UK Standards for Microbiology Investigations

Cytomegalovirus Serology
Acknowledgments

UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations-steering-committee).

The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content.

For further information please contact us at:

Standards Unit
Microbiology Services
Public Health England
61 Colindale Avenue
London NW9 5EQ
E-mail: standards@phe.gov.uk

Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories

PHE Publications gateway number: 2015010

UK Standards for Microbiology Investigations are produced in association with:
Amendment Table

Each SMI method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from standards@phe.gov.uk.

New or revised documents should be controlled within the laboratory in accordance with the local quality management system.

<table>
<thead>
<tr>
<th>Amendment No/Date.</th>
<th>5/21.09.16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue no. discarded.</td>
<td>3</td>
</tr>
<tr>
<td>Insert Issue no.</td>
<td>3.1</td>
</tr>
<tr>
<td>Section(s) involved</td>
<td>Amendment</td>
</tr>
<tr>
<td>Page 11.</td>
<td>Correction was made under subheading “Footnotes Relating to Immunocompetent Host Flowchart” in footnote (a) from myalgia of unknown origin to pyrexia of unknown origin.</td>
</tr>
<tr>
<td>Amendment No/Date.</td>
<td>4/27.04.15</td>
</tr>
<tr>
<td>Issue no. discarded.</td>
<td>2.6</td>
</tr>
<tr>
<td>Insert Issue no.</td>
<td>3</td>
</tr>
<tr>
<td>Section(s) involved</td>
<td>Amendment</td>
</tr>
<tr>
<td>Whole document.</td>
<td>Hyperlinks updated to gov.uk.</td>
</tr>
<tr>
<td>Page 2.</td>
<td>Updated logos added.</td>
</tr>
<tr>
<td>Whole document.</td>
<td>Whole document re-written and re-organised.</td>
</tr>
<tr>
<td>Scope.</td>
<td>Scope added to the document.</td>
</tr>
<tr>
<td>Flowchart.</td>
<td>Flowchart separated into four flowcharts for serology in screening, immunocompetent host, pregnant women and congenital infection.</td>
</tr>
<tr>
<td>Footnotes.</td>
<td>Extensive footnotes included for each of the above flowcharts.</td>
</tr>
<tr>
<td>References.</td>
<td>References updated.</td>
</tr>
</tbody>
</table>
UK Standards for Microbiology Investigations\#: Scope and Purpose

Users of SMIs

- SMIs are primarily intended as a general resource for practising professionals operating in the field of laboratory medicine and infection specialties in the UK.
- SMIs provide clinicians with information about the available test repertoire and the standard of laboratory services they should expect for the investigation of infection in their patients, as well as providing information that aids the electronic ordering of appropriate tests.
- SMIs provide commissioners of healthcare services with the appropriateness and standard of microbiology investigations they should be seeking as part of the clinical and public health care package for their population.

Background to SMIs

SMIs comprise a collection of recommended algorithms and procedures covering all stages of the investigative process in microbiology from the pre-analytical (clinical syndrome) stage to the analytical (laboratory testing) and post analytical (result interpretation and reporting) stages.

Syndromic algorithms are supported by more detailed documents containing advice on the investigation of specific diseases and infections. Guidance notes cover the clinical background, differential diagnosis, and appropriate investigation of particular clinical conditions. Quality guidance notes describe laboratory processes which underpin quality, for example assay validation.

Standardisation of the diagnostic process through the application of SMIs helps to assure the equivalence of investigation strategies in different laboratories across the UK and is essential for public health surveillance, research and development activities.

Equal Partnership Working

SMIs are developed in equal partnership with PHE, NHS, Royal College of Pathologists and professional societies.

The list of participating societies may be found at https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories. Inclusion of a logo in an SMI indicates participation of the society in equal partnership and support for the objectives and process of preparing SMIs. Nominees of professional societies are members of the Steering Committee and Working Groups which develop SMIs. The views of nominees cannot be rigorously representative of the members of their nominating organisations nor the corporate views of their organisations. Nominees act as a conduit for two way reporting and dialogue. Representative views are sought through the consultation process.

