DRAFT REPORT

Capturing the full electricity efficiency potential of the U.K.

July 2012

Draft Report on capturing the full electricity efficiency potential of the UK

This is a draft report still undergoing peer review by the Department of Energy and Climate Change.

In order to assist in this peer review process, the Department would welcome comments before publishing a final report.

Any comments should be directed to <u>Tim.Deverell@decc.gsi.gov.uk</u> by 10th August 2012

The project has been structured in 5 phases

	Define baseline electricity demand for the U.K.	Identify key measures and abatement potential	Estimate abatement potential of current policies	Analyse barriers to additional potential being realised	Identify and analyse design options
	2010 15 20 25 2030	£/TWh	TWh 2030 Cur- Not ad- 2030 de- rent dress- "full mand policy ed poten- "as is"	Index Integration Integration <thintegrate< th=""> <thintegration< th=""> <thinte< th=""><th>velocitization produzitation produzitation produzitation velocitization produzitation produzitation produzitation</th></thinte<></thintegration<></thintegrate<>	velocitization produzitation produzitation produzitation velocitization produzitation produzitation produzitation
Focus	 Project U.K. electricity demand to 2030 using DECC model Define and analyse impact of potential "game changing" scenarios 	 Identify key measures to reduce energy demand across residential, commercial and industrial sectors Estimate savings potential and cost of each lever 	 Estimate likely portion of total abatement potential addressed by current policy based on impact assessments and interviews 	 Identify and prioritise barriers pre-venting the realisation of remaining abatement potential using interviews with users, utilities, finance providers and industry bodies 	 Evaluate alternative design options based on existing hypotheses, interviews and inter- national examples
Value to DECC	 Provide a common reference baseline for assessing abatement potential Assessment of 'game changing' scenarios 	• Specific electricity efficiency measures across sectors with quantified potential and costs	• Clear identification of current policy impact at measure level and quantification of remaining electricity reduction potential	• Measure-level under- standing of barriers with high-level electricity reduction potential at stake	 Comprehensive list of design options to address barriers Case studies on four mutually agreed design options

The scope of the project was very focused

Objective of this project

- Review DECC projections and establish baseline of electricity demand projections until 2030 with scenarios on game changers (electric vehicles and electrification of heating)
- Assessment of efficiency measures to decrease electricity use across sectors and end-uses
- High-level estimate of savings potential of current policies and estimate of additional efficiency potential
- Analysis of barriers to implementation and scenario analysis of design options to overcome barriers
- High-level assessment of market development for energy efficiency
- High-level recommendations for a monitoring and verification mechanism based on case-studies of similar mechanisms

Scope

In scope

- Permanent end-use reduction in electricity demand in the U.K.
- Residential, industrial and commercial uses of electricity
- Technical and economic considerations in implementing efficiency solutions
- Alternate mechanisms options to achieve full efficiency potential

Out of scope

- Gas and other fuel use in the U.K.
- Demand shifting away from system stress hours (Demand Response projects)
- Improvements in generation efficiency
- Improvements in transmission and distribution efficiency
- Micro-generation and distributed generation
- Improvements in transportation efficiency (e.g., rail system)
- Political and social aspects of implementing efficiency solutions
- Policy recommendations and changes to EMR

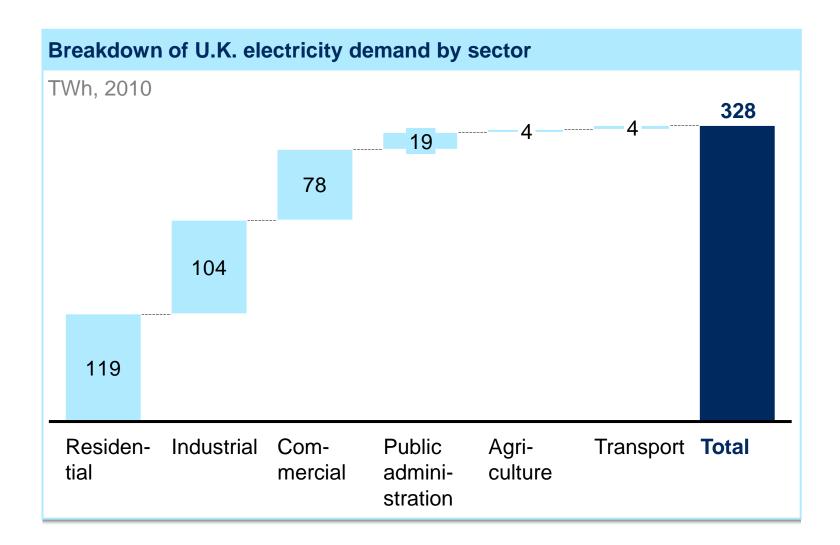
З

Executive summary

- Absent any policy intervention, moderate growth in underlying UK electricity demand is projected to 2030, with two
 electrification scenarios likely to add to that growth
 - Underlying demand is projected to grow to ~411 TWh in 2030 (CAGR ~0.7%), excluding impact of policy
 - Electrification of vehicles and heating could add an additional ~5-15% to electricity demand in 2030
- We have identified ~155 TWh (~40% of total demand) of demand reduction potential in 2030 across all three sectors, of which current policy is estimated to capture ~54 TWh (~35% of total potential)
 - Our analysis has focused on the 3 largest categories of abatement measures per sector which together are estimated to deliver ~127 TWh of savings (~80% of total potential)
 - Residential: top three measures have a potential of ~58 TWh reflecting CFL lighting, appliances and better insulation, of which ~75% is expected to be captured through current / planned policies (primarily Products Policy)
 - Services: top three measures have a potential of ~45 TWh, reflecting better insulation, lighting controls and HVAC, of which ~15% is expected to be captured through current / planned policies
 - Industrial: top three measures have a potential of ~24 TWh, reflecting pump, motor and boiler optimisation, of which ~5% is expected to be captured through current / planned policies
 - Impact of broad policies (e.g. CRC, CCAs) on electricity demand is expected to be incremental to specific policies
 - In 2020, the abatement potential is estimated at ~115 TWh of which ~60% is expected to be captured by current policy
- Through stakeholder interviews, comparisons with other markets and supporting analysis, we have identified 11 key insights on barriers to capturing the remaining demand reduction potential including:
 - Insights generated through this process range from policy to market maturity & costs to segment specific barriers in residential, industrial and commercial
- Design options
 - Design options can be split into 8 categories, each impacting a number of barriers. These range from market based mechanisms (financing, pricing) to mandate-based mechanisms (taxes, supplier obligations)
 - 4 case examples: ISO New England, Public Utility Commission Texas, Connecticut Energy Saving & EPA Portfolio Manager selected for further analysis given market advancement in the US and mechanism applicability in UK EMR context
 - Key lessons and insights from cases indicate that in order for market based incentives to address barriers, they would need to enhance payback periods, overcome agency issues and mitigate uncertainty

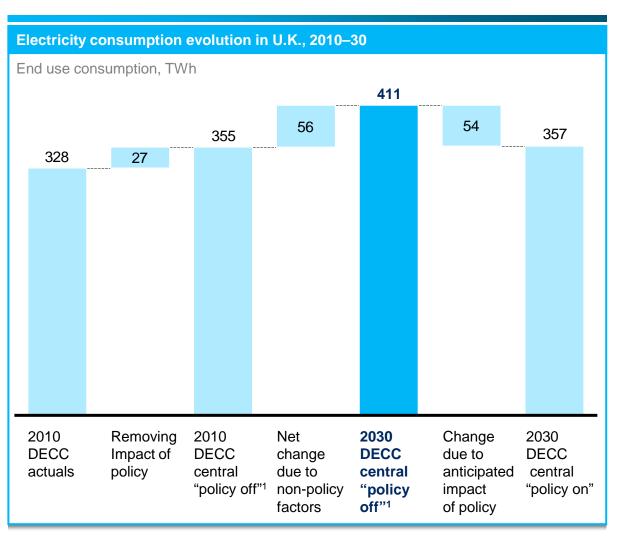
4

DRAFT REPORT


Contents

Baseline electricity demand

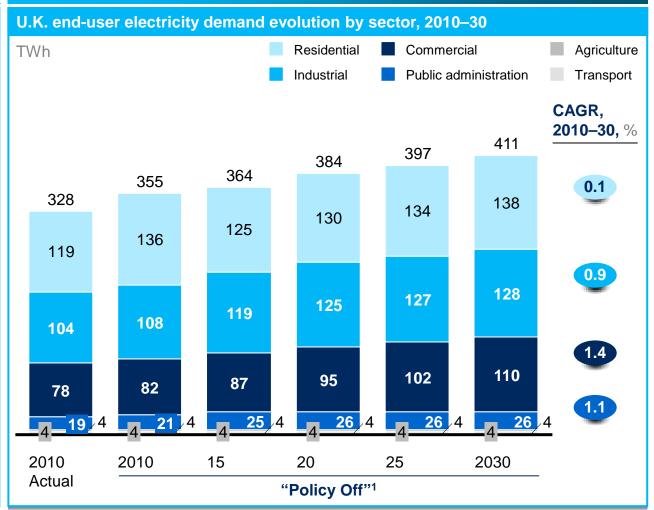
- Full abatement potential
- Impact of current policy
- Barriers to realisation
- Analysis of design options


The U.K.'s 2010 electricity demand was 328 TWh, of which the residential sector was largest

Underlying U.K. electricity demand is projected to be ~411 TWh in 2030, excluding the impact of current or future policy

Projection methodology

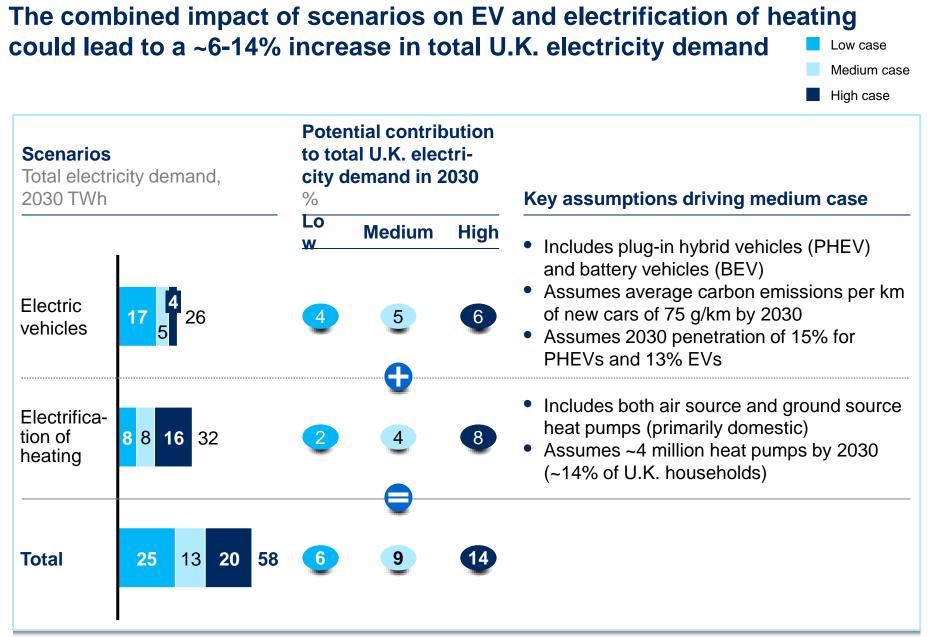
- Historic U.K. electricity use data based on DUKES data published by DECC
- U.K. electricity demand to 2030 based on DECC projections including estimated direct impact of policy due to
 - Increased demand due to demographics and economic growth
 - Reduced demand due to historic trend towards increase in natural energy efficiency
 - Impact of current policy
- Estimated impact of policy on reduction of electricity demand added back to estimate a 2030 'policy off'¹ baseline
- "Policy off" baseline removes the effect of current and future policy impact on consumption projections except for policies which impact the electricity price¹
- The 2030 policy off baseline allows layering of energy efficiency measures to reduce projected demand and estimate full energy abatement potential


1 "Policy off" includes ETS policies and price impact of policies including the cost of recovery for Supplier Obligation abatement, CRC permits and the bill cost of EU ETS

Source: DECC ECUK/DUKES statistics on final and projected consumption of electricity; team analysis

Electricity demand growth is expected to be driven by the commercial and industrial sectors

Methodology and assumptions


- DECC projections based on a historic regression of energy demand against a number of drivers, differentiated by sector and industry
- Key assumptions are in line with IAG guidance and include:
 - GDP growth: 2.3% p.a. from 2010-2030
 - Employment: 0.15% growth p.a. 2010-2030
 - Population growth: 0.52%
 p.a. 2010-2030
 - Electricity prices:
 wholesale and retail
 3.65% p.a. rise 2010-2030
- DECC projections include expected impact of historic trend towards increased energy efficiency

1 Includes policy costs, excludes cost of EU ETS allowances

Source: DECC ECUK/DUKES statistics on final and projected consumption of electricity

DRAFT REPORT

Source: 'Boost! Transforming the powertrain value chain – a portfolio challenge', McKinsey & Company (2011); team analysis

Contents

- Baseline electricity demand
- Full abatement potential
- Impact of current policy
- Barriers to realisation
- Analysis of design options

Methodology behind cost curve analysis

Methodology

- Baseline
 - Based on DECC baseline
 - Selected analysis to split data as per requirements
- Abatement
 - Measures for residential, commercial and public admin sectors based on inputs from
 - Industry experts
 - International research organizations (e.g., IEA, UNEP), academic bodies (e.g., UC Berkeley Program on Housing and Urban Policy)
 - Government bodies (e.g., EPA)
 - Vendor interviews
 - Measures for the industrial sector are based on reports from government bodies (e.g., EPA) and key macro economic inputs
- Macro inputs
 - Discount rate (10.5%, 2010-30) from DECC
 - Electricity cost¹ (6-12p/kWh, 2010-30) from IAG
 - Carbon price² (£13-74/tCO₂e, 2010-30) from IAG

Scope of calculations

- Abatement calculations include
 - Reduction in electricity consumption as a direct influence of abatement measures
 - Based on "natural replacement cycle" i.e., replacement by new technology only when old technology retires, however, in the 2030 timeframe, this impacts potential of measures with a lifetime greater than 20 years
 - Comfort taking benefits in residential building shell measures i.e., a minor share of electricity consumption reduction is utilized for other applications, thus reducing abatement potential

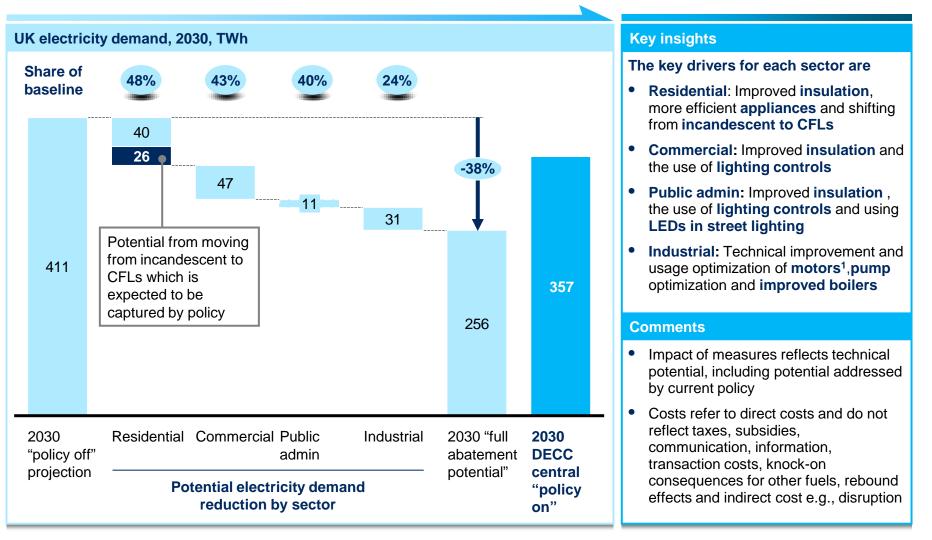
Abatement calculations do not include

- Non-electricity energy reduction which might happen as a side effect of a measure
- Knock on consequences (indirect effects of measures, e.g., increased electricity consumption of HVAC systems due to switch from incandescent bulbs to CFLs)
- Purely behavioral measures (e.g., lesser electricity usage through increased public awareness)

• Cost calculations include

- Investment costs calculated with economic amortization period and capital costs
- Savings from reduced electricity use (for building shell measures also includes savings from reduced gas usage)
- Savings from reduced carbon costs due to mitigation of electricity and gas use
- Comfort taking benefits i.e., a minor share of electricity savings is calculated using the retail price of electricity

Cost calculations do not include


- Subsidies and taxes
- Communication, information and transaction costs
- Knock on consequences for other fuels
- Rebound effect
- Indirect costs, e.g., disruptive costs

1 Refers to production cost of electricity, not retail price

2 Traded price of CO₂ used for CO₂ saved by reduced electricity consumption and social cost of CO₂ used for CO₂ saved by reduced gas consumption

11

If implemented in full, electricity efficiency measures have the potential to reduce UK electricity demand by ~155 TWh per annum by 2030

1 Includes measures for optimization of motor operation, replacement of oversized motors by correct size and use of variable speed drives

Source: Team analysis

Achieving full potential will mean implementing a spectrum of solutions with varying savings and costs

	Residential Commercial Public admin Industria
Lighting Contr Abatement cost Compressed Air Systems, Demand Manager Device £/MWh, 2030 Electronics 600 Electronics 500 Compressed Air Systems, Reduce Pressure Drop at Intake 400 Glass, Capture heat from electrolysis cells Aluminum, Capture heat from electrolysis cells Aluminum, Reduce anode cathode distance 200 Iron and Steel, Improved lubrication system Motors, Replacement By Correctly Sized Motors	Pumps, Reduction of Internal Friction Energy Efficiency Package, New Build Iron and Steel, Direct casting Lighting Controls, Retrofit Energy Efficiency Package, New Build Motors, Replacement by High Efficiency Motors Lighting Controls, Retrofit Iron and Steel, Eccentric bottom tapping on furnace Pumps, Run at BEP Refrigerators
-200 -300 -400 -500	80 85 90 95 100 105 110 15 120 125 130 135 140 145 150 155 160 potential, 2030 Appliances, Refrigerators Appliances, Refrigerators Appliances, Refrigerators HVAC Maintenance Replace Electric Resistance Heating with Electric Heat Pu Motors, Install Soft Starters Low temperature processes, furnace insulation and optimiz HVAC, Retrofit HVAC, Retrofit HVAC, Retrofit HVAC controls Compressed Air Systems, Reduce Intake Temperature HVAC controls, Retrofit HVAC controls, Retrofit Inpact of measures reflects technical potential addressed by current policy Motors, Replacement by VFDs Lighting Controls, New Build Costs refer to direct costs and do not reflect taxes, subsidies, communication, information, transaction costs, knock-on consequences for other fuels, rebound effects and indirect cost e.g., disruption

Note: Key assumptions for 2030: Discount rate: 10.5%, Electricity price: 12p/kWh, CO2 price: £74/tCO2e

Source: Team analysis

In the residential sector, the greatest potential is in switching from incandescent bulbs to CFLs, followed by building shell improvements

RESIDENTIAL SECTOR

			Electric savings TWh, 20	i c	Abaten cost ¹ E/MWh		Cap Billio upto			Share of sector potential Abatement measure description
u	n	Energy Efficiency Package, New Build	3.8			139		29		Improve building design, orientation, insulation and airtightness, improve materials and construction, use high efficiency HVAC and water heating systems
Buildinge	- All number	Building Envelope Package 1, Retrofit	4.1	-42	21			11		Improve building airtightness, weather strip doors and windows, insulate attic and wall cavities, add basic mechanical ventilation system to ensure air quality
α		Building Envelope Package 2, Retrofit	6.8			540		_//	81	Install high efficiency windows, doors; increase outer wall, roof, and basement ceiling insulation; mechanical ventilation with heat recovery
	ş	Replace Electric Resistance Heating with Electric Heat Pump	0.4		-108			0		Replace electric furnace with high efficiency electric heat pump
		HVAC Maintenance	1.5		-105			0		Improve duct insulation to reduce air leakage and proper channeling of heated and cooled air, correct level of refrigerant and new air filters
inces/	onics	Appliances	12.	5	-120			2		Package of certified appliances have a potential to consume ~35% less energy
Appliances/	electronics	Electronics	5.1		-135			0		Use high efficiency consumer electronics that use up to 38% less energy due to reduction in standby losses
		Incandescent to CFL 38%		26.1	-142			2		Replace incandescent bulbs with CFLs
l ichtinc		CFLs to LEDs	5.1		-155		-1			Replace CFLs with LEDs
	-	Current CFLs to LEDs	1.1		-155		0			Replace current share of CFLs with LEDs

1 Includes annualized capital expenses, savings from reduced fuel usage and savings from reduced carbon costs Source: IEA; UNEP; Energy Star; NREL; team analysis

In the commercial sector, owing to the high usage of electricity in HVAC systems, the greatest potential is from building shell improvements

COMMERCIAL SECTOR

		Electricity savings TWh, 2030	Abatement cost £/MWh, 2030	Capex Billion £, upto 2030		Share of sector potential Abatement measure description
Buildings	Energy Efficiency Package, New Build	4.4	-45		10.5	Improve building design, orientation, insulation and airtightness, improve materials and construction, use high efficiency HVAC and water heating systems
Buil	Building Envelope Package, Retrofit	14.3	-180		2.0	Improve building airtightness by sealing areas of potential air leakage, weather strip doors and windows
HVAC	HVAC, Retrofit	2.1	-116		0.4	When HVAC system expires, install highest efficiency system
H	HVAC controls, Retrofit	3.7	-122		0.5	Improve HVAC control systems to adjust for building occupancy and minimize re-cooling of air
Appliances/ electronics	Appliances, Refrigerators	2.1	-105		0.7	Use improved refrigerators - 17% more energy efficient
Applia electr	Electronics	2.6	-137		0.1	Use improved electronics - 48% more energy efficient
	CFLs to LEDs	3.1	-151	-0.3		Replace CFLs with LEDs
ing	T12 to T8/T5	0.8	-338	-2.0		Replace inefficient T12s / T8s with new super T8s and T5s (linear fluorescent lights)
Lighting	Lighting Controls, New Build	5.6	-129		0.5	Install more efficient lighting control systems - dimmable
	Lighting Controls, Retrofit	8.2	-60		6.1	ballasts, photo-sensors to optimize light for occupants in room

1 Includes annualized capital expenses, savings from reduced fuel usage and savings from reduced carbon costs

Source: IEA; UNEP; Energy Star; NREL; team analysis

In the public admin sector, more than 70% of total potential is captured by building shell and lighting improvements

PUBLIC ADMIN SECTOR

		Electricity savings TWh, 2030	Abatement cost £/MWh, 2030	Cape Billion 2030	x ı £, upto	Share of sector potential Abatement measure description
Buildings	Energy Efficiency Package, New Build	0.4	-33		1.1	Improve building design, orientation, insulation and airtightness, improve materials and construction, use high efficiency HVAC and water heating systems
Buil	Building Envelope Package, Retrofit	3.3	-179		0.5	Improve building airtightness by sealing areas of potential air leakage, weather strip doors and windows
ç	HVAC, Retrofit	0.4	-116		0.1	When HVAC system expires, install highest efficiency system. e.g., in universities
HVAC	HVAC controls, Retrofit	0.7	-122		0.1	Improve HVAC control systems to adjust for building occu- pancy and minimize re-cooling of air. e.g., public areas in government offices
nces/ onics	Appliances, Refrigerators	0.5	-105		0.2	Use improved refrigerators - 17% more energy efficient. For e.g., refrigerators in hospitals
Appliances/ electronics	Electronics	0.6	-137		0	Use improved electronics - 48% more energy efficient. For e.g., biomedical devices in hospitals
	CFLs to LEDs	0.6	-152	-0.1		Replace CFLs with LEDs
	T12 to T8/T5	0.2	-338	-0.5		Replace inefficient T12s / T8s with new super T8s and T5s (linear fluorescent lights)
Lighting	Lighting Controls, New Build	0.8	-129		0.1	Install more efficient lighting control systems - dimmable > ballasts, photo-sensors to optimize light for occupants in
5	Lighting Controls, 17%	1.0		9	1.5	room
	Street Lighting, Replace Lamps by LEDs	2.0	-132		0.5	Replace all street lights with LEDs for residential streets as well as motor ways

