Titanium Tetrachloride

Incident Management

Key Points

Fire

- non-flammable with a pungent odour
- reacts violently with water to release hydrochloric acid, titanium dioxide and heat
- emits toxic fumes of hydrogen chloride when heated to decomposition
- in the event of a fire involving titanium tetrachloride, use dry agent and liquid-tight chemical protective clothing with breathing apparatus

Health

- reacts with moisture to produce hydrochloric acid, which causes its toxicity
- inhalation may cause irritation of eyes and nose, with sore throat, cough, chest tightness, headache, fever, wheeze, tachycardia and confusion
- pulmonary oedema may take up to 36 hours to develop
- ingestion causes burning in the mouth, throat and stomach, followed by dysphagia, drooling, abdominal pain, vomiting, haematemesis and dyspnoea; haemorrhagic or hypovolemic shock and airway obstruction may occur in severe cases
- dermal exposure to acids may cause pain, blistering, ulceration and penetrating necrosis; coagulation burns may develop
- ocular exposure may cause lacrimation, conjunctivitis, photophobia and corneal burns

Environment

- avoid release to the environment; inform the Environment Agency of substantial incidents
Hazard Identification

Standard (UK) dangerous goods emergency action codes

<table>
<thead>
<tr>
<th>UN</th>
<th>1838</th>
<th>Titanium tetrachloride</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAC</td>
<td>4WE</td>
<td>Use dry agent. Wear liquid-tight chemical protective clothing in combination with breathing apparatus*. Danger that the substance can be violently or explosively reactive. Spillages and decontamination run-off should be prevented from entering drains and surface and groundwaters. There may be a public safety hazard outside the immediate area of the incident†</td>
</tr>
<tr>
<td>APP</td>
<td>B</td>
<td>Gas-tight chemical protective suit with breathing apparatus‡</td>
</tr>
</tbody>
</table>

Hazard Class

- **Class**: 6.1 Toxic substances
- **Sub-risks**: 8 Corrosive substances

HIN

- **X668** Highly toxic substance, corrosive, which reacts dangerously with water

UN – United Nations number, **EAC** – emergency action code, **APP** – additional personal protection, **HIN** – hazard identification number

* Chemical protective clothing with liquid-tight connections for whole body (type 3) conforming to the relevant standards such as BS 8428 or EN 14605, in combination with breathing apparatus BS EN137

† People should stay indoors with windows and doors closed, ignition sources should be eliminated and ventilation stopped. Non-essential personnel should move at least 250 m away from the incident

‡ Chemical protective clothing should be gas tight conforming to BS EN943 part 2 in combination with breathing apparatus conforming to BS EN137

Reference

Classification, labelling and packaging (CLP)*

<table>
<thead>
<tr>
<th>Hazard class and category</th>
<th>Skin Corr. 1B</th>
<th>Skin corrosion, category 1B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard statement</td>
<td>H314</td>
<td>Causes severe skin burns and eye damage</td>
</tr>
<tr>
<td>Supplementary hazard statement</td>
<td>EUH014</td>
<td>Reacts violently with water</td>
</tr>
<tr>
<td>Signal words</td>
<td>DANGER</td>
<td></td>
</tr>
</tbody>
</table>

* Implemented in the EU on 20 January 2009

Reference

Physicochemical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS number</td>
<td>7550-45-0</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>189.68</td>
</tr>
<tr>
<td>Formula</td>
<td>TiCl₄</td>
</tr>
<tr>
<td>Common synonyms</td>
<td>Titanium chloride, titanium chloride, tetrachlorotitanium</td>
</tr>
<tr>
<td>State at room temperature</td>
<td>Colourless to light yellow liquid</td>
</tr>
<tr>
<td>Vapour pressure</td>
<td>Vapour pressure = 10 mmHg at 21.3°C</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.73 (water = 1)</td>
</tr>
<tr>
<td>Flammability</td>
<td>Non-flammable</td>
</tr>
<tr>
<td>Lower explosive limit</td>
<td>No data available</td>
</tr>
<tr>
<td>Upper explosive limit</td>
<td>No data available</td>
</tr>
<tr>
<td>Water solubility</td>
<td>Soluble</td>
</tr>
<tr>
<td>Reactivity</td>
<td>Reacts violently with water</td>
</tr>
<tr>
<td>Reaction or degradation products</td>
<td>Reacts strongly with water to release hydrochloric acid, titanium dioxide and heat. When heated to decomposition, it emits toxic fumes of hydrogen chloride</td>
</tr>
<tr>
<td>Odour</td>
<td>Penetrating acid odour</td>
</tr>
<tr>
<td>Structure</td>
<td></td>
</tr>
</tbody>
</table>

