) is
		configured to variably control the color temperature of the essentially
		white light over a range from approximately 2000 degrees K at a
45		minimum intensity to 3200 degrees K at a maximum intensity.
17	<u>16</u>	The apparatus of claim 1514 , further comprising:
2	· .	a screw-type power connector (202) configured to engage
		mechanically and electrically with a conventional incandescent light
		socket so as to couple the apparatus to the A.C. dimmer circuit.
18	<u>17</u>	The apparatus of claim <u>1716</u> , further comprising:
		a housing, coupled to the screw-type power connector, to enclose
		the at least one LED (104) and the at least one controller (204), the
		housing being structurally configured to resemble an incandescent light
		bulb.
19	<u>18</u>	The apparatus of claim 1514 , wherein the at least one LED includes a
	×	plurality of differently colored LEDs.
20	<u>19</u>	The apparatus of claim 98 , wherein the at least one controller includes:
		an adjustment circuit (208) to variably control the at least one
ар -	-	parameter of light based on the varying power-related signal; and
		power circuitry to provide at least the power to the at least one
		LED (104) based on the varying power-related signal.
21	<u>20</u>	The apparatus of claim $\frac{2019}{20}$, wherein the power circuitry includes:
		a rectifier (404) to receive the power-related signal and provide a
		rectified power related signal;
		a low pass filter to filter (408) the rectified power-related signal;
		and
		a DC converter (404) to provide the power to at least the at least
		one LED (104) based on the filtered rectified power-related signal.

22	<u>21</u>	The apparatus of claim $\frac{2120}{2}$, wherein the adjustment circuit is coupled to				
		the DC converter and is configured to variably control the at least one				
		LED (104) based on the filtered rectified power-related signal.				
23	22	The apparatus of claim $\frac{2120}{20}$, wherein the adjustment circuit includes at				
		least one processor (102) configured to monitor at least one of the power-				
		related signal, the rectified power-related signal, and the filtered rectified				
		power-related signal so as to variably control the at least one LED (104).				
2 4	<u>23</u>	The apparatus of claim 2120, wherein the power circuitry is configured				
		to provide at least the power to the at least one LED (104) and power to				
		the at least one processor (102) based on the varying power-related signal.				
25	<u>24</u>	The apparatus of claim $\frac{2120}{2}$, wherein the at least one processor (102) is				
		configured to sample the varying power-related signal and determine at				
		least one varying characteristic of the varying power-related signal.				
26	<u>25</u>	The apparatus of claim $\frac{2120}{21}$, wherein the operation of the user interface				
		varies a duty cycle of the power-related signal, and wherein the at least				
		one processor (102) is configured to variably control the at least one				
×		parameter of the light based at least on the varying duty cycle of the				
		power-related signal.				
27	<u>26</u>	The apparatus of claim $\frac{2625}{26}$, wherein the at least one LED (104) includes				
8		a plurality of differently colored LEDs.				
28	<u>27</u>	The apparatus of claim 27 <u>26</u> , wherein:				
		the plurality of differently colored LEDs includes:				
		at least one first LED (104A, 104B, 104C) adapted to output at				
		least first radiation having a first spectrum; and				
		at least one second LED (104A, 104B, 104C) adapted to output				
		second radiation having a second spectrum different than the first				
		spectrum; and				
		the at least one processor (102) is configured to independently				
		control at least a first intensity of the first radiation and a second intensity				
		of the second radiation in response to operation of the user interface.				
29	28	The apparatus of claim $\frac{2827}{2}$, wherein the at least one processor (102) is				
		programmed to implement a pulse width modulation (PWM) technique				

		to control at least the first intensity of the first radiation and the second
		intensity of the second radiation.
30	<u>29</u>	The apparatus of claim $\frac{2928}{28}$, wherein the at least one processor (102)
		further is programmed to:
		generate at least a first PWM signal to control the first intensity of
		the first radiation and a second PWM signal to control the second intensity
	ια.	of the second radiation; and
		determine duty cycles of the respective first and second PWM signals
		based at least in part on variations in the power-related signal due to
		operation of the user interface.
31	<u>30</u>	The apparatus of claim $\frac{2019}{20}$ wherein the adjustment circuit includes drive
		circuitry (109) including at least one voltage-to-current converter to
		provide at least one drive current to the at least one LED so as to control
		the at least one parameter of the generated light.
32	<u>31</u>	The apparatus of claim $\frac{3130}{31}$, wherein the at least one voltage-to-current
		converter includes an operational amplifier (UIA) configured so as to
		have a predetermined error voltage applied across its non-inverting and
		inverting inputs during operation to essentially reduce to zero a current
		output of the at least one voltage-to-current converter when a voltage
		applied to the at least one voltage-to-current converter is essentially zero.
33	<u>32</u>	An illumination method, comprising an act of:
		A) providing D.C. power to at least one LED (104) based on a
		power-related signal <u>being a dimmer output signal</u> provided by an A.C.
	ý.	power source-dimmer circuit based on a standard A.C. line voltage but
		having higher frequency components than athe standard A.C. line
		voltage;
		characterized in that thesaid higher frequency components are filtered out
		of the power-related signal prior to providing D.C. power to the at least
		one LED (104).
3 4		The illumination method of claim 33, wherein the act A) includes an act
		of:
		providing the D.C. power to the at least one LED (101) based on a power-
		related signal from an alternating current (A.C.) dimmer circuit.

