

Report on the

Pesticide Residues Monitoring Programme for Quarter 2 2015

Published: December 2015

CONTENTS

	Page
Summary Findings	3
Section I – Introduction	4
The Results	9
Apples	9
Aubergine	10
Bananas	11
Beans with pods	12
Beef	15
Berries	16
Bread (gluten free)	18
Broccoli	19
Brussels sprouts	20
Butter	21
Cheese (soft)	23
Chillies	25
Crème fraîche	27
Curry leaves	28
Eggs (hens)	31
Grapes	32
Lettuce	34
Mango	
Melon	39
Milk	41
Okra	
Olive oil	
Olives	
Orange juice	
Pears	
Peas without pods	
Peppers	
Potatoes	
Prepared fresh fruit	
Radish	
Raisins, currants and sultanas	
Smoked fish	
Speciality fruit	
Tea	
Supplier Details	
Section II: CRD assessment of risk	
Appendix A: Summary of Results	
Appendix B: Summary of Rapid Alerts Issued and samples with residues above the MRL	79

Appendix C:: Pesticides Sought and Found in Individual Foodstuffs	84
Appendix D: Additional Action Taken	235
Appendix E: Pesticides analysed as multi-component analytes and their reporting limits	237
Glossary	242
Follow-up from Previous Reports	247

Summary Findings

PRiF is an expert committee of Defra. This is our second quarterly report for 2015. During this year's surveillance programme we are looking for a range of up to 388 pesticides in our fruit and vegetable surveys.

This quarter's programme surveyed 1,019 samples of 34 different foods: apples, aubergine, banana, beans with pods, beef, berries, bread (gluten free), broccoli, brussels sprouts, butter, cheese (soft), chillies, crème fraîche, curry leaves, eggs, grapes, lettuce, mango, melon, milk, okra, olive oil, olives, orange juice, pears, peas without pods, peppers, potatoes, prepared fresh fruit, radish, raisins, currants and sultanas, smoked fish, speciality fruit and tea. The results show 46 samples contained residues above the maximum permitted levels.

A screening risk assessment is done for each residue in each commodity to identify residue levels that could lead to intakes above the relevant reference doses. Detailed risk assessments are then produced for every case where the actual residue level found could lead to an intake above the acute reference dose. We have looked carefully at all these findings including the risk assessments provided by the Health and Safety Executive's Chemicals Regulation Directorate (CRD).

In most cases the presence of the residues found would be unlikely to have had any effect on the health of the people who ate the food. In the case of beans with pods, speciality fruit and curry leaves we found residues in one sample of each where short-lived effects were possible.

We have published full details of suppliers and retailers of the food sampled in an annex to this report. We have asked suppliers and the authorities of the exporting countries for an explanation of our findings – any responses we received are at Appendix D.

Thanks go to all of those individuals and organisations responsible for helping us put this report together. These include our Secretariat and scientists (both based at the Chemicals Regulation Directorate), the samplers from the market research organisation and Defra officials who have collected the samples and laboratory staff across the UK who undertook the analysis.

Dr Paul Brantom Chairman of the Expert Committee on Pesticide Residues in Food

Background

Food safety is important. Modern food production processes have given us plentiful supplies of a wide range of good quality affordable produce.

In the food industry of today the production environment can be managed from the preparation of seeds used for crops, through to growth, harvesting and storage of the produce.

One of the ways the food industry controls the environment in which foodstuffs are produced is by applying pesticides.

They help farmers and growers maximise the production of food stuffs by, for example, preventing weeds inhibiting the growth of the crop, or insects destroying or infesting them. Pesticides can also be used to help protect seeds, or prolong the life of crops after they have been harvested. Biological and physical (cultural) controls are also used to protect crops or as part of an integrated system.

As pesticides are used to control unwanted pests, weeds and diseases, they can potentially also harm people, wildlife and the environment. This is why the UK, in common with most other countries, imposes legally enforceable conditions as to how and when pesticides can be used. No pesticide can be supplied or used on a food or ornamental crops in the UK without Government authorisation. To obtain this authorisation the manufacturer of the pesticide must show that it does not present a concern for people's health or the environment. Naturally derived and synthetic pesticides are subject to the same regulation.

Once the authorisation has been granted Government authorities carry out follow up checks to ensure that the authorisation is providing the necessary degree of protection to users, consumers and the environment and that those who use pesticides are complying with conditions specified within it.

The Government authority responsible for checking pesticide residues in foodstuffs is the Chemicals Regulation Directorate. Defra's Expert Committee on Pesticide Residues in Food (PRiF) oversees and provides an independent check on this work. We know that the use of pesticides on crops may lead to traces (residues) of these chemicals in food and we expect to find these in our monitoring programme.

Defra's Expert Committee on Pesticide Residues in Food (PRiF)

The Expert Committee on Pesticide Residues in Food was established in 2011. Our members have a broad range of expertise relating to the food supply industry. The main function of the Committee is to oversee Government's £2 million pesticide residues surveillance programme. Previously this work was carried out by the Pesticide Residues Committee.

Our Chairman, Dr Paul Brantom is an independent consultant in toxicological risk assessment. The Committee also includes members with expertise in toxicology, food production and supply as well as two public interest experts.

Information on the membership of the PRiF is also available on the PRiF's website: www.pesticides.gov.uk/guidance/industries/pesticides/advisory-groups/PRiF/about-PRiF/members.

Our role is to advise Ministers, the Director of the Chemicals Regulation Directorate (CRD) and the Chief Executive of the Food Standards Agency (FSA) on:

- the planning of surveillance programmes for pesticide residues in the UK food supply and the evaluation of the results;
- Procedures for sampling, sample processing, new methods of analysis, the assessment of variability of pesticide residues in food and related issues.

Surveillance programme

The pesticide residues surveillance programme is designed to enable us to check that:

- maximum residue levels of pesticides are being respected;
- users of pesticides are complying with conditions of use specified in the authorisation; and
- People's intakes of residues are within acceptable limits.

We do this by collecting samples of foodstuffs from a range of points in the supply chain (including supermarkets, corner shops, markets, distribution and supply depots). Each sample is then analysed in carefully selected certified laboratories for residues of up to 393 pesticides. This list is updated each calendar year which means that direct comparison with previous surveys is not always possible for new pesticides added to the list.

All EU countries are required to monitor food for pesticide residues and to carry out a number of specific surveys each year. In 2015 EU surveys are of: aubergines, bananas, broccoli, grapes, orange juice, peas without pods, peppers, wheat, olive oil, butter and eggs. The number of samples to be analysed is greater for the countries with larger populations (such as the UK). Results from the EU surveys are published as a single report. The reports from 1996-2013 are on the Commission's website at http://ec.europa.eu/food/fvo/specialreports/pesticides_index_en.htm. The survey results for 2012 can be found on EFSA's website at http://www.efsa.europa.eu/en/efsajournal/doc/3942.pdf and those for 2013 at <a href="http://www.efsa.europa.eu/e

All EU countries also have a national monitoring programme. The UK programme ensures all the major components of our national diet are sampled (milk, bread, potatoes, fruit and vegetables, cereals and related products, and animal products). The programme is not designed to provide a representation of residues in our diet – it is risk based and looks more at those commodities likely to contain residues. Some commodities are surveyed every year, whilst others are surveyed less frequently, for example once every three years; this is what we call the rolling programme.

The sampling and analysis is carried out in accordance with stringent international standards.

Reporting the results

Results by food commodity

- We include information about the survey (for instance where samples came from) for each commodity
- Detailed tabulated results are at the back of this report these tables are also available for download from our website
- We summarise our findings and any follow-up action taken.

Risk assessments – single residues

- All results are screened by CRD to check for intakes above the Acute Reference Dose (ARfD). CRD
 assumes a relatively high level of intake and also assumes that most produce is eaten whole
 including peel/skin even when these are rarely consumed
- Where intakes above the ARfD are identified, we consider a detailed risk assessment prepared by CRD (at Section II of this report).
- Our observations and the follow-up action taken are summarised in the section for that food.

Risk assessments – multiple combined residues

- Residues of more than one pesticide from the same category/class of particular categories of
 pesticides, which have a similar toxicological mode of action, are screened by CRD to check for
 intakes above the combined Acute Reference Dose (ARfD).
- Where combined intakes above the combined ARfD are identified, we consider a detailed combined risk assessment prepared by CRD (at Section II of this report).

• Our observations and any follow-up action taken are summarised in the section for that food commodity.

Risk assessment - conclusions

- Where, in the light of current knowledge and considering the usual level of scientific uncertainty (or precaution) the intake will not cause ill health the conclusion will say no effect on health is expected.
- Where, in the light of current knowledge and considering a slightly higher level of scientific uncertainty (or less precaution) the intake is not likely to cause ill health, the conclusion will be less definite and state that an effect on health is unlikely.
- Where scientific uncertainty is greater more information is provided.

Residues in UK produce of pesticides which are not approved for use on that crop in the UK.

- All residues found in UK-produced foods are checked by CRD to make sure the pesticide is approved for use.
- Where no UK approval is identified, details of the sample are referred to CRD's Enforcement Section for follow up.
- Our observations and any follow-up action taken to date are summarised in the section for that food commodity. We may have to withhold details of samples while investigations are underway, in which case the details will be published in a later report.

Residues above the MRL, after taking into account measurement uncertainty

- Samples containing residues above the MRL are listed at Appendix B, and those which are clearly above the MRL after taking into account measurement uncertainty of plus or minus 50% are highlighted.
- Our observations and any follow-up action taken are summarised in the section for that food commodity.

The results in our reports are rounded for publication but not adjusted for measurement uncertainty.

We apply measurement uncertainty only to decide whether to highlight a result as over the MRL in the brand name annex. To do this we use the actual value reported by the laboratory before rounding. If after taking measurement uncertainty into account that value is found to be over the MRL the result will be highlighted in the brand name annex.

For example:

- The lab reports the results of duplicate analysis of a residue above an MRL at 0.023 mg/kg and 0.025 mg/kg giving an average value of 0.024mg/kg. For reporting purpose this value would be 0.02 mg/kg.
- If measurement uncertainty is then applied to the reported value of 0.02 mg/kg it could take the value to between 0.01 0.03 mg/kg. If the MRL is 0.01 mg/kg the lower value would be at the MRL and there is no exceedance.
- However if measurement uncertainty is applied to the measured result, eg 0.024 mg/kg the value could then be in the range of 0.012 0.036 mg/kg. In this case the lower value is above the MRL and so will be treated as an exceedance.

Residues in organic food

- We monitor pesticide residues in all the UK food supply, including organic food.
- We are not responsible for checking compliance with the rules associated with organic production. However, when we do detect residues in an organic food we explain whether or not those residues indicate a breach of the rules and inform Defra's Organic Farming Branch.

Brand Name Annex

• Full brand name details for samples included in this report are published in a brand name annex. Within this annex, samples with results of interest are highlighted.

• Brand name details are only published when enough follow-up work is completed for us to be reasonably sure whether a breach of the law or good practice has occurred. Therefore sometimes brand name details are withheld pending completion of this work but are published in a later report.

Current Issues

BAC (benzalkonium chloride) and DDAC (didecyldimethylammonium chloride)

BAC and DDAC are quaternary ammonium compounds (QAC) widely used as disinfectants. Disinfection is an import hygiene measure and this is why EU countries agreed to allow the marketing of produce with residues over the default MRL.

In the EU, the regulatory system for biocides covers the supply and use of this sort of disinfectant. However, because such products may also be used to protect plants from disease, residues left on food are covered by the EU's rules on pesticide (plant protection products) residues.

During 2012, it became known that these substances were leaving detectable residues on food after use on surfaces and equipment used for food preparation – for instance disinfecting equipment or water used to wash food before packing. Also it became clear that many in the food industry had not appreciated that residues of these substances were covered by the rules on pesticide residues.

EU countries agreed to allow the marketing of produce with residues over the default MRL up to a temporary guideline level of 0.5 mg/kg for all foods. The European Food Safety Authority (EFSA) have advised this would be safe for all consumer groups. Meanwhile all EU member states agreed to look for BAC and DDAC during monitoring. The results will be used as part of the process of setting specific MRLs that take account of appropriate disinfectant use as well as the safety of residues for consumers. The European Commission has now published new MRLs (SANCO/10842/2014) where residues may arise from biocide use to of 0.1 mg/kg. The new MRL came in to force on 4 November 2014. To enable Member States, third countries and food business operators to prepare themselves to meet the requirement the enforcement level of 0.5 mg/kg will apply to products produced before 12 August 2015.

You can read more about this process on the HSE website:

- <u>http://www.pesticides.gov.uk/guidance/industries/pesticides/News/Collected-Updates/Regulatory-Updates-2015/August/DDAC-and-BAC-MRLs-UK-enforcement</u>
- <u>http://www.pesticides.gov.uk/Resources/CRD/Migrated-</u> <u>Resources/Documents/L/Letter%20to%20QAC%20Stakeholders%20re%20enforcement%20of%20</u> <u>MRLs%20-%20Aug%202015.pdf</u>

The EU guidelines that can be downloaded from the website explain EFSA's advice to the European Commission on consumer risk:

- Adoption of EU guidelines concerning the presence of didecyl dimethyl ammonium chloride (DDAC) in or on food and feed, 20 July 2012
- Adoption of EU guidelines concerning the presence of benzalkonium chloride (BAC) in or on food and feed, 27 July 2012

Now that this new MRL is agreed, we think food producers and suppliers should take practical steps to minimise residues of disinfectants as far as possible to comply with the 0.1 mg/kg level. We will continue to look for these chemicals and identify residues above 0.1 mg/kg but the enforcement level of 0.5 mg/kg will continue to apply until 12 August 2015.

Residues below the MRL that exceed the ARfD

When MRLs are agreed at the EU level they are set at levels that are compatible with consumer safety. Occasionally, assessment of PRiF monitoring samples containing residues below or at the MRL will show consumer intakes could potentially be above the ARfD. This situation typically arises because of one of three reasons:

- the ARfD may have been lowered because of new information but there is a delay before MRLs have been reassessed or new MRLs are put in place;
- during the MRLs process the risk assessments are currently based on the highest residue level
 observed in residues trials used to support the MRL which will often be less than the actual MRL (it is
 expected that most residues found will be below the MRL, and if for this reason there are later
 samples which give intakes above the ARfD the numbers are expected to be low);
- the agreed EU approach might assume the commodity is peeled and data are used to reduce the intake in the risk assessment at the time of setting MRLs, whereas in the PRiF work risk

assessments for the whole commodity are presented as routine and, if information showing the effects of processing on residues level is available to PRiF, a refined assessment is presented.

The first two of these reasons are common to EU assessments and the third represents a difference between the approach used by CRD for the risk assessment and that used at the time the MRL is set. We will highlight how our assessments differ from that done at the EU level so that readers are aware of the basis of the evaluation.

The Results

	Ó
	Apples
Introduction	We have been surveying apples every year since 1995 due to their importance in our diet. The survey includes both eating (dessert) and cooking apples.
Survey design	We are sampling and reporting apples in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the apple samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 5 at page 84 Suppliers details are in the Brand Name Annex
	Conclusions

- Onc	llicione
COLL	lusions

• • • •	
Summary statement	None of the residues detected by the laboratory would be expected to have an
	effect on health.

Results	
When samples were taken	Between April and June 2015
Number of samples	24 samples were tested for up to 343 pesticide residues
Origin of samples	 Eating 14 samples were imported from outside the EU 10 samples came from the EU
Residues found	7 samples contained no residues from those sought 17 samples contained residues above the reporting level None of the samples contained residues above the MRL 6 samples were labelled as organic. None contained residues from those sought
Multiple residues	 15 samples contained residues of more than one pesticide 4 samples contained 2 residues 6 samples contained 3 residues 4 samples contained 4 residues 1 sample contained 6 residues
	Risk assessments
Number of risk assessments	The laboratory detected 15 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.
	In this case CRD did not carry out any risk assessments of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.

Aubergine

Introduction	We last surveyed aubergine in 2012. This year it is being monitored across the EU as part of the EU co-ordinated multi annual control programme.
Survey design	We are sampling and reporting aubergines in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	The aubergine samples were either collected by the Rural Payment Agency's Horticultural Marketing Inspectors from a range of points in the supply chain (wholesale markets, retail depots, ports and import points) or they were bought by a market research company from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 6 at page 89 Suppliers details are in the Brand Name Annex

_	
Summary statement	None of the residues detected by the laboratory would be expected to have an
•	effect on health.
	enect on health.

	Results
When samples were taken	Between April and June 2015
Number of samples	28 samples were tested for up to 341 pesticide residues
Origin of samples	2 samples came from the UK
	26 samples came from the EU
Residues found	23 samples contained no residues from those sought
	5 samples contained residues above the reporting level
	None of the samples contained residues above the MRL
	None of the samples were labelled as organic.
Multiple residues	2 samples contained residues of more than one pesticide
	1 sample contained 2 residues
	1 sample contained 3 residues
	Risk assessments
Number of risk	The laboratory detected 7 different pesticide residues. Following the Chemical

assessments	Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.
	In this case CRD did not carry out any risk assessments of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.

Banana

Introduction	We last surveyed bananas in 2012. This year bananas are being monitored across the EU as part of the EU co-ordinated multi-annual control programme.
	The MRLs for pesticide residues in bananas are set to include residues found in the whole fruit (skin and flesh) therefore the samples are not peeled before analysis. However, some residues will be predominantly found in the skin that may not be eaten.
Survey design	We are sampling and reporting bananas in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the banana samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 7 at page 93 Suppliers details are in the Brand Name Annex
Conclusions	

Summary statement	None of the residues detected by the laboratory would be expected to have an
	effect on health.

	Results
When samples were taken	Between April and June 2015
Number of samples	25 samples were tested for up to 344 pesticide residues
Origin of samples	25 samples were imported from outside the EU
Residues found	11 samples contained no residues from those sought 14 samples contained residues above the reporting level None of the samples contained residues above the MRL 8 samples were labelled as organic. None contained residues from those sought
Multiple residues	 13 samples contained residues of more than one pesticide 11 samples contained 2 residues 1 sample contained 3 residues 1 sample contained 4 residues
	Risk assessments
Number of risk assessments	The laboratory detected 8 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.
	In this case CRD did not carry out any risk assessments of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.

Beans with Pods	
Introduction	We have surveyed beans with pods every year since 2008 as we continue to find a high incidence of issues with this commodity.
	The survey covers both green beans (runner, French, dwarf and string) and speciality beans (yard long, lima, guar and valore). The speciality beans are varieties that are not commonly grown in Europe.
	In 2013, the Food Standard Agency (FSA) raised 26 Rapid Alert System for Food and Feed (RASFF) notifications for pesticide residues found in beans with pods. 15 of these were for speciality beans. The high incidence resulted in additional import controls on beans from certain countries before entry in to the EU. Yard long beans from Dominican Republic and Thailand are currently subject to 20% import control checks for pesticide residues and 50% of yard long beans from Cambodia are subject to import control checks.
Survey design	We are sampling and reporting beans with pods in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	The beans with pods samples were either collected by the Rural Payment Agency's Horticultural Marketing Inspectors from a range of points in the supply chain (wholesale markets, retail depots, ports and import points) or they were bought by a market research company from retail outlets across the UK.
	We are publishing results for this survey on our website as part of the rolling reporting programme. Results in this report may have already been published.
Further details	Full details of pesticides we looked for and the residues we found are in Table 8 at page 97 Risk assessments carried out by CRD are at page 69 Suppliers details are in the Brand Name Annex
	Conclusions
Summary statement	One sample contained a residue of carbofuran at a level which gave an intake above the ARfD. We consider the likelihood of an effect on health to be low. Our risk assessment concluded that some people might experience transient signs of cholinergic toxicity (such as headache, stomach upset, salivation, reduced pupil response) after eating large portions (97.5 th percentile consumption) of beans containing the highest levels found in this report. Such effects would be expected to be mild, short-lived and reversible.
	Results
When samples were	Between April and June 2015

Number of samples	37 samples were tested for up to 341 pesticide residues
Origin of samples	 <u>Green Beans</u> 19 samples were imported from outside the EU <u>Speciality Beans</u> 18 samples were imported from outside the EU
Residues found	20 samples contained no residues from those sought

taken

	17 samples contained residues above the reporting level 7 samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 6 samples contained residues of more than one pesticide 2 samples contained 2 residues 1 sample contained 3 residues 1 sample contained 4 residues 1 sample contained 5 residues 1 sample contained 6 residues
Residues measured above the MRL (see Appendix B)	 The laboratory detected 7 residues above the MRL in beans with pods 1 sample of green beans from Egypt contained a residue of propargite at 0.02 mg/kg. The MRL is 0.01[*] mg/kg. 1 sample of yard long beans from Ghana contained a residue of chlorpyrifos at 0.2 mg/kg. The MRL is 0.05[*] mg/kg 1 sample of yard long beans from Dominican Republic contained a residue of endosulfan at 0.07 mg/kg. The MRL is 0.05[*] mg/kg. 1 sample of yard long beans from India contained a residue of ethion at 0.2 mg/kg. The MRL is 0.01[*] mg/kg. 1 sample of guar beans from India contained a residue of dimethoate at 0.2 mg/kg. The MRL is 0.02[*] mg/kg. 1 sample of guar beans from India contained a residue of dimethoate at 0.2 mg/kg. The MRL is 0.02[*] mg/kg. 1 sample of guar beans from India contained residues of dimethoate at 0.2 mg/kg, the MRL is 0.02[*] mg/kg. 1 sample of guar beans from India contained residues of dimethoate at 0.1 mg/kg, the MRL is 0.02[*] mg/kg and thiophanate methyl at 0.6 mg/kg, the MRL is 0.01[*] mg/kg. 1 sample of yard long beans from Malaysia contained residues of carbofuran at 0.08 mg/kg, the MRL is 0.01[*] mg/kg.
(s	Risk assessments ee Section II on page 65 for full risk assessments)
Number of risk assessments	The laboratory detected 21 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we consider that some people might experience transient signs of cholinergic toxicity (e.g. headache, stomach upset, salivation, reduced pupil response) after eating large portions (97.5 th percentile consumption) of beans containing the highest levels of carbofuran found in this report, but we consider the likelihood of an effect on health to be low. Such effects would be expected to be mild, short-lived and reversible.
Carbofuran	1 sample contained carbofuran at a level where we need to consider the effect on health in more detail. The highest level detected was 0.08 mg/kg The intakes for infants, toddlers, 4-6 year old children, vegetarians, 15-18 years old children, adults, elderly in their own home, 7-10 year old children and 11-14 year old children exceeded the ARfD. The highest intake was for infants.
	If infants ate large portions of beans containing carbofuran at 0.08 mg/kg, their intake of carbofuran could be 267% of the Acute Reference Dose. This intake is 75 times lower than a dose which caused a marginal (ca 20-30%) but significant inhibition of brain cholinesterase activity in an acute neurotoxicity study in rat pups (11 days old). The inhibition reversed within a few hours. The European Food Safety Authority used this study as the basis of the ARfD.
	Toxicologists usually apply a factor of 100 to this dose to take into account the uncertainties caused by using animal data and possible differences in susceptibility between people. However, in this case the factor was larger (200) as the ARfD was derived from a lowest observed adverse effect level rather than a no observed adverse effect level. We consider the likelihood of an effect on health to be low, given the remaining factor of 75 (from 200). This is because an adverse effect on

^{*} **Maximum Residue Levels set at the LOD (LOD MRL):** These MRLs are set at a default level, i.e. at the limit of determination (LOD) as specified in EC Regulation 396/2005.

health would rely on

	 a susceptible individual eating a large quantity of the product which in turn had the highest levels of residue; and the actual difference in susceptibility between that individual and rats being higher than the factor we are left with in this situation 	
	In conclusion, we consider that some people might experience transient signs of cholinergic toxicity (e.g. headache, stomach upset, salivation, reduced pupil response) after eating large portions (97.5 th percentile consumption) of beans containing the highest levels found in this report, but we consider the likelihood of an effect on health to be low. Such effects would be expected to be mild, short-lived and reversible.	
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a combined risk assessment.	
monoucley, accu,	CRD carried out risk assessment of the combinations in samples containing at least two pesticides with similar toxicological modes of action. In 1 case an initial screen identified 1 combination which required further consideration.	
Carbofuran and methamidophos	1 sample contained carbofuran and methamidophos. CRD's combined risk assessment on this combination showed that the highest levels found the presence of carbofuran and methamidophos in the sample do not significantly contribute to the overall combined intake when compared to carbofuran alone. The overall risk is not expected to be different to the individual risk assessment presented for carbofuran in beans with pods in the table above.	
Follow up action		
Letters sent	The Secretariat has written to the suppliers of the samples with residues above the MRL.	
	Any comments received are at Appendix D.	
RASFFs issued	 The EU issued a notification for the following samples through the EC's Rapid Alert System for Food and Feed (RASFF) (see glossary for more details) 1 sample from Malaysia containing carbofuran at 0.08 mg/kg. 	

Beef

Introduction	We last surveyed beef in 2010. The survey can include any beef joint, roast, fillet, slice or steak as long as it is not cooked, dressed seasoned or minced.
Survey design	We are sampling and reporting beef in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the beef samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 9 at page 103 Suppliers details are in the Brand Name Annex
	

Summary statement	No residues were detected at or above the reporting limit.
Summary Statement	

	Results	
When samples were taken	Between April and June 2015	
Number of samples	24 samples were tested for up to 35 pesticide residues	
Origin of samples	23 samples came from the UK 1 sample came from the EU	
	The country of origin on the packaging does not necessarily indicate where the animal was raised. It may be where the meat was packed for consumer purchase.	
Residues found	24 samples contained no residues from those sought None of the samples contained residues above the reporting level None of the samples contained residues above the MRL 2 samples were labelled as organic. Neither contained residues from those sought	
Multiple residues	None of the samples contained residues of more than one pesticide	
Risk assessments		
Number of risk assessments	The laboratory did not detect any residues, so we did not do a risk assessment	

Berries

Introduction	We last surveyed berries in 2008. This year the survey can include blackberries, blueberries and cranberries.
Survey design	We are sampling and reporting berries in quarter two and three of 2015. This is the first part of the survey and covers samples collected between April and June.
	A market research company bought the berry samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 10 at page 104 Suppliers details are in the Brand Name Annex

Summary statement	None of the residues detected by the laboratory would be expected to have an effect on health.
	BAC (benzalkonium chloride) & DDAC (didecyldimethylammonium chloride) BAC and DDAC were detected in 2 samples above the MRL of 0.1 mg/kg for all foods.
	However, the position on these products has just been reviewed, 0.1 mg/kg is the new MRL that replaced the previous default MRL of 0.01* mg/kg. The EU have temporarily allowed trade to continue in foods with residues up to a level of 0.5 mg/kg for food treated before 12 August 2015. More information is available at page 7.

Results	
When samples were taken	Between April and June 2015
Number of samples	44 samples were tested for up to 339 pesticide residues
Origin of samples	Blackberries • 3 samples came from the UK • 5 samples were imported from outside the EU • 1 sample came from the EU Blueberries • 1 sample came from the UK • 13 samples were imported from outside the EU • 21 samples came from the EU The country of origin on the packaging of frozen berries does not necessarily indicate where the fruit was grown. It may be where the berries were frozen or packed for consumer purchase.
Residues found	27 samples contained no residues from those sought 17 samples contained residues above the reporting level 3 samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	12 samples contained residues of more than one pesticide2 samples contained 2 residues

	 3 samples contained 3 residues 4 samples contained 4 residues 2 samples contained 5 residues 1 sample contained 6 residues
Residues measured above the MRL (see Appendix B)	 The laboratory detected 2 residues above the MRL in blackberries 1 sample of blackberries from Serbia contained a residue of dithiocarbamates at 0.1 mg/kg. The MRL is 0.05*[*] mg/kg. 1 sample of blackberries from Mexico contained a residue of acephate at 0.05 mg/kg. The MRL is 0.01* mg/kg.
Residues of BAC & DDAC measured	The laboratory detected 2 residues above the MRL in blueberries
above 0.1 mg/kg but at or below temporary MRL of 0.5 mg/kg	 1 sample of blueberries from UK contained residues of BAC at 0.4 mg/kg, the MRL is 0.1 mg/kg and DDAC at 0.2 mg/kg, the MRL is 0.1 mg/kg.
	Risk assessments
Number of risk assessments	The laboratory detected 21 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a combined risk assessment.
memouology useu)	CRD carried out risk assessment of samples containing at least two pesticides with similar toxicological modes of action. We would not expect any of these combinations to have an effect on health
	Follow up action
Letters sent	The Secretariat has written to the suppliers of the samples with residues above the MRL.
	Any comments received are at Appendix D.
Further investigation: suspected illegal use	We have passed details of 1 sample of blueberries from the UK that contained residues of captan and cypermethrin which are not approved for use on blueberries in the UK to CRD. CRD investigated the sample and concluded that the blueberries were only packed in the UK.

^{*} **Maximum Residue Levels set at the LOD (LOD MRL):** These MRLs are set at a default level, i.e. at the limit of determination (LOD) as specified in EC Regulation 396/2005.

Bread (gluten free)

Introduction	This is the first time we have surveyed gluten free bread. The survey can include any type of bread which has a gluten free substitute for wheat.
Survey design	We are sampling and reporting gluten free bread in quarter two of 2015. This survey covers samples collected between April and May.
	A market research company bought the gluten free bread samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 11 at page 110 Suppliers details are in the Brand Name Annex

Summary statement	No residues were detected at or above the reporting limit.
ourinnary statement	No residues were detected at or above the reporting innit.
	Results
When samples were taken	Between April and May 2015
Number of samples	12 samples were tested for up to 344 pesticide residues
Origin of samples	11 samples came from the UK 1 sample was imported from outside the EU
	The country of origin on the packaging does not necessarily indicate where the raw ingredients were grown. It may be where they were processed or packed for consumer purchase.
Residues found	12 samples contained no residues from those sought None of the samples contained residues above the reporting level None of the samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	None of the samples contained residues of more than one pesticide
Risk assessments	
Number of risk assessments	The laboratory did not detect any residues, so we did not do a risk assessment

Broccoli

Introduction	We last surveyed broccoli in 2012. This year broccoli, which is also known as calabrese, is being monitored across the EU as part of the EU co-ordinated multi- annual control programme.
Survey design	We are sampling and reporting broccoli in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the broccoli samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 12 at page 113 Suppliers details are in the Brand Name Annex
	Conclusions

Conclusions

Summary statement	None of the residues detected by the laboratory would be expected to have an
	effect on health.

	Results
When samples were taken	Between April and June 2015
Number of samples	22 samples were tested for up to 339 pesticide residues
Origin of samples	 Fresh 1 sample came from the UK 21 samples came from the EU
Residues found	12 samples contained no residues from those sought 10 samples contained residues above the reporting level None of the samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 4 samples contained residues of more than one pesticide 2 samples contained 2 residues 2 samples contained 3 residues
	Risk assessments
Number of risk assessments	The laboratory detected 9 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.

In this case CRD did not carry out any risk assessments of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.

Brussels Sprouts

Introduction	We last surveyed Brussels sprouts in 2009. This year the survey can include any type of Brussels sprouts, fresh or frozen.
Survey design	We are sampling and reporting Brussels sprouts in quarters two and three of 2015. This is the first part of the survey and covers samples collected between April and June.
	A market research company bought the Brussels sprout samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 13 at page 117 Suppliers details are in the Brand Name Annex

Summary statement None of the residues detected by the laboratory would be expected to have an effect on health.	
--	--

Results	
	Results
When samples were taken	Between April and June 2015
Number of samples	30 samples were tested for up to 279 pesticide residues
Origin of samples	Fresh • 3 samples came from the UK • 15 samples were imported from outside the EU • 1 sample came from the EU Frozen 5 samples came from the UK • 6 samples came from the EU
Residues found	3 samples contained no residues from those sought 27 samples contained residues above the reporting level None of the samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 3 samples contained residues of more than one pesticide 2 samples contained 2 residues 1 sample contained 3 residues
	Risk assessments
Number of risk assessments	The laboratory detected 5 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues. In this case CRD did not carry out any risk assessments of combined residues because
	the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.

Butter

Introduction	We last sampled butter in 2012. This year butter is being monitored across the EU as part of the EU co-ordinated multi-annual control programme.
	The survey can include any salted or unsalted butter. It doesn't include butter substitutes or low fat spreads.
Survey design	We are sampling and reporting butter in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the butter samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 14 at page 121 Suppliers details are in the Brand Name Annex
Conclusions	
Summary statement	None of the residues detected by the laboratory would be expected to have an effect on health.
	BAC (benzalkonium chloride) BAC was detected in 5 samples above the MRL of 0.1 mg/kg for all foods.
	However, the position on these products has just been reviewed, 0.1 mg/kg is the new MRL that replaced the previous default MRL of 0.01* mg/kg. The EU have temporarily allowed trade to continue in foods with residues up to a level of 0.5 mg/kg for food treated before 12 August 2015. More information is available at page 7.
	Results
When samples were	Between April and June 2015

When samples were taken	Between April and June 2015
Number of samples	25 samples were tested for up to 37 pesticide residues
Origin of samples	21 samples came from the UK 4 samples came from the EU
	The country of origin on the packaging does not necessarily indicate where the milk was produced. It may be where the butter was produced or where it was packed for consumer purchase.
Residues found	12 samples contained no residues from those sought 13 samples contained residues above the reporting level 5 samples contained residues above the MRL 5 samples were labelled as organic.4 contained residues from those sought
Multiple residues	None of the samples contained residues of more than one pesticide
Residues of BAC	The laboratory detected 1 residue above the MRL in butter

above 0.1 mg/kg but at or below the temporary MRL of 0.5 mg/kg. 5 samples from UK contained a residue of BAC at 0.2, 0.2, 0.2, 0.3 and 0.5 mg/kg. The MRL is 0.1^{*} mg/kg.

	Risk assessments	
Number of risk assessments	The laboratory detected 1 pesticide residue. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.	
	Follow up action	
Letters sent	The Secretariat has written to the suppliers of the samples with residues above the MRL.	
	Any comments received are at Appendix D.	
Organic sample with residue of BAC	The Secretariat has written to the suppliers of 4 samples of organic butter with a residue of BAC which is not permitted in organic food production. Defra's Organic Farming branch and the organic certification organisation were also informed.	

^{*} **Maximum Residue Levels set at the LOD (LOD MRL):** These MRLs are set at a default level, i.e. at the limit of determination (LOD) as specified in EC Regulation 396/2005.

Cheese (soft)	
Introduction	We survey a different type of cheese each year, this year we are surveying soft cheeses.
	The survey can include brie, camembert, ricotta, mozzarella, dolcelatte, feta, cottage cheese, cream cheese. It doesn't include any cheeses that have other ingredients such as nuts, herbs or dried fruits.
Survey design	We are sampling and reporting cheese in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the cheese samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 15 at page 124 Suppliers details are in the Brand Name Annex

Conclusions

Summary statement

atement No residues were detected at or above the reporting limit.

	Results
When samples were taken	Between April and June 2015
Number of samples	19 samples were tested for up to 37 pesticide residues
Origin of samples	Brie • 4 samples came from the UK • 2 samples came from the EU Camembert • 5 samples came from the EU Cream Cheese • 1 sample came from the UK • 3 samples came from the EU Dolcelatte • 1 sample came from the EU Feta • 1 sample came from the EU Mozzarella • 1 sample came from the EU Mozzarella • 1 sample came from the EU Ricotta • 1 sample came from the EU
	The country of origin does not necessarily indicate where the milk was produced. It may be where the cheese was processed or where it was packed for consumer purchase.
Residues found	19 samples contained no residues from those sought None of the samples contained residues above the reporting level None of the samples contained residues above the MRL None of the samples were labelled as organic.

Risk assessments

Number of risk assessments

The laboratory did not detect any residues, so we did not do a risk assessment

Chilli Peppers

Introduction	We last surveyed chilli peppers in 2010. The survey can include any fresh chilli pepper or hot pepper varieties such as Scotch bonnet, cayenne, bird eye, finger or thai.
Survey design	We are sampling chilli peppers in every quarter of 2015 and reporting them in quarters two and four. This is the first part of the survey and covers samples collected between January and June.
	The Rural Payment Agency's Horticultural Marketing Inspectors collected the chilli pepper samples from a range of points in the supply chain (wholesale markets, retail depots, ports and import points).
Further details	Full details of pesticides we looked for and the residues we found are in Table 16 at page 126 Suppliers details are in the Brand Name Annex
	Conclusions
Summary statement	None of the residues detected by the laboratory would be expected to have an effect on health.
	Monocrotophos residues We found a residues of monocrotophos at 0.3 mg/kg, in a sample of chilli peppers from India. Monocrotophos is an insecticide that has not been authorised for use in the EU since 2003. There is uncertainty about the potential for monocrotophos to cause genetic damage; therefore, on a precautionary basis we consider any findings of monocrotophos in food as not desirable. However, considering the very low intakes any risks are likely to be low.
	A more detailed explanation is with the risk assessments on page 69.

Results	
When samples were taken	Between January and June 2015
Number of samples	29 samples were tested for up to 339 pesticide residues
Origin of samples	20 samples were imported from outside the EU 9 samples came from the EU
Residues found	9 samples contained no residues from those sought 20 samples contained residues above the reporting level 7 samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 14 samples contained residues of more than one pesticide 4 samples contained 2 residues 3 samples contained 3 residues 3 samples contained 4 residues 1 sample contained 5 residues 1 sample contained 7 residues 2 samples contained 10 residues
Residues measured	The laboratory detected 7 residues above the MRL in chilli peppers

above the MRL (see Appendix B)	 1 sample from India contained a residue of profenofos at 0.5 mg/kg. The MRL is 0.01[*] mg/kg. 1 sample from Pakistan contained a residue of thiphanate-methyl at 0.2 mg/kg. The MRL is 0.1* mg/kg. 1 sample from India contained residues of ethion at 0.05 mg/kg, the MRL is 0.01* mg/kg and flonicamid at 0.2 mg/kg, the MRL is 0.15 mg/kg. 1 sample from Egypt contained residues of chlorpyrifos at 1.1 mg/kg, the MRL is 0.5 mg/kg and profenofos at 1.3 mg/kg, the MRL is 0.01* mg/kg. 1 sample from India contained residues of acephate at 0.02 mg/kg, the MRL is 0.01* mg/kg, ethion at 0.4 mg/kg, the MRL is 0.01* mg/kg and thiophanate-methyl at 0.6 mg/kg, the MRL is 0.1* mg/kg. 1 sample from India contained residues of monocrotophos at 0.3 mg/kg, the MRL is 0.01* mg/kg and profenofos at 0.4 mg/kg, the MRL is 0.01* mg/kg. 1 sample from India contained residues of monocrotophos at 0.3 mg/kg, the MRL is 0.01* mg/kg and profenofos at 0.4 mg/kg, the MRL is 0.01* mg/kg. 1 sample from India contained residues of monocrotophos at 0.3 mg/kg, the MRL is 0.01* mg/kg. 1 sample from India contained a residue of flonicamid at 0.2 mg/kg. The MRL is 0.15 mg/kg.
	Risk assessments
Number of risk assessments	The laboratory detected 35 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.
	In this case CRD did not carry out any risk assessments of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.
	Follow up action
Letters sent	The Secretariat has written to the suppliers of the samples with residues above the MRL.
	Any comments received are at Appendix D.

^{*} **Maximum Residue Levels set at the LOD (LOD MRL):** These MRLs are set at a default level, i.e. at the limit of determination (LOD) as specified in EC Regulation 396/2005.

Crème Fraîche

Introduction	This is the first time we have surveyed crème fraîche. The survey can include any type of crème fraîche, such as full fat, half fat, low fat or reduced fat.
Survey design	We are sampling and reporting crème fraîche in quarter two of 2015. This survey covers samples collected between April and June.
	A market research company bought the crème fraîche samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 17 at page 133 Suppliers details are in the Brand Name Annex

Conclusions

Summary statement None of the residues detected by the laboratory would be expected to have a effect on health.	an
---	----

Results

When samples were taken	Between April and June 2015
Number of samples	24 samples were tested for up to 73 pesticide residues
Origin of samples	23 samples came from the UK 1 sample came from the EU
	The country of origin does not necessarily indicate where the milk or crème fraîche was produced. It may be where it was packed for consumer purchase.
Residues found	15 samples contained no residues from those sought 9 samples contained residues above the reporting level None of the samples contained residues above the MRL 2 samples were labelled as organic. Neither contained residues from those sought
Multiple residues	None of the samples contained residues of more than one pesticide
Risk assessments	
Number of risk assessments	The laboratory detected 1 pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.

Curry Leaves

Introduction	This is the first time we have surveyed curry leaves. The survey can include any type of fresh or dried curry leaf.
	Due to a high number of RASFF notifications, curry leaves from India have been added to EU Regulation 91/2013. Under EU regulation 91/2013 every shipment of curry leaves from India in to the EU is required to be pre-notified to port authorities and be accompanied by results of sampling and analysis done by the Indian authorities, or from any other country the curry leaves have been shipped through. As well as this, 20% consignments are subject to border control checks.
Survey design	We are sampling and reporting curry leaves in quarter two of 2015. This survey covers samples collected between April and June.
	A market research company bought the curry leave samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 18 at page 136 Risk assessments carried out by CRD are at page 70 Suppliers details are in the Brand Name Annex

Conclusions

		of curry leaves containing the highest levels found in this report. Such effects
--	--	--

Results

When samples were taken	Between April and June 2015
Number of samples	22 samples were tested for up to 337 pesticide residues
Origin of samples	22 samples were imported from outside the EU
Residues found	16 samples contained no residues from those sought 6 samples contained residues above the reporting level 6 samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 3 samples contained residues of more than one pesticide 1 sample contained 2 residues 1 sample contained 11 residues 1 sample contained 12 residues
Residues measured above the MRL (see Appendix B)	 The laboratory detected 7 residues above the MRL in curry leaves 1 sample from Ghana contained a residue of diuron at 0.04 mg/kg. The MRL is 0.02[*] mg/kg. 2 samples from Ghana contained a residue of chlorpyrifos at 0.09 mg/kg

* **Maximum Residue Levels set at the LOD (LOD MRL):** These MRLs are set at a default level, i.e. at the limit of determination (LOD) as specified in EC Regulation 396/2005.

and 0.3 mg/kg. The MRL is 0.05* mg/kg.

- 1 sample from Ghana contained residues of acetamiprid at 13 mg/kg, the MRL is 3 mg/kg, carbofuran at 0.8 mg/kg, the MRL is 0.02* mg/kg, diazinon at 0.5 mg/kg, the MRL is 0.02* mg/kg and isoprothiolane at 0.03 mg/kg, the MRL is 0.01* mg/kg.
- 1 sample from Gambia contained a residue of oxamyl at 0.05 mg/kg. The MRL is 0.02* mg/kg.
- 1 sample from India contained residues of chlorpyrifos at 0.1 mg/kg, the MRL is 0.05* mg/kg, deltamethrin at 0.8 mg/kg, the MRL is 0.5 mg/kg and isoprothiolane at 0.03 mg/kg, the MRL is 0.01* mg/kg.

Risk assessments		
(see Section II on page 65 for full risk assessments)		
Number of risk assessments	The laboratory detected 18 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we consider that some people might experience transient signs of cholinergic toxicity (e.g. headache, stomach upset, salivation, reduced pupil response) after eating large portions (97.5 th percentile consumption) of curry leaves containing the highest level of carbofuran found in this report. Such effects would be expected to be mild, short-lived and reversible.	
Carbofuran	1 sample contained carbofuran at a level where we need to consider the effect on health in more detail. The highest level detected was 0.8 mg/kg	
	The intakes for vegetarians, 7-10 year old children, adults, elderly in their own home, elderly in residential care, toddlers, 4-6 year old children and 11-14 year old children exceeded the ARfD. The highest intake was for vegetarians.	
	If vegetarians ate large portions of curry leaves containing carbofuran at 0.8 mg/kg, their intake of carbofuran could be 639% of the Acute Reference Dose. This intake is 31 times lower than a dose which caused a marginal (ca 20-30%) but significant inhibition of brain cholinesterase activity in an acute neurotoxicity study in rat pups (11 days old). The inhibition reversed within a few hours. The European Food Safety Authority used this study as the basis of the ARfD.	
	Toxicologists usually apply a factor of 100 to this dose to take into account the uncertainties caused by using animal data and possible differences in susceptibility between people. However, in this case the factor was larger (200) as the ARfD was derived from a lowest observed adverse effect level rather than a no observed adverse effect level. We consider this /significant reduction in the factor of 200 to a level of 31 undesirable.	
	In conclusion, we consider that some people might experience transient signs of cholinergic toxicity (e.g. headache, stomach upset, salivation, reduced pupil response) after eating large portions (97.5 th percentile consumption) of curry leaves containing the highest levels found in this report. Such effects would be expected to be mild, short-lived and reversible.	
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a combined risk assessment.	
	CRD carried out risk assessment of the combinations in samples containing at least two pesticides with similar toxicological modes of action. In 1 cases an initial screen identified 1 combination which required further consideration.	
Chlorpyrifos, carboduran and diazinon	1 sample contained chlorpyrifos, carbofuran and diazinon. CRD's combined risk assessment on this combination showed that the highest levels found the presence of chlorpyrifos, carbofuran, and diazinon in the sample does not significantly contribute to the overall combined intake when compared to carbofuran alone. The overall risk is not expected to be different to the individual risk assessment presented for carbofuran in curry leaves in the table above.	

	Follow up action
Letters sent	The Secretariat has written to the suppliers of the samples with residues above the MRL.
	Any comments received are at Appendix D.
RASFFs issued	 The EU issued a notification for the following samples through the EC's Rapid Alert System for Food and Feed (RASFF) (see glossary for more details) 1 sample from Ghana containing carbofuran at 0.8 mg/kg.

Eggs (hens)	
Introduction	We last surveyed eggs in 2012. This year hens' eggs are being monitored across the EU as part of the EU co-ordinated multi-annual control programme.
	The survey only includes chicken eggs, but they can be any type such as free range or barn reared.
Survey design	We are sampling and reporting eggs in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the egg samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 19 at page 141 Suppliers details are in the Brand Name Annex
	Conclusions

Summary statement

No residues were detected at or above the reporting limit.

	Results
When samples were taken	Between April and June 2015
Number of samples	19 samples were tested for up to 35 pesticide residues
Origin of samples	19 samples came from the UK
Residues found	19 samples contained no residues from those sought None of the samples contained residues above the reporting level None of the samples contained residues above the MRL 5 samples were labelled as organic. None contained residues from those sought
Multiple residues	None of the samples contained residues of more than one pesticide
Risk assessments	
Number of risk assessments	The laboratory did not detect any residues, so we did not do a risk assessment

Grapes

Introduction	We have been surveying grapes every year since 2001. They are widely consumed and highly susceptible to insect and fungal attacks that can damage the crop and reduce its value. Because of this grapes are treated frequently with a wide range of pesticides to prevent damage occurring. This year grapes are being surveyed across the EU are part of the EU co-ordinated multi-annual control programme.
	In 2014, 31 samples contained a residue of ethephon, 5 of those samples were above the MRL. Ethephon is used to ripen red grapes on the vine; however if the grapes are harvested too early the ethephon has not had time to break down and is therefore still present on the grapes.
Survey design	We are sampling and reporting grapes in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	The Rural Payment Agency's Horticultural Marketing Inspectors collected the grape samples from a range of points in the supply chain (wholesale markets, retail depots, ports and import points).
	We are publishing results for this survey on our website as part of the rolling reporting programme. Results in this report may have already been published.
Further details	Full details of pesticides we looked for and the residues we found are in Table 20 at page 142 Suppliers details are in the Brand Name Annex

Conclusions	
Summary statement	None of the residues detected by the laboratory would be expected to have an effect on health.
	Results
When samples were taken	Between April and June 2015
Number of samples	29 samples were tested for up to 348 pesticide residues
Origin of samples	29 samples were imported from outside the EU
Residues found	1 sample contained no residues from those sought 28 samples contained residues above the reporting level 1 sample contained a residue above the MRL None of the samples were labelled as organic.
Multiple residues	 26 samples contained residues of more than one pesticide 6 samples contained 2 residues 5 samples contained 3 residues 6 samples contained 4 residues 1 sample contained 5 residues 2 samples contained 6 residues 3 samples contained 7 residues 2 samples contained 8 residues 1 sample contained 10 residues

The laboratory detected 1 residue above the MRL in grapes

 1 sample from India contained a residue of flonicamid at 0.06 mg/kg. The MRL is 0.05^{*} mg/kg.

	Risk assessments	
Number of risk assessments	The laboratory detected 33 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.	
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.	
	In this case CRD did not carry out any risk assessments of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.	
	Follow up action	
Letters sent	The Secretariat has written to the suppliers of the samples with residues above the MRL.	
	Any comments received are at Appendix D.	

^{*} **Maximum Residue Levels set at the LOD (LOD MRL):** These MRLs are set at a default level, i.e. at the limit of determination (LOD) as specified in EC Regulation 396/2005.

Lettuce

Introduction	We have surveyed lettuce every year since 1990s when residues were detected of unapproved pesticides in the UK grown lettuces. This issue was subsequently resolved, we continue to monitor lettuces as a large number of pesticides are used on the crop, The survey covers both UK grown and imported lettuces.
Survey design	We are sampling and reporting lettuce in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the lettuce samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 21 at page 150 Suppliers details are in the Brand Name Annex
	Conclusions

r i	
	None of the residues detected by the laboratory would be expected to have an effect on health.

	Results
When samples were taken	Between April and June 2015
Number of samples	18 samples were tested for up to 342 pesticide residues
Origin of samples	Romaine lettuce1 sample came from the EULittle gem lettuce2 samples came from the UK2 samples came from the EUIceberg lettuce7 samples came from the UK3 samples came from the EURound lettuce3 samples came from the UK
Residues found	13 samples contained no residues from those sought 5 samples contained residues above the reporting level None of the samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 1 sample contained residues of more than one pesticide 1 sample contained 3 residues
	Risk assessments
Number of risk assessments	The laboratory detected 3 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.

Combined risk assessments (see page 67 for more information on the methodology used) One sample contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.

In this case CRD did not carry out a risk assessment of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.

Mango

Introduction	We last surveyed mangoes in 2010. Residues in mangoes are predominately on the skin, which is unlikely to be eaten. However as the MRLs are set to include residues found in the whole fruit including the skin, we do not peel the fruit before it is analysed.
Survey design	We are sampling mango in quarters one, two and three of 2015 and reporting on them in quarters two and three. This is the first part of the survey and covers samples collected between January and June.
	The Rural Payment Agency's Horticultural Marketing Inspectors collected the mango samples from a range of points in the supply chain (wholesale markets, retail depots, ports and import points).
Further details	Full details of pesticides we looked for and the residues we found are in Table 22 at page 154 Risk assessments carried out by CRD are at page 73 Suppliers details are in the Brand Name Annex
	Conclusions
Summary statement	9 samples of mango contained a residue of prochloraz at a level which gave an intake above the ARfD. We consider the likelihood of an effect on health to be low. At the highest level found, the risk assessment concluded that some people might experience gastrointestinal disturbance (salivation, soft faeces, vomiting) after consuming large portions (97.5 th percentile consumption) of mango containing the highest levels found in this report Such effects would be expected to be minor,
	short-lived, and reversible.
	Results
When samples were taken	Between January and June 2015
Number of samples	37 samples were tested for up to 278 pesticide residues
Origin of samples	37 samples were imported from outside the EU
Residues found	9 samples contained no residues from those sought 28 samples contained residues above the reporting level None of the samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 13 samples contained residues of more than one pesticide 10 samples contained 2 residues 1 sample contained 3 residues 1 sample contained 4 residues 1 sample contained 8 residues
(s	Risk assessments ee Section II on page 65 for full risk assessments)

Number of risk assessments

The laboratory detected 10 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we consider that some people might experience gastrointestinal disturbance (salivation, soft faeces, vomiting) after consuming large portions (97.5th percentile consumption) of mango containing

the highest levels of prochloraz found in this report, but we consider the likelihood of an effect on health to be low. Such effects would be expected to be minor, short-lived, and reversible.

 Prochloraz
 9 samples contained prochloraz at levels where we need to consider the effect on health in more detail. The highest level detected was 3.7 mg/kg

Mango flesh after peeling

EU MRL risk assessment usually assumes that mangoes are peeled before consumption. After peeling, 22% of the residue remains (JMPR, 2004), and the intakes for 4-6 year old children, toddlers and 7-10 year old children exceed the ARfD. The highest intake (after peeling) of 0.053 mg/kg bw/day was for 4-6 year old children.

If a 4-6 year old child consumed large portions of peeled mango containing prochloraz at 3.7 mg/kg their intake could be 212% of the Acute Reference. This intake is 47 times lower than a dose which caused no observed adverse effects in a 90-day dog study, a multigeneration rat study and 14-day dog study. The European Food Safety Authority used these studies as the basis of the ARfD.

Toxicologists usually apply a factor of 100 to this dose to take into account the uncertainties caused by using animal data and possible differences in susceptibility between people. We consider the likelihood of an effect on health to be low, given the remaining factor of 47. This is because an adverse effect on health would rely on

- a susceptible individual eating and/or drinking a large quantity of the product which in turn had the highest levels of residue (i.e. 7 times the maximum value found in monitoring); and
- 2) the actual difference in susceptibility between that individual and dog/rat, being higher than the factor we are left with in this situation; and
- 3) the critical NOAEL being close to the actual doses needed to produce an adverse effect in the animals studied.

In conclusion, we consider that some people might experience gastrointestinal disturbance (salivation, soft faeces, vomiting) after consuming large portions (97.5th percentile consumption) of mango containing the highest levels found in this report, but we consider the likelihood of an effect on health to be low. Such effects would be expected to be minor, short-lived, and reversible.

However, assuming that consumers eat all the peel, intakes for 4-6 year old children, toddlers, 7-10 year old children, 15-18 year old children, vegetarian, adults and 11-14 year old children exceeded the ARfD. The highest intake was for 4-6 year old children.

Whole mango, including all of the peel

If a 4-6 year old child consumed large portions of mangoes containing prochloraz at 3.7 mg/kg, their intake of prochloraz could be 960% of the Acute Reference Dose. This intake is 10 times lower than a dose which caused no observed adverse effect in a 90-day dog study, a multigeneration rat study and 14-day dog study. The European Food Safety Authority used this study as the basis of the ARfD.

Toxicologists usually apply a factor of 100 to this dose to take into account uncertainties caused by using animal data and possible differences in susceptibility between people. We consider this significant reduction in the factor of 100 to a level of 10 undesirable.

In conclusion, we consider that some people might experience gastrointestinal disturbance (salivation, soft faeces, vomiting) after consuming large portions (97.5th percentile consumption) of mango containing the highest levels found in this report. Such effects would be expected to be minor, short-lived, and reversible.

In this case, the vast majority of the residue was determined as parent prochloraz 3.6 mg/kg (the remainder, 0.1 mg/kg as two metabolites of prochloraz), suggesting that the residue was likely present arising from post-harvest treatment and might predominate in the peel. Removing the peel before consumption would lead to a reduction in the pesticide intake (refer to above assessment for consideration of mango flesh after peeling).

Combined risk assessments (see page 67 for more information on the methodology used) Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a combined risk assessment.

CRD carried out risk assessment of samples containing at least two pesticides with similar toxicological modes of action. We would not expect any of these combinations to have an effect on health

Melons

Introduction	We last survey melon in 2009. This year the survey can include any variety of melon, such as galia, cantaloupe, honeydew, watermelon, piel de sapo and charentais.
Survey design	We are sampling melons in quarters one, two and three of 2015 and reporting on them in quarter two and three. This is the first part of the survey and covers samples collected between January and June.
	A market research company bought the melon samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 23 at page 158 Suppliers details are in the Brand Name Annex
Conclusions	

Summary statement	None of the residues detected by the laboratory would be expected to have an effect on health.
	enect on health.

	Results
When samples were taken	Between January and June 2015
Number of samples	37 samples were tested for up to 281 pesticide residues
Origin of samples	Cantaloupe • 1 sample came from the UK • 5 samples were imported from outside the EU • 1 sample came from the EU Galia • 4 samples were imported from outside the EU • 2 samples came from the EU Honeydew • 15 samples were imported from outside the EU • 7 samples came from the EU Piel De Sapo • 2 samples came from the EU
Residues found	10 samples contained no residues from those sought 27 samples contained residues above the reporting level 2 samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 15 samples contained residues of more than one pesticide 13 samples contained 2 residues 3 samples contained 3 residues
Residues measured	The laboratory detected 1 residue above the MRL in melons

•

2 samples from Brazil contained a residue of procymidone at 0.02 mg/kg. The MRL is 0.01^{*} mg/kg.

Risk assessments

Number of risk assessments	The laboratory detected 14 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a combined risk assessment.
	CRD carried out risk assessment of samples containing at least two pesticides with similar toxicological modes of action. We would not expect any of these combinations to have an effect on health
	Follow up action
Letters sent	The Secretariat has written to the suppliers of the samples with residues above the MRL.
	Any comments received are at Appendix D.
Further investigation: suspected illegal use	We have passed details of 1 sample labelled as from the UK that contained residues of carbendazim and thiophanate-methyl which are not approved for use on melons in the UK to CRD. CRD is investigated the sample and concluded that the melon was packed in the UK but grown in another country.

^{*} **Maximum Residue Levels set at the LOD (LOD MRL):** These MRLs are set at a default level, i.e. at the limit of determination (LOD) as specified in EC Regulation 396/2005.