References

Reported Effect Levels from Authoritative Sources

Exposure by all routes

<table>
<thead>
<tr>
<th>ppm</th>
<th>mg/m³</th>
<th>Signs and symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Data not available</td>
</tr>
</tbody>
</table>
Published Emergency Response Guidelines

Emergency response planning guideline (ERPG) values

<table>
<thead>
<tr>
<th>Listed value (mg/m³)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ERPG-1*</td>
<td>5(1)</td>
</tr>
<tr>
<td>ERPG-2†</td>
<td>20</td>
</tr>
<tr>
<td>ERPG-3‡</td>
<td>100</td>
</tr>
</tbody>
</table>

* Maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to 1 hour without experiencing other than mild transient adverse health effects or perceiving a clearly defined, objectionable odour

† Maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to 1 hour without experiencing or developing irreversible or other serious health effects or symptoms which could impair an individual's ability to take protective action

‡ Maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to 1 hour without experiencing or developing life-threatening health effects

(1) Odour should be detectable near ERPG-1

Acute exposure guideline levels (AEGLs)

<table>
<thead>
<tr>
<th>ppm</th>
<th>10 min</th>
<th>30 min</th>
<th>60 min</th>
<th>4 hours</th>
<th>8 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEGL-1*</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>AEGL-2†</td>
<td>7.6</td>
<td>2.2</td>
<td>1.0</td>
<td>0.21</td>
<td>0.094</td>
</tr>
<tr>
<td>AEGL-3‡</td>
<td>38</td>
<td>13</td>
<td>5.7</td>
<td>2.0</td>
<td>0.91</td>
</tr>
</tbody>
</table>

* Level of the chemical in air at or above which the general public could experience notable discomfort

† Level of the chemical in air at or above which there may be irreversible or other serious long-lasting effects or an impaired ability to escape

‡ Level of the chemical in air at or above which the general public could experience life-threatening health effects or death

NR Not recommended due to insufficient data

Reference

Exposure Standards, Guidelines or Regulations

Occupational standards

<table>
<thead>
<tr>
<th></th>
<th>LTEL (8-hour reference period)</th>
<th>STEL (15-min reference period)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm mg/m³</td>
<td>ppm mg/m³</td>
</tr>
<tr>
<td>WEL</td>
<td>No guideline value specified</td>
<td></td>
</tr>
</tbody>
</table>

WEL – workplace exposure limit, LTEL – long-term exposure limit, STEL – short-term exposure limit

Public health guidelines

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinking water standard</td>
<td>No guideline value specified</td>
</tr>
<tr>
<td>Air quality guideline</td>
<td>No guideline value specified</td>
</tr>
<tr>
<td>Soil guideline values and health criteria values</td>
<td>No guideline value specified</td>
</tr>
</tbody>
</table>
Health Effects

This product is corrosive. It reacts exothermically with moisture to produce hydrochloric acid and titanium dioxide. Toxicity is due to the hydrochloric acid; it is thought that the thermal injury exposes deeper tissues, thus producing more severe burns than those expected from hydrochloric acid alone. Exposure by any route to any amount could be dangerous.

Major route of exposure
- inhalation, ingestion, dermal and ocular

Immediate signs or symptoms of acute exposure

<table>
<thead>
<tr>
<th>Route</th>
<th>Signs and symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalation</td>
<td>Irritation of eyes and nose with sore throat, cough, chest tightness, headache, fever, wheeze, tachycardia and confusion. Chemical pneumonitis, tachypnoea, dyspnoea and stridor due to laryngeal oedema may follow. Optic neuropathy has been reported following inhalation. Pulmonary oedema with increasing breathlessness, wheeze, hypoxia and cyanosis may take up to 36 hours to develop.</td>
</tr>
<tr>
<td>Ingestion</td>
<td>Immediate pain with burning in the mouth, throat and stomach, which may be followed by abdominal pain, vomiting, haematemesis and dyspnoea. Pain and oedema may make swallowing difficult, causing drooling. Acids can damage the stomach causing ulceration, gangrene, haemorrhage and perforation. In severe cases extensive areas of the gastrointestinal tract may be involved. Haemorrhagic or hypovolaemic shock and airway obstruction from laryngeal and/or epiglottic oedema are features of severe cases. Stridor and respiratory complications (including pneumonitis, pulmonary oedema, ARDS and pulmonary necrosis) can develop following aspiration of corrosive materials. Systemic effects include circulatory collapse, metabolic acidosis, hypoxia, respiratory failure, acute renal failure, haemolysis and disseminated intravascular coagulation (DIC).</td>
</tr>
<tr>
<td>Dermal</td>
<td>Symptoms are more likely to occur following direct contact with solid or liquid corrosive materials, although features can also occur through contact with corrosive gases and fumes. Acids may cause pain, blistering, ulceration and penetrating necrosis. Coagulation burns may develop, which can be self-limiting and superficial with the destruction of the surface epithelium and sub-mucosa forming a leathery crust which limits the spread of the product. Large or prolonged exposure may result in systemic effects.</td>
</tr>
<tr>
<td>Ocular</td>
<td>Pain, blepharospasm, lacrimation, conjunctivitis, palpebral oedema and photophobia may occur. May cause corneal burns.</td>
</tr>
</tbody>
</table>
References