1 Includes annualized capital expenses, savings from reduced fuel usage and savings from reduced carbon costs

Source: IEA; UNEP; Energy Star; NREL; The Climate Group; team analysis

As the single largest end user of electricity in the industrial sector, motors (incl. pumps) have the highest potential for electricity reduction

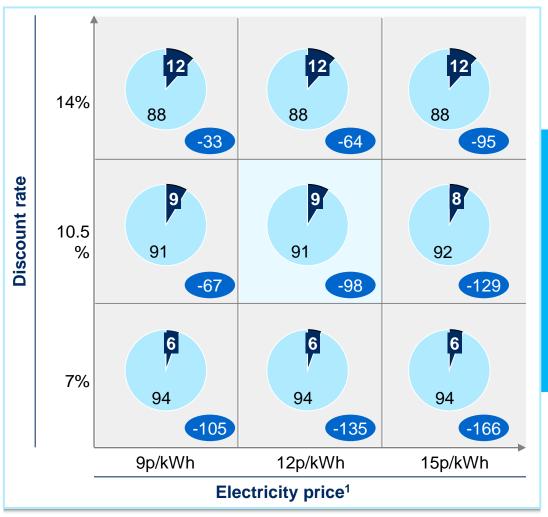
INDUSTRIAL SECTOR

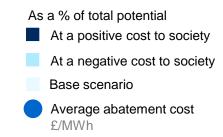
		Electricity savings TWh, 2030	Abatemer cost ¹ £/MWh, 20	Billic	on £, upto	Share of sector potential Abatement measure description
	Motors, Replacement	2.0	-128	2030	0.2	Replace fixed drive motors (at constant speed) by Variable Frequency Motors so that they draw power based on load
Motors	Motors, Replacement by High Efficiency Motors	0.8	-59		0.5	Replace with higher efficiency motors – improved impeller share, use of higher quality materials etc
Mot	Motors, Install Soft Starters	0.9	-108		0.2	Reduce energy required for shutdown and startup by installing soft starters
	Motors, Replacement By Correctly Sized Motors	4.4	-140	-0.1		In the majority of cases, installed motors are oversized compared to load anticipating addition of load in the future
(0	Pumps, Run at BEP	4.6	-98		1.5	Run pumps at their Best Efficiency Point as pumps have a steep efficiency curve
Pumps	Pumps, Reduction of Internal Friction	1.7		146	// 3.9	Reduce the accumulation of tuberculate on the interior of the pump's casing which increases energy consumption
	Pumps, Cascade	6.4	-127		0.5	Running parallel pumps at full speed and constantly creating flow required for peaks only
sed	Compressed Air Systems, Demand Manager Device	0.6	-134		0	Automatically optimize equipment usage based on demand
Compressed air	Compressed Air Systems, Reduce Intake Temperature	0.2	-122		0	By reducing intake temperature, increase gas density to increase compressor volumetric efficiency
Con	Compressed Air Systems, Reduce Pressure Drop at Intake	0.9	-138		0	Reduce pressure drop as compressed air travels through the filter to reduce energy consumption
	Lighting Controls	0.7	-134		0	Install more efficient lighting control systems - dimmable bal- lasts, photo-sensors to optimize light for occupants in room
Other	Refrigerators	1.1	-103		0.4	Use improved refrigerators - 17% more energy efficient
0	HVAC Controls	1.2	-121		0.2	Improve HVAC control systems to adjust for building occupancy and minimize re-cooling of air

1 Includes annualized capital expenses, savings from reduced fuel usage and savings from reduced carbon costs

Source: IEA; NREL; Energy Star; team analysis

Optimisation of low temperature heating processes suggests sizeable potential in the industrial sector

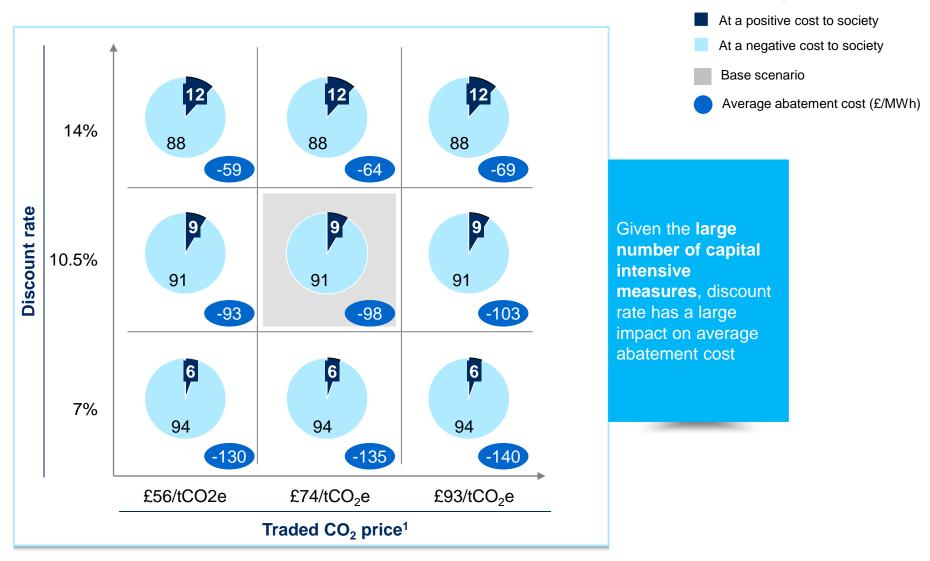

		Electricity	Abatement		Capex		INDUSTRIAL SECTOR		
		savings TWh, 2030	cost ¹ £/MWh, 20		Billion £, upto 2030		Abatement measure description		
	Furnace insulation and optimization 9%	2.88	-110			0.65	Improve furnace insulation, reduce size of furnace entry, install self closing door and use residual heat		
	Glass, Top heating ²	0.43	-127		0.04		Top mounted electrodes to improve and provide higher quality		
S	Glass, Capture heat from electrolysis cells ²	1.24	-138		0		Heat is recovered from top and sides of electrolysis cell		
processes	Iron and Steel, DC Arc Furnace	0.09	-127		0.01		Have a similar arrangement, but have electrodes for each shell and one set of electronics		
ure pro	Iron and Steel, Scrap preheating	0.06	-115		0.01		Waste heat used for preheating scrap before passing into the electric arc furnace		
mperat	Iron and Steel, Eccentric bottom tapping on furnace	0.01	-80		0.01		An alternate hearth shape which reduces electricity consumption		
low te	Iron and Steel, Improved process control (neural network)	0.03	-133		0		Employing a neural network, the process control is improved to increase furnace efficiency		
High and low temperature	Iron and Steel, Improved lubrication system	0.03	-138		0		Installation of pumps, valves and controls to enable increased lubrication		
Η̈́	Iron and Steel, Direct casting	0.21		48		0.60	Integrates casting and hot rolling into 1 step, reducing need to reheat		
	Aluminum, Reduce anode cathode distance ^{2,3}	0.53	-138		0		The distance between anode and cathode reduced to 3cm		
	Aluminum, Capture heat from electrolysis cells ^{2,3}	0.30	-138		0		Heat is recovered from top and sides of electrolysis cell		


1 Includes annualized capital expenses, savings from reduced fuel usage and savings from reduced carbon costs. 2 Does not include capex costs

3 Significant electricity consumption from Aluminum production is assumed to continue in DECC baseline, however, with the latest closures of plants in the UK, the realization of this potential is unlikely

Source: EPA: Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Iron and Steel Industry; EPA: Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry; team analysis

The share of potential which can be achieved at a negative cost to society is more sensitive to the discount rate than to electricity price

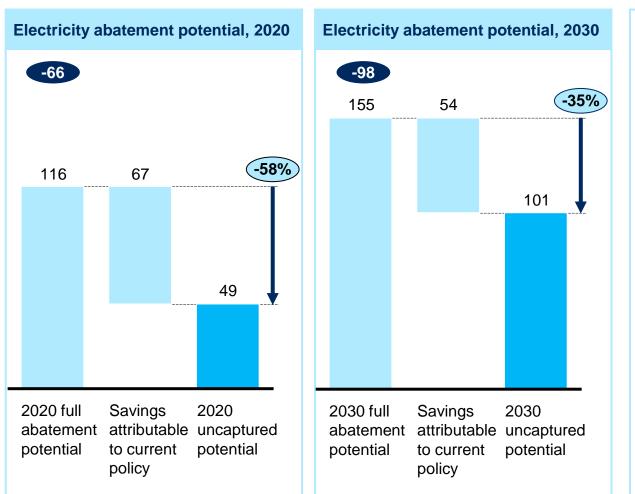


There are a significant number of measures which are marginally positive or negative, hence a change in discount rate alters the capex component to change the measures position on the cost curve

1 Electricity price is the same for residential, commercial and public admin sectors, and 1% lower for industrial sector Source: Team analysis

19

Change in discount rate has a greater impact rate on average abatement cost than change in CO_2 price


1 Only the traded CO_2 price is varied i.e., CO_2 price associated with electricity. Non-traded CO_2 price i.e., associated with gas is not varied. Source: Team analysis

20

(£/MWh)

There is significant uncaptured abatement potential both on a 2020 and 2030 view Average abatement cost

TWh

Why does the full abatement potential increase?

- The baseline electricity demand increases from 2020 to 2030, hence increasing the base for abatement measures to act upon and is responsible for ~10 TWh of increase in abatement potential.
- Majority of technologies (all except appliances, electronics and some lighting) replaced by measures, have a lifetime greater than 10 years, hence the amount of such replacements still providing savings in 2030 exceeds that in 2020, resulting in an increase of ~30 TWh in abatement potential

Why does the average abatement cost reduce?

This is due to increase in savings per TWh saved. Between 2020 and 2030

- Electricity price increases by 30%
- CO₂ price increases by 160%

Contents

- Baseline electricity demand
- Full abatement potential
- Impact of current policy
- Barriers to realisation
- Analysis of design options

Current and planned policies span all 3 sectors with 7 key mechanisms

DRAFT REPORT

Supplier obligations

Standards

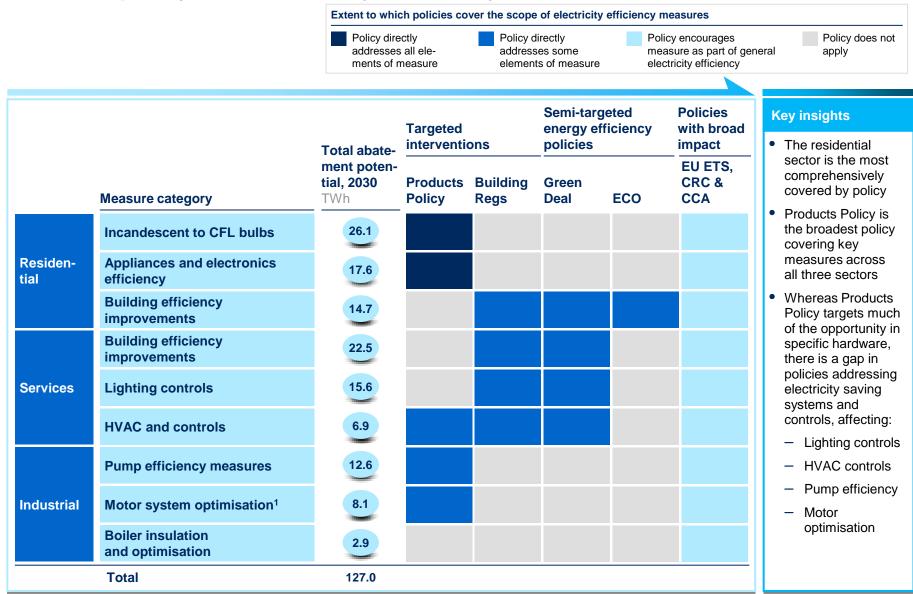
- Voluntary agreements
- In consultation/under review

2010 demand	2007	2010	2015	2020
Residential (~119 TWH/yr)	Buildi EEC	icts policy (25 TWh/y ng regulations (3.3 T CERT/CESP TS (4 TWh/ yr)	·	
Services (~96 TWh/yr)	Buildi Clima CRC	icts policy (11 TWh/y ng regulations (6 TW te Change Levy energy efficiency sch TS (2 TWh/ yr)	/h/yr)	• F
Industrial (~104 TWh/yr)	Clima Clima EU E	icts policy (2.7 TWh/ te Change Levy te Change Agreeme TS (1 TWh/ yr) nced Capital Allowan	nts Green Deal (0.7 TWh/yr)	

- The policy landscape is changing
 - Several key policies are currently being reviewed (e.g., CRC)
 - New policies (e.g., Green Deal, ECO) come into effect
- Products Policy dominates the landscape in terms of impact
- DECC's estimates of the demand reduction impact of current/planned policy²
 - 2020 (on this page):
 ~67 TWh, leaving
 ~49 TWh of
 uncaptured potential
 - 2030: ~54 TWh, leaving ~101 TWh of uncaptured potential

1 GIB prioritises non-domestic efficiency, but Green Deal providers are considering seek financing from GIB

2 2020 and 2030 savings estimated by DECC exclude demand reduction resulting from policies that increase the price of electricity (e.g., EU ETS, CRC) 3 Includes impact for CERT/ CESP/ ECO


Description of categories of key measures used in remainder of document

Measure category		Total abatement potential, 2030 TWh	Description	The measure categories below represent aggregated potential from largest three groups of measures with	
Incandescent to CFL 26.1 • Replace incandescent bulbs with CFLs				similar technology in each sector	
	Appliances and electronics efficiency	17.6	 Purchase high efficiency consumer electronics (e.g., PC, TV, VCR charging supplies) instead of standard items When refrigerator/freezer, washer/dryer, dishwasher, or fan expire 		
Residential • New build: achieve energy consumption levels comparable to "passive" standard Building efficiency improvements • New build: achieve energy consumption through improved building design and orientation • New build: achieve energy consumption through improved building design and orientation • Reduce demand for energy consumption through improved building design and orientation • Building efficiency improvements • Improve building insulation and air tightness; improve materials and construction of walls, roof, floor, and wind • Level 1 retrofit – "basic retrofit" package • Improve building air tightness by sealing baseboards and other areas of air leakage • Weather strip doors and windows • Insulate attic and wall cavities • Add basic mechanical ventilation system to ensure air quality • Level 2 retrofit • Retrofit to "passive" standard, in conjunction with regular building renovations • Install high efficiency windows and doors; increase outer wall, roof, and basement ceiling insulation; mechanic ventilation with heat recovery, basic passive solar principles					
Services	Building efficiency improvements	22.5	 New build: reduce demand for energy consumption through improve Improve building insulation and air tightness; improve materials an Ensure usage of high efficiency HVAC and water heating systems Level 1 retrofit – "basic retrofit" package Improve building air tightness by sealing areas of potential air le Weather strip doors and windows 	d construction of walls, roof, floor, and windows	
	Lighting controls	15.6	 New build – install lighting control systems (dimmable ballasts, pho Retrofit – install lighting control systems (dimmable ballasts, photo 		
	HVAC and controls	6.9	 When HVAC system expires, install highest efficiency system Improve HVAC control systems to adjust for building occupancy ar 	nd minimize re-heating of air	
	Pump efficiency measures	12.6	 Run pumps at Best Efficiency Point Use pumps with reduced internal friction Replace large pumps by a cascade of smaller pumps 		
Industrial	Motor efficiency measures	8.1	 When suitable, replace fixed load motors by Variable Frequency D Use higher efficiency motors – improved impeller share, use of hig Install soft starters Replace oversized motors 		
	Boiler insulation and optimisation	2.9	Improve boiler insulation, reduce size of boiler entry, install self clo	sing door and use residual heat	
	Tota	127.0			

Source: Team analysis

DRAFT REPORT

Products policy dominates key electricity measures

1 Includes both measures for optimising motor operations and efficiency measures and replacement of oversized motors by correct size and VSDs Source: DECC projections; team analysis

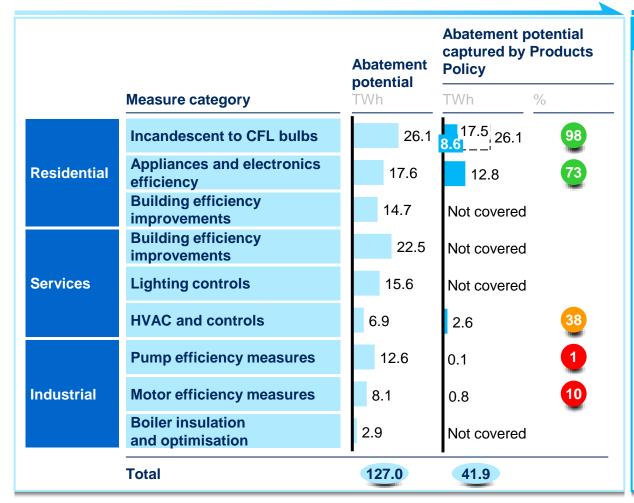
Current policies capture ~40% of the abatement potential covered by the 9 key measure categories

Majority of potential captured (>50%)

Some potential captured (25-50%)

Little potential captured (<25%)

2030		Abatement potential	Abatement potential captured by policies ¹	Uncaptured abatement potential ¹	Average payback period (societal basis) ²	
	Measure category	TWh	TWh %	TWh	Years	
	Incandescent to CFL bulbs	26.1	17.5 26.1 100	0	0.3	
Residential	Appliances and electronics efficiency	17.6	12.8 73	4.8	1.3	Key opportunities
	Building efficiency improvements	14.7	5.2 36	9.4	⟨ 14.7	 Top 3 opportunities (ie. Unaddressed magagures in TW/b)
	Building efficiency improvements	22.5	0.6	21.9	5.1	measures in TWh) are: — Building efficiency
Services	Lighting controls	15.6	1.1 7	14.5	5.6	improvements in residential and
	HVAC and controls	6.9	4.1 60	2.8	1.9	commercial sectors
	Pump efficiency measures	12.6	0.1 1	12.5	6.9	 Lighting controls Pump efficiency
Industrial	Motor efficiency measures	8.1	0.8	7.3	1.6	measures
	Boiler insulation and optimisation	2.9	0 0	2.9	3.3	
	Total	127.0	50.9 40	76.1	4.5	


1 Includes Products policy, Building Regulations and Green Deal/ECO policies

2 Payback period calculated on societal basis and includes transaction costs of ~30%. Payback period reflects average across measure and does not include disruption costs and risk

Products policy and related instruments are projected to capture ~40 TWh of electricity savings by 2030

EU mandate
 Majority of potential captured (>50%)
 Some potential captured (25-50%)
 Little potential captured (<25%)

Products policy aims to increase the efficiency of energy using products and covers over 20 household and non-domestic products

Opportunities

- Key questions
 - Products policy covers a wide range of products but is it sufficiently ambitious in terms of percentage reductions?
 - Could it be more effective at targeting the top quartile or median rather than the lowest 20%?
 - How effective is it when the product in question has a long lifetime?

Building Regulations is projected to capture ~5 TWh of potential savings mainly through building efficiency improvement measures

Majority of potential captured (>50%)
 Some potential captured (25-50%)
 Little potential captured (<25%)

Building Regulations set standards for design and construction which apply to most new buildings and many alterations to existing buildings in England

		Abatement potential	Abatement potential captured by Building Regulations
	Measure category	TWh	TWh %
	Incandescent to CFL bulbs	26.1	0.6 2
Residential	Appliances and electronics efficiency	17.6	Not covered
	Building efficiency improvements	14.7	2.5 17
	Building efficiency improvements	22.5	0.2
Services	Lighting controls	15.6	0.8 5
	HVAC and controls	6.9	1.2 17
	Pump efficiency measures	12.6	Not covered
Industrial	Motor efficiency measures	8.1	Not covered
	Boiler insulation and optimisation	2.9	Not covered
	Total	127.0	5.3

1 Figures provided for savings in lighting by DECC assumed to be split by relative weighting of lighting control and CFLs to LEDs measure opportunities; CFLs to LEDs measure opportunity, not shown, contributes 0.2 TWh in savings

Green Deal and ECO are projected to capture ~4 TWh of potential savings by 2030

Majority of potential captured (>50%)
 Some potential captured (25-50%)
 Little potential captured (<25%)

- Green Deal and ECO aim to reduce carbon emissions cost effectively by revolutionising the energy efficiency of British properties
- ECO will integrate with the Green Deal, allowing supplier subsidy and Green Deal Finance to come together into one seamless offer to the consumer

		Abatemen potential	Abatement potential captured by Green Deal and ECO policies
	Measure category	TWh	TWh %
	Incandescent to CFL bulbs	26.	1 Not covered
Residential ¹	Appliances and electronics efficiency	17.6	Not covered
	Building efficiency improvements	14.7	2.7 18
	Building efficiency improvements	22.5	5 0.3 1
Services ¹	Lighting controls	15.6	0.3 2
	HVAC and controls	6.9	0.3 6
	Pump efficiency measures	12.6	Not covered
Industrial	Motor efficiency measures	8.1	Not covered
	Boiler insulation and optimisation	2.9	Not covered
	Total	127.0	3.7

1 Figures provided for commercial and residential savings by DECC assumed to be split by relative weighting of key measure opportunities and HVAC residential savings, not shown, contributes 0.3 TWh in savings

Some policies have broad impact; these capture less abatement potential and are incremental to more specific policies EU ETS impact on electricity consumption

						is included in the baseline
		Total abate- ment potential				Implications
Abatement		captured by policies with	Abatement potential captured by ^{1,2}			• EU ETS, CCL and CRC have a broad impact via
	potential TWh	broad impact	CRC TWh	ECA TWh	EU ETS TWh	the price of electricity. All also apply to other fuels.
Residential	66	0	0	0	4	 These policies have a limited impact on electricity demand once the overlap with other policies is removed: Companies fulfil their carbon
Commer- cial	57	1	1	0	2	obligation via other fuel sources rather than electricity so policy impact is seen on other fuels – Gain to users/
Industrial	31	2	0	2	1	 Providers is small relative to electricity price volatility and cost base Impact of EU ETS is included in "policy off"
Total	155	3	1	2	7	baseline

1 CCA savings not estimated, as targets are in the process of being negotiated with participating industries 2 No estimate available for CCL savings

Source: DECC projections; Saving Energy Through Better Products and Appliances Defra report

Contents

- Baseline electricity demand
- Full abatement potential
- Impact of current policy
- Barriers to realisation
- Analysis of design options

The interviews and international experience suggest 11 key findings on barriers

	Description				
1 Policy	A While policy seeks to address a number of barriers in the residential sector, barriers in the service and industrial sectors are less well addressed ¹				
	B The complex and ever changing policy landscape results in confusion and delays in EE investment				
	C Utility companies and many intensive industrial users largely focus on other energy sources to reach carbon targets				
Market 2 maturity and	A The transaction costs and the effort needed to implement EE measures are often large compared with the benefits associated with EE investments				
costs	B The EE market is not sufficiently developed to deliver on electricity efficiency opportunities				
3 Residential	 A While agency issues persist in rented accommodation, agency issues in the form of ownership transfer do not appear to be a significant issue in the UK residential sector (unlike the US) B Behavioural change is a significant opportunity in the residential sector, with potential as high as ~15% (though this will diminish the remaining opportunity that can be captured by technical measures) 				
Commercial/ industrial	 A In the commercial and industrial sectors, stakeholders demand a rapid payback period of ~2 years while EE investments on average have a a payback period of ~5 years B Agency issues in the commercial sector appear to be a significant barrier as 61% of commercial space is leased and 75% of the corporate sector outsources its facilities management capabilities, often without incentives for reducing energy costs 				
	C While capital constraints may be a barrier for SMEs or underperforming companies, large commercial and industrial organisations can secure necessary financing to make an EE investment if attractive				
	 Electricity intensive users are focused on realising electricity demand reduction opportunities. However, non-electricity intensive industries represent ~60% of total industrial electricity demand and are less likely to achieve the full scale of opportunities 				
1 Does not take into acc	ount impact of CCAs as it is unclear how CCAs will affect this once they have been finalised				

Source: Interviews; team analysis

Policy – key insights (1/2)

Policy gap in commercial/ industrial sectors

Complex and changing policy landscape is challenge

- While policy seeks to address a number of barriers in the residential sector, barriers in the commercial and industrial sectors are less well addressed¹
- The complex and ever changing policy landscape results in confusion and delays in EE investment
- Several existing policies (e.g., CRC, CCAs, Solar FiTs) have changed significantly or are currently under review. Companies who were penalised by the changes in policy are now hesitant to make investments for fear that the policy environment will change again, rendering the investment uneconomic
 - Many new policies have been introduced in the last 2 years and there is a lack of clarity on what the landscape will look like going forward
 - Given the complex policy landscape, not all companies are aware of the existing EE incentives

- Policy captures 76% of the total residential opportunity, but only 13% of the opportunity in the service sector and 4% of the industrial opportunity²
- The biggest barrier is the shifting sands that the government has introduced by changing the goal posts (e.g., solar FiTs). This curtails investment. The carbon reduction landscape is extremely complex and I would like to see that simplified.
 Commercial user

There's a mass of different assistance in EE areas. It's bewildering- what's on offer. I have never heard of the Enhanced Capital Allowance- maybe that could help some of our business cases - Electricity intensive user

We would appreciate more visibility and stability in terms of policy. CRC has changed significantly and we still don't know what it will look like tomorrow.