SMIs are developed, reviewed and updated through a wide consultation process.

Microbiology is used as a generic term to include the two GMC-recognised specialties of Medical Microbiology (which includes Bacteriology, Mycology and Parasitology) and Medical Virology.
Quality Assurance

NICE has accredited the process used by the SMI Working Groups to produce SMIs. The accreditation is applicable to all guidance produced since October 2009. The process for the development of SMIs is certified to ISO 9001:2008.

SMIs represent a good standard of practice to which all clinical and public health microbiology laboratories in the UK are expected to work. SMIs are NICE accredited and represent neither minimum standards of practice nor the highest level of complex laboratory investigation possible. In using SMIs, laboratories should take account of local requirements and undertake additional investigations where appropriate. SMIs help laboratories to meet accreditation requirements by promoting high quality practices which are auditable. SMIs also provide a reference point for method development.

The performance of SMIs depends on competent staff and appropriate quality reagents and equipment. Laboratories should ensure that all commercial and in-house tests have been validated and shown to be fit for purpose. Laboratories should participate in external quality assessment schemes and undertake relevant internal quality control procedures.

Patient and Public Involvement

The SMI Working Groups are committed to patient and public involvement in the development of SMIs. By involving the public, health professionals, scientists and voluntary organisations the resulting SMI will be robust and meet the needs of the user. An opportunity is given to members of the public to contribute to consultations through our open access website.

Information Governance and Equality

PHE is a Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions.

The development of SMIs are subject to PHE Equality objectives https://www.gov.uk/government/organisations/public-health-england/about/equality-and-diversity. The SMI Working Groups are committed to achieving the equality objectives by effective consultation with members of the public, partners, stakeholders and specialist interest groups.

Legal Statement

Whilst every care has been taken in the preparation of SMIs, PHE and any supporting organisation, shall, to the greatest extent possible under any applicable law, exclude liability for all losses, costs, claims, damages or expenses arising out of or connected with the use of an SMI or any information contained therein. If alterations are made to an SMI, it must be made clear where and by whom such changes have been made.

The evidence base and microbial taxonomy for the SMI is as complete as possible at the time of issue. Any omissions and new material will be considered at the next review. These standards can only be superseded by revisions of the standard, legislative action, or by NICE accredited guidance.

SMIs are Crown copyright which should be acknowledged where appropriate.
Scope of Document

Type of specimen
Blood, serum, plasma, urine, saliva, amniotic fluid

Scope
Cytomegalovirus (CMV) is a common infection that is usually harmless. It can cause serious disease in immunocompromised individuals and in babies who were infected in utero. The present SMI is composed of four algorithms that cover the investigation of CMV infection status in the following situations:

- screening of blood/organ donors, and of individuals at risk of CMV disease\(^1,2\)
- diagnosing CMV infection in symptomatic immunocompetent individuals (non-pregnant)
- diagnosing CMV infection in pregnant women
- diagnosing congenital infection

This 'CMV serology' SMI does not cover the diagnosis of CMV infection in immunocompromised individuals (including HIV-infected, graft recipient, immunosuppressive treatment). Molecular assays (or pp65 antigenemia) are preferred for diagnosis and monitoring of CMV infection and related disease in this patient type.

CMV belongs to the *Herpesviridae* family and persists in the host as a life-long latent infection. After primary infection, the endogenous virus may replicate de novo causing a reactivation. A new infection with an exogenous CMV can occur, referred to as reinfection\(^3,4\). In all settings the infection is usually asymptomatic in the immunocompetent host; however, some primary infections result in a mononucleosis syndrome or mild flu-like symptoms.