Milk

Introduction	We have surveyed milk every year since 2000. The survey includes cow's milk, goat's milk and ewe's milk.
	The survey covers full fat and semi skimmed milk only. Skimmed milk is not included due to its low fat content (around 0.1%). Some pesticides are fat soluble and therefore not likely to be found in milk with such a low fat content, these are also the pesticides most commonly detected in animal products.
Survey design	We are sampling and reporting milk in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the milk samples from retail outlets across the UK.
	We are publishing results for this survey on our website as part of the rolling reporting programme. Results in this report may have already been published.
Further details	Full details of pesticides we looked for and the residues we found are in Table 24 at page 164 Suppliers details are in the Brand Name Annex

Conclusions

Summary statement	No residues were detected at or above the reporting limit.
Summary Statement	No residues were delected at or above the reporting limit.
	Results
	Reduits
When samples were taken	Between April and June 2015
Number of samples	71 samples were tested for up to 35 pesticide residues
Origin of samples	<u>Cows milk</u> • 64 samples came from the UK <u>Goats milk</u> • 7 samples came from the UK
Residues found	71 samples contained no residues from those sought None of the samples contained residues above the reporting level None of the samples contained residues above the MRL 21 samples were labelled as organic. None contained residues from those sought
Multiple residues	None of the samples contained residues of more than one pesticide
Risk assessments	
Number of risk assessments	The laboratory did not detect any residues, so we did not do a risk assessment these residues to have an effect on health.

	Okra
Introduction	We have surveyed okra every year since 2012 due to a high rate of non- compliance incidents.
	At the beginning of 2013, fresh okra from India was subject to increased EU import controls because of recurrent problems that had been found with pesticide residues. Since July 2012, okra from India could only enter the EU through certain listed ports and airports, where 50% of consignments were required to be tested for pesticides. From February 2013, under EU regulation 91/2013 every shipment of fresh okra from India in to the EU was additionally required to be pre-notified to port authorities and be accompanied by results of sampling and analysis done by the Indian authorities, or from any other country the okra had been shipped through.
Survey design	We are sampling and reporting okra in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	The Rural Payment Agency's Horticultural Marketing Inspectors collected the okra samples from a range of points in the supply chain (wholesale markets, retail depots, ports and import points).
	We are publishing results for this survey on our website as part of the rolling reporting programme. Results in this report may have already been published.
Further details	Full details of pesticides we looked for and the residues we found are in Table 25 at page 165 Suppliers details are in the Brand Name Annex

Conclusions

Summary statement	None of the residues detected by the laboratory would be expected to have an effect on health.
	Results
When samples were taken	Between April and June 2015
Number of samples	23 samples were tested for up to 244 pesticide residues
Origin of samples	 Fresh 23 samples were imported from outside the EU
Residues found	12 samples contained no residues from those sought 11 samples contained residues above the reporting level None of the samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 5 samples contained residues of more than one pesticide 4 samples contained 2 residues 1 sample contained 3 residues
	Risk assessments

Number of risk assessments

The laboratory detected 9 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues

to have an effect on health.

Combined risk assessments (see page 67 for more information on the methodology used) Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a combined risk assessment.

CRD carried out risk assessment of samples containing at least two pesticides with similar toxicological modes of action. We would not expect any of these combinations to have an effect on health

Olive Oil

Introduction	We last surveyed olive oil in 2012. This year olive oil is being surveyed across the EU as part of the EU co-ordinated multi-annual control programme.
	The survey can include any type of olive oil such as virgin or extra virgin, but doesn't include any oils which have other ingredients such as spices, peppers or chillies.
Survey design	We are sampling and reporting olive oil in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the olive oil samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 26 at page 169 Suppliers details are in the Brand Name Annex

Conclusions

Summary statement	None of the residues detected by the laboratory would be expected to have an effect on health.

	Results	
When samples were taken	Between April and June 2015	
Number of samples	19 samples were tested for up to 244 pesticide residues	
Origin of samples	 Extra Virgin 19 samples came from the EU 	
	The country of origin may not necessarily be where the olives were grown. It may be where they were processed or where the oil was packed for consumer purchase.	
Residues found	12 samples contained no residues from those sought 7 samples contained residues above the reporting level None of the samples contained residues above the MRL 5 samples were labelled as organic. None contained residues from those sought	
Multiple residues	None of the samples contained residues of more than one pesticide	
Risk assessments		
Number of risk assessments	The laboratory detected 1 pesticide residue. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.	

Olives

Introduction	We last surveyed olives in 2012. The survey can include any green, black or Kalamata olives which are pitted or with the stone. The olives can be in brine or oil but must not be stuffed.
Survey design	We are sampling and reporting olives in quarters two and four of 2015. This is the first part of the survey and covers samples collected between April and June.
	A market research company bought the olive samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 27 at page 173 Suppliers details are in the Brand Name Annex
	Conclusions
Summary statement	None of the residues detected by the laboratory would be expected to have an effect on health.
	Results
When samples were taken	Between April and June 2015
Number of samples	19 samples were tested for up to 263 pesticide residues
Origin of samples	2 samples came from the UK 17 samples came from the EU

	•
Residues found	18 samples contained no residues from those sought 1 sample contained residues above the reporting level None of the samples contained residues above the MRL 1 sample was labelled as organic. It didn't contain any residues from those sought
Multiple residues	None of the samples contained residues of more than one pesticide
Risk assessments	
Number of risk assessments	The laboratory detected 1 pesticide residue. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an

effect on health.

Orange Juice

Introduction	We last surveyed orange juice in 2012. This year orange juice is being surveys across the EU as part of the EU co-ordinated multi-annual control programme.
	The survey can include pure orange as well as UHT and long life. It does not include frozen or concentrated juice, juice drinks, squashes, or mixtures of orange and other juices.
Survey design	We are sampling and reporting orange juice in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the orange juice samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 28 at page 177 Suppliers details are in the Brand Name Annex
	Conclusions

Summary statement None of the residues detected by the laboratory would be expected to have an effect on health.

When samples were taken	Between April and June 2015	
Number of samples	18 samples were tested for up to 345 pesticide residues	
Origin of samples	16 samples came from the UK 2 samples came from the EU	
	The country of origin does not necessarily indicate where the oranges were grown. It may be where they were processed or packed for consumer purchase.	
Residues found	15 samples contained no residues from those sought 3 samples contained residues above the reporting level None of the samples contained residues above the MRL 1 sample was labelled as organic. It didn't contain any residues from those sought	
Multiple residues	 2 samples contained residues of more than one pesticide 2 samples contained 2 residues 	
	Risk assessments	
Number of risk assessments	The laboratory detected 3 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.	
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.	
	In this case, CRD did not carry out any risk assessments of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.	

Pears

Introduction	We have surveyed pears every year since 2002 as they are widely consumed.
Survey design	We are sampling and reporting pears in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the pear samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 29 at page 181 Risk assessments carried out by CRD are at page 72 Suppliers details are in the Brand Name Annex

Conclusions

Summary statement	Based on the Chemicals Regulation Directorate's risk assessment of the residues detected we consider an effect on health to be unlikely (see risk assessments in
	section II).

Results	
When samples were taken	Between April and June 2015
Number of samples	24 samples were tested for up to 345 pesticide residues
Origin of samples	3 samples came from the UK 8 samples were imported from outside the EU 13 samples came from the EU
Residues found	1 sample contained no residues from those sought 23 samples contained residues above the reporting level None of the samples contained residues above the MRL 1 sample was labelled as organic. It didn't contain any residues from those sought
Multiple residues	 21 samples contained residues of more than one pesticide 4 samples contained 2 residues 5 samples contained 3 residues 7 samples contained 4 residues 3 samples contained 5 residues 1 sample contained 6 residues 1 sample contained 7 residues
(\$	Risk assessments ee Section II on page 65 for full risk assessments)
Number of risk	The laboratory detected 16 different pesticide residues. Following the Chemicals

assessments

The laboratory detected 16 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.

One sample contained a residue of dithiocarbamates where we needed to consider the effect on health in more detail. The usual non-specific approach for dithiocarbamates indicated a potential intake above the ARfD for ziram. However, the residue found resulted from mancozeb use. Therefore a refined assessment was done, all intakes were below the ARfD. Combined risk assessments (see page 67 for more information on the methodology used) Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a combined risk assessment.

CRD carried out risk assessment of samples containing at least two pesticides with similar toxicological modes of action. We would not expect any of these combinations to have an effect on health

Peas without pods

Introduction	We last surveyed peas in 2012. This year peas are being monitored across the EU as part of the EU co-ordinated multi-annual control programme.
	The survey can include any shelling peas either fresh or frozen.
Survey design	We are sampling and reporting peas without pods in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the peas without pod samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 30 at page 186 Suppliers details are in the Brand Name Annex

Summary statement	None of the residues detected by the laboratory would be expected to have an effect on health.

Conclusions

	Results
When samples were taken	Between April and June 2015
Number of samples	25 samples were tested for up to 342 pesticide residues
Origin of samples	Fresh 7 samples were imported from outside the EU Frozen 14 samples came from the UK • 4 samples came from the EU
Residues found	16 samples contained no residues from those sought 9 samples contained residues above the reporting level None of the samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 3 samples contained residues of more than one pesticide 3 samples contained 2 residues
	Risk assessments
Number of risk assessments	The laboratory detected 4 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see page 67 for more information on the	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.

In this case CRD did not carry out any risk assessments of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.

methodology used)

Peppers

Introduction	We have surveyed peppers every year since 2006 due to a high non-compliance rate. This year peppers are being monitored across the EU as part of the EU co-ordinated multi-annual control programme.
	The survey can include sweet peppers, bell peppers and capsicum. It doesn't include chilli peppers.
Survey design	We are sampling and reporting peppers in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	The Rural Payment Agency's Horticultural Marketing Inspectors collected the pepper samples from a range of points in the supply chain (wholesale markets, retail depots, ports and import points).
Further details	Full details of pesticides we looked for and the residues we found are in Table 31 at page 190 Suppliers details are in the Brand Name Annex

•	
Concl	usions
	USIUIS

-	None of the residues detected by the laboratory would be expected to have an ffect on health.
	Results

When samples were taken	Between April and June 2015
Number of samples	18 samples were tested for up to 388 pesticide residues
Origin of samples	 Fresh 1 sample came from the UK 17 samples came from the EU
Residues found	10 samples contained no residues from those sought 8 samples contained residues above the reporting level None of the samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 3 samples contained residues of more than one pesticide 3 samples contained 2 residues
	Risk assessments
Number of risk assessments	The laboratory detected 9 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see page 67 for more information on the	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.
methodology used)	In this case CRD did not carry out any risk assessments of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.

Potatoes

Introduction	We monitor potatoes annually due to their importance as a staple part of the diet. The survey covers both maincrop (or ware) and new potatoes.
Survey design	We are sampling and reporting potatoes in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	Animal and Plant Health Agency's Plant Health and Seed Inspectors collected the potato samples from a range of points in the supply chain (wholesalers, potato processors, ports and import points).
	We are publishing results for this survey on our website as part of the rolling reporting programme. Results in this report may have already been published.
Further details	Full details of pesticides we looked for and the residues we found are in Table 32 at page 195 Suppliers details are in the Brand Name Annex

Conclusions	
Summary statement None of the residues detected by the laboratory would be expected to have an	
	effect on health.

	eneol of mealur.
	Results
When samples were taken	Between April and June 2015
Number of samples	55 samples were tested for up to 345 pesticide residues
Origin of samples	Maincrop 30 samples came from the UK 4 samples were imported from outside the EU 4 samples came from the EU New 12 samples came from the UK 5 samples were imported from outside the EU
Residues found	15 samples contained no residues from those sought 40 samples contained residues above the reporting level None of the samples contained residues above the MRL 3 samples were labelled as organic. None contained residues from those sought
Multiple residues	 17 samples contained residues of more than one pesticide 15 samples contained 2 residues 2 samples contained 3 residues
	Risk assessments
Number of risk assessments	The laboratory detected 9 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess,

page 67 for more information on the methodology used)

where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.

In this case CRD did not carry out any risk assessments of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.

Prepared Fresh Fruit

Introduction	This is the first year we have surveyed prepared fresh fruit. The survey can include any single fruit or mixed fruit that has been pre-prepared, for example fruit salad, sliced melon, pineapple cubes. The samples must all be fresh fruit and cannot included any tinned or jarred products.
Survey design	We are sampling and reporting prepared fresh fruit in every quarter of 2015. This is the second part of the survey and covers samples collected between April and June.
	A market research company bought the prepared fresh fruit samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 33 at page 201 Suppliers details are in the Brand Name Annex
	Conclusions
Summary statement	None of the residues detected by the laboratory would be expected to have an effect on health.
	BAC (benzalkonium chloride) & DDAC (didecyldimethylammonium chloride) BAC and DDAC were detected in 8 samples above the MRL of 0.1 mg/kg for all foods.
	However, the position on these products has just been reviewed, 0.1 mg/kg is the new MRL that replaced the previous default MRL of 0.01* mg/kg. The EU have temporarily allowed trade to continue in foods with residues up to a level of 0.5 mg/kg for food treated before 12 August 2015. More information is available at page 7.
Results	

When samples were taken	Between April and June 2015
Number of samples	25 samples were tested for up to 344 pesticide residues
Origin of samples	Apple • 1 sample came from the UK Mango • 5 samples came from the UK Melon • 1 sample came from the UK Mixed • 9 samples came from the UK • 1 sample was imported from outside the EU Pineapple • 6 samples came from the UK • 2 samples were imported from outside the EU The country of origin on the packaging does not necessarily indicate where the fruit

Residues found	13 samples contained no residues from those sought 12 samples contained residues above the reporting level 8 samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 9 samples contained residues of more than one pesticide 6 samples contained 2 residues 1 sample contained 3 residues 1 sample contained 4 residues 1 sample contained 11 residues
Residues measured above the MRL (see Appendix B)	 The laboratory detected 2 residues above the MRL in prepared fresh fruit 3 samples from UK contained residues of BAC at 0.7 mg/kg, 1.8 mg/kg and 2.4, the MRL is 0.1 [*] mg/kg and DDAC at 0.2 mg/kg, 0.5 mg/kg and 0.6 mg/kg, the MRL is 0.1 mg/kg. 4 samples from the UK contained a residue of BAC at 0.6 mg/kg, 1 mg/kg, 1.3 mg/kg and 3.5 mg/kg. The MRL is 0.1 mg/kg. 1 sample from South Africa contained residues of BAC at 0.6 mg/kg, the MRL is 0.1 mg/kg and DDAC at 1.1 mg/kg, the MRL is 0.1 mg/kg.
	Risk assessments
Number of risk assessments	The laboratory detected 16 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.
	In this case CRD did not carry out any risk assessments of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.
	Follow up action
Letters sent	The Secretariat has written to the suppliers of the samples with residues above the MRL.
	Any comments received are at Appendix D.

^{*} **Maximum Residue Levels set at the LOD (LOD MRL):** These MRLs are set at a default level, i.e. at the limit of determination (LOD) as specified in EC Regulation 396/2005.

Radishes

Introduction	We last surveyed radishes in 2009. The survey can include any type of radish or mooli. Mooli has previously been tested as part of the speciality vegetable survey.
Survey design	We are sampling and reporting radishes in quarters two and four of 2015. This is the first part of the survey and covers samples collected between April and June.
	A market research company bought the radish samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 34 at page 206 Suppliers details are in the Brand Name Annex
	Conclusions

Conclusions

Summary statement	None of the residues detected by the laboratory would be expected to have an
	effect on health.

	Results
When samples were taken	Between April and June 2015
Number of samples	24 samples were tested for up to 281 pesticide residues
Origin of samples	15 samples came from the UK 1 sample was imported from outside the EU 8 samples came from the EU
Residues found	13 samples contained no residues from those sought 11 samples contained residues above the reporting level None of the samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 1 sample contained residues of more than one pesticide 1 sample contained 2 residues
	Risk assessments
Number of risk assessments	The laboratory detected 2 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see page 67 for more information on the methodology used)	One sample contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.
	In this case CRD did not carry out a risk assessment of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.

Raisins, Currants and Sultanas

Introduction	We last surveyed raisins, currants and sultanas in 2011. The samples included in the survey and single samples of raisins, currants or sultanas, mixed samples have not been included.
Survey design	We are sampling raisins, currants and sultanas in quarters one and two of 2015 and reporting on them in quarter two. This survey covers samples collected between January and June.
	A market research company bought the raisin, currant and sultana samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 35 at page 210 Suppliers details are in the Brand Name Annex
Conclusions	

Summary statement None of the residues detected by the laboratory would be expected to have an effect on health.	
--	--

	Results
When samples were taken	Between January and June 2015
Number of samples	49 samples were tested for up to 345 pesticide residues
Origin of samples	Currants • 1 sample came from the UK • 10 samples came from the EU Raisins • 1 sample came from the UK • 12 samples were imported from outside the EU Sultanas • 3 samples came from the UK • 22 samples were imported from outside the EU The country of origin on the packaging may not necessarily indicate where the fruit was grown. It may be where they were dried or packed for consumer purchase.
Residues found	6 samples contained no residues from those sought 43 samples contained residues above the reporting level 2 samples contained residues above the MRL. A processing factor of 5 was applied to the grape MRL to take account of the drying process. 8 samples were labelled as organic.4 contained residues from those sought
Multiple residues	 31 samples contained residues of more than one pesticide 2 samples contained 2 residues 3 samples contained 3 residues 5 samples contained 4 residues 4 samples contained 5 residues 4 samples contained 6 residues 3 samples contained 7 residues 2 samples contained 8 residues 2 samples contained 9 residues

	 3 samples contained 10 residues 1 sample contained 11 residues 2 samples contained 13 residues
Residues measured above the MRL (see Appendix B)	 The laboratory detected 1 residue above the MRL in raisins, sultanas and currants 2 samples of raisins from Turkey contained a residue of chlormequat at 0.3 mg/kg and 0.4 mg/kg. The MRL is 0.25[*] mg/kg.
	Risk assessments
Number of risk assessments	The laboratory detected 32 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.
	In this case CRD did not carry out any risk assessments of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.
	Follow up action
Letters sent	The Secretariat has written to the suppliers of the samples with residues above the MRL. Any comments received are at Appendix D.
Organic sample with residue of chlormequat	The Secretariat has written to the suppliers of 1 sample of organic raisins and 3 samples of organic sultanas with a residue of chlormequat, which is not permitted in organic food production. Defra's Organic Farming branch and the organic certification organisation were also informed.

^{*} **Maximum Residue Levels set at the LOD (LOD MRL):** These MRLs are set at a default level, i.e. at the limit of determination (LOD) as specified in EC Regulation 396/2005.

Smoked Fish

Introduction	We last surveyed smoked fish in 2011. The survey can include any fresh or frozen variety of smoked fish, such as mackerel, salmon, haddock, cod, kippers or trout. The samples can not include any herbs, seasoning or peppers.
Survey design	We are sampling and reporting smoked fish in quarter two and four of 2015. This is the first part of the survey and covers samples collected between April and June.
	A market research company bought the smoked fish samples from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 36 at page 220 Suppliers details are in the Brand Name Annex

Conclusions

Summary statement	None of the residues detected by the laboratory would be expected to have an effect on health.
	<u>DDT</u> Five samples contained a residue of DDT. The use of DDT is banned or heavily restricted in many countries because the residues take a long time to breakdown in the environment and can accumulate in fatty tissue. A breakdown of the analysis shows that the only DDT residue found was in the form of DDE which indicates historic use.
	The residues would not be expected to have an effect on health, either in the short term or the long term. More information about DDT residues is available on p21 of our <u>2013 Annual Report</u> .

Results When samples were Between April and June 2015 taken Number of samples 56 samples were tested for up to 35 pesticide residues **Origin of samples** Cod 1 sample came from the UK • 4 samples were imported from outside the EU • Haddock 1 sample came from the UK • 18 samples were imported from outside the EU • <u>Hake</u> 1 sample came from the UK Kippers (Herring) 3 samples came from the UK • Mackerel 6 samples came from the UK • 6 samples were imported from outside the EU River Cobbler (Basa Fish) 7 samples were imported from outside the EU • Salmon 6 samples came from the UK • 3 samples were imported from outside the EU •

	The country of origin does not necessarily indicate where the fish were caught. It may be where they were prepared or packed for consumer purchase.	
Residues found	51 samples contained no residues from those sought 5 samples contained residues above the reporting level 1 sample was labelled as organic. It didn't contain any residues from those sought	
Multiple residues	None of the samples contained residues of more than one pesticide	
Risk assessments		
Number of risk assessments	The laboratory detected 1 pesticide residue. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.	

Speciality Fruit

Introduction	We last surveyed speciality fruit in 2013. The aim of the survey is to look at fruits that otherwise may not be sampled.
	This year the survey can include various fruits including starfruit, lychee, dragon fruit, papaya, guava, physalis, persimmon, pomegranates or pomelos
Survey design	We are sampling speciality fruit in every quarter of 2015 and reporting on it in quarter two and four. This is the first part of the survey and covers samples collected between January and June.
	The speciality fruit samples were either collected by the Rural Payment Agency's Horticultural Marketing Inspectors from a range of points in the supply chain (wholesale markets, retail depots, ports and import points) or they were bought by a market research company from retail outlets across the UK.
Further details	Full details of pesticides we looked for and the residues we found are in Table 37 at page 224 Risk assessments carried out by CRD are at page 71 Suppliers details are in the Brand Name Annex

Conclusions

Based on the Chemicals Regulation Directorate's risk assessment of the residues detected by the laboratory, we consider an effect on health to be unlikely (see risk
assessments in section II).

Results

When samples were taken	Between January and June 2015
Number of samples	36 samples were tested for up to 380 pesticide residues
Origin of samples	Asian Pear • 3 samples were imported from outside the EU Lychees • 4 samples were imported from outside the EU Papaya • 3 samples were imported from outside the EU Passion fruit • 3 samples were imported from outside the EU Passion fruit • 3 samples were imported from outside the EU Persimmon • 8 samples were imported from outside the EU Physalis • 1 sample was imported from outside the EU Pomegranates • 12 samples were imported from outside the EU Rambutan • 1 sample was imported from outside the EU Starfruit • 1 sample was imported from outside the EU
Residues found	13 samples contained no residues from those sought 23 samples contained residues above the reporting level

	5 samples contained residues above the MRL None of the samples were labelled as organic.
Multiple residues	 8 samples contained residues of more than one pesticide 4 samples contained 2 residues 3 samples contained 4 residues 1 sample contained 5 residues
Residues measured above the MRL (see Appendix B)	 The laboratory detected 4 residues above the MRL in speciality fruit 1 sample of passion fruit from Colombia contained a residue of difenoconazole at 0.2 mg/kg. The MRL is 0.1 mg/kg. 1 sample of pomegranate from Turkey contained a residue of acetamiprid at 0.02 mg/kg. The MRL is 0.01[*] mg/kg. 1 sample of pomegranate from Turkey contained a residue of prochloraz at 1.89 mg/kg. The MRL is 0.05[*] mg/kg. 1 sample of rambutan from Thailand contained a residue of carbendazim at 0.4 mg/kg. The MRL is 0.1[*] mg/kg. 1 sample of starfruit from Malaysia contained a residue of carbendazim at 0.2 mg/kg. The MRL is 0.1[*] mg/kg.
	Risk assessments ee Section II on page 65 for full risk assessments)
Number of risk assessments	The laboratory detected 19 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.
chlorpyrifos	1 sample of Asian pear contained chlorpyrifos at a level where we need to consider the effect on health in more detail. The highest level detected was 0.09 mg/kg
	If toddlers consumed large portions of Asian pears, containing chlorpyrifos at 0.09 mg/kg, their intake of chlorpyrifos could be 153% of the Acute Reference Dose. However, the EU ARfD was set without taking into account scientifically valid human data. The JMPR (Joint FAO/WHO meetings on pesticides) has recommended a higher Acute Reference Dose (ARfD) of 0.1 mg/kg bw/d using that human data. It allows an appropriate factor (10) to account for possible differences in susceptibility between people. Intakes in all groups are within the JMPR ARfD. Based on this assessment we do not expect an effect on health.
	The PRiF accept the premise that relevant human toxicology data can be used to calculate the possible impacts of residues in food on humans. Assessments for both values are provided at table C on page 71.
prochloraz	1 sample of pomegranate contained prochloraz at levels where we need to consider the effect on health in more detail. The highest level detected was 1.89 mg/kg
	Pomegranate seeds/'flesh' after peeling
	EU MRL risk assessment usually assumes that pomegranates are peeled before consumption. A specific processing factor is not available for pomegranates and prochloraz. However in a range of other sub-tropical and tropical fruits (JMPR, 2004) following post-harvest use these was no appreciable degradation and most of the residue was associated with the peel. In this sample the vast majority of the residue (1.88 mg/kg) was determined as parent (the remainder as metabolites of prochloraz) which suggests that the residue was likely present arising from post-harvest treatment, and therefore it is expected that the significant proportion would have been in the peel. Removing the peel before consumption would lead to a reduction in the pesticide intake.
	However, assuming that consumers eat all the peel, intakes for 7-10 year old

^{*} **Maximum Residue Levels set at the LOD (LOD MRL):** These MRLs are set at a default level, i.e. at the limit of determination (LOD) as specified in EC Regulation 396/2005.

	children, toddlers, 11-14 year old children, infants 4-6 year old children, vegetarians and adults exceeded the ARfD. The highest intake was for 7-10 year old children.
	Whole pomegranate, including all of the peel
	If a 7-10 year old child consumed large portions of pomegranates containing prochloraz at 1.89 mg/kg, their intake of prochloraz could be 184% of the Acute Reference Dose. This intake is 54 times lower than a dose which caused no observed adverse effect in a 90-day dog study, a multigeneration rat study and 14-day dog study. The European Food Safety Authority used this study as the basis of the ARfD.
	Toxicologists usually apply a factor of 100 to this dose to take into account uncertainties caused by using animal data and possible differences in susceptibility between people. We consider the reduced factor of 54 still enough to make an effect on health unlikely.
Combined risk assessments (see page 67 for more information on the methodology used)	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a combined risk assessment.
	CRD carried out risk assessment of samples containing at least two pesticides with similar toxicological modes of action. We would not expect any of these combinations to have an effect on health
	Follow up action
Letters sent	The Secretariat has written to the suppliers of the samples with residues above the MRL.
	Any comments received are at Appendix D.
RASFFs issued	 The EU issued a notification for the following samples through the EC's Rapid Alert System for Food and Feed (RASFF) (see glossary for more details) 1 sample of pomegranate from Turkey containing prochloraz at 1.89 mg/kg.

Теа

Introduction	We last surveyed tea in 2012 as part of an herbal infusions and tea survey. This year the survey is only tea and can include black tea, green tea, white tea, rooibos and Earl Grey. The teas can be in teabags, loose or instant.				
Survey design	We are sampling tea in every quarter of 2015 and reporting on it in quarter two and four. This is the first part of the survey and covers samples collected between January and June.				
	A market research company bought the tea samples from retail outlets across the UK.				
Further details	Full details of pesticides we looked for and the residues we found are in Table 38 at page 231 Suppliers details are in the Brand Name Annex				
Conclusions					

None of the residues detected by the laboratory would be expected to have an effect on health.

Results							
When samples were taken	Between January and June 2015						
Number of samples	49 samples were tested for up to 253 pesticide residues						
Origin of samples	24 samples came from the UK 25 samples were imported from outside the EU						
	The country of origin does not necessarily indicate where the tea was grown. It may be where it was dried of where it was packed for consumer purchase.						
Residues found46 samples contained no residues from those sought 3 samples contained residues above the reporting level None of the samples contained residues above the MRL 11 samples were labelled as organic. None contained residues from the							
Multiple residues	 3 samples contained residues of more than one pesticide 1 sample contained 3 residues 1 sample contained 4 residues 						
	Risk assessments						
Number of risk assessments	The laboratory detected 4 different pesticide residues. Following the Chemicals Regulation Directorate (CRD)'s risk assessment, we do not expect these residues to have an effect on health.						
Combined risk assessments (see page 67 for more information on the	Some samples contained residues of more than one pesticide. When samples contain more than one pesticide belonging to the groups that CRD usually assess, where toxicologists expect these to add to each other's effect (have the same toxicological mode of action), CRD carry out a risk assessment of the combined residues.						
methodology used)	In this case CRD did not carry out any risk assessments of combined residues because the laboratory did not find residues belonging to these groups with similar toxicological modes of action in any samples.						

Supplier Details

Introduction

The following information is available on each sample collected this quarter:

- Date and place of collection
- Description (e.g. 'runner bean', organic milk);
- Country of origin or manufacture;
- Brand name and packer/manufacturer; and
- Residues detected (results shown in green indicate residues above the MRL).

The Government's 'brand naming' policy

The Government has decided that brand name information should be published as part of the Government food chemical surveillance programme. Brand names have been published for most pesticide residue surveys since 1998. Certain samples are excluded from the release of brand name information. These include samples taken as part of any pesticide residues enforcement programme and those taken as part of surveys to study individual people/farms. This policy was reviewed in 2000/1, when Ministers agreed to its continuation.

Where we find residues above an MRL or the presence of non-approved pesticides brand owners/retailers/ growers are notified of the result in advance of publication of reports and given four weeks to comment. Any responses we receive are included in Appendix D.

Interpreting brand name information

There is no ready definition of what constitutes a brand in all cases. For clearly branded produce like breakfast cereals or biscuits the "brand owner" is shown. In the case of "own brand" goods this may be one of the multiple retailers. For fruit and vegetables the retailer is generally shown. For meat, milk and most other animal products the retailer is also generally shown. Finally, for all commodities the country of origin is shown where this was displayed either on the produce or in the store.

Our programme takes samples of produce in approximate proportion to the market share of the main retailers. This has been done to ensure we obtain an accurate representation of a sector (e.g. fruit and vegetables).

Individual programmes are not capable of generating statistically valid information on residues in particular crops from particular retailers. This would require the collection of a much larger number of samples: either substantially increasing costs or greatly reducing the range of different foods sampled in any one year. Therefore, results from an individual survey cannot be taken as a fair representation of the residues status of any particular brand.

However, we do collect samples from a variety of outlets in a range of locations, over a period of years. Successive programmes should therefore help generate information on the typical residues profile of particular types of produce and on major trends in the incidence and levels of pesticides. It should be noted that this quarterly report is not intended to give a comprehensive comparison with previous surveys of the same commodities.

A particular issue arises in relation to the country of origin of fruit and vegetables. The origins included in the reports are those recorded either on the produce or in the store. However, it is not uncommon for mixing to occur on shop shelves. We have responded by increasing the proportion of pre-packed goods sampled. However, pre-packed samples are not available for some produce in some stores and it could also introduce bias to surveys if loose produce were not sampled. Loose produce is therefore sampled but the origin of the sample should be interpreted with a degree of caution.

The surveillance programme is designed to enable the regulatory authorities to check that:

- specified pesticide MRLs are being respected;
- users of pesticides are complying with conditions of use specified in the authorisation;
- Dietary intakes of residues are within acceptable limits.

This section details how risks from dietary intakes are assessed.

When assessments are carried out

A screening assessment is done for each residue and commodity combination to identify residue levels that would lead to intakes above the relevant reference doses. Further information on this screening approach is available on request from CRD. Detailed assessments are then produced for every case where the actual residue level found could lead to an intake by any group above the reference dose.

Assessing Dietary intakes

Assessing the acceptability of dietary intakes is complicated. Consumer risk assessments are carried out for both short-term (peak) and long-term intakes. These assessments use information on food consumption collected in UK dietary surveys in conjunction with the residue levels we find. Occasionally, additional pesticide specific information on the losses of residues that occur during preparation and/or cooking of food is also used.

How the assessment is carried out

Short-term intakes (also called NESTIs) are calculated using consumption data for high-level consumers, based on single-day consumption values and the highest residue found in a food commodity. The residue found is multiplied by a variability factor to take account of the fact that residues may vary between individual items that make up the sample analysed. The estimated intake is compared to the Acute Reference Dose (ARfD). This is done for ten consumer groups; adults, infants, toddlers, 4-6 year olds, 7-10 year olds, 11-14 year olds, 15-18 year olds, vegetarians, elderly living in residential homes and elderly living in their own homes.

Long-term intakes (NEDI) are also calculated for high-level consumers, but in this case the consumption data are high-level long-term values rather than peak single-day events, and similarly the residue values used reflect long-term average levels rather than occasional high values. Again these estimates are made for the ten consumer groups. In this case the estimated intake is compared to the Acceptable Daily Intake (ADI). More information on intake assessments is available on CRD's website: www.pesticides.gov.uk/guidance/industries/pesticides/topics/pesticide-approvals/pesticides-registration/data-requirements-handbook/consumer-intake-assessments-new-intake-calculation-models.

The reference doses (ADI, ARfD) are set by the Advisory Committee on Pesticides (ACP), or agreed within the EC (an increasing proportion of UK pesticide authorisations are now carried out in accordance with harmonised EU processes). However, where neither the UK nor the EC has set a reference dose, levels set by regulatory authorities in other countries may be used. For a small number of pesticides the reference doses used have been determined by CRD. These have not been independently peer-reviewed and should therefore be regarded as provisional. Reference dose values are available on the EU website: http://ec.europa.eu/sanco_pesticides/public/index.cfm?event=activesubstance.selection.

Although MRLs are not safety levels, an MRL would not be established if the residue concentrations measured in the supervised trials used to support the MRL would give rise to health concerns. In most cases residues present at the MRL result in intakes below the ARfD and the ADI. So even if the MRL is exceeded this does not always lead to an intake above the ARfD or ADI.

In addition, an estimated intake that exceeds the ADI or ARfD does not automatically result in concerns for consumer health, because a protective approach is used in setting the ADI and ARfD. In the unusual circumstance of an intake exceeding the ADI or ARfD, an evaluation of the toxicological data is made, and details of this assessment would be presented.

Most consumer intake assessments are for short-term exposure rather than chronic exposure. This is because in most cases the monitoring data show the majority of samples to contain residues below the reporting limit and so chronic exposure would not present a concern. Long-term risk assessments have been

carried out on a case-by-case basis, but are not routinely reported. Long-term exposure assessments are done using median residue levels, rather than using the highest residues found. Therefore, long-term risk assessments would only need to be carried out where data indicated a high proportion of samples contained residues above the MRL (this would result in a higher median residue level than that previously assessed when setting the MRL), or where there is no MRL and acute toxicology is not considered relevant for the particular pesticide concerned.

Where intakes exceed a reference dose, it is necessary for the underlying toxicological studies (animal studies) to be considered to enable the significance of such an exceedance to be understood. Toxicological studies are conducted using different doses to determine the nature of any ill health effects as well as the levels at which such effects can be expected to occur.

Toxicological studies are conducted using test animals to identify the highest experimental dose that causes no detectable adverse effects (the NOAEL). Where there is more than one relevant toxicological study, the lowest appropriate NOAEL for the most sensitive adverse effect is typically used. There is some uncertainty in extrapolating between animals and people and it is therefore important to use a 'safety factor' to account for sources of variation. This safety factor is incorporated (by dividing the NOAEL by the safety factor) in deriving a reference dose, either an ADI or an ARfD, to which consumer intakes are compared. A safety factor therefore extrapolates from the animal testing to the general population. Factors in the order of x100 are commonly used, x 10 for animal to man, and x10 for within human population differences in sensitivity. However, toxicologists may propose different values (e.g. from 5 to 1000) based on scientific reasoning in accordance with study designs and the quality of the data that has been generated from the studies.

In order to ensure exposures to pesticides do not pose unacceptable risk to humans a wide range of investigations are performed. Most of these are performed on experimental animals because the only end-points that can be examined in human volunteers are those involving observation or blood and urine sampling. Human volunteer studies involving pesticides are not generated in current regulatory work. There is debate at the international level as to whether human studies that have been generated should be used for risk assessment purposes. In the EU, the policy is not to use these data in assessments; the JMPR chose to apply judgement in the appropriate use of these data if available. The CRD risk assessments will usually refer to test animal species, such as dog, rat, and rabbit. All toxicological work is undertaken based on principles of minimising animal distress. Where scientifically valid human data are available the risk assessments will refer to these as they reduce the uncertainty in the assessment. Therefore, human data is only referred to in more limited circumstances.

Acute (short term) toxicology is not a concern for all pesticides, as some are not acutely toxic. In terms of the pesticides that have been found in fruit and vegetables through the surveillance programme an acute risk assessment would not be necessary on the following: tecnazene, maleic hydrazide, diphenylamine, furalaxyl, iprodione, kresoxim-methyl, pendimethalin, propargite, propyzamide, quintozene and tolclofos-methyl.

As the surveillance programme monitors residues in all types of food, from raw commodities (e.g. potatoes) to processed (e.g. wine), dried (e.g. dried fruit) and composite foods (e.g. fruit bread), consumer risk assessments are specifically tailored to address processed and mixed food products. MRLs are generally set for raw commodities, although when MRLs are established the assessment of dietary intakes takes into account the potential for residues to remain in processed foods produced from the raw agricultural commodities. MRLs have been set for processed infant foods, and in future may be extended to other processed food products.

Residues are usually reduced during food processing and occasionally may concentrate. The alteration of residues can be considered in consumer risk assessments, for example, in oil seed rape a fat-soluble pesticide may result in higher residues in the oil compared to residues in the raw seed. Consumption data are available for many major processed food items such as boiled potatoes, crisps, fruit juice, sugar, bread, and wine. Where such consumption data are not available, the intake estimates are based on the total consumption of the raw commodity, which would represent the worst-case (for example, breakfast cereals consumption would be based on total cereal products consumption). In the case of composite products a suitable worst-case alternative would be used, for example total bread consumption for fruit bread consumption.

Probabilistic Modelling

The standard calculations of consumer exposure use realistic consumption data and residue levels. However, they tend to overestimate intakes in most circumstances. This is due to the assumptions used; fruit and vegetables would contain high levels of residue in an individual unit and that these would be consumed by high-level consumers. They do not take into account the possible range of residue levels and consumption

distributions that may occur in reality. These possible combinations of residues and consumption levels can be taken into account using modelling/simulation techniques to produce probability distributions of residue intake levels to indicate the range of consumer intakes, presented as a probabilistic assessment of consumer exposure. These techniques are not yet routinely used to estimate dietary intakes of pesticide residues in the EC.

Multiple residues

The risk assessment process is not standing still. We are aware that some consumers are concerned by the 'cocktail effect'- the possible implications of residues of more than one chemical occurring in, say, a single portion of fruit or vegetables or the interaction between mixtures of pesticides and veterinary medicines at residue levels.

Where more than one pesticide residue is found in a sample, we produce a separate table which identifies each sample and what was found (see Appendix D). If more than one organophosphate/carbamate is found we will undertake an additional risk assessment. If the combination of pesticides found is either unusual or gives cause for concern then this will be detailed in the report.

The Food Standards Agency (FSA) asked the Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment to assess these concerns. Their report 2Risk Assessment of Mixtures of Pesticides and Veterinary Medicines" was published in 2002. The Committee concluded that the probability of any health hazard from exposures to mixtures is likely to be small. Nonetheless, it identified areas of uncertainty in the risk assessment process and made recommendations for further work. These fell under the broad headings of regulatory, surveillance, research and public information issues. An action plan to take forward the recommendations has been published on the FSA website at: http://www.food.gov.uk/safereating/chemsafe/pesticides/pestmixbranch/. A number of research projects have

<u>http://www.food.gov.uk/safereating/chemsafe/pesticides/pestmixbranch/</u>. A number of research projects have been commissioned by the FSA to help progress the action plan; details can be found at <u>http://www.food.gov.uk/multimedia/pdfs/ressurprjlistsep07</u> and <u>http://www.food.gov.uk/science/research/researchinfo/researchportfolio/</u>

Scientific methodologies have yet to be developed to deal with mixtures from groups of pesticides identified by the Committee. However, the Advisory Committee on Pesticides (ACP) has developed an approach for the anticholinesterase compounds. They have also recommended an approach for assessing compounds that might have combined toxicity. This includes a consideration of the proportion of the respective reference doses taken up by the predicted exposures to each active substance. If this is only a small proportion (e.g. <50% if there are two components; <33% for 3 etc) then assuming simple additivity the risks would still be acceptable. However if exposures to each active substance represent a high proportion of the respective reference doses and the total exceeds 100% a more detailed consideration is needed (www.pesticides.gov.uk/guidance/industries/pesticides/topics/pesticide-approvals/pesticides-registration/data-requirements-handbook/toxicity-assessment-of-combinations-of-2-or-more-compounds-in-a-formulation).

We are keen to ensure our reports reflect consumer concerns. We therefore now regularly assess findings showing multiple residues of organophosphate and carbamate pesticides. Combined assessment is a new development in risk assessment, which is being taken forward at the international level, e.g. the European Food Safety Authority (EFSA) held a colloquium in 2013 and has set-up two working groups to help develop the methodology (<u>http://www.efsa.europa.eu/en/events/event/colloque061128.htm</u>;

http://www.efsa.europa.eu/en/supporting/pub/117e.htm;

http://www.efsa.europa.eu/en/efsajournal/pub/705.htm;

<u>http://www.efsa.europa.eu/en/efsajournal/pub/1167.htm</u>). Further advances in risk assessment methodology will be taken into account in developing the approach to multiple risk assessments in the future.

Assessment of Risk to Human Health

Table 1: Short-term intake estimates

Screening assessments have been done for all acutely toxic and potentially acutely toxic pesticides to check that predicted intakes are within the ARfD (or ADI, as appropriate, where an ARfD is not available). An acute exposure assessment is not done for pesticides which are not acutely toxic where it has been established that an ARfD is not required. Toxicological endpoints can be found in the DG SANCO EU Pesticides database which is available at http://ec.europa.eu/food/plant/protection/evaluation/database act subs en.htm

The screening assessment uses the internationally agreed approach to short-term (acute) consumer exposure assessment with UK food consumption data as detailed within the UK NESTI model which is available on the CRD website at http://www.pesticides.gov.uk/guidance/industries/pesticides/topics/pesticide-approvals/pesticides-registration/data-requirements-handbook/uk-consumer-intake-models

A paper to explain the assessment of acute intakes can be found on our website: http://www.pesticides.gov.uk/Resources/CRD/PRiF/Documents/Other/2013/PRiF%20Intake%20Assessments%20290113.pdf

For the Q2 2015 assessments, the following approaches have been taken to refine the NESTI according to case-by-case issues and to ensure that appropriate consumption values are used for less frequently consumed commodities where available food consumption data may be limited:

- For potato/chlorpropham a variability factor of 3 was used, based on specific residues variability data for individual potato tubers.
- For pear/imazalil a variability factor of 1.5 was used based on specific residues variability data available, generated using imazalil in apples (EU MRL, 2007).
- Data on beans with pods were used for okra.
- Data on parsley were used for curry leaves.
- For all forms of pre-prepared fruits, data on apples without the use of a variability factor were used for screening purposes. As fruit pieces are small, a whole fruit consideration which takes account of unit to unit variability does not seem so relevant; the consumption values for a range of different fruits were considered and consumption values for apple are likely to be reasonably protective to cover the range of fruits consumed in this way.
- Specific consumption data on chilli peppers were used. Since in this survey it was not possible to verify the unit weights of the chilli peppers in many of the chilli samples and since chilli pepper size can be highly variable, the variability factor of 7 was, as a precaution, applied to the residue found in all of the daily consumption value for chilli (rather than applying it, in the usual way, to the residue in the first unit only).
- Data on both blackberries and raspberries were considered for the screening assessment for blueberries and blackberries as there are low numbers of consumers in some groups. Data on raspberry alone were used for adults, toddlers, vegetarians, and elderly in own home, where the numbers are sufficient, with data from both commodities used for the remaining groups. Although there are low numbers of consumers in the infant and 4-6 year old children groups for both commodities, use of these data was considered reasonable after comparison with alternative data.
- Specific consumption data on radishes were used. Although there are low numbers of consumers in some groups, use of these data was considered reasonable after comparison with alternative data.
- Specific consumption data available for pomegranate were used.

- Data on pear were used for all forms of Asian pear.
- Data on pineapple together with a unit weight of 196.5g and a variability factor of 7 were used for papaya.
- Data on kiwi were used for passion fruit and rambutan.
- Data on peaches were used for persimmon.
- Data on kiwi together with a unit weight of 130 g and a variability factor of 7 were used for star fruit.
- Specific consumption data on butter were used.
- Data on cream were used for crème fraîche.
- Data on fish were used for smoked fish.
- Data on oil were used for olive oil.
- Data on olives and cherries were used for olives.
- Specific consumption data on orange juice was used.
- Specific consumption data on dried grapes was used for raisins, sultanas, and currants.

Monocrotophos residues

Monocrotophos was found in beans with pods and chilli peppers at levels up to 0.01 mg/kg and 0.3 mg/kg respectively. The highest residue gives a highest estimated short term intake of 0.0008 mg/kg bw/day for adults (chilli peppers). Authorisation for use in the EU were withdrawn in 2003 and EU reference values have not been set. The EFSA use JMPR reference values, set in 1995, to assess risks from monocrotophos residues. This intake is less than both the ARfD of 0.002 mg/kg bw/day and ADI of 0.0006 mg/kg bw/day. However, studies in laboratory animals at doses orders of magnitude higher which were toxic to the animals have indicated that monocrotophos can damage genetic material. It is not known if lower doses which are not toxic also have this effect. Monocrotophos did not increase cancer incidence in long term feeding studies in rats or mice or cause dominant lethal mutations in mice and these findings provide some reassurance that any risks from exposure are likely to be small. Nevertheless, because of uncertainty about the potential for genetic damage at low doses, on a precautionary basis any findings of monocrotophos in food are not desirable.

Beans with pods						
Crop	Pesticide	Highest residue	Intake (mg/kg bw/day)		ARfD	Source
		(mg/kg)	Adult	Critical group [†]	(mg/kg bw/day)	
Beans with pods	carbofuran	0.08	0.00018	0.00040 (infants)	0.00015	EFSA, 2009
				0.00040 (toddlers)		
				0.00030 (4-6 year olds)		
				0.00022 (vegetarians)		

		0.00022 (15-18 year olds)
		0.00018 (adults)
		0.00017 (elderly-own home)
		0.00016 (7-10 year olds)
		0.00016 (11-14 year olds)

Comment on risk assessment

The intakes for infants, toddlers, 4-6 year old children, vegetarians, 15-18 years old children, adults, elderly in their own home, 7-10 year old children and 11-14 year old children exceeded the ARfD. The highest intake was for infants.

If infants ate large portions of beans containing carbofuran at 0.08 mg/kg, their intake of carbofuran could be 267% of the Acute Reference Dose. This intake is 75 times lower than a dose which caused a marginal (ca 20-30%) but significant inhibition of brain cholinesterase activity in an acute neurotoxicity study in rat pups (11 days old). The inhibition reversed within a few hours. The European Food Safety Authority used this study as the basis of the ARfD.

Toxicologists usually apply a factor of 100 to this dose to take into account the uncertainties caused by using animal data and possible differences in susceptibility between people. However, in this case the factor was larger (200) as the ARfD was derived from a lowest observed adverse effect level rather than a no observed adverse effect level. We consider the likelihood of an effect on health to be low, given the remaining factor of 75 (from 200). This is because an adverse effect on health would rely on

1) a susceptible individual eating a large quantity of the product which in turn had the highest levels of residue; and

2) the actual difference in susceptibility between that individual and rats being higher than the factor we are left with in this situation

In conclusion, we consider that some people might experience transient signs of cholinergic toxicity (e.g. headache, stomach upset, salivation, reduced pupil response) after eating large portions (97.5th percentile consumption) of beans containing the highest levels found in this report, but we consider the likelihood of an effect on health to be low. Such effects would be expected to be mild, short-lived and reversible.

Curry Leaves						
Crop	Pesticide	Highest residue (mg/kg)			ARfD (mg/kg bw/day)	Source
Curry leaves (parsley consumption data)	carbofuran		0.00052		0.00015	EFSA, 2009

Comment on risk assessment

The intakes for vegetarians, 7-10 year old children, adults, elderly in their own home, elderly in residential care, toddlers, 4-6 year old children and 11-14 year old children exceeded the ARfD. The highest intake was for vegetarians.

If vegetarians ate large portions of curry leaves containing carbofuran at 0.8 mg/kg, their intake of carbofuran could be 639% of the Acute Reference Dose. This intake is 31 times lower than a dose which caused a marginal (ca 20-30%) but significant inhibition of brain cholinesterase activity in an acute neurotoxicity study in rat pups (11 days old). The inhibition reversed within a few hours. The European Food Safety Authority used this study as the basis of the ARfD.

Toxicologists usually apply a factor of 100 to this dose to take into account the uncertainties caused by using animal data and possible differences in susceptibility between people. However, in this case the factor was larger (200) as the ARfD was derived from a lowest observed adverse effect level rather than a no observed adverse effect level. We consider this /significant reduction in the factor of 200 to a level of 31 undesirable.

In conclusion, we consider that some people might experience transient signs of cholinergic toxicity (e.g. headache, stomach upset, salivation, reduced pupil response) after eating large portions (97.5th percentile consumption) of curry leaves containing the highest levels found in this report. Such effects would be expected to be mild, short-lived and reversible.

	Speciality fruit								
Crop	Pesticide	Highest residue (mg/kg)	Int Adult	ake (mg/kg bw/day) Critical group [†]	ARfD (mg/kg bw/day)	Source			
Asian pear	chlorpyrifos		0.0016			EU, 2015			
				0.0054 (4-6 year olds)					

Comment on risk assessment

The risk assessments detailed below refer to the new EU acute Reference Dose 2015 value but also consider the risks based on the existing JMPR value which was based on data which examined impacts upon humans. CRD accept that relevant human toxicology data can be used to calculate the possible impacts of residues in food on humans and based on this assessment do not expect an effect on health.

Assessment A using the ARfD set in the EU

The intakes for toddlers, infants, and 4-6 year old children exceeded the ARfD. The highest intake was for toddlers.

If toddlers consumed large portions of Asian pear containing chlorpyrifos at 0.09 mg/kg, their intake of chlorpyrifos could be 153% of the Acute Reference Dose. This intake is 66 times lower than a dose which caused no observed adverse effects in a single dose rat study. The European Food Safety Authority used this study as the basis of the ARfD.

Toxicologists usually apply a factor of 100 to this dose to take into account uncertainties caused by using animal data and possible differences in susceptibility between people. We consider the reduced factor of 66 still enough to make an effect on health unlikely.

Assessment B with reference to the ARfD set by the JMPR

The intakes for infants, toddlers, and 4-6 year old children exceeded the EU ARfD. The highest intake was for toddlers.

If toddlers consumed large portions of Asian pears, containing chlorpyrifos at 0.09 mg/kg, their intake of chlorpyrifos could be 153% of the Acute Reference Dose. However, the EU ARfD was set without taking into account scientifically valid human data. The JMPR (Joint FAO/WHO meetings on pesticides) has recommended a higher Acute Reference Dose (ARfD) of 0.1 mg/kg bw/d using that human data. It allows an appropriate factor (10) to account for possible differences in susceptibility between people. Intakes in all groups are within the JMPR ARfD. Based on this assessment we do not expect an effect on health.

	Pears								
Crop	Pesticide	Highest residue	In	take (mg/kg bw/day)	ARfD	Source			
		(mg/kg)	Adult	Critical group [†]	(mg/kg bw/day)				
Pears	Dithiocarbamates (mancozeb and thiram)	1.61 [£]	0.028	0.14 (toddlers)	0.6	EU, 2005			

Comment on risk assessment

The usual non-specific approach for dithiocarbamates indicated a potential intake above the ARfD for ziram. However, the residue found resulted from either mancozeb or thiram use. Therefore, a refined assessment was done. Based upon the CS2 conversion factor for mancozeb and thiram the estimated residue levels are at 1.61 mg/kg and 1.42 mg/kg respectively, as the ARfD for both thiram and mancozeb is 0.6 mg/kg bw/d the expected residue level for mancozeb was used for the refined risk assessment. All the intakes were below the ARfD for mancozeb (<23% ARfD), therefore no effect on health would be expected.

	Speciality fruit									
Сгор	Pesticide	Highest residue (mg/kg)	Intake (mg/kg bw/day) Adult Critical group [†]		ARfD (mg/kg bw/day)	Source				
Pomegranate	prochloraz	1.89 ^{\$}	0.029	0.046 (7-10 year olds)	0.025	EFSA, 2011				
				0.046 (toddlers) 0.044 (11-14 year olds)						
				0.043 (infants) 0.038 (4-6 year old child)						
				0.029 (vegetarian) 0.029 (adult)						

Comment on risk assessment

Pomegranate seeds/'flesh' after peeling

EU MRL risk assessment usually assumes that pomegranates are peeled before consumption. A specific processing factor is not available for pomegranates and prochloraz. However in a range of other sub-tropical and tropical fruits (JMPR, 2004) following post-harvest use there was no appreciable degradation and most of the residue was associated with the peel. In this sample the vast majority of the residue (1.88 mg/kg) was determined as parent (the remainder as metabolites of

prochloraz) which suggests that the residue was likely present arising from post-harvest treatment, and therefore it is expected that the significant proportion would have been in the peel. Removing the peel before consumption would lead to a reduction in the pesticide intake.

However, assuming that consumers eat all the peel, intakes for 7-10 year old children, toddlers, 11-14 year old children, infants 4-6 year old children, vegetarians and adults exceeded the ARfD. The highest intake was for 7-10 year old children.

Whole pomegranate, including all of the peel

If a 7-10 year old child consumed large portions of pomegranates containing prochloraz at 1.89 mg/kg, their intake of prochloraz could be 184% of the Acute Reference Dose. This intake is 54 times lower than a dose which caused no observed adverse effect in a 90-day dog study, a multigeneration rat study and 14-day dog study. The European Food Safety Authority used this study as the basis of the ARfD.

Toxicologists usually apply a factor of 100 to this dose to take into account uncertainties caused by using animal data and possible differences in susceptibility between people. We consider the reduced factor of 54 still enough to make an effect on health unlikely.

	Mango										
Mango	Prochloraz	3.7*	0.073	0.24 (4-6 year olds)	0.025	EFSA, 2011					
				0.20 (toddlers)							
				0.18 (7-10 year old child)							
				0.10 (15-18 year old)							
				0.080 (vegetarian)							
				0.073 (adult)							
				0.060 (11-14 year olds)							

Comment on risk assessment.

Mango flesh after peeling

EU MRL risk assessment usually assumes that mangoes are peeled before consumption. After peeling, 22% of the residue remains (JMPR, 2004), and the intakes for 4-6 year old children, toddlers and 7-10 year old children exceed the ARfD. The highest intake (after peeling) of 0.053 mg/kg bw/day was for 4-6 year old children.

If a 4-6 year old child consumed large portions of peeled mango containing prochloraz at 3.7 mg/kg their intake could be 212% of the Acute Reference. This intake is 47 times lower than a dose which caused no observed adverse effects in a 90-day dog study, a multigeneration rat study and 14-day dog study. The European Food Safety Authority used these studies as the basis of the ARfD.

Toxicologists usually apply a factor of 100 to this dose to take into account the uncertainties caused by using animal data and possible differences in susceptibility between people. We consider the likelihood of an effect on health to be low, given the remaining factor of 47. This is because an adverse effect on health would rely on

1) a susceptible individual eating and/or drinking a large quantity of the product which in turn had the highest levels of residue (i.e. [7] times the maximum value

found in monitoring); and

2) the actual difference in susceptibility between that individual and dog/rat, being higher than the factor we are left with in this situation; and3) the critical NOAEL being close to the actual doses needed to produce an adverse effect in the animals studied.

In conclusion we consider that some people might experience gastrointestinal disturbance (salivation, soft faeces, vomiting) after consuming large portions (97.5th percentile consumption) of mango containing the highest levels found in this report, but we consider the likelihood of an effect on health to be low. Such effects would be expected to be minor, short-lived, and reversible.

However, assuming that consumers eat all the peel, intakes for 4-6 year old children, toddlers, 7-10 year old children, 15-18 year old children, vegetarian, adults and 11-14 year old children exceeded the ARfD. The highest intake was for 4-6 year old children.

Whole mango, including all of the peel

If a 4-6 year old child consumed large portions of mangoes containing prochloraz at 3.7 mg/kg, their intake of prochloraz could be 960% of the Acute Reference Dose. This intake is 10 times lower than a dose which caused no observed adverse effect in a 90-day dog study, a multigeneration rat study and 14-day dog study. The European Food Safety Authority used this study as the basis of the ARfD.

Toxicologists usually apply a factor of 100 to this dose to take into account uncertainties caused by using animal data and possible differences in susceptibility between people. We consider this significant reduction in the factor of 100 to a level of 10 undesirable.

In conclusion, we consider that some people might experience gastrointestinal disturbance (salivation, soft faeces, vomiting) after consuming large portions (97.5th percentile consumption) of mango containing the highest levels found in this report. Such effects would be expected to be minor, short-lived, and reversible.

In this case, the vast majority of the residue was determined as parent prochloraz 3.6 mg/kg (the remainder, 0.1 mg/kg as two metabolites of prochloraz), suggesting that the residue was likely present arising from post-harvest treatment and might predominate in the peel. Removing the peel before consumption would lead to a reduction in the pesticide intake (refer to above assessment for consideration of mango flesh after peeling).

[†]Highest intake of all ten consumer groups, or intakes for all consumer groups that exceed the ARfD

[£] In absence of information on specific compounds used the dithiocarbamate residue is calculated as 1.8 mg/kg based on a carbon disulphide residue of 0.9 mg/kg and using ziram as the worst case (see note below).