- Utility company

1 Does not take into account impact of CCAs as it is unclear how CCAs will affect this once they have been finalised 2 Based on 9 sets of measures that deliver 80% of value

Source: Based on corporate interviews; team analysis

Policy – key insights (2/2)

۲

• Non-electricity measures for reaching carbon targets

- Utility companies and many intensive industrial users largely focus on other fuel sources to reach carbon targets due to relative cost/ carbon impact of coal and gas¹
- We are investing a lot in biofuels and waste fuels, which reduces our carbon, but increases our electricity usage

– Industrial user

90% of our current EE programmes are directed towards saving gas (not electricity)

- Utility company

1 Does not take into account impact of CCAs as it is unclear how CCAs will affect this once they have been finalised Source: Based on corporate interviews; team analysis

DRAFT REPORT

A Barriers can make an investment unattractive or present financing or execution difficulties

		Barrier	Description	Example
Attractive- ness	Awareness and attention	Lack of aware- ness/information	 Users not aware of EE opportunities or impact of own consumption behaviour 	 Companies and households are not often aware of the details of what activities drive electricity use Companies not aware of all available EE options and technologies
		Lack of focus	Other issues are more central to business or daily life	 Status quo bias leads consumers to hesitate upsetting current situation Managers have many responsibilities so EE is not high priority
	Financial and non- financial costs	Transaction barriers	 Incidental financial and non- financial costs of deployment 	 Hidden "costs" such as the investment of time to research and implement a new measure Production shutdown to implement measure
		Doesn't meet hurdle rate/ payback period	 Benefits not realised quickly enough 	 Businesses typically won't consider investments with payback period longer than 2-3 years Hyperbolic discounting means people value short term more than long term and attach a higher discount rate
	Capturing benefits	Agency	 Incentives split between parties, impeding capture of potential 	 Landlords invest in EE measures but benefits accrue to tenants In the US, the payback period for a residential EE investment is longer than the period the homeowner intends to own the home
		Risk and uncertainty	 Uncertainty about ability to capture benefit of the investment or possibility of incurring additional costs 	 High volatility in electricity prices means that potential savings are hard to estimate Risk-averse managers do not want to switch to EE equipment because of risks about reliability and compatibility
Financing		Capital constraints	Inability to finance initial outlay	Significant capital outlays and low savings rates for consumers
Execution		Product availability	 EE products not widely available to users 	 Market for EE service providers is highly fragmented making appropriate vendors hard to find Some suppliers may not stock EE products
		Installation and use	 Improperly installed and/or operated equipment doesn't realise total potential savings 	 Improper use of programmable thermostats can reduce or eliminate savings

1

POLICY

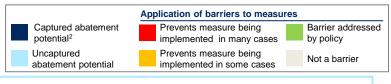
DRAFT REPORT

PRE-POLICY VIEW

POLICY Excluding impact of policies, barriers apply equally across all three sectors

	Application of barriers to measure	s
Captured abatement potential ²	Prevents measure being implemented in many cases	
Uncaptured abatement potential	Prevents measure being implemented in some cases	Not a barrier

			Attractivenes	SS					Financing	Execution	
	Categorised measures	2030 impact TWh saved	Agency issues	Transac- tion barriers	Awareness and infor- mation	Lack of focus/ non- core	Risk and uncertainty	Hurdle rate/ payback	Capital constraints	Product availability	Installation and use
	Incandescent to CFL bulbs	26.1									
Residential	Appliances and electronics efficiency	17.6									
	Building efficiency improvements	14.7									
	Building efficiency improvements	22.5									
Services	Lighting controls	15.6									
	HVAC and controls	6.9									
	Pump efficiency measures	12.6									
Industrial	Motor system optimisation ¹	8.1									
	Furnace insulation and optimisation	2.9									

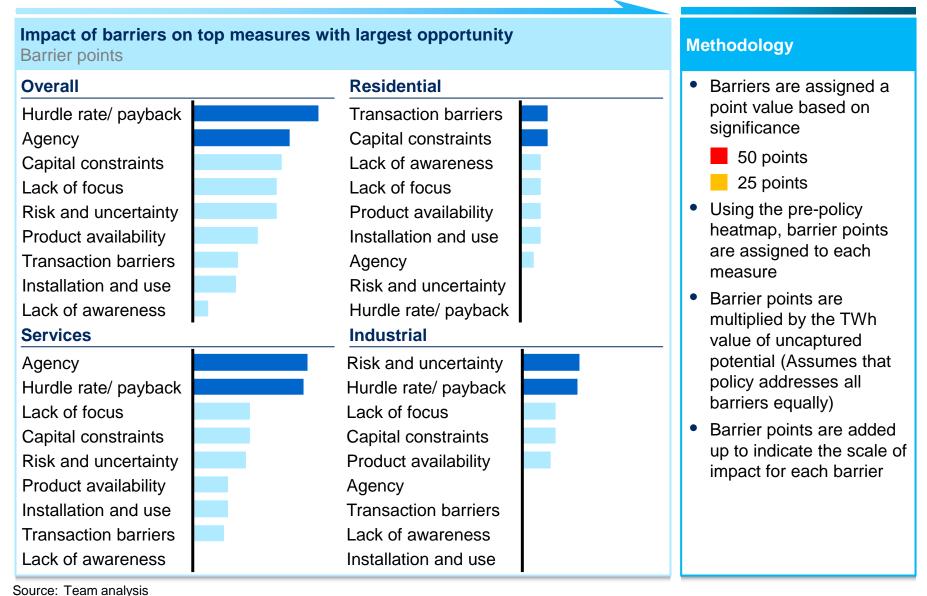

1 Includes both measures for optimising motor operation and efficiency measures and replacement of oversized motors by correct size and variable speed motors

Source: Interviews; team analysis

DRAFT REPORT

POST-POLICY VIEW

POLICY Policy addresses many barriers in the residential sector, but challenges remain in the service and industrial sectors



1 Includes both measures for optimising motor operation and efficiency measures and replacement of oversized motors by correct size and variable speed motors

Source: Interviews; team analysis

 POLICY
 Assigning a weight based on the level of impact can provide a sense of the scale of the impact of the different barriers DRAFT REPORT

ILLUSTRATIVE NOT ADDITIVE

38

POLICY 1 **Example: previous experience in the US** is one input into the barriers analysis (1/2)

		Structura	I			Behavio	ural			Availab	oility	
Cluster	Size of opportunity (2020 potential, quads)	Agency issues	Transaction barriers	Ownership transfer issues	Risk and uncertainty	Awareness and information	Custom and habit	Elevated hurdle rate	Adverse bundling	Capital constraints	Product availability	Installation and use
Retrofitting existing non low-income homes	1.30											
Retrofitting existing low- income homes	0.61											
Shell and HVAC for new homes	0.32											
Electrical devices and small appliances	0.59											
Lighting and large appliances	0.34											
Existing private buildings	0.81											
Government buildings	0.36											
New private buildings	0.27											
Office and non- commercial devices	0.57											
Community infrastructure	0.29											

5.46

TOTAL

Residential

Commercial

DRAFT REPORT

Barrier Not a barrier US EXAMPLE

POLICY A Example: previous experience in the US is one input into the barriers analysis (2/2)

1

Partially addressed

Not addressed

Not a barrier US EXAMPLE

			Structura	I			Behaviou	ıral			Availab	ility	
	Cluster	Size of opportunity (2020 potential, quads)	Agency issues	Transaction barriers	Ownership transfer issues	Risk and uncertainty	Awareness and information	Custom and habit	Elevated hurdle rate	Adverse bundling	Capital constraints	Product availability	Installation and use
	Retrofitting existing non low-income homes	1.30											
ial	Retrofitting existing low- income homes	0.61											
Residential	Shell and HVAC for new homes	0.32											
Ŕ	Electrical devices and small appliances	0.59											
	Lighting and large appliances	0.34											
	Existing private buildings	0.81											
cial	Government buildings	0.36											
Commercial	New private buildings	0.27											
Ŭ	Office and non- commercial devices	0.57											
	Community infrastructure	0.29											
	TOTAL	5.46											

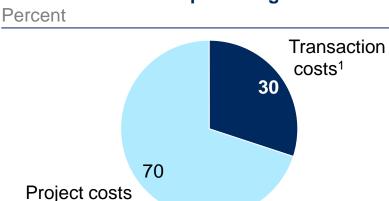
Source: Unlocking Energy Efficiency in the U.S. Economy

2 Market maturity and costs barriers – key insights

High transactions costs for small projects	 Transaction costs, including the effort needed to implement EE measures are often large compared to the benefits associated with EE investments across all sectors Transactions costs include both financial and non-financial costs: Financial costs include legal and accounting services Time and trouble costs include time spent searching for information, project managements time and disruption costs 	 It can take anywhere up to 18 months to structure a big efficiency project and the management time involved is significant <i>Green finance provider</i> There are high transaction costs associated with EE, such as closing the business for 2 days. £2,000 is the average annual bill for an SME customer. If you save £200, it's not worth it. Even at twice that savings rate it doesn't make sense. <i>Utility company</i>
EE market not B sufficiently developed	 deliver on EE opportunities While many companies are keen to be involved, the industry lacks the necessary depth of expertise, which is sometimes 	 The EE industry in the UK isn't sufficiently developed in terms of quality and depth. ESCOs have to bring in people from outside" – Green finance provider
	 imported from the US and Europe Users are sceptical whether the EE benefits realised will meet the level promised by EE suppliers There is a perception that high prices and profit margins by EE providers can make EE products and services uncompetitive 	 I get the impression that people are in the businesses of energy efficiency to get rich quickly. Suppliers start on the basis that they want to make a high profit margin <i>– Industrial user</i>

41

2 MARKET MATURITY AND COSTS BARRIERS


A High transaction costs on small deals act as a significant barrier

ILLUSTRATIVE

Typical transaction costs include

- Financial costs
 - Investment appraisal and feasibility studies
 - Development of proposal and business case
 - Compliance costs (permits, applications)
 - Measurement and reporting costs
 - Legal and accounting fees
- Time and trouble costs
 - Search for information, project identification
 - Management time in considering and evaluating project
 - Contract negotiations and procurement
 - Production shutdown or disruption of space

Transaction costs as percentage of total EE project costs

4.4 There are high transaction costs associated with EE, such as potentially closing your business for 2 days. £2,000 is the average annual bill for an SME customer. If you save £200, it's not worth it. Even at twice that savings rate it doesn't make sense.

- Utility company

Construction Costs for small deals are really high and generally outweigh the benefits

– Green finance provider

Project costs can include project development time, accounting, audit and legal costs

– Green finance provider

K Retrofit takes 6 months of auditing and appropriately base lining (to illustrate savings), followed by a year of disruption.

- Utility company

1 Experts estimate transaction costs between 20-40% of total project costs depending on project

Source: Expert estimates, Academic studies including, Easton 1999, Valentova 2010, Mundaca 2007

3 Residential – key insights

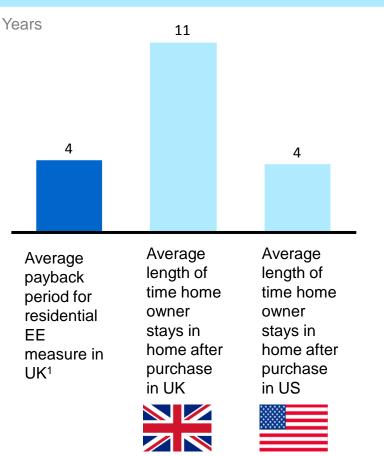
Ownership A transfer not a key issue

Opportunities for behavioural change

- While agency issues persist in rented accommodation, agency issues in form of ownership transfer do not appear to be a significant issue in the UK residential sector (unlike the US)
 - Behavioural change appears to be a significant opportunity in the residential sector, with potential as high as 15%
 - Smart metering could provide granular information, breaking the disconnect between electricity use and high bills with a potential impact of 3-5%
 - Audit and advisory services can help consumers realise greater savings by targeting EE measures to those activities with the largest potential
- Implementing domestic efficiency measures may require a strong field force – a new capability that not all utility companies will have

- The average payback period for a residential EE measure is 4.2 years, while the average UK owner stays in home for 11 years after purchase
- Drivers of EE in the residential sector might be smart metering and more accurate bills. People need to see the results of actions and get personalised EE advice by data mining
 Utility company
- I don't know if people in the UK are less knowledgeable about EE. In US, they provide information on bills so you know if your average bill is higher than your neighbour's

- Utility company


3 RESIDENTIAL

Onlike the US, ownership transfer issues in the residential sector do not appear to pose a significant challenge

Context

- The ownership transfer barrier applies to owneroccupied homes when the current owner cannot capture the full duration of the benefits
- To justify the upfront investment, owners facing this barrier would need assurance that they will be able to capture a portion of the future value of the investment upon transfer

Comparison between energy efficiency investments and home ownership

Implications

- While ownership transfer does not appear to be a significant factor, it could be perceived to be a barrier as residents are often uncertain about how long they will remain in the property
- Agency issues between landlord and tenant still affect 32% of residencies in the UK
- While ownership transfer may be less of an issues, other issues remain, including:
 - Costs of gathering information about potential savings and service providers
 - Significant upfront capital costs relative to average UK resident's disposable income
 - Transaction costs in form of disruption, loss of interior space, change to exterior of home

1 Calculated based on team analysis

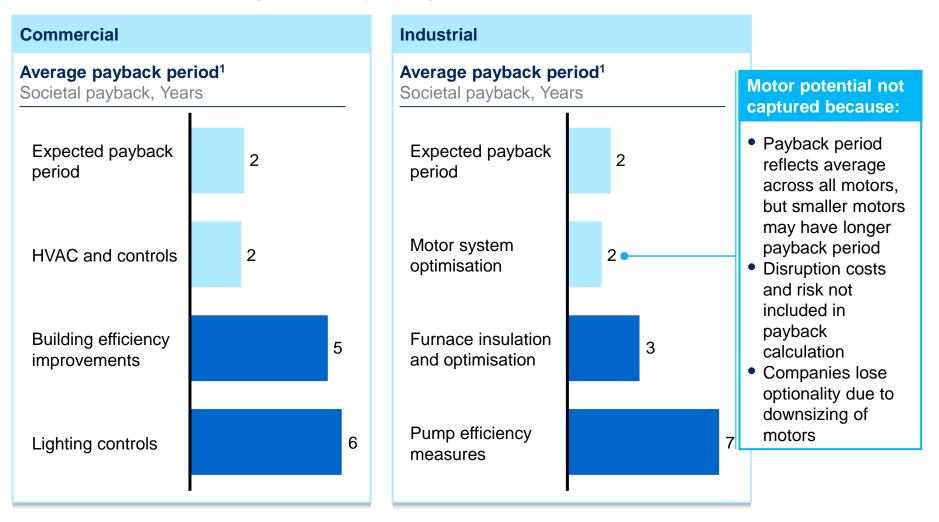
Source: Unlocking Energy Efficiency in the U.S. Economy; DCLG Survey of English Housing; RICS Economics; team analysis

44

4 Commercial/industrial – key insights (1/2)

6 Typically if an efficiency project has a payback In commercial and industrial sectors, many ۲ **Expectation of** stakeholders expect a rapid payback years of period of over one year, it is rejected A rapid payback less than 2 years while EE investments on - Green financier period average have a payback period of ~5 years While payback periods ranged from 1-5 **We have tens of projects**/ year which we years, most companies appear to be constantly evaluate. We are looking for 2-3 year seeking a payback period of ~2 years payback period. There are lots of opportunities, EE projects must compete for limited capex but it's about priority of capex. It's hard to with other opportunities such as revenue compete globally if you look to areas such as creation initiatives or global projects in China where returns on new investments are high. emerging markets such as China - Electricity intensive user The economic crisis has intensified this pattern as uncertainty keeps business focused on the short run **We must work with facility management** Agency issues in the commercial sector appear **Agency issues** to be a significant barrier companies, rather than the customer directly. are significant There is an agency problem- getting through to 61% of commercial space is leased so in commercial the decision makers. companies are not incentivised to sector - Utility company implement EE measures 75% of corporations outsource their facilities management capabilities, often without incentives for reducing energy costs

4 Commercial/industrial – key insights (2/2)


Capital con- straints not an issue for large companies	 While capital constraints may be a barrier for SMEs or underperforming companies, large commercial and industrial organisations can secure necessary financing to make an EE investment if attractive 	 There is no financing issue. Maybe it's a marginal issue. But be it banks, bonds or self-financing, companies can get the financing if the investment makes sense <i>Industry association</i>
Large opportu- nity with less- intensive industrial users	 Electricity intensive industries have taken significant steps to become more energy efficient as this is key to their competitive advantage. The key opportunity here would be further technological advancement. A bigger opportunity may lie with less electricity 	 Most heavy industries are quite EE except for old kit. There are diminishing returns there. The proportionate scope for EE savings in less intensive industries is much higher <i>Industry association</i>
	intensive industrial users, because it is a smaller portion of total costs. However, in the aggregate the less electricity intensive industries use a significant amount of electricity and present a large opportunity for reduction	 We have numerous KPIs around EE and we track this every minute. We monitor if any plant gives signs of deviation. <i>– Electricity intensive user</i>

COMMERCIAL/INDUSTRIAL

DRAFT REPORT


ILLUSTRATIVE

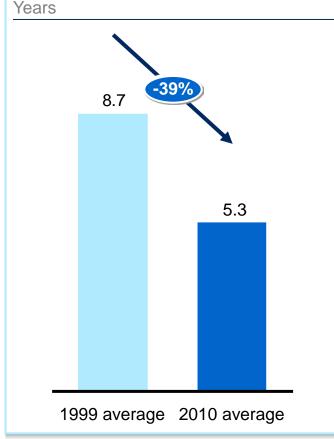
Commercial and industrial organisations typically seek a rapid payback period of ~2 years, while payback on many EE investments is significantly longer

1 Payback period calculated based on team analysis; considers capex and opex at current levels and includes factor of 30% for transaction costs Source: Interviews; team analysis COMMERCIAL/INDUSTRIAL

3 Agency issues appear to be a significant barrier in the commercial sector

1 Level of outsourcing for office and retail space ~ 75-80%

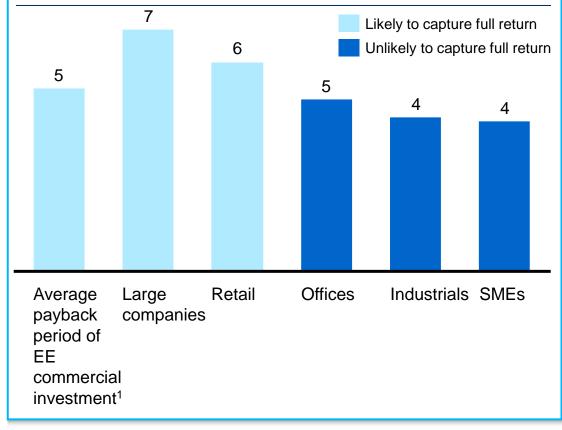
Source: British Council for Offices; Interviews


COMMERCIAL/INDUSTRIAL The length of the average commercial lease has decreased B significantly, exacerbating the agency problem

DRAFT REPORT

ILLUSTRATIVE

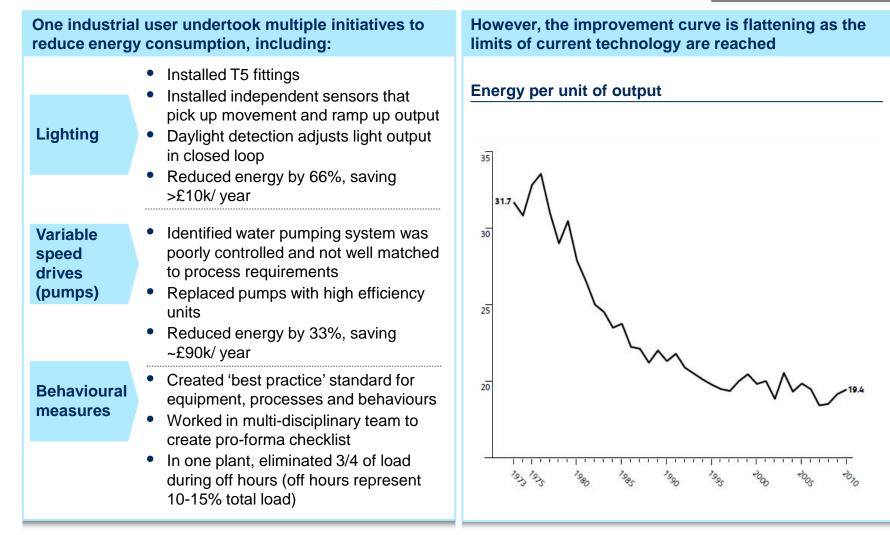
Average length of commercial leases has fallen by more than a third


Duration of average commercial lease in UK

Tenant companies are less likely to remain in the building long enough to earn the full return of an average EE investment

Comparison between energy efficiency investments payback periods and length of commercial leases

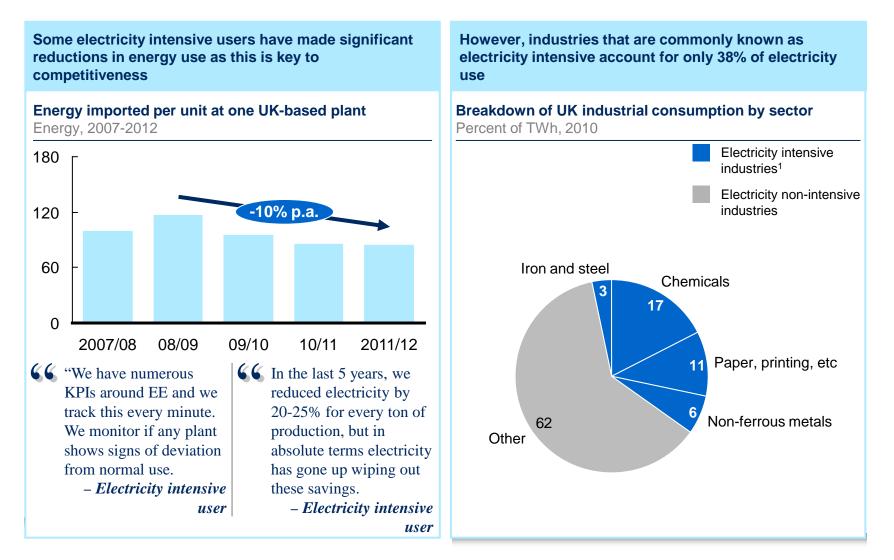
Years


1 Payback period calculated on societal basis and includes transaction costs of ~30%

Source: UK property data report 2011; Interviews; Association for the Conservation of Energy