CMV is the most common cause of congenital infection, with approximately 0.5% of neonates infected\(^5\). Most congenital infections are asymptomatic, with only 10 - 15% of neonates exhibiting clinical signs, such as intrauterine growth retardation, microcephaly, hepatosplenoomegaly, petechiae and jaundice. Ninety percent of children with symptomatic infection, and 10 - 15% of those with asymptomatic infection, develop one or more long-term neurological sequelae such as mental retardation, psychomotor retardation, sensorineural hearing loss (SNHL), and eye abnormalities.

Definitions
For all antigen, antibody and NAATs testing the following definitions apply:

Reactive – Initial internal-stage positive result pending confirmation.

Not reactive – Initial internal-stage negative result.

Detected – Report-stage confirmed reactive result.

Not detected – Report-stage not reactive result.
Screening Flowchart

Please note: *Equivocal results are not included in the above algorithm.*

Footnotes Relating to Screening Flowchart

a) This includes blood/organ donors and individuals at risk of CMV disease\(^1\). Screening of gametes/embryo donors is not a mandatory requirement\(^6\).

b) Individuals at risk of CMV disease include future graft recipients and individuals receiving (or due to receive) immunosuppressive treatment. CMV IgG antibody is one of the markers required to evaluate the risk of CMV infection or reactivation, and to implement appropriate control measures and pre-emptive or preventive treatment.

c) Breast milk donors are no longer screened as there is evidence that pasteurisation and other processing techniques, including freezing, destroys contamination\(^7\).

d) Be aware of possible passively acquired antibody. It is not recommended to screen for CMV IgG in patients who have recently received blood or blood products, including anti-D immunoglobulins. Passively acquired CMV IgG may lead to misinterpretation of the CMV infection status and to false seropositive or seroconversion results. Passively acquired immunoglobulins decrease over time, with a half-life of approximately 3 weeks. If this data is not available at the time of transplantation the worst case scenario must be considered in terms of preventing CMV infection.

e) Consider the use of two assays for transplant patients\(^1\).

f) The detection of CMV IgG in blood and organ donors indicates potential infectivity of donations.
Cytomegalovirus Serology

Immunocompetent Host Flowchart

Potential CMV-related illness in immunocompetent individuals

CMV IgM

Not reactive

Reactive

CMV IgG

Not reactive

REPORT: No evidence of recent CMV infection

Reactive

REPORT: Evidence of recent primary CMV infection

REPORT: Suggestive of recent CMV infection

Report/notify case

Please note: Equivocal results are not included in the above algorithm.
Footnotes Relating to Immunocompetent Host Flowchart

a) Clinical mononucleosis, fever, hepatitis or pyrexia of unknown origin in immunocompetent individuals.

b) Immunocompetent women: where possible query pregnancy. If pregnant, refer to the algorithm for pregnant women.

c) The presence of CMV IgM may indicate one of the following:
 - primary infection
 - re-infection
 - reactivation
 - false-positive test result

Therefore the presence of CMV IgM cannot be used independently to diagnose primary CMV infection.

d) Consider excluding false positive CMV IgM due to acute EBV infection by testing for heterophile antibody or EBV VCA-IgM. Refer to V 26 - Epstein-Barr Virus Serology.

e) Consider testing CMV IgG and IgM on an earlier sample, if available, to aid interpretation.

f) Infants (<12 months): passively acquired maternal IgG may be present. Determine the maternal IgG status and, if positive, consider testing for CMV in the infant’s blood and/or urine. Refer to the algorithm for congenital infection if required.

g) Consider CMV NAAT on the existing serum or plasma sample. A positive CMV NAAT indicates primary CMV infection. If the CMV NAAT is negative, primary CMV infection is unlikely but cannot be excluded, and the CMV IgG test should be repeated within 1 to 3 weeks.

h) Review level of IgM reactivity and interpret results according to local assay experience.

i) Recent infection includes primary infection, reinfection and reactivation.

j) Consider IgG avidity testing on the existing serum sample, especially where timing of primary infection is important eg pregnancy (refer to the algorithm for pregnant women).