Dithiocarbamate residues are determined as carbon disulphide which is a common product from different dithiocarbamate pesticides; for the risk assessment a precautionary approach is taken: the worse case dithiocarbamate residue is calculated by assuming the residue is derived from ziram and this is compared to the ARfD for ziram. Where it can be confirmed that a specific dithiocarbamate was applied the equivalent residue of the specific active substance is estimated and the intake compared to the appropriate reference dose.

^{\$} Residues were analysed as sum of prochloraz (1.89 mg/kg), including mainly parent prochloraz 1.88 mg/kg and two metabolites of prochloraz.

* Residues were analysed as sum of prochloraz (3.7 mg/kg), including mainly parent prochloraz 3.6 mg/kg and two metabolites of prochloraz.

Acute risk assessments for samples containing more than one organophosphorus/carbamate or captan/folpet or triazoles or carbendazim/thiophanate methyl following screening assessment.

Cron/Critical group	Destisida	Residue		Intake	ARfD	Source	
Crop/Critical group	Pesticide	mg/kg	mg/kg bw	%ARfD		ARID	Source
Curry leaves (parsley consumption data) vegetarian	chlorpyrifos carbofuran diazinon	0.03 0.8 0.5	0.00004 0.0010 0.0006	0.7 } 638.9 } 2.4 }	Total 642.0	0.005 0.00015 0.025	EU, 2015 EFSA, 2009 EFSA, 2006

Comment on risk assessment:

The presence of chlorpyrifos, carbofuran, and diazinon in the sample does not significantly contribute to the overall combined intake when compared to carbofuran alone. The overall risk is not expected to be different to the individual risk assessment presented for carbofuran in curry leaves in the table above.

Crop/Critical group	Pesticide	Residue		Intake	ARfD	Source	
		mg/kg	mg/kg bw	%ARfD		ARID	Source
Beans with pods Infants	carbofuran methamidophos	0.08 0.03	0.0004 0.0002	267.3 } 5.0 }	Total 272.3	0.00015 0.003	EFSA, 2009 EU, 2006

Comment on risk assessment:

The presence of carbofuran and methamidophos in the sample does not significantly contribute to the overall combined intake when compared to carbofuran alone. The overall risk is not expected to be different to the individual risk assessment presented for carbofuran in beans with pods in the table above.

INDEX OF APPENDICES

- Appendix A Summary of Results
- Appendix B Summary of Rapid Alerts Issued and Samples with Residues above the MRL
- Appendix C Pesticides Sought and Found in Individual Foodstuffs
- Appendix D Additional Action Taken
- Appendix E Pesticides Analysed as Multi-Component Analytes

Appendix A

Table 2: Summary of Results

Food	Analysed	With residues at or below the MRL	With residues above the MRL	With residues of non- approved pesticides (UK only)	With multiple residues	Organic samples tested	Organic samples with residues
Apples	24	17	0	0	15	6	0
Aubergine	28	5	0	0	2	0	0
Banana	25	14	0	0	13	8	0
Beans with Pods	37	10	7	0	6	0	0
Beef	24	0	0	0	0	2	0
Berries	44	14	3	1	12	0	0
Bread (gluten free)	12	0	0	0	0	0	0
Broccoli	22	10	0	0	4	0	0
Brussels Sprouts	30	27	0	0	3	0	0
Butter	25	8	5	0	0	5	4
Cheese (soft)	19	0	0	0	0	0	0
Chilli Peppers	29	13	7	0	14	0	0
Crème Fraîche	24	9	0	0	0	2	0
Curry Leaves	22	0	6	0	3	0	0
Eggs (hens)	19	0	0	0	0	5	0
Grapes	29	27	1	0	26	0	0
Lettuce	18	5	0	0	1	0	0
Mango	37	28	0	0	13	0	0
Melons	37	25	2	1	16	0	0
Milk	71	0	0	0	0	21	0

Food	Analysed	With residues at or below the MRL	With residues above the MRL	With residues of non- approved pesticides (UK only)	With multiple residues	Organic samples tested	Organic samples with residues
Okra	23	11	0	0	5	0	0
Olive Oil	19	7	0	0	0	5	0
Olives	19	1	0	0	0	1	0
Orange Juice	18	3	0	0	2	1	0
Pears	24	23	0	0	21	1	0
Peas without pods	25	9	0	0	3	0	0
Peppers	18	8	0	0	3	0	0
Potatoes	58	42	0	0	18	3	0
Prepared Fresh Fruit	25	4	8	0	9	0	0
Radishes	24	11	0	0	1	0	0
Raisins, Currants and Sultanas	49	41	2	0	31	8	4
Smoked Fish	56	5	0	0	0	1	0
Speciality Fruit	36	18	5	0	8	0	0
Теа	49	3	0	0	3	11	0

Appendix B

Table 3: Summary of Rapid Alerts Issued and samples with residues above the MRL

Sample ID	Date of Sampling	Description	Country of Origin	Retail Outlet	Address	Brand Name	Packer / Manufacturer	Pesticide residues found in mg/kg (MRL)
							Meridian Focus	carbofuran (sum) 0.08 (MRL = 0.01*)
					Stand 54, New		Industries Sdn Bhd No 19-G & 19-I,	chlorantraniliprole 0.05 (MRL = 0.5)
4175/2015 12/05/2015	Yard Long	Malaysia	Sunripe Fruit (UK)	Spitalfields Market, Leyton,		Jalan LJ1, Taman Industry Lembah	cypermethrin 0.1 (MRL = 0.7)	
		Beans		Ltd	London EH10		Jaya, 68000,	cyromazine 1 (MRL = 5)
				5SH		Ampang, Selangor	dithiocarbamates 0.8 (MRL = 1)	
							Darul Ehsan, Malaysia	methamidophos 0.03 (MRL = 0.01*)
								acetamiprid 13 (MRL = 3)
								azoxystrobin 0.04 (MRL = 70)
								carbofuran (sum) 0.8 (MRL = 0.02*)
								chlorpyrifos 0.03 (MRL = 0.05*)
								clothianidin 0.1 (MRL = 1.5)
		Curry		Sadia	47 Woodbridge			cypermethrin 1.6 (MRL = 2)
1536/2015	09/05/2015	Leaves	Ghana	Grocery	Hill, Guildford GU2 9AD	None stated		diazinon 0.5 (MRL = 0.02*
					GUZ JAD			imidacloprid 0.2 (MRL = 2) isoprothiolane 0.03 (MRL
								= 0.01*)
								lambda-cyhalothrin 0.05 (MRL = 1)
								thiamethoxam (sum) 0.1 (MRL = 1.5)
								trifloxystrobin 0.6 (MRL = 10)
2566/2015	18/02/2015	Pomegrana te	Turkey	Natures Finest Fruits Ltd	Heighley Gate, Morpeth NE61 3DA	(sold loose)		Prochloraz (sum) 1.89 (MRL = 0.05*)

APPENDIX B

Table 4: Summary of MRL Exceedances

Sample ID	Food	Country of Origin	Pesticide Detected	Residue Detected (mg/kg)	MRL (mg/kg)	MRL exceedance after allowing for measurement uncertainty
		I	Beans with Pods			
0036/2015	Green Beans	Egypt	propargite	0.02	0.01*	No
3888/2015	Speciality People	India	dimethoate (sum)	0.1	0.02*	Yes
3000/2015	Speciality Beans	IIIuia	thiophanate-methyl	0.6	0.1*	Yes
4000/2015	Speciality Beans	Ghana	chlorpyrifos	0.2	0.05*	Yes
4162/2015	Speciality Beans	India	dimethoate (sum)	0.2	0.02*	Yes
4175/2015	Speciality Peens	Malavaia	carbofuran (sum)	0.08	0.01*	Yes
41/5/2015	Speciality Beans	Malaysia	methamidophos	0.03	0.01*	Yes
4182/2015	Speciality Beans	India	ethion	0.2	0.01*	Yes
4274/2015	Speciality Beans	Dominican Republic	endosulfan (sum)	0.07	0.05*	No
			Berries			
2660/2015	Blackberries	Serbia	dithiocarbamates	0.1	0.05*	Yes
2972/2015	Blackberries	Mexico	acephate	0.05	0.01*	Yes
0700/2015	Dhuchowice	UK	BAC (sum)	0.4	0.1	No
0760/2015	Blueberries	UK	DDAC (sum)	0.2	0.1	No
			Butter			
1254/2015	Organic Salted Creamy Butter	UK	BAC (sum)	0.2	0.1	No
1387/2015	Organic Unsalted Butter	UK	BAC (sum)	0.2	0.1	No
1426/2015	Organic Delicious Salted Creamy Butter	UK	BAC (sum)	0.2	0.1	No
1964/2015	Delicious Butter Organic	UK	BAC (sum)	0.3	0.1	No
3000/2015	Salted English Butter	UK	BAC (sum)	0.5	0.1	No

Sample ID	Food	Country of Origin	Pesticide Detected	Residue Detected (mg/kg)	MRL (mg/kg)	MRL exceedance after allowing for measurement uncertainty
			Chilli Peppers			
3864/2015	Chillies	India	profenofos	0.5	0.01*	Yes
3895/2015	Coverne Chillies	Fount	chlorpyrifos	1.1	0.5	Yes
3095/2015	Cayenne Chillies	Egypt	profenofos	1.3	0.01*	Yes
			acephate	0.02	0.01*	No
3964/2015	Green Chilli Peppers	India	ethion	0.4	0.01*	Yes
			thiophanate-methyl	0.6	0.1*	Yes
3982/2015 Cayenne Chilli Peppers	Osusana Ohilli Damaana	lu di e	monocrotophos	0.3	0.01*	Yes
	India	profenofos	0.4	0.01*	Yes	
3999/2015	Green Chillies	Pakistan	thiophanate-methyl	0.2	0.1*	No
	Green Chillies	India	ethion	0.05	0.01*	Yes
4001/2015			flonicamid (sum)	0.2	0.15	No
4024/2015	Red Chilli Peppers	Israel	flonicamid (sum)	0.2	0.15	No
			Curry Leaves			
1224/2015	Curry Leaves	Gambia	oxamyl	0.05	0.02*	Yes
1225/2015	Curry Leaves	Ghana	chlorpyrifos	0.09	0.05*	No
1227/2015	Curry Leaves	Ghana	chlorpyrifos	0.3	0.05*	Yes
1535/2015	Curry Leaves	Ghana	diuron	0.04	0.02*	No
			acetamiprid	13	3	Yes
4 500/004 5	0	Ohama	carbofuran (sum)	0.8	0.02*	Yes
1536/2015	Curry Leaves	Ghana	diazinon	0.5	0.02*	Yes
			isoprothiolane	0.03	0.01*	Yes
4007/0045	0	la dia	chlorpyrifos	0.1	0.05*	Yes
1967/2015	Curry Leaves	India	deltamethrin	0.8	0.5	No

Sample ID	Food	Country of Origin	Pesticide Detected	Residue Detected (mg/kg)	MRL (mg/kg)	MRL exceedance after allowing for measurement uncertainty
			isoprothiolane	0.03	0.01*	Yes
			Grapes			
4236/2015	Thompson Seedless Grapes	India	flonicamid (sum)	0.06	0.05*	No
			Melons			
0014/2015	Honeydew	Brazil	procymidone	0.02	0.01*	Yes
2537/2015	Honeydew	Brazil	procymidone	0.02	0.01*	Yes
		Pi	repared Fresh Fruit			
2771/2015	Manga	UK	BAC (sum)	1.8	0.1	Yes
2111/2015	Mango	UK	DDAC (sum)	0.5	0.1	No
2869/2015	Manga	UK	BAC (sum)	2.4	0.1	Yes
2009/2015	Mango	UK	DDAC (sum)	0.6	0.1	No
0581/2015	Mixed	UK	BAC (sum)	1	0.1	Yes
1355/2015	Mixed	UK	BAC (sum)	1.3	0.1	Yes
1507/2015	Mixed	South Africa	BAC (sum)	0.6	0.1	No
1507/2015	WIXed	South Africa	DDAC (sum)	1.1	0.1	Yes
1005/0015	Mixed		BAC (sum)	0.7	0.1	No
1985/2015	Mixed	UK	DDAC (sum)	0.2	0.1	No
2944/2015	Mixed	UK	BAC (sum)	0.6	0.1	No
0622/2015	Pineapple	UK	BAC (sum)	3.5	0.1	Yes
		Raisins	s, Currants and Sultanas	;		
1737/2015	Raisins	Turkey	chlormequat	0.4	0.25	No
2610/2015	Sultanas	Turkey	chlormequat	0.3	0.25	No
			Speciality Fruit			
1961/2015	Passion fruit	Colombia	difenoconazole	0.2	0.1	No

Sample ID	Food	Country of Origin	Pesticide Detected	Residue Detected (mg/kg)	MRL (mg/kg)	MRL exceedance after allowing for measurement uncertainty
2566/2015	Pomegranates	Turkey	Prochloraz (sum)	1.89	0.05*	Yes
3896/2015	Pomegranates	Turkey	acetamiprid	0.02	0.01*	No
1343/2015	Rambutan	Thailand	carbendazim	0.4	0.1*	Yes
2577/2015	Starfruit	Malaysia	carbendazim	0.2	0.1*	No

* Maximum Residue Levels set at the LOD (LOD MRL): These MRLs are set at a default level, i.e. at the limit of determination (LOD) where analytical methods can reasonably detect the presence of the pesticide. Either insufficient trials data are available on which to set a maximum residue level or there may be no use of the pesticide on that crop in the EU. However they may be permitted elsewhere.

Appendix C Pesticides Sought and Found in Individual Foodstuffs

Table 5a.Residues detected in retail samples of APPLES purchased between April and
June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
PPLES, EATING Imported ((Non-EC): 14 samples analysed	
cetamiprid	<0.01 (i.e. not found)	13
MRL = 0.8)	0.03	1
aptan and folpet	<0.02 (i.e. not found)	13
MRL = 3)	0.3	1
nlorantraniliprole	<0.01 (i.e. not found)	12
/IRL = 0.5)	0.02	2
thiocarbamates	<0.05 (i.e. not found)	9
/IRL = 5)	0.1 - 0.4	5
udioxonil	<0.01 (i.e. not found)	13
/IRL = 5)	0.06	1
doxacarb	<0.01 (i.e. not found)	12
/IRL = 0.5)	0.01, 0.02	2
nethoxyfenozide	<0.01 (i.e. not found)	13
MRL = 2)	0.02	1
yrimethanil	<0.05 (i.e. not found)	11
/IRL = 7)	0.2 - 1.8	3
iacloprid	<0.01 (i.e. not found)	10
IRL = 0.3)	0.02 - 0.09	4
PPLES, EATING Imported ((EC): 10 samples analysed	
cetamiprid	<0.01 (i.e. not found)	9
/IRL = 0.8)	0.01	1
oscalid	<0.01 (i.e. not found)	8
IRL = 2)	0.02, 0.04	2
aptan and folpet	<0.02 (i.e. not found)	5
/IRL = 3)	0.03 - 0.2	5
thianon	<0.02 (i.e. not found)	3
IRL = 3)	0.02 - 0.2	7
onicamid (sum)	<0.01 (i.e. not found)	3
/IRL = 0.2)	0.01 - 0.03	7
idioxonil	<0.01 (i.e. not found)	6
IRL = 5)	0.01 - 0.1	4
rimicarb (sum)	<0.01 (i.e. not found)	9
/IRL = 2)	0.02	1
vraclostrobin	<0.01 (i.e. not found)	9
IRL = 0.5)	0.01	1

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
trifloxystrobin	<0.01 (i.e. not found)	8
(MRL = 0.5)	0.02, 0.06	2

Imported (EC) samples of apples were from France (6), Germany (2), Italy (2). Imported (Non-EC) samples of apples were from Argentina (1), Chile (3), New Zealand (4), South Africa (5), USA (1).

acetamiprid Chile (1), France (1)	
boscalid France (2)	
captan and folpet France (2), Germany (2), Italy (1), New Zealand (1))
chlorantraniliprole South Africa (2)	
dithiocarbamates South Africa (5)	
dithianon France (5), Germany (1), Italy (1)	
flonicamid (sum) France (6), Germany (1)	
fludioxonil France (3), Italy (1), USA (1)	
indoxacarb South Africa (2)	
methoxyfenozide Chile (1)	
pirimicarb (sum) Germany (1)	
pyraclostrobin France (1)	
pyrimethanil Chile (1), South Africa (2)	
thiacloprid South Africa (4)	
trifloxystrobin Germany (2)	

No residues were found in 6 of the 14 Imported (Non-EC) eating samples No residues were found in 1 of the 10 Imported (EC) eating samples

Table 5b. Residues detected in retail samples of APPLES purchased between April and June 2015

Sample ID Type of Residues found (mg/kg) Country Number APPLES of origin of residues DTN FLC FLUD IDX MXF PIR ACET BOS CPFOL CTP DTC PYC PYM THC TRFL (1) 2976/2015 EATING 0.3 New -Zealand 1522/2015 EATING 0.06 USA -(2) 1978/2015 EATING 0.4 0.02 South -_ -Africa 0.3 2634/2015 EATING 0.09 South --Africa 1944/2015 EATING 0.02 0.02 France --0.01 -2740/2015 EATING 0.04 France -_ _ 0.2 (3) 1663/2015 EATING 0.03 0.02 Chile _ 1777/2015 EATING 0.2 1.8 -0.05 -South Africa 1804/2015 EATING 0.06 0.02 0.01 France _ -1968/2015 EATING 0.03 0.02 0.01 France ------EATING 0.04 Germany 2960/2015 -0.07 0.02 -2686/2015 EATING 0.03 0.2 0.1 Italy --_ --_ 0.02 0.02 -(4) 1793/2015 EATING 0.1 0.01 South -_ -_ Africa 0.02 0.05 -2612/2015 EATING 0.3 1.6 South -Africa 0.03 0537/2015 EATING 0.05 0.02 0.01 France -0.02 0675/2015 EATING 0.1 0.02 0.06 -_ --Germany --_ -0.02 0.2 0.03 0.1 (6) 0573/2015 EATING 0.01 -0.01 -France

Residues (1-6 compounds) were found in 17 of the 24 samples as follows:

The abbreviations used for the pesticide names are as follows:

ACET	acetamiprid	BOS	boscalid
CTP	chlorantraniliprole	DTC	dithiocarbamates
FLC	flonicamid (sum)	FLUD	fludioxonil
MXF	methoxyfenozide	PIR	pirimicarb (sum)
PYM	pyrimethanil	THC	thiacloprid

CPFOL captan and folpet DTN dithianon IDX indoxacarb PYC pyraclostrobin TRFL trifloxystrobin

86

Table 5c.Residues sought but not found in retail samples of APPLES purchased
between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,4-dimethylnaphthalene (0.01) 2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.05) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.02) aclonifen (0.05) acrinathrin (0.05) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (0.01) anthraquinone (0.01) asulam (0.05) atrazine (0.01) azinphos-methyl (0.02) azoxystrobin (0.01) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbosulfan (0.01) carboxin (0.05) chlorbufam (0.05) chlordane (sum) (0.01) chlorfenapyr (0.02) chlorfenvinphos (0.01) chloridazon (0.01) chlorothalonil (0.01) chlorpropham (sum) (0.05) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01)

ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.02) etridiazole (0.05) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaquin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.05) fenhexamid (0.05) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.05) fenpropimorph (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.05) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.05) fluroxypyr (sum) (0.05) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) fonofos (0.01) formetanate (0.05) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) furmecyclox (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01)

monocrotophos (0.01) monolinuron (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.05) nitenpyram (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) Oxadiargyl (0.01) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.05) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) pentanochlor (0.01) permethrin (0.01) phenmedipham (0.05) phenthoate (0.01) phorate (partial sum) (0.02) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (0.01) propaguizafop (0.05) propargite (0.01) propetamphos (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.05) prosulfuron (0.02) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01)

chlorthal-dimethyl (0.01) chlortoluron (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.05) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) cyazofamid (0.01) cycloate (0.01) cycloxydim (0.05) cvflufenamid (0.01) cyfluthrin (0.02) Cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (0.05) cyproconazole (0.01) cvprodinil (0.05) cyromazine (0.05) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.05) demeton-S-methyl (0.01) desmedipham (0.05) diazinon (0.01) dichlobenil (0.05) dichlofluanid (0.01) dichlofluanid and DMSA (0.01) dichlorprop (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.05) disulfoton (sum) (0.02) diuron (0.01) dodine (0.05) emamectin benzoate (0.01) endosulfan (sum) (0.01) EPN (0.01) epoxiconazole (0.01) EPTC (0.05)

imazalil (0.02) imidacloprid (0.01) ioxynil (0.05) iprodione (0.02) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01) lufenuron (0.02) malathion (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (0.05) metalaxyl (0.01) metamitron (0.01) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.05) metsulfuron-methyl (0.05) mevinphos (0.01) molinate (0.01)

hexaconazole (0.01)

hexythiazox (0.01)

pyridaphenthion (0.01) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.05) Quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) rimsulfuron (0.01) rotenone (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.05) sum of butocarboxim and butocarboxim sul (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbuthylazine (0.05) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.05) thiamethoxam (sum) (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolvlfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.05) triasulfuron (0.05) triazamate (0.01) triazophos (0.01) triclopyr (0.05) tricyclazole (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 6a.Residues detected in samples of AUBERGINES obtained between April and
June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
AUBERGINES, UK: 2 sample	s analysed	
None found	-	2
AUBERGINES, Imported (EC): 26 samples analysed	
acetamiprid	<0.01 (i.e. not found)	24
(MRL = 0.2)	0.06, 0.1	2
azoxystrobin	<0.01 (i.e. not found)	25
(MRL = 3)	0.02	1
chlorothalonil	<0.01 (i.e. not found)	25
(MRL = 2)	0.07	1
chlorpyrifos-methyl	<0.01 (i.e. not found)	25
(MRL = 0.5)	0.08	1
cyprodinil	<0.01 (i.e. not found)	25
(MRL = 1)	0.02	1
deltamethrin	<0.01 (i.e. not found)	25
(MRL = 0.3)	0.01	1
pyriproxifen	<0.01 (i.e. not found)	25
(MRL = 1)	0.02	1

Imported (EC) samples of aubergines were from Belgium (1), Spain (10), the Netherlands (15). UK samples of aubergines (2).

Residues were distributed by country of origin, as follows:

acetamiprid	Spain (2)
azoxystrobin	Spain (1)
chlorothalonil	Spain (1)
chlorpyrifos-methyl	Spain (1)
cyprodinil	Spain (1)
deltamethrin	Spain (1)
pyriproxifen	Spain (1)

No residues were found in any of the UK samples No residues were found in 21 of the 26 Imported (EC) samples

Table 6b. Residues detected in samples of AUBERGINES obtained between April and June 2015

Number of residues	Residues found (mg/kg)							Country of origin	
		ACET	AZOX	CLN	CPFME	CYD	DEL	PYX	
(1)	2643/2015	-	-	-	0.08	-	-	-	Spain
· · /	4021/2015	0.1	-	-	-	-	-	-	Spain
	4125/2015	-	-	-	-	-	-	0.02	Spain
(2)	0026/2015	-	-	0.07	-	0.02	-	-	Spain
(3)	4022/2015	0.06	0.02	-	-	-	0.01	-	Spain

Residues (1-3 compounds) were found in 5 of the 28 samples as follows:

The abbreviations used for the pesticide names are as follows:

ACET	acetamiprid	AZOX	azoxystrobin	CLN	chlorothalonil
CPFME	chlorpyrifos-methyl	CYD	cyprodinil	DEL	deltamethrin
PYX	pyriproxifen	0.2	o)p.co		

Table 6c.Residues sought but not found in samples of AUBERGINES obtained
between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2,4-D (sum) (0.02) 2,4-DB (0.01) 2-phenylphenol (0.01) abamectin (sum) (0.01) acephate (0.01) acetochlor (0.01) aclonifen (0.01) acrinathrin (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) allethrin (0.01) alpha-HCH (0.01) ametoctradin (0.01) aminocarb (0.01) amitraz (0.01) atrazine (0.01) azinphos-ethyl (0.01) azinphos-methyl (0.01) BAC (sum) (0.01) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenthrin (0.01) biphenvl (0.01) bitertanol (0.05) boscalid (0.01) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (0.01) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbosulfan (0.01) carboxin (0.01) chlorantraniliprole (0.01) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenvinphos (0.01) chlorfluazuron (0.01) chloridazon (0.01) chlormequat (0.01) chlorobenzilate (0.01) chlorotoluron (0.01) chlorpropham (sum) (0.05) chlorpyrifos (0.01)

chlorthal-dimethyl (0.01)

chlozolinate (0.01)

fenamiphos (sum) (0.01) fenarimol (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.01) fenhexamid (0.01) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyroximate (0.01) fenthion (partial sum) (0.01) fenthion (sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) flonicamid (sum) (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.01) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) fonofos (0.01) formetanate (0.01) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) Haloxyfop-R methyl (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01) hexaconazole (0.01) hexaflumuron (0.01) hexazinone (0.01) hexythiazox (0.01) imazalil (0.01) imidacloprid (0.01) indoxacarb (0.01) ioxynil (0.01)

ofurace (0.01) Oxadiargyl (0.01) oxadiazon (0.01) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.01) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) penthiopyrad (0.01) permethrin (0.01) phenmedipham (0.01) phenthoate (0.01) phorate (sum) (0.02) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propamocarb (0.01) propaquizafop (0.01) propargite (0.01) propetamphos (0.01) propham (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.01) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrifenox (0.01) pyrimethanil (0.01) pyroxsulam (0.01) quassia (0.01)

clethodim (0.01) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) crufomate (0.01) cyanazine (0.01) cyazofamid (0.01) cycloxydim (0.01) cyflufenamid (0.01) cyfluthrin (0.01) Cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (0.01) cyproconazole (0.01) cyromazine (0.01) DDAC (sum) (0.01) DDT (sum) (0.01) desmedipham (0.01) diafenthiuron (0.01) diazinon (0.01) dichlofluanid (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.02) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) diphenylamine (0.05) disulfoton (sum) (0.01) dithianon (0.01) dithiocarbamates (0.05) diuron (0.01) dodine (0.05) emamectin benzoate (0.01) endosulfan (sum) (0.01) endrin (0.01) EPN (0.01) epoxiconazole (0.01) ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01)

iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.01) lenacil (0.01) lindane (0.01) linuron (0.01)lufenuron (0.01) malathion (0.01) mandipropamid (0.01) MCPA (sum) (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepiquat (0.01) mepronil (0.01) metaflumizone (0.01) metalaxyl (0.01) metamitron (0.01) metazachlor (0.01) metconazole (0.02) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.01) mevinphos (0.01) molinate (0.01) monocrotophos (0.01) monolinuron (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.01) nitenpyram (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01)

quinalphos (0.01) Quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) Quizalofop, incl. quizalfop-P (0.01) rotenone (0.01) simazine (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sum of butocarboxim and butocarboxim sulfoxide (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbumeton (0.01) terbuthylazine (0.01) terbutryn (0.01) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.01) thiacloprid (0.01) thiamethoxam (sum) (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.01) triasulfuron (0.01) triazamate (0.01) triazamate (acid) (0.01) triazamate (ester) (0.01) triazophos (0.01) trichlorfon (0.01) triclopyr (0.05) tricyclazole (0.01) trifloxystrobin (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) Tritosulfuron (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 7a.Residues detected in retail samples of BANANA purchased between April
and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
BANANA, Imported (Non-EC): 25 samples analysed	
azoxystrobin	<0.01 (i.e. not found)	17
(MRL = 2)	0.07 - 0.3	8
bifenthrin	<0.01 (i.e. not found)	24
(MRL = 0.1)	0.02	1
boscalid	<0.01 (i.e. not found)	24
(MRL = 0.6)	0.2	1
buprofezin	<0.01 (i.e. not found)	23
(MRL = 0.5)	0.01, 0.04	2
chlorpyrifos	<0.01 (i.e. not found)	24
(MRL = 3)	0.02	1
imazalil	<0.02 (i.e. not found)	15
(MRL = 2)	0.02 - 0.5	10
myclobutanil	<0.01 (i.e. not found)	24
(MRL = 2)	0.06	1
thiabendazole	<0.05 (i.e. not found)	19
(MRL = 5)	0.1 - 0.3	6

Imported (Non-EC) samples of banana were from Belize (1), Cameroon (2), Colombia (4), Costa Rica (2), Dominican Republic (6), Ecuador (5), Ghana (2), Mexico (2), St Lucia (1).

Residues were distributed by country of origin, as follows:

azoxystrobin	Belize (1), Cameroon (2), Colombia (1), Costa Rica (2), Ghana (2)
bifenthrin	Costa Rica (1)
boscalid	Ghana (1)
buprofezin	Costa Rica (2)
chlorpyrifos	Ecuador (1)
imazalil	Belize (1), Cameroon (2), Colombia (1), Ecuador (4), Ghana (1), St Lucia (1)
myclobutanil	Colombia (1)
thiabendazole	Colombia (1), Costa Rica (2), Ecuador (3)

No residues were found in 11 of the 25 Imported (Non-EC) samples

Table 7b.Residues detected in retail samples of BANANA purchased between
April and June 2015

Number of residues	Sample ID		Residues found (mg/kg)							Country of origin
		AZOX	BIF	BOS	BUF	CPF	IMZ	MYC	TBZ	0
(1)	2765/2015	-	-	-	-	-	0.5	-	-	St Lucia
(2)	2656/2015	0.3	-	-	-	-	0.02	-	-	Belize
	0156/2015	0.2	-	-	-	-	0.3	-	-	Cameroon
	2614/2015	0.07	-	-	-	-	0.2	-	-	Cameroon
	1386/2015	-	-	-	-	-	0.3	-	0.1	Colombia
	2635/2015	0.09	-	-	-	-	-	0.06	-	Colombia
	0762/2015	-	-	-	-	-	0.3	-	0.3	Ecuador
	1482/2015	-	-	-	-	-	0.2	-	0.2	Ecuador
	1616/2015	-	-	-	-	-	0.5	-	0.3	Ecuador
	2649/2015	-	-	-	-	0.02	0.08	-	-	Ecuador
	2914/2015	0.1	-	0.2	-	-	-	-	-	Ghana
	2975/2015	0.2	-	-	-	-	0.07	-	-	Ghana
(3)	2913/2015	0.1	-	-	0.01	-	-	-	0.1	Costa Rica
(4)	1468/2015	0.09	0.02	-	0.04	-	-	-	0.2	Costa Rica

Residues (1-4 compounds) were found in 14 of the 25 samples as follows:

The abbreviations used for the pesticide names are as follows:

AZOX BUF MYC	azoxystrobin buprofezin myclobutanil	BIF CPF TBZ	bifenthrin chlorpyrifos thiabendazole	BOS IMZ	boscalid imazalil
WITC .	myclobularii	IDZ	linabenuazoie		

Table 7c.Residues sought but not found in retail samples of BANANA purchased
between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,4-dimethylnaphthalene (0.01) 2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.05) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.02) aclonifen (0.05) acrinathrin (0.05) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (0.01) anthraguinone (0.01) asulam (0.05) atrazine (0.01) azinphos-methyl (0.02) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) butachlor (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (0.02) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbosulfan (0.01) carboxin (0.05) chlorantraniliprole (0.01) chlorbufam (0.05) chlordane (sum) (0.01) chlorfenapyr (0.02) chlorfenvinphos (0.01) chloridazon (0.01) chlorothalonil (0.01) chlorpropham (sum) (0.05) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01)

ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.02) etridiazole (0.05) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaquin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.05) fenhexamid (0.05) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.05) fenpropimorph (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) flonicamid (sum) (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.05) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.05) fluroxypyr (sum) (0.05) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) fonofos (0.01) formetanate (0.05) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) furmecyclox (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) Heptachlor (sum) (0.01)

monocrotophos (0.01) monolinuron (0.01) Monuron (0.01) napropamide (0.05) nitenpyram (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) Oxadiargyl (0.01) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.05) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) pentanochlor (0.01) permethrin (0.01) phenmedipham (0.05) phenthoate (0.01) phorate (partial sum) (0.02) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (0.01) propaguizafop (0.05) propargite (0.01) propetamphos (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.05) prosulfuron (0.02) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyrethrins (0.01)

chlortoluron (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.05) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.02) cyazofamid (0.01) cycloate (0.01) cycloxydim (0.05) cyflufenamid (0.01) cyfluthrin (0.02) Cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (0.05) cyproconazole (0.01) cyprodinil (0.05) cyromazine (0.05) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.05) demeton-S-methyl (0.01) desmedipham (0.05) diazinon (0.01) dichlobenil (0.05) dichlofluanid (0.01) dichlofluanid and DMSA (0.01) dichlorprop (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.05) disulfoton (sum) (0.02) dithiocarbamates (0.05) diuron (0.01) dodine (0.05) emamectin benzoate (0.01) endosulfan (sum) (0.01) EPN (0.01) epoxiconazole (0.01) EPTC (0.05) ethiofencarb (parent) (0.01)

heptenophos (0.01) hexachlorobenzene (0.01) hexaconazole (0.01) hexythiazox (0.01) imidacloprid (0.01) indoxacarb (0.01) ioxynil (0.05) iprodione (0.02) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01)lufenuron (0.02) malathion (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (0.05) metalaxyl (0.01) metamitron (0.01) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.05) metsulfuron-methyl (0.05) mevinphos (0.01) molinate (0.01)

pyridaben (0.01) pyridaphenthion (0.01) pyrimethanil (0.05) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.05) Quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) rimsulfuron (0.01) rotenone (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.05) sum of butocarboxim and butocarboxim sulfoxide (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbuthylazine (0.05) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiacloprid (0.01) thiamethoxam (sum) (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.05) triasulfuron (0.05) triazamate (0.01) triazophos (0.01) triclopyr (0.05) tricyclazole (0.01) trifloxystrobin (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Commodity/Pesticide Concentration range (mg/kg) Number of samples in range **GREEN BEANS Imported (Non-EC): 19 samples analysed** <0.01 (i.e. not found) 18 acetamiprid (MRL = 0.15)0.01 1 carbendazim <0.01 (i.e. not found) 18 (MRL = 0.2)0.01 1 cypermethrin <0.01 (i.e. not found) 18 (MRL = 0.7)0.02 1 imidacloprid <0.01 (i.e. not found) 18 (MRL = 2)0.02 1 <0.01 (i.e. not found) 17 iprodione (MRL = 5)0.02, 0.2 2 lambda-cyhalothrin <0.01 (i.e. not found) 18 (MRL = 0.2)0.01 1 methomyl (sum) <0.01 (i.e. not found) 18 $(MRL = 0.02^*)$ 0.02 1 propargite <0.01 (i.e. not found) 18 $(MRL = 0.01^*)$ 0.02 1 SPECIALITY BEANS Imported (Non-EC): 18 samples analysed <0.01 (i.e. not found) 17 acetamiprid (MRL = 0.15)0.03 1 azoxystrobin <0.01 (i.e. not found) 17 (MRL = 3)0.07 1 <0.01 (i.e. not found) carbendazim 15 (MRL = 0.2)0.03, 0.1, 0.2 3 17 carbofuran (sum) <0.01 (i.e. not found) $(MRL = 0.01^*)$ 0.08 1 chlorantraniliprole <0.01 (i.e. not found) 17 (MRL = 0.5)0.05 1 chlorpyrifos <0.01 (i.e. not found) 17 $(MRL = 0.05^*)$ 0.2 1 <0.01 (i.e. not found) 16 cypermethrin (MRL = 0.7)0.09, 0.1 2 cyromazine <0.01 (i.e. not found) 17 (MRL = 5)1 1 dimethoate (sum) <0.01 (i.e. not found) 16 $(MRL = 0.02^*)$ 0.1, 0.2 2 dithiocarbamates <0.05 (i.e. not found) 15 (MRL = 1)0.6, 0.8, 1 3

Table 8a. Residues detected in samples of BEANS WITH PODS obtained between April and June 2015

endosulfan (sum) <0.01 (i.e. not found) 0.07

 $(MRL = 0.05^*)$

17

1

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
ethion	<0.01 (i.e. not found)	17
(MRL = 0.01*)	0.2	1
lambda-cyhalothrin	<0.01 (i.e. not found)	17
(MRL = 0.2)	0.2	1
methamidophos	<0.01 (i.e. not found)	17
(MRL = 0.01*)	0.03	1
methomyl (sum)	<0.01 (i.e. not found)	17
(MRL = 0.02*)	0.02	1
monocrotophos	<0.01 (i.e. not found)	17
(MRL = 0.01*)	0.01	1
spinosad	<0.01 (i.e. not found)	17
(MRL = 0.5)	0.02	1
thiophanate-methyl	<0.01 (i.e. not found)	17
(MRL = 0.1*)	0.6	1

NOTE: * Indicates MRL is set to the Limit of Determination.

Imported (Non-EC) samples of beans with pods were from Dominican Republic (5), Egypt (7), Ghana (2), India (9), Kenya (7), Malaysia (1), Morocco (4), Qatar (1), Senegal (1).

Residues were distributed by country of origin, as follows:

residues were distributed by obuility	or origin, as ronows.
acetamiprid	Egypt (1), India (1)
azoxystrobin	Dominican Republic (1)
carbofuran (sum)	Malaysia (1)
carbendazim	India (3), Kenya (1)
chlorpyrifos	Ghana (1)
chlorantraniliprole	Malaysia (1)
cypermethrin	India (1), Kenya (1), Malaysia (1)
cyromazine	Malaysia (1)
dimethoate (sum)	India (2)
dithiocarbamates	Ghana (1), India (1), Malaysia (1)
endosulfan (sum)	Dominican Republic (1)
ethion	India (1)
imidacloprid	Egypt (1)
iprodione	Egypt (2)
lambda-cyhalothrin	India (1), Kenya (1)
methamidophos	Malaysia (1)
methomyl (sum)	Dominican Republic (1), Kenya (1)
monocrotophos	India (1)
propargite	Egypt (1)
spinosad	Dominican Republic (1)
thiophanate-methyl	India (1)

No residues were found in 13 of the 19 Imported (Non-EC) green beans samples No residues were found in 7 of the 18 Imported (Non-EC) speciality beans samples

Table 8b. Residues detected in samples of BEANS WITH PODS obtained between April and June 2015 continued

lumber of esidues	Sample ID	Type of BEANS WITH	Residues found (mg/kg)					Country of origin																
		PODS	ACET	AZOX	CBF_S	CBZ	CPF	CTP	CYP	CYZ	DIMSM	DTC	ENSF	ETN	IMI	IPR	LCY	MDP	METHS	MON	PGT	SPN	TME	
1)	4003/2015	Speciality Beans	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.02	-	-	-	-	Dominican Republic
	4172/2015	Speciality Beans	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.02	-	Dominican Republic
	4180/2015	Speciality Beans	-	0.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Dominica Republic
	4274/2015	Speciality Beans	-	-	-	-	-	-	-	-	-	-	0.07	-	-	-	-	-	-	-	-	-	-	Dominica Republic
	0158/2015	Green Beans	-	-	-	-	-	-	-	-	-	-	-	-	-	0.02	-	-	-	-	-	-	-	Egypt
	2915/2015	Green Beans	-	-	-	-	-	-	-	-	-	-	-	-	0.02	-	-	-	-	-	-	-	-	Egypt
	2916/2015	Green Beans	-	-	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	-	-	-	-	-	Egypt
	4162/2015	Speciality Beans	-	-	-	-	-	-	-	-	0.2	-	-	-	-	-	-	-	-	-	-	-	-	India
	4166/2015	Speciality Beans	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.01	-	-	-	India
	4179/2015	Speciality Beans	-	-	-	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	India
	0759/2015	Green Beans	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.01	-	-	-	-	-	-	Kenya
!)	0036/2015	Green Beans	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.02	-	-	Egypt
	4000/2015	Speciality Beans	-	-	-	-	0.2	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	Ghana
)	1500/2015	Green Beans	-	-	-	0.01	-	-	0.02	-	-	-	-	-	-	-	-	-	0.02	-	-	-	-	Kenya
)	3888/2015	Speciality Beans	-	-	-	0.1	-	-	-	-	0.1	-	-	-	-	-	0.2	-	-	-	-	-	0.6	India
)	4182/2015	Speciality Beans	0.03	-	-	0.2	-	-	0.09	-	-	0.6	-	0.2	-	-	-	-	-	-	-	-	-	India
)	4175/2015	Speciality Beans	-	-	0.08	-	-	0.05	0.1	1	-	0.8	-	-	-	-	-	0.03	-	-	-	-	-	Malaysia

Residues (1-6 compounds) were found in 17 of the 37 samples as follows:

The abbreviations used for the pesticide names are as follows:

ACET CBZ	acetamiprid carbendazim	AZOX CPF	azoxystrobin chlorpyrifos	CBF_S CTP	carbofuran (sum) chlorantraniliprole
CYP	cypermethrin	CYZ	cyromazine	DIMSM	dimethoate (sum)
DTC	dithiocarbamates	ENSF	endosulfan (sum)	ETN	ethion
IMI	imidacloprid	IPR	iprodione	LCY	lambda-cyhalothrin
MDP	methamidophos	METHS	methomyl (sum)	MON	monocrotophos
PGT	propargite	SPN	spinosad	TME	thiophanate-methyl

Table 8c.Residues sought but not found in samples of BEANS WITH PODS
obtained between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2,4-D (sum) (0.02) 2,4-DB (0.01) 2-phenylphenol (0.01) abamectin (sum) (0.01) acephate (0.01) acetochlor (0.01) aclonifen (0.01) acrinathrin (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) allethrin (0.01) alpha-HCH (0.01) ametoctradin (0.01) aminocarb (0.01) amitraz (0.01) atrazine (0.01) azinphos-ethyl (0.01) azinphos-methyl (0.01) BAC (sum) (0.01) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenthrin (0.01) biphenvl (0.01) bitertanol (0.05) boscalid (0.01) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan and folpet (0.01) carbaryl (0.01) carbosulfan (0.01) carboxin (0.01) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenvinphos (0.01) chlorfluazuron (0.01) chloridazon (0.01) chlorobenzilate (0.01) chlorothalonil (0.01) chlorotoluron (0.01) chlorpropham (sum) (0.05) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlozolinate (0.01) clethodim (0.01) clofentezine (0.01)

clomazone (0.01)

fenarimol (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.01) fenhexamid (0.01) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyroximate (0.01) fenthion (partial sum) (0.01) fenthion (sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) flonicamid (sum) (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.01) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) fonofos (0.01) formetanate (0.01) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) Haloxyfop-R methyl (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01)hexaconazole (0.01) hexaflumuron (0.01) hexazinone (0.01) hexythiazox (0.01) imazalil (0.01) indoxacarb (0.01) ioxynil (0.01) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01)

oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.01) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) penthiopyrad (0.01) permethrin (0.01) phenmedipham (0.01) phenthoate (0.01) phorate (sum) (0.02) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) Prochloraz (sum) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propamocarb (0.01) propaquizafop (0.01) propetamphos (0.01) propham (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.01) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrifenox (0.01) pyrimethanil (0.01) pyriproxifen (0.01) pyroxsulam (0.01) quassia (0.01) quinalphos (0.01) Quinoclamine (0.01) quinoxyfen (0.01)

clothianidin (0.01) coumaphos (0.01) crufomate (0.01) cyanazine (0.01) cyazofamid (0.01) cycloxydim (0.01) cyflufenamid (0.01) cyfluthrin (0.01) Cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cyproconazole (0.01) cyprodinil (0.01) DDAC (sum) (0.01) DDT (sum) (0.01) deltamethrin (0.01) desmedipham (0.01) diafenthiuron (0.01) diazinon (0.01) dichlofluanid (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.02) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinocap (0.01) diphenylamine (0.05) disulfoton (sum) (0.01) dithianon (0.01) diuron (0.01) dodine (0.05) emamectin benzoate (0.01) endrin (0.01) EPN (0.01) epoxiconazole (0.01) ethiofencarb (parent) (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01)

isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lenacil (0.01) lindane (0.01) linuron (0.01) lufenuron (0.01) malathion (0.01) mandipropamid (0.01) MCPA (sum) (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepronil (0.01) meptyldinocap (0.02) metaflumizone (0.01) metalaxyl (0.01) metamitron (0.01) metazachlor (0.01) metconazole (0.02) methabenzthiazuron (0.01) methacrifos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.01) mevinphos (0.01) molinate (0.01) monolinuron (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.01) nitenpyram (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) Oxadiargyl (0.01) oxadiazon (0.01) oxadixyl (0.01)

quintozene (sum) (0.01) Quizalofop, incl. guizalfop-P (0.01) rotenone (0.01) simazine (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sum of butocarboxim and butocarboxim sul (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbumeton (0.01) terbuthylazine (0.01) terbutryn (0.01) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.01) thiacloprid (0.01) thiamethoxam (sum) (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.01) triasulfuron (0.01) triazamate (0.01) triazamate (acid) (0.01) triazamate (ester) (0.01) triazophos (0.01) trichlorfon (0.01) triclopyr (0.05) tricyclazole (0.01) trifloxystrobin (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) Tritosulfuron (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 9a.Residues detected in retail samples of BEEF purchased between April
and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range							
BEEF, UK: 23 samples analysed									
None found	-	23							
BEEF, Imported (EC): 1 sample analysed									
None found	-	1							

Imported (EC) samples of beef were from Ireland (1). UK samples of beef (23).

No residues were found in any of the UK samples No residues were found in any of the Imported (EC) samples

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

aldrin and dieldrin (0.002) alpha-HCH (0.002) azinphos-ethyl (0.002) beta-HCH (0.002) bifenthrin (0.005) chlordane (animal products) (0.002) chlorfenvinphos (0.002) chlorobenzilate (0.002) chlorpyrifos (0.002) chlorpyrifos-methyl (0.002) cyfluthrin (0.005) DDT (sum) (0.002) deltamethrin (0.005) diazinon (0.002) endosulfan (sum) (0.002) endrin (0.002) fenvalerate & esfenvalerate (all isomers (0.005) Heptachlor (sum) (0.002) hexachlorobenzene (0.002) lindane (0.002) methacrifos (0.002) methidathion (0.002) methoxychlor (0.002) nitrofen (0.002) parathion (0.002) parathion-methyl (sum) (0.002) permethrin (0.005) pirimiphos-methyl (0.002) profenofos (0.002)

pyrazophos (0.002) quintozene (sum) (0.002) resmethrin (0.005) tecnazene (0.002) triazophos (0.002)

Table 10a. Residues detected in retail samples of BERRIES purchased between April and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
BLACKBERRIES UK: 3 sam	oles analysed	
boscalid	<0.01 (i.e. not found)	0
(MRL = 10)	0.05, 0.1, 0.2	3
cyprodinil	<0.01 (i.e. not found)	0
(MRL = 10)	0.01, 0.01, 0.03	3
fludioxonil	<0.01 (i.e. not found)	2
(MRL = 5)	0.01	1
pyraclostrobin	<0.01 (i.e. not found)	1
(MRL = 3)	0.01, 0.02	2
pyrimethanil	<0.01 (i.e. not found)	1
(MRL = 10)	0.01	2
BLUEBERRIES UK: 1 sample	e analysed	
BAC (sum)	<0.01 (i.e. not found)	0
(MRL = 0.1)	0.4	1
captan	<0.01 (i.e. not found)	0
(MRL = 15)	0.1	1
cypermethrin	<0.01 (i.e. not found)	0
(MRL = 0.05*)	0.05	1
DDAC (sum)	<0.01 (i.e. not found)	0
(MRL = 0.1)	0.2	1
BLACKBERRIES Imported (I	Non-EC): 5 samples analysed	
acephate	<0.01 (i.e. not found)	4
(MRL = 0.01*)	0.05	1
boscalid	<0.01 (i.e. not found)	4
(MRL = 10)	0.02	1
cypermethrin	<0.01 (i.e. not found)	4
(MRL = 0.5)	0.08	1
cyprodinil	<0.01 (i.e. not found)	3
(MRL = 10)	0.03	2
dithiocarbamates	<0.05 (i.e. not found)	4
(MRL = 0.05*)	0.1	1
fenhexamid	<0.01 (i.e. not found)	1
(MRL = 10)	0.01 - 0.5	4
fludioxonil	<0.01 (i.e. not found)	3
(MRL = 5)	0.02, 0.06	2
imidacloprid	<0.01 (i.e. not found)	4
(MRL = 5)	0.02	1
iprodione	<0.01 (i.e. not found)	4
(MRL = 10)	0.02	1
odione	<0.01 (i.e. not found)	4

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range								
methomyl (sum)	<0.01 (i.e. not found)	4								
(MRL = 0.02*)	0.01	1								
pyrimethanil	<0.01 (i.e. not found)	4								
(MRL = 10)	0.02	1								
spinosad	<0.01 (i.e. not found)	4								
(MRL = 1.5)	0.02	1								
BLUEBERRIES Imported (Non-EC): 13 samples analysed										
boscalid	<0.01 (i.e. not found)	10								
(MRL = 10)	0.01, 0.01, 0.02	3								
captan	<0.01 (i.e. not found)	11								
(MRL = 15)	0.02, 0.07	2								
DDAC (sum)	<0.01 (i.e. not found)	11								
(MRL = 0.1)	0.03	2								
fenbuconazole	<0.01 (i.e. not found)	12								
(MRL = 1)	0.02	1								
fenhexamid	<0.01 (i.e. not found)	11								
(MRL = 15)	0.02, 0.04	2								
iprodione	<0.01 (i.e. not found)	12								
(MRL = 10)	1.3	1								
phosmet (sum)	<0.01 (i.e. not found)	12								
(MRL = 10)	1.4	1								
pirimicarb (sum)	<0.01 (i.e. not found)	11								
(MRL = 1)	0.02, 0.2	2								
thiacloprid	<0.01 (i.e. not found)	12								
(MRL = 1)	0.01	1								
BLACKBERRIES Imported (EC): 1 sample analysed										
abamectin (sum)	<0.01 (i.e. not found)	0								
(MRL = 0.1)	0.01	1								
spinosad	<0.01 (i.e. not found)	0								
(MRL = 1.5)	0.04	1								
BLUEBERRIES Imported (EC): 21	BLUEBERRIES Imported (EC): 21 samples analysed									
DDAC (sum)	<0.01 (i.e. not found)	20								
(MRL = 0.1)	0.01	1								

NOTE: * Indicates MRL is set to the Limit of Determination.

Imported (EC) samples of berries and small fruits were from Spain (22). Imported (Non-EC) samples of berries and small fruits were from Chile (1), Guatemala (1), Mexico (3), Morocco (11), Serbia (2). UK samples of berries and small fruits (4).

Residues were distributed by country of origin, as follows:abamectin (sum)Spain (1)acephateMexico (1)BAC (sum)UK (1)boscalidMorocco (3), Serbia (1), UK (3)

captan cyprodinil cypermethrin DDAC (sum) dithiocarbamates fenbuconazole fludioxonil fenhexamid imidacloprid iprodione methomyl (sum) pirimicarb (sum) phosmet (sum) pyraclostrobin pyrimethanil spinosad thiacloprid

Morocco (2), UK (1) Guatemala (1), Serbia (1), UK (3) Mexico (1), UK (1) Chile (1), Morocco (1), Spain (1), UK (1) Serbia (1) Chile (1) Guatemala (1), Serbia (1), UK (1) Chile (1), Guatemala (1), Mexico (3), Morocco (1) Mexico (1) Chile (1), Serbia (1) Mexico (1) Morocco (2) Chile (1) UK (2) Serbia (1), UK (2) Mexico (1), Spain (1) Serbia (1)

Residues were found in all of the 3 UK blackberries samples Residues were found in all of the 1 UK blueberries samples Residues were found in all of the 5 Imported (Non-EC) blackberries samples No residues were found in 7 of the 13 Imported (Non-EC) blueberries samples Residues were found in all of the 1 Imported (EC) blackberries samples No residues were found in 20 of the 21 Imported (EC) blueberries samples

Table 10b. Residues detected in retail samples of BERRIES purchased between April and June 2015

Number of	Sample ID	BERRIES AND										Residue	s found (mg/kg)										Country of origin
residues		SMALL FRUITS	ABA	ACE	BACSM	BOS	CAP	CYD	CYP	DDAC	DTC	FENB	FLUD	FNHX	IMI	IPR	METHS	PIR	PMT	PYC	PYM	SPN	THC	
(1)	2919/2015	BLACKBERRIES	-	-	_	_	-	_	-	-	-	_	-	0.03	_	-	_	-	_	-	-	-	-	Mexico
(')	1674/2015	BLUEBERRIES	-	-	-	-	-	-	-	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	Morocco
	2599/2015	BLUEBERRIES	-	-	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Morocco
	2659/2015	BLUEBERRIES	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.01	Serbia
	2973/2015	BLUEBERRIES	-	-	-	-	-	-	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	Spain
(2)	1619/2015	BLACKBERRIES	-	-	-	0.05	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	UK
()	0851/2015	BLACKBERRIES	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.04	-	Spain
(3)	1671/2015	BLACKBERRIES	-	-	-	_	-	0.03	-	-	-	-	0.06	0.01	-	-	-	-	-	-	-	-	-	Guatemala
(-)	0040/2015	BLACKBERRIES	-	-	-	-	-	-	0.08	-	-	-	-	0.5	-	-	-	-	-	-	-	0.02	-	Mexico
	1710/2015	BLUEBERRIES	-	-	-	0.01	0.07	-	-	-	-	-	-	-	-	-	-	0.2	-	-	-	-	-	Morocco
(4)	0760/2015	BLUEBERRIES	-	-	0.4	_	0.1	-	0.05	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	UK
()	2619/2015	BLACKBERRIES	-	-	-	0.2	-	0.03	-	-	-	-	-	-	-	-	-	-	-	0.02	0.01	-	-	UK
	2972/2015	BLACKBERRIES	-	0.05	-	-	-	-	-	-	-	-	-	0.02	0.02	-	0.01	-	-	-	-	-	-	Mexico
	2617/2015	BLUEBERRIES	-	-	-	0.02	0.02	-	-	-	-	-	-	0.02	-	-	-	0.02	-	-	-	-	-	Morocco
(5)	1471/2015	BLACKBERRIES	-	-	-	0.1	-	0.01	-	-	-	-	0.01	-	-	-	-	-	-	0.01	0.01	-	-	UK
	0161/2015	BLUEBERRIES	-	-	-	-	-	-	-	0.03	-	0.02	-	0.04	-	1.3	-	-	1.4	-	-	-	-	Chile
(6)	2660/2015	BLACKBERRIES	-	-	-	0.02	-	0.03	-	-	0.1	-	0.02	-	-	0.02	-	-	-	-	0.02	-	-	Serbia

Residues (1-6 compounds) were found in 17 of the 44 samples as follows:

The abbreviations used for the pesticide names are as follows:

ABA	abamectin (sum)	ACE	acephate	BACSM	BAC (sum)
BOS	boscalid	CAP	captan	CYD	cyprodinil
CYP	cypermethrin	DDAC	DDAC (sum)	DTC	dithiocarbamates
FENB	fenbuconazole	FLUD	fludioxonil	FNHX	fenhexamid
IMI	imidacloprid	IPR	iprodione	METHS	methomyl (sum)
PIR	pirimicarb (sum)	PMT	phosmet (sum)	PYC	pyraclostrobin
PYM	pyrimethanil	SPN	spinosad	THC	thiacloprid

Table 10c. Residues sought but not found in retail samples of BERRIES purchased between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2,4-D (sum) (0.02) 2,4-DB (0.01) 2-phenylphenol (0.01) acetamiprid (0.01) acetochlor (0.01) aclonifen (0.01) acrinathrin (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) allethrin (0.01) alpha-HCH (0.01) ametoctradin (0.01) aminocarb (0.01) amitraz (0.01) atrazine (0.01) azinphos-ethyl (0.01) azinphos-methyl (0.01) azoxystrobin (0.01) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenthrin (0.01) biphenyl (0.01) bitertanol (0.05) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbosulfan (0.01) carboxin (0.01) chlorantraniliprole (0.01) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenvinphos (0.01) chlorfluazuron (0.01) chloridazon (0.01) chlorobenzilate (0.01) chlorothalonil (0.01) chlorotoluron (0.01) chlorpropham (sum) (0.05) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlozolinate (0.01)

clethodim (0.01)

clofentezine (0.01)

fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaguin (0.01) fenbutatin oxide (0.01) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyroximate (0.01) fenthion (partial sum) (0.01) fenthion (sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) flonicamid (sum) (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) flufenacet (0.01) flufenoxuron (0.01) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) fonofos (0.01) formetanate (0.01) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) Haloxyfop-R methyl (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01)hexaconazole (0.01) hexaflumuron (0.01) hexazinone (0.01) hexythiazox (0.01) imazalil (0.01) indoxacarb (0.01) ioxynil (0.01) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01)

ofurace (0.01) Oxadiargyl (0.01) oxadiazon (0.01) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.01) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) penthiopyrad (0.01) permethrin (0.01) phenmedipham (0.01) phenthoate (0.01) phorate (sum) (0.02) phosalone (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propamocarb (0.01) propaguizafop (0.01) propargite (0.01) propetamphos (0.01) propham (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.01) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrifenox (0.01) pyriproxifen (0.01) pyroxsulam (0.01) quassia (0.01) quinalphos (0.01) Quinoclamine (0.01) quinoxyfen (0.01)

clomazone (0.01) clothianidin (0.01) coumaphos (0.01) crufomate (0.01) cyanazine (0.01) cyazofamid (0.01) cycloxydim (0.01) cyflufenamid (0.01) cyfluthrin (0.01) Cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cyproconazole (0.01) cyromazine (0.01) DDT (sum) (0.01) deltamethrin (0.01) desmedipham (0.01) diazinon (0.01) dichlofluanid (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.02) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinocap (0.01) diphenylamine (0.05) disulfoton (sum) (0.01) diuron (0.01) dodine (0.05) emamectin benzoate (0.01) endosulfan (sum) (0.01) endrin (0.01) EPN (0.01) epoxiconazole (0.01) ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01) etrimfos (0.01) famoxadone (0.01)

isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.01) lenacil (0.01) lindane (0.01) linuron (0.01) lufenuron (0.01) malathion (0.01) mandipropamid (0.01) MCPA (sum) (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepronil (0.01) meptyldinocap (0.01) metaflumizone (0.01) metalaxyl (0.01) metamitron (0.01) metazachlor (0.01) metconazole (0.02) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.01) mevinphos (0.01) molinate (0.01) monocrotophos (0.01) monolinuron (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.01) nitenpyram (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01)

quintozene (sum) (0.01) Quizalofop, incl. guizalfop-P (0.01) rotenone (0.01) simazine (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sum of butocarboxim and butocarboxim sulfoxide (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbumeton (0.01) terbuthylazine (0.01) terbutryn (0.01) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.01) thiamethoxam (sum) (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.01) triasulfuron (0.01) triazamate (0.01) triazamate (acid) (0.01) triazamate (ester) (0.01) triazophos (0.01) trichlorfon (0.01) triclopyr (0.05) tricyclazole (0.01) trifloxystrobin (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) Tritosulfuron (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 11a.Residues detected in retail samples of BREAD (GLUTEN FREE)
purchased between April and May 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range							
BREAD (GLUTEN FREE), UK	: 11 samples analysed								
None found	-	11							
BREAD (GLUTEN FREE), Imported (Non-EC): 1 sample analysed									
None found	-	1							

Imported (Non-EC) samples of bread (gluten free) were from USA (1). UK samples of bread (gluten free) (11).