COMMERCIAL/INDUSTRIAL

Interview example: electricity intensive users are actively pursuing efficiency measures and are facing diminishing returns from investment


BASED ON DATA FROM INTERVIEW – NOT VERIFIED

COMMERCIAL/INDUSTRIAL

DRAFT REPORT

Non-electricity intensive industries may represent a bigger opportunity for electricity demand reduction

1 Industries commonly cited as electricity intensive include: Iron and steel, chemicals, paper, non-ferrous metals

Source: DECC ECUK/DUKES statistics on final and projected consumption of electricity; Interviewee data, Interviews, team analysis

Contents

- Baseline electricity demand
- Full abatement potential
- Impact of current policy
- Barriers to realisation
- Analysis of design options

Design options can be split into 8 categories, each impacting a number of barriers

Category	Description	Key barriers addressed
1 Mandates ¹	Rules or regulations compelling EE measures or targets	 Lack of focus/non-core Lack of awareness/information
2 Financing	 Mechanisms to provide or facilitate the provision of capital, often on non-commercial terms 	 Capital constraints Hurdle rate/payback period Transaction costs
3 Incentives	 A financial benefit for implementing energy efficiency measures or achieving energy efficiency targets 	 Lack of focus/non-core Hurdle rate/payback period Capital constraints
4 Tax	 Government imposed levies or charges on electricity users and/or utilities, deterring energy inefficient behavior 	Lack of focus/non-coreHurdle rate/payback period
5 Information/ labelling	 Measures to increase awareness of energy efficiency opportunities and benefits 	Lack of awareness/informationAgency issues
6 Supplier obligations	 Obligations to carry out EE measures or make EE investments imposed on suppliers of electricity 	 Product availability Agency issues Lack of awareness/information
7 Voluntary agreements	 Agreements between government and large electricity users to improve electricity efficiency 	 Lack of focus/non-core Lack of awareness/information
8 Pricing	Measures to invert the relationship between increasing electricity consumption and lower electricity prices	Lack of focus/non-coreHurdle rate/payback period

1 Mandates may overcome all barriers if enforcement/penalties are sufficiently strong, but other considerations (e.g. equity) suggest they are not always the preferred design option

Source: Team analysis

DRAFT REPORT

We have examined a range of design options used in other countries (1/2)

Case Red **exemple**

	Design option	Description	Example
Mandate	Product standards	 Policies to increase efficiency of products imposed on the product manufacturer or retailer 	 Corporate Average Data-Centre Efficiency (CADE) or Power Usage Effectiveness (PUE) standards – USA Products policy – EU Top Runner Programme – Japan
Man	End user energy efficiency requirements	 Energy efficiency requirements imposed by the state on state agencies and political sub-divisions including counties, public school districts and higher education institutions 	 Energy efficiency requirements for local government buildings, operations and schools in Texas, New York and Massachusetts – USA Energy consumption reduction obligations for state agencies – USA
Financing	Financing	 Making finance available potentially on advantageous terms for energy efficiency investment 	 Green Investment Bank – U.K. Salix Finance – U.K. Green Deal – U.K. Texas LoanSTAR programme – USA Pennsylvania Green Energy Loan Fund – USA KfW – Germany
	Feed in tariffs	 Provides a financial incentive to end users based on the operational performance of their investment in terms of energy savings (a "performance-based subsidy") Companies "Saving Sponsors" implement schemes to reduce electricity demand in any eligible sectors, through any eligible measures – working through sub contractors as needed 	 Toronto Hydro – Canada Trondheim Energy – Norway Public Utility Commission of Texas (PUCT) – USA Efficiency cheque – Portugal Pacific Gas and Electric Company (PG&E) – USA Energy Saving Certificates Trading Scheme in Connecticut – USA and Australia New York Energy Smart program – USA
Incentive	Forward capa- city markets	 Unique market that allows energy efficiency and other demand resources to compete directly with generators Companies "Saving Sponsors" plan efficiency schemes that will be active during the window of the capacity market In the Capacity Auction (and/or subsequent re-trading) Saving Sponsor companies bid "on an equivalent basis" to generating companies 	 ISO New England's Forward Capacity Market – USA PJM's Reliability Pricing Model (RPM) – USA
Ince	Tax relief	 Tax credits to incentivise industry to invest in more energy efficient technologies Tax credits, deductions, rebates or accelerated depreciation for commercial buildings 	 The Department of Energy's (DOE) Office of Industrial Programs R&D Tax Credits – USA US government tax deduction programme for new or renovated commercial buildings
		 Systems which reward/penalise businesses/end users depending on whether they achieve energy efficiency/buy energy efficiency products e.g., electric vehicles 	 ADEME "Bonus Malus" system – France
	Grants/ subsidies	 Monetary/direct incentives which encourage businesses/individuals to improve energy efficiency of processes along supply chain (including business partners) 	 Duke's Save a Watt programme – USA New England's 'Pay as You Save' program – USA Lodi Electric Utility (California) rebate programme for commercial and residential sectors – USA Vermont's CFL buy-down programme – USA

•

DRAFT REPORT

We have examined a range of design options used in other countries (2/2)

Case Red **exemple**

	Design option	Description	Example
4 Laxes	Taxes	 Mechanisms to increase price of electricity and indirectly provide an incentive for greater energy efficiency 	 Carbon price floor – U.K. CCL – U.K. Emissions trading scheme (ETS) – EU Agency for Environment and Energy Management's (ADEME) "Bonus malus" system – France
o Information and labelling	Benchmarking capability/tools	 Tools to increase awareness of relative performance of buildings of similar type, age and geography as well as indicating sources of energy loss Enables users to measure success of energy efficiency investments and decide on future investments Energy ratings are provided to buildings that meet a specific standard of energy efficiency compared with relevant comparison group 	 Environmental Protection Agency's Portfolio Manager – USA Seattle's Building Energy Benchmarking and Reporting Program – USA
Informatio	Awareness campaigns	 Subsector and technology focused awareness campaigns through guidebooks, assessments and forums to boost awareness of energy efficiency improvement options and support available 	 The DOE Industrial Technology Program "Save Energy Now" program – USA EPA's ENERGY STAR Industrial Partnership – USA Product Labelling – EU
8 Supplier obligation	Supplier obligation	 Policies which enforce energy suppliers to comply with mandatory energy savings targets through energy efficiency projects on their clients' or other end- users premises 	 CERT – U.K. CESP – U.K. EE obligation and tradable certificates – France and Italy Energy Efficiency Resource Standards – USA
Voluntary agreements	Voluntary agreements	 Industry covenants, negotiated and long-term agreements, codes of conduct, benchmarking and monitoring schemes which are offered voluntarily to suppliers and end users In return, participants may receive compensation, potential regulatory exemptions, avoidance of stricter regulations and/or financial rewards 	 2005 five year agreements program – Sweden Long term agreements ("LTA 1" and "LTA 2") –Netherlands CCA – U.K. Energy Performance Certificates (EPCs) – USA
Pricing	Pricing	 Inverted block rates for residential customers, split into tiers, with the highest consumption tier nearly twice as expensive per kWh as the lowest tier 	 California Public Utilities Commission – USA

Source: Team analysis

The four case studies were selected to provide insights into market based incentive mechanisms and options to address services sector potential

Case studies jointly selected with DECC

A ISO New England Forward Capacity Market

- B Public Utility Commission of Texas: Energy efficiency programmes (SOPs and MTPs)
- Connecticut Energy Saving Certificates

US Environmental Protection Agency: Portfolio Manager (commercial and public buildings)

Rationale for selection

- Three of the cases could inform demand side market based incentive mechanisms being considered as part of / linked to EMR:
 - Capacity markets: ISO-NE
 - Feed in tariffs: PUCT and Connecticut ESCs
- Examples from the US were chosen, as these represent the most advanced use of market based incentives
- The EPA's Portfolio Manager was selected as an additional case study to address the uncaptured potential in commercial and public buildings
- An additional filter was applied to avoid cases for which DECC already has a detailed fact base

The case studies suggest a number of implications relevant to the UK context (1/2)

	Key features	Implications for UK market
A capacity markets	 Forward capacity markets allowing demand side resources to compete with generation Demand side resources represented ~10% of capacity bid into the auction in 2010 Efficiency measures (as opposed to demand response) constituted ~35% of the demand side resourced bid into the auction in 2010 For one key participant, Efficiency Vermont, ~80% of the portfolio consists of lighting 	 Demand side participation in a capacity market could deliver significant efficiency impact, in addition to demand response Capacity payments could provide sponsors with the incentive and stability to encourage investment in efficiency and compete with generation capacity The role of National Grid would need to be expanded to be equivalent to ISO-NE (potentially addressed through EMR)
B PUCT: Energy efficiency programmes	 Utilities satisfy obligations to meet 20% of demand growth through two types of incentive programme: Standard Offer Programmes (SOPs) allowing consumers / aggregators to choose the most cost effective measures Market Transformation Programmes (MTPs) incentivising specific efficiency measures facing structural barriers Limited impact to date (~0.15% of total electricity demand in 2010): Primarily due to targets not being very ambitious (Texas ranked 37th out of 42 states in per capita EE budgets) Commercial and industrial represent ~63% of total savings 	 A FiT-like mechanism could be administered through suppliers, whose incentive to sell more electricity could be somewhat offset Would require clarification of potential overlaps with current supplier obligations, i.e. ECO Could be combined with Green Deal as an additional incentive to providers Due to deregulated pricing in the UK, would require careful setting of incentive rates to ensure manageable cost to customers/taxpayers In Texas, the PUCT explicitly sets limits on reasonable expenditures by utilities that can be passed on to consumers MTP like programmes would allow selection of the highest potential opportunities that might otherwise not be adopted

The case studies suggest a number of insights and implications relevant to the UK context (2/2)

	Key features	Implications for UK market
Connecticut: Energy saving certificates	 Tradeable certificates issued by the state regulator representing 1 MWh of savings Suppliers obliged to meet 4% of electricity supplied through purchase of ESCs Not all pure energy efficiency – some CHP and micro-generation can participate Regulator specifies a floor price (~\$10) and effectively sets a cap by charging suppliers a penalty of ~\$31 for obligations not met ESCs typically trade just below this price Allows some degree of prescription as to the efficiency measures incentivised through the eligibility criteria for ESCs 	 Tradeable certificates could promote a market in energy efficiency where the most cost effective efficiency measures set the certificate price Eligibility criteria would need to promote the highest potential opportunities that would otherwise not be adopted Would require careful setting of supplier obligations / certificate prices to ensure that the cost to customers (passed on by the supplier) is manageable ~\$35 per capita spent in Connecticut
D EPA Portfolio Manager	 Portfolio Manager provides a low cost online benchmarking tool for commercial buildings Energy Star Rating facilitates communication to prospective tenants and buyers, helping overcome agency barriers Benchmarking and online resources effectively act as a low cost audit tools, suggesting highest value efficiency opportunities to overcome lack of awareness Range of variables used in determining performance against benchmarks acts as a dynamic baselining tool, helping to isolate additionality 	 Addresses significant uncaptured potential in commercial and public admin buildings Confidence in benchmarking algorithm is critical in order to generate voluntary participation Participation could be made compulsory for buildings above a defined size Publication of building ratings could be made compulsory to further address agency issue Open question is the extent to which potential tenants and subsequent buyers will consider energy efficiency in decision making For large commercial users, provides more granular tracking and data than CRC

Key insights from the case studies for design of a market-based incentive mechanism

	Key insights
Impact	 Forward capacity markets are largely technology neutral whereas a FiT would allow targetting of technological or structural barriers
	 Technologies currently not cost effective would not clear a capacity auction
	 FiT incentives can be targeted at specific abatement measures
	 Demand side participation in forward capacity markets facilitates direct offsetting of generation capacity
	 Effectiveness of FiTs is highly dependent on level of incentive and/or demand reduction obligation placed on electricity supplier – risk of over or under-shooting
	 Permanent demand reduction measures have proven to compete cost effectively with demand response in either a capacity market or FiT mechanism
M&V	 Almost all mechanisms distinguish between simple / deemed M&V for smaller measures and complex M&V for larger measures
	 For forward capacity markets, key consideration is whether the demand reduction is additional to the baseline used by the system operator in projecting capacity required Consequences of failure are potentially an expensive shortfall in capacity
	 For FiTs, ensuring genuine additionality is a challenge that has not been comprehensively addressed by any mechanism:
	 Where possible this is a matter of identifying key parameters that allow a dynamic baseline (e.g., per unit of output) perhaps with a natural efficiency gain factor
	 Detailed project evaluation could address this, but creates an administrative burden, requires industry-specific expertise and faces information asymmetry issues

DRAFT REPORT

Key characteristics of different archetypes for market-based incentive schemes

Key characteristics	Forward capacity market e.g., ISO New England	Tradeable certificates e.g., Connecticut ESCs	Standardised incentive scheme e.g., PUCT Standard Offer Program	Tailored incentive scheme e.g., PUCT Market Transformation Program
Specificity	 Primary objective of market is to ensure adequate capacity (across supply and demand side) at lowest price: efficiency competes with generation and demand response Technology neutral: does not incentivise currently uneconomic technologies 	 Objective is to incentivise end use energy efficiency Generally involves standardised eligibility criteria for certificates 	 Objective is to incentivise end use energy efficiency Standardised contracts that are largely technology neutral 	 Objective is to incentivise end use energy efficiency for specific measures Facilitates incentivisation of technologies at early stage of learning curve or facing other financial or structural barriers
Funding capability	 Receives same capacity payments as generators per unit of capacity 	<	 Depends on pre-determined level of incentive or demand reduction obligation placed on supplier 	
Source of funding	 Market operator pays demand side participants - costs borne by ratepayer 	•	 Taxpayer (if run by market operator) or ratepayer (if run through suppliers) 	
Price discovery	 Market based: only bids below market price clear the auction 	 Market based: price set through trading of certificates in open market 		ery done by network I/or supplier in setting
Synchronisation with demand (peak vs baseload)	 Facilitiates direct trade offs with generation capacity Will favour projects impacting peak consumption 		 Trade off against capacity implicitly done by network operator or supplier Does not distinguish between different load profiles – addresses total energy usage 	
Importance of M&V	 Failure to achieve savings could result in insufficient capacity Additionality to be measured against baseline capacity projection model 	 Tends towards simple M&V - additionality considered in setting deemed level of savings 		 Additionality ideally measured by identifying key parameters that allow a dynamic baseline (e.g., per unit of output) perhaps with a natural efficiency gain factor

Source: Team analysis

•

What you would need to believe in order to conclude that market based incentives could address barriers to uncaptured potential being realised

Bold Key barriers for industrial sectors

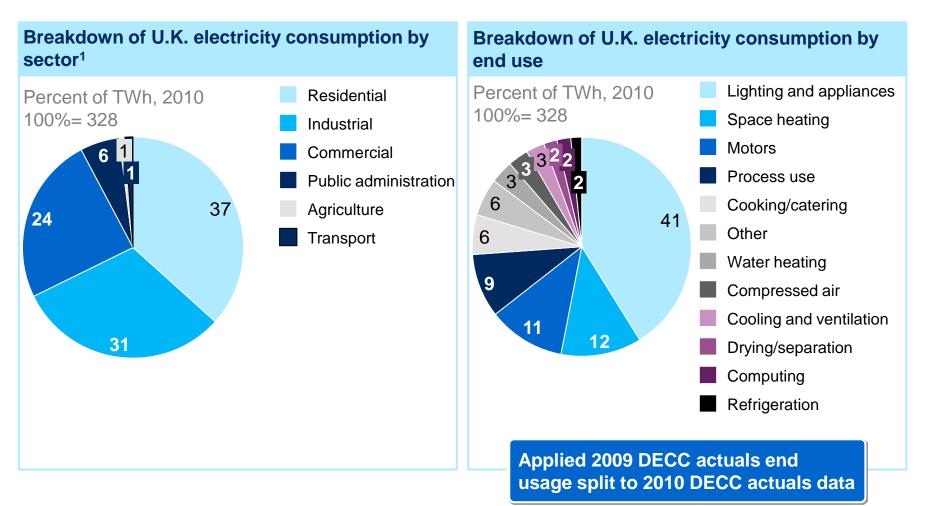
Barrier cat	egory	Barrier	What you need to believe for a market based incentive to be effective
Attrac- tiveness	Attention to opportunity	 Lack of awareness/info 	 Incentives would result in market participants (e.g., aggregators and ESCOs) conducting awareness campaigns
		 Lack of focus 	 Increased payoff would elevate efficiency to top of mind for key decision-makers
	Financial and non- financial costs	 Transaction barriers 	 Key transaction barriers are capable of being overcome by financial incentives of a reasonable scale
		 Hurdle rate/ payback period 	 Financial incentives could be large enough to result in significant shortening of payback period to below target period
	Capturing benefits	Agency issues	 Incentives would result in tenants self-funding investments in buildings or a third party aggregator doing so on their behalf
		Risk and uncertainty	Incentive would outweigh risk of production shutdown / interruption
Financing	J	 Capital constraints 	 Availability of incentives would effectively subsidise financing costs or top-up financing where unavailable
Execution		 Product availability 	 Incentives would justify R&D costs of investment in new technologies
		 Installation and use 	 M&V associated with incentives requires sponsors to ensure effective installation/use

DRAFT REPORT

APPENDIX

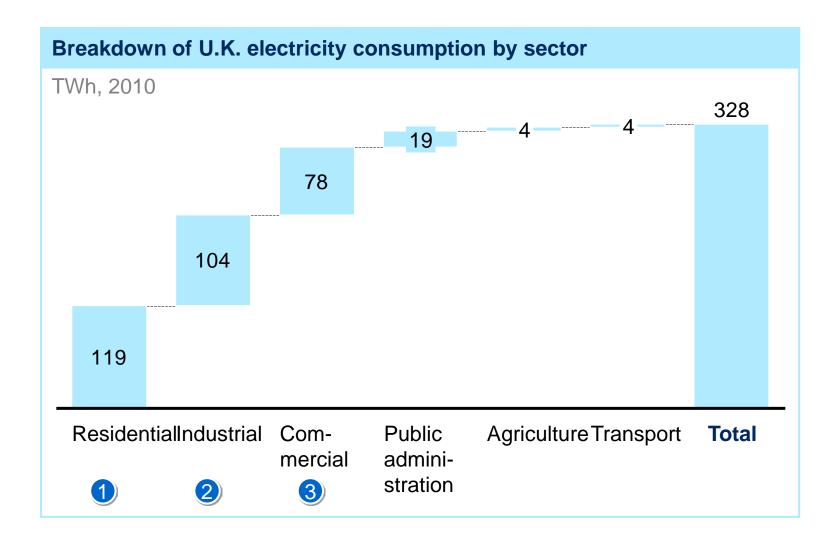
Appendix contents

Baseline electricity demand

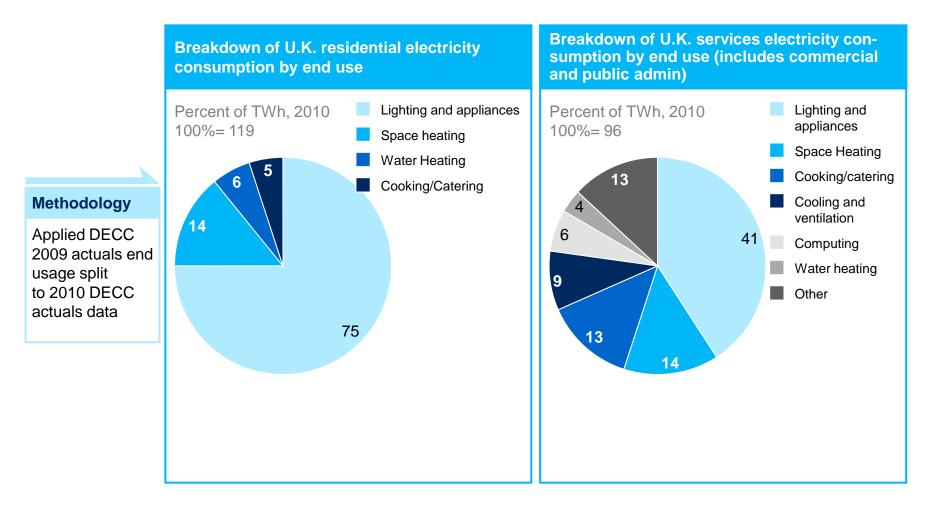

Full abatement potential

Impact of current policy

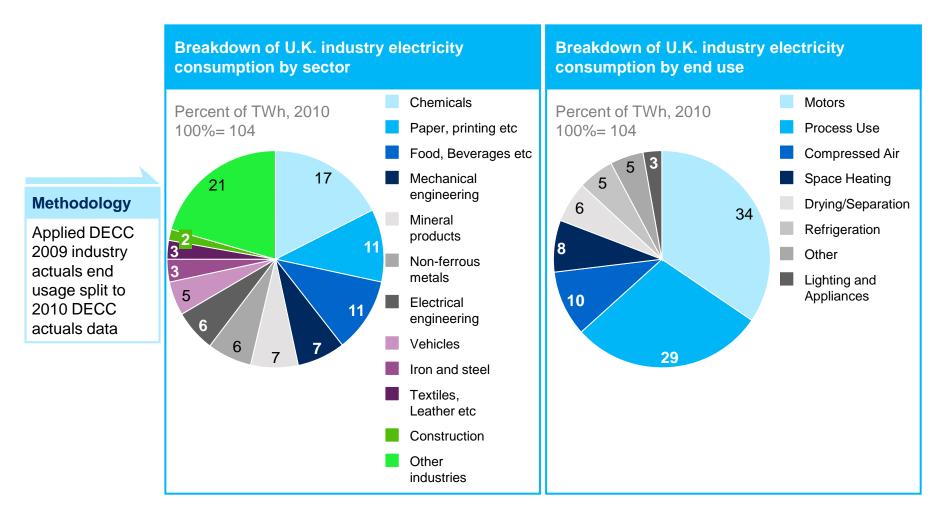
Barriers to realisation


Analysis of design options

Split of UK 2010 end use electricity consumption, split by sector and end use

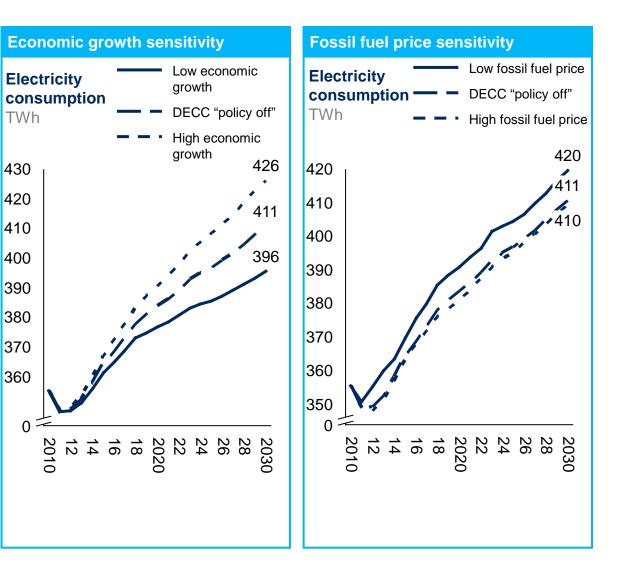

1 Services sector includes commercial, public administration and agriculture sectors Source: DECC ECUK/ DUKES statistics on final consumption of electricity

The U.K.'s 2010 electricity consumption was 328 TWh



Source: DECC ECUK/ DUKES statistics on final consumption of electricity

+ 3 Current domestic and service demand is driven primarily by lighting and appliances


2 Motors are the largest single industrial use of electricity in the U.K.

Economic growth and fossil fuel price sensitivities

Methodology

- High/low U.K. economic growth and fossil fuel price sensitivities based on DECC central projections
- Economic growth sensitivity:
 - High economic growth assumptions:
 - Economic growth of 2.5% p.a.
 - Low economic growth assumptions:
 - Economic growth of 2.0% p.a.
- Fossil fuel price sensitivity:
 - Low fossil fuel price sensitivity assumptions:
 - Wholesale and retail electricity price to increase by 2.4% p.a.
 - High fossil fuel price sensitivity assumptions:
 - Wholesale and retail electricity price to increase by 4.2% p.a.