35	<u>33</u>	The method of claim 3432 , wherein the A.C. dimmer circuit is controlled			
	x	by a user interface to vary the power-related signal, and wherein the act			
		A) comprises an act of:			
		B) providing an essentially non-varying power to the at least one			
		LED (104) over a significant range of operation of the user interface.			
36	<u>34</u>	The method of claim 3533 , wherein the operation of the user interface			
		varies a duty cycle of the power-related signal, and wherein the act B)			
		includes an act of providing the essentially non-varying power to the at			
		least one LED (104) over a significant range of operation of the user			
		interface notwithstanding variations in the duty cycle of the power-related			
		signal.			
37	<u>35</u>	The method of claim 3533, wherein the act B) includes acts of:			
		rectifying the power-related signal to provide a rectified power-			
	v	related signal;			
		filtering the rectified power-related signal; and			
×		providing the essentially non-varying power based on the filtered			
		rectified power related signal.			
38	<u>36</u>	The method of claim 3533 , wherein the at least one LED includes a			
		plurality of differently colored LEDs.			
39	<u>37</u>	The method of claim 3432 , wherein the A.C. dimmer circuit is controlled			
		by a user interface to vary the power-related signal, and wherein the act			
		A) includes an act of:			
		C) variably controlling at least one parameter of light generated			
		by the at least one LED (104) in response to operation of the user			
		interface.			
40	<u>38</u>	The method of claim 3937 , wherein the operation of the user interface			
		varies a duty cycle of the power-related signal, and wherein the act C)			
	* ×	includes an act of:			
		D) variably controlling the at least one parameter of the light			
		based at least on the variable duty cycle of the power-related signal.			
41	<u>39</u>	The method of claim $\frac{3937}{2}$ wherein the act D) includes an act of:			

		variably controlling at least one of an intensity of the light, a color			
		of the light, a color temperature of the light, and a temporal characteristic			
		of the light in response to operation of the user interface.			
42	<u>40</u>	The method of claim $\frac{3937}{2}$, wherein the act D) includes an act of:			
		E) variably controlling at least two different parameters of the			
		light generated by the at least one LED in response to operation of the			
		user interface.			
43	<u>41</u>	The method of claim 4240 , wherein the act E) includes an act of:			
		variably controlling at least an intensity and a color of the light			
		simultaneously in response to operation of the user interface.			
44	<u>42</u>	The method of claim 4240 , wherein the at least one LED (104) is			
	×	configured to generate an essentially white light, and wherein the act E)			
		includes an act of:			
		F) variably controlling at least an intensity and a color temperature			
		of the white light simultaneously in response to operation of the user			
		interface.			
45	<u>43</u>	The method of claim $44\underline{42}$ wherein the act F) includes an act of:			
		G) variably controlling at least the intensity and the color			
		temperature of the essentially white light in response to operation of the			
		user interface so as to approximate light generation characteristics of an			
		incandescent light source.			
46	<u>44</u>	The method of claim 4543 , wherein the act G) includes an act of:			
		variably controlling the color temperature of the essentially white			
		light over a range from approximately 2000 degrees K at a minimum			
		intensity to 3200 degrees K at a maximum intensity.			
47	<u>45</u>	The method of claim 4644 wherein the at least one LED includes a			
		plurality of differently colored LEDs.			
48	<u>46</u>	The method of claim 3937, wherein the act C) includes an act of			
		H) digitally sampling the varying power-related signal and			
		determine at least one varying characteristic of the varying power-related			
		signal.			
49	<u>47</u>	The method of claim 4846 wherein the operation of the user interface			
		varies a duty cycle of the power-related signal, and wherein the act H)			