No residues were found in any of the UK samples No residues were found in any of the Imported (Non-EC) samples

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,4-dimethylnaphthalene (0.01) 2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.05) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.02) aclonifen (0.05)	ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.02) etridiazole (0.05) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01)	monocrotophos (0.01) monolinuron (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.05) nitenpyram (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) Oxadiargyl (0.01) oxadixyl (0.01)
acrinathrin (0.05)	fenamiphos (sum) (0.01)	oxamyl (0.01)
alachlor (0.01)	fenarimol (0.01)	oxasulfuron (0.01)
aldicarb (sum) (0.01)	fenazaquin (0.01)	oxydemeton-methyl (sum) (0.01)
aldrin and dieldrin (0.01)	fenbuconazole (0.01)	oxyfluorfen (0.05)
alpha-HCH (0.01)	fenbutatin oxide (0.05)	paclobutrazol (0.01)
ametoctradin (0.01)	fenhexamid (0.05)	parathion (0.01)
amidosulfuron (0.01)	fenitrothion (0.01)	parathion-methyl (sum) (0.01)
amitraz (0.01)	fenoxycarb (0.01) fenpropathrin (0.01)	penconazole (0.01) pencycuron (0.01)
anthraquinone (0.01)		
asulam (0.05) atrazine (0.01)	fenpropidin (0.05) fenpropimorph (0.01)	pendimethalin (0.01) pentanochlor (0.01)
azinphos-methyl (0.02)	fenpyroximate (0.01)	permethrin (0.01)
azoxystrobin (0.01)	fensulfothion (sum) (0.01)	phenmedipham (0.05)
BAC (sum) (0.05)	fenthion (partial sum) (0.01)	phenthoate (0.01)
benalaxyl (0.01)	fenvalerate & esfenvalerate (all	phorate (partial sum) (0.02)
	isomers (0.01)	phorate (partial sum) (0.02)
bendiocarb (0.01)	fipronil (sum) (0.01)	phosalone (0.01)
benfuracarb (0.01)	flonicamid (sum) (0.01)	phosmet (sum) (0.01)
benthiavalicarb (sum) (0.01)	fluazifop-p-butyl (sum) (0.01)	phosphamidon (0.01)
beta-HCH (0.01)	fluazinam (0.01)	phoxim (0.01)
bifenthrin (0.01)	flubendiamide (0.01)	picolinafen (0.01)
biphenyl (0.01)	flucythrinate (0.05)	picoxystrobin (0.01)
bispyribac-sodium (0.01)	fludioxonil (0.01)	piperonyl butoxide (0.01)
bitertanol (0.01)	flufenacet (0.01)	pirimicarb (sum) (0.01)
boscalid (0.01)	flufenoxuron (0.02)	pirimiphos-ethyl (0.01)
bromophos-ethyl (0.01)	fluometuron (0.01)	pirimiphos-methyl (0.01)
bromopropylate (0.01)	fluopicolide (0.01)	prochloraz (parent only) (0.01)
bromoxynil (0.01)	fluopyram (0.01)	procymidone (0.01)
bromuconazole (0.01)	fluoxastrobin (0.01)	profenofos (0.01)

bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (0.02) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbosulfan (0.01) carboxin (0.05) chlorantraniliprole (0.01) chlorbufam (0.05) chlordane (sum) (0.01) chlorfenapyr (0.02) chlorfenvinphos (0.01) chloridazon (0.01) chlorothalonil (0.01) chlorpropham (sum) (0.05) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlortoluron (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.05) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cyazofamid (0.01) cycloate (0.01) cycloxydim (0.05) cyflufenamid (0.01) cyfluthrin (0.02) Cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (0.05) cyproconazole (0.01) cyprodinil (0.05) cyromazine (0.05) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.05) demeton-S-methyl (0.01) desmedipham (0.05) diazinon (0.01) dichlobenil (0.05) dichlofluanid (0.01) dichlofluanid and DMSA (0.01) dichlorprop (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01)

fluquinconazole (0.01) flurochloridone (0.05) fluroxypyr (sum) (0.05) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) fonofos (0.01) formetanate (0.05) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) furmecyclox (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexaconazole (0.01) hexythiazox (0.01) imazalil (0.02) imidacloprid (0.01) indoxacarb (0.01) ioxynil (0.05) iprodione (0.02) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01) lufenuron (0.02) malathion (0.01) maleic hydrazide (1) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (0.05) metalaxyl (0.01) metamitron (0.01) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01)

promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (0.01) propaquizafop (0.05) propargite (0.01) propetamphos (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.05) prosulfuron (0.02) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrimethanil (0.05) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.05) Quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) rimsulfuron (0.01) rotenone (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.05) sum of butocarboxim and butocarboxim sulfoxide (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbuthylazine (0.05) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.05) thiacloprid (0.01) thiamethoxam (sum) (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.05)

dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinicotefuran (0.01) diphenylamine (0.05) disulfoton (sum) (0.02) diuron (0.01) dodine (0.05) emamectin benzoate (0.01) endosulfan (sum) (0.01) EPN (0.01) epoxiconazole (0.01) EPTC (0.05) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metosulam (0.01) metosulam (0.01) metrafenone (0.01) metribuzin (0.05) metsulfuron-methyl (0.05) mevinphos (0.01) molinate (0.01) triasulfuron (0.05) triazamate (0.01) triazophos (0.01) triclopyr (0.05) tricyclazole (0.01) trifloxystrobin (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 12a. Residues detected in retail samples of BROCCOLI purchased between April and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
ROCCOLI, FRESH UK: 1 sa	imple analysed	
ypermethrin	<0.01 (i.e. not found)	0
MRL = 1)	0.01	1
ROCCOLI, FRESH Imported	d (EC): 21 samples analysed	
hlorantraniliprole	<0.01 (i.e. not found)	19
MRL = 1)	0.03, 0.04	2
hlorothalonil	<0.01 (i.e. not found)	16
MRL = 5)	0.06 - 0.4	3
MRL = 5)	0.01, 0.02	2
ypermethrin	<0.01 (i.e. not found)	20
MRL = 1)	0.01	1
uazifop-p-butyl (sum)	<0.01 (i.e. not found)	20
MRL = 0.2)	0.2	1
uopicolide	<0.01 (i.e. not found)	20
MRL = 2)	0.01	1
nidacloprid	<0.01 (i.e. not found)	19
MRL = 0.5)	0.01, 0.03	2
netalaxyl	<0.01 (i.e. not found)	20
MRL = 0.2)	0.03	1
ropamocarb	<0.01 (i.e. not found)	20
MRL = 3)	0.1	1
niamethoxam (sum)	<0.01 (i.e. not found)	20
MRL = 0.2)	0.02	1

NOTE: * Indicates MRL is set to the Limit of Determination.

Imported (EC) samples of broccoli were from Spain (21). UK samples of broccoli (1).

Residues were distributed by country of origin, as follows: chlorothalonil Spain (5) chlorantraniliprole Spain (2) Spain (1), UK (1) cypermethrin Spain (1) fluopicolide fluazifop-p-butyl (sum) Spain (1) imidacloprid Spain (2) metalaxyl Spain (1) propamocarb Spain (1) thiamethoxam (sum) Spain (1)

Residues were found in all of the 1 UK fresh samples No residues were found in 12 of the 21 Imported (EC) fresh samples

Table 12b. Residues detected in retail samples of BROCCOLI purchased between April and June 2015

Number of residues	Sample ID	Type of BROCCOLI				Resi	dues foun	d (mg/ł	(g)			Country of origin
	-		CLN	CTP	CYP	FPC	FZPBS	IMI	MTX	PCB	THMSM	
(1)	1621/2015	FRESH			0.01	_						UK
(1)	0757/2015	FRESH	- 0.02	-	-	-	-	-	-	-	-	Spain
	0858/2015	FRESH	-	0.03	-	-	-	-	-	-	-	Spain
	1579/2015	FRESH	-	-	-	-	-	0.03	-	-	-	Spain
	1620/2015	FRESH	0.01	-	-	-	-	-	-	-	-	Spain
	1668/2015	FRESH	0.1	-	-	-	-	-	-	-	-	Spain
(2)	0853/2015	FRESH	-	_	0.01	_	-	-	-	-	0.02	Spain
()	2811/2015	FRESH	0.06	-	-	-	-	-	0.03	-	-	Spain
(3)	0807/2015	FRESH	-	0.04	-	_	0.2	0.01	-	-	-	Spain
. ,	1551/2015	FRESH	0.4	-	-	0.01	-	-	-	0.1	-	Spain

Residues (1-3 compounds) were found in 10 of the 22 samples as follows:

The abbreviations used for the pesticide names are as follows:

CLN	chlorothalonil	CTP	chlorantraniliprole	CYP	cypermethrin
FPC	fluopicolide	FZPBS	fluazifop-p-butyl (sum)	IMI	imidacloprid
MTX	metalaxyl	PCB	propamocarb	THMSM	thiamethoxam (sum)

Table 12c.Residues sought but not found in retail samples of BROCCOLIpurchased between April and June 2015

etrimfos (0.01)

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2,4-D (sum) (0.02) 2,4-DB (0.01) 2-phenylphenol (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) aclonifen (0.01) acrinathrin (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) allethrin (0.01) alpha-HCH (0.01) ametoctradin (0.01) aminocarb (0.01) amitraz (0.01) atrazine (0.01) azinphos-ethyl (0.01) azinphos-methyl (0.01) azoxystrobin (0.01) BAC (sum) (0.01) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenthrin (0.01) biphenyl (0.01) bitertanol (0.05) boscalid (0.01) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (0.01) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbosulfan (0.01) carboxin (0.01) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenvinphos (0.01) chlorfluazuron (0.01) chloridazon (0.01) chlorobenzilate (0.01) chlorotoluron (0.01) chlorpropham (sum) (0.05) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01)

chlorthal-dimethyl (0.01)

famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.01) fenhexamid (0.01) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyroximate (0.01) fenthion (partial sum) (0.01) fenthion (sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) flonicamid (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.01) fluometuron (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) fonofos (0.01) formetanate (0.01) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) Haloxyfop-R methyl (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01)hexaconazole (0.01) hexaflumuron (0.01) hexazinone (0.01) hexythiazox (0.01) imazalil (0.01) indoxacarb (0.01) ioxynil (0.01)

ofurace (0.01) Oxadiargyl (0.01) oxadiazon (0.01) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.01) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) penthiopyrad (0.01) permethrin (0.01) phenmedipham (0.01) phenthoate (0.01) phorate (sum) (0.02) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propaguizafop (0.01) propargite (0.01) propetamphos (0.01) propham (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proguinazid (0.01) prosulfocarb (0.01) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrifenox (0.01) pyrimethanil (0.01) pyriproxifen (0.01) pyroxsulam (0.01) quassia (0.01)

chlozolinate (0.01) clethodim (0.01) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) crufomate (0.01) cyanazine (0.01) cyazofamid (0.01) cycloxydim (0.01) cyflufenamid (0.01) cyfluthrin (0.01) Cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cyproconazole (0.01) cyprodinil (0.01) cyromazine (0.01) DDAC (sum) (0.01) DDT (sum) (0.01) deltamethrin (0.01) desmedipham (0.01) diazinon (0.01) dichlofluanid (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.02) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinocap (0.01) diphenylamine (0.05) disulfoton (sum) (0.01) dithianon (0.01) diuron (0.01) dodine (0.05) emamectin benzoate (0.01) endosulfan (sum) (0.01) endrin (0.01) EPN (0.01) epoxiconazole (0.01) ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01)

iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.01) lenacil (0.01) lindane (0.01) linuron (0.01) lufenuron (0.01) malathion (0.01) mandipropamid (0.01) MCPA (sum) (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepronil (0.01) meptyldinocap (0.01) metaflumizone (0.01) metamitron (0.01) metazachlor (0.01) metconazole (0.02) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.01) mevinphos (0.01) molinate (0.01) monocrotophos (0.01) monolinuron (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.01) nitenpyram (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01)

quinalphos (0.01) Quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) Quizalofop, incl. quizalfop-P (0.01) rotenone (0.01) simazine (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sum of butocarboxim and butocarboxim sulfoxide (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbumeton (0.01) terbuthylazine (0.01) terbutryn (0.01) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.01) thiacloprid (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.01) triasulfuron (0.01) triazamate (0.01) triazamate (acid) (0.01) triazamate (ester) (0.01) triazophos (0.01) trichlorfon (0.01) triclopyr (0.05) tricyclazole (0.01) trifloxystrobin (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) Tritosulfuron (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 13a.Residues detected in retail samples of BRUSSELS SPROUTS purchased
between April and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range								
BRUSSELS SPROUTS, FRESH UK	: 3 samples analysed									
boscalid	<0.01 (i.e. not found)	0								
(MRL = 5)	0.03 - 0.05	3								
BRUSSELS SPROUTS, FROZEN UK: 5 samples analysed										
boscalid	<0.01 (i.e. not found)	2								
(MRL = 5)	0.01 - 0.02	3								
propamocarb	<0.01 (i.e. not found)	4								
(MRL = 2)	0.02	1								
prothioconazole	<0.01 (i.e. not found)	4								
(MRL = 0.1)	0.02	1								
BRUSSELS SPROUTS, FRESH Imported (Non-EC): 15 samples analysed										
boscalid	<0.01 (i.e. not found)	1								
(MRL = 5)	0.03 - 0.2	14								
lambda-cyhalothrin	<0.01 (i.e. not found)	13								
(MRL = 0.05)	0.01	2								
pyraclostrobin	<0.01 (i.e. not found)	14								
(MRL = 0.3)	0.01	1								
BRUSSELS SPROUTS, FRESH Imp	oorted (EC): 1 sample analysed									
boscalid	<0.01 (i.e. not found)	0								
(MRL = 5)	0.01	1								
BRUSSELS SPROUTS, FROZEN In	ported (EC): 6 samples analysed									
boscalid	<0.01 (i.e. not found)	1								
(MRL = 5)	0.01 - 0.03	5								

Imported (EC) samples of brussels sprouts were from Belgium (4), EU (2), the Netherlands (1). Imported (Non-EC) samples of brussels sprouts were from Morocco (15). UK samples of brussels sprouts (8).

Residues were distributed by country of origin, as follows:boscalidBelgium (3), EU (2), Morocco (14), the Netherlands (1), UK (6)lambda-cyhalothrinMorocco (2)propamocarbUK (1)pyraclostrobinMorocco (1)prothioconazoleUK (1)

Residues were found in all of the 3 UK fresh samples No residues were found in 1 of the 5 UK frozen samples No residues were found in 1 of the 15 Imported (Non-EC) fresh samples Residues were found in all of the 1 Imported (EC) fresh samples No residues were found in 1 of the 6 Imported (EC) frozen samples

Residues detected in retail samples of BRUSSELS SPROUTS purchased between April and June 2015 Table 13b.

Number of residues	Sample ID	Type of BRUSSELS SPROUTS	R	esidue	s found	l (mg/kថ	g)	Country of origin	
			BOS	LCY	PCB	PYC	PZL	5	
(1)	0547/2015	FRESH	0.05	_	_	_	_	UK	
()	0755/2015	FROZEN	0.01	-	-	-	-	ŪK	
	1250/2015	FROZEN	0.02	-	-	-	-	ŪK	
	1623/2015	FROZEN	-	-	0.02	-	-	UK	
	1785/2015	FRESH	0.03	-	-	-	-	ŪK	
	1972/2015	FRESH	0.05	-	-	-	-	UK	
	0583/2015	FRESH	0.04	-	-	-	-	Morocco	
	0727/2015	FRESH	0.03	-	-	-	-	Morocco	
	1358/2015	FRESH	0.07	-	-	-	-	Morocco	
	1412/2015	FRESH	0.08	-	-	-	-	Morocco	
	1495/2015	FRESH	0.05	-	-	-	-	Morocco	
	1534/2015	FRESH	0.03	-	-	-	-	Morocco	
	1683/2015	FRESH	0.1	-	-	-	-	Morocco	
	1903/2015	FRESH	0.07	-	-	-	-	Morocco	
	1955/2015	FRESH	0.2	-	-	-	-	Morocco	
	1979/2015	FRESH	0.03	-	-	-	-	Morocco	
	2742/2015	FRESH	0.07	-	-	-	-	Morocco	
	2987/2015	FRESH	0.06	-	-	-	-	Morocco	
	1479/2015	FROZEN	0.02	-	-	-	-	Belgium	
	1480/2015	FROZEN	0.02	-	-	-	-	Belgium	
	1894/2015	FROZEN	0.03	-	-	-	-	Belgium	
	1942/2015	FROZEN	0.01	-	-	-	-	EU	
	2885/2015	FROZEN	0.02	-	-	-	-	EU	
	2947/2015	FRESH	0.01	-	-	-	-	the	
								Netherlands	
(2)	0857/2015	FROZEN	0.02	-	_	_	0.02	UK	
	0676/2015	FRESH	0.08	0.01	-	-	-	Morocco	
(3)	2981/2015	FRESH	0.09	0.01	-	0.01	-	Morocco	

Residues (1-3 compounds) were found in 27 of the 30 samples as follows:

The abbreviations used for the pesticide names are as follows:

BOS	boscalid	LCY	lambda-cyhalothrin	PCB	propamocarb
PYC	pyraclostrobin	PZL	prothioconazole		

Table 13c. Residues sought but not found in retail samples of BRUSSELS SPROUTS purchased between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2-phenylphenol (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.01) acrinathrin (0.01) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.01) atrazine (0.01) azinphos-ethyl (0.01) azinphos-methyl (0.01) azoxystrobin (0.01) benalaxyl (0.01) bendiocarb (0.01) beta-HCH (0.01) bifenox (0.01) bifenthrin (0.01) biphenyl (0.01) bitertanol (0.01) bromophos-ethyl (0.01) bromophos-methyl (0.01) bromopropylate (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butralin (0.01) cadusafos (0.01) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbophenothion (0.01) carboxin (0.01) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenson (0.01) chlorfenvinphos (0.01) chloridazon (0.01) chlorobenzilate (0.01) chlorotoluron (0.01) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlorthion (0.01) chlorthiophos (0.01) chlozolinate (0.01) clofentezine (0.01) clomazone (0.01) clothianidin (0.01)

coumaphos (0.01) crufomate (0.01) EPN (0.01) epoxiconazole (0.01) ethion (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etridiazole (0.01) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaquin (0.01) fenbuconazole (0.01) fenhexamid (0.01) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropimorph (0.01) fenson (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (SS & RR Iso (0.01) fipronil (sum) (0.01) fluazinam (0.01) flucythrinate (0.01) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.01) fluopicolide (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.01) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) fonofos (0.01) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) haloxyfop-methyl (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01)hexaconazole (0.01) hexazinone (0.01) imazalil (0.01) imidacloprid (0.01) indoxacarb (0.01) iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isobenzan (0.01)

monocrotophos (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.01) nitrofen (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) oxadiazon (0.01) oxadixyl (0.01) oxamyl (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.01) paclobutrazol (0.01) parathion (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) permethrin (0.01) phenothrin (0.01) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) phosphamidon (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) prometryn (0.01) propachlor (0.01) propanil (0.01) propargite (0.01) propazine (0.01) propetamphos (0.01) propham (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.01) prothiofos (0.01) pyrazophos (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrifenox (0.01) pyrimethanil (0.01) pyriproxifen (0.01) quinalphos (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) rotenone (0.01)

cyanazine (0.01) cyanophenphos (0.01) cycloate (0.01) cyflufenamid (0.01) cyfluthrin (0.01) cypermethrin (0.01) cyproconazole (0.01) cyprodinil (0.01) DDT (sum) (0.01) deltamethrin (0.01) dialifos (0.01) diazinon (0.01) dichlobenil (0.01) dichlofenthion (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimethylvinphos (0.01) dimoxystrobin (0.01) diniconazole (0.01) dioxabenzophos (0.01) diphenylamine (0.01) disulfoton (sum) (0.01) ditalimfos (0.01) edifenphos (0.01) endosulfan (sum) (0.01) endrin (0.01)

isocarbophos (0.01) isodrin (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) jodfenphos (0.01) kresoxim-methyl (0.01) lenacil (0.01) leptophos (0.01) lindane (0.01) linuron (0.01)lufenuron (0.01) malathion (0.01) mecarbam (0.01) mepronil (0.01) metalaxyl (0.01) metazachlor (0.01) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.01) mevinphos (0.01) molinate (0.01)

simazine (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spiroxamine (0.01) sulfotep (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenpyrad (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbacil (0.01) terbufos (0.01) Terbufos (sum not definiton) (0.01) terbuthylazine (0.01) terbutryn (0.01) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) tetrasul (0.01) thiabendazole (0.01) thiacloprid (0.01) thiamethoxam (sum) (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) triallate (0.01) triazophos (0.01) trietazine (0.01) trifloxystrobin (0.01) triflumuron (0.01) trifluralin (0.01) triticonazole (0.01) zoxamide (0.01)

Table 14a.Residues detected in retail samples of BUTTER purchased between April and
June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
BUTTER, UK: 21 sample	es analysed	
BAC (sum) (MRL = 0.1)	<0.01 (i.e. not found) 0.01 - 0.1 0.2 - 0.5	9 7 5
BUTTER, Imported (EC)	: 4 samples analysed	
BAC (sum) (MRL = 0.1)	<0.01 (i.e. not found) 0.03	3 1

Imported (EC) samples of butter were from Denmark (2), France (1), Ireland (1). UK samples of butter (21).

Residues were distributed by country of origin, as follows: BAC (sum) Ireland (1), UK (12)

No residues were found in 9 of the 21 UK samples No residues were found in 3 of the 4 Imported (EC) samples

Table 14b. Residues detected in retail samples of BUTTER purchased between April and June 2015

Number of residues	Sample ID	Residues found (mg/kg) BACSM	Country of origin
(1)	0642/2015	0.03	UK
	1254/2015	0.2	UK
	1387/2015 1426/2015	0.2 0.2 0.2	UK UK
	1513/2015	0.06	UK
	1939/2015	0.08	UK
	1964/2015	0.3	UK
	1993/2015	0.01	UK
	2803/2015	0.01	UK
	2903/2015	0.1	UK
	2929/2015	0.09	UK
	3000/2015	0.5	UK
	2860/2015	0.03	Ireland

Residues (1-1 compounds) were found in 13 of the 25 samples as follows:

The abbreviations used for the pesticide names are as follows:

BACSM BAC (sum)

Table 14c.Residues sought but not found in retail samples of BUTTER purchased
between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

aldrin and dieldrin (0.002) alpha-HCH (0.002) azinphos-ethyl (0.002) beta-HCH (0.002) bifenthrin (0.002) chlordane (animal products) (0.002) chlorfenvinphos (0.002)

chlorobenzilate (0.002) chlorpyrifos (0.002) chlorpyrifos-methyl (0.002) cyfluthrin (0.125) cypermethrin (0.125) DDAC (sum) (0.001) DDT (sum) (0.002) deltamethrin (0.125) diazinon (0.002) endosulfan (sum) (0.002) endrin (0.002) fenvalerate & esfenvalerate (all isomers (0.125) hexachlorobenzene (0.002) lindane (0.002) methacrifos (0.002)

methidathion (0.002)

methoxychlor (0.002)

nitrofen (0.05) parathion (0.002) parathion-methyl (sum) (0.002) permethrin (0.125) pirimiphos-methyl (0.002) profenofos (0.002)

pyrazophos (0.002)

quintozene (sum) (0.002) resmethrin (0.125) tecnazene (0.002) triazophos (0.002) trifluralin (0.002)

Table 15a.Residues detected in retail samples of CHEESE purchased between April
and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
BRIE UK: 4 samples analysed		
None found	-	4
CREAM CHEESE UK: 1 sample anal	ysed	
None found	-	1
BRIE Imported (EC): 2 samples anal	ysed	
None found	-	2
CAMEMBERT Imported (EC): 5 sam	ples analysed	
None found	-	5
CREAM CHEESE Imported (EC): 3 s	amples analysed	
None found	-	3
DOLCELATTE Imported (EC): 1 sam	ple analysed	
None found	-	1
FETA Imported (EC): 1 sample analy	vsed	
None found	-	1
MOZZARELLA Imported (EC): 1 sam	ple analysed	
None found	-	1
RICOTTA Imported (EC): 1 sample a	nalysed	
None found	-	1

Imported (EC) samples of cheese were from Cyprus (1), Denmark (4), France (7), Greece (1), Italy (1). UK samples of cheese (5).

No residues were found in any of the UK brie samples No residues were found in any of the UK cream cheese samples No residues were found in any of the Imported (EC) brie samples No residues were found in any of the Imported (EC) cream cheese samples No residues were found in any of the Imported (EC) cream cheese samples No residues were found in any of the Imported (EC) dolcelatte samples No residues were found in any of the Imported (EC) feta samples No residues were found in any of the Imported (EC) mozzarella samples No residues were found in any of the Imported (EC) mozzarella samples No residues were found in any of the Imported (EC) ricotta samples The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

- aldrin and dieldrin (0.002) alpha-HCH (0.002) azinphos-ethyl (0.002) BAC (sum) (0.01) beta-HCH (0.002) bifenthrin (0.002) chlordane (animal products) (0.002) chlorfenvinphos (0.002) chlorobenzilate (0.002) chlorpyrifos (0.002) chlorpyrifos-methyl (0.002) cyfluthrin (0.01)
- DDAC (sum) (0.01) DDT (sum) (0.002) deltamethrin (0.01) diazinon (0.002) endosulfan (sum) (0.002) endrin (0.002) fenvalerate & esfenvalerate (all isomers (0.01) hexachlorobenzene (0.002) lindane (0.002) methacrifos (0.002) methidathion (0.002)

nitrofen (0.01) parathion (0.002) parathion-methyl (sum) (0.002) permethrin (0.01) pirimiphos-methyl (0.002) profenofos (0.002) pyrazophos (0.002)

quintozene (sum) (0.002) resmethrin (0.01) tecnazene (0.002) triazophos (0.002) trifluralin (0.002)

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
CHILLI PEPPERS, Imported	d (Non-EC): 20 samples analysed	
acephate	<0.01 (i.e. not found)	19
(MRL = 0.01*)	0.02	1
acetamiprid	<0.02 (i.e. not found)	16
(MRL = 0.3)	0.03 - 0.07	4
azoxystrobin	<0.02 (i.e. not found)	18
(MRL = 3)	0.05, 0.06	2
bifenthrin	<0.02 (i.e. not found)	19
(MRL = 0.5)	0.1	1
bupirimate	<0.02 (i.e. not found)	18
(MRL = 2)	0.07, 0.5	2
carbendazim	<0.02 (i.e. not found)	17
(MRL = 0.1*)	0.02 - 0.07	3
carbofuran (sum)	<0.01 (i.e. not found)	19
(MRL = 0.01*)	0.01	1
chlorantraniliprole	<0.02 (i.e. not found)	19
(MRL = 1)	0.05	1
chlorpyrifos (MRL = 0.5)	<0.02 (i.e. not found) 0.05, 0.2 1.1	17 2 1
clothianidin	<0.02 (i.e. not found)	19
(MRL = 0.05)	0.05	1
cypermethrin	<0.1 (i.e. not found)	19
(MRL = 0.5)	0.1	1
difenoconazole	<0.02 (i.e. not found)	19
(MRL = 0.8)	0.05	1
ethion	<0.01 (i.e. not found)	18
(MRL = 0.01*)	0.05, 0.4	2
flonicamid (sum) (MRL = 0.15)	<0.02 (i.e. not found) 0.03 0.2	17 1 2
midacloprid	<0.02 (i.e. not found)	17
(MRL = 1)	0.09 - 0.6	3
iprodione	<0.04 (i.e. not found)	19
(MRL = 5)	0.04	1
kresoxim-methyl	<0.02 (i.e. not found)	19
(MRL = 1)	0.04	1
lambda-cyhalothrin	<0.02 (i.e. not found)	17
(MRL = 0.1)	0.05 - 0.1	3
metalaxyl	<0.02 (i.e. not found)	19
(MRL = 0.5)	0.2	1

Table 16a.Residues detected in samples of CHILLI PEPPERS obtained between
January and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
monocrotophos	<0.01 (i.e. not found)	19
(MRL = 0.01*)	0.3	1
pendimethalin	<0.02 (i.e. not found)	19
(MRL = 0.05*)	0.02	1
piperonyl butoxide	<0.02 (i.e. not found)	19
(No MRL)	0.1	1
profenofos	<0.02 (i.e. not found)	17
(MRL = 0.01*)	0.4 - 1.3	3
propiconazole	<0.02 (i.e. not found)	19
(MRL = 0.05*)	0.05	1
spinosad	<0.02 (i.e. not found)	18
(MRL = 2)	0.02, 0.08	2
spiromesifen	<0.02 (i.e. not found)	17
(MRL = 0.5)	0.08 - 0.1	3
tebuconazole	<0.02 (i.e. not found)	19
(MRL = 0.6)	0.1	1
thiamethoxam (sum)	<0.02 (i.e. not found)	17
(MRL = 0.7)	0.03 - 0.1	3
thiophanate-methyl (MRL = 0.1*)	<0.01 (i.e. not found) 0.08 0.2, 0.6	17 1 2
triadimefon & triadimenol	<0.02 (i.e. not found)	18
(MRL = 1)	0.3, 0.4	2
trifloxystrobin	<0.02 (i.e. not found)	19
(MRL = 0.3)	0.2	1
CHILLI PEPPERS, Imported	(EC): 9 samples analysed	
chlorantraniliprole	<0.02 (i.e. not found)	8
(MRL = 1)	0.03	1
fludioxonil	<0.02 (i.e. not found)	7
(MRL = 1)	0.03, 0.1	2
flutriafol	<0.02 (i.e. not found)	7
(MRL = 1)	0.03, 0.06	2
imidacloprid	<0.02 (i.e. not found)	8
(MRL = 1)	0.05	1
metrafenone	<0.02 (i.e. not found)	8
(MRL = 2)	0.1	1
pymetrozine	<0.02 (i.e. not found)	8
(MRL = 3)	0.04	1
triadimefon & triadimenol	<0.02 (i.e. not found)	7
(MRL = 1)	0.03, 0.04	2

NOTE: * Indicates MRL is set to the Limit of Determination.

Imported (EC) samples of chilli peppers were from Spain (7), the Netherlands (2). Imported (Non-EC) samples of chilli peppers were from Egypt (2), Ethiopia (1), Gambia (1), India (6), Israel (2), Kenya (1), Morocco (4), Pakistan (1), Senegal (1), Uganda (1).

Residues were distributed by country of origin, as follows:

acephate India (1) acetamiprid India (3), Uganda (1) India (1), Morocco (1) azoxystrobin bifenthrin India (1) bupirimate Egypt (1), Kenya (1) carbofuran (sum) India (1) carbendazim India (2), Pakistan (1) chlorpyrifos Egypt (1), India (2) clothianidin Egypt (1) chlorantraniliprole India (1), Spain (1) cypermethrin India (1) difenoconazole India (1) India (2) ethion flonicamid (sum) India (1), Israel (1), Senegal (1) flutriafol Spain (2) fludioxonil Spain (2) imidacloprid India (2), Kenya (1), Spain (1) iprodione Israel (1) kresoxim-methyl India (1) lambda-cyhalothrin Egypt (1), Kenya (1), Uganda (1) monocrotophos India (1) metrafenone Spain (1) India (1) metalaxyl piperonyl butoxide Egypt (1) propiconazole Egypt (1) profenofos Egypt (1), India (2) pendimethalin India (1) pymetrozine Spain (1) India (1), Kenya (1), Morocco (1) spiromesifen India (1), Israel (1) spinosad tebuconazole India (1) Egypt (1), India (1), Uganda (1) thiamethoxam (sum) thiophanate-methyl India (2), Pakistan (1) trifloxystrobin Morocco (1) triadimefon & triadimenol Morocco (2), Spain (2)

No residues were found in 5 of the 20 Imported (Non-EC) samples No residues were found in 4 of the 9 Imported (EC) samples

Table 16b. Residues detected in samples of CHILLI PEPPERS obtained between January and June 2015

Number of residues	Sample ID									Residu	es found	(mg/kg)									
residues		ACE	ACET	AZOX	BIF	BUP	CBF_S	CBZ	CPF	CTH	CTP	CYP	DIFC	ETN	FLC	FLF	FLUD	IMI	IPR	KREM	LCY
(1)	3955/2015	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
()	4093/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4099/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4081/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	0.03	-	-	-	-	-	-
	3877/2015	-	-	-	-	-	-	-	-	-	0.03	-	-	-	-	-	-	-	-	-	-
	4235/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(2)	4024/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	-	0.04	-	-
	3999/2015	-	-	-	-	-	-	0.07	-	-	-	-	-	-	-	-	-	-	-	-	-
	3962/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.03	0.03	-	-	-	-
	4248/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.05	-	-	-
(3)	4146/2015	-	-	-	-	0.07	-	-	-	0.05	-	-	-	-	-	-	-	-	-	-	-
	3870/2015	-	-	0.06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4265/2015	-	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.05
(4)	3982/2015	-	-	-	-	-	-	-	-	-	-	-	0.05	-	-	-	-	-	-	-	-
()	3935/2015	-	-	-	-	0.5	-	-	-	-	-	-	-	-	-	-	-	0.09	-	-	0.06
	4057/2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.06	0.1	-	-	-	-
(5)	3895/2015	-	-	-	-	-	-	-	1.1	-	-	-	-	-	-	-	-	-	-	-	0.1
(7)	4001/2015	-	0.07	-	0.1	-	0.01	-	-	-	-	-	-	0.05	0.2	-	-	-	-	-	-
(10)	3864/2015	-	0.03	-	-	-	-	0.02	0.05	-	0.05	0.1		-	-	-	-	0.1	-	0.04	-
()	3964/2015	0.02	0.03	0.05	-	-	-	0.07	0.2	-	-	-	-	0.4	-	-	-	0.6	-	-	-
Number	Sample ID								Residues	found								Coi	untry of	Origin	
of	Gampio IB									lound								000		ongin	
residues		MON	MTF	MTX	PBO	PCZ	PFS	PND	PYMT	SPM	SPN	TBC	THMS	SM 1	ME	TRFL	TRSP				
(1)	3955/2015	-	-	-	-	-	-	-	-	-	0.02	-	-	-		-	-	Israe	el		
. /	4093/2015	-	-	-	-	-	-	-	-	-	-	-	-	-		0.2	-	More			
	4099/2015	-	-	-	-	-	-	-	-	-	-	-	-	-		-	0.3	More			
	4081/2015	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	Sen	egal		
	3877/2015	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	Spai	n		
	4235/2015	-	-	-	-	-	-	-	-	-	-	-	-	-		-	0.03	Spai	n		
(2)	4024/2015	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	Israe			
	3999/2015	-	-	-	-	-	-	-	-	-	-	-	-	C).2	-	-	Paki			
	3962/2015	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	Spai	n		
	4248/2015	-	-	-	-	-	-	-	0.04	-	-	-	-	-		-	-	Spai	n		

Residues (1-10 compounds) were found in 20 of the 29 samples as follows:

Number of residues											Country of Origin						
residues		MON	MTF	MTX	PBO	PCZ	PFS	PND	PYMT	SPM	SPN	TBC	THMSM	TME	TRFL	TRSP	
(3)	4146/2015 3870/2015 4265/2015	- -	- - -	- - -	- - -	- - -	- - -	- - -	- -	- 0.08 -	- - -	- - -	0.1 - 0.03	- - -	- - -	- 0.4 -	Egypt Morocco Uganda
(4)	3982/2015 3935/2015 4057/2015	0.3 - -	- - 0.1	- -	- - -	- - -	0.4 - -	0.02 - -	- - -	- 0.1 -	- - -	- - -	- -	- - -	- -	- - 0.04	India Kenya Spain
(5)	3895/2015	-	-	-	0.1	0.05	1.3	-	-	-	-	-	-	-	-	-	Egypt
(7)	4001/2015	-	-	-	-	-	-	-	-	-	-	0.1	0.05	-	-	-	India
(10)	3864/2015 3964/2015	-	-	- 0.2	-	-	0.5 -	-	-	0.1 -	- 0.08	-	-	0.08 0.6	-	-	India India

The abbreviations used for the pesticide names are as follows:

ACE	acephate	ACET	acetamiprid	AZOX	azoxystrobin	BIF	bifenthrin	BUP	bupirimate
CBF_S	carbofuran (sum)	CBZ	carbendazim	CPF	chlorpyrifos	CTH	clothianidin	CTP	chlorantraniliprole
CYP	cypermethrin	DIFC	difenoconazole	ETN	ethion	FLC	flonicamid (sum)	FLF	flutriafol
FLUD	fludioxonil	IMI	imidacloprid	IPR	iprodione	KREM	kresoxim-methyl	LCY	lambda-cyhalothrin
MON	monocrotophos	MTF	metrafenone	MTX	metalaxyl	PBO	piperonyl butoxide	PCZ	propiconazole
PFS	profenofos	PND	pendimethalin	PYMT	pymetrozine	SPM	spiromesifen	SPN	spinosad
TBC	tebuconazole	THMSM	thiamethoxam (sum)	TME	thiophanate-methyl	TRFL	trifloxystrobin	TRSP	triadimefon & triadimenol

Table 16c. Residues sought but not found in samples of CHILLI PEPPERS obtained between January and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,4-dimethylnaphthalene (0.02) 2,4-D (sum) (0.02) 2,4-DB (0.02) 2-phenylphenol (0.1) 6-benzyladenine (0.02) abamectin (sum) (0.02) acetochlor (0.02) acibenzolar-s-methyl (0.04) aclonifen (0.1) acrinathrin (0.1) alachlor (0.02) aldicarb (sum) (0.02) aldrin and dieldrin (0.02) alpha-HCH (0.02) ametoctradin (0.02) amidosulfuron (0.02) amitraz (0.02) anthraguinone (0.02) asulam (0.1) atrazine (0.02) azinphos-methyl (0.04) BAC (sum) (0.1) benalaxyl (0.02) bendiocarb (0.02) benfuracarb (0.02) benthiavalicarb (sum) (0.02) beta-HCH (0.02) biphenyl (0.02) bispyribac-sodium (0.02) bitertanol (0.02) boscalid (0.02) bromophos-ethyl (0.02) bromopropylate (0.02) bromoxynil (0.02) bromuconazole (0.02) buprofezin (0.02) butachlor (0.02) butocarboxim (parent) (0.02) butoxycarboxim (0.02) cadusafos (0.02) captan (0.04) carbaryl (0.02) carbosulfan (0.02) carboxin (0.1) chlorbufam (0.1) chlordane (sum) (0.02) chlorfenapyr (0.04) chlorfenvinphos (0.02) chloridazon (0.02) chlorpropham (sum) (0.1) chlorpyrifos-methyl (0.02) chlorthal-dimethyl (0.02) chlortoluron (0.02) chlozolinate (0.02) chromafenozide (0.02) clethodim (0.1) clofentezine (0.02)

ethiofencarb (parent) (0.02) ethirimol (0.02) ethofumesate (0.02) ethoprophos (0.02) etofenprox (0.02) etoxazole (0.04) etridiazole (0.1) etrimfos (0.02) famoxadone (0.02) fenamidone (0.02) fenamiphos (sum) (0.02) fenarimol (0.02) fenazaquin (0.02) fenbuconazole (0.02) fenbutatin oxide (0.1) fenhexamid (0.1) fenitrothion (0.02) fenoxycarb (0.02) fenpropathrin (0.02) fenpropidin (0.1) fenpropimorph (0.02) fenpyroximate (0.02) fensulfothion (sum) (0.02) fenthion (partial sum) (0.02) fenvalerate & esfenvalerate (all isomers (0.02) fipronil (sum) (0.02) fluazifop-p-butyl (sum) (0.02) fluazinam (0.02) flucythrinate (0.1) flufenacet (0.02) flufenoxuron (0.04) fluometuron (0.02) fluopicolide (0.02) fluopyram (0.02) fluoxastrobin (0.02) fluquinconazole (0.02) flurochloridone (0.1) fluroxypyr (sum) (0.1) flusilazole (0.02) flutolanil (0.02) fluxapyroxad (0.02) folpet (0.02) fonofos (0.02) formetanate (0.1) formothion (0.02) fosthiazate (0.02) furalaxyl (0.02) furathiocarb (0.02) furmecyclox (0.02) halofenozide (0.02) halosulfuron-methyl (0.02) haloxyfop (sum) (0.02) Heptachlor (sum) (0.02) heptenophos (0.02) hexachlorobenzene (0.02) hexaconazole (0.02) hexythiazox (0.02)

mevinphos (0.02) molinate (0.02) monolinuron (0.02) Monuron (0.02) myclobutanil (0.02) nitenpyram (0.02) nitrothal-isopropyl (0.02) nuarimol (0.02) ofurace (0.02) Oxadiargyl (0.02) oxadixyl (0.02) oxamyl (0.02) oxasulfuron (0.02) oxydemeton-methyl (sum) (0.02) oxyfluorfen (0.1) paclobutrazol (0.02) parathion (0.02) parathion-methyl (sum) (0.02) penconazole (0.02) pencycuron (0.02) pentanochlor (0.02) permethrin (0.02) phenmedipham (0.1) phenthoate (0.02) phorate (partial sum) (0.04) phosalone (0.02) phosmet (sum) (0.02) phosphamidon (0.02) phoxim (0.02) picolinafen (0.02) picoxystrobin (0.02) pirimicarb (sum) (0.02) pirimiphos-ethyl (0.02) pirimiphos-methyl (0.02) prochloraz (parent only) (0.02) procymidone (0.02) promecarb (0.02) prometryn (0.02) propachlor (0.02) propamocarb (0.02) propaguizafop (0.1) propargite (0.02) propetamphos (0.02) propoxur (0.02) propyzamide (0.02) proguinazid (0.02) prosulfocarb (0.1) prosulfuron (0.04) prothioconazole (0.02) prothiofos (0.02) pyraclostrobin (0.02) pyrazophos (0.02) pyrethrins (0.02) pyridaben (0.02) pyridaphenthion (0.02) pyrimethanil (0.1) pyriproxifen (0.02)

clomazone (0.02) coumaphos (0.02) cyazofamid (0.02) cycloate (0.02) cycloxydim (0.1) cyflufenamid (0.02) cyfluthrin (0.04) Cyhalofop-butyl (sum) (0.02) cymoxanil (0.02) cyproconazole (0.02) cyprodinil (0.1) cyromazine (0.1) DDAC (sum) (0.1) DDT (sum) (0.02) deltamethrin (0.1) demeton-S-methyl (0.02) desmedipham (0.1) diazinon (0.02) dichlobenil (0.1) dichlofluanid (0.02) dichlofluanid and DMSA (0.02) dichlorprop (0.02) dichlorvos (0.02) diclobutrazol (0.02) dicloran (0.02) dicofol (sum) (0.02) dicrotophos (0.02) diethofencarb (0.02) diflubenzuron (0.02) diflufenican (0.02) dimethenamid (0.02) dimethoate (sum) (0.02) dimethomorph (0.02) dimoxystrobin (0.02) diniconazole (0.02) dinotefuran (0.02) diphenylamine (0.1) disulfoton (sum) (0.04) diuron (0.02) dodine (0.1) emamectin benzoate (0.02) endosulfan (sum) (0.02) EPN (0.02) epoxiconazole (0.02) EPTC (0.1)

imazalil (0.04) indoxacarb (0.02) ioxynil (0.1) iprovalicarb (0.02) isazophos (0.02) isocarbophos (0.02) isofenphos (0.02) isofenphos-methyl (0.02) isoprocarb (0.02) isoprothiolane (0.02) isoproturon (0.02) isopyrazam (0.02) isoxaben (0.02) isoxaflutole (0.02) lenacil (0.02) lindane (0.02) linuron (0.02)lufenuron (0.04) malathion (0.02) mandipropamid (0.02) MCPA, MCPB and MCPA thioethyl expressed (0.02) MCPB (0.02) mecarbam (0.02) mepanipyrim (sum) (0.02) mepronil (0.02) mesosulfuron-methyl (0.02) metaflumizone (0.1) metamitron (0.02) metconazole (0.02) methabenzthiazuron (0.02) methacrifos (0.02) methamidophos (0.01) methidathion (0.02) methiocarb (sum) (0.02) methomyl (sum) (0.02) methoxychlor (0.02) methoxyfenozide (0.02) metobromuron (0.02) metolachlor (0.02) metolcarb (0.02) metosulam (0.02) metoxuron (0.02) metribuzin (0.1) metsulfuron-methyl (0.1)

quassia (0.02) quinalphos (0.02) quinmerac (0.1) Quinoclamine (0.02) quinoxyfen (0.02) quintozene (sum) (0.02) rimsulfuron (0.02) rotenone (0.02) spirodiclofen (0.02) spirotetramat (sum) (0.02) spiroxamine (0.02) sulcotrione (0.1) sum of butocarboxim and butocarboxim sul (0.02) tau-fluvalinate (0.02) tebufenozide (0.02) tebufenpyrad (0.02) tebuthiuron (0.02) tecnazene (0.02) teflubenzuron (0.02) tefluthrin (0.02) terbufos (0.02) Terbufos (sum not definition) (0.02) terbuthylazine (0.1) tetrachlorvinphos (0.02) tetraconazole (0.02) tetradifon (0.02) thiabendazole (0.1) thiacloprid (0.02) tolclofos-methyl (0.02) tolfenpyrad (0.02) tolylfluanid (sum) (0.02) triallate (0.1) triasulfuron (0.1) triazamate (0.02) triazophos (0.02) triclopyr (0.1) tricyclazole (0.02) triflumizole (0.02) triflumuron (0.02) trifluralin (0.02) triforine (0.1) triticonazole (0.02) vinclozolin (sum) (0.02) zoxamide (0.02)

Table 17a. Residues detected in retail samples of CREME FRAÎCHE purchased between April and June 2015 April and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
CREME FRAÎCHE, UK: 23 s	amples analysed	
BAC (sum) (MRL = 0.1)	<0.01 (i.e. not found) 0.02 - 0.1	15 8
CREME FRAÎCHE, Importe	d (EC): 1 sample analysed	
BAC (sum) (MRL = 0.1)	<0.01 (i.e. not found) 0.03	0 1

Imported (EC) samples of crème fraîche were from France (1). UK samples of crème fraîche (23).

Residues were distributed by country of origin, as follows: BAC (sum) France (1), UK (8)

No residues were found in 15 of the 23 UK samples Residues were found in all of the 1 Imported (EC) samples

Table 17b. Residues detected in retail samples of CREME FRAÎCHE purchased between April and June 2015 April and June 2015

Number of residues	Sample ID	Residues found (mg/kg) BACSM	Country of origin
(1)	0151/2015	0.09	UK
	0526/2015	0.02	UK
	1994/2015	0.02	UK
	2805/2015	0.05	UK
	2866/2015	0.1	UK
	2905/2015	0.03	UK
	2932/2015	0.05	UK
	2953/2015	0.02	UK
	2776/2015	0.03	France

Residues (1-1 compounds) were found in 9 of the 24 samples as follows:

The abbreviations used for the pesticide names are as follows:

BACSM BAC (sum)

Table 17c. Residues sought but not found in retail samples of CREME FRAÎCHE purchased between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

acephate (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.002) azamethiphos (0.01) azinphos-ethyl (0.002) beta-HCH (0.002) bifenthrin (0.002) boscalid (0.01) bromophos-ethyl (0.002) cadusafos (0.002) carbaryl (0.01) carbendazim (0.01) chlordane (sum) (0.01)

chlorfenvinphos (0.01) chlorobenzilate (0.002) chlorpyrifos (0.002) chlorpyrifos-methyl (0.002) coumaphos (0.002) cyfluthrin (0.002) cypermethrin (0.01) cyproconazole (0.01) DDAC (sum) (0.01) DDT (sum) (0.01) deltamethrin (0.002) diazinon (0.002) dichlorvos (0.002) diflubenzuron (0.01) endosulfan (sum) (0.01) endrin (0.002) epoxiconazole (0.01) ethoprophos (0.002) etofenprox (0.01) famoxadone (0.002) fenitrothion (0.002) fenpropimorph (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.002) fluquinconazole (0.01) flusilazole (0.01) formothion (0.002) Heptachlor (sum) (0.01) hexachlorobenzene (0.002) indoxacarb (0.01) lambda-cyhalothrin (0.002) lindane (0.002) malathion (0.01)metaflumizone (0.01) metazachlor (0.002)

methacrifos (0.002) methamidophos (0.01) methidathion (0.002) methoxychlor (0.002) nitrofen (0.002) parathion (0.002) pendimethalin (0.002) permethrin (0.005) phoxim (0.01) pirimiphos-methyl (0.002) profenofos (0.01) propetamphos (0.002) propoxur (0.01)

prothioconazole (0.01) pyrazophos (0.002) spinosad (0.01) tau-fluvalinate (0.002) tebuconazole (0.01) tecnazene (0.002) teflubenzuron (0.01) tetrachlorvinphos (0.002) tetraconazole (0.01) thiacloprid (0.01) triazophos (0.01)

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
CURRY LEAVES, Imported	(Non-EC): 22 samples analysed	
abamectin (sum)	<0.02 (i.e. not found)	21
(MRL = 1)	0.05	1
acetamiprid (MRL = 3)	<0.01 (i.e. not found) 1.2 13	20 1 1
azoxystrobin	<0.02 (i.e. not found)	20
(MRL = 70)	0.03, 0.04	2
carbofuran (sum)	<0.02 (i.e. not found)	21
(MRL = 0.02*)	0.8	1
chlorpyrifos (MRL = 0.05*)	<0.02 (i.e. not found) 0.03 0.09 - 0.3	17 2 3
clothianidin	<0.02 (i.e. not found)	21
(MRL = 1.5)	0.1	1
cypermethrin	<0.1 (i.e. not found)	20
(MRL = 2)	0.8, 1.6	2
deltamethrin	<0.02 (i.e. not found)	21
(MRL = 0.5)	0.8	1
diazinon	<0.02 (i.e. not found)	21
(MRL = 0.02*)	0.5	1
diuron	<0.01 (i.e. not found)	21
(MRL = 0.02*)	0.04	1
imidacloprid	<0.02 (i.e. not found)	20
(MRL = 2)	0.2, 0.9	2
isoprothiolane	<0.01 (i.e. not found)	20
(MRL = 0.01*)	0.03	2
lambda-cyhalothrin	<0.04 (i.e. not found)	20
(MRL = 1)	0.05, 0.1	2
oxamyl	<0.01 (i.e. not found)	21
(MRL = 0.02*)	0.05	1
propamocarb	<0.01 (i.e. not found)	21
(MRL = 30)	1.2	1
propiconazole	<0.02 (i.e. not found)	21
(MRL = 0.05*)	0.04	1
thiamethoxam (sum)	<0.02 (i.e. not found)	21
(MRL = 1.5)	0.1	1
trifloxystrobin	<0.02 (i.e. not found)	21
(MRL = 10)	0.6	1

Table 18a.Residues detected in retail samples of CURRY LEAVES purchased between
April and June 2015

NOTE: * Indicates MRL is set to the Limit of Determination.

Imported (Non-EC) samples of curry leaves were from Gambia (1), Ghana (14), India (7).