Decontamination at the Scene

Summary

The approach used for decontamination at the scene will depend upon the incident, location of the casualties and the chemicals involved. Therefore, a risk assessment should be conducted to decide on the most appropriate method of decontamination.

Titanium tetrachloride reacts with tissue moisture to form hydrochloric acid, which is corrosive. Therefore, following disrobe, improvised wet decontamination should be considered (see below for details).

People who are processed through improvised decontamination should subsequently be moved to a safe location, triaged and subject to health and scientific advice. Based on the outcome of the assessment, they may require further decontamination.

Emergency services and public health professionals can obtain further advice from Public Health England (Centre for Radiation, Chemical and Environmental Hazards) using the 24-hour chemical hotline number: 0344 892 0555.

Disrobe

The disrobe process is highly effective at reducing exposure to HAZMAT/CBRN material when performed within 15 minutes of exposure.

Therefore, disrobe must be considered the primary action following evacuation from a contaminated area.

Where possible, disrobe at the scene should be conducted by the casualty themselves and should be systematic to avoid transferring any contamination from clothing to the skin. Consideration should be given to ensuring the welfare and dignity of casualties as far as possible.

Improvised decontamination

Improvised decontamination is an immediate method of decontamination prior to the use of specialised resources. This should be performed on all contaminated casualties, unless medical advice is received to the contrary. Improvised dry decontamination should be considered for an incident involving chemicals unless the agent appears to be corrosive or caustic.

Improvised dry decontamination

- any available dry absorbent material can be used, such as kitchen towel, paper tissues (eg blue roll) and clean cloth
- exposed skin surfaces should be blotted and rubbed, starting with the face, head and neck and moving down and away from the body
rubbing and blotting should not be too aggressive, or it could drive contamination further into the skin
all waste material arising from decontamination should be left in situ, and ideally bagged, for disposal at a later stage

Improvised wet decontamination

water should only be used for decontamination where casualty signs and symptoms are consistent with exposure to caustic or corrosive substances such as acids or alkalis
wet decontamination may be performed using any available source of water such as taps, showers, fixed installation hose-reels and sprinklers
when using water, it is important to try and limit the duration of decontamination to between 45 and 90 seconds and, ideally, to use a washing aid such as cloth or sponge
improvised decontamination should not involve overly aggressive methods to remove contamination as this could drive the contamination further into the skin
where appropriate, seek professional advice on how to dispose of contaminated water and prevent run-off going into the water system

Additional notes

following improvised decontamination, remain cautious and observe for signs and symptoms in the decontaminated person and in unprotected staff
if water is used to decontaminate casualties this may be contaminated, and therefore hazardous, and a potential source of further contamination spread
all materials (paper tissues etc) used in this process may also be contaminated and, where possible, should not be used on new casualties
the risk from hypothermia should be considered when disrobe and any form of wet decontamination is carried out
people who are contaminated should not eat, drink or smoke before or during the decontamination process and should avoid touching their face
consideration should be given to ensuring the welfare and dignity of casualties as far as possible. Immediately after decontamination the opportunity should be provided to dry and dress in clean robes/clothes
people who are processed through improvised decontamination should subsequently be moved to a safe location, triaged and subject to health and scientific advice. Based on the outcome of the assessment, they may require further decontamination

Interim wet decontamination

Interim decontamination is the use of standard fire and rescue service (FRS) equipment to provide a planned and structured decontamination process prior to the availability of purpose-designed decontamination equipment.
Decontamination at the scene references

Clinical Decontamination and First Aid

Clinical decontamination is the process where trained healthcare professionals using purpose-designed decontamination equipment treat contaminated people individually.

Detailed information on clinical management can be found on TOXBASE – www.toxbase.org.