		includes an act of variably controlling the at least one parameter of the
		light based at least on the varying duty cycle of the sampled power-related
		signal.
50	<u>48</u>	The method of claim <u>3937</u> , wherein:
		the at least one LED (104) includes;
		at least one first LED (104A, 104B, 104C) adapted to output at
		least first radiation having a first spectrum; and
		at least one second LED (104A,104B,104C) adapted to output
		second radiation having a second spectrum different than the first
		spectrum; and
		the act C) includes an act of:
1	8	I) independently controlling at least a first intensity of the first
		radiation and a second intensity of the second radiation in response to
		operation of the user interface.
51	<u>49</u>	The method of claim $\frac{5048}{2}$, wherein the act 1) includes an act of:
		J) implementing a pulse width modulation (PWM) technique to
		control at least the first intensity of the first radiation and the second
		intensiltyintensity of the second radiation.
52	<u>50</u>	The method of claim 5149, wherein the act J) includes acts of:
	-	generating at least a first PWM signal to control the first intensity
		of the first radiation and a second PWM signal to control the second
		intensity of the second radiation; and
		determining duty cycles of the respective first and second PWM
		signals based at least in part on variations in the power-related signal due
		to operation of the user interface.

Old	New	Conditional Amendment
Page	Page	
3	3	this type of operation, as they produce light when there is current flowing
		through a filament in either direction; as the average voltage of an A.C.
		signal applied to the source(s) is adjusted (e.g., either by an adjustment o

voltage amplitude or duty cycle), the current (and hence the power) delivered to the light source also is changed and the corresponding light output changes. With respect to the duty cycle technique, the filament of an incandescent source has thermal inertia and does not stop emitting light completely during short periods of voltage interruption. Accordingly, the generated light as perceived by the human eye does not appear to flicker when the voltage is "chopped," but rather appears to gradually change.

US-6,127,783 discloses a white light emitting luminaire including a plurality of LEDs in each of the colors red, green, and blue have a separate current regulator which receives current outputs from an A.C. converter.

US-6,369,525 discloses a white LED array driver circuit with a multiple output flyback converter with output current mode control. The circuit comprises a power supply source, a transformer, and a controller arranged to control the flow of current to the primary winding of the transformer.

US-A-2002/0048169 discloses the general concept of converting A.C. power signals from a dimmer circuit into D.C. power for an LED. However, it does not disclose that higher frequency components present in a chopped signal from a dimmer circuit can cause fatal damage to LED light sources in certain circumstances. It is an aim of the present invention to address this problem.

Summary

There is provided according to the present invention an illumination apparatus, comprising: at least one LED; and at least one controller coupled to the at least one LED and configured to provide D.C. power to the at least one LED₅; wherein the controller is configured to receive, from an A.C. <u>power sourcedimmer circuit</u>, an A.C. power-related signal <u>being</u> <u>a dimmer output signal generated by the dimmer circuit based on a</u> <u>standard A.C. line voltage but</u> having higher frequency components than <u>athe</u> standard A.C. line voltage; and <u>wherein the controller is configured</u> to provide said D.C. power

based on the A.C. power-related signal₂₅ characterized in that the at least one controller is configured to filter out thesaid higher frequency components.

According to a second aspect of the present invention there is provided an illumination method, comprising an act of: A) providing D.C. power to at least one LED based on a power-related signal provided by an A.C. <u>power sourcedimmer circuit</u> having higher frequency components than a standard A.C. line voltage, characterized in that the higher frequency components are filtered out of the power-related signal prior to providing D.C. power to the at least one LED.

In one embodiment, methods and apparatus of the invention particularly facilitate the use of LED-based light sources on A.C. power circuits that are controlled by conventional dimmers (i.e. "A.C. dimmer circuits"). In one aspect, methods and apparatus of the present invention facilitate convenient substitution of LED-based light sources in lighting environments employing A.C. dimming devices and conventional light sources. In yet other aspects, methods and apparatus according to the present invention facilitate the control of one or more parameters relating to the light generated by LED-based light sources (e.g., intensity, color, color temperature, temporal characteristics, etc.) via operation of a conventional A.C. dimmer and/or other signals present on the A.C. power circuit.

More generally, one embodiment of the invention is directed to an illumination apparatus, comprising at least one LED and at least one controller coupled to the at least one LED. The controller is configured to receive a power related signal from an A.C. power source that provides signals other than a standard A.C, line voltage. The controller further is configured to provide power to the at least one LED based on the power related signal.

4	4	Another	embodiment	of	the	invention	is	directed	to	an
	a	illumination met	hod, comprisin	i g an	act (of providing	; po	wer to at le	ast	one

3a

LED based on a power related signal from an A.C. power source that provides signals other than a standard A.C. line, voltage.

Another embodiment of the invention is directed to an illumination apparatus, comprising at least one LED, and at least one controller coupled to the at least one LED and configured to receive a power related signal from an alternating current (A.C.) dimmer circuit and provide power to the at least one LED based on the power related signal. Another embodiment of the invention is directed to an illumination method, comprising an act of providing power to at least one LED based on a power related signal from an alternating current (A.C.) dimmer circuit.