1 RESIDENTIAL: Demand shaped by reduction in lighting consumption

Projected end usage for the residential sector, TWh, 2010 and 2030 Methodology Electricity consumption, TWh Electronics Lighting Total sector electricity demand estimated using DECC energy demand model Appliances Water heating 2010 split by end use based on DUKES HVAC Other¹ data published by DECC (based on 2009 split as 2010 split not available) 138 136 2030 split by end use estimated by scaling 119 2010 split by expected change in relative 42 49 share of each end use: 42 35 Based on projections of expected **40** change in end usage share from 35 19 12 2010-30 19 10 **12**/6 Calculated based on a combination of 13 21 IEA projections, publicly available reports by industry bodies and internal DECC **DECC 2010 DECC 2030** 2010 central "central policy expert interviews off" with end actuals "policy off" with DECC usage split 2009 end applied usage split applied

Key changes and drivers

- Electricity consumption projection 2010-30 remains flat due to two opposing factors:
 - Increase in number of households and household income
 - Electricity retail price increase and switch to more energy efficient appliances
- Key changes include:
 - Decrease in lighting from 36% to 30%
 - Decrease in appliances from 29% to 25%
 - Increase in 'other' from 5% to 15% driven by cooking and other factors¹

1 Other includes cooking and the impact of residual factors not possible to allocate to other end uses

Source: Team analysis

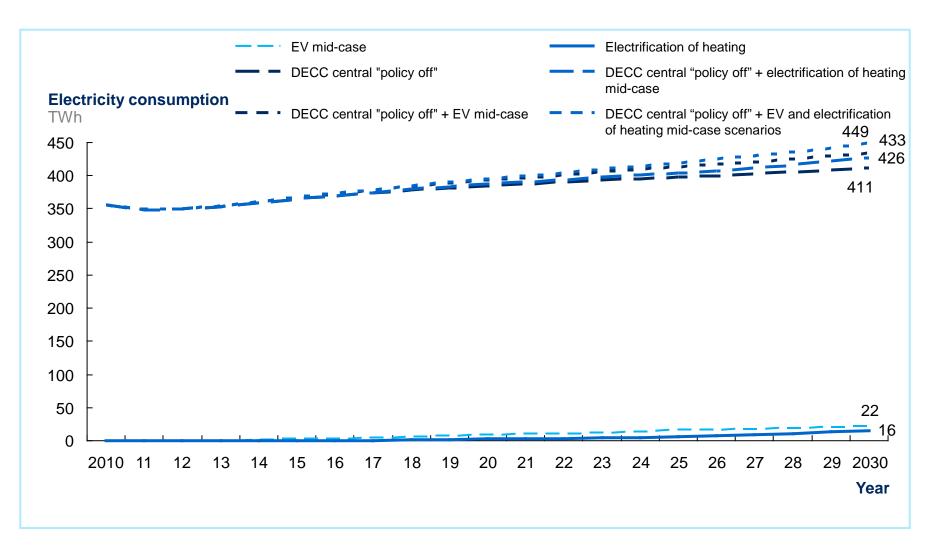
2 INDUSTRIAL: Demand driven by engineering and vehicles and chemicals industries

Projected end usage for industrial sector,	Key changes and drivers			
Methodology	Electricity consumption			
Total sector electricity demand estimated	Engineering 8	Vehicles	Food, Drink & Tobacco	increase driven by industry GDP contribution of 1.4% p.a. and increase in electricity share of total fuel usage by industry
using DECC energy demand model	Chemicals		Non-ferrous Metals	
 2010 and 2030 splits by sector based on DECC projections 	Paper, pulp, print and publ	ishing	Textile and leather products	
	Other Manufa	cturing	Construction	
	Non-metallic r	Non-metallic materials Other 128		from 32% to 38% — Chemicals and engineering and
	104	107	29	vehicles contribute
	20 19	20 19	26	the most to total industry GDP
	$ \begin{array}{c} 19 \\ 12 \\ 22 \\ 3 \\ 8 \\ 12 \\ 0 \\ 7 \\ 0 \end{array} $	12 22 3 7 12 2 3	18 16 4 13 11/1 6 4 4 4	 Non-metallic minerals, paper, pulp, printing and publishing and chemicals have the
	DECC 2010 actuals ¹	DECC 2010 central "policy off"	DECC 2030 "central policy off"	biggest increase i electricity share o total fuel usage

1 Central "policy off" sector splits applied due to differences in categorisation in actuals data Source: Team analysis

COMMERCIAL: Demand driven by increases in HVAC and lighting consumption

Projected end usage for the commercial sector, TWh, 2010 and 2030 Methodology Electricity consumption, TWh Electronics Total sector electricity demand estimated Lighting using DECC energy demand model HVAC Water heating 2010 split by end use based on DUKES Appliances Other¹ data published by DECC (based on 2009 split as 2010 split not available) 110 2030 split by end use estimated by scaling 2010 split by expected change in relative 82 78² 44 share of each end use: 34 32 Based on projections of expected 40 change in end usage share from 19 18 2010-30 10 5 - 3Calculated based on a combination of 6⊒∕3 10 11 IEA projections, publicly available reports by industry bodies and internal DECC **DECC 2010 DECC 2030** 2010 expert interviews central "central policy off" with actuals "policy off" with DECC end usage split applied 2009 end usage split applied


Key changes and drivers

- Electricity consumption increase driven by Gross Value Added (GVA) contribution by the commercial services sector to the U.K. and the increase in electricity as a share of total useful energy for the commercial services sector
- Key changes in relative end usage split include:
 - Increase in HVAC from 23% to 36% due to the electrification of heating
 - Increase in lighting from 42% to 45%

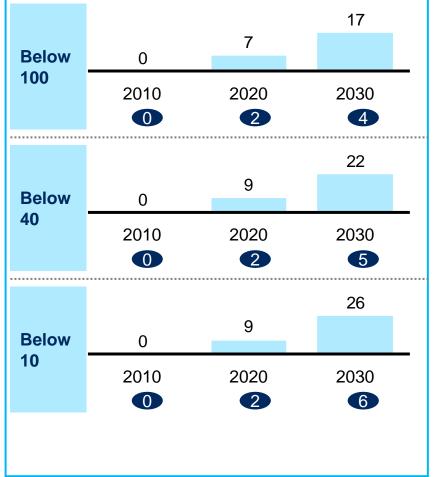
1 Appliances includes catering; 2 Excludes public administration which contributes 18 TWh

Source: Team analysis

Impact of game-changing scenarios on U.K. electricity demand

Adoption of electric vehicles can lead to an increase of ~5% in total electricity demand

Percentage of total U.K. electricity demand

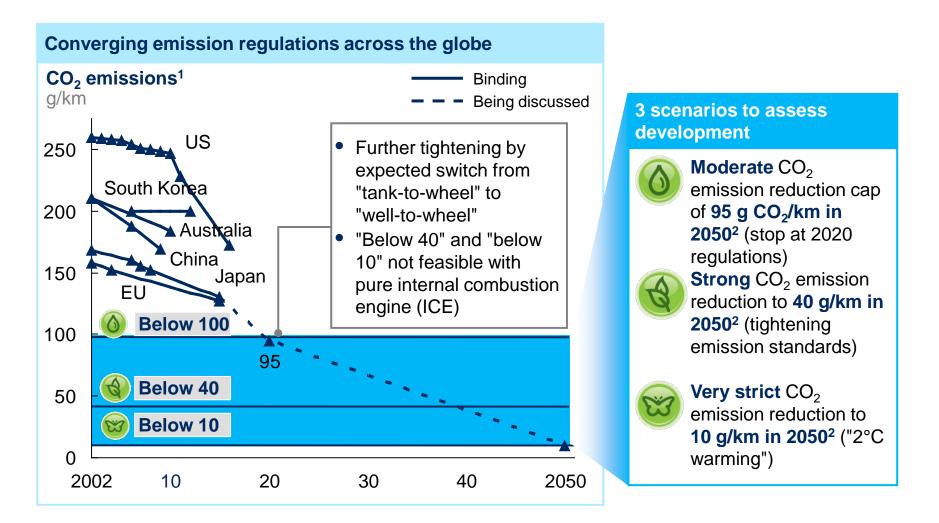

Assumptions

- This scenario measures the sensitivity of electricity demand to the widespread adoption of electric vehicles in the U.K. – Electric vehicles include both hybrid vehicles (HEV) and battery vehicles (BEV)
- Impact on electricity demand estimated by estimating the number of electric vehicles in the fleet over time and the electricity consumption of each vehicle
- Three cases have been defined based upon the expected overall carbon emissions per km of the U.K. sales fleet by 2050 – we have used the intermediate 2030 penetrations:
 - Below 100 95 g/km by 2030
 - Below 40 75 g/km by 2030
 - Below 10 65 g/km by 2030
- Key assumptions include:
 - Electricity usage/km: 0.25 KWh
 - Distance travelled/car/year: 12,000 km
 - Vehicle sales: averaging 2.4 million/year
 - PHEV¹ penetration: 15% by 2030 (mid case)
 - EV¹ penetration: 13% by 2030 (mid case)

1 PHEV: Plugin hybrid electric vehicle, EV: Electric vehicle

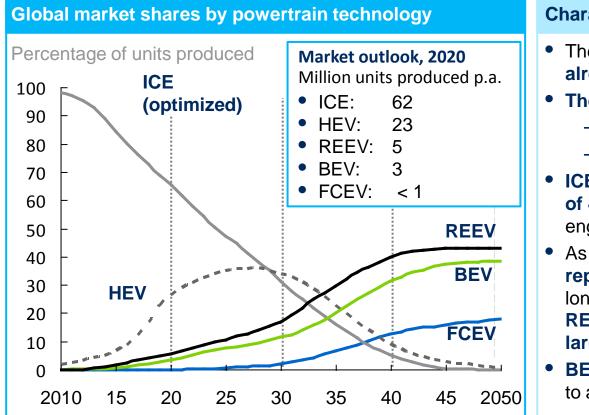
Source: 'Boost! Transforming the powertrain value chain – a portfolio challenge report', McKinsey & Company (2001); team analysis

Scenario results: Electricity demand, TWh



73

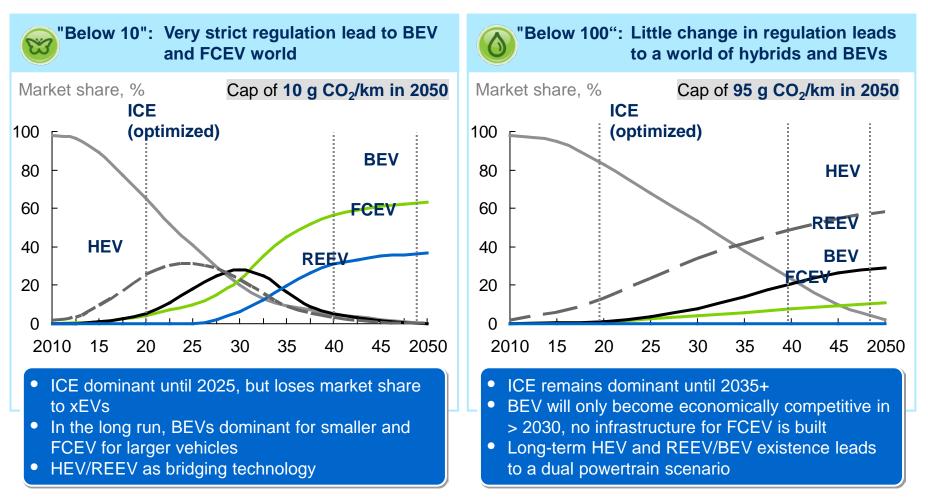
Total share of electricity consumption due to EV in the U.K. is in-line with other leading EV adopting countries


consumption, 2030 c		Total electricity consumption %	Key data, 2030
China	27	77 3	 Vehicle sales: 178.9 million EV penetration: 18% Total electricity consumption: 4,680 TWh
US	173	4	 Vehicle sales: 82.6 million EV penetration: 18% Total electricity consumption: 8,627 TWh
Germany	33	5	 Vehicle sales: 18.6 million EV penetration: 25% Total electricity consumption: 593 TWh
U.K.	22	5	 Vehicle sales: 11.9 million EV penetration: 18% Total electricity consumption: 411 TWh

Major driver is tightening CO2 regulation – significant reductions announced until 2020, but uncertainty of future outlook

1 Regulation under review by the European Parliament: 2015, 2020, 2025 targets will be determined by 2015 Source: European Commission; Boost! Transforming the powertrain value chain – a portfolio challenge report

The "below 40" scenario will favor a fully electric powertrain world dominated by range-extended electric vehicles


Characterization

- The powertrain portfolio game started already with a peak in 2030
- The electric drivetrain will come
 - E-motor in 1 of 3 cars in 2020
 - In 2 of 3 cars in 2030
- ICE dominant until 2030 more than 3 of 4 cars still have an (additional) ICE engine
- As regulation tightens, REEV/BEV replaces ICE/HEV technology, in the long run, BEVs dominate smaller, REEVs medium-sized and FCEV larger vehicles
- BEV, REEV, and FCEV existence leads to an electric-drivetrain-only scenario

Note: ICE: Internal combustion engine incl. Micro-Hybrids and optimization; HEV: Hybrid electric vehicle (with e-motor and opt. plug-in); REEV: Range extended electric vehicle (opt. plug-in); BEV: Battery electric vehicle; FCEV: Fuel cell electric vehicle

Source: Boost! Transforming the powertrain value chain – a portfolio challenge report

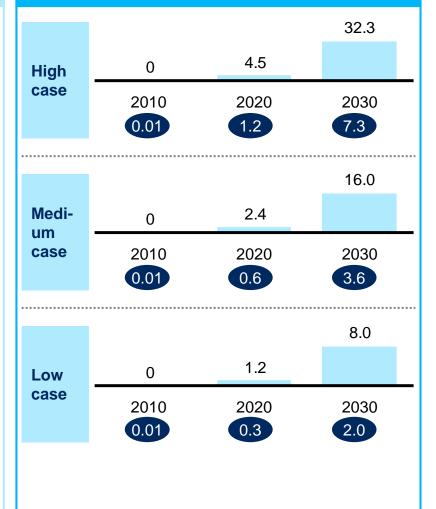
Future of powertrain market highly uncertain – the portfolio challenge is driven by regulation, TCO development and customer needs

Note: ICE: Internal combustion engine incl. Micro-Hybrids and optimization; HEV: Hybrid electric vehicle (with e-motor and opt. plug-in); REEV: Range extended electric vehicle (opt. plug-in); BEV: Battery electric vehicle; FCEV: Fuel cell electric vehicle

Source: Boost! Transforming the powertrain value chain - a portfolio challenge report

Adoption of heat pumps could lead to an increase of 7% in total electricity demand

Percentage of total U.K. electricity demand


Assumptions

This scenario measures the sensitivity of electricity demand to the widespread adoption of heat pumps in the U.K. - heat pumps include both air source

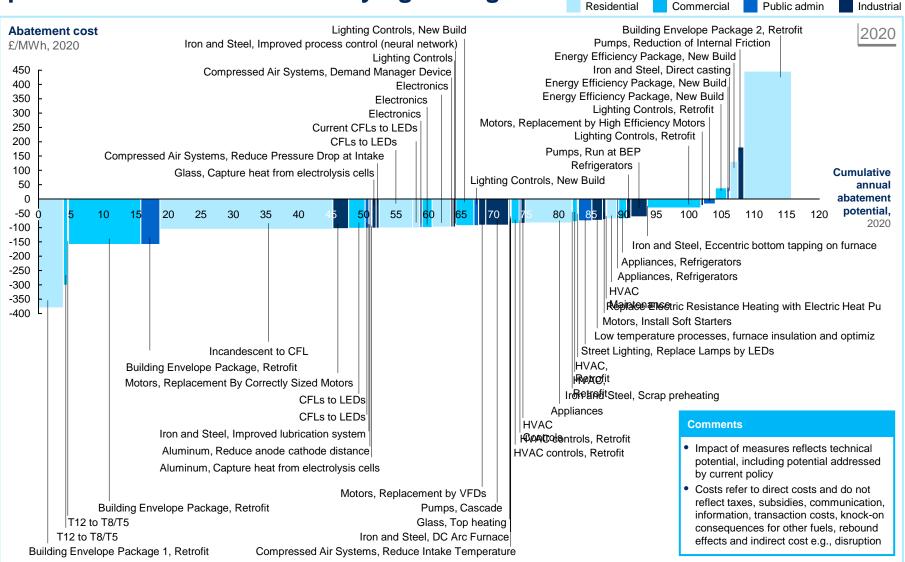
heat pumps and ground source heat pumps

- Impact on electricity demand estimated by estimating the total number of heat pumps over time and the electricity consumption of each heat pump
- Three cases have been defined based upon the expected total number of heat pump installations by 2020 - we have projected the penetrations to 2030 based on projections to 2020 in the Environment Agency Heat Pump 2009 report and 2030 estimates based on the Committee on Climate Change Developing Options for Renewable Heat report, government targets and the European Heat Pump Association
 - High case 8,699,159 heat pumps by 2030 (28% of U.K. households)
 - Medium case 4,180,972 heat pumps by 2030 (14% of U.K. households)
 - Low case 2,280,596 heat pumps by 2030 (7% of U.K. households)
- Key assumptions include:
 - Electricity usage per year per pump: 6 MWh
 - Total number of heat pumps in 2010: 12,000
- Assumed that 75% of heat pump energy requirement is provided by the environment and remaining 25% by the national grid

Scenario results: Electricity demand, TWh

Appendix contents

Baseline electricity demand

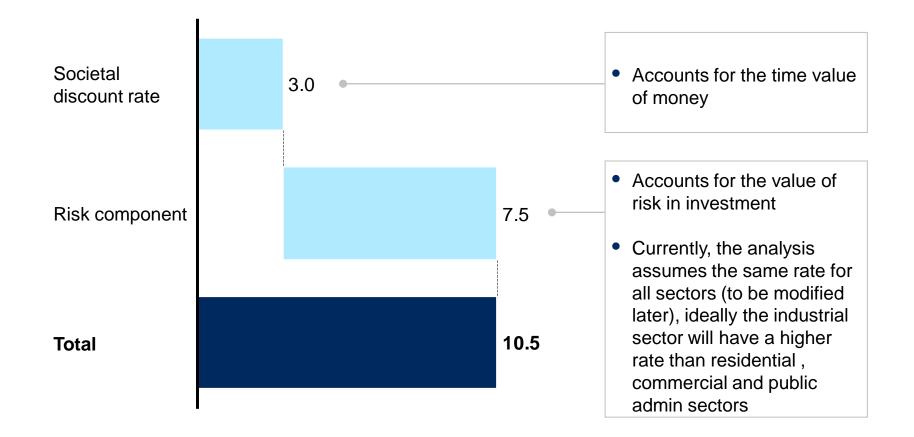

Full abatement potential

Impact of current policy

Barriers to realisation

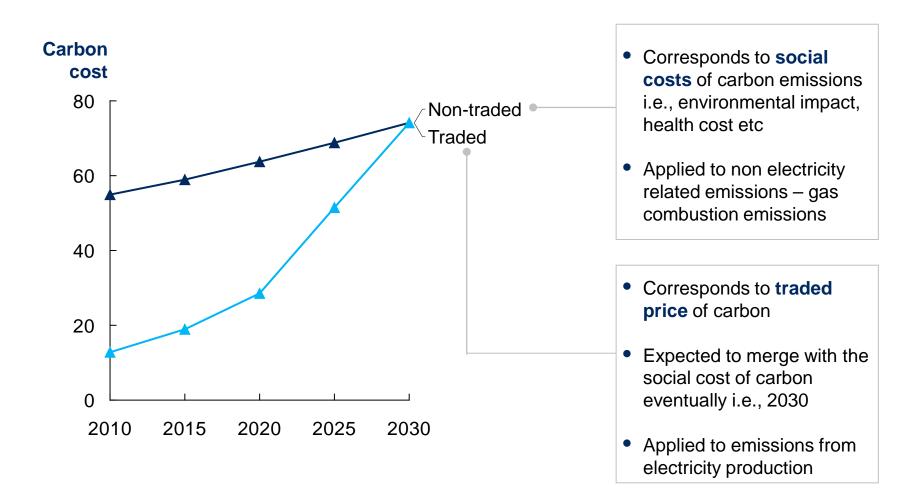
Analysis of design options

Achieving full potential will mean implementing a spectrum of solutions with varying savings and costs

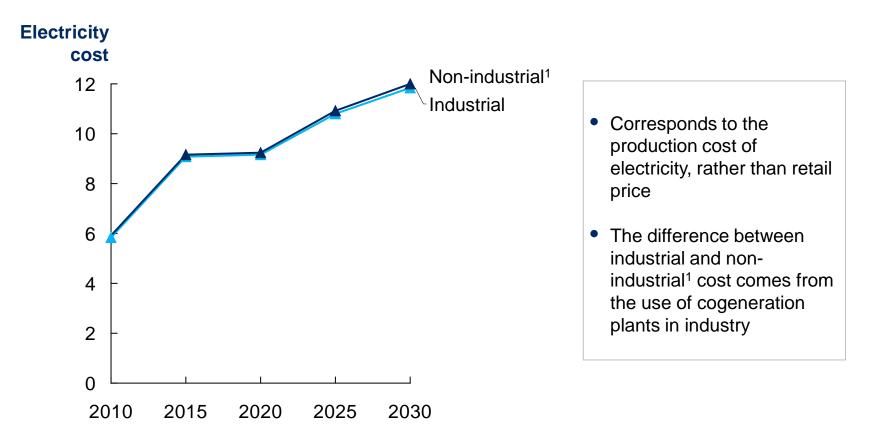


Note: Key assumptions for 2020: Discount rate: 10.5%, Electricity price: 9p/kWh, CO₂ price: £29/tCO₂e

Source: Team analysis


Key macro inputs - discount rate

percent


Key macro inputs – carbon costs

 \pounds/tCO_2e

Key macro inputs – electricity costs

p/kWh

Source: Inter-departmental Analysts' Group (IAG)

Residential: Abatement measures

	Description	
New build efficiency package	 Achieve energy consumption levels comparable to passive housing Reduce demand for energy consumption through improved building design and orientation Improve building insulation and airtightness; improve materials and construction of walls, roof, floor, and windows 	
	 Ensure usage of high efficiency HVAC and water heating systems 	
Retrofit building package, level 1 and level 2	 Level 1 retrofit - "basic retrofit" package Improve building airtightness by sealing baseboards and other areas of air leakage Weather strip doors and windows Insulate attic and wall cavities 	
	 Add basic mechanical ventilation system to ensure air quality Level 2 retrofit Retrofit to "passive" standard, in conjunction with regular building renovations Install high efficiency windows and doors; increase outer wall, roof, and basement ceiling insulation; mechanical ventilation with heat recovery, basic passive solar principles 	
Retrofit HVAC, residential	 In appropriate climates, replace electric furnace with high efficiency electric heat pump Reduce energy consumption from HVAC and AC through improved maintenance Improve duct insulation to reduce air leakage and proper channelling of heated and cooled air Ensure HVAC system is properly maintained, with correct level of refrigerant and new air filters 	
New and retrofit lighting systems	 Replace incandescent bulbs with LEDs Replace CFLs with LEDs 	
New and "retrofit" appliances and electronics	 Purchase high efficiency consumer electronics (e.g., PC, TV, VCR / DVD, home audio, set-top box, external power, charging supplies) instead of standard items When refrigerator/freezer, washer / dryer, dishwasher, and fan expires, replace with high efficiency model 	