Residues were distributed by country of origin, as follows:

residues were distributed by country o	i oligili, ao ioliowo.
abamectin (sum)	India (1)
acetamiprid	Ghana (1), India (1)
azoxystrobin	Ghana (1), India (1)
carbofuran (sum)	Ghana (1)
chlorpyrifos	Ghana (4), India (1)
clothianidin	Ghana (1)
cypermethrin	Ghana (1), India (1)
deltamethrin	India (1)
diuron	Ghana (1)
diazinon	Ghana (1)
imidacloprid	Ghana (1), India (1)
isoprothiolane	Ghana (1), India (1)
lambda-cyhalothrin	Ghana (1), India (1)
oxamyl	Gambia (1)
propamocarb	India (1)
propiconazole	India (1)
thiamethoxam (sum)	Ghana (1)
trifloxystrobin	Ghana (1)

No residues were found in 16 of the 22 Imported (Non-EC) samples

Table 18b. Residues detected in retail samples of CURRY LEAVES purchased between April and June 2015

Number of residues	Sample ID								Residu	ies fou	nd (mថ	g/kg)								Country of origin
		ABA	ACET	AZOX	CBF_S	CPF	CTH	CYP	DEL	DIU	DIZ	IMI	IPT	LCY	OXY	PCB	PCZ	THMSM	TRFL	0
(1)	1224/2015 1225/2015 1227/2015	- -	- - -	- - -	- -	- 0.09 0.3	- -	- -	- -	- -	- - -	- - -	- -	- -	0.05 - -	- -	- -	- -	- -	Gambia Ghana Ghana
(2)	1535/2015	-	-	-	-	0.03	-	-	-	0.04	-	-	-	-	-	-	-	-	-	Ghana
(11)	1967/2015	0.05	1.2	0.03	-	0.1	-	0.8	0.8	-	-	0.9	0.03	0.1	-	1.2	0.04	-	-	India
(12)	1536/2015	-	13	0.04	0.8	0.03	0.1	1.6	-	-	0.5	0.2	0.03	0.05	-	-	-	0.1	0.6	Ghana

Residues (1-12 compounds) were found in 6 of the 22 samples as follows:

The abbreviations used for the pesticide names are as follows:

ABA	abamectin (sum)	ACET	acetamiprid	AZOX	azoxystrobin
CBF_S	carbofuran (sum)	CPF	chlorpyrifos	CTH	clothianidin
CYP	cypermethrin	DEL	deltamethrin	DIU	diuron
DIZ	diazinon	IMI	imidacloprid	IPT	isoprothiolane
LCY	lambda-cyhalothrin	OXY	oxamyl	PCB	propamocarb
PCZ	propiconazole	THMSM	thiamethoxam (sum)	TRFL	trifloxystrobin

Table 18c.Residues sought but not found in retail samples of CURRY LEAVES
purchased between April and June 2015

etofenprox (0.02)

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,4-dimethylnaphthalene (0.02) 2,4-D (sum) (0.02) 2,4-DB (0.02) 2-phenylphenol (0.1) 6-benzyladenine (0.02) acephate (0.02) acetochlor (0.02) acibenzolar-s-methyl (0.04) aclonifen (0.1) acrinathrin (0.1) alachlor (0.02) aldicarb (sum) (0.02) aldrin and dieldrin (0.02) alpha-HCH (0.02) ametoctradin (0.02) amidosulfuron (0.02) amitraz (0.02) asulam (0.1) atrazine (0.02) azinphos-methyl (0.04) BAC (sum) (0.1) benalaxyl (0.02) bendiocarb (0.02) benfuracarb (0.02) benthiavalicarb (sum) (0.02) beta-HCH (0.02) bifenthrin (0.02) bispyribac-sodium (0.02) bitertanol (0.02) boscalid (0.02) bromophos-ethyl (0.02) bromopropylate (0.02) bromoxynil (0.02) bromuconazole (0.02) bupirimate (0.02) buprofezin (0.02) butachlor (0.02) butocarboxim (parent) (0.02) butoxycarboxim (0.02) cadusafos (0.02) carbaryl (0.02) carbendazim (0.02) carbosulfan (0.02) carboxin (0.1) chlorantraniliprole (0.02) chlorbufam (0.1) chlordane (sum) (0.02) chlorfenapyr (0.04) chlorfenvinphos (0.02) chloridazon (0.02) chlorothalonil (0.02) chlorpropham (sum) (0.1) chlorpyrifos-methyl (0.02) chlorthal-dimethyl (0.02) chlortoluron (0.02) chlozolinate (0.02) chromafenozide (0.02)

etoxazole (0.04) etridiazole (0.1) etrimfos (0.02) famoxadone (0.02) fenamidone (0.02) fenamiphos (sum) (0.02) fenarimol (0.02) fenazaquin (0.02) fenbuconazole (0.02) fenbutatin oxide (0.1) fenhexamid (0.1) fenitrothion (0.02) fenoxycarb (0.02) fenpropathrin (0.02) fenpropidin (0.1) fenpropimorph (0.02) fenpyroximate (0.02) fensulfothion (sum) (0.02) fenthion (partial sum) (0.02) fenvalerate & esfenvalerate (all isomers (0.02) fipronil (sum) (0.02) flonicamid (sum) (0.02) fluazifop-p-butyl (sum) (0.02) fluazinam (0.02) flubendiamide (0.02) flucythrinate (0.1) fludioxonil (0.02) flufenacet (0.02) flufenoxuron (0.04) fluometuron (0.02) fluopicolide (0.02) fluopyram (0.02) fluoxastrobin (0.02) fluquinconazole (0.02) flurochloridone (0.1) fluroxypyr (sum) (0.1) flusilazole (0.02) flutolanil (0.02) flutriafol (0.02) fluxapyroxad (0.02) fonofos (0.02) formetanate (0.1) fosthiazate (0.02) furalaxyl (0.02) furathiocarb (0.02) furmecyclox (0.02) halofenozide (0.02) halosulfuron-methyl (0.02) haloxyfop (sum) (0.02) Heptachlor (sum) (0.02) heptenophos (0.02) hexachlorobenzene (0.02) hexaconazole (0.02) hexythiazox (0.02) imazalil (0.04) indoxacarb (0.02)

myclobutanil (0.02) napropamide (0.1) nitenpyram (0.02) nitrothal-isopropyl (0.02) nuarimol (0.02) ofurace (0.02) Oxadiargyl (0.02) oxadixyl (0.02) oxasulfuron (0.02) oxydemeton-methyl (sum) (0.02) oxyfluorfen (0.1) paclobutrazol (0.02) parathion (0.02) parathion-methyl (sum) (0.02) penconazole (0.02) pencycuron (0.02) pendimethalin (0.02) pentanochlor (0.02) permethrin (0.02) phenmedipham (0.1) phenthoate (0.02) phorate (partial sum) (0.04) phosalone (0.02) phosmet (sum) (0.02) phosphamidon (0.02) phoxim (0.02) picolinafen (0.02) picoxystrobin (0.02) piperonyl butoxide (0.02) pirimicarb (sum) (0.02) pirimiphos-ethyl (0.02) pirimiphos-methyl (0.02) prochloraz (parent only) (0.02) procymidone (0.02) profenofos (0.02) promecarb (0.02) prometryn (0.02) propachlor (0.02) propaguizafop (0.1) propargite (0.02) propetamphos (0.02) propoxur (0.02) propyzamide (0.02) proquinazid (0.02) prosulfocarb (0.1) prosulfuron (0.04) prothioconazole (0.02) prothiofos (0.02) pymetrozine (0.02) pyraclostrobin (0.02) pyrazophos (0.02) pyrethrins (0.02) pyridaben (0.02) pyridaphenthion (0.02) pyrimethanil (0.1) pyriproxifen (0.02) quassia (0.02)

clethodim (0.1) clofentezine (0.02) clomazone (0.02) coumaphos (0.02) cyazofamid (0.02) cycloate (0.02) cycloxydim (0.1) cyflufenamid (0.02) cyfluthrin (0.04) Cyhalofop-butyl (sum) (0.02) cymoxanil (0.02) cyproconazole (0.02) cyprodinil (0.1) cyromazine (0.1) DDAC (sum) (0.1) DDT (sum) (0.02) demeton-S-methyl (0.02) desmedipham (0.1) dichlobenil (0.1) dichlofluanid (0.02) dichlofluanid and DMSA (0.02) dichlorprop (0.02) dichlorvos (0.02) diclobutrazol (0.02) dicloran (0.02) dicofol (sum) (0.02) dicrotophos (0.02) diethofencarb (0.02) difenoconazole (0.02) diflubenzuron (0.02) diflufenican (0.02) dimethenamid (0.02) dimethoate (sum) (0.02) dimethomorph (0.02) dimoxystrobin (0.02) diniconazole (0.02) dinotefuran (0.02) diphenylamine (0.1) disulfoton (sum) (0.04) dodine (0.1) emamectin benzoate (0.02) endosulfan (sum) (0.02) EPN (0.02) epoxiconazole (0.02) EPTC (0.1) ethiofencarb (parent) (0.02) ethion (0.02) ethirimol (0.02) ethofumesate (0.02) ethoprophos (0.02)

ioxynil (0.1) iprodione (0.04) iprovalicarb (0.02) isazophos (0.02) isocarbophos (0.02) isofenphos (0.02) isofenphos-methyl (0.02) isoprocarb (0.02) isoproturon (0.02) isopyrazam (0.02) isoxaben (0.02) isoxaflutole (0.02) kresoxim-methyl (0.02) lenacil (0.02) lindane (0.02) linuron (0.02)lufenuron (0.04) malathion (0.02) mandipropamid (0.02) MCPA, MCPB and MCPA thioethyl expressed (0.02) MCPB (0.02) mecarbam (0.02) mepanipyrim (sum) (0.02) mepronil (0.02) mesosulfuron-methyl (0.02) metaflumizone (0.1) metalaxyl (0.02) metamitron (0.02) metconazole (0.02) methabenzthiazuron (0.02) methacrifos (0.02) methamidophos (0.02) methidathion (0.02) methiocarb (sum) (0.02) methomyl (sum) (0.02) methoxyfenozide (0.02) metobromuron (0.02) metolachlor (0.02) metolcarb (0.02) metosulam (0.02) metoxuron (0.02) metrafenone (0.02) metribuzin (0.1) metsulfuron-methyl (0.1) mevinphos (0.02) molinate (0.02) monocrotophos (0.02) monolinuron (0.02) Monuron (0.02)

quinalphos (0.02) quinmerac (0.1) Quinoclamine (0.02) quinoxyfen (0.02) quintozene (sum) (0.02) rimsulfuron (0.02) rotenone (0.02) spinosad (0.02) spirodiclofen (0.02) spiromesifen (0.02) spirotetramat (sum) (0.02) spiroxamine (0.02) sulcotrione (0.1) sum of butocarboxim and butocarboxim sulfoxide (0.02) tau-fluvalinate (0.02) tebuconazole (0.02) tebufenozide (0.02) tebufenpvrad (0.02) tebuthiuron (0.02) tecnazene (0.02) teflubenzuron (0.02) tefluthrin (0.02) terbufos (0.02) Terbufos (sum not definition) (0.02) terbuthylazine (0.1) tetrachlorvinphos (0.02) tetraconazole (0.02) tetradifon (0.02) tetramethrin (0.02) thiabendazole (0.1) thiacloprid (0.02) thiophanate-methyl (0.02) tolclofos-methyl (0.02) tolfenpyrad (0.02) tolylfluanid (sum) (0.02) triadimefon & triadimenol (0.02) triallate (0.1) triasulfuron (0.1) triazamate (0.02) triazophos (0.02) triclopyr (0.1) tricyclazole (0.02) triflumizole (0.02) triflumuron (0.02) trifluralin (0.02) triforine (0.1) triticonazole (0.02) vinclozolin (sum) (0.02) zoxamide (0.02)

Table 19a. Residues detected in retail samples of EGGS purchased between April and June 2015

Commodity/Pesticide Concentration range (mg/kg) Number of samples in range

EGGS, UK: 19 samples analysed

None found

19

UK samples of eggs (19).

No residues were found in any of the UK samples

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

aldrin and dieldrin (0.002) alpha-HCH (0.002) azinphos-ethyl (0.002) beta-HCH (0.002) bifenthrin (0.002) chlordane (animal products) (0.002) chlorfenvinphos (0.002) chlorobenzilate (0.002) chlorpyrifos (0.002) chlorpyrifos-methyl (0.002) cyfluthrin (0.01) DDT (sum) (0.002) deltamethrin (0.01) diazinon (0.002) endosulfan (sum) (0.002) endrin (0.002) fenvalerate & esfenvalerate (all isomers (0.01) hexachlorobenzene (0.002) lindane (0.002) methacrifos (0.002) methidathion (0.002) methoxychlor (0.002) nitrofen (0.01) parathion (0.002) parathion-methyl (sum) (0.002) permethrin (0.01) pirimiphos-methyl (0.002) profenofos (0.002) pyrazophos (0.002)

quintozene (sum) (0.002) resmethrin (0.01) tecnazene (0.002) triazophos (0.002) trifluralin (0.002)

Table 20a.Residues detected in samples of GRAPES obtained between April and June2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
GRAPES, Imported (Non-EC	c): 29 samples analysed	
acetamiprid	<0.01 (i.e. not found)	27
MRL = 0.5)	0.03, 0.2	2
ametoctradin	<0.01 (i.e. not found)	28
(MRL = 6)	0.03	1
pifenthrin	<0.01 (i.e. not found)	27
MRL = 0.2)	0.01, 0.03	2
ooscalid	<0.01 (i.e. not found)	17
MRL = 5)	0.01 - 1.5	12
ouprofezin	<0.01 (i.e. not found)	26
(MRL = 1)	0.02 - 0.09	3
chlorantraniliprole	<0.01 (i.e. not found)	24
/MRL = 1)	0.02 - 0.3	5
chlormequat	<0.02 (i.e. not found)	28
(MRL = 0.05*)	0.03	1
cyazofamid	<0.01 (i.e. not found)	28
MRL = 2)	0.07	1
cyprodinil	<0.05 (i.e. not found)	22
(MRL = 5)	0.09 - 0.6	7
difenoconazole	<0.01 (i.e. not found)	26
(MRL = 0.5)	0.01 - 0.02	3
dimethomorph	<0.01 (i.e. not found)	27
MRL = 3)	0.01, 0.2	2
dithiocarbamates	<0.05 (i.e. not found)	28
MRL = 5)	0.08	1
ethephon	<0.05 (i.e. not found)	14
(MRL = 0.7)	0.05 - 0.5	15
famoxadone	<0.01 (i.e. not found)	28
(MRL = 2)	0.3	1
fenamidone	<0.01 (i.e. not found)	28
(MRL = 0.5)	0.02	1
enhexamid	<0.05 (i.e. not found)	15
MRL = 5)	0.2 - 4	14
ionicamid (sum)	<0.01 (i.e. not found)	28
MRL = 0.05*)	0.06	1
fludioxonil	<0.01 (i.e. not found)	22
(MRL = 5)	0.06 - 0.5	7
fluopyram	<0.01 (i.e. not found)	26
(MRL = 1.5)	0.03 - 0.3	3
imidacloprid	<0.01 (i.e. not found) 142	23

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
(MRL = 1)	0.04 - 0.2	6
indoxacarb	<0.01 (i.e. not found)	27
(MRL = 2)	0.01, 0.04	2
iprodione	<0.02 (i.e. not found)	28
(MRL = 10)	0.03	1
mandipropamid	<0.01 (i.e. not found)	27
(MRL = 2)	0.01, 0.06	2
metalaxyl	<0.01 (i.e. not found)	28
(MRL = 2)	0.08	1
methoxyfenozide	<0.01 (i.e. not found)	28
(MRL = 1)	0.02	1
metrafenone	<0.01 (i.e. not found)	28
(MRL = 5)	0.01	1
myclobutanil	<0.01 (i.e. not found)	23
(MRL = 1)	0.01 - 0.03	6
pyraclostrobin	<0.01 (i.e. not found)	28
(MRL = 1)	0.09	1
pyrimethanil	<0.05 (i.e. not found)	20
(MRL = 5)	0.3 - 2.1	9
quinoxyfen	<0.01 (i.e. not found)	28
(MRL = 1)	0.01	1
spirotetramat (sum)	<0.01 (i.e. not found)	28
(MRL = 2)	0.04	1
tebuconazole	<0.01 (i.e. not found)	28
(MRL = 0.5)	0.02	1
tetraconazole	<0.01 (i.e. not found)	27
(MRL = 0.5)	0.01	2

NOTE: * Indicates MRL is set to the Limit of Determination.

Imported (Non-EC) samples of grapes were from Brazil (1), Chile (14), Egypt (3), India (4), Israel (1), South Africa (6).

Residues were distributed by country of origin, as follows: acetamiprid Chile (2)

acetampho	Chile (2)
ametoctradin	South Africa (1)
bifenthrin	Brazil (1), Chile (1)
boscalid	Chile (8), Egypt (1), Israel (1), South Africa (2)
buprofezin	India (3)
chlormequat	India (1)
chlorantraniliprole	Chile (5)
cyprodinil	Chile (7)
cyazofamid	Brazil (1)
difenoconazole	Brazil (1), Chile (1), India (1)
dimethomorph	Brazil (1), South Africa (1)
dithiocarbamates	South Africa (1)
ethephon	Chile (9), South Africa (6)
famoxadone	Brazil (1)
flonicamid (sum)	India (1)
fludioxonil	Chile (7)

Brazil (1) fenamidone Chile (13), South Africa (1) fenhexamid fluopyram South Africa (3) indoxacarb Brazil (1), Chile (1) imidacloprid Brazil (1), Chile (5) iprodione Egypt (1) India (2) mandipropamid South Africa (1) metrafenone metalaxyl Israel (1) methoxyfenozide Chile (1) myclobutanil Chile (3), Egypt (1), India (2) pyraclostrobin Chile (1) pyrimethanil Chile (9) quinoxyfen Chile (1) spirotetramat (sum) Chile (1) tebuconazole Chile (1) tetraconazole India (2)

No residues were found in 1 of the 29 Imported (Non-EC) samples

Table 20b. Residues detected in samples of GRAPES obtained between April and June 2015

Number of	Sample ID									Residu	ies found	d (mg/kg	1)							
residues		ACET	AMTD	BIF	BOS	BUF	CLQ	CTP	CYD	CZF	DIFC	DMR	DTC	ETH	FAX	FLC	FLUD	FMD	FNHX	FPYM
(1)	4067/2015 4143/2015	-	-	-	-	-	-	-	-	- -	-	-	-	- 0.3	- -	-	-	-	-	-
(2)	3932/2015 4108/2015 4244/2015 3930/2015 4110/2015 4251/2015	- - - -	- - - -	- 0.03 - - -	- 0.01 - 0.01	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - -	- - - - 0.5	- - - -	- - - -	- - - -	- - - -	1.9 0.2 - - -	- - - - 0.3
(3)	3949/2015 4236/2015 3933/2015 4027/2015 4098/2015	- - -	- - - 0.03	- - - -	- 0.01 - 0.05	0.09 0.02 - -	- 0.03 - -	- - -	- - - -	- - -	0.02 - - -	- - 0.01	- - -	- 0.4 0.2 0.2	- - - -	- 0.06 - -	- - -	- - - -	- - -	- 0.03 0.1 -
(4)	4009/2015 4109/2015 4234/2015 4245/2015 3950/2015 4249/2015	- - - -	- - - -		0.7 - 1.5 -	- - - 0.03	- - - -	- - 0.3 -	- - - -	- - - -	- - - -	- - - -	- - - - 0.08	0.2 - 0.3 - 0.05	- - - -	- - - -	- - - -	- - - -	1.5 0.3 0.2 0.7 - 0.3	- - - -
(5)	3979/2015	-	-	-	0.02	-	-	0.03	0.2	-	-	-	-	-	-	-	0.1	-	-	-
(6)	3936/2015 4188/2015	-	-	-	- 0.9	-	-	0.2 -	0.4 -	- -	-	-	-	0.07 0.1	-	-	0.1 -	-	1.6 1.4	-
(7)	3951/2015 4187/2015 4189/2015	- 0.03 -	- -	- - -	0.04 0.2 -	- - -	- -	- - 0.2	0.09 0.1 0.6	- - -	0.02 - -	- -	- -	0.05 0.1 0.1	- - -	- - -	0.07 0.06 0.5	- -	2.5 0.3 4	- -
(8)	4080/2015 4337/2015	-	-	0.01 -	- 0.04	- -	-	- 0.02	- 0.2	0.07 -	0.01 -	0.2 -	-	- 0.08	0.3 -	-	- 0.06	0.02 -	- 1.7	-

Residues (1-10 compounds) were found in 28 of the 29 samples as follows:

Number of	Sample ID										Residue	es found	l (mg/kg)								
residues																					
		AC		AMTD	BIF	BOS		CLQ	CTP	CYD	CZF	DIFC	DMR	DTC	ETH			FLUD	FMD	FNHX	FPYN
(10)	3995/2015	0.2	•	-	-	0.3	-	-	-	0.4	-	-	-	-	0.3	-	-	0.2	-	2.6	-
Number	Sample	ID						R	esidues	found (mg/kg)						(Country o	forigin	-	
of																					
residues			IDX	IMI	IPR	MDI	MTF	MTX	MXF	MYC	PYC	PYM	QINO	STTP	S TBO	ст	T7				
			IDX	IIVII	IFK	IVIDI			IVIAE	IN TO	PIC	PTIVI	QINU	SHP	5 ID(ו כ	IZ				
(1)	4067/20	15	-	-	0.03	-	-	-	-	_	_	-	-	_	-	-	F	Egypt			
(')	4143/20		-	-	-	-	-	-	-	-	-	-	-	-	-	-		South Afri	са		
																	-				
(2)	3932/20		-	-	-	-	-	-	-	-	-	0.6	-	-	-	-		Chile			
	4108/20		-	-	-	-	-	-	-	-	-	-	-	-	-	-	(Chile			
	4244/20		-	-	-	-	-	-	-	0.02	-	-	-	-	-	-		gypt			
	3930/20		-	-	-	-	-	-	-	0.01	-	-	-	-	-	0.		ndia			
	4110/20		-	-	-	-	-	0.08	-	-	-	-	-	-	-	-		srael			
	4251/20	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S	South Afri	са		
(3)	3949/20	15	-	-	-	0.01	-	-	-	-	-	-	-	-	-	-	h	ndia			
	4236/20		-	-	-	-	-	-	-	-	-	-	-	-	-	-		ndia			
	3933/20		-	-	-	-	-	-	-	-	-	-	-	-	-	-		South Afri			
	4027/20		-	-	-	-	-	-	-	-	-	-	-	-	-	-		South Afri			
	4098/20	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S	South Afri	са		
(4)	4009/20	15	-	-	-	-	-	-	-	-	-	1	-	-	-	-		Chile			
	4109/20		-	0.04	-	-	-	-	-	0.03	-	0.4	-	-	-	-		Chile			
	4234/20		-	0.09	-	-	-	-	-	0.02	-	0.7	-	-	-	-		Chile			
	4245/20		-	-	-	-	-	-	-	-	-	-	-	-	-	-		Chile			
	3950/20		-	-	-	0.06	-	-	-	0.02	-	-	-	-	-	0.		ndia			
	4249/20	15	-	-	-	-	0.01	-	-	-	-	-	-	-	-	-	S	South Afri	са		
(5)	3979/20	15	-	-	-	-	-	-	-	-	-	-	0.01	-	-	-	C	Chile			
(6)	3936/20	15	-	-	-	-	-	-	-	-	-	0.7	-	-	-	-	C	Chile			
× /	4188/20		-	-	-	-	-	-	-	-	-	1	-	0.04	0.02	2 -		Chile			
(7)	3951/20	15	-	-	-	-	-	-	0.02	-	-	-	-	-	-	-	(Chile			
· /	4187/20		-	-	-	-	-	-	-	-	-	0.3	-	-	-	-		Chile			
	4189/20		-	0.04	-	-	-	-	-	-	-	0.3	-	-	-	-		Chile			

Number of	umber Sample ID Residues found (mg/kg)										Country of origin					
residues		IDX	IMI	IPR	MDI	MTF	MTX	MXF	MYC	PYC	PYM	QINO	STTPS	TBC	TTZ	
(8)	4080/2015 4337/2015	0.01 -	0.07 0.2	- -	- -	- -	- -	- -	-	- -	- 2.1	-	-	- -	- -	Brazil Chile
(10)	3995/2015	0.04	0.2	-	-	-	-	-	0.02	0.09	-	-	-	-	-	Chile

The abbreviations used for the pesticide names are as follows:

ACET	acetamiprid	AMTD	ametoctradin	BIF	bifenthrin
BOS	boscalid	BUF	buprofezin	CLQ	chlormequat
CTP	chlorantraniliprole	CYD	cyprodinil	CZF	cyazofamid
DIFC	difenoconazole	DMR	dimethomorph	DTC	dithiocarbamates
ETH	ethephon	FAX	famoxadone	FLC	flonicamid (sum)
FLUD	fludioxonil	FMD	fenamidone	FNHX	fenhexamid
FPYM	fluopyram	IDX	indoxacarb	IMI	imidacloprid
IPR	iprodione	MDI	mandipropamid	MTF	metrafenone
MTX	metalaxyl	MXF	methoxyfenozide	MYC	myclobutanil
PYC	pyraclostrobin	PYM	pyrimethanil	QINO	quinoxyfen
STTPS	spirotetramat (sum)	TBC	tebuconazole	TTZ	tetraconazole

Table 20c.Residues sought but not found in samples of GRAPES obtained between
April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,4-dimethylnaphthalene (0.01) 2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.05) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.02) aclonifen (0.05) acrinathrin (0.05) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.01) amidosulfuron (0.01) amitraz (0.01) anthraguinone (0.01) asulam (0.05) atrazine (0.01) azinphos-methyl (0.02) azoxystrobin (0.01) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) butachlor (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (0.02) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbosulfan (0.01) carboxin (0.05) chlorbufam (0.05) chlordane (sum) (0.01) chlorfenapyr (0.02) chlorfenvinphos (0.01) chloridazon (0.01) chlorothalonil (0.01) chlorpropham (sum) (0.05) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlortoluron (0.01)

ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.02) etridiazole (0.05) etrimfos (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaquin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.05) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.05) fenpropimorph (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.05) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.05) fluroxypyr (sum) (0.05) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) fonofos (0.01) formetanate (0.05) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) furmecyclox (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexaconazole (0.01) hexythiazox (0.01) imazalil (0.02)

napropamide (0.05) nitenpyram (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) Oxadiargyl (0.01) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.05) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) pentanochlor (0.01) permethrin (0.01) phenmedipham (0.05) phenthoate (0.01) phorate (partial sum) (0.02) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) Prochloraz (sum) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (0.01) propaguizafop (0.05) propargite (0.01) propetamphos (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.05) prosulfuron (0.02) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyriproxifen (0.01)

chlozolinate (0.01) chromafenozide (0.01) clethodim (0.05) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cycloate (0.01) cycloxydim (0.05) cyflufenamid (0.01) cyfluthrin (0.02) Cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (0.05) cyproconazole (0.01) cyromazine (0.05) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.05) demeton-S-methyl (0.01) desmedipham (0.05) diazinon (0.01) dichlobenil (0.05) dichlofluanid (0.01) dichlofluanid and DMSA (0.01) dichlorprop (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.05) disulfoton (sum) (0.02) diuron (0.01) dodine (0.05) emamectin benzoate (0.01) endosulfan (sum) (0.01) EPN (0.01) epoxiconazole (0.01) EPTC (0.05)

ioxynil (0.05) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01)lufenuron (0.02) malathion (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepiquat (0.02) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (0.05) metamitron (0.01) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metribuzin (0.05) metsulfuron-methyl (0.05) mevinphos (0.01) molinate (0.01) monocrotophos (0.01) monolinuron (0.01) Monuron (0.01)

quassia (0.01) quinalphos (0.01) quinmerac (0.05) Quinoclamine (0.01) quintozene (sum) (0.01) rimsulfuron (0.01) rotenone (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spiroxamine (0.01) sulcotrione (0.05) sum of butocarboxim and butocarboxim sulfoxide (0.01) tau-fluvalinate (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbuthylazine (0.05) tetrachlorvinphos (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.05) thiacloprid (0.01) thiamethoxam (sum) (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.05) triasulfuron (0.05) triazamate (0.01) triazophos (0.01) triclopyr (0.05) tricyclazole (0.01) trifloxystrobin (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 21a. Residues detected in retail samples of LETTUCE purchased between April and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
LETTUCE, UK: 12 samples a	analysed	
None found	-	12
LETTUCE, Imported (EC): 6	samples analysed	
acetamiprid (MRL = 3)	<0.01 (i.e. not found) 0.06	5 1
imidacloprid (MRL = 2)	<0.01 (i.e. not found) 0.03 - 0.1	2 4
thiamethoxam (sum) (MRL = 5)	<0.01 (i.e. not found) 0.01, 0.02	4 2

Imported (EC) samples of lettuce were from Spain (6). UK samples of lettuce (12).

Residues were distributed by country of origin, as follows:acetamipridSpain (1)imidaclopridSpain (4)thiamethoxam (sum)Spain (2)

No residues were found in any of the UK samples No residues were found in 1 of the 6 Imported (EC) samples

Table 21b. Residues detected in retail samples of LETTUCE purchased between April and June 2015

Number of residues	Sample ID	Residu ACET	es four IMI	nd (mg/kg) THMSM	Country of origin
(1)	1580/2015 1917/2015 1969/2015 2963/2015	- - -	0.1 0.03 - 0.07	- - 0.02 -	Spain Spain Spain Spain
(3)	2652/2015	0.06	0.09	0.01	Spain

Residues (1-3 compounds) were found in 5 of the 18 samples as follows:

The abbreviations used for the pesticide names are as follows:

ACET	acetamiprid	IMI	imidacloprid	THMSM	thiamethoxam (sum)

Table 21c. Residues sought but not found in retail samples of LETTUCE purchased between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,4-dimethylnaphthalene (0.01) 2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.05) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.02) aclonifen (0.05) acrinathrin (0.05) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (0.01) anthraquinone (0.01) asulam (0.05) atrazine (0.01) azinphos-methyl (0.02) azoxystrobin (0.01) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) boscalid (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (0.02) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbosulfan (0.01) carboxin (0.05) chlorantraniliprole (0.01) chlorbufam (0.05) chlordane (sum) (0.01) chlorfenapyr (0.02) chlorfenvinphos (0.01) chloridazon (0.01) chlorothalonil (0.01)

epoxiconazole (0.01) EPTC (0.05) ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.02) etridiazole (0.05) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.05) fenhexamid (0.05) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.05) fenpropimorph (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) flonicamid (sum) (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.05) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.05) fluroxypyr (sum) (0.05) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) fonofos (0.01) formetanate (0.05) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) halofenozide (0.01) halosulfuron-methyl (0.01)

molinate (0.01) monocrotophos (0.01) monolinuron (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.05) nitenpyram (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) Oxadiargyl (0.01) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.05) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) pentanochlor (0.01) permethrin (0.01) phenmedipham (0.05) phenthoate (0.01) phorate (partial sum) (0.02) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (0.01) propaguizafop (0.05) propargite (0.01) propetamphos (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.05) prosulfuron (0.02) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyraclostrobin (0.01)

chlorpropham (sum) (0.05) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlortoluron (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.05) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cyazofamid (0.01) cycloate (0.01) cycloxydim (0.05) cyflufenamid (0.01) cyfluthrin (0.02) Cyhalofop-butyl (sum) (0.01) cvmoxanil (0.01) cypermethrin (0.05) cyproconazole (0.01) cyprodinil (0.05) cyromazine (0.05) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.05) demeton-S-methyl (0.01) desmedipham (0.05) diazinon (0.01) dichlobenil (0.05) dichlofluanid (0.01) dichlofluanid and DMSA (0.01) dichlorprop (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.05) disulfoton (sum) (0.02) dithiocarbamates (0.05) diuron (0.01) dodine (0.05) emamectin benzoate (0.01) endosulfan (sum) (0.01) EPN (0.01)

haloxyfop (sum) (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexaconazole (0.01) hexythiazox (0.01) imazalil (0.02) indoxacarb (0.01) ioxynil (0.05) iprodione (0.02) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01)lufenuron (0.02) malathion (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (0.05) metalaxyl (0.01) metamitron (0.01) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.05) metsulfuron-methyl (0.05) mevinphos (0.01)

pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrimethanil (0.05) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.05) Quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) rimsulfuron (0.01) rotenone (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spiroxamine (0.01) sulcotrione (0.05) sum of butocarboxim and butocarboxim sulfoxide (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbuthylazine (0.05) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.05) thiacloprid (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.05) triasulfuron (0.05) triazamate (0.01) triazophos (0.01) triclopyr (0.05) tricyclazole (0.01) trifloxystrobin (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 22a.Residues detected in samples of MANGO obtained between January and
June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
MANGO, Imported (Non-EC)	: 37 samples analysed	
2-phenylphenol	<0.01 (i.e. not found)	35
(MRL = 0.05*)	0.02	2
azoxystrobin	<0.01 (i.e. not found)	36
(MRL = 0.7)	0.2	1
bifenthrin	<0.01 (i.e. not found)	36
(MRL = 0.3)	0.02	1
carbendazim	<0.01 (i.e. not found)	36
(MRL = 0.5)	0.02	1
dithiocarbamates	<0.05 (i.e. not found)	32
(MRL = 2)	0.06 - 0.1	5
lambda-cyhalothrin	<0.01 (i.e. not found)	36
(MRL = 0.2)	0.03	1
Prochloraz (sum)	<0.01 (i.e. not found)	23
(MRL = 5)	0.1 - 3.7	14
pyraclostrobin	<0.01 (i.e. not found)	36
(MRL = 0.05)	0.02	1
thiabendazole	<0.01 (i.e. not found)	14
(MRL = 5)	0.01 - 2.2	23
thiophanate-methyl	<0.01 (i.e. not found)	36
(MRL = 1)	0.01	1

NOTE: * Indicates MRL is set to the Limit of Determination.

Imported (Non-EC) samples of mango were from Brazil (10), Burkina Faso (1), Costa Rica (2), Cote d'Ivoire (6), Dominican Republic (3), Mali (1), Pakistan (2), Peru (12).

Residues were distributed by country o	f origin, as follows:
2-phenylphenol	Burkina Faso (1), Peru (1)
azoxystrobin	Brazil (1)
bifenthrin	Brazil (1)
carbendazim	Brazil (1)
dithiocarbamates	Brazil (2), Costa Rica (1), Mali (1), Peru (1)
lambda-cyhalothrin	Brazil (1)
Prochloraz (sum)	Brazil (1), Costa Rica (2), Cote d'Ivoire (2), Peru (9)
pyraclostrobin	Brazil (1)
thiabendazole	Brazil (10), Costa Rica (1), Peru (12)
thiophanate-methyl	Brazil (1)

No residues were found in 9 of the 37 Imported (Non-EC) samples

Table 22b. Residues detected in samples of MANGO obtained between January and June 2015

Number of residues	Sample ID Residues found (mg/kg)											Country of origin
residues		2PP	AZOX	BIF	CBZ	DTC	LCY	PRZS	PYC	TBZ	TME	
(1)	3852/2015	_	-	_	_	_	_	-	-	1.3	-	Brazil
()	3860/2015	-	-	-	-	-	-	-	-	0.5	-	Brazil
	3880/2015	-	-	-	-	-	-	-	-	0.7	-	Brazil
	3963/2015	-	-	-	-	-	-	-	-	2.1	-	Brazil
	4051/2015	-	-	-	-	-	-	-	-	0.5	-	Brazil
	4086/2015	-	-	-	-	-	-	-	-	0.8	-	Brazil
	4121/2015	-	-	-	-	-	-	-	-	0.2	-	Brazil
	3998/2015	0.02	-	-	-	-	-	-	-	-	-	Burkina Faso
	4084/2015	-	-	-	-	-	-	1.3	-	-	-	Costa Rica
	4164/2015	-	-	-	-	-	-	0.1	-	-	-	Cote d'Ivoire
	4310/2015	-	-	-	-	-	-	0.4	-	-	-	Cote d'Ivoire
	4311/2015	-	-	-	-	0.06	-	-	-	-	-	Mali
	4010/2015	-	-	-	-	-	-	-	-	0.06	-	Peru
	4046/2015	-	-	-	-	-	-	-	-	0.2	-	Peru
	4149/2015	-	-	-	-	-	-	-	-	0.5	-	Peru
(2)	3869/2015	-	-	-	-	0.06	-	-	-	2.2	-	Brazil
. ,	4063/2015	-	-	-	-	0.09	-	-	-	0.7	-	Brazil
	3891/2015	-	-	-	-	-	-	1.4	-	0.2	-	Peru
	3958/2015	-	-	-	-	-	-	0.2	-	0.5	-	Peru
	4018/2015	-	-	-	-	-	-	1.2	-	0.5	-	Peru
	4019/2015	-	-	-	-	-	-	0.7	-	0.2	-	Peru
	4053/2015	-	-	-	-	-	-	0.6	-	0.7	-	Peru
	4140/2015	-	-	-	-	-	-	0.2	-	0.6	-	Peru
	4142/2015	-	-	-	-	-	-	2	-	0.4	-	Peru
	4144/2015	-	-	-	-	-	-	0.2	-	0.7	-	Peru
(3)	3970/2015	-	-	-	-	0.1	-	1.3	-	0.01	-	Costa Rica
(4)	4085/2015	0.02	-	-	-	0.08	-	3.7	-	0.1	-	Peru
(8)	4058/2015	-	0.2	0.02	0.02	-	0.03	1.9	0.02	0.2	0.01	Brazil

Residues (1-8 compounds) were found in 28 of the 37 samples as follows:

The abbreviations used for the pesticide names are as follows:

2PP	2-phenylphenol	AZOX	azoxystrobin	BIF	bifenthrin
CBZ	carbendazim	DTC	dithiocarbamates	LCY	lambda-cyhalothrin
PRZS	Prochloraz (sum)	PYC	pyraclostrobin	TBZ	thiabendazole
TME	thiophanate-methyl				

Table 22c.Residues sought but not found in samples of MANGO obtained between
January and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.01) acrinathrin (0.01) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.01) atrazine (0.01) benalaxyl (0.01) bendiocarb (0.01) beta-HCH (0.01) bifenox (0.01) biphenyl (0.01) bitertanol (0.01) boscalid (0.01) bromophos-ethyl (0.01) bromophos-methyl (0.01) bromopropylate (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butralin (0.01) cadusafos (0.01) carbaryl (0.01) carbofuran (sum) (0.01) carbophenothion (0.01) carboxin (0.01) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenson (0.01) chlorfenvinphos (0.01) chloridazon (0.01) chlorobenzilate (0.01) chlorothalonil (0.01) chlorotoluron (0.01) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlorthion (0.01) chlorthiophos (0.01) chlozolinate (0.01) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) crufomate (0.01) cyanophenphos (0.01) cycloate (0.01) cyflufenamid (0.01) cyfluthrin (0.01)

ethion (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etridiazole (0.01) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaquin (0.01) fenbuconazole (0.01) fenhexamid (0.01) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropimorph (0.01) fenson (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (SS & RR Iso (0.01) fipronil (sum) (0.01) fluazinam (0.01) flucythrinate (0.01) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.01) fluopicolide (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.01) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) folpet (0.01) fonofos (0.01) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) haloxyfop-methyl (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01)hexaconazole (0.01) hexazinone (0.01) imazalil (0.01) imidacloprid (0.01) indoxacarb (0.01) iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isobenzan (0.01) isocarbophos (0.01) isodrin (0.01) isofenphos (0.01)

Monuron (0.01) myclobutanil (0.01) napropamide (0.01) nitrofen (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) oxadiazon (0.01) oxadixyl (0.01) oxamyl (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.01) paclobutrazol (0.01) parathion (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) permethrin (0.01) phenothrin (0.01) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) phosphamidon (0.01) picolinafen (0.01) picoxystrobin (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) procymidone (0.01) profenofos (0.01) prometryn (0.01) propachlor (0.01) propamocarb (0.01) propanil (0.01) propargite (0.01) propazine (0.01) propetamphos (0.01) propham (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proguinazid (0.01) prosulfocarb (0.01) prothioconazole (0.01) prothiofos (0.01) pyrazophos (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrifenox (0.01) pyrimethanil (0.01) pyriproxifen (0.01) quinalphos (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) rotenone (0.01) simazine (0.01)

cypermethrin (0.01) cyproconazole (0.01) cyprodinil (0.01) DDT (sum) (0.01) deltamethrin (0.01) dialifos (0.01) diazinon (0.01) dichlobenil (0.01) dichlofenthion (0.01) dichlofluanid (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimethylvinphos (0.01) dimoxystrobin (0.01) diniconazole (0.01) dioxabenzophos (0.01) diphenylamine (0.01) disulfoton (sum) (0.01) ditalimfos (0.01) edifenphos (0.01) endosulfan (sum) (0.01) endrin (0.01) EPN (0.01) epoxiconazole (0.01)

isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) jodfenphos (0.01) kresoxim-methyl (0.01) lenacil (0.01) leptophos (0.01) lindane (0.01) linuron (0.01) lufenuron (0.01) malathion (0.01) mecarbam (0.01) mepronil (0.01) metalaxyl (0.01) metamitron (0.01) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.01) mevinphos (0.01) molinate (0.01) monocrotophos (0.01)

spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spiroxamine (0.01) sulfotep (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenpyrad (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbacil (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbuthylazine (0.01) terbutryn (0.01) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) tetrasul (0.01) thiacloprid (0.01) thiamethoxam (sum) (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triallate (0.01) triazophos (0.01) trietazine (0.01) trifloxystrobin (0.01) triflumuron (0.01) trifluralin (0.01) zoxamide (0.01)

Table 23a. Residues detected in retail samples of MELONS purchased between January and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
CANTALOUPE UK: 1 sample	analysed	
carbendazim	<0.01 (i.e. not found)	0
(MRL = 0.1*)	0.01	1
thiophanate-methyl	<0.01 (i.e. not found)	0
(MRL = 0.3)	0.03	1
CANTALOUPE Imported (No	n-EC): 5 samples analysed	
azoxystrobin	<0.01 (i.e. not found)	4
(MRL = 1)	0.09	1
chlorothalonil	<0.01 (i.e. not found)	4
(No MRL)	0.04	1
dithiocarbamates	<0.05 (i.e. not found)	4
(No MRL)	0.05	1
fluopicolide	<0.01 (i.e. not found)	4
(MRL = 0.5)	0.02	1
imazalil	<0.01 (i.e. not found)	2
(MRL = 2)	0.2 - 0.3	3
propamocarb	<0.01 (i.e. not found)	2
(MRL = 5)	0.03 - 0.06	3
GALIA Imported (Non-EC): 4	samples analysed	
azoxystrobin	<0.01 (i.e. not found)	2
(MRL = 1)	0.01, 0.02	2
imazalil	<0.01 (i.e. not found)	0
(MRL = 2)	0.3 - 0.4	4
propamocarb	<0.01 (i.e. not found)	3
(MRL = 5)	0.06	1
HONEYDEW Imported (Non-	EC): 15 samples analysed	
cypermethrin	<0.01 (i.e. not found)	13
(MRL = 0.2)	0.01, 0.03	2
etofenprox	<0.01 (i.e. not found)	14
(MRL = 0.5)	0.01	1
famoxadone	<0.01 (i.e. not found)	13
(MRL = 0.3)	0.02, 0.07	2
imazalil	<0.01 (i.e. not found)	10
(MRL = 2)	0.02 - 0.07	5
imidacloprid	<0.01 (i.e. not found)	10
(MRL = 0.5)	0.01 - 0.08	5
metalaxyl	<0.01 (i.e. not found)	14
(MRL = 0.2)	0.01	1
procymidone	<0.01 (i.e. not found) 158	13

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
(MRL = 0.01*)	0.02	2
propamocarb	<0.01 (i.e. not found)	13
(MRL = 5)	0.01, 0.04	2
CANTALOUPE Imported (EC	:): 1 sample analysed	
imazalil	<0.01 (i.e. not found)	0
(MRL = 2)	0.4	1
propamocarb	<0.01 (i.e. not found)	0
(MRL = 5)	0.01	1
GALIA Imported (EC): 2 sam	ples analysed	
azoxystrobin	<0.01 (i.e. not found)	1
(MRL = 1)	0.04	1
chlorothalonil	<0.01 (i.e. not found)	1
(MRL = 1)	0.02	1
HONEYDEW Imported (EC):	7 samples analysed	
chlorothalonil	<0.01 (i.e. not found)	5
(MRL = 1)	0.01, 0.1	2
imidacloprid	<0.01 (i.e. not found)	6
(MRL = 0.5)	0.02	1
PIEL DE SAPO Imported (EC	c): 2 samples analysed	
None found	_	2

NOTE: * Indicates MRL is set to the Limit of Determination.

Imported (EC) samples of melons were from Spain (12).

Imported (Non-EC) samples of melons were from Brazil (11), Costa Rica (3), Dominican Republic (3), Honduras (7). UK samples of melons (1).

Residues were distributed by country of	of origin, as follows:
azoxystrobin	Brazil (1), Honduras (2), Spain (1)
carbendazim	UK (1)
chlorothalonil	Costa Rica (1), Spain (3)
cypermethrin	Dominican Republic (2)
dithiocarbamates	Costa Rica (1)
etofenprox	Brazil (1)
famoxadone	Dominican Republic (2)
fluopicolide	Honduras (1)
imidacloprid	Brazil (5), Spain (1)
imazalil	Brazil (5), Costa Rica (1), Honduras (6), Spain (1)
metalaxyl	Dominican Republic (1)
propamocarb	Brazil (1), Costa Rica (1), Dominican Republic (1), Honduras (3), Spain (1)
procymidone	Brazil (2)
thiophanate-methyl	UK (1)

Residues were found in all of the 1 UK cantaloupe samples No residues were found in 1 of the 5 Imported (Non-EC) cantaloupe samples Residues were found in all of the 4 Imported (Non-EC) galia samples No residues were found in 2 of the 15 Imported (Non-EC) honeydew samples Residues were found in all of the 1 Imported (EC) cantaloupe samples No residues were found in 1 of the 2 Imported (EC) galia samples No residues were found in 4 of the 7 Imported (EC) honeydew samples No residues were found in any of the Imported (EC) piel de sapo samples

Table 23b. Residues detected in retail samples of MELONS purchased between January and June 2015

Residues (1-3 compounds) were found in 27 of the 37 samples as follows:

Number of residues	Sample ID	Type of MELONS						Resid	lues fo	und (m	g/kg)						Country of origin
			AZOX	CBZ	CLN	CYP	DTC	EFX	FAX	FPC	IMI	IMZ	MTX	PCB	PCM	TME	5
(1)	0027/2015	HONEYDEW	_	_	-	_	-	_	_	_	0.03	_	_	_	_	_	Brazil
(.)	0178/2015	HONEYDEW	_	-	_	-	_	-	_	_	-	0.02	-	-	-	-	Brazil
	0229/2015	HONEYDEW	-	-	-	-	-	-	-	-	0.01	-	-	-	-	-	Brazil
	0365/2015	HONEYDEW	-	-	-	-	-	-	-	-	0.04	-	-	-	-	-	Brazil
	2537/2015	HONEYDEW	-	-	-	-	-	-	-	-	-	-	-	-	0.02	-	Brazil
	2559/2015	HONEYDEW	-	-	-	-	-	-	-	-	-	0.04	-	-	-	-	Brazil
	1678/2015	GALIA	-	-	-	-	-	-	-	-	-	0.4	-	-	-	-	Honduras
	2663/2015	GALIA	-	-	-	-	-	-	-	-	-	0.3	-	-	-	-	Honduras
	0678/2015	HONEYDEW	-	-	-	-	-	-	-	-	0.02	-	-	-	-	-	Spain
	0802/2015	HONEYDEW	-	-	0.1	-	-	-	-	-	-	-	-	-	-	-	Spain
	0812/2015	HONEYDEW	-	-	0.01	-	-	-	-	-	-	-	-	-	-	-	Spain
(2)	1576/2015	CANTALOUPE	-	0.01	-	-	-	_	_	-	_	_	_	-	_	0.03	UK
(-)	0014/2015	HONEYDEW	-	-	-	-	-	0.01	-	-	-	-	-	-	0.02	-	Brazil
	0300/2015	HONEYDEW	-	-	-	-	-	-	-	-	0.02	0.03	-	-	-	-	Brazil
	0332/2015	HONEYDEW	-	-	-	-	-	-	-	-	0.08	0.05	-	-	-	-	Brazil
	0520/2015	CANTALOUPE	-	-	0.04	-	0.05	-	-	-	-	-	-	-	-	-	Costa Rica
	2756/2015	HONEYDEW	-	-	-	-	-	-	-	-	-	0.07	-	0.01	-	-	Costa Rica
	0126/2015	HONEYDEW	-	-	-	0.01	-	-	0.02	-	-	-	-	-	-	-	Dominican
																	Republic
	0182/2015	HONEYDEW	-	-	-	-	-	-	-	-	-	-	0.01	0.04	-	-	Dominican
																	Republic
	2574/2015	HONEYDEW	-	-	-	0.03	-	-	0.07	-	-	-	-	-	-	-	Dominican
																	Republic
	0051/2015	GALIA	0.01	-	-	-	-	-	-	-	-	0.4	-	-	-	-	Honduras
	1552/2015	CANTALOUPE	-	-	-	-	-	-	-	-	-	0.3	-	0.03	-	-	Honduras
	0090/2015	CANTALOUPE	-	-	-	-	-	-	-	-	-	0.4	-	0.01	-	-	Spain
	1629/2015	GALIA	0.04	-	0.02	-	-	-	-	-	-	-	-	-	-	-	Spain
(3)	0221/2015	CANTALOUPE	0.09	-	-	-	-	-	-	-	-	0.3	-	0.06	-	-	Brazil
	1699/2015	GALIA	0.02	-	-	-	-	-	-	-	-	0.3	-	0.06	-	-	Honduras
	2516/2015	CANTALOUPE	-	-	-	-	-	-	-	0.02	-	0.2	-	0.06	-	-	Honduras

The abbreviations used for the pesticide names are as follows:

AZOX	azoxystrobin	CBZ	carbendazim	CLN	chlorothalonil
CYP	cypermethrin	DTC	dithiocarbamates	EFX	etofenprox
FAX	famoxadone	FPC	fluopicolide	IMI	imidacloprid
IMZ	imazalil	MTX	metalaxyl	PCB	propamocarb
PCM	procymidone	TME	thiophanate-methyl		

Table 23c.Residues sought but not found in retail samples of MELONS purchased
between January and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2-phenylphenol (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.01) acrinathrin (0.01) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.01) atrazine (0.01) azinphos-ethyl (0.01) azinphos-methyl (0.01) benalaxyl (0.01) bendiocarb (0.01) beta-HCH (0.01) bifenox (0.01) bifenthrin (0.01) biphenyl (0.01) bitertanol (0.01) boscalid (0.01) bromophos-ethyl (0.01) bromophos-methyl (0.01) bromopropylate (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butralin (0.01) cadusafos (0.01) carbaryl (0.01) carbofuran (sum) (0.01) carbophenothion (0.01) carboxin (0.01) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenson (0.01) chlorfenvinphos (0.01) chloridazon (0.01) chlorobenzilate (0.01) chlorotoluron (0.01) chlorpyrifos (0.01) chlorpvrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlorthion (0.01) chlorthiophos (0.01) chlozolinate (0.01) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) crufomate (0.01) cyanazine (0.01)

endrin (0.01) EPN (0.01) epoxiconazole (0.01) ethion (0.01) ethofumesate (0.01) ethoprophos (0.01) etridiazole (0.01) etrimfos (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenhexamid (0.01) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropimorph (0.01) fenson (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (SS & RR Iso (0.01) fipronil (sum) (0.01) fluazinam (0.01) flucythrinate (0.01) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.01) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) fonofos (0.01) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) haloxyfop-methyl (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01)hexaconazole (0.01) hexazinone (0.01) indoxacarb (0.01) iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isobenzan (0.01) isocarbophos (0.01) isodrin (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01)

napropamide (0.01) nitrofen (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) oxadiazon (0.01) oxadixyl (0.01) oxamyl (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.01) paclobutrazol (0.01) parathion (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) permethrin (0.01) phenothrin (0.01) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) phosphamidon (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) profenofos (0.01) prometryn (0.01) propachlor (0.01) propanil (0.01) propargite (0.01) propazine (0.01) propetamphos (0.01) propham (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proguinazid (0.01) prosulfocarb (0.01) prothioconazole (0.01) prothiofos (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrifenox (0.01) pyrimethanil (0.01) pyriproxifen (0.01) quinalphos (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) rotenone (0.01) simazine (0.01) spinosad (0.01)

cyanophenphos (0.01) cycloate (0.01) cyflufenamid (0.01) cyfluthrin (0.01) cyproconazole (0.01) cyprodinil (0.01) DDT (sum) (0.01) deltamethrin (0.01) dialifos (0.01) diazinon (0.01) dichlobenil (0.01) dichlofenthion (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimethylvinphos (0.01) dimoxystrobin (0.01) diniconazole (0.01) dioxabenzophos (0.01) diphenylamine (0.01) disulfoton (sum) (0.01) ditalimfos (0.01) edifenphos (0.01) endosulfan (sum) (0.01)

isoprothiolane (0.01) isoproturon (0.01) jodfenphos (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.01) lenacil (0.01) leptophos (0.01) lindane (0.01) linuron (0.01) lufenuron (0.01) malathion (0.01) mecarbam (0.01) mepronil (0.01) metamitron (0.01) metazachlor (0.01) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methoxychlor (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.01) mevinphos (0.01) molinate (0.01) monocrotophos (0.01) Monuron (0.01) myclobutanil (0.01)

spirodiclofen (0.01) spiromesifen (0.01) spiroxamine (0.01) sulfotep (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenpyrad (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbacil (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbuthylazine (0.01) terbutryn (0.01) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) tetrasul (0.01) thiabendazole (0.01) thiacloprid (0.01) thiamethoxam (sum) (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) triallate (0.01) triazophos (0.01) trietazine (0.01) trifloxystrobin (0.01) triflumuron (0.01) trifluralin (0.01) triticonazole (0.01) zoxamide (0.01)

Table 24a. Residues detected in retail samples of MILK purchased between April and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
COWS MILK UK: 64 samples analy	sed	
None found	-	64
GOATS MILK UK: 7 samples analys	sed	
None found	-	7

UK samples of milk (71).

No residues were found in any of the UK cows milk samples No residues were found in any of the UK goats milk samples

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

aldrin and dieldrin (0.002) alpha-HCH (0.002) azinphos-ethyl (0.002) beta-HCH (0.002) bifenthrin (0.005) chlordane (animal products) (0.001) chlorfenvinphos (0.002) chlorobenzilate (0.002) chlorpyrifos (0.002) chlorpyrifos-methyl (0.002) cyfluthrin (0.002) DDT (sum) (0.002) deltamethrin (0.002) diazinon (0.002) endosulfan (sum) (0.002) endrin (0.0008) fenvalerate & esfenvalerate (all isomers (0.002) hexachlorobenzene (0.002) lindane (0.0004) methacrifos (0.002) methidathion (0.002) methoxychlor (0.002) nitrofen (0.002) parathion (0.002) parathion-methyl (sum) (0.002) permethrin (0.002) pirimiphos-methyl (0.002) profenofos (0.002) pyrazophos (0.002)

quintozene (sum) (0.002) resmethrin (0.002) tecnazene (0.002) triazophos (0.002) trifluralin (0.002)

Table 25a.Residues detected in samples of OKRA obtained between April and June2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
OKRA, FRESH Imported (No	n-EC): 23 samples analysed	
acetamiprid	<0.01 (i.e. not found)	20
(MRL = 0.2)	0.02, 0.2	3
carbendazim	<0.01 (i.e. not found)	22
(MRL = 2)	0.03	1
cypermethrin	<0.01 (i.e. not found)	21
(MRL = 0.5)	0.02, 0.09	2
imidacloprid	<0.01 (i.e. not found)	20
(MRL = 0.5)	0.01 - 0.05	3
lambda-cyhalothrin	<0.01 (i.e. not found)	21
(MRL = 0.3)	0.02	2
permethrin	<0.01 (i.e. not found)	22
(MRL = 0.05*)	0.02	1
spinosad	<0.01 (i.e. not found)	21
(MRL = 1)	0.01	2
thiamethoxam (sum)	<0.01 (i.e. not found)	21
(MRL = 0.05*)	0.02, 0.03	2
thiophanate-methyl	<0.01 (i.e. not found)	22
(MRL = 1)	0.1	1

NOTE: * Indicates MRL is set to the Limit of Determination.

Imported (Non-EC) samples of okra were from Dominican Republic (1), Honduras (2), India (12), Jordan (4), Nicaragua (1), Oman (1), Sri Lanka (2).

Residues were distributed by country of origin, as follows:					
acetamiprid	Jordan (2), Oman (1)				
carbendazim	India (1)				
cypermethrin	Jordan (2)				
imidacloprid	India (1), Jordan (1), Nicaragua (1)				
lambda-cyhalothrin	Honduras (1), Jordan (1)				
permethrin	India (1)				
spinosad	India (2)				
thiamethoxam (sum)	Honduras (1), Jordan (1)				
thiophanate-methyl	India (1)				

No residues were found in 12 of the 23 Imported (Non-EC) fresh samples

Table 25b. Residues detected in samples of OKRA obtained between April and June 2015

Number of residues	Sample ID	Type of OKRA				Residu	es four	nd (mg/	kg)			Country of origin
	-		ACET	CBZ	CYP	IMI	LCY	PER	SPN	THMSM	TME	
	4004/0045	FREQU							0.04			La d'a
(1)	4004/2015	FRESH	-	-	-	-	-	-	0.01	-	-	India
	4005/2015	FRESH	-	-	-	-	-	-	0.01	-	-	India
	4165/2015	FRESH	-	-	-	-	-	0.02	-	-	-	India
	4184/2015	FRESH	-	-	-	0.05	-	-	-	-	-	India
	4181/2015	FRESH	-	-	-	0.02	-	-	-	-	-	Nicaragua
	4161/2015	FRESH	0.03	-	-	-	-	-	-	-	-	Oman
(2)	4174/2015	FRESH	-	-	-	-	0.02	-	-	0.02	-	Honduras
	4293/2015	FRESH	-	0.03	-	-	-	-	-	-	0.1	India
	4276/2015	FRESH	0.02	-	-	-	-	-	-	0.03	-	Jordan
	4292/2015	FRESH	-	-	0.09	0.01	-	-	-	-	-	Jordan
(3)	4275/2015	FRESH	0.2	-	0.02	-	0.02	-	-	-	-	Jordan

Residues (1-3 compounds) were found in 11 of the 23 samples as follows:

The abbreviations used for the pesticide names are as follows:

ACET	acetamiprid	CBZ	carbendazim	CYP	cypermethrin
IMI	imidacloprid	LCY	lambda-cyhalothrin	PER	permethrin
SPN	spinosad	THMSM	thiamethoxam (sum)	TME	thiophanate-methyl

Table 25c.Residues sought but not found in samples of OKRA obtained betweenApril and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

abamectin (sum) (0.01) acephate (0.01) acibenzolar-s-methyl (0.01) acrinathrin (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.01) amitraz (0.01) atrazine (0.01) azinphos-ethyl (0.01) azinphos-methyl (0.01) azoxystrobin (0.01) benalaxyl (0.01) bendiocarb (0.01) beta-HCH (0.01) bifenox (0.01) bifenthrin (0.01) biphenyl (0.01) bitertanol (0.01) boscalid (0.01) bromophos-ethyl (0.01) bromophos-methyl (0.01) bromopropylate (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butralin (0.01) cadusafos (0.01) carbaryl (0.01) carbofuran (sum) (0.01) carbophenothion (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenson (0.01) chlorfenvinphos (0.01) chlorobenzilate (0.01) chlorotoluron (0.01) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlorthion (0.01) chlorthiophos (0.01) chlortoluron (0.01) chlozolinate (0.01) clofentezine (0.01) clothianidin (0.01) cyanophenphos (0.01) cyflufenamid (0.01) cyfluthrin (0.01) cyproconazole (0.01) cyprodinil (0.01) DDT (sum) (0.01) deltamethrin (0.01) dialifos (0.01) diazinon (0.01) dichlobenil (0.01)

ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropimorph (0.01) fenpyroximate (0.01) fenson (0.01) fensulfothion (sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fluazinam (0.01) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.01) fluopicolide (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fonofos (0.01) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01)hexaconazole (0.01) hexazinone (0.01) hexythiazox (0.01) imazalil (0.01) indoxacarb (0.01) iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isobenzan (0.01) isodrin (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) jodfenphos (0.01) kresoxim-methyl (0.01) lenacil (0.01) leptophos (0.01) lindane (0.01)

napropamide (0.01) nitrofen (0.01) nitrothal-isopropyl (0.01) ofurace (0.01) oxadixyl (0.01) oxamyl (0.01) oxydemeton-methyl (sum) (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) phenothrin (0.01) phenthoate (0.01) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) prometryn (0.01) propachlor (0.01) propamocarb (0.01) propanil (0.01) propargite (0.01) propazine (0.01) propetamphos (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) prosulfocarb (0.01) prothioconazole (0.01) prothiofos (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrifenox (0.01) pyrimethanil (0.01) pyriproxifen (0.01) quinalphos (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) rotenone (0.01) simazine (0.01) spirodiclofen (0.01) spiromesifen (0.01) sulfotep (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenpyrad (0.01) tecnazene (0.01)

dichlofenthion (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimethylvinphos (0.01) dimoxystrobin (0.01) diniconazole (0.01) dioxabenzophos (0.01) ditalimfos (0.01) dithiocarbamates (0.05) diuron (0.01) edifenphos (0.01) endosulfan (sum) (0.01) endrin (0.01) EPN (0.01) epoxiconazole (0.01) ethion (0.01)

linuron (0.01) lufenuron (0.01) mecarbam (0.01) mepronil (0.01) metaflumizone (0.01) metalaxyl (0.01) metamitron (0.01) metazachlor (0.01) methabenzthiazuron (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methoxychlor (0.01) metolachlor (0.01) metolcarb (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.01) mevinphos (0.01) monocrotophos (0.01) Monuron (0.01) myclobutanil (0.01)

teflubenzuron (0.01) tefluthrin (0.01) terbacil (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbuthylazine (0.01) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) tetrasul (0.01) thiabendazole (0.01) thiacloprid (0.01) tolclofos-methyl (0.01) triadimefon & triadimenol (0.01) triazophos (0.01) trietazine (0.01) trifloxystrobin (0.01) triflumuron (0.01) trifluralin (0.01) triticonazole (0.01) zoxamide (0.01)

Table 26a. Residues detected in retail samples of OLIVE OILS purchased between April and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range							
EXTRA VIRGIN Imported (EC): 19 samples analysed									
oxyfluorfen	<0.02 (i.e. not found)	12							
(MRL = 5)	0.02 - 0.05	7							

Imported (EC) samples of cooking oils were from EU (3), Greece (2), Italy (7), Spain (7).