Another embodiment of the invention is directed to an illumination apparatus, comprising at least one LED adapted to generate an essentially white light, and at least one controller coupled to the at least one LED and configured to receive a <u>power related_dimmer output</u> signal from an alternating current (A.C.) dimmer circuit and provide power to the at least one LED based on the power-related signal. The A.C. dimmer circuit is controller by a user interface to vary the <u>power related_dimmer</u> signal. The controller is configured to variably control at least one parameter of the essentially white light in response to operation of the user interface so as to approximate light generation characteristics of an incandescent light source.

Another embodiment of the invention is directed to a lighting system, comprising at least one LED, a power connector, and a power converter associated with the power connector and adapted to convert A.C. dimmer circuit power received by the power connector to form a converted power. The system also includes an adjustment circuit associated with the power converter adapted to adjust power delivered to the at least one LED. Another embodiment of the invention is directed to a method of providing illumination, comprising the steps of providing an A.C. dimmer circuit, connecting an LED lighting system to the AC dimmer circuit, generating light from the LED lighting system by

energizing the A.C. dimmer circuit, and adjusting the light generated by
the LED lighting system by adjusting the AC dimmer circuit.

Claim No: HP-2016-000046

IN THE HIGH COURT OF JUSTICE CHANCERY DIVISION PATENTS COURT

BETWEEN:

(1) PHILIPS LIGHTING NORTH AMERICA CORPORATION (a company incorporated under the laws of the USA)

(2) PHILIPS LIGHTING HOLDING B.V. (a company incorporated under the laws of the Netherlands)

Claimants

-and-

(1) MEGAMAN (UK) LIMITED

(2) NEONLITE INTERNATIONAL LIMITED

(3) NEONLITE ELECTRONIC & LIGHTING (HK) LIMITED (a company incorporated under the laws of Hong Kong)

Defendants

ANNEX C - SCHEDULE OF AMENDMENTS OF THE SECOND REQUEST

The proposed conditional amendments to European Patent (UK) No. 1 502 483 (the "**Patent**") of the Second Request are as follows:-

Conditional Amendments to the Claims of the Patent		
Old	New	Conditional Amendment
Claim	Claim	2
1	1	An illumination apparatus (200), comprising:
		at least one LED (104); and
		at least one controller (204) coupled to the at least one LED (104) .
		and configured to provide D.C. power to the at least one LED (104),
		wherein the controller is configured to receive, from an A.C. power
		sourcedimmer circuit, an A.C. power-related signal being a dimmer signal

		output by the dimmer circuit, having portions chopped out of A.C. voltage
		cycles of a standard A.C. line voltage, and having higher frequency
		components than thea standard A.C. line voltage due to the chopping; and
		wherein the controller is configured to provide said D.C. power
		based on the A.C. power-related signal,
		characterized in that the at least one controller (204) is configured
		to filter out saidthe higher frequency components.
2		The apparatus of claim 1, wherein the A.C. power source is an (A.C.)
	R.	dimmer circuit.
3	2	The apparatus of claim 21 , wherein the A. C. dimmer circuit is controlled
		by a user interface to vary the power-related signal, and wherein the at
		least one controller is configured to provide an essentially non-varying
		power to the at least one LED (104) over a significant range of operation
		of the user interface.
4	3	The apparatus of claim 32 , wherein the operation of the user interface
		varies a duty cycle of the power-related signal, and wherein the at least
		one controller (204) is configured to provide the essentially non-varying
		power to the at least one LED (104) over a significant range of operation
		of the user interface notwithstanding variations in the duty cycle of the
		power-related signal.
5	<u>4</u>	The apparatus of claim 32 , wherein the at least one controller (204)
		comprises:
		a rectifier (404) to receive the power-related signal and provide a
		rectified power-related signal;
		a low pass filter (408) to filter the rectified power-related signal;
		and
		a DC converter (402) to provide the essentially non-varying power
		based on the filtered rectified power-related signal.
6	<u>5</u>	The apparatus of claim 32 , further comprising:
		a screw-type power connector configured to engage mechanically
		and electrically with a conventional incandescent light socket so as to
		couple the apparatus to the A.C. dimmer circuit.
7	<u>6</u>	The apparatus of claim 65 , further comprising:

		a housing, coupled to the screw-type power connector, to enclose
		the at least one LED and the at least one controller, the housing being
	~	structurally configured to resemble an incandescent light bulb.
8	<u>7</u>	The apparatus of claim 76 , wherein the at least one LED (104) includes a
		plurality of differently colored LEDs.
9	<u>8</u>	The apparatus of claim 21 , wherein the A.C. dimmer circuit is controlled
		by a user interface to vary the power-related signal, and wherein the at
		least one controller is configured to variably control at least one parameter
		of <u>light</u> generated by the at least one LED (104) in response to operation
		of the user interface.
+0	<u>9</u>	The apparatus of claim 98 , wherein the operation of the user interface
		varies a duty cycle of the power-related signal, and wherein the at least
		one controller (204) is configured to variably control the at least one
		parameter of the light based at least on the variable duty cycle of the
		power-related signal.
++	<u>10</u>	The apparatus of claim 98 wherein the at least one parameter of the light
		that is variably controlled by the at least one controller (204) in response
		to operation of the user interface includes at least one of an intensity of
		the light, a color of the light, a color temperature of the light, and a
		temporal characteristic of the light.
12	<u>11</u>	The apparatus of claim 98 , wherein the at least one controller (204) is
		configured to variably control at least two different parameters of the light
) :	generated by the at least one LED (104) in response to operation of the
		user interface.
13	<u>12</u>	The apparatus of claim $\frac{1211}{12}$, wherein the at least one controller (204) is
	8	configured to variably control at least an intensity and a color of the light
		simultaneously in response to operation of the user interface.
14	<u>13</u>	The apparatus of claim $\frac{1211}{12}$, wherein the at least one LED (204) is
		configured to generate an essentially white light, and wherein the at least
		one controller (204) is configured to variably control at least an intensity
		and a color temperature of the white light simultaneously in response to
		operation of the user interface.

15	<u>14</u>	The apparatus of claim 1413, wherein the at least one controller (204) is
		configured to variably control at least the intensity and the color
		temperature of the essentially white light in response to operation of the
		user interface so as to approximate light generation characteristics of an
		incandescent light source.
16	15	The apparatus of claim $\frac{1514}{15}$, wherein the at least one controller
		(204) is configured to variably control the color temperature of the
0		essentially white light over a range from approximately 2000 degrees K
		at a minimum intensity to 3200 degrees K at a maximum intensity.
17	<u>16</u>	The apparatus of claim 1514 , further comprising:
		a screw-type power connector (202) configured to engage
		mechanically and electrically with a conventional incandescent light
		socket so as to couple the apparatus to the A.C. dimmer circuit.
18	<u>17</u>	The apparatus of claim <u>1716</u> , further comprising:
		a housing, coupled to the screw-type power connector, to enclose
		the at least one LED (104) and the at least one controller (204), the
		housing being structurally configured to resemble an incandescent light
		bulb.
19	<u>18</u>	The apparatus of claim $\frac{1514}{15}$, wherein the at least one LED includes a
		plurality of differently colored LEDs.
20	<u>19</u>	The apparatus of claim 98 , wherein the at least one controller includes:
		an adjustment circuit (208) to variably control the at least one
		parameter of light based on the varying power-related signal; and
		power circuitry to provide at least the power to the at least one
		LED (104) based on the varying power-related signal.
21	<u>20</u>	The apparatus of claim $\frac{2019}{20}$, wherein the power circuitry includes:
		a rectifier (404) to receive the power-related signal and provide a
		rectified power related signal;
		a low pass filter to filter (408) the rectified power-related signal;
		and
		a DC converter (404) to provide the power to at least the at least
		one LED (104) based on the filtered rectified power-related signal.

22	<u>21</u>	The apparatus of claim $\frac{2120}{20}$, wherein the adjustment circuit is coupled to
		the DC converter and is configured to variably control the at least one
		LED (104) based on the filtered rectified power-related signal.
23	22	The apparatus of claim 2120, wherein the adjustment circuit includes at
		least one processor (102) configured to monitor at least one of the power-
		related signal, the rectified power-related signal, and the filtered rectified
		power-related signal so as to variably control the at least one LED (104).
24	<u>23</u>	The apparatus of claim 2120, wherein the power circuitry is configured
		to provide at least the power to the at least one LED (104) and power to
		the at least one processor (102) based on the varying power-related signal.
25	<u>24</u>	The apparatus of claim $\frac{2120}{2}$, wherein the at least one processor (102) is
		configured to sample the varying power-related signal and determine at
		least one varying characteristic of the varying power-related signal.
26	<u>25</u>	The apparatus of claim $\frac{2120}{20}$, wherein the operation of the user interface
		varies a duty cycle of the power-related signal, and wherein the at least
		one processor (102) is configured to variably control the at least one
		parameter of the light based at least on the varying duty cycle of the
		power-related signal.
27	<u>26</u>	The apparatus of claim $\frac{2625}{25}$, wherein the at least one LED (104) includes
		a plurality of differently colored LEDs.
28	27	The apparatus of claim 2726, wherein:
		the plurality of differently colored LEDs includes:
		at least one first LED (104A, 104B, 104C) adapted to output at
		least first radiation having a first spectrum; and
		at least one second LED (104A, 104B, 104C) adapted to output
		second radiation having a second spectrum different than the first
	3	spectrum; and
		the at least one processor (102) is configured to independently
		control at least a first intensity of the first radiation and a second intensity
		of the second radiation in response to operation of the user interface.
29	<u>28</u>	The apparatus of claim $\frac{2827}{2}$, wherein the at least one processor (102) is
		programmed to implement a pulse width modulation (PWM) technique to