Residential: Key abatement measure assumptions (1/2)

	Key volume assumptions	Key cost assumptions	Sources
New build efficiency package	 Savings potential is ~70% Assume that maximum site anargy consumption for HVAC 	 Incremental cost of energy efficiency new build – 66 USD/m2 In 2005, 6-7% cost premium on 	 UNEP (1) regulations in Sweden UNEP (1); Passive House Institute US and Germany (3); Expert interview; WBCSD (4) UNEP (1); IPCC Chapter 6 (2); Passive House Institute US and Germany (3); team analysis RS Means construction database (US); Faithful+Gould International Construction Cost Index (Europe and Japan); Expert interviews (ROW)
			 UC Berkley Program on Housing and Urban Policy
Retrofit building package level 1 and level 2	 Level 1 retrofit based on 15-25% heating savings potential Level 2 retrofit can reach heating/cooling consumption of 20-35 kWh / m2 (SITE energy) 	 Level 1 retrofit based on 6.26 EUR / m2 in W. Europe / Japan. Cost of retrofit 2 is 80 EUR / m2 in 2005 and 50 EUR / m2 in 2030 in Europe, scaled down by geography 	 Energy Star Home Sealing Program Assumptions for Estimation of H&C Savings (6); BSC case studies (7) ORNL (8), (9); Expert interview (10), Levy, et al (11); France MIES: "Facteur 4 et Bâtiment"

1 See following slides for detailed citations. Sources align to volume and cost bullets – left to right, top to bottom Source: Team analysis

Residential: Key abatement measure assumptions (2/2)

	Key volume assumptions	Key cost assumptions	Sources
Retrofit HVAC, residential	 For electric heat pump, assume up to 50% savings potential compared to electric resistance heating. Savings is slightly lower in extreme climates 	 Premium of 2400 EUR for a 20 kW unit Same size electric resistance heating unit costs EUR 3000 Same size electric heat pump costs EUR 5400 	 Energy Star Vendor interviews Penetration estimates from LBNL (12)
	 For HVAC maintenance, assume total 15% savings from proper duct insulation and proper maintenance 	 Assume duct insulation / maintenance job costs 635 EUR (aggressive cost estimate) to cover 150 sq. meter house 	 DOE / EERE (13); LBNL Home Energy Saver (14); Energy Star (15) LBNL Home Energy Saver (14); Energy Star (15)
New and retrofit lighting systems	 Lumen / W varies by technology: Incandescent: 12 CFL: 60 LED: 75 in 2010; 264 by 2020 In abatement case, assume full remaining share of incandescents switch to LEDs, and full remaining share of CFLs switch to LEDs 	 Learning rate for LEDs based on prediction to 2020, extrapolated to 2030 	 IEA (21); Daiwa (22); IEA presentation (23)
New and "retro- fit" appliances and electronics	 HE consumer electronics use up to 37% less energy Package of certified appliances in developed countries consume ~35% less energy 	 Electronics: 35-40 EUR price premium for bundle of electronics consuming 3 MWh/yr Appliances: 350 EUR price premium for bundle of electronics consuming 7 MWh/yr 	 ACEEE (24); LBNL (12); Data received directly from Energy Star program; UN (25), CEA (26) Energy Star calculators; industry data 2007 and 2008 LBNL (12); IEA (27)

1 See following slides for detailed citations. Sources align to volume and cost bullets – left to right, top to bottom

Source: Team analysis

Commercial and public admin: Abatement measures

	Description
New build efficiency package	 Reduce demand for energy consumption through improved building design and orientation Improve building insulation and airtightness; improve materials and construction of walls, roof, floor, and windows Ensure usage of high efficiency HVAC and water heating systems
Retrofit building envelope	 Level 1 retrofit - "basic retrofit" package Improve building airtightness by sealing areas of potential air leakage Weather strip doors and windows
Retrofit HVAC and HVAC con-trols, residential	 When HVAC system expires, install highest efficiency system Improve HVAC control systems to adjust for building occupancy and minimize reheating of air
New and retrofit lighting systems	 Replace incandescent bulbs with LEDs Replace CFLs with LEDs Replace inefficient T12s / T8s with new super T8s and T5s New build – install lighting control systems (dimmable ballasts, photo-sensors to optimize light for occupants in room) Retrofit – install lighting control systems (dimmable ballasts, photo-sensors to
New and "re- trofit" appliances and electronics	 optimize light for occupants in room) Purchase high efficiency electronics instead of standard items When refrigerator/freezer, expires, replace with high efficiency model

Commercial and public admin: Key abatement measure assumptions (1/2)

	Key volume assumptions	Key cost assumptions	Sources
New build efficiency package	 61% savings potential on HVAC and water heating for new builds using "maximum technology" 	 In developing regions, 5% cost premium on new builds with "high efficiency package." 4% premium in developed regions The United States Green Building Council lists a 2.5% cost premium for commercial buildings 	 NREL (30); NREL (31); UNEP (1) RS Means construction database (US); Faithful+Gould International Construction Cost Index (Europe and Japan); Expert interviews (ROW) The NY Times; Debating the Green Building Premium
Retrofit building package level ¹	 Assume 48% savings potential in cold areas, and 11% savings potential in warm areas 	 Retrofit is 4.10 EUR / m2 in W. Europe / Japan. Scaled down to other countries based on GDP In the U.S. 38% of survey respondents stated a cost premium of 5-10% over conventional retrofit projects, 37% believe the cost premium to be between 1-5% 	 NIST (32) Industry expert interviews Joint study between Deloitte and Charles Lockwood
Retrofit HVAC, commercial	 HVAC system retrofit: assume similar savings potential compared to residential (~20%) HVAC controls: 10-20% savings potential 	 1000 EUR premium for every 5 tons (~17000 W) of capacity installed 5000 EUR cost for retrofit control system in 1700 m2 building in developed countries consuming 1 kWh/m2 of energy for heating 	University of Texas (34):

Source: Team analysis

Commercial and public admin: Key abatement measure assumptions (2/2)

	Key volume assumptions	Key cost assumptions	Sources
New and retrofit lighting	remaining share of	 Learning rate for LEDs based on prediction to 2020, 	 IEA (21); Daiwa (22); IEA presentation (23)
systems	incandescents switch to LEDS, and full remaining share of	extrapolated to 2030	 Rubenstein, et al (35)
	CFLs switch to LEDs		 Rubenstein, et al (35)
	 Assume maximum switch from old T12 and T8s to new T8 / T5s 		
	 For lighting control systems Achieve 50% savings potential in new build Assume 29% savings 	 Retrofit is 4.10 EUR / m2 in W. Europe / Japan. Scaled down to other countries based on GDP 	
	potential in retrofit	 In the U.S. 38% of survey respondents stated a cost premium of 5-10% over conventional retrofit projects, 37% believe the cost premium to be between 1-5% 	
New and	 48% savings potential in office 	• 1.5 EUR price premium per item	• LBNL (12)
"retrofit" appliances and	electronics	for high efficiency charging devices and reduction in standby loss	 Energy Star calculator
electronics	 17% savings potential in commercial refrigerators 		
	commercial reingerators	 150 EUR price premium refrigeration units consuming 3 MWh/yr 	 Energy Star calculator

1 See following slides for detailed citations. Sources align to volume and cost bullets – left to right, top to bottom Source: Team analysis

Key sources for Buildings sector

- Baseline data sources
 - IEA 2004 and 2007 World Energy Outlook, and associated back-up data directly from IEA
 - Levine, M., D. Ürge-Vorsatz, etc. al. Residential and commercial buildings. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
 - Rue du Can, S. and Price, L: "Sectoral trends in global energy use and greenhouse gas emissions" Energy Policy 36 (2008) 1386–1403
 - Brockett, D., Fridley, D. et al. "A Tale of 5 Cities; China Residential Energy Consumption Survey" Lawrence Berkeley National Labs
 - Department of Energy "Annual Energy Outlook 2007"
 - EDMC Handbook of Japanese energy and Economic Statistics, 2007
 - Ghisi, Gosch, and Lamberst: "Electricity End-uses in the residential sector in Brazil" Energy Policy Vol 35, Issue 8 (2007)
 - India Bureau of Energy Efficiency. "High performance buildings and development Project Team Meeting" Beijing, Mar 200

.....

- (1) United Nations Environment Program: "Buildings and Climate Change" 2007
- (2) IPCC Chapter 6 "Residential and Commercial buildings": 2006
- (3) Passive House Institute: <u>www.passivhaustagung.de</u>, <u>www.passivehouse.org</u>
- (4) World Business Council for Sustainable Development <u>www.wbcsd.org</u>
- (5) RSMeans construction cost data base (US); Faithful and Gould Construction Cost Index (Europe and Japan)
- (6) ENERGY STAR Home Sealing Program Assumptions for Estimation of Heating & Cooling Savings internal document used to generate Energy Star savings potential
- (7) Building Sciences Corporation: Energy Case Studies www.bsc.com
- (8) ORNL "Progress Report of the National Weatherization Assistance Program" 1997 http://weatherization.ornl.gov/pdf/con450.pdf
- (9) ORNL TEXAS FIELD EXPERIMENT: Performance of the Weatherization Assistance Program in Hot-Climate, Low-Income Homes, 2008 (see page 20) <u>http://weatherization.ornl.gov/pdf/CON%20499.pdf</u>
- (10) Expert Interview with Building Envelope retrofit company
- (11) Levy, et al. "The public health benefits of insulation retrofits in existing housing in the United States" Environmental Health, 2003
- (12) LBNL "Status Report- Estimates for the ENERGY STAR® Voluntary Labeling Program (LBNL 56380)
- (13) DOE / EERE "A Consumer's Guide to Energy Efficiency and Renewable Energy": website:http://www.eere.energy.gov/consumer/your_home/space_heating_cooling/index.cfm/mytopic=12310
- (14) LBNL Home Energy Saver case example: <u>http://hes3.lbl.gov/hes/input3.taf?f=UpgradeReport&session_id=533065</u>
- (15) Energy Star http://www.energystar.gov/index.cfm?c=heat_cool.pr_properly_sized

Key sources for Buildings sector

- (16) ACCEE: http://www.aceee.org/consumerguide/waterheating.htm#lcc
- (17) Eco-hot water report for European CommissionEco-design of water heaters, Report 2, page 15 http://www.ecohotwater.org/
- (18) Frost and Sullivan: United States Water heating equipment markets" 2003
- (19) National Renewable Energy Lab (NREL) Technical potential to reduce fossil fuel usage through Solar Water heating. Paper 640-41157; 2007
- (20) Fuji Keizai Co Ltd; Water heating report
- (21) IEA Light's Labour's Lost, 2006
- (22) Daiwa analyst report "LED Sector: The future's bright, the future's green" March 2007
- (23) IEA: Presentation by Paul Waide "Why we're here: The potential to lower global lighting energy consumption"
- (24) Source: ACEEE Report E083 The Size of the U.S. Energy Efficiency Market: Generating a More Complete Picture, page 14
- (25) UN Economic and Social Affairs: "Trends in consumption and production: household energy consumption" <u>http://www.un.org/esa/sustdev/publications/esa99dp6.pdf</u>
- (26) CEA: www.ce.org
- (27) IEA: "Cool Appliances" 2003
- -----
- (30) National Renewable Energy Laboratory (NREL) / Department of Energy: "Assessment of Technical Potential for Achieving Net Zero-Energy Buildings in Commercial Sector"
- (31) NREL / Department of Energy: "Methodology for Modeling Building Energy Performance Across the Commercial Sector"
- (32) National Institute of Science and Technology "Investigation of the Impact of commercial Building Airtightness on HVAC energy use." NISTIR7238
- (33) Energy Information Administration, "EIA Technology Forecast Updates Residential and Commercial Building Technologies Reference Case", Navigant Consulting, Inc., Reference Number 117943, September 2004.
- (34) University of Texas ; Energy Efficient Buildings, chapter on Variable Air Volume systems
- (35) Rubenstein, Neils, and Colak. "Daylight, Dimming, and the California Electricity Crisis" LBNL, 2001
- -----
- Other sources used:
- Department of Energy LED research program
- IEA "Promoting Energy Efficiency Investments: Case Studies in the Residential Sector" 2008
- Ecofys: "U-values for improving building performance"
- BUTE, under supervision of Zoltan Nagy: "Fuzzy Logic Control of Central Heating Systems" 2003
- Japan "Top Runner" program guide, 2006
- Magyar, Z. "Achieving Energy Savings in Europe through the Energy Performance of Buildings Directive (EPBD)". University of Pecs, Hungary

Industrial: Abatement measures (1/2)

	Description
Motor systems	 When suitable, replace fixed load motors by Variable Frequency Drives Use higher efficiency motors - – improved impeller share, use of higher quality materials etc Install soft starters Replace oversized motors
Pumping systems	 Run pumps at Best Efficiency Point Use pumps with reduced internal friction Replace large pumps by a cascade of smaller pumps
Compressed air systems	 Install a Demand Manager Device Reduce intake temperature Reduce pressure drop at intake
Lighting	 Install lighting control systems (dimmable ballasts, photo-sensors to optimize light for occupants in room)
Refrigeration	 When refrigerator/freezer, expires, replace with high efficiency model
HVAC controls	 Improve HVAC control systems to adjust for building occupancy and minimize re-heating of air

Industrial: Abatement measures (2/2)

	Description
Low temperature heating processes	Furnace insulation and heating optimization
High temperature heating processes	 Iron and Steel Use DC arc furnaces Preheat scrap Employ eccentric bottom tapping in furnace Improve process control using neural networks Improve lubrication Use direct casting technique Glass Use top heating in electrolysis cell Capture heat from electrolysis cells Aluminum Reduce anode cathode distance Capture heat from electrolysis cells

Industrial: Key abatement measure assumptions (1/3)

	Key volume assumptions	Key cost assumptions
Motor systems - General	 Variable speed drives have a savings potential of 50%, however can be applied only to 10% of all installed motors (example from chemical industry) 	 Capex: 68 EUR/MWh Incremental capex for replacing 2X75kW motors- EUR 50,000
	 Best practice suggests a 30% over sizing, however ~60% of all motors used in industry are oversized to ~50% of requirement i.e., an extra 20% 	 Capex: -2.5 EUR/MWh 500kW motor is expected to cost EUR 100,000. Assuming a 15% cost reduction for a 20% capacity reduction
	 High efficiency motors are expected to have 3-5% savings over inefficient ones 	 Capex: 31 EUR/MWh Incremental capex for replacing 10X22kW motors- EUR 50,000
	 Installation of soft starters can reduce electricity consumption by 3% 	 Capex: 12 EUR/MWh Incremental capex for replacing 5X20kW motors- EUR 7,500
Motor systems - Pumps	 Running pumps at their Best Efficiency Point can reduce electricity consumption by 25% 	 Capex: 131 EUR/MWh Incremental capex for replacing 5X50kW motors- EUR 45,000
	 Internal coating to reduce friction has a potential of 11% 	 Capex: 411 EUR/MWh Incremental capex for replacing 3X50kW motors- EUR 115,000
	 Cascading multiple pumps instead of using a single large pump can potentially have a savings potential of 28% 	 Capex: 39 EUR/MWh Incremental capex for replacing 80kW motor- EUR 15,000

Industrial: Key abatement measure assumptions (2/3)

	Key volume assumptions	Key cost assumptions
Compressed air systems	 Installation of a Demand Manager Device can potentially lead to a 5% reduction in energy consumption 	 Capex: 2.6 EUR/MWh Incremental capex for replacing 360kW motor- EUR 5,000
	 Reducing the temperature of intake air has a potential of 2% 	 Capex: 3.1 EUR/MWh Incremental capex for replacing 150kW motor- EUR 3,000
	 Reducing pressure drop at intake has a potential of 7% 	 Capex: 0.1 EUR/MWh Incremental capex for replacing 150kW motor- EUR 100
Lighting	 For lighting control systems assume 29% savings potential 	 Retrofit is 4.10 EUR / m2 in W. Europe / Japan.
Refrigeration	 17% savings potential in commercial refrigerators 	 150 EUR price premium refrigeration units consuming 3 MWh/yr
HVAC	 HVAC controls: 10-20% savings potential 	 5000 EUR cost for retrofit control system in 1700 m2 building in developed countries consuming 116 kWh/m2 of energy for heating

Source: Case studies from actual implementation; Energy Star; LBNL; University of Texas; IEA; team analysis

Industrial: Key abatement measure assumptions (3/3)

	Key volume assumptions	Key cost assumptions
Low temperature heating processes	 Improve furnace insulation, reduce size of furnace entry, install self closing door and use residual heat has a potential of 15% 	• Capex: 54 EUR/MWh
High temperature heating processes	 Iron and Steel Use of DC arc furnaces have a potential of 20% Preheating scrap before introduction into furnace can improve efficiency by 14% Eccentric bottom tapping of the furnace has a potential of 3% Employment of neural networks for process control has a potential of 7% Improved lubrication can reduce energy consumption by 3% Direct casting reduces overall energy consumption by 30% Glass Top heating in the electrolysis cell has a potential of 4% Heat capture from electrolysis cell can reduce electricity consumption by 10% Aluminum Reduction of the distance between cathode and anode has a potential of 16% Heat capture from electrolysis cell can reduce electricity consumption by 10% 	 Capex: 8 USD/t steel Capex: 10 USD/t steel Capex: 5 USD/t steel Capex: 1 USD/t steel Capex: 1 USD/t steel Capex: Nil Capex: 138 USD/t steel Capex: 4 USD/MWh Capex: NA¹ Capex: NA¹ Capex: NA¹

Source: EPA: Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Iron and Steel Industry; Case studies from actual implementation; EPA: Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry; team analysis

.

Appendix contents

Baseline electricity demand

Full abatement potential

Impact of current policy

Barriers to realisation

Analysis of design options

Methodology for mapping key measures to existing policies

Resource	List of materials/experts	Approach		
Public reports	 'Saving Energy Through Better Products and Appliances' report by DEFRA December 2009 Impact assessments: Products policy, Building Regulations, Green Deal, EU ETS, CRC, CCA, CERT and CESP 'What measures does the Green Deal cover' DECC report 	 Established coverage and quantification of savings from policies to key measures (mainly Products Policy and Building Regulations) Established relative importance of policies to coverage of potential of each measure (mainly Products Policy and Building Regulations) 		
DECC materials	 'Existing Energy Efficiency Policies' document March 2012 'Electricity Demand Reduction – a summary of relevant analysis' document February 2012 CRC modelling estimates 'Modelling the Initial Effects of the Climate Change Levy' report 	 Provided quantification of savings from policies against key measures not covered in public reports (e.g., Green Deal, CRC and CCA) 		

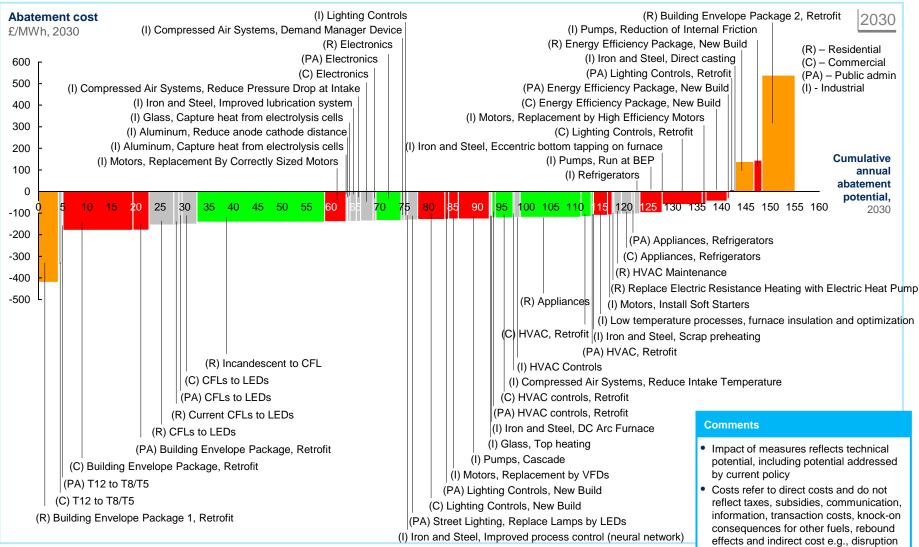
The uncaptured potential lies within lighting controls, building efficient improvements and pump Majority of potential captured (>50%) efficiency measures

Measure category		Total Abatement abatement potential potential, captured by		Uncaptured abatement	Targeted interventions		Semi-targeted energy efficiency policies	Policies with broad impact
		2030 TWh	policies TWh	potential TWh	Products Policy	Building Regs	Green Deal	EU ETS, CRC & ECA
Residen- tial	Incandescent to CFL bulbs	26.1	8.6 <mark>17.5</mark> 26.1	0	25.6	0.6	0.0	
	Appliances and electronics efficiency	17.6	12.8	4.8	12.8	0.0	0.0	4
	Building efficiency improvements	14.7	5.2	9.4	0.0	2.5	2.7	
Services	Building efficiency improvements	22.5	0.6	21.9	0.0	0.2	0.3	
	Lighting controls	15.6	1.1	14.5	0.0	0.8	0.3	3
	HVAC and controls	6.9	4.1	2.8	2.6	1.2	0.3	
Industrial	Pump efficiency measures	12.6	0.1	12.5	0.1	0.0	0.0	
	Motor system optimisation ¹	8.1	0.8	7.3	0.8	0.0	0.0	3
	Boiler insulation and optimisation	2.9	0	2.9	0.0	0.0	0.0	
Total		127.0	50.9	76.1	41.9	5.3	3.7	10 ²

1 Includes both measures for optimising motor operations and efficiency measures and replacement of oversized motors by correct size and VSDs 2 Impact of EU ETS accounts for 7 TWh of savings is included in the baseline and therefore does not contribute to the abatement potential

SOURCE: DECC projections; team analysis

DRAFT REPORT


Some potential captured (25-50%)

Little potential captured (<25%) Policy does not apply

DRAFT REPORT

Current policies capture large potential in residential, but have a low capture rate in services and industry

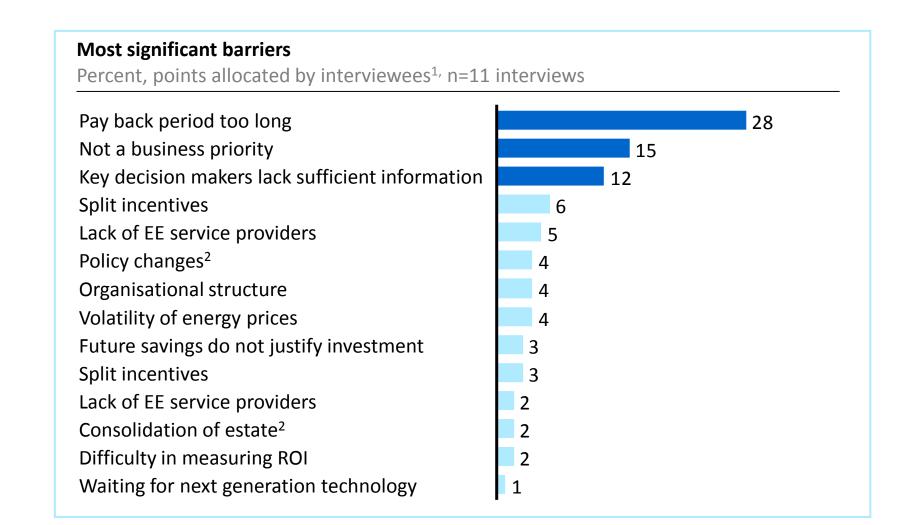
😑 Majority of potential captured (>50%) 😑 Some potential captured (25-50%) 🛑 Little potential captured (<25%) 🔵 Policy impact not considered

Note: Key assumptions for 2030: Discount rate: 10.5%, Electricity price: 12p/kWh, CO₂ price: £74/tCO₂e Note: Analysis of capture of current policies has been done at the level of the 9 measure groups identified, not individual measures Source: Team analysis

100

Appendix contents

Baseline electricity demand


Full abatement potential

Impact of current policy

Barriers to realisation

Analysis of design options

Interviewees identified 'pay back period too long,' 'not a business priority' and 'lack of information' as the most significant barriers

1 Interviewees were given 100 points to allocate among 11 selected barriers and were asked to allocate them according to which barriers were most significant 2 Added by interviewees

SOURCE: Interviews

Interview guide 1/2

	Preliminary questions			
Untapped opportunities	 What are untapped electricity energy efficiency (EE) opportunities in your sector? Do you see EE investments in electricity on whole as being cost efficient? Do you see investments in EE as value generating or a cost? How does this differ by type of investment? How significant do you see these opportunities being? (Tech provider) What types of products/ services are you developing to tap into this market? (Utilities) What types of electricity EE services are you providing and what areas are you seeking to grow? 			
	 (Financial institution) Which sectors/ customers do you see as most promising for EE financing? What products does your organisation have/plan to launch? 			
Organisation/ approach	 (User) Within the organisation, who has responsibility for EE (e.g., compliance, financing, decision-making,etc)? Please provide an organisation chart. Which of the following best describes your organisation's current approach to EE? 1 A core compliance and risk management objective 			
	 2 Important to reputation in an era of growing focus on climate change/ sustainability 3 A value driver unlocking significant costs saving potential 4 A source of competitive advantage In your organisation, what are planning horizons for new equipment purchases (e.g., 5 years out, wait until it breaks, etc) and what criteria are used for selecting what equipment is purchased? 			
Current policies	 Which energy efficiency policies is your organisation required to comply with (e.g. CRC Energy Efficiency Scheme, Building Regulations)? To what extent has your organisation made changes based on these policies? On a scale of 1 to 5, Please describe the familiarity of key decision makers in your organisation with the policies/ initiatives governing energy efficiency (e.g., Green Deal, Enhanced Capital Allowance, etc)? 			
	 1 Not familiar with current policies 2 Understand the general aim of current policies, but are not familiar with the details 3 Familiar with current policies, but do not fully understand the implications 4 Understand the details of current policies, but have not been able to leverage or benefit from them 5 Understand the details of current policies, how they affect us, and find them beneficial How much of the total electricity EE opportunity is addressed with current policy or policy that has been announced to date? (User/ Tech provider) What programmes/ incentives are you aware of that would allow you to realise your organisation's EE potential? Which incentives/ programmes have had the most impact on your business? (Facilities management) What are you currently doing to achieve electricity EE in the buildings you manage? What is the attitude of your tenants towards EE? 			