k) Where available, consider testing an earlier sample for IgG and IgM to differentiate between primary and secondary infection.
null
Footnotes Relating to Pregnant Women Flowchart

a) CMV infection should be suspected in symptomatic pregnant women presenting with clinical mononucleosis, fever, hepatitis or myalgia of unknown origin. If the woman is asymptomatic but concerns arise due to the foetus, refer to the congenital infection algorithm.

b) The presence of CMV IgM may indicate one of the following:
 - primary infection
 - re-infection
 - reactivation
 - false-positive test result

Therefore, the presence of CMV IgM cannot be used by itself to diagnose primary CMV infection.

c) Consider excluding false positive CMV IgM due to concurrent EBV acute infection by testing for heterophile antibody or EBV VCA-IgM.
l) High avidity: no evidence of recent infection in the past 3 months12-16,26.

m) Low avidity indicates recent infection of usually less than 3 months prior to sample date16.

n) Interpretation of intermediate avidity is difficult and recent/relatively recent primary infection cannot be excluded, particularly in samples taken after the 1st trimester16,17.
Congenital Infection Flowchart17,26

Suspicion of congenital infection → CMV IgG confirmed in maternal blood together with other evidence of CMV infection in the mother (refer to pregnant woman algorithm)a

Antenatal diagnosisb

CMV in amniotic fluid (NAAT)g

Reactivef

Not reactive

REPORT: Congenital infection highly unlikelyc

REPORT: Not reactive

Neonatal diagnosis ≤ 3 weeks of agec, d

CMV in urine or saliva within 3 weeks after birth (Culture or NAAT)h

Not reactive

Reactive

Confirm with detection of CMV in urine or saliva or Guthrie card.h, i, j, k, l

Repeat testing CMV in urine or salivah, i, j, k

Confirm with repeat testing on urine or saliva, or Guthrie cardi, k, n

REPORT: Not consistent with congenital infection

REPORT: Confirmed congenital CMV infectionp

Report/notify case

Late diagnosis >3 weeks of aged

CMV in urine or saliva (Culture or NAAT)h, i, j, k, l

>3 weeks & <12 months of age

CMV IgMe

Not reactive

Repeat testing CMV in urine or salivai, j, k

CMV in Guthrie cardl

REPORT: Not consistent with congenital infection

REPORT: Confirmed congenital CMV infectionp

Report/notify case

>12 months of age

CMV IgG

Reactive

Not reactive

REPORT: Congenital CMV infection unlikely

REPORT: Congenital infection cannot be excludeda

Please note: Equivocal results are not included in the above algorithm.
Footnotes Relating to Congenital Infection Flowchart

a) Congenital CMV can be excluded if mother is CMV IgG negative. Congenital CMV infection can result from both primary and recurrent maternal infection. The risk of transmission is greater after primary infection (30-40%) than after recurrent infection (~1%)\(^2\). Not all congenitally infected babies are symptomatic at birth or develop sequelae (see Scope).

b) Antenatal diagnosis can be requested when there is suspicion of recent maternal infection or when there are ultrasound features such as intrauterine growth retardation, ventricular dilatation, intracranial calcification, microcephaly, ascites, hepatomegaly, abdominal calcification, thickened placenta.

c) Neonatal diagnosis is requested when clinical signs suggestive of congenital infection (such as intrauterine growth retardation, microcephaly, hepatosplenomegaly, petechiae and jaundice) are present at, or prior to, birth. It is also indicated for those infants born to a mother with documented recent infection, inconclusive results or with typical ultrasound abnormalities or when amniocentesis was declined.

d) Detection of CMV by NAAT (in urine or saliva) within the first 3 weeks of life is considered the gold standard method for the diagnosis of congenital CMV infection.

e) If a suitable sample for NAAT is not available, CMV IgM can be tested in the neonate’s blood. However, the test lacks sensitivity and NAAT should be performed if the CMV IgM result is negative\(^2\).