		control at least the first intensity of the first radiation and the second
		intensity of the second radiation.
30	<u>29</u>	The apparatus of claim $\frac{2928}{2928}$, wherein the at least one processor (102)
		further is programmed to:
		generate at least a first PWM signal to control the first intensity of
		the first radiation and a second PWM signal to control the second intensity
		of the second radiation; and
		determine duty cycles of the respective first and second PWM
		signals based at least in part on variations in the power-related signal due
		to operation of the user interface.
31	<u>30</u>	The apparatus of claim $\frac{2019}{20}$ wherein the adjustment circuit includes drive
		circuitry (109) including at least one voltage-to-current converter to
		provide at least one drive current to the at least one LED so as to control
		the at least one parameter of the generated light.
32	<u>31</u>	The apparatus of claim $\frac{3130}{31}$, wherein the at least one voltage-to-current
		converter includes an operational amplifier (UIA) configured so as to
		have a predetermined error voltage applied across its non-inverting and
		inverting inputs during operation to essentially reduce to zero a current
		output of the at least one voltage-to-current converter when a voltage
		applied to the at least one voltage-to-current converter is essentially zero.
33	32	An illumination method, comprising an act of:
		A) providing D.C. power to at least one LED (104) based on $a\underline{n}$
		A.C. power-related signal being a dimmer signal provided by an A.C.
		power sourcedimmer circuit, having portions chopped out of A.C. voltage
		cycles of a standard A.C. line voltage, and having higher frequency
		components than thea standard A.C. line voltage due to the chopping;
		characterized in that saidthe higher frequency components are
		filtered out of the power-related signal prior to providing D.C. power to
		the at least one LED (104).
3 4		The illumination method of claim 33, wherein the act A) includes an act
		of:
		providing the D.C. power to the at least one LED (104) based on
		a power-related signal from an alternating current (A.C.) dimmer circuit.

35	<u>33</u>	The method of claim 3432 , wherein the A.C. dimmer circuit is controlled
		by a user interface to vary the power-related signal, and wherein the act
	8	A) comprises an act of:
		B) providing an essentially non-varying power to the at least one
		LED (104) over a significant range of operation of the user interface.
36	<u>34</u>	The method of claim 3533, wherein the operation of the user interface
		varies a duty cycle of the power-related signal, and wherein the act B)
		includes an act of providing the essentially non-varying power to the at
		least one LED (104) over a significant range of operation of the user
		interface notwithstanding variations in the duty cycle of the power-related
		signal.
37	35	The method of claim 3533, wherein the act B) includes acts of:
		rectifying the power-related signal to provide a rectified power-
		related signal;
ξ		filtering the rectified power-related signal; and
		providing the essentially non-varying power based on the filtered
		rectified power related signal.
38	<u>36</u>	The method of claim $\frac{3533}{33}$, wherein the at least one LED includes a
		plurality of differently colored LEDs.
39	37	The method of claim 3432 , wherein the A.C. dimmer circuit is controlled
		by a user interface to vary the power-related signal, and wherein the act
		A) includes an act of:
6		C) variably controlling at least one parameter of light generated
		by the at least one LED (104) in response to operation of the user
		interface.
40	<u>38</u>	The method of claim 3937 , wherein the operation of the user interface
		varies a duty cycle of the power-related signal, and wherein the act C)
		includes an act of:
		D) variably controlling the at least one parameter of the light based
		at least on the variable duty cycle of the power-related signal.
41	<u>39</u>	The method of claim $\frac{3937}{2}$ wherein the act D) includes an act of:

		variably controlling at least one of an intensity of the light, a color
		of the light, a color temperature of the light, and a temporal characteristic
×		of the light in response to operation of the user interface.
42	<u>40</u>	The method of claim $\frac{3937}{2}$, wherein the act D) includes an act of:
		E) variably controlling at least two different parameters of the
		light generated by the at least one LED in response to operation of the
		user interface.
43	<u>41</u>	The method of claim 4240 , wherein the act E) includes an act of:
		variably controlling at least an intensity and a color of the light
		simultaneously in response to operation of the user interface.
44	<u>42</u>	The method of claim 4240 , wherein the at least one LED (104) is
		configured to generate an essentially white light, and wherein the act E)
		includes an act of:
		F) variably controlling at least an intensity and a color temperature
. q		of the white light simultaneously in response to operation of the user
		interface.
45	<u>43</u>	The method of claim $44\underline{42}$ wherein the act F) includes an act of:
		G) variably controlling at least the intensity and the color
		temperature of the essentially white light in response to operation of the
		user interface so as to approximate light generation characteristics of an
		incandescent light source.
46	<u>44</u>	The method of claim 4543 , wherein the act G) includes an act of:
		variably controlling the color temperature of the essentially white
		light over a range from approximately 2000 degrees K at a minimum
		intensity to 3200 degrees K at a maximum intensity.
47	<u>45</u>	The method of claim 4644 wherein the at least one LED includes a
		plurality of differently colored LEDs.
48	<u>46</u>	The method of claim 39 <u>37</u> , wherein the act C) includes an act of
-		H) digitally sampling the varying power-related signal and
		determine at least one varying characteristic of the varying power-related
a.		signal.
49	<u>47</u>	The method of claim 4846 wherein the operation of the user interface
		varies a duty cycle of the power-related signal, and wherein the act H)