Important note

- if the patient has not been decontaminated following surface contamination, secondary carers must wear appropriate NHS PPE for chemical exposure to avoid contaminating themselves. The area should be well ventilated.
- carry out decontamination after resuscitation; resuscitate the patient according to standard guidelines.

Clinical decontamination following surface contamination

- carry out decontamination after resuscitation.
- this should be performed in a well-ventilated area, preferably with its own ventilation system.
- do not apply neutralising chemicals as heat produced during neutralisation reactions may cause thermal burns, and increase injury.
- contaminated clothing should be removed, double-bagged, sealed and stored safely.
- decontaminate open wounds first and avoid contamination of unexposed skin.
- any particulate matter adherent to skin should be removed and the patient washed with copious amounts of water under low pressure for at least 10–15 minutes, or until the pH of the skin is normal (pH of the skin is 4.5–6, although it may be closer to 7 in children, or after irrigation). The earlier irrigation begins, the greater the benefit.
- pay particular attention to mucous membranes, moist areas such as skin folds, fingernails and ears.

Dermal exposure

- decontaminate (as above) the patient following surface contamination.
- following decontamination recheck the pH of affected areas after a period of 15–20 minutes and repeat irrigation if abnormal; burns with strong solutions may require irrigation for several hours or more.
- once the pH is normal and stabilised, treat as for a thermal injury.
- burns totalling more than 15% of body surface area in adults (more than 10% in children) will require standard fluid resuscitation as for thermal burns.
moderate/severe chemical burns should be reviewed by a burns specialist
other supportive measures as indicated by the patient's clinical condition

Ocular exposure

remove contact lenses if present
anaesthetise the eye with a topical local anaesthetic (eg oxybuprocaine, amethocaine or similar); **however, do not delay irrigation if local anaesthetic is not immediately available**
immediately irrigate the affected eye thoroughly with 1,000 mL 0.9% saline (eg by an infusion bag with a giving set). A Morgan Lens may be used if anaesthetic has been given. Irrigate for 10–15 minutes irrespective of initial conjunctival pH. Aim for a final conjunctival pH of 7.5–8.0. The conjunctivae may be tested with indicator paper. Retest 20 minutes after irrigation and use further irrigation if necessary
repeated instillation of local anaesthetics may reduce discomfort and help more thorough decontamination; however, prolonged use of concentrated local anaesthetics is damaging to the cornea
patients with corneal damage, those who have been exposed to strong acids or alkalis and those whose symptoms do not resolve rapidly should be referred **urgently** to an ophthalmologist
other supportive measures as indicated by the patient’s clinical condition

Inhalation

maintain a clear airway and ensure adequate ventilation
give oxygen if required
perform a 12 lead ECG
other supportive measures as indicated by the patient’s clinical condition

Ingestion

maintain airway and establish haemodynamic stability
in severely affected patients critical care input is essential. Urgent assessment of the airway is required. A supraglottic-epiglottic burn with erythema and oedema is usually a sign that further oedema will occur that may lead to airway obstruction
do **not** attempt gastric lavage
do **not** give neutralising chemicals as heat produced during neutralisation reactions may increase injury
the use of water or milk (maximum initial volume = 100 - 200 mL in an adult; 2 mL/kg in a child) as diluents in the management of corrosive ingestion may be of some symptomatic benefit (but caution is necessary following large ingestions where mucosal damage /
perforation may have already developed). There is experimental evidence to suggest that early dilution therapy with water or milk reduces acute alkali injury of the oesophagus but administration of large volumes of fluid should be avoided as they may induce vomiting and increase the risk of oedema

- monitor blood pressure, pulse and oxygen saturation
- perform a 12 lead ECG in all patients who require assessment
- other supportive measures as indicated by the patient’s condition

Clinical decontamination and first aid references

TOXBASE Titanium tetrachloride, 10/2010
TOXBASE Corrosives – inhalation, 02/2012
TOXBASE Corrosives – ingestion, 06/2016
TOXBASE Skin decontamination – corrosives, 06/2010
TOXBASE Chemicals splashed or sprayed into the eyes, 02/2014

This document from the PHE Centre for Radiation, Chemical and Environmental Hazards reflects understanding and evaluation of the current scientific evidence as presented and referenced here.

Re-use of Crown copyright material (excluding logos) is allowed under the terms of the Open Government Licence, visit www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ for terms and conditions.

For queries relating to this document, please contact: generaltox@phe.gov.uk

First published: October 2015

Update: November 2016 Health Effects, Decontamination at the Scene & Clinical Decontamination and First Aid