Residues were distributed by country of origin, as follows: oxyfluorfen EU (3), Italy (1), Spain (3)

No residues were found in 12 of the 19 Imported (EC) extra virgin samples

Table 26b. Residues detected in retail samples of OLIVE OILS purchased between April and June 2015

Number of residues	Sample ID	Type of COOKING OILS	Residues found (mg/kg) OXF	Country of origin
(1)	0893/2015	EXTRA VIRGIN	0.02	EU
	1529/2015	EXTRA VIRGIN	0.02	EU
	2818/2015	EXTRA VIRGIN	0.02	EU
	0651/2015	EXTRA VIRGIN	0.04	Italy
	0827/2015	EXTRA VIRGIN	0.04	Spain
	0943/2015	EXTRA VIRGIN	0.02	Spain
	1642/2015	EXTRA VIRGIN	0.05	Spain

Residues (1-1 compounds) were found in 7 of the 19 samples as follows:

The abbreviations used for the pesticide names are as follows:

OXF oxyfluorfen

Table 26c.Residues sought but not found in retail samples of OLIVE OILSpurchased between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

abamectin (sum) (0.02) acetamiprid (0.02) acetochlor (0.02) aclonifen (0.02) alachlor (0.02) aldrin and dieldrin (0.02) alpha-HCH (0.02) atrazine (0.02) azinphos-ethyl (0.02) azoxystrobin (0.02) benalaxyl (0.02) bendiocarb (0.02) beta-HCH (0.02) bifenox (0.02)bifenthrin (0.02) boscalid (0.02) bromophos-ethyl (0.02) bromophos-methyl (0.02) bromopropylate (0.02) bromuconazole (0.02) bupirimate (0.02) buprofezin (0.02) butralin (0.02) cadusafos (0.02) carbaryl (0.02) carbendazim (0.02) carbofuran (sum) (0.02) carbophenothion (0.02) chlorbufam (0.02) chlordane (sum) (0.02) chlorfenapyr (0.02) chlorfenson (0.02) chlorfenvinphos (0.02) chlorobenzilate (0.02) chlorothalonil (0.02) chlorotoluron (0.02) chlorpyrifos (0.02) chlorpyrifos-methyl (0.02) chlorthal-dimethyl (0.02) chlorthion (0.02) chlorthiophos (0.02) chlozolinate (0.02) clofentezine (0.02) clomazone (0.02) coumaphos (0.02) crufomate (0.02) cyanophenphos (0.02) cyflufenamid (0.02) cyfluthrin (0.02) cypermethrin (0.05) cyproconazole (0.02) cyprodinil (0.02) DDT (sum) (0.02) deltamethrin (0.05) dialifos (0.02) diazinon (0.02)

ethofumesate (0.02) ethoprophos (0.02) etofenprox (0.05) etrimfos (0.02) famoxadone (0.05) fenamidone (0.02) fenarimol (0.02) fenazaguin (0.02) fenbuconazole (0.02) fenitrothion (0.02) fenoxycarb (0.02) fenpropimorph (0.02) fenpyroximate (0.02) fenson (0.02) fenthion (partial sum) (0.02) fenvalerate & esfenvalerate (SS & RR Iso (0.05) fipronil (sum) (0.02) fluazinam (0.02) flucythrinate (0.05) fludioxonil (0.02) flufenacet (0.02) flufenoxuron (0.02) fluopicolide (0.02) fluoxastrobin (0.02) fluguinconazole (0.02) flusilazole (0.02) flutolanil (0.02) flutriafol (0.02) fonofos (0.02) formothion (0.02) fosthiazate (0.02) furalaxyl (0.02) furathiocarb (0.02) haloxyfop-methyl (0.02) Heptachlor (sum) (0.02) heptenophos (0.02) hexachlorobenzene (0.05) hexachlorocyclohexane (sum) (0.02)hexaconazole (0.02) hexazinone (0.02) hexythiazox (0.02) imazalil (0.02) indoxacarb (0.05) iprovalicarb (0.02) isazophos (0.02) isobenzan (0.02) isocarbophos (0.02) isodrin (0.02) isofenphos (0.02) isofenphos-methyl (0.02) isoprocarb (0.02) isoprothiolane (0.02) isoproturon (0.02) jodfenphos (0.02) kresoxim-methyl (0.02) lenacil (0.02)

nitrofen (0.02) nitrothal-isopropyl (0.02) nuarimol (0.02) ofurace (0.02) oxadiazon (0.02) oxamyl (0.02) paclobutrazol (0.02) parathion (0.02) penconazole (0.02) pencycuron (0.02) pendimethalin (0.02) pentanochlor (0.02) permethrin (0.05) phenothrin (0.02) phenthoate (0.02) phorate (partial sum) (0.02) phosalone (0.02) phosphamidon (0.02) picolinafen (0.02) picoxystrobin (0.02) piperonyl butoxide (0.02) pirimiphos-ethyl (0.02) pirimiphos-methyl (0.02) prochloraz (parent only) (0.02) procymidone (0.02) profenofos (0.02) prometryn (0.02) propachlor (0.02) propanil (0.02) propargite (0.02) propazine (0.02) propetamphos (0.02) propham (0.02) propiconazole (0.02) propoxur (0.02) propyzamide (0.02) proquinazid (0.02) prosulfocarb (0.02) prothioconazole (0.02) prothiofos (0.02) pyraclostrobin (0.02) pyrazophos (0.02) pyrethrins (0.02) pyridaphenthion (0.02) pyrifenox (0.02) pyrimethanil (0.02) pyriproxifen (0.02) quinalphos (0.02) quinoxyfen (0.02) quintozene (sum) (0.02) rotenone (0.02) simazine (0.02) spinosad (0.02) spirodiclofen (0.02) sulfotep (0.02) tau-fluvalinate (0.02)

dichlofenthion (0.02) dichlofluanid (0.02) diclobutrazol (0.02) dicloran (0.02) dicofol (sum) (0.02) diethofencarb (0.02) difenoconazole (0.02) diflubenzuron (0.02) diflufenican (0.02) dimethenamid (0.02) dimethomorph (0.05) dimethylvinphos (0.02) dimoxystrobin (0.02) diniconazole (0.02) dioxabenzophos (0.02) diphenylamine (0.02) disulfoton (sum) (0.02) ditalimfos (0.02) diuron (0.02) edifenphos (0.02) endosulfan (sum) (0.02) endrin (0.02) EPN (0.02) epoxiconazole (0.02) ethion (0.02)

leptophos (0.02) lindane (0.02) linuron (0.02)lufenuron (0.02) malathion (0.02) mecarbam (0.02) metaflumizone (0.02) metalaxyl (0.02) metamitron (0.02) metconazole (0.05) methabenzthiazuron (0.02) methacrifos (0.02) methidathion (0.02) methoxychlor (0.02) methoxyfenozide (0.02) metobromuron (0.02) metolachlor (0.02) metolcarb (0.02) metoxuron (0.02) metrafenone (0.02) metribuzin (0.02) molinate (0.05) Monuron (0.02) myclobutanil (0.02) napropamide (0.02)

tebuconazole (0.02) tebufenpyrad (0.02) tecnazene (0.02) teflubenzuron (0.02) tefluthrin (0.02) terbacil (0.02) terbufos (0.02) Terbufos (sum not definition) (0.02) terbuthylazine (0.02) terbutryn (0.02) tetrachlorvinphos (0.02) tetraconazole (0.02) tetradifon (0.02) tetramethrin (0.02) tetrasul (0.05) thiabendazole (0.02) tolclofos-methyl (0.02) triallate (0.02) triazophos (0.02) trietazine (0.02) trifloxystrobin (0.02) triflumuron (0.02) trifluralin (0.02) triticonazole (0.02) zoxamide (0.02)

Table 27a. Residues detected in retail samples of OLIVES purchased between April and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range	
OLIVES, UK: 2 samples a	analysed		
None found	-	2	
OLIVES, Imported (EC): ²	17 samples analysed		
cypermethrin (MRL = 0.05*)	<0.02 (i.e. not found) 0.03	16 1	

NOTE: * Indicates MRL is set to the Limit of Determination.

Imported (EC) samples of olives were from Greece (2), Spain (15). UK samples of olives (2).

Residues were distributed by country of origin, as follows: cypermethrin Spain (1)

No residues were found in any of the UK samples No residues were found in 16 of the 17 Imported (EC) samples

Table 27b.Residues detected in retail samples of OLIVES purchased between April and
June 2015

Residue (1 compound) was found in 1 of the 19 samples as follows:

Number of residues	Sample ID	Residues found (mg/kg) CYP	Country of origin
(1)	0875/2015	0.03	Spain

The abbreviations used for the pesticide names are as follows:

CYP cypermethrin

Table 27c.Residues sought but not found in retail samples of OLIVES purchased
between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2-phenylphenol (0.02) abamectin (sum) (0.02) acetamiprid (0.02) acetochlor (0.02) acibenzolar-s-methyl (0.02) alachlor (0.02) aldicarb (sum) (0.05) aldrin and dieldrin (0.02) alpha-HCH (0.02) atrazine (0.02) azinphos-ethyl (0.02) azinphos-methyl (0.02) azoxystrobin (0.02) benalaxyl (0.02) bendiocarb (0.02) beta-HCH (0.02) bifenox (0.02) bifenthrin (0.02) biphenyl (0.02) bitertanol (0.02) boscalid (0.02) bromophos-ethyl (0.02) bromophos-methyl (0.02) bromopropylate (0.02) bromuconazole (0.02) bupirimate (0.02) buprofezin (0.02) butachlor (0.02) butralin (0.05) cadusafos (0.02) carbaryl (0.02) carbendazim (0.01) carbofuran (sum) (0.02) carbophenothion (0.02) chlorbufam (0.02) chlordane (sum) (0.02) chlorfenapyr (0.02) chlorfenson (0.02) chlorfenvinphos (0.02) chlorobenzilate (0.02) chlorothalonil (0.05) chlorotoluron (0.02) chlorpyrifos (0.02) chlorpyrifos-methyl (0.02) chlorthal-dimethyl (0.02) chlorthion (0.02) chlorthiophos (0.02) chlozolinate (0.02) clofentezine (0.02) clomazone (0.02) coumaphos (0.02) crufomate (0.02) cyanophenphos (0.02) cycloate (0.02) cyflufenamid (0.02) cyfluthrin (0.02)

epoxiconazole (0.02) ethion (0.02) ethofumesate (0.02) ethoprophos (0.02) etofenprox (0.02) etridiazole (0.02) etrimfos (0.02) famoxadone (0.05) fenamidone (0.02) fenamiphos (sum) (0.02) fenarimol (0.02) fenazaguin (0.02) fenbuconazole (0.02) fenhexamid (0.02) fenitrothion (0.02) fenoxycarb (0.02) fenpropathrin (0.02) fenpropimorph (0.02) fenpyroximate (0.02) fenson (0.02) fenthion (partial sum) (0.02) fenvalerate & esfenvalerate (SS & RR Iso (0.05) fipronil (sum) (0.02) fluazinam (0.02) flucythrinate (0.02) fludioxonil (0.02) flufenacet (0.02) flufenoxuron (0.05) fluopicolide (0.02) fluoxastrobin (0.02) fluquinconazole (0.02) flurochloridone (0.02) flusilazole (0.02) flutolanil (0.02) flutriafol (0.02) folpet (0.02) fonofos (0.02) formothion (0.02) fosthiazate (0.02) furalaxyl (0.02) furathiocarb (0.02) haloxyfop-methyl (0.02) Heptachlor (sum) (0.02) heptenophos (0.02) hexachlorocyclohexane (sum) (0.02)hexaconazole (0.02) hexazinone (0.02) hexythiazox (0.02) imazalil (0.01) indoxacarb (0.05) iprodione (0.02) iprovalicarb (0.02) isazophos (0.02) isobenzan (0.02) isocarbophos (0.02) isodrin (0.02)

metribuzin (0.02) mevinphos (0.02) molinate (0.05) monocrotophos (0.02) Monuron (0.02) myclobutanil (0.02) napropamide (0.02) nitrofen (0.02) nitrothal-isopropyl (0.02) nuarimol (0.02) ofurace (0.02) oxadiazon (0.02) oxamyl (0.02) oxyfluorfen (0.02) parathion (0.02) penconazole (0.02) pencycuron (0.05) pendimethalin (0.02) permethrin (0.02) phenothrin (0.02) phenthoate (0.02) phorate (partial sum) (0.02) phosalone (0.02) phosphamidon (0.02) picolinafen (0.02) picoxystrobin (0.02) piperonyl butoxide (0.02) pirimicarb (sum) (0.02) pirimiphos-ethyl (0.02) pirimiphos-methyl (0.02) prochloraz (parent only) (0.02) procymidone (0.02) profenofos (0.02) prometryn (0.05) propachlor (0.02) propamocarb (0.01) propanil (0.05) propargite (0.05) propazine (0.02) propetamphos (0.02) propham (0.02) propiconazole (0.02) propoxur (0.02) propyzamide (0.02) prosulfocarb (0.02) prothioconazole (0.02) prothiofos (0.02) pyraclostrobin (0.02) pyrazophos (0.02) pyrethrins (0.02) pyridaben (0.02) pyridaphenthion (0.02) pyrimethanil (0.02) pyriproxifen (0.02) quinalphos (0.02) quinoxyfen (0.02)

cvproconazole (0.02) cyprodinil (0.02) DDT (sum) (0.02) deltamethrin (0.05) dialifos (0.02) diazinon (0.02) dichlobenil (0.02) dichlofenthion (0.02) dichlofluanid (0.05) dichlorvos (0.02) diclobutrazol (0.02) dicloran (0.02) dicrotophos (0.02) diethofencarb (0.02) difenoconazole (0.05) diflubenzuron (0.02) diflufenican (0.02) dimethenamid (0.02) dimethoate (sum) (0.02) dimethomorph (0.05) dimethylvinphos (0.02) dimoxystrobin (0.02) diniconazole (0.02) dioxabenzophos (0.02) diphenylamine (0.02) disulfoton (sum) (0.02) ditalimfos (0.02) diuron (0.05) edifenphos (0.02) endosulfan (sum) (0.02) endrin (0.02)EPN (0.02)

isofenphos (0.02) isofenphos-methyl (0.02) isoprocarb (0.02) isoprothiolane (0.02) isoproturon (0.02) jodfenphos (0.02) kresoxim-methyl (0.02) lambda-cyhalothrin (0.02) lenacil (0.02) leptophos (0.02) lindane (0.02) linuron (0.02) lufenuron (0.02) malathion (0.02) mecarbam (0.02) mepronil (0.02) metalaxyl (0.02) metamitron (0.02) metazachlor (0.02) metconazole (0.02) methabenzthiazuron (0.01) methacrifos (0.02) methidathion (0.02) methiocarb (sum) (0.02) methomyl (sum) (0.05) methoxychlor (0.02) metobromuron (0.02) metolachlor (0.02) metolcarb (0.02) metoxuron (0.02) metrafenone (0.02)

quintozene (sum) (0.02) rotenone (0.02) simazine (0.02) spinosad (0.01) spirodiclofen (0.02) spiromesifen (0.02) sulfotep (0.02) tau-fluvalinate (0.05) tebuconazole (0.02) tebufenpyrad (0.02) tecnazene (0.02) teflubenzuron (0.02) tefluthrin (0.02) terbufos (0.02) Terbufos (sum not definition) (0.02) terbuthylazine (0.02) tetrachlorvinphos (0.05) tetraconazole (0.02) tetradifon (0.02) tetramethrin (0.02) tetrasul (0.02) thiabendazole (0.01) tolclofos-methyl (0.02) tolfenpyrad (0.05) triallate (0.02) triazophos (0.02) trietazine (0.02) trifloxystrobin (0.02) trifluralin (0.02) triticonazole (0.05) zoxamide (0.02)

Table 28a.Residues detected in retail samples of ORANGE JUICE purchased between
April and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range				
ORANGE JUICE, UK: 16 samples analysed						
2-phenylphenol (MRL = 5)	<0.05 (i.e. not found) 0.09	15 1				
imazalil (MRL = 5)	<0.02 (i.e. not found) 0.02 - 0.06	13 3				
thiabendazole (MRL = 5)	<0.05 (i.e. not found) 0.06	15 1				
ORANGE JUICE, Imported (EC): 2 samples analysed						
None found	-	2				

Imported (EC) samples of orange juice were from Spain (2). UK samples of orange juice (16).

Residues were distributed by country of origin, as follows:

2-phenylphenol	UK (1)
imazalil	UK (3)
thiabendazole	UK (1)

No residues were found in 13 of the 16 UK samples No residues were found in any of the Imported (EC) samples

Table 28b. Residues detected in retail samples of ORANGE JUICE purchased between April and June 2015

Number of residues	Sample ID	Residues found (mg/kg)		Country of origin	
		2PP	IMZ	TBZ	
(1)	1485/2015	-	0.02	-	UK
(2)	0152/2015	_	0.06	0.06	UK
(-)	5102/2015		0.06	-	UK

Residues (1-2 compounds) were found in 3 of the 18 samples as follows:

The abbreviations used for the pesticide names are as follows:

2PP 2-phenylphenol IMZ imazalil TBZ thiabendaze	2PP	2-phenylphenol	IMZ	imazalil	TBZ	thiabendazole
---	-----	----------------	-----	----------	-----	---------------

Table 28c.Residues sought but not found in retail samples of ORANGE JUICEpurchased between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,4-dimethylnaphthalene (0.01) 2,4-D (sum) (0.01) 2,4-DB (0.01) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.02) aclonifen (0.05) acrinathrin (0.05) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (0.01) anthraquinone (0.01) asulam (0.05) atrazine (0.01) azinphos-methyl (0.02) azoxystrobin (0.01) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) boscalid (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (0.02) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbosulfan (0.01) carboxin (0.05) chlorantraniliprole (0.01) chlorbufam (0.05) chlordane (sum) (0.01) chlorfenapyr (0.02) chlorfenvinphos (0.01) chloridazon (0.01) chlorothalonil (0.01)

EPTC (0.05) ethephon (0.05) ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.02) etridiazole (0.05) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.05) fenhexamid (0.05) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.05) fenpropimorph (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) flonicamid (sum) (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.05) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.05) fluroxypyr (sum) (0.05) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) fonofos (0.01) formetanate (0.05) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) furmecyclox (0.01) halofenozide (0.01)

molinate (0.01) monocrotophos (0.01) monolinuron (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.05) nitenpyram (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) Oxadiargyl (0.01) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.05) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) pentanochlor (0.01) permethrin (0.01) phenmedipham (0.05) phenthoate (0.01) phorate (partial sum) (0.02) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (0.01) propaguizafop (0.05) propargite (0.01) propetamphos (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.05) prosulfuron (0.02) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyraclostrobin (0.01)

chlorpropham (sum) (0.05) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlortoluron (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.05) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cyazofamid (0.01) cycloate (0.01) cycloxydim (0.05) cyflufenamid (0.01) cyfluthrin (0.02) Cyhalofop-butyl (sum) (0.01) cvmoxanil (0.01) cypermethrin (0.05) cyproconazole (0.01) cyprodinil (0.05) cyromazine (0.05) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.05) demeton-S-methyl (0.01) desmedipham (0.05) diafenthiuron (0.05) diazinon (0.01) dichlobenil (0.05) dichlofluanid (0.01) dichlofluanid and DMSA (0.01) dichlorprop (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.05) disulfoton (sum) (0.02) diuron (0.01) dodine (0.05) emamectin benzoate (0.01) endosulfan (sum) (0.01) EPN (0.01) epoxiconazole (0.01)

halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexaconazole (0.01) hexythiazox (0.01) imidacloprid (0.01) indoxacarb (0.01) ioxynil (0.05) iprodione (0.02) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01) lufenuron (0.02) malathion (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (0.05) metalaxyl (0.01) metamitron (0.01) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.05) metsulfuron-methyl (0.05) mevinphos (0.01)

pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrimethanil (0.05) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.05) Quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) rimsulfuron (0.01) rotenone (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.05) sum of butocarboxim and butocarboxim sulfoxide (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbuthylazine (0.05) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiacloprid (0.01) thiamethoxam (sum) (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.05) triasulfuron (0.05) triazamate (0.01) triazophos (0.01) triclopyr (0.05) tricyclazole (0.01) trifloxystrobin (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 29a.Residues detected in retail samples of PEARS purchased between April and
June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
PEARS, UK: 3 samples analy	ysed	
ooscalid	<0.01 (i.e. not found)	2
MRL = 2)	0.03	1
captan and folpet	<0.02 (i.e. not found)	1
MRL = 3)	0.02, 0.04	2
cyprodinil	<0.05 (i.e. not found)	2
MRL = 1)	0.1	1
ludioxonil	<0.01 (i.e. not found)	1
MRL = 5)	0.05	2
nethoxyfenozide	<0.01 (i.e. not found)	1
MRL = 2)	0.01	2
oyraclostrobin	<0.01 (i.e. not found)	2
MRL = 0.5)	0.02	1
PEARS, Imported (Non-EC):	8 samples analysed	
acetamiprid	<0.01 (i.e. not found)	7
MRL = 0.8)	0.04	1
chlorantraniliprole	<0.01 (i.e. not found)	4
MRL = 0.5)	0.03 - 0.05	4
lithiocarbamates	<0.05 (i.e. not found)	2
MRL = 5)	0.05 - 0.3	6
ludioxonil	<0.01 (i.e. not found)	5
MRL = 5)	0.1 - 0.5	3
oyrimethanil	<0.05 (i.e. not found)	5
MRL = 7)	0.4 - 0.5	3
hiacloprid	<0.01 (i.e. not found)	3
MRL = 0.3)	0.01 - 0.02	5
PEARS, Imported (EC): 13 s	amples analysed	
ooscalid	<0.01 (i.e. not found)	5
MRL = 2)	0.02 - 0.1	8
captan and folpet	<0.02 (i.e. not found)	4
MRL = 3)	0.02 - 0.2	9
chlorantraniliprole	<0.01 (i.e. not found)	11
MRL = 0.5)	0.01, 0.02	2
chlormequat	<0.02 (i.e. not found)	12
MRL = 0.1)	0.02	1
chlorpyrifos	<0.01 (i.e. not found)	12
MRL = 0.5)	0.04	1
cyprodinil	<0.05 (i.e. not found)	12
MRL = 1)	0.1	1

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
difenoconazole	<0.01 (i.e. not found)	12
(MRL = 0.5)	0.03	1
		10
diflubenzuron	<0.01 (i.e. not found)	12
(MRL = 5)	0.03	1
dithiocarbamates	<0.05 (i.e. not found)	10
(MRL = 5)	0.1 - 0.9	3
	0.1 0.0	0
fludioxonil	<0.01 (i.e. not found)	3
(MRL = 5)	0.03 - 2.4	10
,		
imazalil	<0.02 (i.e. not found)	10
(MRL = 2)	0.03 - 0.5	3
pyraclostrobin	<0.01 (i.e. not found)	5
(MRL = 0.5)	0.01 - 0.06	8
pyrimethanil	<0.05 (i.e. not found)	12
(MRL = 7)	0.5	1
thicologrid	<0.01 (i.e. not found)	12
thiacloprid	<0.01 (i.e. not found)	12
(MRL = 0.3)	0.01	1

Imported (EC) samples of pears were from Belgium (3), Portugal (2), the Netherlands (8). Imported (Non-EC) samples of pears were from Argentina (1), Chile (1), South Africa (6). UK samples of pears (3).

Residues were distributed by country of origin, as follows:

residues were distributed by country	
acetamiprid	South Africa (1)
boscalid	Belgium (3), Portugal (1), the Netherlands (4), UK (1)
chlormequat	the Netherlands (1)
chlorpyrifos	Portugal (1)
captan and folpet	Belgium (1), Portugal (2), the Netherlands (6), UK (2)
chlorantraniliprole	Belgium (2), Chile (1), South Africa (3)
cyprodinil	Belgium (1), UK (1)
diflubenzuron	Portugal (1)
difenoconazole	Portugal (1)
dithiocarbamates	Belgium (1), Portugal (2), South Africa (6)
fludioxonil	Belgium (2), Portugal (1), South Africa (3), the Netherlands (7), UK (2)
imazalil	Portugal (2), the Netherlands (1)
methoxyfenozide	UK (2)
pyraclostrobin	Belgium (3), Portugal (1), the Netherlands (4), UK (1)
pyrimethanil	Chile (1), South Africa (2), the Netherlands (1)
thiacloprid	Portugal (1), South Africa (5)

Residues were found in all of the 3 UK samples No residues were found in 1 of the 8 Imported (Non-EC) samples Residues were found in all of the 13 Imported (EC) samples

Table 29b. Residues detected in retail samples of PEARS purchased between April and June 2015

Number of resid	dues Sample ID							Resid	lues fou	und (mg	/kg)							Country of origin
		ACET	BOS	CLQ	CPF	CPFOL	CTP	CYD	DIF	DIFC	DTC	FLUD	IMZ	MXF	PYC	PYM	THC	
(1)	0155/2015	-	-	-	-	-	-	-	-	-	-	0.07	-	-	-	-	-	the Netherlands
	0578/2015	-	-	-	-	-	-	-	-	-	-	0.04	-	-	-	-	-	the Netherlands
(2)	2769/2015	-	-	-	-	-	-	0.1	-	-	-	0.05	-	-	-	-	-	UK
	2646/2015	-	-	-	-	-	0.03	-	-	-	-	-	-	-	-	0.5	-	Chile
	1966/2015	-	-	-	-	-	-	-	-	-	0.1	-	-	-	-	-	0.01	South Africa
	2807/2015	-	-	-	-	0.1	-	-	-	-	-	0.03	-	-	-	-	-	the Netherlands
(3)	2749/2015	-	-	-	-	0.02	-	-	-	-	-	0.05	-	0.01	-	-	-	UK
()	1414/2015	-	-	-	-	-	-	-	-	-	0.2	0.5	-	-	-	-	0.01	South Africa
	1647/2015	0.04	-	-	-	-	-	-	-	-	0.1	0.1	-	-	-	-	-	South Africa
	2868/2015	-	0.09	-	-	-	0.02	-	-	-	-	-	-	-	0.02	-	-	Belgium
	1235/2015	-	0.07	-	-	0.02	-	-	-	-	-	-	-	-	0.04	-	-	the Netherlands
(4)	2922/2015	-	0.03	-	-	0.04	-	-	-	-	-	-	-	0.01	0.02	-	-	UK
	1389/2015	-	-	-	-	-	0.05	-	-	-	0.3	-	-	-	-	0.5	0.02	South Africa
	1792/2015	-	-	-	-	-	0.03	-	-	-	0.05	0.5	-	-	-	-	0.02	South Africa
	1958/2015	-	-	-	-	-	0.04	-	-	-	0.2	-	-	-	-	0.4	0.02	South Africa
	0539/2015	-	-	-	-	0.1	-	-	-	-	-	0.04	0.5	-	-	0.5	-	the Netherlands
	0719/2015	-	0.07	-	-	0.09	-	-	-	-	-	0.07	-	-	0.04	-	-	the Netherlands
	1505/2015	-	0.02	-	-	0.05	-	-	-	-	-	0.06	-	-	0.01	-	-	the Netherlands
(5)	0679/2015	-	0.1	-	-	0.03	-	-	-	-	0.1	0.04	-	-	0.06	-	-	Belgium
	1983/2015	-	0.04	-	-	-	0.01	0.1	-	-	-	0.06	-	-	0.02	-	-	Belgium
	2964/2015	-	0.07	0.02	-	0.05	-	-	-	-	-	0.03	-	-	0.03	-	-	the Netherlands
(6)	1876/2015	-	0.05	-	-	0.2	-	-	-	-	0.2	-	0.2	-	0.01	-	0.01	Portugal
(7)	1920/2015	-	-	-	0.04	0.03	-	-	0.03	0.03	0.9	2.4	0.03	-	-	-	-	Portugal
	ations used for t	he pest																
	cetamiprid		BO		bosc				CLQ		chlorm							
	hlorpyrifos			-OL		an and fo			СТР			ntranilip						
•	yprodinil		DIF			penzuron			DIFC			conazol	е					
	ithiocarbamates		FLL		fludic	-			IMZ		imazali							
	nethoxyfenozide niacloprid		PY(C	pyrad	clostrobir	ו		PYM		pyrime	thanil						

Residues (1-7 compounds) were found in 23 of the 24 samples as follows:

Table 29c.Residues sought but not found in retail samples of PEARS purchased
between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,4-dimethylnaphthalene (0.01) 2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.05) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.02) aclonifen (0.05) acrinathrin (0.05) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (0.01) anthraquinone (0.01) asulam (0.05) atrazine (0.01) azinphos-methyl (0.02) azoxystrobin (0.01) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbosulfan (0.01) carboxin (0.05) chlorbufam (0.05) chlordane (sum) (0.01) chlorfenapyr (0.02) chlorfenvinphos (0.01) chloridazon (0.01) chlorothalonil (0.01) chlorpropham (sum) (0.05) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01)

ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.02) etridiazole (0.05) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaquin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.05) fenhexamid (0.05) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) flonicamid (sum) (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.05) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.05) fluroxypyr (sum) (0.05) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) fonofos (0.01) formetanate (0.05) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) furmecyclox (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexaconazole (0.01) hexythiazox (0.01)

Monuron (0.01) myclobutanil (0.01) napropamide (0.05) nitenpyram (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) Oxadiargyl (0.01) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.05) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) pentanochlor (0.01) permethrin (0.01) phenmedipham (0.05) phenthoate (0.01) phorate (partial sum) (0.02) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (0.01) propaguizafop (0.05) propargite (0.01) propetamphos (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.05) prosulfuron (0.02) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01)

chlortoluron (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.05) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cyazofamid (0.01) cycloate (0.01) cycloxydim (0.05) cyflufenamid (0.01) cyfluthrin (0.02) Cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (0.05) cyproconazole (0.01) cvromazine (0.05) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.05) demeton-S-methyl (0.01) desmedipham (0.05) diazinon (0.01) dichlobenil (0.05) dichlofluanid (0.01) dichlofluanid and DMSA (0.01) dichlorprop (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.05) disulfoton (sum) (0.02) diuron (0.01) dodine (0.05) emamectin benzoate (0.01) endosulfan (sum) (0.01) EPN (0.01) epoxiconazole (0.01) EPTC (0.05) ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01)

imidacloprid (0.01) indoxacarb (0.01) ioxynil (0.05) iprodione (0.02) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01)lufenuron (0.02) malathion (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepiquat (0.02) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (0.05) metalaxyl (0.01) metamitron (0.01) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.05) metsulfuron-methyl (0.05) mevinphos (0.01) molinate (0.01) monocrotophos (0.01) monolinuron (0.01)

pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.05) Quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) rimsulfuron (0.01) rotenone (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.05) sum of butocarboxim and butocarboxim sul (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbuthylazine (0.05) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.05) thiamethoxam (sum) (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.05) triasulfuron (0.05) triazamate (0.01) triazophos (0.01) triclopyr (0.05) tricyclazole (0.01) trifloxystrobin (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 30a.Residues detected in retail samples of PEAS WITHOUT PODS purchased
between April and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
PEAS WITHOUT PODS, FROZ	EN UK: 14 samples analysed	
BAC (sum)	<0.01 (i.e. not found)	13
(MRL = 0.1)	0.08	1
boscalid	<0.01 (i.e. not found)	13
(MRL = 3)	0.01	1
DDAC (sum)	<0.01 (i.e. not found)	13
(MRL = 0.1)	0.01	1
PEAS WITHOUT PODS, FRES	H Imported (Non-EC): 7 samples analys	sed
BAC (sum)	<0.01 (i.e. not found)	3
(MRL = 0.1)	0.01 - 0.05	4
PEAS WITHOUT PODS, FROZ	EN Imported (EC): 4 samples analysed	
boscalid	<0.01 (i.e. not found)	1
(MRL = 3)	0.02, 0.05, 0.07	3
pyrimethanil	<0.01 (i.e. not found)	2
(MRL = 0.2)	0.02, 0.08	2

Imported (EC) samples of peas without pods were from Belgium (3), the Netherlands (1). Imported (Non-EC) samples of peas without pods were from Guatemala (3), Kenya (4). UK samples of peas without pods (14).

Residues were distributed by country of origin, as follows:BAC (sum)Guatemala (3), Kenya (1), UK (1)boscalidBelgium (3), UK (1)DDAC (sum)UK (1)pyrimethanilBelgium (2)

No residues were found in 12 of the 14 UK frozen samples No residues were found in 3 of the 7 Imported (Non-EC) fresh samples No residues were found in 1 of the 4 Imported (EC) frozen samples

Table 30b.Residues detected in retail samples of PEAS WITHOUT PODS purchased
between April and June 2015

Number of residues	Sample ID	Type of PEAS WITHOUT PODS	Resid	lues for	Country of origin		
			BACSM	BOS	DDAC	PYM	
(1)	1630/2015	FROZEN	-	0.01	-	-	UK
	1665/2015	FRESH	0.03	-	-	-	Guatemala
	2770/2015	FRESH	0.03	-	-	-	Guatemala
	2924/2015	FRESH	0.05	-	-	-	Guatemala
	2923/2015	FRESH	0.01	-	-	-	Kenya
	1715/2015	FROZEN	-	0.05	-	-	Belgium
(2)	1716/2015	FROZEN	0.08	_	0.01	-	UK
	0978/2015	FROZEN	-	0.02	-	0.08	Belgium
	1587/2015	FROZEN	-	0.07	-	0.02	Belgium

Residues (1-2 compounds) were found in 9 of the 25 samples as follows:

The abbreviations used for the pesticide names are as follows:

BACSM	BAC (sum)	BOS	boscalid	DDAC	DDAC (sum)
PYM	pyrimethanil				

Table 30c. Residues sought but not found in retail samples of PEAS WITHOUT PODS purchased between April and June 2015

etrimfos (0.01)

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2,4-D (sum) (0.02) 2,4-DB (0.01) 2-phenylphenol (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) aclonifen (0.01) acrinathrin (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) allethrin (0.01) alpha-HCH (0.01) ametoctradin (0.01) aminocarb (0.01) amitraz (0.01) atrazine (0.01) azinphos-ethyl (0.01) azinphos-methyl (0.01) azoxystrobin (0.01) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenazate (sum) (0.01) bifenthrin (0.01) biphenyl (0.01) bitertanol (0.05) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (0.01) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbosulfan (0.01) carboxin (0.01) chlorantraniliprole (0.01) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenvinphos (0.01) chlorfluazuron (0.01) chloridazon (0.01) chlorobenzilate (0.01) chlorothalonil (0.01) chlorotoluron (0.01) chlorpropham (sum) (0.05) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01)

famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.01) fenhexamid (0.01) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyroximate (0.01) fenthion (partial sum) (0.01) fenthion (sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) flonicamid (sum) (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.01) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) fonofos (0.01) formetanate (0.01) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) Haloxyfop-R methyl (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01)hexaconazole (0.01) hexaflumuron (0.01) hexazinone (0.01) hexythiazox (0.01) imazalil (0.01)

nuarimol (0.01) ofurace (0.01) Oxadiargyl (0.01) oxadiazon (0.01) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.01) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) penthiopyrad (0.01) permethrin (0.01) phenmedipham (0.01) phenthoate (0.01) phorate (sum) (0.02) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propamocarb (0.01) propaquizafop (0.01) propargite (0.01) propetamphos (0.01) propham (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.01) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrifenox (0.01) pyriproxifen (0.01) pyroxsulam (0.01)

chlorthal-dimethyl (0.01) chlozolinate (0.01) clethodim (0.01) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) crufomate (0.01) cyanazine (0.01) cyazofamid (0.01) cycloxydim (0.01) cyflufenamid (0.01) cyfluthrin (0.01) Cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (0.01) cyproconazole (0.01) cyprodinil (0.01) cyromazine (0.01) DDT (sum) (0.01) deltamethrin (0.01) desmedipham (0.01) diafenthiuron (0.01) diazinon (0.01) dichlofluanid (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.02) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinocap (0.01) diphenylamine (0.05) disulfoton (sum) (0.01) dithianon (0.01) dithiocarbamates (0.05) diuron (0.01) dodine (0.05) emamectin benzoate (0.01) endosulfan (sum) (0.01) endrin (0.01) EPN (0.01) epoxiconazole (0.01) ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01)

imidacloprid (0.01) indoxacarb (0.01) ioxynil (0.01) iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.01) lenacil (0.01) lindane (0.01) linuron (0.01)lufenuron (0.01) malathion (0.01) mandipropamid (0.01) MCPA (sum) (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepronil (0.01) meptyldinocap (0.01) metaflumizone (0.01) metalaxyl (0.01) metamitron (0.01) metazachlor (0.01) metconazole (0.02) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.01) mevinphos (0.01) molinate (0.01) monocrotophos (0.01) monolinuron (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.01) nitenpyram (0.01) nitrothal-isopropyl (0.01)

quassia (0.01) quinalphos (0.01) Quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) Quizalofop, incl. quizalfop-P (0.01) rotenone (0.01) simazine (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sum of butocarboxim and butocarboxim sulfoxide(0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbumeton (0.01) terbuthylazine (0.01) terbutryn (0.01) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.01) thiacloprid (0.01) thiamethoxam (sum) (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.01) triasulfuron (0.01) triazamate (0.01) triazamate (acid) (0.01) triazamate (ester) (0.01) triazophos (0.01) trichlorfon (0.01) triclopyr (0.05) tricyclazole (0.01) trifloxystrobin (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) Tritosulfuron (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 31a.Residues detected in samples of PEPPERS obtained between April and June2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
PEPPERS, FRESH UK: 1 san	nple analysed	
None found	-	1
PEPPERS, FRESH Imported	(EC): 17 samples analysed	
azoxystrobin	<0.01 (i.e. not found)	16
(MRL = 3)	0.09	1
fenhexamid	<0.01 (i.e. not found)	15
(MRL = 2)	0.01, 0.2	2
fludioxonil	<0.01 (i.e. not found)	16
(MRL = 1)	0.01	1
flutriafol	<0.01 (i.e. not found)	15
(MRL = 1)	0.02, 0.03	2
ndoxacarb	<0.01 (i.e. not found)	16
(MRL = 0.3)	0.01	1
metrafenone	<0.01 (i.e. not found)	16
(MRL = 2)	0.02	1
pymetrozine	<0.01 (i.e. not found)	16
(MRL = 3)	0.02	1
pyridalyl	<0.01 (i.e. not found)	16
(MRL = 2)	0.02	1
riadimefon & triadimenol	<0.01 (i.e. not found)	16
(MRL = 1)	0.1	1

Imported (EC) samples of peppers were from Spain (7), the Netherlands (10). UK samples of peppers (1).

Residues were distributed by country of origin, as follows:						
azoxystrobin	the Netherlands (1)					
flutriafol	Spain (2)					
fludioxonil	Spain (1)					
fenhexamid	the Netherlands (2)					
indoxacarb	the Netherlands (1)					
metrafenone	Spain (1)					
pyridalyl	the Netherlands (1)					
pymetrozine	Spain (1)					
triadimefon & triadimenol	Spain (1)					

No residues were found in any of the UK fresh samples No residues were found in 9 of the 17 Imported (EC) fresh samples

Table 31b.Residues detected in samples of PEPPERS obtained between April
and June 2015

Number of residues	Sample ID	Type of PEPPERS				Residue	s found	d (mg/kę	g)			Country of origin
Tesidues			AZOX	FLF	FLUD	FNHX	IDX	MTF	PYDL	PYMT	TRSP	
(1)	4152/2015 4252/2015 3978/2015 4082/2015 4267/2015	FRESH FRESH FRESH FRESH FRESH	-	0.03 0.02 - -	- - -	- - 0.01 - -	- - - 0.01	- - -	- - - 0.02 -	- - -	-	Spain Spain the Netherlands the Netherlands the Netherlands
(2)	4083/2015 4250/2015 3965/2015	FRESH FRESH FRESH	- - 0.09	- - -	0.01 - -	- - 0.2	- -	- 0.02 -	- -	- 0.02 -	0.1 - -	Spain Spain the Netherlands

Residues (1-2 compounds) were found in 8 of the 18 samples as follows:

The abbreviations used for the pesticide names are as follows:

Table 31c. Residues sought but not found in samples of PEPPERS obtained between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,2,3,6-tetrahydrophthalimide (0.01)2,4-D (sum) (0.01) 2-phenylphenol (0.01) 3-chloroaniline (0.01) 4,4'dichlorobenzophenone (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.01) acrinathrin (0.01) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) allethrin (0.01) alpha-HCH (0.01) ametryn (0.01) amitraz (0.01) atraton (0.01) atrazine (0.01) Azaconazole (0.01) azinphos-ethyl (0.01) azinphos-methyl (0.01) BAC (sum) (0.01) benalaxyl (0.01) bendiocarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenox (0.01) bifenthrin (0.01) biphenyl (0.01) bitertanol (0.01) boscalid (0.01) bromacil (0.01) bromophos (0.01) bromophos-ethyl (0.01) bromophos-methyl (0.01) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butocarboxim (parent) (0.01) butralin (0.01) cadusafos (0.01) captan (0.01) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbophenothion (0.01) carboxin (0.01) Carfentrazone-ethyl (0.01) chlorantraniliprole (0.01) chlordane (animal products) (0.01)

edifenphos (0.01) emamectin benzoate (0.01) endosulfan (sum) (0.01) endrin (0.01) EPN (0.01) epoxiconazole (0.01) EPTC (0.01) etaconazole (0.01) ethephon (0.05) ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.02) fenchlorphos (sum) (0.01) fenitrothion (0.01) fenoxycarb (0.01) fenpiclonil (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyroximate (0.01) fenson (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) flamprop-isoproyl (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) flufenacet (0.01) flufenoxuron (0.01) flumetralin (0.01) flumioxazin (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) flurochloridone (0.01) flurtamone (0.01) flusilazole (0.01) flutolanil (0.01) fluxapyroxad (0.01) folpet (0.01) fonofos (0.01)

myclobutanil (0.01) napropamide (0.01) nitenpyram (0.01) nitrofen (0.01) nitrothal-isopropyl (0.01) Norflurazon (0.01) Novaluron (0.01) nuarimol (0.01) octhilinone (0.01) ofurace (0.01) oxadiazon (0.01) oxadixyl (0.01) oxamyl (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.01) paclobutrazol (0.01) Paraoxon-ethyl (0.01) parathion (0.01) parathion-ethyl (sum) (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) pentanochlor (0.01) permethrin (0.01) Pethoxamid (0.01) phenmedipham (0.01) phenothrin (0.01) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) Phosfolan (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picoxystrobin (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) pretilachlor (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometon (0.01) prometryn (0.01) propachlor (0.01) propamocarb (0.01) propanil (0.01) propaquizafop (0.01) propargite (0.01) propazine (0.01) propetamphos (0.01) propham (0.01) propiconazole (0.01) propoxur (0.01)

chlordane (sum) (0.01) chlordimeform (0.01) chlorfenapyr (0.01) chlorfenson (0.01) chlorfenvinphos (0.01) chloridazon (0.01) chlormephos (0.01) chlormequat (0.02) chlorothalonil (0.01) chlorotoluron (0.01) chlorpropham (sum) (0.01) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlorthion (0.01) chlorthiophos (0.01) chlortoluron (0.01) chlozolinate (0.01) clodinafop-propargyl (0.01) clofentezine (0.01) clomazone (0.01) cloquintocet-mexyl (0.01) clothianidin (0.01) coumaphos (0.01) crufomate (0.01) cyanazine (0.01) cyanophenphos (0.01) cyazofamid (0.01) cyflufenamid (0.01) cyfluthrin (0.01) cymoxanil (0.01) cypermethrin (0.01) cyproconazole (0.01) cyprodinil (0.01) cyromazine (0.01) DDAC (sum) (0.01) DDT (sum) (0.01) DDT sum alternate (0.01) deltamethrin (0.01) demeton-S-methyl (0.01) desmetryn (0.01) diafenthiuron (0.01) dialifos (0.01) diazinon (0.01) dichlobenil (0.01) dichlofenthion (0.01) dichlofluanid (0.01) dichlofluanid and DMSA (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimethylvinphos (0.01) dimoxystrobin (0.01)

formetanate (0.01) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) furmecyclox (0.01) haloxyfop (sum) (0.01) haloxyfop-methyl (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01)hexaconazole (0.01) hexaflumuron (0.01) hexazinone (0.01) hexythiazox (0.01) imazalil (0.01) imidacloprid (0.01) inorganic bromide (10) iodofenphos (0.01) ioxynil (0.01) iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isobenzan (0.01) isocarbophos (0.01) isodrin (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isoxaben (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.01) lenacil (0.01) leptophos (0.01) lindane (0.01) linuron (0.01)lufenuron (0.01) malathion (0.01) mandipropamid (0.01) MCPA (sum) (0.01) MCPA-thioethyl (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mephosfolan (0.01) mepiquat (0.02) mepronil (0.01) metaflumizone (0.01) metalaxyl (0.01) metamitron (0.01) metazachlor (0.01) metconazole (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01)

propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.01) prothioconazole (0.01) prothiofos (0.01) pyraclostrobin (0.01) Pyraflufen-ethyl (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyridate (0.01) pyrifenox (0.01) pyrimethanil (0.01) pyrimidifen (0.01) pyriproxifen (0.01) quinalphos (0.01) quinomethionate (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) quizalfop-ethyl (0.01) rotenone (0.01) secbumeton (0.01) silafluofen (0.01) simazine (0.01) spinetoram (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spiroxamine (0.01) sulfallate (0.01) sulfentrazone (0.01) sulfotep (0.01) sulprofos (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) Temephos (0.01) terbufos (0.01) Terbufos (sum not definiton) (0.01)terbumeton (0.01) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) tetrasul (0.01) thiabendazole (0.01) thiacloprid (0.01) thiamethoxam (sum) (0.01) thiobencarb (0.01) thiometon (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolvlfluanid (sum) (0.01) triallate (0.01) triazophos (0.01) trichlorfon (0.01) tricyclazole (0.01)

diniconazole (0.01) dioxabenzophos (0.01) dioxathion (0.01) diphenamid (0.01) diphenylamine (0.01) disulfoton (sum) (0.01) dithianon (0.01) dithiocarbamates (0.05) diuron (0.01)

- metolachlor (0.01) metolcarb (0.01) metoxuron (0.01) metribuzin (0.01) mevinphos (0.01) molinate (0.01) monocrotophos (0.01) Monuron (0.01)
- trietazine (0.01) trifloxystrobin (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.01) triticonazole (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 32a.Residues detected in samples of POTATOES obtained between April and
June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
POTATOES, MAINCROP UK: 30 s	amples analysed	
azoxystrobin	<0.01 (i.e. not found)	29
(MRL = 1)	0.02	1
Chlorpropham (potato definition)	<0.05 (i.e. not found)	12
(MRL = 10)	0.05 - 4	18
flonicamid (sum)	<0.01 (i.e. not found)	25
(MRL = 0.1)	0.01 - 0.05	5
flutolanil	<0.01 (i.e. not found)	28
(MRL = 0.5)	0.02, 0.05	2
maleic hydrazide	<1 (i.e. not found)	21
(MRL = 50)	5.2 - 22	9
propamocarb	<0.01 (i.e. not found)	27
(MRL = 0.3)	0.01	3
POTATOES, NEW UK: 12 samples	s analysed	
azoxystrobin	<0.01 (i.e. not found)	2
(MRL = 1)	0.01 - 0.02	10
propamocarb	<0.01 (i.e. not found)	7
(MRL = 0.3)	0.01 - 0.02	5
POTATOES, MAINCROP Imported	l (Non-EC): 4 samples analysed	
imidacloprid	<0.01 (i.e. not found)	3
(MRL = 0.5)	0.01	1
pencycuron	<0.01 (i.e. not found)	3
(MRL = 0.1)	0.01	1
POTATOES, NEW Imported (Non-	EC): 5 samples analysed	
Chlorpropham (potato definition)	<0.05 (i.e. not found)	4
(MRL = 10)	0.06	1
POTATOES, MAINCROP Imported	I (EC): 4 samples analysed	
Chlorpropham (potato definition)	<0.05 (i.e. not found)	2
(MRL = 10)	1.3, 1.7	2
metalaxyl	<0.01 (i.e. not found)	3
(MRL = 0.05*)	0.02	1

NOTE: * Indicates MRL is set to the Limit of Determination.

Imported (EC) samples of potatoes were from France (2), Italy (1), Spain (1). Imported (Non-EC) samples of potatoes were from Israel (9). UK samples of potatoes (42).

Residues were distributed by country of origin, as follows:azoxystrobinUK (11)Chlorpropham (potato definition)France (2), Israel (1), UK (18)flonicamid (sum)UK (5)

flutolanil	UK (2)
imidacloprid	Israel (1)
maleic hydrazide	UK (9)
metalaxyl	Spain (1)
propamocarb	UK (8)
pencycuron	Israel (1)

No residues were found in 7 of the 30 UK maincrop samples No residues were found in 1 of the 12 UK new samples No residues were found in 2 of the 4 Imported (Non-EC) maincrop samples No residues were found in 4 of the 5 Imported (Non-EC) new samples No residues were found in 1 of the 4 Imported (EC) maincrop samples

Table 32b. Residues detected in samples of POTATOES obtained between April and June 2015

Residues (1-3 compounds) were found in 40 of the 55 samples as follows:

Number of residues	Sample ID	Type of POTATOES										Country of origin
	-		AZOX	CPPOT	FLC	FLT	IMI	MH	MTX	PCB	PNY	
(1)	0542/2015	NEW	0.02	_								UK
(1)	0542/2015	NEW	0.02	-	-	-	-	-	-	-	-	UK
	0674/2015	NEW	0.01	-	-	-	-	-	-	-	-	UK
	0725/2015		0.01	-	-	-	-	-	-	-	-	
		NEW NEW	0.02	-	-	-	-	-	-	-	-	UK UK
	1791/2015 1922/2015	NEW	0.02	-	-	-	-	-	-	- 0.02	-	UK
	2992/2015	NEW	- 0.02	-	-	-	-	-	-	0.02	-	UK
			0.02		-	-	-	-	-	-		
	3591/2015	MAINCROP	-	0.9	-	-	-	-	-	-	-	UK
	3634/2015	MAINCROP	-	0.1	-	-	-	-	-	-	-	UK
	3642/2015	MAINCROP	-	1.5	-	-	-	-	-	-	-	UK
	3654/2015	MAINCROP	-	-	0.04	-	-	-	-	-	-	UK
	3698/2015	MAINCROP	-	-	-	-	-	-	-	0.01	-	UK
	3699/2015	MAINCROP	-	0.1	-	-	-	-	-	-	-	UK
	3701/2015	MAINCROP	-	2.2	-	-	-	-	-	-	-	UK
	3708/2015	MAINCROP	-	-	-	0.05	-	-	-	-	-	UK
	3719/2015	MAINCROP	-	-	0.01	-	-	-	-	-	-	UK
	3727/2015	MAINCROP	-	-	-	-	-	12	-	-	-	UK
	3589/2015	MAINCROP	-	-	-	-	0.01	-	-	-	-	Israel
	3597/2015	MAINCROP	-	-	-	-	-	-	-	-	0.01	Israel
	3726/2015	NEW	-	0.06	-	-	-	-	-	-	-	Israel
	3661/2015	MAINCROP	-	1.3	-	-	-	-	-	-	-	France
	3715/2015	MAINCROP	-	1.7	-	-	-	-	-	-	-	France
	3707/2015	MAINCROP	-	-	-	-	-	-	0.02	-	-	Spain
(2)	1802/2015	NEW	0.02	-	-	-	-	-	-	0.02	-	UK
	1984/2015	NEW	0.01	-	-	-	-	-	-	0.01	-	UK
	2750/2015	NEW	0.01	-	-	-	-	-	-	0.01	-	UK
	2965/2015	NEW	0.01	-	-	-	-	-	-	0.02	-	UK
	3606/2015	MAINCROP	-	0.7	-	-	-	13	-	-	-	UK
	3635/2015	MAINCROP	-	1.2	0.04	-	-	-	-	-	-	UK
	3636/2015	MAINCROP	-	4	_	-	-	5.2	-	-	-	UK
	3637/2015	MAINCROP	-	0.07	0.05	-	-	-	-	-	-	UK
	3638/2015	MAINCROP	-	1.8	0.01	-	-	-	-	-	-	UK
	3665/2015	MAINCROP	-	0.5	-	-	-	-	-	0.01	-	UK
	3668/2015	MAINCROP	-	1.2	-	-	-	22	-	-	-	UK
	3679/2015	MAINCROP	_	2.3	_	_	-	14	_	-	-	UK
	3685/2015	MAINCROP	_	0.7	_	_	_	7	-	_	-	UK

Number of residues	Sample ID	Type of POTATOES			Res	idues f	ound (mg/kg))			Country of origin
			AZOX	CPPOT	FLC	FLT	IMI	MH	MTX	PCB	PNY	
	3691/2015	MAINCROP	-	0.6	-	-	-	5.8	-	-	-	UK
	3700/2015	MAINCROP	-	2.6	-	-	-	21	-	-	-	UK
(3)	3608/2015	MAINCROP	-	1.6	-	0.02	-	14	-	-	-	UK
	3686/2015	MAINCROP	0.02	0.05	-	-	-	-	-	0.01	-	UK

The abbreviations used for the pesticide names are as follows:

AZOX	azoxystrobin	CPPOT	Chlorpropham (potato definition)	FLC	flonicamid (sum)
FLT	flutolanil	IMI	imidacloprid	MH	maleic hydrazide
MTX	metalaxyl	PCB	propamocarb	PNY	pencycuron

Table 32c. Residues sought but not found in samples of POTATOES obtained between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,4-dimethylnaphthalene (0.01) 2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.05) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.02) aclonifen (0.05) acrinathrin (0.05) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (0.01) anthraguinone (0.01) asulam (0.05) atrazine (0.01) azinphos-methyl (0.02) BAC (sum) (0.05) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) boscalid (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (0.02) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbosulfan (0.01) carboxin (0.05) chlorantraniliprole (0.01) chlorbufam (0.05) chlordane (sum) (0.01) chlorfenapyr (0.02) chlorfenvinphos (0.01) chloridazon (0.01) chlorothalonil (0.01)

EPTC (0.05) ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.02) etridiazole (0.05) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaquin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.05) fenhexamid (0.05) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.05) fenpropimorph (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.05) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.05) fluroxypyr (sum) (0.05) flusilazole (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) fonofos (0.01) formetanate (0.05) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) furmecyclox (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) Heptachlor (sum) (0.01)

monolinuron (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.05) nitenpyram (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) Oxadiargyl (0.01) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.05) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pendimethalin (0.01) pentanochlor (0.01) permethrin (0.01) phenmedipham (0.05) phenthoate (0.01) phorate (partial sum) (0.02) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) Prochloraz (sum) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propaguizafop (0.05) propargite (0.01) propetamphos (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.05) prosulfuron (0.02) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01)

chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlortoluron (0.01) chlozolinate (0.01) chromafenozide (0.01) clethodim (0.05) clofentezine (0.01) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cyazofamid (0.01) cycloate (0.01) cycloxydim (0.05) cyflufenamid (0.01) cyfluthrin (0.02) Cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (0.05) cyproconazole (0.01) cyprodinil (0.05) cyromazine (0.05) DDAC (sum) (0.05) DDT (sum) (0.01) deltamethrin (0.05) demeton-S-methyl (0.01) desmedipham (0.05) diazinon (0.01) dichlobenil (0.05) dichlofluanid (0.01) dichlofluanid and DMSA (0.01) dichlorprop (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.05) disulfoton (sum) (0.02) diuron (0.01)dodine (0.05) emamectin benzoate (0.01) endosulfan (sum) (0.01) EPN (0.01) epoxiconazole (0.01)

heptenophos (0.01) hexachlorobenzene (0.01) hexaconazole (0.01) hexythiazox (0.01) imazalil (0.02) indoxacarb (0.01) ioxynil (0.05) iprodione (0.02) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01)lufenuron (0.02) malathion (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (0.05) metamitron (0.01) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.05) metsulfuron-methyl (0.05) mevinphos (0.01) molinate (0.01) monocrotophos (0.01)

pyridaphenthion (0.01) pyrimethanil (0.05) pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.05) Quinoclamine (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) rimsulfuron (0.01) rotenone (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.05) sum of butocarboxim and butocarboxim sul (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbuthylazine (0.05) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.05) thiacloprid (0.01) thiamethoxam (sum) (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.05) triasulfuron (0.05) triazamate (0.01) triazophos (0.01) triclopyr (0.05) tricyclazole (0.01) trifloxystrobin (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 33a.Residues detected in retail samples of PREPARED FRESH FRUIT purchased
between April and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
PREPARED FRESH FRUIT, A	PPLE UK: 1 sample analysed	
hlorantraniliprole	<0.01 (i.e. not found)	0
MRL = 0.5)	0.02	1
pyrimethanil	<0.05 (i.e. not found)	0
MRL = 7)	0.7	1
PREPARED FRESH FRUIT, N	IANGO UK: 5 samples analysed	
BAC (sum)	<0.05 (i.e. not found)	3
MRL = 0.1)	1.8, 2.4	2
DDAC (sum)	<0.05 (i.e. not found)	3
(MRL = 0.1)	0.5, 0.6	2
PREPARED FRESH FRUIT, M	IELON UK: 1 sample analysed	
mazalil	<0.02 (i.e. not found)	0
(MRL = 2)	0.07	1
PREPARED FRESH FRUIT, M	IIXED UK: 9 samples analysed	
azoxystrobin	<0.01 (i.e. not found)	8
(No MRL)	0.03	1
BAC (sum)	<0.05 (i.e. not found)	5
(MRL = 0.1)	0.6 - 1.3	4
boscalid	<0.01 (i.e. not found)	7
(No MRL)	0.04	2
pupirimate	<0.01 (i.e. not found)	8
(No MRL)	0.02	1
chlorantraniliprole	<0.01 (i.e. not found)	8
(No MRL)	0.01	1
chlorpyrifos	<0.01 (i.e. not found)	8
(No MRL)	0.01	1
clofentezine	<0.01 (i.e. not found)	8
(No MRL)	0.02	1
DDAC (sum) (MRL = 0.1)	<0.05 (i.e. not found) 0.1 0.2	7 1 1
fludioxonil	<0.01 (i.e. not found)	7
(No MRL)	0.02, 0.03	2
imazalil	<0.02 (i.e. not found)	8
(No MRL)	0.02	1
iprodione	<0.02 (i.e. not found)	8
(No MRL)	0.1	1
penconazole	<0.01 (i.e. not found)	8
(No MRL)	0.02	1

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
pirimicarb (sum)	<0.01 (i.e. not found)	8
(No MRL)	0.1	1
pyraclostrobin	<0.01 (i.e. not found)	8
(No MRL)	0.02	1
pyrimethanil	<0.05 (i.e. not found)	7
(No MRL)	0.2, 0.3	2
quinoxyfen	<0.01 (i.e. not found)	8
(No MRL)	0.01	1
PREPARED FRESH FRUIT, PINEAP	PLE UK: 6 samples analysed	
BAC (sum)	<0.05 (i.e. not found)	5
(MRL = 0.1)	3.5	1
PREPARED FRESH FRUIT, MIXED	Imported (Non-EC): 1 samples analys	sed
BAC (sum)	<0.05 (i.e. not found)	0
(MRL = 0.1)	0.6	1
DDAC (sum)	<0.05 (i.e. not found)	0
(MRL = 0.1)	1.1	1
PREPARED FRESH FRUIT, PINEAP	PLE Imported (Non-EC): 2 samples a	inalysed
None found	-	2

Imported (Non-EC) samples of prepared fresh fruit were from Ghana (2), South Africa (1). UK samples of prepared fresh fruit (22).