Interview guide 2/2

	Preliminary questions			
Barriers	 Please allocate 100 points among the following barriers with the largest barriers receiving more points. Please explain your choices. 			
Darriers	 Financing difficult to obtain Key decision makers lack sufficient information 			
	 Pay back period too long Future savings do not justify investment 			
	 Not a business priority/ non-core Difficulty in measuring return on investment 			
	 Volatility of energy prices Waiting for next generation technology to make investment 			
	 Cost of production shut down Lack of EE service providers in marketplace 			
	 Organisational structure does not allow for elevation of EE issues to decision makers 			
	 Split incentives (e.g., one party pays, while the other benefits) 			
	 What are key challenges to capturing full efficiency opportunity? 			
	 Do you feel your organisation has the right tools/ information to properly asses the value and risk associated with EE investments? 			
	 Do you feel that the energy efficiency industry is sufficiently developed so that you/ users have access to sufficient funding and diversity of service providers? (Utilities) What programmes have you tried to overcome these barriers? What has been successful? Unsuccessful How closely do you measure electricity use (e.g., by end use, production process, etc.)? 			
	 (User) Has your organisation considered any large EE investments? If so, why did you decide to pursue them or not? Please could you walk us step by step through process to determine how significant hurdles were (e.g., awareness of opportunity, navigating available information, securing business support, accessing financing, measuring impact, supporting documentation to receive benefits, etc). For successful projects, what barriers did you have to overcome and what were key success factors? 			
	How much would it cost you (time, additional investment, etc) to overcome these key barriers?			
Policy solutions	 What are key gaps in current policy? What will it require to overcome these barriers? What policies have you seen in other countries that have helped driver higher electricity EE realisation? 			
	How are you currently managing impact? What shallonges have you faced?			
M&V	 How are you currently measuring impact? What challenges have you faced? Can you think of any innovative ways to measure and validate the additionality of EE measures? 			

Appendix contents

Baseline electricity demand

Full abatement potential

Impact of current policy

Barriers to realisation

Analysis of design options

.

ISO NEW ENGLAND Case example – ISO New England FCM mechanism (1/2)

Context

- ISO's FCM compensates for the structural limitations of the electricity market, such as wholesale price increases when demand is greater than system capacity and missing revenues for generators during peak demand due to spot energy market price caps, by reducing market power and increasing reliability
- Provides investors with predictable revenue streams as capacity providers receive an up-front, guaranteed payment for committing capacity to the markets, and a second inducement in the form of dispatch payments when there is a shortage of capacity
- Unique market which enables energy efficiency and other demand resources to compete directly with generators

Description of mechanism

- Demand side inclusion Demand resources were included in New England's FCM in 2006 and includes energy efficiency, demand response and distributed generation projects
- Forecasting ISO-NE forecasts peak capacity needs of the power system three years in advance and holds annual auctions to purchase the power resources needed to satisfy future requirements
- Auction Forward auctions are held three years before the delivery year and the generator's 'forward' capacity obligations and amount of capacity put out to bid are established in advance of each auction
- **Payment** ISO-NE pays participants during the delivery period based on the delivered capacity/demand reduction and the auction clearing price. Shortfalls in available capacity/demand reduction result in loss of payment, as sponsors are only paid for capacity/demand reduction delivered
- Certification Annual certification of compliance with the approved M&V plan is also required, along with participation in any audits and reviews deemed necessary by ISO-NE
- Participants Demand side participants include the state regulatory agencies in New England, Conservation Services Group, Vermont Energy Investment Corporation, Environment Northeast, Regulatory Assistance Project and Conservation Law Foundation

Key facts

Ney lacis					
Impact	•	More than 3,400 MW of demand resources qualified in the first auction in February 2008 (nearly 9% of the total qualified capacity), and 2,554 MW (with 655 MW from energy efficiency) cleared the auction, contributing substantially to eliminating the need for new generating capacity Energy efficient resources have increased from 655 MW (26% share of			
	•	total demand resources) to 1167 MW (35% share) from the first (Dec 2008) to the fourth auction (Aug 2010) Participants receive FCA credit for delivering capacity/demand reduction equal to the clearing price (\$/kW-mo) x cleared capacity (MW) x 1,000			
Cost	•	Cost to ISO NE - in 2010 total FCM payments were \$856 million Demand side participants have to pay financial assurance which consists of a deposit (\$2/kW x total qualified kWs) and the cost of an entry (CONE) in the FCM is (\$7.50 per kW of demand capacity) Demand side participants also pay for the energy efficiency measures			
M&V/ addition- ality	•	 which encourage demand reduction with their customers ISO M&V Standards Manual outlines the minimum requirements Baseline conditions are specified by the participant and involve one of the below methods depending on the demand reduction measure: Historical hourly load or output data if demand reduction is actively controlled by the Project Sponsor Rolling average of historical hourly load or output data over some period prior to the demand reduction if demand reduction is controlled by end use personnel/ energy management systems For projects in which operating equipment is replaced with a more efficient equivalent unit, the baseline condition is the MW load of that operating equipment 			

Source: "Energy efficiency as a resource in the ISO New England forward capacity market" report; ISO NE website; ISO NE "Measurement and Verification of Demand Reduction Value from Demand Resources" manual; annual reports; team analysis

ISO NEW ENGLAND Case example – ISO New England FCM mechanism (2/2)

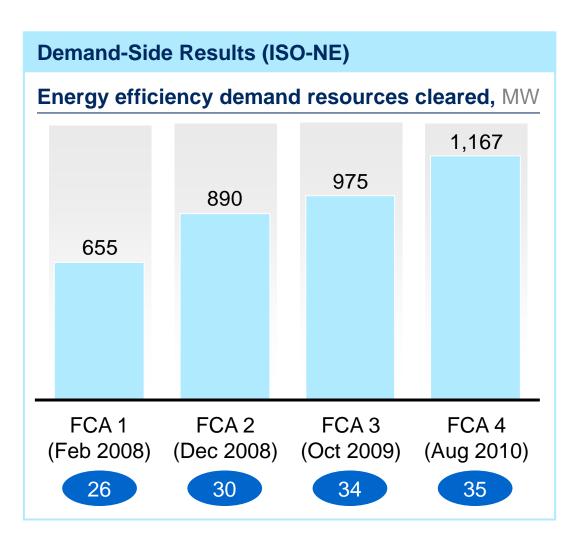
Potential benefits in U.K. context

- Provide incentives for demand side resources such as energy efficiency to compete effectively with supply resources
- Provide demand resources and new supply providers with long-term stability to encourage investment
- There are potentially significant additional revenues for energy efficiency associated with participating in the FCM
- There is great potential for partnership with energy efficiency focused entities e.g., other participants and schemes

Challenges in U.K. context

- Limited mandate of the UK system operator (National Grid) compared to ISO-NE who are responsible for total system capacity planning and purchase (likely to be addressed by EMR)
- Difficulty in predicting demand and planning capacity requirements up to five years in advance (likely to be addressed by EMR)
- Highly liquid markets (APX UK and ICE) with unregulated pricing
- Dominance of integrated players in generation and retail
- Overlap with current capacity payments such as Renewable Obligations (green certificates) and feed-in tariffs and tax breaks for some renewable projects
- Challenges in measurement and verification of demand resources
- Constructing a mechanism that drivers demand reduction rather than demand response (which shifts rather than reduces demand)

Implications for U.K. market

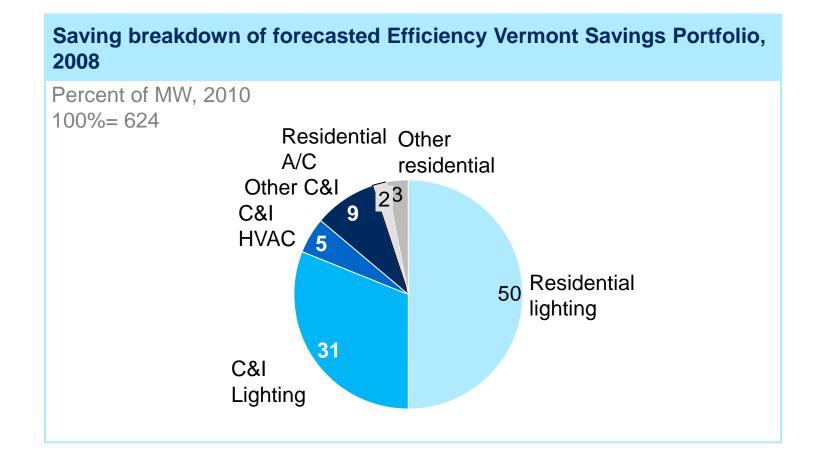

- The potential from demand resources (especially energy efficiency and demand response) will need to be established accurately and a robust measurement and verification process implemented to ensure system stability
- Multiple horizon auctions may need to be considered based on the payback period of technologies
- Mechanisms will need to be developed to handle interconnectivity with supply resources in other European markets
- Current capacity payments such as Renewable Obligations and feed-in tariffs will need to be phased out to ensure a fair market
- The auction process should make end-use energy efficiency resources more cost-competitive while providing long-term stability for investment recovery

```
Source: "Energy efficiency as a resource in the ISO New England forward capacity market" report; ISO NE website and reports; team analysis
```

ISO NEW ENGLAND Energy efficiency resources as a proportion of total demand resources cleared have increased in successive auctions

DRAFT REPORT

% of total demand resources cleared


ISO NEW ENGLAND Principles of Forward Capacity Market auction

- FCM run by a regional system operator which:
 - Collects supply bids to meet planning targets for regional peak capacity needs
 - Runs a competitive auction to establish capacity prices
 - Procures capacity at the market clearing price to meet the resource adequacy requirements of the region
- The regional system operator is the sole buyer in this market
- Load Serving Entities (LSEs) are individually responsible for meeting their customers' peak loads, and are allocated a pro rata share of the capacity costs incurred by the system operator to meet those loads
- The forward auctions in ISO-NE are held three years before the delivery year and the LSEs' 'forward' capacity obligations and amount of capacity put out to bid are established in advance of each auction
- Three years was selected to roughly match the minimum lead time required for the construction or development of new capacity once demand- and supply-side resources receive a price commitment from the auction
- In particular, it was chosen to reflect a reasonable construction period for new peaking (e.g., gas-fired) power plants, as well as a reasonable "ramp up" period for energy efficiency projects
- The capacity bid into the market (the "supply curve") is comprised of capacity commitments (MW) offered by existing and new resources. These markets and associated auction rules are designed to allow new resources, when needed, to set the clearing price. Existing resources are generally "price-takers" in the sense that they are unlikely to set price unless there is over-supply of existing capacity in the region
- The market clearing price becomes the uniform price for all capacity that clears the auction. That is, the market clearing price is paid to all capacity committed by existing resources and all new resources that have bid into the auction at or below that clearing price
- Sample calculation of revenue for a successful bidder
 - Assume a service provider cleared 20 MW of demand-side resources in a capacity auction that had a clearing price of \$100/MW-day, and that the provider delivered the 20 MW as contracted during the year. The annual revenue stream for the year would be 20 MW * \$100/MW-day * 365 days = \$730,000
- Only resources that clear the market receive capacity payments
- ISO-NE allows new resources to lock in a capacity price for up to five years (with a one-year minimum term), regardless of clearing prices in subsequent auctions
- Existing resources, including existing demand-side resources, are eligible only for a one-year price commitment
- ISO-NE impose stiff penalty charges if a unit fails to perform when obligated to run

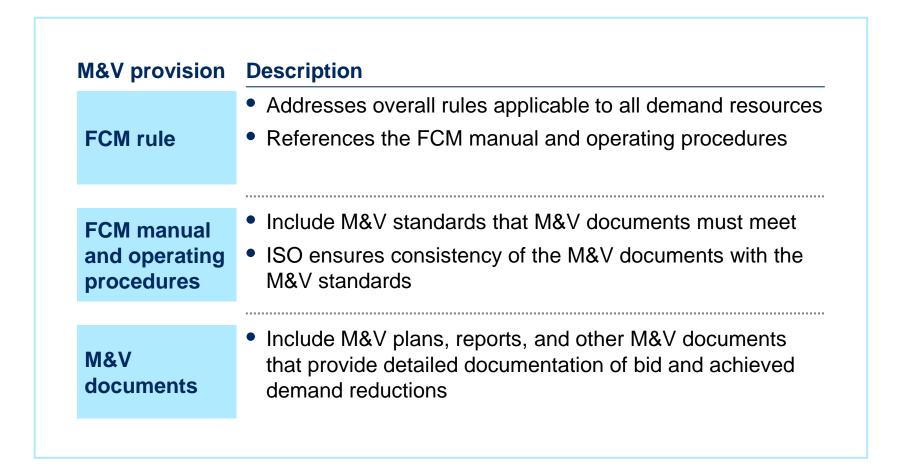
Source: "Energy efficiency as a resource in the ISO New England forward capacity market" report; ISO NE website; team analysis

▲ ISO NEW ENGLAND Residential lighting is the largest source of energy efficiency savings for Efficiency Vermont, the second largest demand resource participant in ISO-NE's FCM

C&I - commercial and industrial

Source: "Energy Efficiency as a resource in the ISO New England Forward Capacity Markets" report

Advantages and disadvantages of energy markets with forward reserve requirements and centralised capacity markets


Advantages

- Provides transparent, in-market mechanism for the system operator to acquire necessary resources on behalf of deficient LSEs
- Multi-year forward commitment period allows additional supply to compete in market, thereby reducing price volatility
- Supports retail competition by facilitating capacity transactions to address load migration and assist small LSEs
- Allows incorporation of demand-response in the forward capacity market design, which increases competition and helps reduce system-wide cost of ensuring reliability
- Allows for locational forward capacity requirements, which further improve pricing and deliverability of capacity in transmissionconstrained areas
- Facilitates monitoring and mitigation of market power

Disadvantages

- Added complexity of market design imposes high implementation costs for the Regional Transmission Organisation and market participants
- Complex market design also carries risks of initial design flaws and inefficiencies
- Lengthy forward commitment periods can increase supplier risks. Also increases risk that suppliers default on their forward obligations
- Can create political backlash because clearly visible capacity prices draw attention to the high cost of ensuring reliability at current target reserve margins; locked-in forward commitment could appear unnecessarily high cost after change in market conditions reduces resource needs

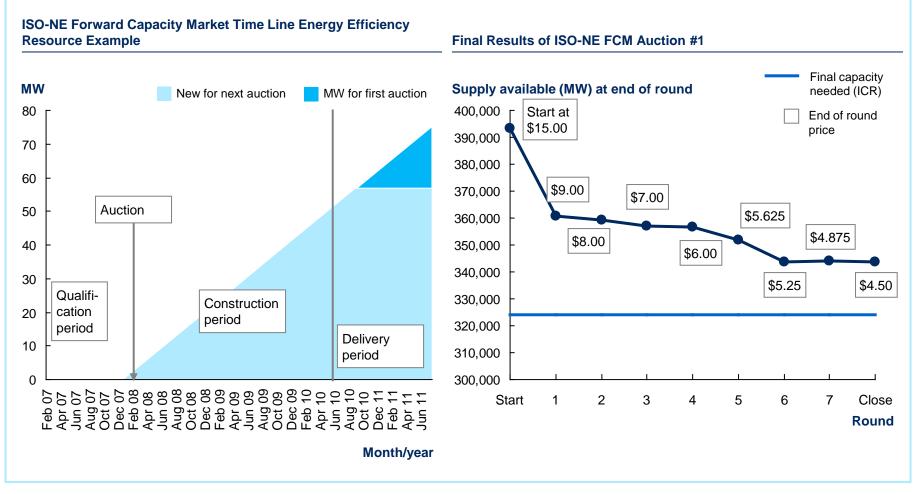
ISO NEW ENGLAND M&V provisions are communicated and defined across a variety of levels

ISO NEW ENGLAND Description of M&V documents demand reduction suppliers have to submit to ISO

	Purpose	Schedule for submission to ISO, and ISO review
M&V plan	 Describe the M&V supporting the demand reduction value bid into the FCA M&V must be consistent with the M&V standards in the FCM manual 	 In the qualification phase, prior to the FCA Reviewed by ISO to ensure consistency with the M&V standards
M&V summary reports	 Report the achieved demand reduction value verified by M&V Reference the M&V protocols and performance data documented in the M&V plan or the M&V reference report 	 Submitted monthly with the monthly FCM settlement report Reviewed by ISO to ensure consis- tency with the M&V standards
M&V reference report (optional)	 Document and update the verified demand reduction value during the commitment period based on M&V performed during the commitment period Document major M&V studies 	 During the commitment period, according to schedule provided to ISO as part of M&V Plan Reviewed by ISO to ensure consistency with the M&V Standards

ISO NEW ENGLAND Step by step process overview of FCM mechanism (1/2)

	1	2	3	4
	Eligible participants and resources	FCM time line	Planning for and qualification of resources	Project "construction"
escription	 Different types of capacity resources are eligible to participate in the FCM on an equal footing, including: traditional power generation; intermittent resources and demand resources Demand resources can participate in any of several categories, including real-time demand response, load management, distributed generation, and energy efficiency The FCM is the first capacity market in the country to allow energy efficiency assets to participate as a resource in a capacity market – capacity reduction is fully equivalent to capacity supply Participants have to meet specified eligibility requirements, payment of dues, and providing financial assurance to back commitments Membership is in different "sectors," with energy efficiency classified as part of a sector labeled "Alternative Resources" 	 The period of time before each auction is used by resource providers ("project sponsors") to forecast and plan projects, by ISO-NE to determine the future capacity needs of the region, and by sponsors to work toward qualification of projects to participate in the market After successful participation in an auction, project sponsors undertake the implementation of the project in preparation for the delivery of capacity during the delivery period 	 the level of capacity that can be made available for the next (starting three-years out) delivery period and the price the project requires from the auction in order to proceed For efficiency providers this means that a forecast must be developed for the portfolio of measures to be installed and associated capacity savings that will accumulate by a date three years in the future Energy efficiency portfolio must be qualified by ISO-NE to participate in the auction through submission and approval of a formal Qualifications Package, which includes The capacity reduction value, bid price, and bidding strategy to be used in the 	 The three-year lead time from auction to delivery period is designed to allow sufficient time for the construction or development of new resources once they receive a price commitment from the auction For energy efficiency projects, this is a "ramp-up" period, with capacity reduction capacity growing as measures that make up the project are installed In order to assess that sufficient progress is being made toward the final commitment, ISO-NE requires that projects submit as a part of their Qualifications Package a schedule of capacity reduction milestones Values of capacity reduction reached as of these interim dates will be reported and the approved M&V plan will be used to verify performance Auctions for capacity in subsequent commitment years must include resources that have not been committed in prior auctions


Step by step process overview of FCM mechanism (2/2)

	5 Financial assurance	6 7 Delivery period Auction mech	
Description	 As a means of guarantee against the consequences of failure of projects to deliver their capacity obligations, ISO-NE requires sponsors of all new resource projects (supply and demand) to provide financial assurance against non-performance. Deposits are due at several interim points throughout the construction period, to be released once the project is declared "commercial" and tested or verified for its full capacity rating at the delivery date. If the resource is only capable of delivering less than the amount of its commitment, the project sponsor forfeits the portion of its financial assurance associated with the capacity shortfall 	 are required during the delivery period, and payments are received based on the delivered capacity and the auction clearing price for that delivery period Shortfalls in available capacity result in loss of payment, as sponsors are only paid for capacity delivered Annual certification of compliance with the approved M&V plan is also required, along with participation in any audits and reviews deemed necessary by ISO-NE All existing resources receive a one-year commitment to provide capacity, paid at the clearing price of the auction associated with the delivery period. New resources have elected delivery periods of from one to five years, in annual increments, as a part of their auction bid based auction several days Prior to each a publishes the procure in the the associated for the first thr administrative maximum (stat (floor) prices) The bidding be resources in a and proceeds clock" auction withdrawing at they deem according to the several delivery periods of from one to five years, in annual increments, as a part of their auction bid 	 capacity they seek to auction (the ICR for d delivery period) and, ee auctions, by determined urting) and minimum egins with all qualified the starting price, in a "descending, with resources t prices below what ceptable Transition Period to bridge to the FCM, during which capacity payments are made to all listed and qualified capacity providers These monthly payments, begun in December 2006 and running through May 2010, include payments to new energy efficiency assets submitted by market participants that qualify and register in the market Fixed payment levels, equal for all asset types, were set in advance by

- Project sponsors are required to submit M&V plans that meet the requirements of the Market Rule
- For efficiency programs, review and approval by the appropriate state regulatory agency with jurisdiction over the utility or state-sponsored program is considered an adequate independent review process for transition period capacity

ISO NEW ENGLAND Graphical representation of market time line and auction dynamics