f) Late diagnosis is requested for infants and young children, usually asymptomatic at birth, who develop sequelae within a 5 to 7-year period such as sensorineural hearing loss, mental retardation, delay of psychomotor development and visual impairment\(^2\). The absence of CMV IgG in maternal blood after delivery excludes congenital CMV as the cause of hearing loss or other defect. The presence of CMV IgM in the booking blood supports, but does not confirm the diagnosis of congenital CMV.

g) For optimal sensitivity, amniocentesis must be performed at a time that is at least 6 weeks after presumed time of maternal infection and after 21 weeks of gestation\(^2\).

h) Both urine and saliva of congenitally infected term neonates contain high levels of CMV and have equivalent sensitivity for diagnosis\(^2\). Real time PCR performed on dried saliva specimens was shown to be a highly sensitive and practical tool to diagnose congenital CMV\(^5\). Reactive CMV NAAT on samples taken after 3 weeks of age, cannot be distinguish-congenital from postnatal or perinatal infection (refer to the ‘late diagnosis’ branch of the algorithm).

i) Viral excretion in urine and saliva lasts for several years with a steep decline after 5 years\(^3\). The median duration of urinary excretion assessed by culture was estimated to be 4.55 years in children born with asymptomatic and 2.97 years in symptomatic children\(^3\). Although there is some evidence to suggest that repeat testing should be carried out twice due to intermittent shedding, local policy may dictate that repeat testing once is acceptable\(^3\).
j) There is evidence to suggest that urine is superior to saliva when screening for postnatal CMV infections in preterm infants using NAAT32.

k) If the result is discordant, investigate possible laboratory error and request a third sample to confirm.

l) CMV viral load is significantly lower in blood than in urine or saliva, and sensitivity of NAAT performed from a dried blood spot (Guthrie card) has been reported to be as low as 28\%33,34.

m) Investigate CMV infection in the neonate if pregnancy continues.

n) Negative predictive values of between 92.7\% and 95.7\% are reported for CMV NAAT assays of amniotic fluid were reported10.

o) All babies and children with a confirmed congenital CMV infection must be followed up with regular paediatric examination and audiology assessment35. Symptomatic neonates with CNS disease and/or focal organ disease may receive ganciclovir35. Treatment of neonates with neurological symptoms can prevent developmental delays and hearing deterioration36,37.
Notification to PHE38,39 or Equivalent in the Devolved Administrations40-43

The Health Protection (Notification) regulations 2010 require diagnostic laboratories to notify Public Health England (PHE) when they identify the causative agents that are listed in Schedule 2 of the Regulations. Notifications must be provided in writing, on paper or electronically, within seven days. Urgent cases should be notified orally and as soon as possible, recommended within 24 hours. These should be followed up by written notification within seven days.

For the purposes of the Notification Regulations, the recipient of laboratory notifications is the local PHE Health Protection Team. If a case has already been notified by a registered medical practitioner, the diagnostic laboratory is still required to notify the case if they identify any evidence of an infection caused by a notifiable causative agent.

Notification under the Health Protection (Notification) Regulations 2010 does not replace voluntary reporting to PHE. The vast majority of NHS laboratories voluntarily report a wide range of laboratory diagnoses of causative agents to PHE and many PHE Health Protection Teams have agreements with local laboratories for urgent reporting of some infections. This should continue.

Note: The Health Protection Legislation Guidance (2010) includes reporting of Human Immunodeficiency Virus (HIV) & Sexually Transmitted Infections (STIs), Healthcare Associated Infections (HCAIs) and Creutzfeldt–Jakob disease (CJD) under ‘Notification Duties of Registered Medical Practitioners’: it is not noted under ‘Notification Duties of Diagnostic Laboratories’.

https://www.gov.uk/government/organisations/public-health-england/about/our-governance#health-protection-regulations-2010

Other arrangements exist in Scotland40,41, Wales42 and Northern Ireland43.
References