Residues were distributed by country of origin, as follows:

	i engli, de tenettet
azoxystrobin	UK (1)
BAC (sum)	South Africa (1), UK (7)
boscalid	UK (2)
bupirimate	UK (1)
clofentezine	UK (1)
chlorpyrifos	UK (1)
chlorantraniliprole	UK (2)
DDAC (sum)	South Africa (1), UK (4)
fludioxonil	UK (2)
imazalil	UK (2)
iprodione	UK (1)
pirimicarb (sum)	UK (1)
penconazole	UK (1)
pyraclostrobin	UK (1)
pyrimethanil	UK (3)
quinoxyfen	UK (1)

Residues were found in all of the 1 UK apple samples No residues were found in 3 of the 5 UK mango samples Residues were found in all of the 1 UK melon samples No residues were found in 3 of the 9 UK mixed samples No residues were found in 5 of the 6 UK pineapple samples Residues were found in all of the 1 Imported (Non-EC) mixed samples No residues were found in any of the Imported (Non-EC) pineapple samples

Table 33b. Residues detected in retail samples of PREPARED FRESH FRUIT purchased between April and June 2015

Number of residues	Sample ID	Type of PREPARED FRESH FRUIT							Resid	lues foun	d (mg/kg))							Country of origin
		FRESHFRUIT	AZOX	BACSM	BOS	BUP	CLF	CPF	CTP	DDAC	FLUD	IMZ	IPR	PIR	PNZ	PYC	PYM	QINO	
(1)	0622/2015	PINEAPPLE	-	3.5	_	-	-	-	-	-	-	_	-	-	-	-	-	-	UK
(')	1434/2015	MELON	-	-	-	-	-	-	-	-	-	0.07	-	-	-	-	-	-	UK
	2804/2015	MIXED	-	-	-	-	-	-	-	-	-	0.02	-	-	-	-	-	-	UK
(2)	1355/2015	MIXED	-	1.3	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	UK
(-)	1959/2015	APPLE	-	-	-	-	-	-	0.02	-	-	-	-	-	-	-	0.7	-	UK
	1985/2015	MIXED	-	0.7	-	-	-	-	-	0.2	-	-	-	-	-	-	-	-	UK
	2771/2015	MANGO	-	1.8	-	-	-	-	-	0.5	-	-	-	-	-	-	-	-	UK
	2869/2015	MANGO	-	2.4	-	-	-	-	-	0.6	-	-	-	-	-	-	-	-	UK
	1507/2015	MIXED	-	0.6	-	-	-	-	-	1.1	-	-	-	-	-	-	-	-	South Africa
(3)	0632/2015	MIXED	-	-	-	-	-	0.01	0.01	-	-	-	-	-	-	-	0.2	-	UK
(4)	2944/2015	MIXED	-	0.6	-	-	0.02	-	-	0.1	0.02	-	-	-	-	-	-	-	UK
(11)	0581/2015	MIXED	0.03	1	0.04	0.02	-	-	-	-	0.03	-	0.1	0.1	0.02	0.02	0.3	0.01	UK

Residues (1-11 compounds) were found in 12 of the 25 samples as follows:

The abbreviations used for the pesticide names are as follows:

AZOX	azoxystrobin	BACSM	BAC (sum)	BOS	boscalid
BUP	bupirimate	CLF	clofentezine	CPF	chlorpyrifos
CTP	chlorantraniliprole	DDAC	DDAC (sum)	FLUD	fludioxonil
IMZ	imazalil	IPR	iprodione	PIR	pirimicarb (sum)
PNZ	penconazole	PYC	pyraclostrobin	PYM	pyrimethanil
QINO	quinoxyfen				

Table 33c.Residues sought but not found in retail samples of PREPARED FRESHFRUIT purchased between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,4-dimethylnaphthalene (0.01) 2,4-D (sum) (0.01) 2,4-DB (0.01) 2-phenylphenol (0.05) 6-benzyladenine (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.02) aclonifen (0.05) acrinathrin (0.05) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.01) ametoctradin (0.01) amidosulfuron (0.01) amitraz (0.01) anthraguinone (0.01) asulam (0.05) atrazine (0.01) azinphos-methyl (0.02) benalaxyl (0.01) bendiocarb (0.01) benfuracarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenthrin (0.01) biphenyl (0.01) bispyribac-sodium (0.01) bitertanol (0.01) bromophos-ethyl (0.01) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) buprofezin (0.01) butachlor (0.01) butocarboxim (parent) (0.01) butoxycarboxim (0.01) cadusafos (0.01) captan (0.02) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbosulfan (0.01) carboxin (0.05) chlorbufam (0.05) chlordane (sum) (0.01) chlorfenapyr (0.02) chlorfenvinphos (0.01) chloridazon (0.01) chlorothalonil (0.01) chlorpropham (sum) (0.05) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlortoluron (0.01)

ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.02) etridiazole (0.05) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaquin (0.01) fenbuconazole (0.01) fenbutatin oxide (0.05) fenhexamid (0.05) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropidin (0.05) fenpropimorph (0.01) fenpyroximate (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) flonicamid (sum) (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.05) flufenacet (0.01) flufenoxuron (0.02) fluometuron (0.01) fluopicolide (0.01) fluopyram (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.05) fluroxypyr (sum) (0.05) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) folpet (0.01) fonofos (0.01) formetanate (0.05) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) furmecyclox (0.01) halofenozide (0.01) halosulfuron-methyl (0.01) haloxyfop (sum) (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01)

monocrotophos (0.01) monolinuron (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.05) nitenpyram (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) Oxadiargyl (0.01) oxadixyl (0.01) oxamyl (0.01) oxasulfuron (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.05) paclobutrazol (0.01) parathion (0.01) parathion-methyl (sum) (0.01) pencycuron (0.01) pendimethalin (0.01) pentanochlor (0.01) permethrin (0.01) phenmedipham (0.05) phenthoate (0.01) phorate (partial sum) (0.02) phosalone (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometryn (0.01) propachlor (0.01) propamocarb (0.01) propaguizafop (0.05) propargite (0.01) propetamphos (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.05) prosulfuron (0.02) prothioconazole (0.01) prothiofos (0.01) pymetrozine (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridaphenthion (0.01)

chlozolinate (0.01) chromafenozide (0.01) clethodim (0.05) clomazone (0.01) clothianidin (0.01) coumaphos (0.01) cyazofamid (0.01) cycloate (0.01) cycloxydim (0.05) cyflufenamid (0.01) cyfluthrin (0.02) Cyhalofop-butyl (sum) (0.01) cymoxanil (0.01) cypermethrin (0.05) cyproconazole (0.01) cyprodinil (0.05) cyromazine (0.05) DDT (sum) (0.01) deltamethrin (0.05) demeton-S-methyl (0.01) desmedipham (0.05) diafenthiuron (0.05) diazinon (0.01) dichlobenil (0.05) dichlofluanid (0.01) dichlofluanid and DMSA (0.01) dichlorprop (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimoxystrobin (0.01) diniconazole (0.01) dinotefuran (0.01) diphenylamine (0.05) disulfoton (sum) (0.02) diuron (0.01) dodine (0.05) emamectin benzoate (0.01) endosulfan (sum) (0.01) EPN (0.01) epoxiconazole (0.01) EPTC (0.05) ethiofencarb (parent) (0.01) ethion (0.01)

hexaconazole (0.01) hexythiazox (0.01) imidacloprid (0.01) indoxacarb (0.01) ioxynil (0.05) iprovalicarb (0.01) isazophos (0.01) isocarbophos (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isopyrazam (0.01) isoxaben (0.01) isoxaflutole (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.02) lenacil (0.01) lindane (0.01) linuron (0.01)lufenuron (0.02) malathion (0.01) mandipropamid (0.01) MCPA, MCPB and MCPA thioethyl expressed (0.01) MCPB (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mepronil (0.01) mesosulfuron-methyl (0.01) metaflumizone (0.05) metalaxyl (0.01) metamitron (0.01) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metosulam (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.05) metsulfuron-methyl (0.05) mevinphos (0.01) molinate (0.01)

pyriproxifen (0.01) quassia (0.01) quinalphos (0.01) quinmerac (0.05) Quinoclamine (0.01) quintozene (sum) (0.01) rimsulfuron (0.01) rotenone (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spirotetramat (sum) (0.01) spiroxamine (0.01) sulcotrione (0.05) sum of butocarboxim and butocarboxim sulfoxide (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tebuthiuron (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbuthylazine (0.05) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) thiabendazole (0.05) thiacloprid (0.01) thiamethoxam (sum) (0.01) thiophanate-methyl (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.05) triasulfuron (0.05) triazamate (0.01) triazophos (0.01) triclopyr (0.05) tricyclazole (0.01) trifloxystrobin (0.01) triflumizole (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.05) triticonazole (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 34a. Residues detected in retail samples of RADISHES purchased between April and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
RADISHES, UK: 15 samples	analysed	
boscalid (MRL = 2)	<0.01 (i.e. not found) 0.03	14 1
propamocarb (MRL = 3)	<0.01 (i.e. not found) 0.02 - 0.04	9 6
RADISHES, Imported (Non-I	EC): 1 sample analysed	
None found	-	1
RADISHES, Imported (EC): 8	8 samples analysed	
propamocarb (MRL = 3)	<0.01 (i.e. not found) 0.02 - 0.1	3 5

Imported (EC) samples of radishes were from Germany (2), the Netherlands (6). Imported (Non-EC) samples of radishes were from Israel (1). UK samples of radishes (15).

Residues were distributed by country of origin, as follows: boscalid UK (1) propamocarb the Netherlands (5), UK (6)

No residues were found in 9 of the 15 UK samples No residues were found in any of the Imported (Non-EC) samples No residues were found in 3 of the 8 Imported (EC) samples

Table 34b. Residues detected in retail samples of RADISHES purchased between April and June 2015

Number of residues	Sample ID	Residues BOS	found (mg/kg) PCB	Country of origin
		воо	100	
(1)	0585/2015	-	0.04	UK
. ,	0631/2015	-	0.03	UK
	0707/2015	-	0.03	UK
	0859/2015	-	0.03	UK
	1508/2015	-	0.03	UK
	1253/2015	-	0.03	the Netherlands
	1424/2015	-	0.06	the Netherlands
	1649/2015	-	0.1	the Netherlands
	1986/2015	-	0.02	the Netherlands
	2945/2015	-	0.03	the Netherlands
(2)	0633/2015	0.03	0.02	UK

Residues (1-2 compounds) were found in 11 of the 24 samples as follows:

The abbreviations used for the pesticide names are as follows:

BOS boscalid PCB propamocarb

Table 34c.Residues sought but not found in retail samples of RADISHESpurchased between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2-phenylphenol (0.01) abamectin (sum) (0.01) acephate (0.01) acetamiprid (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.01) acrinathrin (0.01) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) alpha-HCH (0.01) atrazine (0.01) azinphos-ethyl (0.01) azinphos-methyl (0.01) azoxystrobin (0.01) benalaxyl (0.01) bendiocarb (0.01) beta-HCH (0.01) bifenox (0.01) bifenthrin (0.01) biphenyl (0.01) bitertanol (0.01) bromophos-ethyl (0.01) bromophos-methyl (0.01) bromopropylate (0.01) bromuconazole (0.01) bupirimate (0.01) buprofezin (0.01) butachlor (0.01) butralin (0.01) cadusafos (0.01) carbaryl (0.01) carbendazim (0.01) carbofuran (sum) (0.01) carbophenothion (0.01) carboxin (0.01) chlorbufam (0.01) chlordane (sum) (0.01) chlorfenapyr (0.01) chlorfenson (0.01) chlorfenvinphos (0.01) chloridazon (0.01) chlorobenzilate (0.01) chlorothalonil (0.01) chlorotoluron (0.01) chlorpyrifos (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlorthion (0.01) chlorthiophos (0.01) chlozolinate (0.01) clofentezine (0.01) clomazone (0.01) clothianidin (0.01)

coumaphos (0.01)

endrin (0.01) EPN (0.01) epoxiconazole (0.01) ethion (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etridiazole (0.01) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaquin (0.01) fenbuconazole (0.01) fenhexamid (0.01) fenitrothion (0.01) fenoxycarb (0.01) fenpropathrin (0.01) fenpropimorph (0.01) fenson (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (SS & RR Iso (0.01) fipronil (sum) (0.01) fluazinam (0.01) flucythrinate (0.01) fludioxonil (0.01) flufenacet (0.01) flufenoxuron (0.01) fluopicolide (0.01) fluoxastrobin (0.01) fluquinconazole (0.01) flurochloridone (0.01) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) fluxapyroxad (0.01) fonofos (0.01) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) haloxyfop-methyl (0.01) Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01)hexaconazole (0.01) hexazinone (0.01) imazalil (0.01) imidacloprid (0.01) indoxacarb (0.01) iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isobenzan (0.01)

monocrotophos (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.01) nitrofen (0.01) nitrothal-isopropyl (0.01) nuarimol (0.01) ofurace (0.01) oxadiazon (0.01) oxadixyl (0.01) oxamyl (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.01) paclobutrazol (0.01) parathion (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) permethrin (0.01) phenothrin (0.01) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) phosphamidon (0.01) picolinafen (0.01) picoxystrobin (0.01) piperonyl butoxide (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) prochloraz (parent only) (0.01) procymidone (0.01) profenofos (0.01) prometryn (0.01) propachlor (0.01) propanil (0.01) propargite (0.01) propazine (0.01) propetamphos (0.01) propham (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.01) prothioconazole (0.01) prothiofos (0.01) pyraclostrobin (0.01) pyrazophos (0.01) pyridaben (0.01) pyridaphenthion (0.01) pyrifenox (0.01) pyrimethanil (0.01) pyriproxifen (0.01) quinalphos (0.01) quinoxyfen (0.01)

crufomate (0.01) cyanazine (0.01) cyanophenphos (0.01) cycloate (0.01) cyflufenamid (0.01) cyfluthrin (0.01) cypermethrin (0.01) cyproconazole (0.01) cyprodinil (0.01) DDT (sum) (0.01) deltamethrin (0.01) dialifos (0.01) diazinon (0.01) dichlobenil (0.01) dichlofenthion (0.01) dichlofluanid (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) difenoconazole (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimethylvinphos (0.01) dimoxystrobin (0.01) diniconazole (0.01) dioxabenzophos (0.01) diphenylamine (0.01) disulfoton (sum) (0.01) ditalimfos (0.01) edifenphos (0.01) endosulfan (sum) (0.01)

isocarbophos (0.01) isodrin (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) jodfenphos (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.01) lenacil (0.01) leptophos (0.01) lindane (0.01) linuron (0.01)lufenuron (0.01) malathion (0.01) mecarbam (0.01) mepronil (0.01) metalaxvl (0.01) metamitron (0.01) metazachlor (0.01) metconazole (0.01) methabenzthiazuron (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) metobromuron (0.01) metolachlor (0.01) metolcarb (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.01) mevinphos (0.01) molinate (0.01)

auintozene (sum) (0.01) rotenone (0.01) simazine (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spiroxamine (0.01) sulfotep (0.01) tau-fluvalinate (0.01) tebuconazole (0.01) tebufenpyrad (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) terbacil (0.01) terbufos (0.01) Terbufos (sum not definition) (0.01) terbuthylazine (0.01) terbutrvn (0.01) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) tetrasul (0.01) thiabendazole (0.01) thiacloprid (0.01) thiamethoxam (sum) (0.01) tolclofos-methyl (0.01) tolfenpyrad (0.01) triallate (0.01) triazophos (0.01) trietazine (0.01) trifloxystrobin (0.01) triflumuron (0.01) trifluralin (0.01) triticonazole (0.01) zoxamide (0.01)

Table 35a.	Residues detected in retail samples of RAISINS, CURRANTS, SULTANAS
	purchased between January and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
CURRANTS UK: 1 sample an	alysed	
boscalid	<0.02 (i.e. not found)	0
(MRL = 25)	0.03	1
RAISINS UK: 1 sample analy	sed	
azoxystrobin	<0.02 (i.e. not found)	0
(MRL = 10)	0.04	1
boscalid	<0.02 (i.e. not found)	0
(MRL = 25)	0.06	1
chlormequat	<0.01 (i.e. not found)	0
(MRL = 0.25)	0.03	1
chlorpyrifos	<0.02 (i.e. not found)	0
(MRL = 2.5)	0.08	1
fluopyram	<0.02 (i.e. not found)	0
(MRL = 7.5)	0.03	1
indoxacarb	<0.02 (i.e. not found)	0
(MRL = 10)	0.02	1
iprodione	<0.04 (i.e. not found)	0
(MRL = 50)	0.2	1
metalaxyl	<0.02 (i.e. not found)	0
(MRL = 10)	0.1	1
pyrimethanil	<0.1 (i.e. not found)	0
(MRL = 25)	0.3	1
SULTANAS UK: 3 samples a	nalysed	
azoxystrobin	<0.02 (i.e. not found)	2
(MRL = 10)	0.06	1
boscalid	<0.02 (i.e. not found)	2
(MRL = 25)	0.1	1
chlorantraniliprole	<0.02 (i.e. not found)	2
(MRL = 5)	0.03	1
chlormequat	<0.01 (i.e. not found)	2
(MRL = 0.25)	0.04	1
chlorpyrifos	<0.02 (i.e. not found)	1
(MRL = 2.5)	0.03, 0.05	2
cyprodinil	<0.1 (i.e. not found)	2
(MRL = 25)	0.3	1
fludioxonil	<0.02 (i.e. not found)	2
(MRL = 25)	0.02	1
indoxacarb	<0.02 (i.e. not found)	2
(MRL = 10)	0.04	1

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
iprodione	<0.04 (i.e. not found)	1
(MRL = 50)	0.1, 0.2	2
metalaxyl	<0.02 (i.e. not found)	1
(MRL = 10)	0.02, 0.04	2
methoxyfenozide	<0.02 (i.e. not found)	2
(MRL = 5)	0.09	1
pyrimethanil	<0.1 (i.e. not found)	1
(MRL = 25)	0.1, 1.1	2
tebuconazole	<0.02 (i.e. not found)	2
(MRL = 25)	0.02	1
triadimefon & triadimenol	<0.02 (i.e. not found)	2
(MRL = 10)	0.03	1
RAISINS Imported (Non-EC): 1	I2 samples analysed	
acetamiprid	<0.02 (i.e. not found)	11
(MRL = 2.5)	0.06	1
azoxystrobin	<0.02 (i.e. not found)	9
(MRL = 10)	0.02 - 0.04	3
boscalid	<0.02 (i.e. not found)	6
(MRL = 25)	0.02 - 1.8	6
chlormequat	<0.01 (i.e. not found)	8
(MRL = 0.25)	0.04 - 0.2	3
	0.4	1
chlorpyrifos	<0.02 (i.e. not found)	10
(MRL = 2.5)	0.09, 0.2	2
difenoconazole	<0.02 (i.e. not found)	11
(MRL = 2.5)	0.03	1
dimethomorph	<0.02 (i.e. not found)	11
(MRL = 15)	0.02	1
fenpyroximate	<0.02 (i.e. not found)	10
(MRL = 1.5)	0.05, 0.1	2
imidacloprid	<0.02 (i.e. not found)	10
(MRL = 5)	0.03	2
indoxacarb	<0.02 (i.e. not found)	11
(MRL = 10)	0.04	1
iprodione	<0.04 (i.e. not found)	9
(MRL = 50)	0.05 - 0.7	3
metalaxyl	<0.02 (i.e. not found)	10
(MRL = 10)	0.1, 0.2	2
methoxyfenozide	<0.02 (i.e. not found)	5
(MRL = 5)	0.02 - 0.2	5 7
myclobutanil	< 0.02 (i.e. not found)	11
myclobutanil (MRL = 5)	<0.02 (i.e. not found) 0.08	1
		4.4
pyraclostrobin	<0.02 (i.e. not found)	11
	211	

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
(MRL = 5)	0.05	1
pyrimethanil	<0.1 (i.e. not found)	8
(MRL = 25)	0.1 - 0.2	4
trifloxystrobin	<0.02 (i.e. not found)	11
(MRL = 25)	0.02	1
SULTANAS Imported (Non-E	C): 22 samples analysed	
acetamiprid	<0.02 (i.e. not found)	21
(MRL = 2.5)	0.02	1
azoxystrobin	<0.02 (i.e. not found)	17
(MRL = 10)	0.03 - 0.05	5
bifenthrin	<0.02 (i.e. not found)	21
(MRL = 1)	0.03	1
boscalid	<0.02 (i.e. not found)	9
(MRL = 25)	0.03 - 0.3	13
carbendazim	<0.02 (i.e. not found)	21
(MRL = 1.5)	0.03	1
chlorantraniliprole	<0.02 (i.e. not found)	20
(MRL = 5)	0.02, 0.03	2
chlormequat	<0.01 (i.e. not found)	16
(MRL = 0.25)	0.04 - 0.2 0.3	5 1
chlorpyrifos	<0.02 (i.e. not found)	6
(MRL = 2.5)	0.02 - 0.1	16
cyprodinil	<0.1 (i.e. not found)	20
(MRL = 25)	0.1, 0.2	2
dimethomorph	<0.02 (i.e. not found)	19
(MRL = 15)	0.02 - 0.06	3
fenbutatin oxide	<0.1 (i.e. not found)	21
(MRL = 10)	0.1	1
fludioxonil	<0.02 (i.e. not found)	20
(MRL = 25)	0.02, 0.04	2
fluopyram	<0.02 (i.e. not found)	20
(MRL = 7.5)	0.02, 0.09	2
midacloprid	<0.02 (i.e. not found)	21
(MRL = 5)	0.04	1
ndoxacarb	<0.02 (i.e. not found)	15
(MRL = 10)	0.02 - 0.05	7
prodione	<0.04 (i.e. not found)	6
(MRL = 50)	0.1 - 0.7	16
ambda-cyhalothrin	<0.04 (i.e. not found)	20
(MRL = 1)	0.04, 0.05	2
metalaxyl	<0.02 (i.e. not found)	10
(MRL = 10)	0.03 - 0.3	12

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
methoxyfenozide	<0.02 (i.e. not found)	14
(MRL = 5)	0.02 - 0.1	8
metrafenone	<0.02 (i.e. not found)	21
(MRL = 25)	0.03	1
myclobutanil	<0.02 (i.e. not found)	20
(MRL = 5)	0.02, 0.04	2
piperonyl butoxide	<0.02 (i.e. not found)	21
(No MRL)	0.03	1
pyrimethanil	<0.1 (i.e. not found)	9
(MRL = 25)	0.1 - 0.7	13
triadimefon & triadimenol	<0.02 (i.e. not found)	20
(MRL = 10)	0.03, 0.08	2
CURRANTS Imported (EC): 10	samples analysed	
boscalid	<0.02 (i.e. not found)	5
(MRL = 25)	0.03 - 0.2	5
carbendazim	<0.02 (i.e. not found)	9
(MRL = 1.5)	0.02	1
cypermethrin	<0.1 (i.e. not found)	8
(MRL = 2.5)	0.2, 0.3	2
dimethomorph	<0.02 (i.e. not found)	7
(MRL = 15)	0.02 - 0.3	3
iprodione	<0.04 (i.e. not found)	8
(MRL = 50)	0.04, 1.2	2
metalaxyl	<0.02 (i.e. not found)	9
(MRL = 10)	0.07	1
myclobutanil	<0.02 (i.e. not found)	8
(MRL = 5)	0.02, 0.04	2
permethrin	<0.02 (i.e. not found)	9
(MRL = 0.25)	0.04	1
pirimiphos-methyl	<0.02 (i.e. not found)	9
(MRL = 0.25)	0.02	1
pyraclostrobin	<0.02 (i.e. not found)	8
(MRL = 5)	0.03, 0.3	2
tebuconazole	<0.02 (i.e. not found)	9
(MRL = 2.5)	0.03	1

Imported (EC) samples of raisins, currants, sultanas were from Greece (10).

Imported (Non-EC) samples of raisins, currants, sultanas were from Chile (1), China (2), South Africa (1), Turkey (26), USA (4).

UK samples of raisins, currants, sultanas (5).

Residues were distributed by country of origin, as follows:AcetamipridTurkey (2)azoxystrobinTurkey (8), UK (2)BifenthrinTurkey (1)

Boscalid carbendazim chlormequat Chlorpyrifos chlorantraniliprole Cyprodinil cypermethrin difenoconazole dimethomorph fludioxonil fenbutatin oxide fenpyroximate fluopyram indoxacarb imidacloprid iprodione lambda-cyhalothrin metrafenone metalaxyl methoxyfenozide mvclobutanil piperonyl butoxide permethrin pirimiphos-methyl pyraclostrobin pyrimethanil tebuconazole trifloxystrobin triadimefon & triadimenol

Greece (5), Turkey (17), UK (3), USA (2) Greece (1), Turkey (1) Turkey (10), UK (2) Turkey (18), UK (3) Turkey (2), UK (1) Turkey (2), UK (1) Greece (2) USA (1) Greece (3), Turkey (4) Turkey (2), UK (1) Turkey (1) USA (2) Turkey (2), UK (1) Turkey (8), UK (2) Turkey (2), USA (1) Greece (2), Turkey (19), UK (3) Turkey (2) Turkey (1) Greece (1), Turkey (14), UK (3) Turkey (11), UK (1), USA (4) Greece (2), Turkey (2), USA (1) South Africa (1) Greece (1) Greece (1) Greece (2), USA (1) Turkey (17), UK (3) Greece (1), UK (1) USA (1) China (2), UK (1)

Residues were found in all of the 1 UK currants samples Residues were found in all of the 1 UK raisins samples Residues were found in all of the 3 UK sultanas samples No residues were found in 3 of the 12 Imported (Non-EC) raisins samples No residues were found in 1 of the 22 Imported (Non-EC) sultanas samples No residues were found in 2 of the 10 Imported (EC) currants samples

Table 35b.Residues detected in retail samples of RAISINS, CURRANTS, SULTANAS purchased between January and
June 2015

Number of residues	Sample ID	Type of RAISINS, CURRANTS,									Res	idues fo	und (mg/	kg)								
		SULTANAS																				
			ACET	AZOX	BIF	BOS	CBZ	CLQ	CPF	CTP	CYD	CYP	DIFC	DMR	FLUD	FNBT	FNPY	FPYM	IDX	IMI	IPR	LCY
(1)	1304/2015	SULTANAS	-	-	-	-	-	0.04	-	-			-	-	-	-	-	-	-	-	-	-
(-)	1981/2015	CURRANTS	-	-	-	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1549/2015	SULTANAS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2654/2015	SULTANAS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	0712/2015	SULTANAS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	0202/2015	SULTANAS	-	-	-	-	-	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2610/2015	SULTANAS	-	-	-	-	-	0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2623/2015	RAISINS	-	-	-	-	-	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	0243/2015	RAISINS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	0124/2015	CURRANTS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	0280/2015	CURRANTS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	0302/2015	CURRANTS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.2	-
(2)	0023/2015	CURRANTS	-	_	-	0.03	-	-	_	-	-	0.3	-	-	-	-	-	-	-	-	-	-
()	0897/2015	CURRANTS	-	-	-	0.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(3)	0057/2015	SULTANAS	-	-	-	-	-	-	0.07	-	-	-	-	-	-	-	-	-	-	-	0.5	-
(0)	0531/2015	RAISINS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	-	-	-
	2641/2015	CURRANTS	-	-	-	0.04	-	-	-	-	-	-	-	0.02	-	-	-	-	-	-	-	-
(4)	2578/2015	SULTANAS	-	-	-	-	-	-	0.03	-	-	-	-	_	-	-	-	-	-	-	0.1	-
(')	2505/2015	SULTANAS	-	-	-	0.03	-	-	0.05	-	-	-	-	-	-	-	-	-	-	-	0.2	-
	2528/2015	SULTANAS	-	-	-	0.05	-	-	0.02	-	-	-	-	-	-	-	-	-	-	-	0.6	-
	0098/2015	RAISINS	-	-	-	0.1	-	-	-	-	-	-	0.03	-	-	-	-	-	-	-	-	-
	1237/2015	CURRANTS	-	-	-	0.1	0.02	-	-	-	-	0.2	-	0.03	-	-	-	-	-	-	-	-
(5)	0037/2015	SULTANAS		_	_	_	_		0.05	_		_		_	-			_	0.05	-	0.1	0.05
(0)	0708/2015	SULTANAS	-	-	-	0.03	-	-	0.06	-	-	-	-	-	-	-	-	-	-	-	0.1	-
	1809/2015	RAISINS	-	0.04	-	1.8	-	-	-	-	-	-	-	-	-	-	-	-	0.04	-	-	-
	0652/2015	RAISINS	-	-	-	0.03	-	-	-	-	-	-	-	-	-	-	0.05	-	-	0.03	-	-
(6)	0105/2015	SULTANAS		-		0.1	-		0.1	-	-		-	-	-	-		-	-		0.4	-
(•)	0266/2015	SULTANAS	-	-	-	-	-	0.2	0.1	-	-	-	-	0.02	-	-	-	-	-	-	0.7	-
	2666/2015	RAISINS	-	0.02	-	0.02	-	0.04	-	-	-	-	-	-	-	-	-	-	-	0.03	0.05	-
	2990/2015	SULTANAS	0.02	-	-	0.03	-	-	0.1	-	-	-	-	-	-	-	-	-	-	-	0.2	-
(7)	1282/2015	RAISINS	-	-	-	0.08	-	0.04	0.2	-	-	-	-	_	-	-	-	-	-	-	0.6	-
(•)	2940/2015	SULTANAS	-	-	-	0.00	_	0.04	0.2	-	-	-	-	-	-	-	-	-	0.02	-	0.3	-
	0580/2015	CURRANTS	-	-	-	0.2	-	-	-	-	-	-	-	0.3	-	-	-	-	-	-	0.04	-
(8)	0324/2015	SULTANAS		0.03	-	0.06	-	-	0.04	0.03	-	-	-	-	-	0.1	-	-	-	-	0.3	-
(0)	2736/2015	SULTANAS	-	0.05	-	0.00	-	-	0.04	-	-	-	-	-	-	-	-	-	0.05	-	0.6	-

Residues (1-13 compounds) were found in 43 of the 49 samples as follows:

Number of residues	Sample ID	Type of RAISINS, CURRANTS,										Re	sidues	found (m	ng/kg)								
		SULTANAS	ACET	AZOX	BIF	BOS	CBZ	С	LQ C	PF	СТР	CYD	CYF	DIF	C DMR	FLUD	FNBT	FNPY	FPYM	IDX	IMI	IPR	LCY
(9)	1530/2015	RAISINS	-	0.04	-	0.06	-	0.	03 0	.08	-	-	-	-	-	-	-	-	0.03	0.02	-	0.2	-
	2892/2015	SULTANAS	-	-	-	0.2	-	0.	04 0	.1 ·	-	-	-	-	0.06	-	-	-	-	0.03	-	0.4	-
(10)	1583/2015	SULTANAS	-	0.03	-	0.03	-	-	0	.06	-	0.1	-	-	-	0.04	-	-	0.09	-	-	0.2	0.04
	1737/2015 2967/2015	RAISINS SULTANAS	0.06 -	0.04 0.04	-	0.03 0.3	-	0.		.09 .1	-	-	-	-	0.02	-	-	-	- 0.02	- 0.05	-	0.7 0.5	-
(11)	2763/2015	SULTANAS	-	_	-	0.3	_	_			0.02	0.2				0.02				0.03	-	0.2	-
			-		-		-	-					-	-	-		-	-	-		-		-
(13)	1783/2015 1661/2015	SULTANAS SULTANAS	-	0.06 0.04	- 0.03	0.1 0.3	- 0.03	- 0.		.05 .08	0.03 -	0.3 -	-	-	- 0.02	0.02 -	-	-	-	0.04 0.05	- 0.04	0.2 0.3	-
Number	Sample ID	Type of						Residu	es foun	d						Сс	ountry of C	Drigin	_				
of residues		RAISINS, CURRANTS, SULTANAS																					
		002174440	MTF	MTX	MXF	MYC	PBO	PER	PIM	PYC	P	ΥM	TBC	TRFL	TRSP								
(1)	1304/2015	SULTANAS	-	-	-	-	-	-	-	-	-		-	-	-	UK							
()	1981/2015	CURRANTS	-	-	-	-	-	-	-	-	-		-	-	-	UK							
	1549/2015	SULTANAS	-	-	-	-	-	-	-	-	-		-	-	0.03	China							
	2654/2015	SULTANAS	-	-	-	-	-	-	-	-	-		-	-	0.08	China							
	0712/2015	SULTANAS	-	-	-	-	0.03	-	-	-	-		-	-	-	South A	frica						
	0202/2015	SULTANAS	-	-	-	-	-	-	-	-	-		-	-	-	Turkey							
	2610/2015	SULTANAS	-	-	-	-	-	-	-	-	-		-	-	-	Turkey							
	2623/2015	RAISINS	-	-	-	-	-	-	-	-	-		-	-	-	Turkey							
	0243/2015	RAISINS	-	-	0.05	-	-	-	-	-	-		-	-	-	USA							
	0124/2015	CURRANTS	-	-	-	0.02	-	-	-	-	-		-	-	-	Greece							
	0280/2015	CURRANTS	-	-	-	-	-	0.04	-	-	-		-	-	-	Greece							
	0302/2015	CURRANTS	-	-	-	-	-	-	-	-	-		-	-	-	Greece							
(2)	0023/2015	CURRANTS	-	-	-	-	-	-	-	-	-		-	-	-	Greece							
()	0897/2015	CURRANTS	-	0.07	-	-	-	-	-	-	-		-	-	-	Greece							
(3)	0057/2015	SULTANAS	-	0.05	-	-	-	-	-	-	-		-	-	-	Turkey							
	0531/2015	RAISINS	-	-	0.2	0.08	-	-	-	-	-		-	-	-	USA							
	2641/2015	CURRANTS	-	-	-	-	-	-	-	0.03	-		-	-	-	Greece							
(4)	2578/2015	SULTANAS	-	0.02	-	-	-	-	-	-	0.	1	-	-	-	UK							
	2505/2015	SULTANAS	-	-	0.03	-	-	-	-	-	-		-	-	-	Turkey							
	2528/2015	SULTANAS	-	-	0.02	-	-	-	-	-	-		-	-	-	Turkey							
	0098/2015	RAISINS	-	-	0.02	-	-	-	-	0.05	-		-	-	-	USA							
	1237/2015	CURRANTS	-	-	-	-	-	-	-	-	-		-	-	-	Greece							
(5)	0037/2015	SULTANAS	-	-	-	-	-	-	-	-	0.		-	-	-	Turkey							
	0708/2015	SULTANAS	-	0.2	-	-	-	-	-	-	0.		-	-	-	Turkey							
	1809/2015	RAISINS	-	-	0.07	-	-	-	-	-	0.	1	-	-	-	Turkey							

Number of residues	Sample ID	Type of RAISINS, CURRANTS, SULTANAS						Residu	ies found	t					Country of Origin
		JULIANAJ	MTF	MTX	MXF	MYC	PBO	PER	PIM	PYC	PYM	TBC	TRFL	TRSP	
	0652/2015	RAISINS	-	-	0.1	-	-	-	-	-	-	-	0.02	-	USA
(6)	0105/2015	SULTANAS	-	0.07	0.03	-	-	-	-	-	0.2	-	-	-	Turkey
. ,	0266/2015	SULTANAS	-	0.06	-	-	-	-	-	-	0.1	-	-	-	Turkey
	2666/2015	RAISINS	-	-	-	-	-	-	-	-	0.2	-	-	-	Turkey
	2990/2015	SULTANAS	-	0.3	-	-	-	-	-	-	0.3	-	-	-	Turkey
(7)	1282/2015	RAISINS	-	0.2	0.03	-	-	-	-	-	0.2	-	-	-	Turkey
()	2940/2015	SULTANAS	-	0.03	-	-	-	-	-	-	0.3	-	-	-	Turkey
	0580/2015	CURRANTS	-	-	-	0.04	-	-	0.02	0.3	-	0.03	-	-	Greece
(8)	0324/2015	SULTANAS	-	-	0.08	-	-	-	-	-	0.3	-	-	-	Turkey
()	2736/2015	SULTANAS	-	0.07	0.06	-	-	-	-	-	0.5	-	-	-	Turkey
(9)	1530/2015	RAISINS	-	0.1	-	-	-	-	-	-	0.3	-	-	-	UK
()	2892/2015	SULTANAS	-	0.3	-	0.04	-	-	-	-	0.3	-	-	-	Turkey
(10)	1583/2015	SULTANAS	-	0.1	-	-	-	-	-	-	0.2	-	-	-	Turkey
()	1737/2015	RAISINS	-	0.1	0.04	-	-	-	-	-	0.1	-	-	-	Turkey
	2967/2015	SULTANAS	0.03	0.08	0.1	-	-	-	-	-	0.7	-	-	-	Turkey
(11)	2763/2015	SULTANAS	-	0.08	0.07	0.02	-	-	-	-	0.5	-	-	-	Turkey
(13)	1783/2015 1661/2015	SULTANAS SULTANAS	-	0.04 0.1	0.09 0.03	-	-	-	-	-	1.1 0.5	0.02 -	-	0.03	UK Turkey

The abbreviations used for the pesticide names are as follows:

ACET	acetamiprid	AZOX	azoxystrobin	BIF	bifenthrin
BOS	boscalid	CBZ	carbendazim	CLQ	chlormequat
CPF	chlorpyrifos	CTP	chlorantraniliprole	CYD	cyprodinil
CYP	cypermethrin	DIFC	difenoconazole	DMR	dimethomorph
FLUD	fludioxonil	FNBT	fenbutatin oxide	FNPY	fenpyroximate
FPYM	fluopyram	IDX	indoxacarb	IMI	imidacloprid
IPR	iprodione	LCY	lambda-cyhalothrin	MTF	metrafenone
MTX	metalaxyl	MXF	methoxyfenozide	MYC	myclobutanil
PBO	piperonyl butoxide	PER	permethrin	PIM	pirimiphos-methyl
	2				,

Table 35c. Residues sought but not found in retail samples of RAISINS, CURRANTS, SULTANAS purchased between January and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,4-dimethylnaphthalene (0.02) 2,4-D (sum) (0.02) 2,4-DB (0.02) 2-phenylphenol (0.1) 6-benzyladenine (0.02) abamectin (sum) (0.02) acephate (0.02) acetochlor (0.02) acibenzolar-s-methyl (0.04) aclonifen (0.1) acrinathrin (0.1) alachlor (0.02) aldicarb (sum) (0.02) aldrin and dieldrin (0.02) alpha-HCH (0.02) ametoctradin (0.02) amidosulfuron (0.02) amitraz (0.02) anthraquinone (0.02) asulam (0.1) atrazine (0.02) azinphos-methyl (0.04) BAC (sum) (0.1) benalaxyl (0.02) bendiocarb (0.02) benfuracarb (0.02) benthiavalicarb (sum) (0.02) beta-HCH (0.02) biphenyl (0.02) bispyribac-sodium (0.02) bitertanol (0.02) bromophos-ethyl (0.02) bromopropylate (0.02) bromoxynil (0.02) bromuconazole (0.02) bupirimate (0.02) buprofezin (0.02) butachlor (0.02) butocarboxim (parent) (0.02) butoxycarboxim (0.02) cadusafos (0.02) captan (0.04) carbaryl (0.02) carbofuran (sum) (0.02) carbosulfan (0.02) carboxin (0.1) chlorbufam (0.1) chlordane (sum) (0.02) chlorfenapyr (0.04) chlorfenvinphos (0.02) chloridazon (0.02) chlorothalonil (0.02) chlorpropham (sum) (0.1) chlorpyrifos-methyl (0.02) chlorthal-dimethyl (0.02) chlortoluron (0.02) chlozolinate (0.02)

ethirimol (0.02) ethofumesate (0.02) ethoprophos (0.02) etofenprox (0.02) etoxazole (0.04) etridiazole (0.1) etrimfos (0.02) famoxadone (0.02) fenamidone (0.02) fenamiphos (sum) (0.02) fenarimol (0.02) fenazaguin (0.02) fenbuconazole (0.02) fenhexamid (0.1) fenitrothion (0.02) fenoxycarb (0.02) fenpropathrin (0.02) fenpropidin (0.1) fenpropimorph (0.02) fensulfothion (sum) (0.02) fenthion (partial sum) (0.02) fenvalerate & esfenvalerate (all isomers (0.02) fipronil (sum) (0.02) flonicamid (sum) (0.02) fluazifop-p-butyl (sum) (0.02) fluazinam (0.02) flubendiamide (0.02) flucythrinate (0.1) flufenacet (0.02) flufenoxuron (0.04) fluometuron (0.02) fluopicolide (0.02) fluoxastrobin (0.02) fluquinconazole (0.02) flurochloridone (0.1) fluroxypyr (sum) (0.1) flusilazole (0.02) flutolanil (0.02) flutriafol (0.02) fluxapyroxad (0.02) folpet (0.02) fonofos (0.02) formetanate (0.1) formothion (0.02) fosthiazate (0.02) furalaxyl (0.02) furathiocarb (0.02) furmecyclox (0.02) halofenozide (0.02) halosulfuron-methyl (0.02) haloxyfop (sum) (0.02) Heptachlor (sum) (0.02) heptenophos (0.02) hexachlorobenzene (0.02) hexaconazole (0.02) hexythiazox (0.02) imazalil (0.04)

monolinuron (0.02) Monuron (0.02) napropamide (0.1) nitenpyram (0.02) nitrothal-isopropyl (0.02) nuarimol (0.02) ofurace (0.02) Oxadiargyl (0.02) oxadixyl (0.02) oxamyl (0.02) oxasulfuron (0.02) oxydemeton-methyl (sum) (0.02) oxyfluorfen (0.1) paclobutrazol (0.02) parathion (0.02) parathion-methyl (sum) (0.02) penconazole (0.02) pencycuron (0.02) pendimethalin (0.02) pentanochlor (0.02) phenmedipham (0.1) phenthoate (0.02) phorate (partial sum) (0.04) phosalone (0.02) phosmet (sum) (0.02) phosphamidon (0.02) phoxim (0.02) picolinafen (0.02) picoxystrobin (0.02) pirimicarb (sum) (0.02) pirimiphos-ethyl (0.02) prochloraz (parent only) (0.02) procymidone (0.02) profenofos (0.02) promecarb (0.02) prometryn (0.02) propachlor (0.02) propamocarb (0.02) propaguizafop (0.1) propargite (0.02) propetamphos (0.02) propiconazole (0.02) propoxur (0.02) propyzamide (0.02) proguinazid (0.02) prosulfocarb (0.1) prosulfuron (0.04) prothioconazole (0.02) prothiofos (0.02) pymetrozine (0.02) pyrazophos (0.02) pyrethrins (0.02) pyridaben (0.02) pyridaphenthion (0.02) pyriproxifen (0.02) quassia (0.02) quinalphos (0.02)

chromafenozide (0.02) clethodim (0.1) clofentezine (0.02) clomazone (0.02) clothianidin (0.02) coumaphos (0.02) cyazofamid (0.02) cycloate (0.02) cycloxydim (0.1) cyflufenamid (0.02) cyfluthrin (0.04) Cyhalofop-butyl (sum) (0.02) cymoxanil (0.02) cyproconazole (0.02) cyromazine (0.1) DDAC (sum) (0.1) DDT (sum) (0.02) deltamethrin (0.1) demeton-S-methyl (0.02) desmedipham (0.1) diazinon (0.02) dichlobenil (0.1) dichlofluanid (0.02) dichlofluanid and DMSA (0.02) dichlorprop (0.02) dichlorvos (0.02) diclobutrazol (0.02) dicloran (0.02) dicrotophos (0.02) diethofencarb (0.02) diflubenzuron (0.02) diflufenican (0.02) dimethenamid (0.02) dimethoate (sum) (0.02) dimoxystrobin (0.02) diniconazole (0.02) dinotefuran (0.02) diphenvlamine (0.1) disulfoton (sum) (0.04) diuron (0.02) dodine (0.1) emamectin benzoate (0.02) endosulfan (sum) (0.02) EPN (0.02) epoxiconazole (0.02) EPTC (0.1) ethiofencarb (parent) (0.02) ethion (0.02)

inorganic bromide (20) ioxynil (0.1) iprovalicarb (0.02) isazophos (0.02) isocarbophos (0.02) isofenphos (0.02) isofenphos-methyl (0.02) isoprocarb (0.02) isoprothiolane (0.02) isoproturon (0.02) isopyrazam (0.02) isoxaben (0.02) isoxaflutole (0.02) kresoxim-methyl (0.02) lenacil (0.02) lindane (0.02) linuron (0.02)lufenuron (0.04) malathion (0.02) mandipropamid (0.02) MCPA, MCPB and MCPA thioethyl expressed (0.02) MCPB (0.02) mecarbam (0.02) mepanipyrim (sum) (0.02) mepiquat (0.02) mepronil (0.02) mesosulfuron-methyl (0.02) metaflumizone (0.1) metamitron (0.02) metconazole (0.02) methabenzthiazuron (0.02) methacrifos (0.02) methamidophos (0.02) methidathion (0.02) methiocarb (sum) (0.02) methomyl (sum) (0.02) methoxychlor (0.02) metobromuron (0.02) metolachlor (0.02) metolcarb (0.02) metosulam (0.02) metoxuron (0.02) metribuzin (0.1) metsulfuron-methyl (0.1) mevinphos (0.02) molinate (0.02) monocrotophos (0.02)

quinmerac (0.1) Quinoclamine (0.02) quinoxyfen (0.02) quintozene (sum) (0.02) rimsulfuron (0.02) rotenone (0.02) spinosad (0.02) spirodiclofen (0.02) spiromesifen (0.02) spirotetramat (sum) (0.02) spiroxamine (0.02) sulcotrione (0.1) sum of butocarboxim and butocarboxim sulfoxide (0.02) tau-fluvalinate (0.02) tebufenozide (0.02) tebufenpyrad (0.02) tebuthiuron (0.02) tecnazene (0.02) teflubenzuron (0.02) tefluthrin (0.02) terbufos (0.02) Terbufos (sum not definition) (0.02) terbuthylazine (0.1) tetrachlorvinphos (0.02) tetraconazole (0.02) tetradifon (0.02) tetramethrin (0.02) thiabendazole (0.1) thiacloprid (0.02) thiamethoxam (sum) (0.02) thiophanate-methyl (0.02) tolclofos-methyl (0.02) tolfenpyrad (0.02) tolylfluanid (sum) (0.02) triallate (0.1) triasulfuron (0.1) triazamate (0.02) triazophos (0.02) triclopyr (0.1) tricyclazole (0.02) triflumizole (0.02) triflumuron (0.02) trifluralin (0.02) triforine (0.1) triticonazole (0.02) vinclozolin (sum) (0.02) zoxamide (0.02)

Table 36a.Residues detected in retail samples of SMOKED FISH purchased between
April and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
COD UK: 1 sample analysed		
None found	-	1
HADDOCK UK: 1 sample analysed		
None found	-	1
HAKE UK: 1 sample analysed		
None found	-	1
KIPPERS (HERRING) UK: 3 sample	s analysed	
DDT (sum) (No MRL)	<0.002 (i.e. not found) 0.002	2 1
MACKEREL UK: 6 samples analyse	d	
DDT (sum) (No MRL)	<0.002 (i.e. not found) 0.002	4 2
SALMON UK: 6 samples analysed		
None found	-	6
COD Imported (Non-EC): 4 samples	s analysed	
None found	-	4
HADDOCK Imported (Non-EC): 18 s	samples analysed	
None found	-	18
MACKEREL Imported (Non-EC): 6 s	samples analysed	
DDT (sum) (No MRL)	<0.002 (i.e. not found) 0.002	4 2
RIVER COBBLER (BASA FISH) Imp	orted (Non-EC): 7 samples analysed	
None found	-	7
SALMON Imported (Non-EC): 3 san	nples analysed	
None found	-	3

Imported (Non-EC) samples of smoked fish were from Barents Sea (2), Iceland (1), North East Atlantic/Barents Sea (4), North East Atlantic/North Sea (2), North East Atlantic/Norwegian Sea (3), Norway (1), Norwegian Sea (2), Unknown (16), Vietnam (7). UK samples of smoked fish (18).

Residues were distributed by country of origin, as follows: DDT (sum) UK (3), Unknown (2)

No residues were found in any of the UK cod samples No residues were found in any of the UK haddock samples No residues were found in any of the UK hake samples No residues were found in 2 of the 3 UK kippers (herring) samples No residues were found in 4 of the 6 UK mackerel samples No residues were found in any of the UK salmon samples No residues were found in any of the Imported (Non-EC) cod samples No residues were found in any of the Imported (Non-EC) haddock samples No residues were found in 4 of the 6 Imported (Non-EC) mackerel samples No residues were found in any of the Imported (Non-EC) river cobbler (basa fish) samples No residues were found in any of the Imported (Non-EC) salmon samples

Table 36b.Residues detected in retail samples of SMOKED FISH purchased between
April and June 2015

Number of residues	Sample ID	Type of SMOKED FISH	Residues found (mg/kg) DDT	Country of origin
(1)	0283/2015	MACKEREL	0.002	UK
	0543/2015	KIPPERS (HERRING)	0.002	UK
	2937/2015	MACKEREL	0.002	UK
	0647/2015	MACKEREL	0.002	North East Atlantic
	1486/2015	MACKEREL	0.002	North East Atlantic

Residues (1-1 compounds) were found in 5 of the 56 samples as follows:

The abbreviations used for the pesticide names are as follows:

DDT DDT (sum)

Table 36c.Residues sought but not found in retail samples of SMOKED FISH
purchased between April and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

aldrin and dieldrin (0.002) alpha-HCH (0.002) azinphos-ethyl (0.002) beta-HCH (0.002) bifenthrin (0.005)

chlordane (animal products) (0.002) chlorfenvinphos (0.002) chlorobenzilate (0.002) chlorpyrifos (0.002) chlorpyrifos-methyl (0.002) cyfluthrin (0.005) cypermethrin (0.005) deltamethrin (0.005) diazinon (0.002) endosulfan (sum) (0.002) endrin (0.002) fenvalerate & esfenvalerate (all isomers (0.005) Heptachlor (sum) (0.002)

hexachlorobenzene (0.002) lindane (0.002) methacrifos (0.002) methidathion (0.002) methoxychlor (0.002) nitrofen (0.002) parathion (0.002) parathion-methyl (sum) (0.002) permethrin (0.005) pirimiphos-methyl (0.002)

profenofos (0.002)

pyrazophos (0.002) quintozene (sum) (0.002) resmethrin (0.005) tecnazene (0.002) triazophos (0.002)

Table 37a.Residues detected in samples of SPECIALITY FRUIT obtained between
January and June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
SPECIALITY FRUIT, ASIAN PEAR I	mported (Non-EC): 3 samples analys	sed
carbendazim	<0.01 (i.e. not found)	2
(MRL = 0.2)	0.03	1
chlorpyrifos	<0.01 (i.e. not found)	1
(MRL = 0.5)	0.01, 0.09	2
dithiocarbamates	<0.05 (i.e. not found)	1
(MRL = 5)	0.06	2
thiophanate-methyl	<0.01 (i.e. not found)	1
(MRL = 0.5)	0.03, 0.09	2
SPECIALITY FRUIT, LYCHEES Imp	orted (Non-EC): 4 samples analysed	
None found	-	4
SPECIALITY FRUIT, PAPAYA Impo	rted (Non-EC): 3 samples analysed	
carbendazim	<0.01 (i.e. not found)	2
(MRL = 0.2)	0.02	1
chlorothalonil	<0.01 (i.e. not found)	2
(MRL = 20)	0.06	1
dithiocarbamates	<0.05 (i.e. not found)	1
(MRL = 7)	0.07, 0.1	2
prochloraz (parent only)	<0.01 (i.e. not found)	1
(MRL = 5)	0.02, 0.08	2
tebuconazole	<0.01 (i.e. not found)	2
(MRL = 2)	0.1	1
thiamethoxam (sum)	<0.01 (i.e. not found)	2
(MRL = 0.05*)	0.02	1
thiophanate-methyl	<0.01 (i.e. not found)	2
(MRL = 1)	0.05	1
trifloxystrobin	<0.01 (i.e. not found)	2
(MRL = 1)	0.04	1
SPECIALITY FRUIT, PASSION FRU	IT Imported (Non-EC): 3 samples and	alysed
azoxystrobin	<0.01 (i.e. not found)	2
(MRL = 4)	0.2	1
cyromazine	<0.01 (i.e. not found)	2
(MRL = 0.05*)	0.03	1
difenoconazole (MRL = 0.1)	<0.01 (i.e. not found) 0.02 0.2	1 1 1
tebuconazole	<0.01 (i.e. not found)	2
(MRL = 1)	0.04	1
trifloxystrobin	<0.01 (i.e. not found) 224	2

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range				
(MRL = 4)	0.03	1				
SPECIALITY FRUIT, PERSIM	MON Imported (Non-EC): 8 samples ana	lysed				
imidacloprid	<0.01 (i.e. not found)	7				
(MRL = 0.05*)	0.02	1				
SPECIALITY FRUIT, PHYSAI	LIS Imported (Non-EC): 1 sample analyse	ed				
None found	-	1				
SPECIALITY FRUIT, POMEG	RANATES Imported (Non-EC): 12 sample	es analysed				
acetamiprid	<0.01 (i.e. not found)	11				
(MRL = 0.01*)	0.02	1				
BAC (sum)	<0.01 (i.e. not found)	11				
(MRL = 0.1)	0.02	1				
buprofezin (MRL = 0.05*)	<0.01 (i.e. not found) 0.01	11 1				
· · ·						
clothianidin (MRL = 0.02*)	<0.01 (i.e. not found) 0.01	11 1				
fludioxonil	<0.01 (i.e. not found)	4				
(MRL = 3)	0.01 - 1.5	4 8				
Prochloraz (sum)	<0.01 (i.e. not found)	0				
(MRL = 0.05*)	1.89	1				
thiamethoxam (sum)	<0.01 (i.e. not found)	11				
(MRL = 0.05*)	0.01	1				
SPECIALITY FRUIT, RAMBU	TAN Imported (Non-EC): 1 sample analy	sed				
carbendazim	<0.01 (i.e. not found)	0				
(MRL = 0.1*)	0.4	1				
SPECIALITY FRUIT, STARFF	RUIT Imported (Non-EC): 1 sample analys	sed				
carbendazim	<0.01 (i.e. not found)	0				
(MRL = 0.1*)	0.2	1				

NOTE: * Indicates MRL is set to the Limit of Determination.