.

		includes an act of variably controlling the at least one parameter of the
		light based at least on the varying duty cycle of the sampled power-related
		signal.
50	<u>48</u>	The method of claim 39 <u>37</u> , wherein:
	÷.	the at least one LED (104) includes;
		at least one first LED (104A, 104B, 104C) adapted to output at
		least first radiation having a first spectrum; and
		at least one second LED (104A,104B,104C) adapted to output
		second radiation having a second spectrum different than the first
		spectrum; and
		the act C) includes an act of:
		I) independently controlling at least a first intensity of the first
		radiation and a second intensity of the second radiation in response to
		operation of the user interface.
51	<u>49</u>	The method of claim $\frac{5048}{2}$, wherein the act 1) includes an act of:
		J) implementing a pulse width modulation (PWM) technique to
		control at least the first intensity of the first radiation and the second
		intensilty intensity of the second radiation.
52	<u>50</u>	The method of claim $\frac{5149}{2}$, wherein the act J) includes acts of:
		generating at least a first PWM signal to control the first intensity
		of the first radiation and a second PWM signal to control the second
		intensity of the second radiation; and
		determining duty cycles of the respective first and second PWM
		signals based at least in part on variations in the power-related signal due
		to operation of the user interface.

Conditional Amendments to the Description of the Patent		
Old Page	New Page	Conditional Amendment
3	3	this type of operation, as they produce light when there is current flowing through a filament in either direction; as the average voltage of an A.C. signal applied to the source(s) is adjusted (e.g., either by an adjustment of voltage amplitude or duty cycle), the current (and hence the power)

delivered to the light source also is changed and the corresponding light output changes. With respect to the duty cycle technique, the filament of an incandescent source has thermal inertia and does not stop emitting light completely during short periods of voltage interruption. Accordingly, the generated light as perceived by the human eye does not appear to flicker when the voltage is "chopped," but rather appears to gradually change.

US-6,127,783 discloses a white light emitting luminaire including a plurality of LEDs in each of the colors red, green, and blue have a separate current regulator which receives current outputs from an A.C. converter.

US-6,369,525 discloses a white LED array driver circuit with a multiple output flyback converter with output current mode control. The circuit comprises a power supply source, a transformer, and a controller arranged to control the flow of current to the primary winding of the transformer.

US-A-2002/0048169 discloses the general concept of converting A.C. power signals from a dimmer circuit into D.C. power for an LED. However, it does not disclose that higher frequency components present in a chopped signal from a dimmer circuit can cause fatal damage to LED light sources in certain circumstances. It is an aim of the present invention to address this problem.

Summary

There is provided according to the present invention an illumination apparatus, comprising: at least one LED; and at least one controller coupled to the at least one LED and configured to provide D.C. power to the at least one LED, wherein the controller is configured to receive from an A.C. power sourcedimmer circuit an A.C. power-related signal being a dimmer signal output by the dimmer circuit, having portions chopped out of A.C. voltage cycles of a standard A.C. line voltage, and having higher frequency components than thea standard A.C. line voltage due to the chopping; and wherein the controller is configured

		to provide said D.C. power based on the A.C. power-related signal,
		characterized in that the at least one controller is configured to filter out
		saidthe higher frequency components.
		According to a second aspect of the present invention
		there is provided an
	3a	illumination method, comprising an act of: A) providing D.C. power to
		at least one LED based on a <u>n A.C.</u> power-related signal being a dimmer
		signal provided by an A.C. power sourcedimmer circuit, having portions
		chopped out of A.C. voltage cycles of a standard A.C. line voltage, and
		having higher frequency components than thea standard A.C. line voltage,
		characterized in that the higher frequency components are filtered out of
		saidthe power-related signal prior to providing D.C. power to the at least
	n P	one LED.
		In one embodiment, methods and apparatus of the invention
		particularly facilitate the use of LED-based light sources on A.C. power
		circuits that are controlled by conventional dimmers (i.e. "A.C. dimmer
		circuits"). In one aspect, methods and
×		apparatus of the present invention facilitate convenient substitution
		of LED-based light sources in lighting environments employing A.C.
		dimming devices and conventional light sources. In yet other aspects,
		methods and apparatus according to the present invention facilitate the
		control of one or more parameters relating to the light generated by
		LED-based light sources (e.g., intensity, color, color temperature,
		temporal characteristics, etc.) via operation of a conventional A.C.
		dimmer and/or other signals present on the A.C. power circuit.
		More generally, one embodiment of the invention is directed to
		an illumination apparatus, comprising at least one LED and at least one
		controller coupled to the at least one LED. The controller is configured
		to receive a power-related signal from an A.C. power source that
		provides signals other than a standard A.C, line voltage. The
		controller further is configured to provide power to the at least one LED
		based on the power-related signal.
		based on the power-related signal.

Another embodiment of the invention is directed to an illumination method, comprising an act of providing power to at least one LED based on a power related signal from an A.C. power source that provides signals other than a standard A.C. line, voltage.

Another embodiment of the invention is directed to an illumination apparatus, comprising at least one LED, and at least one controller coupled to the at least one LED and configured to receive a power related signal from an alternating current (A.C.) dimmer circuit and provide power to the at least one LED based on the power related signal.

Another embodiment of the invention is directed to an illumination method, comprising an act of providing power to at least one LED based on a power-related signal from an alternating current (A.C.) dimmer circuit.

Another embodiment of the invention is directed to an illumination apparatus, comprising at least one LED adapted to generate an essentially white light, and at least one controller coupled to the at least one LED and configured to receive a power-related signal from an alternating current (A.C.) dimmer circuit and provide power to the at least one LED based on the power-related signal. The A.C. dimmer circuit is controller by a user interface to vary the power-related signal. The controller is configured to variably control at least one parameter of the essentially white light in response to operation of the user interface so as to approximate light generation characteristics of an incandescent light source.

Another embodiment of the invention is directed to a lighting system, comprising at least one LED, a power connector, and a power converter associated with the power connector and adapted to convert A.C. dimmer circuit power received by the power connector to form a converted power. The system also includes an adjustment circuit

4

4

		associated with the power converter adapted to adjust power delivered to
		the at least one LED.
		Another embodiment of the invention is directed to a method of
		providing illumination, comprising the steps of providing an AC dimmer
		circuit, connecting an LED lighting system to the AC dimmer circuit,
		generating light from the LED lighting system by energizing the AC
		dimmer circuit, and adjusting the light generated by the LED lighting
		system by adjusting the AC dimmer circuit.
13	13	present invention facilitate the control of one or more parameters relating
		to the light generated by LED-based light sources (e. g., intensity, color,
		color temperature, temporal characteristics, etc.) via operation of a
		conventional dimmer and/or other control signals that may be present in
		connection with an A.C. line voltage.
		Lighting units and systems employing various concepts according
		to the principles of the present invention may be used in a residential
		setting, commercial setting, industrial setting or any other setting where
		conventional A.C. dimmers are found or are desirable. Furthermore, the
	e.	various concepts disclosed herein may be applied in lighting units
		according to the present invention to ensure compatibility of the lighting
		units with a variety of lighting control protocols that provide various
		control signals via an A.C. power circuit.
		One example of such a control protocol is given by the X10
		communications language, which allows X10-compatible products to
		communicate with each other via existing electrical wiring in a home (i.e.,
÷		wiring that supplies a standard A.C. line voltage). In a typical X10
	1	implementation, an appliance to be controlled (e.g., lights, thermostats,
		jacuzzi/hot tub, etc.) is plugged into an X10 receiver, which in turn plugs
		into a conventional wall socket coupled to the A.C. line voltage. The
		appliance to be controlled can be assigned with a particular address. An
		X10 transmitter/controller is plugged into another wall socket coupled to
		the line voltage, and communicates control commands (e.g., on, off, dim,
		bright, etc.), via the same wiring providing the line voltage, to one or more
		X10 receivers based at least in part on the assigned address(es) (further

information regarding X10 implementations may be found at the website "www.smarthome.com"). According to one embodiment, methods and apparatus of the present invention facilitate compatibility of various LEDbased light sources and lighting units with X10 and other communication protocols that communicate control information in connection with an A.C. line voltage.

In general, methods and apparatus according to the present invention allow a substantially complete retrofitting of a lighting environment with solid state LED-based light sources; in particular, pursuant to the present invention, the use of LED-based light sources as substitutes for incandescent light sources is not limited to only those A.C. power circuits that are supplied directly from a line voltage (e.g., via a switch); rather, methods and apparatus of the present invention allow LED-based light sources to be used