Imported (Non-EC) samples of speciality fruit were from Brazil (3), China (3), Colombia (3), Israel (4), Madagascar (1), Malaysia (1), Mauritius (1), Mexico (1), Peru (5), South Africa (7), Thailand (1), Turkey (4), USA (2).

f origin, as follows:
Turkey (1)
Colombia (1)
USA (1)
Peru (1)
Brazil (1), China (1), Malaysia (1), Thailand (1)
Brazil (1)
China (2)
Turkey (1)
Colombia (1)
Colombia (2)
Brazil (2), China (2)
Peru (4), South Africa (1), Turkey (1), USA (2)
Israel (1)

prochloraz (parent only) Prochloraz (sum) tebuconazole thiamethoxam (sum) thiophanate-methyl trifloxystrobin Brazil (2) Turkey (1) Brazil (1), Colombia (1) Brazil (1), Turkey (1) Brazil (1), China (2) Brazil (1), Colombia (1)

Residues were found in all of the 3 Imported (Non-EC) Asian pear samples No residues were found in any of the Imported (Non-EC) lychees samples Residues were found in all of the 3 Imported (Non-EC) papaya samples No residues were found in 1 of the 3 Imported (Non-EC) passion fruit samples No residues were found in 7 of the 8 Imported (Non-EC) persimmon samples No residues were found in any of the Imported (Non-EC) physalis samples Residues were found in all of the 12 Imported (Non-EC) pomegranates samples Residues were found in all of the 1 Imported (Non-EC) rambutan samples Residues were found in all of the 1 Imported (Non-EC) starfruit samples

Table 37b. Residues detected in samples of SPECIALITY FRUIT obtained between January and June 2015

Number of residues	Sample ID	Type of SPECIALITY FRUIT									Resid	ues foun	d (mg/kg	g)								Country of origin
16310063		TRON	ACET	AZOX	BACSM	BUF	CBZ	CLN	CPF	CTH	CYZ	DIFC	DTC	FLUD	IMI	PRZA	PRZS	TBC	THMSM	TME	TRFL	
(1)	1899/2015	PAPAYA	-	-	-	-	-	-	-	-	-	-	-	-	-	0.02	-	-	-	-	-	Brazil
.,	0265/2015	ASIAN PEAR	-	-	-	-	-	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	China
	0329/2015	PERSIMMON	-	-	-	-	-	-	-	-	-	-	-	-	0.02	-	-	-	-	-	-	Israel
	2577/2015	STARFRUIT	-	-	-	-	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Malaysia
	1877/2015	POMEGRANATES	-	-	-	-	-	-	-	-	-	-	-	0.01	-	-	-	-	-	-	-	Peru
	2757/2015	POMEGRANATES	-	-	-	-	-	-	-	-	-	-	-	0.03	-	-	-	-	-	-	-	Peru
	3961/2015	POMEGRANATES	-	-	-	-	-	-	-	-	-	-	-	1.5	-	-	-	-	-	-	-	Peru
	3969/2015	POMEGRANATES	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	-	-	-	-	-	Peru
	4261/2015	POMEGRANATES	-	-	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Peru
	1921/2015	POMEGRANATES	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	-	-	-	-	-	South
																						Africa
	1343/2015	RAMBUTAN	-	-	-	-	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Thailand
	2566/2015	POMEGRANATES	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.89	-	-	-	-	Turkey
	3876/2015	POMEGRANATES	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	-	-	-	-	-	Turkey
	3896/2015	POMEGRANATES	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Turkey
	3883/2015	POMEGRANATES	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-	-	-	-	-	-	USA
(2)	2730/2015	ASIAN PEAR	-	-	-	-	-	-	-	-	-	-	0.06	-	-	-	-	-	-	0.03	-	China
	4128/2015	PASSION FRUIT	-	-	-	-	-	-	-	-	0.03	0.02	-	-	-	-	-	-	-	-	-	Colombia
	2525/2015	POMEGRANATES	-	-	-	-	-	-	-	0.01	-	-	-	-	-	-	-	-	0.01	-	-	Turkey
	0194/2015	POMEGRANATES	-	-	0.02	-	-	-	-	-	-	-	-	0.5	-	-	-	-	-	-	-	USA
(4)	1272/2015	PAPAYA					0.02	-					0.07	-		0.08				0.05	_	Brazil
(4)	1973/2015	ASIAN PEAR	-	-	-	-	0.02	-	- 0.09	-	-	-	0.07	-	-	0.00	-	-	-	0.03	-	China
	1961/2015	PASSION FRUIT	-	- 0.2	-	-	0.03	-	0.09	-	-	- 0.2	0.00	-	-	-	-	- 0.04	-	0.09	- 0.03	Colombia
	1901/2015	FASSION FRUIT	-	0.2	-	-	-	-	-	-	-	U.Z	-	-	-	-	-	0.04	-	-	0.05	COIOMDIa
(5)	4158/2015	ΡΑΡΑΥΑ	-	-	-	-	-	0.06	-	-	-	-	0.1	-	-	-	-	0.1	0.02	-	0.04	Brazil
(5)	4158/2015	PAPAYA	-	-	-	-	-	0.06	-	-	-	-	0.1	-	-	-	-	0.1	0.02	-	(0.04

Residues (1-5 compounds) were found in 23 of the 36 samples as follows:

The abbreviations used for the pesticide names are as follows:

ACET	acetamiprid	AZOX	azoxystrobin	BACSM	BAC (sum)
BUF	buprofezin	CBZ	carbendazim	CLN	chlorothalonil
CPF	chlorpyrifos	CTH	clothianidin	CYZ	cyromazine
DIFC	difenoconazole	DTC	dithiocarbamates	FLUD	fludioxonil
IMI	imidacloprid	PRZA	prochloraz (parent only)	PRZS	Prochloraz (sum)
TBC	tebuconazole	THMSM	thiamethoxam (sum)	TME	thiophanate-methyl
TRFL	trifloxystrobin				

Table 37c. Residues sought but not found in samples of SPECIALITY FRUIT obtained between January and June 2015

EPTC (0.01)

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

1,2,3,6-tetrahydrophthalimide (0.01)2,4-D (sum) (0.01) 2-phenylphenol (0.01) 3-chloroaniline (0.01) 4,4'dichlorobenzophenone (0.01) abamectin (sum) (0.01) acephate (0.01) acetochlor (0.01) acibenzolar-s-methyl (0.01) aclonifen (0.01) acrinathrin (0.01) alachlor (0.01) aldicarb (sum) (0.01) aldrin and dieldrin (0.01) allethrin (0.01) alpha-HCH (0.01) ametryn (0.01) amitraz (0.01) atraton (0.01) atrazine (0.01) Azaconazole (0.01) azinphos-ethyl (0.01) azinphos-methyl (0.01) benalaxyl (0.01) bendiocarb (0.01) benthiavalicarb (sum) (0.01) beta-HCH (0.01) bifenox (0.01) bifenthrin (0.01) biphenyl (0.01) bitertanol (0.01) boscalid (0.01) bromacil (0.01) bromophos (0.01) bromophos-ethyl (0.01) bromophos-methyl (0.01) bromopropylate (0.01) bromoxynil (0.01) bromuconazole (0.01) bupirimate (0.01) butachlor (0.01) butocarboxim (parent) (0.01) butralin (0.01) cadusafos (0.01) captan (0.01) carbaryl (0.01) carbofuran (sum) (0.01) carbophenothion (0.01) carboxin (0.01) Carfentrazone-ethyl (0.01) chlorantraniliprole (0.01) chlordane (animal products) (0.01) chlordane (sum) (0.01) chlordimeform (0.01) chlorfenapyr (0.01) chlorfenson (0.01)

etaconazole (0.01) ethiofencarb (parent) (0.01) ethion (0.01) ethirimol (0.01) ethofumesate (0.01) ethoprophos (0.01) etofenprox (0.01) etoxazole (0.01) etrimfos (0.01) famoxadone (0.01) fenamidone (0.01) fenamiphos (sum) (0.01) fenarimol (0.01) fenazaguin (0.01) fenbuconazole (0.01) fenchlorphos (sum) (0.01) fenhexamid (0.01) fenitrothion (0.01) fenoxycarb (0.01) fenpiclonil (0.01) fenpropathrin (0.01) fenpropidin (0.01) fenpropimorph (0.01) fenpyroximate (0.01) fenson (0.01) fensulfothion (sum) (0.01) fenthion (partial sum) (0.01) fenvalerate & esfenvalerate (all isomers (0.01) fipronil (sum) (0.01) flamprop-isoproyl (0.01) fluazifop-p-butyl (sum) (0.01) fluazinam (0.01) flubendiamide (0.01) flucythrinate (0.01) flufenacet (0.01) flufenoxuron (0.01) flumetralin (0.01) flumioxazin (0.01) fluopicolide (0.01) fluoxastrobin (0.01) flurochloridone (0.01) flurtamone (0.01) flusilazole (0.01) flutolanil (0.01) flutriafol (0.01) folpet (0.01) fonofos (0.01) formetanate (0.01) formothion (0.01) fosthiazate (0.01) furalaxyl (0.01) furathiocarb (0.01) furmecyclox (0.01) haloxyfop (sum) (0.01) haloxyfop-methyl (0.01)

nitrothal-isopropyl (0.01) Norflurazon (0.01) Novaluron (0.01) nuarimol (0.01) octhilinone (0.01) ofurace (0.01) oxadiazon (0.01) oxadixyl (0.01) oxamyl (0.01) oxydemeton-methyl (sum) (0.01) oxyfluorfen (0.01) paclobutrazol (0.01) Paraoxon-ethyl (0.01) parathion (0.01) parathion-ethyl (sum) (0.01) parathion-methyl (sum) (0.01) penconazole (0.01) pencycuron (0.01) pendimethalin (0.01) pentanochlor (0.01) permethrin (0.01) Pethoxamid (0.01) phenmedipham (0.01) phenothrin (0.01) phenthoate (0.01) phorate (partial sum) (0.01) phosalone (0.01) Phosfolan (0.01) phosmet (sum) (0.01) phosphamidon (0.01) phoxim (0.01) picoxystrobin (0.01) pirimicarb (sum) (0.01) pirimiphos-ethyl (0.01) pirimiphos-methyl (0.01) pretilachlor (0.01) procymidone (0.01) profenofos (0.01) promecarb (0.01) prometon (0.01) prometryn (0.01) propachlor (0.01) propamocarb (0.01) propanil (0.01) propaguizafop (0.01) propargite (0.01) propazine (0.01) propetamphos (0.01) propham (0.01) propiconazole (0.01) propoxur (0.01) propyzamide (0.01) proquinazid (0.01) prosulfocarb (0.01) prothioconazole (0.01) prothiofos (0.01)

chlorfenvinphos (0.01) chloridazon (0.01) chlormephos (0.01) chlorotoluron (0.01) chlorpropham (sum) (0.01) chlorpyrifos-methyl (0.01) chlorthal-dimethyl (0.01) chlorthion (0.01) chlorthiophos (0.01) chlortoluron (0.01) chlozolinate (0.01) clodinafop-propargyl (0.01) clofentezine (0.01) clomazone (0.01) cloquintocet-mexyl (0.01) coumaphos (0.01) crufomate (0.01) cyanazine (0.01) cyanophenphos (0.01) cyazofamid (0.01) cyflufenamid (0.01) cyfluthrin (0.01) cymoxanil (0.01) cypermethrin (0.01) cyproconazole (0.01) cyprodinil (0.01) DDAC (sum) (0.01) DDT (sum) (0.01) DDT sum alternate (0.01) deltamethrin (0.01) demeton-S-methyl (0.01) desmetryn (0.01) diafenthiuron (0.01) dialifos (0.01) diazinon (0.01) dichlobenil (0.01) dichlofenthion (0.01) dichlofluanid (0.01) dichlofluanid and DMSA (0.01) dichlorvos (0.01) diclobutrazol (0.01) dicloran (0.01) dicofol (sum) (0.01) dicrotophos (0.01) diethofencarb (0.01) diflubenzuron (0.01) diflufenican (0.01) dimethenamid (0.01) dimethoate (sum) (0.01) dimethomorph (0.01) dimethylvinphos (0.01) dimoxystrobin (0.01) diniconazole (0.01) dioxabenzophos (0.01) dioxathion (0.01) diphenamid (0.01) diphenylamine (0.01) disulfoton (sum) (0.01) diuron (0.01) edifenphos (0.01) emamectin benzoate (0.01) endosulfan (sum) (0.01)

Heptachlor (sum) (0.01) heptenophos (0.01) hexachlorobenzene (0.01) hexachlorocyclohexane (sum) (0.01)hexaconazole (0.01) hexaflumuron (0.01) hexazinone (0.01) hexythiazox (0.01) imazalil (0.01) indoxacarb (0.01) iodofenphos (0.01) ioxynil (0.01) iprodione (0.01) iprovalicarb (0.01) isazophos (0.01) isobenzan (0.01) isocarbophos (0.01) isodrin (0.01) isofenphos (0.01) isofenphos-methyl (0.01) isoprocarb (0.01) isoprothiolane (0.01) isoproturon (0.01) isoxaben (0.01) kresoxim-methyl (0.01) lambda-cyhalothrin (0.01) lenacil (0.01) leptophos (0.01) lindane (0.01) linuron (0.01)lufenuron (0.01) malathion (0.01) mandipropamid (0.01) MCPA (sum) (0.01) MCPA-thioethyl (0.01) mecarbam (0.01) mepanipyrim (sum) (0.01) mephosfolan (0.01) mepronil (0.01) metaflumizone (0.01) metalaxyl (0.01) metamitron (0.01) metazachlor (0.01) metconazole (0.01) methacrifos (0.01) methamidophos (0.01) methidathion (0.01) methiocarb (sum) (0.01) methomyl (sum) (0.01) methoxychlor (0.01) methoxyfenozide (0.01) metolachlor (0.01) metolcarb (0.01) metoxuron (0.01) metrafenone (0.01) metribuzin (0.01) mevinphos (0.01) molinate (0.01) monocrotophos (0.01) Monuron (0.01) myclobutanil (0.01) napropamide (0.01)

pymetrozine (0.01) pyraclostrobin (0.01) Pyraflufen-ethyl (0.01) pyrazophos (0.01) pyrethrins (0.01) pyridaben (0.01) pyridalyl (0.01) pyridaphenthion (0.01) pyridate (0.01) pyrifenox (0.01) pyrimethanil (0.01) pyrimidifen (0.01) pyriproxifen (0.01) quinalphos (0.01) quinomethionate (0.01) quinoxyfen (0.01) quintozene (sum) (0.01) quizalfop-ethyl (0.01) rotenone (0.01) secbumeton (0.01) silafluofen (0.01) simazine (0.01) spinetoram (0.01) spinosad (0.01) spirodiclofen (0.01) spiromesifen (0.01) spiroxamine (0.01) sulfallate (0.01) sulfentrazone (0.01) sulfotep (0.01) sulprofos (0.01) tau-fluvalinate (0.01) tebufenozide (0.01) tebufenpyrad (0.01) tecnazene (0.01) teflubenzuron (0.01) tefluthrin (0.01) Temephos (0.01) terbufos (0.01) Terbufos (sum not definiton) (0.01)terbumeton (0.01) tetrachlorvinphos (0.01) tetraconazole (0.01) tetradifon (0.01) tetramethrin (0.01) tetrasul (0.01) thiabendazole (0.01) thiacloprid (0.01) thiobencarb (0.01) thiometon (0.01)tolclofos-methyl (0.01) tolylfluanid (sum) (0.01) triadimefon & triadimenol (0.01) triallate (0.01) triazophos (0.01) trichlorfon (0.01) tricyclazole (0.01) trietazine (0.01) triflumuron (0.01) trifluralin (0.01) triforine (0.01) triticonazole (0.01)

endrin (0.01) EPN (0.01) epoxiconazole (0.01)

nitenpyram (0.01) nitrofen (0.01) vinclozolin (sum) (0.01) zoxamide (0.01)

Table 38a.Residues detected in retail samples of TEA purchased between January and
June 2015

Commodity/Pesticide	Concentration range (mg/kg)	Number of samples in range
TEA, UK: 24 samples analys	sed	
None found	-	24
TEA, Imported (Non-EC): 25	samples analysed	
bifenthrin	<0.05 (i.e. not found)	22
(MRL = 5)	0.05 - 0.09	3
deltamethrin	<0.05 (i.e. not found)	22
(MRL = 5)	0.05 - 0.08	3
fenpropathrin	<0.05 (i.e. not found)	22
(MRL = 2)	0.08 - 0.1	3
lambda-cyhalothrin	<0.05 (i.e. not found)	24
(MRL = 1)	0.05	1

Imported (Non-EC) samples of tea were from China (1), India (4), Kenya (5), South Africa (10), Sri Lanka (5). UK samples of tea (24).

Residues were distributed by country of origin, as follows:

bifenthrin	India (3)
deltamethrin	India (3)
fenpropathrin	India (3)
lambda-cyhalothrin	India (1)

No residues were found in any of the UK samples No residues were found in 22 of the 25 Imported (Non-EC) samples

Table 38b.Residues detected in retail samples of TEA purchased between January and
June 2015

Number of residues	Sample ID	Res BIF		ound (ma FNPP		Country of origin
(3)	0898/2015 1675/2015			-	-	India India
(4)	0024/2015	0.09	0.08	0.08	0.05	India

Residues (3-4 compounds) were found in 3 of the 49 samples as follows:

The abbreviations used for the pesticide names are as follows:

BIF	bifenthrin	DEL	deltamethrin	FNPP	fenpropathrin
LCY	lambda-cyhalothrin				

Table 38c. Residues sought but not found in retail samples of TEA purchased between January and June 2015

The following pesticide(s) were actively sought but not found at or above their reporting limits (in parentheses in mg/kg):

2-phenylphenol (0.05) acetamiprid (0.05) acetochlor (0.05) acibenzolar-s-methyl (0.05) alachlor (0.05) aldrin and dieldrin (0.05) alpha-HCH (0.05) atrazine (0.05) azinphos-ethyl (0.05) azinphos-methyl (0.05) azoxystrobin (0.05) benalaxyl (0.05) bendiocarb (0.05) beta-HCH (0.05) bifenox (0.05) biphenyl (0.05) bitertanol (0.05) boscalid (0.05) bromophos-ethyl (0.05) bromophos-methyl (0.05) bromopropylate (0.05) bromuconazole (0.05) bupirimate (0.05) buprofezin (0.05) butachlor (0.05) butralin (0.05) cadusafos (0.05) carbaryl (0.05) carbendazim (0.02) carbofuran (sum) (0.05) carbophenothion (0.05) chlorbufam (0.05) chlordane (sum) (0.05) chlorfenapyr (0.05) chlorfenson (0.05) chlorfenvinphos (0.05) chlorobenzilate (0.05) chlorotoluron (0.05) chlorpyrifos (0.05) chlorpyrifos-methyl (0.05) chlorthal-dimethyl (0.05) chlorthion (0.05) chlorthiophos (0.05) chlozolinate (0.05) clofentezine (0.05) clomazone (0.05) coumaphos (0.05) crufomate (0.05) cyanophenphos (0.05) cycloate (0.05) cyflufenamid (0.05) cyfluthrin (0.05) cypermethrin (0.05) cyproconazole (0.05) cyprodinil (0.05) DDT (sum) (0.05)

EPN (0.05) epoxiconazole (0.05) ethion (0.05) ethofumesate (0.05) ethoprophos (0.05) etofenprox (0.05) etrimfos (0.05) famoxadone (0.05) fenamidone (0.05) fenamiphos (sum) (0.05) fenarimol (0.05) fenazaguin (0.05) fenbuconazole (0.05) fenitrothion (0.05) fenoxycarb (0.05) fenpropimorph (0.05) fenpyroximate (0.05) fenson (0.05) fenthion (partial sum) (0.05) fenvalerate & esfenvalerate (SS & RR Iso (0.05) fluazinam (0.05) flucythrinate (0.05) fludioxonil (0.05) flufenacet (0.05) flufenoxuron (0.05) fluopicolide (0.05) fluoxastrobin (0.05) fluquinconazole (0.05) flurochloridone (0.05) flusilazole (0.05) flutolanil (0.05) flutriafol (0.05) fluxapyroxad (0.05) folpet (0.05) fonofos (0.05) formothion (0.05) fosthiazate (0.05) furalaxvl (0.05) furathiocarb (0.05) haloxyfop-methyl (0.05) Heptachlor (sum) (0.05) heptenophos (0.05) hexachlorobenzene (0.05) hexachlorocyclohexane (sum) (0.05)hexaconazole (0.05) hexazinone (0.05) hexythiazox (0.05) imazalil (0.02) imidacloprid (0.05) indoxacarb (0.05) iprodione (0.05) iprovalicarb (0.05) isazophos (0.05) isobenzan (0.05) isocarbophos (0.05) isodrin (0.05)

mevinphos (0.05) monocrotophos (0.05) myclobutanil (0.05) napropamide (0.05) nitrofen (0.05) nitrothal-isopropyl (0.05) nuarimol (0.05) ofurace (0.05) oxadiazon (0.05) oxadixyl (0.05) oxamyl (0.05) oxyfluorfen (0.05) paclobutrazol (0.05) parathion (0.05) penconazole (0.05) pencycuron (0.05) pendimethalin (0.05) pentanochlor (0.05) permethrin (0.05) phenothrin (0.05) phenthoate (0.05) phosalone (0.05) phosphamidon (0.05) picolinafen (0.05) picoxystrobin (0.05) piperonvl butoxide (0.05) pirimiphos-ethyl (0.05) pirimiphos-methyl (0.05) prochloraz (parent only) (0.05) procymidone (0.05) profenofos (0.05) propachlor (0.05) propargite (0.05) propazine (0.05) propetamphos (0.05) propham (0.05) propiconazole (0.05) propoxur (0.05) propyzamide (0.05) prothioconazole (0.05) prothiofos (0.05) pyraclostrobin (0.05) pyrazophos (0.05) pyridaben (0.05) pyridaphenthion (0.05) pyrifenox (0.05) pyrimethanil (0.05) pyriproxifen (0.05) quinalphos (0.05) quinoxyfen (0.05) quintozene (sum) (0.05) rotenone (0.05) simazine (0.05) spinosad (0.02)

spirodiclofen (0.05)

spiromesifen (0.05)

dialifos (0.05) diazinon (0.05) dichlobenil (0.05) dichlofenthion (0.05) dichlorvos (0.05) diclobutrazol (0.05) dicloran (0.05) dicofol (sum) (0.05) dicrotophos (0.05) diethofencarb (0.05) difenoconazole (0.05) diflubenzuron (0.05) diflufenican (0.05) dimethenamid (0.05) dimethoate (sum) (0.05) dimethomorph (0.05) dimethylvinphos (0.05) dimoxystrobin (0.05) diniconazole (0.05) dioxabenzophos (0.05) diphenylamine (0.05) disulfoton (sum) (0.05) ditalimfos (0.05) diuron (0.05) edifenphos (0.05) endosulfan (sum) (0.05) endrin (0.05)

isofenphos (0.05) isofenphos-methyl (0.05) isoprocarb (0.05) isoprothiolane (0.05) isoproturon (0.05) jodfenphos (0.05) kresoxim-methyl (0.05) lenacil (0.05) leptophos (0.05) lindane (0.05) linuron (0.05) malathion (0.05) mecarbam (0.05) mepronil (0.05) metalaxyl (0.05) metazachlor (0.05) metconazole (0.05) methabenzthiazuron (0.02) methacrifos (0.05) methidathion (0.05) methomyl (sum) (0.05) methoxychlor (0.05) metobromuron (0.05) metolachlor (0.05) metolcarb (0.05) metoxuron (0.05) metrafenone (0.05)

sulfotep (0.05) tau-fluvalinate (0.05) tebuconazole (0.05) tebufenpyrad (0.05) tecnazene (0.05) tefluthrin (0.05) terbacil (0.05) terbufos (0.05) Terbufos (sum not definition) (0.05) terbuthylazine (0.05) terbutryn (0.05) tetrachlorvinphos (0.05) tetraconazole (0.05) tetradifon (0.05) tetramethrin (0.05) tetrasul (0.05) thiabendazole (0.02) thiacloprid (0.05) tolclofos-methyl (0.05) tolfenpyrad (0.05) triallate (0.05) triazophos (0.05) trietazine (0.05) trifloxystrobin (0.05) trifluralin (0.05) triticonazole (0.05) zoxamide (0.05)

Action taken by CRD

CRD wrote to:

- the suppliers of all samples containing residues above the MRL
- the authorities of the exporting countries of all samples containing residues above the MRL
- The suppliers of UK samples that contained residues that were not approved for that crop.
- the Organics branch of Defra about samples that were labelled as organic and contained residues of pesticides not approved for organic production
- The suppliers and certification organisation of all organic samples containing residues of pesticides not approved for organic production.

Recipients of the letters are given 4 weeks to provide a statement for inclusion in the report. The Expert Committee on Pesticide Residues in Food reviews any replies received.

Sample numbers 2869/2015 and 2771/2015: Prepared mango chuncks with residue of BAC above the MRL

Response from IPL

Please find a note below which I would like to have published as an IPL response to samples 2869/2015 and 2771/2015– BAC in prepared Mango Chunks

We are concerned with the residue detection of BAC in Asda Mango Chunks prepared in the UK.

We have undertaken a detailed investigation which showed the same issue highlighted in the May sample (PRiF ref 2681/2015). As part of our traceability audit involving the May sample the cleaning chemicals at all stages of production and manufacture were identified and examined. We identified the use of BAC within the manufacturing environment of the manufacturer concerned.

Due to changes in our procurement of prepared fruit, we are no longer sourcing product from this manufacturer. Furthermore the manufacturer is not in operation any longer preventing us from undertaking any further investigation or action.

I would like to emphasise that ASDA is committed to selling produce that has been produced in line with good manufacturing, good hygiene practice and pesticide legislation.

Sample number 4024/2015: Chilli Pepper with residue of flonicamid above the MRL Response from Rodanto

As part of Rodanto's Due Diligence systems and ongoing BRC accreditation, routine pesticide screening is high on our agenda. We have tested chilli peppers prior and post your sample and all results have been clear of excess pesticides. We will continue to sample and test and deal with any adverse results in the appropriate manner. Please note that our laboratory is the same as that used by the Chemicals Regulation Directorate (CRD).

Sample number 2972/2015: Blackberries with a residue of acephate above the MRL Response from IPL

Please find a note below which I would like to have published as an IPL response to sample 2972/2015 acephate in blackberries

We are concerned with the residue detection of acephate in Asda Blackberries grown in Mexico.

We have undertaken an investigation with the co-operation of our grower and subsequently arranged a comprehensive sampling plan with the grower to ensure compliance with EU pesticide legislation.

I would like to emphasise that ASDA is committed to selling produce that has been produced in line with good manufacturing, good hygiene practice and pesticide legislation.

Sample number 2660/2015: Frozen blackberries with a residue of dithiocarbamates above the MRL Response from Asda

Please find a note below which I would like to have published as an Asda response to a sample with an exceedance against the MRL(0.1mg/kg) of dithiocarbonate in Freshly Frozen Blackberries, Best Before 18/08/2016.

We have isolated and confirmed that the residue in question came in with a shipment of Freshly Frozen Blackberries sourced from Serbia.

We have completed a thorough investigation into root cause of this exceedance.

- The UK agent has also sent a sample of Best Before 21/01/2017, date code only available with the result of 'no residue level detected above the limit of detection'.
- The supplier's agronomist is to re-train hygiene practices throughout the harvest process and focus on bins used for finished product transportation to prevent potential residue carryover.

I would like to emphasise that ASDA is committed to selling produce that has been produced in line with good manufacturing, good hygiene practice and pesticide legislation.

Sample number 1737/2015: Raisins with a residue of chlormequat above the MRL. Response from IPL

Please find a note below which I would like to have published as an IPL response to sample 1737/2015 – chlormequat in raisins

We are concerned with the residue detection of chlormequat in Asda Raisins packed in Turkey.

We have undertaken a detailed investigation with the co-operation of our packer. A rigorous sampling plan has detected levels of chlormequat in less than 8% of samples, all within the current MRL.

We are supporting our supplier with an application to the Turkish authorities to stop the usage of chlormequat.

I would like to emphasise that ASDA is committed to selling produce that has been produced in line with good manufacturing, good hygiene practice and pesticide legislation.

Sample number 1343/2015: Rambutan with a residue of carbendazim above the MRL Response from IPL

Please find a note below which I would like to have published as an IPL response to sample 1343/2015 – Carbendazim in Rambutan

We are concerned with the residue detection of Carbendazim in Asda Rambutan packed in Thailand

We have undertaken a detailed investigation with the co-operation of our packer. We also carried out additional routine sampling in house and can confirm that 100% of our samples returned clear of any residues.

I would like to emphasise that ASDA is committed to selling produce that has been produced in line with good manufacturing, good hygiene practice and pesticide legislation.

Appendix E Pesticides analysed as multi-component analytes and their reporting limits

Why some results cover more than one substance

Both the legal controls and our analytical tests are aimed at checking food for the presence of <u>residues</u> of specific pesticides. Residues are the chemical traces left behind after pesticides are used. In most cases the residue of a pesticide is measured by first identifying the pesticide and then measuring the quantity of that pesticide in the food itself. But for some pesticides the residue remaining in the food is known to be chemically different from the original pesticide and so the laboratory needs to looks for more than one component. There are various reasons why this happens, <u>for example</u>:

- the animal or plant can change the pesticide into related chemicals
- the pesticide can change in the environment into related chemicals
- some pesticides are mixtures of chemicals, so the relevant components of the mixture need to be checked for
- in the laboratory sample preparation and/or analysis may change pesticides into related chemicals
- related chemicals may be pesticides in their own right

The MRL setting process takes account of all these issues. The EU may set a complex residue definition to ensure that the identity and quantity of the residue found is representative of the pesticide present. A complex residue definition may be set where it is necessary for safety reasons or to be able to accurately identify the pesticide residue present in the food. This definition usually includes the actual pesticide, plus other related chemicals. These residues are usually reported together as a "sum". Sometimes different foods need different definitions because different pesticide residues are known to occur in that food. For instances, plants and animals may metabolise a pesticide differently, which forms different residues.

The full definitions of pesticides that we have found in our surveys are described in the table below. If you would like more detail about a particular residue definition, please get in touch. You can email us at prif@hse.gis.gov.uk and other contact details are on the back cover.

Where the detailed individual analysis results tell us something useful, we mention that in our conclusions.

How we calculate sums

Unless the definition says otherwise, the summed result is a simple addition. For individual components that are not detected that result is treated as a zero.

Where a residue definition says "expressed as", that means that the individual component results are adjusted by molecular weight before being added together. The residue definition is set this way so that the final calculated result for the whole definition is an expression of the level of the most toxic component, and so that value can be used directly in consumer risk assessment without further adjustment.

The EU Reference Laboratories for pesticide residues have an e-learning package aimed at analytical chemists on this very technical subject at <u>http://www.eupt.es/e-learning/</u>.

Complex residue definitions used in our reports

There are a large number of pesticides used and types of food in the world. So other complex residue definitions may apply to food/pesticide combinations not yet considered by PRiF. You can look up all the EU MRL definitions for pesticide residues at the European Commission's pesticide database at http://ec.europa.eu/food/plant/pesticides/pes

Short name we use in our reports	Legal residue definition – These definitions apply to all foods unless otherwise stated
2,4-D (sum)	2,4-D (sum of 2,4-D and its esters expressed as 2,4-D)
abamectin (sum)	Abamectin (sum of Avermectin B1a, AvermectinB1b and delta-8,9 isomer of Avermectin B1a)
aldicarb (sum)	Aldicarb (sum of Aldicarb, its sulfoxide and its sulfone, expressed as Aldicarb)
aldrin and dieldrin	Aldrin and Dieldrin (Aldrin and dieldrin combined expressed as dieldrin), aka dieldrin (sum)
amitraz	Amitraz (amitraz including the metabolites containing the 2,4 - dimethylaniline moiety expressed as amitraz)
BAC (sum)	Benzalkonium chloride (mixture of alkylbenzyldimethylammonium chlorides with alkyl chain lengths of C_8 , C_{10} , C_{12} , C_{14} , C_{16} and C_{18})
benthiavalicarb (sum)	Benthiavalicarb (Benthiavalicarb-isopropyl (KIF-230 R-L) and its enantiomer (KIF-230 S-D) and diastereomers (KIF-230 R-L and KIF-230 S-D)
	Sum of bixafen and desmethyl bixafen expressed as bixafen
bixan (animal products)	This definition applies to animal products only Sum of captan and folpet aka captan/folpet
captan and folpet	This definition applies only to pome fruit (fruits such as apples and pears), strawberries, raspberries, currants, tomatoes and beans. For all other foods there are separate MRLs for captan only and for folpet only.
carbendazim (animal products)	Carbendazim and thiophanate-methyl, expressed as carbendazim
Carbendazim (sum)	Carbendazim and benomyl (sum of benomyl and carbendazim expressed as carbendazim)
carbofuran (sum)	Carbofuran (sum of carbofuran and 3-hydroxy-carbofuran expressed as carbofuran)
chlordane (animal	Chlordane (sum of cis- and trans-isomers and oxychlordane expressed as chlordane)
products)	This definition applies to animal products only Chlordane (sum of cis- and trans- isomers)
chlordane (sum)	This definition applies to all foods except animal products Chlorpropham only
chlorpropham (potatoes)	This definition applies only to potatoes Chlorpropham and 4-hydroxychlorpropham-O-sulphonic acid (4-
chlorpropham (sum for animal products)	HSA),expressed as chlorpropham This definition applies only to animal products
	Chlorpropham (Chlorpropham and 3-chloroaniline, expressed as Chlorpropham)
chlorpropham (sum)	This definition applies to all foods except potatoes and animal products

Short name we use in our reports	Legal residue definition – These definitions apply to all foods unless otherwise stated
	Didecyldimethylammonium chloride (mixture of alkyl-quaternary ammonium salts with alkyl chain lengths of C_8 , C_{10} and C_{12})
DDAC (sum)	
DDT (sum)	DDT (sum of p,p'-DDT, o,p'-DDT, p-p'-DDE and p,p'-TDE (DDD) expressed as DDT)
dichlorprop	Sum of Dichlorprop, including dichlorprop-p and its conjugates, expressed as dichlorprop
dicofol (sum)	Dicofol (sum of p, p' and o,p' isomers)
dimethenamid	Dimethenamid–p (Dimethenamid-p including other mixtures of constituent isomers (sum of isomers))
dimethoate (sum)	Dimethoate (sum of dimethoate and omethoate expressed as dimethoate)
disulfoton (sum)	Disulfoton (sum of disulfoton, disulfoton sulfoxide and disulfoton sulfone expressed as disulfoton) Dithiocarbamates are a group of pesticides that are chemically
dithiocarbamates	similar. Testing for them individually in routine analysis is not possible, so MRLs are set for a test for the group.
endosulfan (sum)	Endosulfan (sum of alpha- and beta-isomers and endosulfan- sulphate expresses as endosulfan)
fenamiphos (sum)	Fenamiphos (sum of fenamiphos and its sulphoxide and sulphone expressed as fenamiphos)
fenchlorphos (sum)	Fenchlorphos (sum of fenchlorphos and fenchlorphos oxon expressed as fenchlorphos)
fensulfothion (sum)	Fensulfothion (sum of fensulfothion, its oxygen analogue and their sulfones, expressed as fensulfothion).
fenthion (sum)	Fenthion (fenthion and its oxygen analogue, their sulfoxides and sulfone expressed as parent)
fenvalerate & esfenvalerate (all isomers)	Fenvalerate (any ratio of constituent isomers (RR, SS, RS & SR) including esfenvalerate)
	Sum of fipronil and fipronil-desulfinyl, expressed as fipronil
fipronil (infant food)	This definition applies to foods for babies only
· · · · · ·	Fipronil (sum Fipronil and sulfone metabolite (MB46136) expressed as Fipronil)
fipronil (sum)	This definition applies to all foods except foods for babies Flonicamid (sum of flonicamid, TNFG and TNFA)
flonicamid (sum)	This definition applies to all food except animal prodcuts
fluazifop-p-butyl (sum)	Fluazifop-P-butyl (fluazifop acid (free and conjugate))
haloxyfop (sum)	Haloxyfop including haloxyfop-R (Haloxyfop-R methyl ester, haloxyfop-R and conjugates of haloxyfop-R expressed as haloxyfop-R)
	Sum of heptachlor and trans heptachlor epoxide
Lloptopher (of the N	This definition employ to facely facely the start with
Heptachlor (infant food)	This definition applies to foods for babies only Heptachlor (sum of heptachlor and heptachlor epoxide expressed as heptachlor)
Heptachlor (sum)	This definition applies to all foods except infant foods
· · · · /	· · · · ·

Short name we use in our reports	Legal residue definition – These definitions apply to all foods unless otherwise stated
	Hexachlorocyclohexane (HCH), sum of isomers, except the gamma isomer
hexachlorocyclohexane (sum)	This definition applies to all foods except animal products (For animal products the alpha and beta isomers have separate MRIs)
malathion	Malathion (sum of malathion and malaoxon expressed as malathion)
MCDA (animal	[Residue defintion, animal products] MCPA, MCPB and MCPA thioethyl expressed as MCPA
MCPA (animal prdocuts)	This definition applies to animal products only
	MCPA and MCPB (MCPA, MCPB including their salts, esters and conjugates expressed as MCPA)
MCPA (sum)	This definition applies to all foods except animal prdoucts
mepanipyrim (sum)	Mepanipyrim and its metabolite (2-anilino-4-(2-hydroxypropyl)-6- methylpyrimidine) expressed as mepanipyrim
methiocarb (sum)	Methiocarb (sum of methiocarb and methiocarb sulfoxide and sulfone, expressed as methiocarb)
methomyl (sum)	Sum of methomyl and thiodicarb expressed as methomyl
oxydemeton-methyl (sum)	Oxydemeton-methyl (sum of oxydemeton-methyl and demeton-S- methylsulfone expressed as oxydemeton-methyl)
parathion-methyl (sum)	Parathion-methyl (sum of Parathion-methyl and paraoxon-methyl expressed as Parathion-methyl)
Permethrin	Permethrin (sum of isomers)
phorate (sum)	Phorate (sum of phorate, its oxygen analogue and their sulfones expressed as phorate)
	Phosmet (phosmet and phosmet oxon expressed as phosmet)
phosmet (sum)	This definition applies to all foods except animal products
pirimicarb (sum)	Pirimicarb (sum of Pirimicarb and Desmethyl pirimicarb expressed as Pirimicarb)
	Prothioconazole (sum of prothioconazole-desthio and its glucuronide conjugate, expressed as prothioconazoledesthio)
Prothioconazole (sum)	This definition applies to animal products only Sum of PTU and propineb
PTU & propineb	This definition applies to food for babies only
quintozene (sum)	Quintozene (sum of quintozene and pentachloro-aniline expressed as quintozene)
Prochloraz (sum)	Prochloraz (sum of prochloraz and its metabolites containing the 2,4,6-Trichlorophenol moiety expressed as prochloraz)
	Terbufos (sum of terbufos, its sulfoxide and sulfone
Terbufos (sum)	This definition applies only to foods for babies Thiametoxam (sum of thiametoxam and clothianidin expressed as thiametoxam)
thiamethoxam (sum)	There are also separate clothianidin MRLs
	Tolylfluanid (Sum of tolylfluanid and dimethylaminosulfotoluidide

Short name we use in our reports	Legal residue definition – These definitions apply to all foods unless otherwise stated
triadimefon &	
triadimenol	Triadimefon and triademenol
	Vinclozolin, iprodione, procymidone, sum of compounds and all metabolites containing the 3,5-dichloroaniline moiety expressed as 3,5-dichloroaniline
vinclozolin (animal	
products)	This definition applies to animal products only
	Vinclozolin (sum of vinclozolin and all metabolites containing the
	3,5-dichloraniniline moiety, expressed as vinclozolin)
vinclozolin (sum)	This definition applies to all foods except animal products

Glossary

This is a 'standard' glossary which defines the key terms used in the PRiF reports. Not all the terms listed here are used in this particular report.

Acceptable Daily Intake (ADI): This is the amount of a chemical which can be consumed every day for a lifetime in the practical certainty, on the basis of all known facts, that no harm will result. It is expressed in milligrams of the chemical per kilogram of body weight of the consumer. The starting point for the derivation of the ADI is usually the 'no observed adverse effect level' (NOAEL) that has been observed in animal studies for toxicity. This is then divided by an uncertainty factor (most often 100) to allow for the possibility that animals may be less sensitive than humans and also to account for possible variation in sensitivity between individuals. The studies from which NOAELs and hence ADIs are derived take into account any impurities in the pesticide active substance as manufactured, and also any toxic breakdown products of the pesticide.

Acute Reference Dose (ARfD): The definition of the ARfD is similar to that of the ADI, but it relates to the amount of a chemical that can be taken in at one meal or on one day without appreciable health risk to the consumer. It is normally derived by applying an appropriate uncertainty factor to the lowest NOAEL in studies that assess acute toxicity or developmental toxicity.

As a matter of policy the EU does not use NOAELs from tests that involve deliberate administration of pesticides to humans to determine ADIs and ARfDs. However, where such data have been ethically and scientifically derived some authorities, e.g. the World Health Organization, do consider such data. Where human data are used there is usually less uncertainty in the resulting reference value compared to extrapolating from animal tests to humans, and a lower uncertainty factor (most often 10) is used to account for the variation in sensitivity between individuals.

The initial risk assessments in PRiF reports use the agreed EU reference values. However, where intakes are above the EU value and a reference value based on acceptable human data is available a refined assessment, which is a more appropriate indicator of the risk, is also reported.

Analyte: This is the name for the substance that the PRiF surveys look for and measure if present; it could be a pesticide itself or a product from a pesticide when it is degraded, or metabolised.

COLEACP (Europe-Africa-Caribbean-Pacific Liaison Committee): It aims to promote the competitive export of fresh fruit, vegetables, flowers and ornamental plants from the ACP. Its specialised information and advisory services are open to all ACP companies in the horticultural export sector and are financed by the European Commission. It has two overriding objectives to enable ACP companies to comply with European food safety and traceability requirements and to consolidate the position of small-scale producers in the ACP horticultural export sector.

Cholinergic: In relation to the animal nervous system, processes and structures are cholinergic if they release or use acetylcholine. Acetylcholine is a neurotransmitter, a chemical that carries signals through the nervous system.

Cryogenic Milling: Processing of commodities at very low temperatures can be achieved by milling/grinding pre-frozen samples in the presence of dry ice, a procedure known as 'cryogenic milling'.

Good Agricultural Practice in the Use of Pesticides (GAP): The nationally authorised safe uses of pesticides under conditions necessary for effective and reliable pest control (the way products should be used according to the statutory conditions of approval which are stated on the label). GAP encompasses a range of pesticide applications up to the highest authorised rates of use, applied in a manner which leaves a residue which is the smallest practicable. Authorised safe uses are determined at the national level and include nationally registered recommended uses, which take into account public and occupational health and environmental safety considerations. Actual conditions include any stage in the production, storage, transport, distribution and processing of food commodities and animal feed.

High-level Consumer: A term used in UK risk assessment calculations to describe the amount of food consumed by a person. In line with internationally agreed approaches, the PRiF uses the 97.5th percentile value, which is generally about three times the average amount consumed. This takes account of different eating patterns that may occur throughout the population.

Human Data: See under Acute Reference Dose

Import Tolerance: an MRL set for imported products where the use of the active substance in a plant protection product on a commodity is not authorised in the European Community (EC) or an existing EC MRL is not sufficient to meet the needs of international trade. All import tolerances are assessed for consumer safety.

Imported: The tables in the reports record whether the sample was of UK origin, or imported. This can mean different things depending on the commodity. See also 'Origin'. The PRiF report the country from where the produce has been imported only if this is clear from the packaging or labelling.

JMPR: Joint FAO/WHO Meeting on Pesticide Residues, which conducts scientific evaluations of pesticide residues in food.

Limit of Quantification (LOQ): The limit of quantification is the lowest concentration of a pesticide residue or contaminant that can be routinely identified and quantitatively measured in a specified food, agricultural commodity or animal feed with an acceptable degree of certainty by the method of analysis.

Maximum Residue Level (MRL): The maximum concentration of a pesticide residue (expressed as mg/kg) legally permitted in or on food commodities and animal feeds. MRLs are based on good agricultural practice data and residues in foods derived from commodities that comply with the respective MRLs are intended to be toxicologically acceptable.

MRLs are intended primarily as a check that GAP is being followed and to assist international trade in produce treated with pesticides. **MRLs are not in themselves 'safety limits'**, and exposure to residues in excess of an MRL does not automatically imply a hazard to health.

The MRLs applicable in the UK are now largely set under EC legislation.

Futher information on MRLs can be found at: www.pesticides.gov.uk/guidance/industries/pesticides/topics/food-safety/maximum-residue-levels

Maximum Residue Limits (CODEX or CAC): In cases where there is no UK or EC MRLs, the acceptability of residues may be judged against Codex Maximum Residue Limits. Although not embodied in UK statute, Codex limits are taken as presumptive standards. These limits give an indication of the likely highest residue that should occur in edible crops. These are based on worldwide uses and the residues trials data to support those uses, at the time of evaluation (date of setting the limits is specified and thus the Maximum Residue Limit applicable up to that year, but will not take into account subsequent approved uses.)

There are occasions where the MRL that has been set by Codex may not reflect current UK Good Agricultural Practice (e.g. the Codex MRLs for dithiocarbamates and propamocarb on lettuce). In such circumstances it is possible to exceed the Codex MRL through a UK approved use. This factor needs to be taken into account when assessing results.

Maximum Residue Levels set at the LOD (LOD MRL): For some pesticides and commodities, insufficient trials data are available on which to set a maximum residue level or there may be no use of the pesticide on that crop. In these cases, the MRL may be set at a default level, i.e. at the limit of determination (LOD) where analytical methods can reasonably detect the presence of the pesticide. **These MRLs are not based on Good Agricultural Practice (GAP).**

MRL exceedances: When a residue is found at a level higher than that set for the MRL.

MRL Exceedances and Relationship with the Acceptable Daily Intake (ADI): Before permitting any use of a pesticide, a detailed assessment is made to ensure that residues in foods derived from commodities comply with MRLs and will not give rise to unacceptable risks to consumers. MRLs do take account of consumer safety aspects and, in effect, are set at levels below safety limits. However, MRLs must not be confused with safety limits, which are expressed in terms of the acceptable daily intake (ADI) of a particular pesticide residue from all sources. The ADI (expressed as mg/kg bw/day) is the amount of chemical that can be consumed every day of an individual's entire lifetime in the practical certainty, on the basis of all known facts, that no harm will result. See ADI for further information.

Whenever unexpectedly high or unusual residues occur during monitoring, the risk to consumers, from exposure to residues at the highest levels found, is assessed by comparison of predicted intakes with the ADI or ARfD as appropriate.

No MRL: For certain pesticides an MRL may not have been set.

UKT MRL: For certain pesticide a temporary national MRL has been set. UKT MRLs are worked out by CRD. The level indicates the amount of residue expected when the pesticide is applied in accordance with good agricultural practice (GAP). The UK has a number of UKT MRLs, these take precedence over provisional EC levels.

Extraneous Residue Limit (ERL): An ERL refers to a pesticide residue or a contaminant arising from environmental sources (including former agricultural uses) other than the use of a pesticide or a contaminant substance directly or indirectly on the commodity. It is the maximum concentration of a pesticide residue or contaminant that is recommended by the Codex Alimentarius Commission (CAC) to be legally permitted or recognised as acceptable in or on a food, agricultural commodity or animal feed.

Metabolite: A degradation or conversion product from a pesticide when it is metabolised.

Multiple Residues: In this report this term is used to describe when more than one pesticide is found in an individual food sample. It may have arisen because the crop was treated at different times with pesticides applied singularly, or when pesticides are applied as mixtures (several pesticides mixed in the spray tank at the same time) or the marketed pesticide product contains more than one pesticide or any combination of these three situations. Mixtures may be used in response to specific pest pressures and also as part of strategies to minimise pesticide resistance building up on pest populations.

NEDI: National Estimate of Daily Intake. An estimate of intake of pesticide in the diet over the long-term to compare to the ADI. The NEDI is based on median or mean residue levels and a high level consumption (97.5th percentile value) for the daily amounts of the food item consumed over the long term. For further details on the calculation of NEDIs please refer to section 3 of the data requirements handbook: https://www.pesticides.gov.uk/guidance/industries/pesticides/topics/pesticide-approvals/pesticides-registration/applicant-guide/the-applicant-guide-contents.

NESTI: National Estimate of Short Term Intake. An estimate of peak intake of pesticide in the diet to compare to the ARfD. The NESTI is based on the highest residue found multiplied by a variability factor (see glossary description) and a high level consumption (97.5th percentile value) for the amount of the food item consumed over a single day. For further details on the calculation of NESTIs please refer to section 3 of the data requirements handbook: www.pesticides-registration/applicant-guide/the-applicant-guide-contents.

Neurotoxicity: Neurotoxicity is the effect of substances (called neurotoxins) which alter the normal working of an animal's neverous ystems and/or damage the nervous tissue.

No Observed Adverse Effect Level (NOAEL): The greatest concentration or amount of a substance, found by experiment or observation, which causes no detectable adverse alteration of morphology, functional capacity, growth, development or life span of the target organism under defined conditions of exposure.

Origin: The brand name annex reports the origins of the samples tested. This can mean different things depending on the commodity. For example, butter is often labelled as 'UK origin'; however, the majority of it comes in bulk from New Zealand and is split into smaller blocks and packaged in the UK. Lettuce is a fresh produce and 'UK origin' usually means that it has been grown and packaged in the UK. Processed commodities such as cereal bars often contain multiple raw ingredients, each of which may come from a different source/origin. Therefore, the origin of the produce usually reflects the place where it was manufactured. The PRiF report the origin as stated on the packaging or labelling of the commodity concerned, unless other more accurate information is available to indicate that the origin is from elsewhere. Some products are listed as 'unknown origin' because the labelling does not give this information.

Parent: The chemical form of a pesticide as applied to plants, as opposed to metabolites and breakdown products.

Percentile: A percentile is a value that divides a sample of measurements at a specific point when they are listed in ascending order of magnitude. For example, the 97.5th percentile from a food consumption survey is a value that is equal to or more than 97.5% of the measurements and equal to or less than 2.5% of the measurements. So in a sample of 40 daily food consumption values, the 97.5th percentile is equal to or more than 39 of the measurements. Such high percentile estimates of food consumption are used in risk assessments as they are more protective than using average consumption levels.

Permitted Level (PL): The permitted levels (expressed as mg/kg), in specific commodities, of some substances which can be classified as pesticides but are controlled under the Miscellaneous Food Additives Regulations 1995 (S.I. 1995 No. 3187).

Pesticide: A pesticide is any substance, preparation or organism prepared or used for destroying any pest. The majority of pesticides sought by the PRiF in its monitoring are those used to control pests in agricultural crops, although non-agricultural products may be included where there is a specific reason for doing so, e.g. where there are implications in terms of possible intakes of residues.

Probabilistic Modelling: The usual estimates of consumer exposure use single high values for both consumption amounts and residue levels. Whilst these are based on realistic UK dietary survey data and residue levels, they tend to overestimate most representative intakes. This is because they do not take into account actual variations in both amounts consumed and residue levels. Probabilistic modelling is a technique that considers all the possible different combinations of consumption and residue levels. This provides information on the probability of particular intakes occurring.

Rapid Alert System for Food and Feed (RASFF): The European Commission operates an EU rapid alert system for food, which was set up in 1992. This provides the competent authorities in the Member States of the European Union with the means of notifying cases where high residues of pesticides have been found in imported samples. Since its introduction this system has proved a successful method for disseminating information between Members States allowing swift action where necessary. CRD notify the Food Standards Agency of any residues where the predicted intakes are above the ARfD. RASFFs are only raised when a potential consumer risk has been identified. In general, for intakes exceeding the ARfD by more than 1.1 times, the FSA will raise a RASFF. If a significant consumer health concern has been identified, then the product will be withdrawn/recalled and the FSA will also issue a food alert.

Relationship between GAP and MRLs: The MRL can be defined as the maximum concentration of a pesticide residue (expressed as mg/kg) likely to occur in or on food commodities and animal feeds, after the use of the pesticide according to the GAP.

Reporting Limit: The reporting limit is the lowest calibrated level employed during analysis to detect residues. The reporting limit may vary slightly from laboratory to laboratory depending on the equipment available and operating procedures used.

'None were detected above the Set RL': This term is used in the Brand Name Annex, where no residues were found above their reporting limit.

Residue: Residues may be present in vegetable and animal products following the application(s) of a pesticide(s). They may not only include the pesticide that was applied but other degradation or reaction products and metabolites that may be of toxicological significance. The levels or amounts of residues present are expressed in milligrams of the chemical in a kilogram of crop/food/commodity (mg/kg), or parts per million.

Risk Assessment: A risk assessment is carried out when residues are found in foods to determine whether, at the levels found, they present a concern for consumer health or not. Consumer risk assessments are routinely conducted as part of the approval process for pesticides and are based on residue trials. Approval of a pesticide is only recommended when the consumer risk is acceptable.

Safety Factor: Values used in extrapolation from experimental studies in animals (usually 100) or humans (usually 10) to the population: for PRiF assessments this represents a value by which the NOAEL is divided to derive an ADI or ARfD. The value depends on the nature of the effect, the dose-response relationship, and the quality of the toxicological information available. The use of such a factor accounts for possible differences in susceptibility between the animal species tested and humans, and for variation between different individuals in the population. The terms 'uncertainty factor' and 'assessment factor' are also sometimes used for this factor; the PRiF will use 'safety factor'.

Sample: The nature of all samples is as designated in the EC's 'sampling' Directive – 2002/63/EC. Examples are: apple – at least 10 apples weighing at least 1 kg; grapes – at least 5 bunches, weighing at least 2 kg.

Specific Off-Label Approval (SOLA): For many reasons, label recommendations of approved pesticides do not cover the control of every problem which may arise. This is particularly true for crops that are grown on a comparatively small scale in the UK as well as for sporadic pests and diseases. It is for this reason that the extrapolations presented in the Long Term Arrangements for Extension of Use have been developed. If these do not address particular needs growers or their representatives may apply to CRD for a specific off-label approval (SOLA).

Technical Exceedances: When an MRL has been set at the LOD because there have been no data to support a higher level. In the context of this report, 'technical exceedances' always relate to produce from third countries.

Variability Factor: A value that describes the variation in residue levels between the highest unit level and the average level in samples made up of many units. Internationally this is agreed to be the 97.5th percentile unit residue level divided by the average of the sum. The variability factor multiplied by the measured residue level from a composite sample (i.e. a sample made up by mixing several units before analysis) gives an estimate of the likely higher residue levels that may have occurred in individual units. These estimated higher levels are used in short-term risk assessments involving fruit and vegetables where consumers eat only a portion of a single item, e.g. melon, or a small number of units e.g. apples and potatoes.

Ware: Ware potatoes, sometimes referred to as main crop potatoes, are harvested between August and November, and are available throughout the period August to June because they are stored under controlled temperature after October.

Quarter 2 2014

Spring greens & kale

Tebuconazole: Sample number 0517/2014

We passed details of a sample of kale from the UK that contained tebuconazole to CRD. CRD's enquiries are not yet complete; an update will appear in a future report

Quarter 4 2014

Lettuce

Oxadixyl: Sample number 0248/2014

We passed a sample of lettuce from the UK that contained oxadixyl to CRD. CRD's enquiries are not yet complete; an update will appear in a future report.

Mushrooms

Bendiocarb: Sample number 2528/2014

We passed a sample of mushrooms from the UK that contained bendiocarb to CRD. CRD's enquiries are not yet complete; an update will appear in a future report.

Pumpkin and squash

Aldrin & dieldrin: Sample number 0778/2014

We passed a sample of pumpkin from the UK that contained dieldrin to CRD. CRD's investigation concluded that the residue was due to historic use.

Chlorothalonil: Sample number 3952/2014

We passed a sample of butternut squash from the UK that contained chlorothalonil to CRD. CRD's enquiries are not yet complete; an update will appear in a future report.

Chlorothalonil and famoxadone: Sample number 1577/2014

We passed a sample of butternut squash from the UK that contained chlorothalonil and famoxadone to CRD. CRD's enquiries are not yet complete; an update will appear in a future report.

Qua	arter 3 of 2015 will look at residu	ies in:
Apples	Aubergine	Banana
Bean sprouts	Beans with pods	Beef
Berries	Bread	Broccoli
Brussels sprouts	Butter	Celery
Cheese	Crisps	Eggs
Ginger	Grapes	Infant food (cereal based)
Lettuce	Mango	Melon
Milk	Okra	Olive oil
Orange juice	Pears	Peas without pods
Peppers	Pineapple	Plantain
Potatoes	Prepared fresh fruit	Venison

For further details on information contained in this report, previous surveys or information concerning pesticide residues in food

Please contact:

Expert Committee on Pesticide Residues in Food Chemicals Regulation Directorate Mallard House Kings Pool Peasholme Green York YO1 7PX

> Tel: 01904 455756 prif@hse.gsi.gov.uk

Or visit our website at:

www.pesticides.gov.uk/guidance/industries/pesticides/advisory-groups/PRiF