As an example, the results of the first FCM auction are shown in the following charts The auction began with a set starting price of \$15.00 and continued for eight rounds to the administratively set floor price of \$4.50, at which excess capacity remained

PUCT – ENERGY EFFICIENCY PROGRAMMES Case example – Texas energy efficiency programmes (1/2)

Context

- State of Texas passed a series of laws requiring utility companies (investor owned utilities- IOUs) to meet energy efficiency goals. Currently they must meet at least 20% of their annual growth in electricity demand through energy efficiency programmes
- All programs are designed to reduce system peak demand, energy consumption, or energy costs through either standard offer programs (SOPs) or targeted market transformation programs (MTPs)

Description of mechanism

- Energy incentive programmes Utilities are required to administer energy savings incentive programmes, which are implemented through energy efficiency service providers (EESPs) and retail electric providers (REPs) through contracts
- SOPs and MTPs Utilities must achieve their energy efficiency goals either through SOPs or MTPs
- **Customers** Programmes are made available to all customers, which gives each customer a choice of a variety of energy efficiency alternatives
- **Customer targeting** Both national and local EESPs contact consumers (residential and commercial) about performing work to save energy and reduce their electric bills
- Selection Customers select the EESP, decide what equipment will be installed, and choose what work the contractor does
- Financial incentives Utilities' programs pay project sponsors financial incentives to offset the costs of a variety of energy efficiency improvements. Incentive rates are set for each kW of demand reduction and each kWh of energy savings produced and are based on avoided costs

Impact	 Collectively the utilities in 2010 achieved 533 gigawatt hours (GWh) of energy reduction and 301 megawatts (MW) of peak demand reduction, which was 118% above their 138 MW goal Between 1999 and 2010, the utilities' programmes implemented after electric industry restructuring in Texas have produced 1,666 MW of peak demand reduction and 4,110 GWh of electricity savings A utility that exceeds its demand reduction goal at a cost that does not exceed the limit established is awarded a performance bonus on an annual basis (a utility that exceeds 100% of its demand reduction goal receives a bonus equal to 1% of the net benefits for every 2% that the demand reduction is exceeded, up to a maximum of 20%)
Cost	 All IOUs spent an approximate total of \$105 million on energy efficiency programs (including administrative expenses) in 2010
M&V/ addition- ality	 Project sponsors are responsible for planning and conducting all the M&V activities associated with their projects and are required to submit an M&V plan that describes the specific activities, tools, and calculations the sponsor intends to use to determine the projects' actual savings (an industry accepted M&V protocol) M&V guidance provided by IOUs to establish baselines depends on the measure involved and is either: Simple M&V - uses stipulated values for data such as operating hours and equipment efficiencies Full M&V - higher level of rigor involving the application of end-use metering, billing regression analysis or computer simulation (project sponsors must use a full M&V approach for measures that do not meet the criteria for a simplified M&V approach)

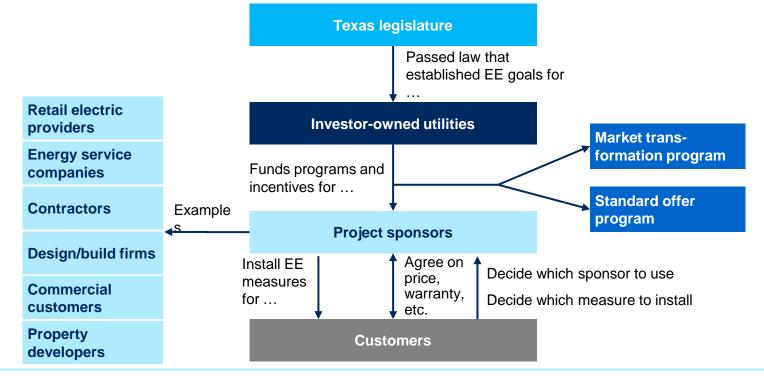
PUCT – ENERGY EFFICIENCY PROGRAMMES Case example – Texas energy efficiency programmes (2/2)

Potential benefits in U.K. context

- Puts control in the hand of the end user to determine the most cost effective energy efficiency measures
- Allows for targeted funding for specific efficiency measures that require structural barriers to be overcome or require widespread adoption to become cost effective
- Could lead to the development of a healthy and competitive energy efficiency market of service providers

Challenges in U.K. context

- Due to the deregulated and competitive nature of the UK market, the costs of funding energy efficiency programmes will be passed on directly to the consumer
- Utilities could use their advantage from customer access and understanding of consumption to provide energy efficiency services on their own and capture the value from EE. This could prevent the development of a competitive independent service provision market with customer choice
- Customers could choose high cost EE measures as the costs will be spread across the entire customer base
- Measurement and verification of the promised savings would remain a challenge

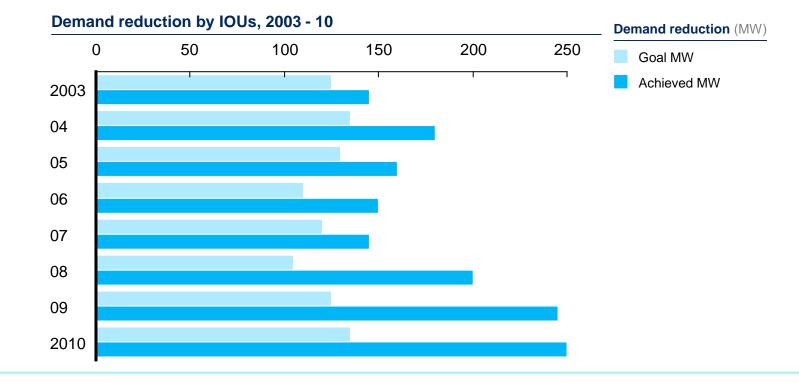

Implications for U.K. market

- Would require clarification of potential overlaps with current supplier obligations
- MTP programmes would require selection to promote the highest potential opportunities that would otherwise not be adopted
- Would require careful setting of incentive rates to ensure that the cost to customers (through the utility) is manageable
- Would require mechanisms to ensure awareness and access of a broad range of energy efficiency service providers
- Will require clear dispute resolution and arbitration mechanisms between utilities, service providers and end customers
- Requires careful setting of baseline with clear focus on proving additionality
- Requires a rigorous M&V process to ensure target EE savings are delivered with clearly identified responsibilities

B PUCT – ENERGY EFFICIENCY PROGRAMMES

PUCT – Energy efficiency programmes overview in Texas (1/4)

- Texas passed a series of laws requiring utility companies (investor owned utilities- IOUs) to energy efficiency goals, currently they must meet at least 20% of their annual growth in electricity demand through energy efficiency programmes
- Utilities are required to administer energy savings incentive programs, which are implemented through energy efficiency service providers (EESPs) and retail electric providers (REPs) through contracts
- All programs are designed to reduce system peak demand, energy consumption, or energy costs
- Utilities must achieve their energy efficiency goals through either standard offer programs (SOPs) or limited, targeted market transformation programs (MTPs)
- Programs are made available to all customers, in all customer classes (residential and commercial) which provides each customer a choice of a variety of energy efficiency alternatives
- Customers select the EESP, decide what equipment will be installed, and choose what work the contractor will do (price, warranty, financing, and other purchasing matters are entirely between the contractor and customer)
- The diagram below illustrates the Texas Energy Efficiency Process



B PUCT – ENERGY EFFICIENCY PROGRAMMES

DRAFT REPORT

PUCT – Energy efficiency programmes overview in Texas (2/4)

- In 2010, the nine Texas investor-owned utilities (IOUs) exceeded their statewide legislative energy efficiency goals for the eighth straight year
- The utilities achieved 533 gigawatt hours (GWh) of energy reduction and 301 megawatts (MW) of peak demand reduction, which was 118% above their 138 MW goal
- Most of the utilities' programs involve financial incentives which are paid to project sponsors to offset the costs of a variety of energy efficiency improvements
- Combined, the IOUs spent approximately \$105 million on energy efficiency programs (including administrative expenses) in 2010
- Between 1999 and 2010, the utilities' programs implemented after electric industry restructuring in Texas have produced 1,666 MW of peak demand reduction and 4,110 GWh of electricity savings

- The table below lists the Texas IOUs and the types of SOPs and MTPs offered by each utility ٠
- Please note that this list does not include every program offered by each utility •

Texas investor owned utilities

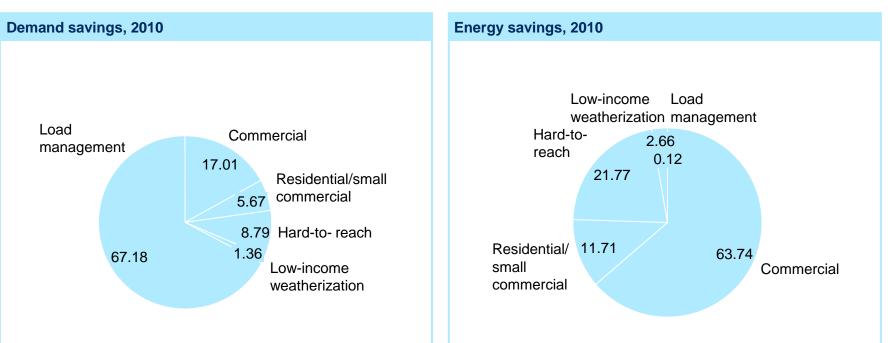
Utility name	Utility acronym	Program type	Туре	AEP	SWEPCO	CNP	ETI	EPE	TNM P	Onco r	Xce I
South Western Electric	SWEPCO	Commercial and industrial	SOP	٠	٠	٠		•	•	٠	٠
power company		Residential and small	SOP	•	•	•	•	•	•	•	•
American Electric power-	AEP-TCC	commercial									
Texas central company		Hard-to-reach	SOP	•	•	•	•		•	•	•
American Electric power-	AEP-TNC	Load management	SOP	•	•	•	•	•	•	•	
Texas north company		Underserved area	SOP						•		
Center point energy	CNP	Low-income	SOP	•	•	•		•	•	•	•
houston electric LLC		efetgerstation homes	MTP	•		•	•		•	•	
El Paso electric company	FPF	Air conditioning distributor	MTP			•				•	
		Air conditioning installer	MTP							•	
Entergy Texas, inc.	ETI	training									
Texas-New Mexico	TNMP	Retro-commissioning	MTP			•					
power company		Large C&I solutions	MTP	•	•		•	•			
Oncor	Oncor	Residential solutions	MTP					•			
Xcel energy company	Xcel	Small commercial solutions	MTP					٠	٠		
		Hard-to-reach solutions	MTP					•			
		Living wise education	MTP					•			
		Texas score/city smart	MTP	٠	٠	٠	٠	٠	٠		
		A/C tune-up	MTP	٠	٠					•	
		Small distributed renew- able generation (solar PV)	MTP	٠	٠		٠	•	٠		
		Residential demand response	MTP	٠						•	
		Premium lighting program	MTP			٠	٠				

Source: Energy Efficiency Accomplishments of Texas Investor Owned Utilities Calendar Year 2010 report; team analysis

Programs offered by utility in 2010

PUCT – Energy efficiency programmes overview in Texas (4/4)

Utility's 2010 program savings and expenditures as reported to the PUCT				
Utility	Funds expended Dollars	Demand savings MW	Energy savings MWh	
SWEPCO	4,282,043	14.8	18,477.9	
AEP-TCC	12,898,287	27.0	57,665.0	
AEP-TNC	2,238,100	5.1	14,194.4	
CNP	28,806,909	121.0	139,664.8	
ETI	7,060,072	13.2	28,630.0	
EPE	4,166,737	9.9	21,404.0	
Oncor	41,107,131	101.1	225,785.4	
TNMP	2,754,742	5.2	11,937.0	
Xcel	2,004,726	3.7	15,699.0	
Total	105,318,747	300.9	533,457.5	


SOPs

- An SOP is a type of energy efficiency program where parties enter into a contract with standard terms and conditions
- Utilities offer standard incentives for a wide range of measures that are bundled together as a project
- Incentive rates are set for each kW of demand reduction and each kWh of energy savings produced and are based on prescribed avoided costs
- Payment is based on the measures installed and deemed savings values for each measure with random inspections to verify proper installation
- The SOPs offered by the Texas IOUs are:
 - Commercial programs target customers that meet minimum demand requirements with incentives for measures that
 provide verifiable demand and energy savings
 - Residential and small commercial programs provide incentives on a wide range of measures that reduce system peak demand, energy consumption and energy costs
 - Low income programs encourage energy efficiency improvements in households with annual incomes at or below 200% of the federal poverty guideline
 - Load management programs encourage electric load control or shifting of electric loads in facilities from on-peak to offpeak periods

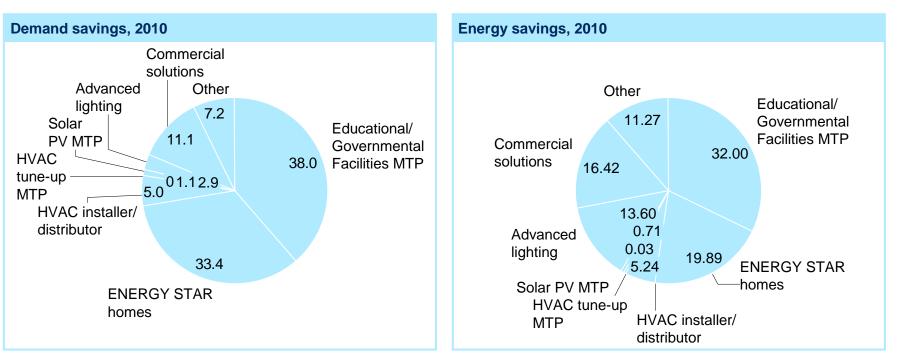
MTP

- An MTP is a strategic effort to make lasting changes in the market that result in increased adoption of energy efficiency technologies, services, and practices
- MTPs are designed to overcome specific market barriers that prevent energy efficient technologies from being accepted
- There are more than fifteen different MTPs offered in Texas, including the following:
 - ENERGY STAR New Home Construction
 - Texas Schools Conserving Our Resources (SCORE) and CitySmart Programs
 - Commercial Retro-commissioning
 - AC Installer and AC Distributor Programs

PUCT – ENERGY EFFICIENCY PROGRAMMES Standard offer programme – results

Definitions

- The Load Management Program is a group load curtailment program in which commercial customers curtail load when notified
- The Commercial SOP provides incentives for the retrofit installation of a wide range of measures that reduce customer energy costs, and reduce peak demand and/or save energy in non-residential facilities
- The Hard to Reach SOP encourages energy efficiency improvements in households with incomes at or below 200 percent of the federal poverty guideline – PUCT requires that each utility meet at least 5 percent of its savings goal for each year through programs targeted to this customer class
- The Low-Income Weatherization SOP is designed to help improve energy efficiency for residential consumers with an annual household income below 200% of the federal poverty guidelines
- Residential and Small Commercial SOP provides incentives to encourage contractors to install energy efficiency measures in homes and small businesses


Source: Energy Efficiency Accomplishments of Texas Investor Owned Utilities Calendar Year 2010 report; utility websites; team analysis

DRAFT REPORT

PUCT – ENERGY EFFICIENCY PROGRAMMES Standard offer programmes – impact on sectors

Sector	
Commercial and quali- fying indus- trial	 The Commercial and Qualifying Industrial (C&I) program targets large commercial and industrial customers with a minimum demand requirement (this varies by utility). Utilities pay incentives to project sponsors for certain measures installed in new or retrofit applications that provide verifiable demand and energy savings. Typical projects include the replacement of existing chillers and lighting equipment with more efficient chillers and lighting, and industrial process retrofits
	 The Residential and Small Commercial program targets residential and small commercial customers including multi-family, single-family, and mobile homes. The program provides incentives for the installation of a wide range of measures that reduce system peak demand, energy consumption and energy costs. Retrofits and efficient new construction of low-income housing may also be undertaken
Residential and small commercial	 Utilities pay incentives to EESPs. These incentives are based on deemed savings when available. (Deemed savings estimates are predetermined, validated estimates of energy and peak demand savings attributable to an energy efficiency measure.) Otherwise, the EESPs set incentives based off actual peak demand reduction and energy savings as verified using the International Performance Measurement and Verification Protocol
	 The primary objective of the Residential and Small Commercial SOP is to achieve cost- effective reduction in energy consumption during peak summer demand. There are five additional objectives of the program: (1) to encourage private sector delivery of energy efficiency products and services; (2) to achieve customer energy and cost savings; (3) to significantly reduce barriers to participation by streamlining program procedures and M&V requirements; (4) to encourage participation by a wide range of EESPs; and (5) to produce demand, energy, and bill savings in new single-family affordable housing projects and in new multifamily projects
Hard-to-reach	 The Hard-to-Reach program encourages energy efficiency improvements in households with annual incomes at or below 200% of the federal poverty guideline. It is designed to be a comprehensive program by emphasizing first improving the building shell and then addressing end uses. It is a retrofit program that targets multi-family, single-family, and mobile homes
	 Incentives are paid to project sponsors for eligible measures that provide verifiable demand and energy savings. Special measures include the replacement of incandescent light bulbs with compact fluorescent lighting and water savers
Load manage- ment	 Load Management programs encourage electric load control or shifting of electric loads in C&I facilities. Participating project sponsors provide on-call, voluntary curtailment of electric consumption during peak demand periods in return for incentive payments. The program is designed to assist businesses to reduce their on-peak energy demand and help meet the state's energy efficiency goals. Targeting a mix of industrial, office, and hospital facilities, program requirements differ on a utility-by- utility basis
Low-income weatheri- zation	 Low Income Weatherization programs are designed to cost-effectively reduce the energy consumption and energy costs for low- income residential customers. Program implementer(s) provide eligible weatherization and energy efficiency measures to residential customers who meet the current Department of Energy (DOE) income eligibility guidelines. Implementation of this Senate Bill 712 Weatherization Program also provides targeted eligible residential customers with basic on-site energy education to satisfy the requirements of Substantive Rule 25.181(p)

PUCT – ENERGY EFFICIENCY PROGRAMMES Market transformation programme – results

Definitions

- The ENERGY STAR New Homes Construction program targets residential new construction and promotes the construction of energy efficient ENERGY STAR® new homes
- The Large C&I Solutions program offers customers both cash and non-cash incentives. The cash incentives are at a lower \$/kW than SOPs, with the difference used to provide non-cash incentives that include technical assistance, education on financing energy efficiency projects, and communications services. The Solutions program helps companies that do not have the in-house capacity or expertise to 1) identify, evaluate, and undertake efficiency improvements; 2) properly evaluate energy efficiency proposals from vendors; and/or 3) understand how to leverage their energy savings to finance projects
- Educational/Governmental Facilities MTPs include the Texas Schools Conserving Our Resources (SCORE)/CitySmart programme (promotes a structured process to K-12 school districts to identify opportunities and implement energy efficiency measures) and LivingWise Education (a school-based method that builds student knowledge, provides high efficiency devices to families and serves as an effective community outreach program)

Market transformation programme- impact on sectors (selected

Sector	
ENERGY STAR New Home Construction	 The ENERGY STAR New Homes Construction program targets residential new construction. It promotes the construction of energy efficient ENERGY STAR® new homes. To qualify, homes must be 15% more efficient than the energy requirements of the locally adopted International Energy Conservation Code. The program provides education and technical assistance to builders and subcontractors. The program is supported by training, education, and advertising components
Air Conditioning Distributor	 The air Conditioning (A/C) Distributor Program promotes the sale of matched, high efficiency air conditioning units. Qualifying equipment must have a capacity of 5 tons or less and be rated at a Seasonal Energy Efficiency Ratio (SEER) of 14 or above. A complete system change-out is required. Single/multi-family and new and existing homes (retrofits) are eligible
Air Conditioning Installer Training	 The Air Conditioning Installer Training Program targets improved installation practices of heating, ventilation, and air conditioning contractors. The program provides training, education, and incentives. It encourages proper sizing, charging, and duct sealing Local Air Conditioning Contractors Association chapters implement this program
Retro- Commis- sioning	 The Retro-Commissioning program helps energy end users reduce their peak demand and energy usage. The program provides expert analysis and systematic evaluation of building systems. By implementing low-cost and no-cost measures that improve system operation, customers reduce energy and peak demand while maintaining or improving customer comfort
Texas Schools Conserving Our Resources (SCORE)/City Smart	 The Texas SCORE Program promotes a structured process to K-12 school districts to identify opportunities and implement energy efficiency measures. Incentives to school districts encourage these installations. Non-cash incentives promote best business practices. The Texas CitySmart Program promotes a similar program to a targeted audience of local and state government entities and municipalities
Large Commercial & Industrial (C&I) Solutions	 The Large C&I Solutions program offers customers both cash and non-cash incentives. The cash incentives are at a lower \$/kW than SOPs, with the difference used to provide non-cash incentives that include technical assistance, education on financing energy efficiency projects, and communications services. The Solutions program helps companies that do not have the in-house capacity or expertise to 1) identify, evaluate, and undertake efficiency improvements; 2) properly evaluate energy efficiency proposals from vendors; and/or 3) understand how to leverage their energy savings to finance projects.

Context

- In the US, many states have established efficiency targets by passing an Energy Efficiency Resource Standard (EERS) or a Renewable Electricity Standard (RES) that require a percentage of MWh growth to be met with efficiency, or that efficiency be used to meet a specified percentage of annual load growth
- Several states (including Connecticut, Nevada, Pennsylvania, and New Jersey) have included provisions in their legislation that would allow third
 parties, such as commercial and industrial customers, to generate ESCs and sell them to utilities that are seeking to comply with energy efficiency
 targets

Description of mechanism

- Tradable certificates ESCs are tradable certificates issued by the state regulator, similar to renewable energy certificates (RECs), that typically represent one megawatthour (MWh) of energy savings from efficiency projects (also known as energy efficiency certificates or credits (EECs), white certificates or tradable white certificates (TWCs) and "white tags")
- Investment in energy efficiency ESCs offer utilities a flexible means of achieving energy efficiency targets while rewarding commercial and industrial companies that are successful in reducing energy use with an additional revenue stream that may improve the economics of a project
- **Financing** Commercial and industrial companies may choose to implement eligible projects independently or seek financing from a third party, such as a utility or a clean energy fund, often in exchange for future ownership of the credits
- Trading market Each ESC represent one MWh of electricity usage avoided and only Connecticut has an active trading market where the minimum floor is set by public utility
- Project coverage guidelines for energy efficiency projects are established by each state's specific legislation.
 Examples include commercial and industrial lighting upgrades, cogeneration or combined heat and power (CHP) and increased efficiency of HVAC systems and improved insulation

Key facts	
Impact	 In Connecticut the ESC market was estimated to be valued at \$8-\$10 million in 2007, \$16-\$20 million in 2008, \$26-\$30 million in 2009, and \$34-\$38 million in 2010 (equates to 1.2 TWh of energy savings assuming total ESCs in 2010 were valued at \$36 million with an average price of \$30/MWh) In 2007 there was an excess of supply with 907,891 ESCs exceeding the estimated demand, 640,740 ESCs, for EEPS in 2008
Cost	 In July 2008, the trading price for ESCs in Connecticut was \$26.75/MWh Since its introduction the indicative prices of ESCs have generally been between \$20 and \$30/MWh (floor price is \$10) An alternative compliance payment (ACP) of \$31/MWh is charged to utilities that fail to meet their efficiency targets Ratepayer support for EE amounted to ~\$115m in 2008
M&V/ addition- ality	 The baseline can be established in a number of ways and depends on the specific market design rules "Deemed savings" figures (end-use consumption and then imputing savings based on a projection of baseline energy use, or conducting whole building measurement) Engineering calculations Direct measurement Measured factors System monitoring Modelled savings ESCs generally require licensed engineering contractors to conduct the work or independently verify the savings

Source: Energy Savings Certificates report by the World Resources Institute; The Creation of an Energy Efficiency Resource Standard and the Process for Allowing Residential Aggregation report; Energy savings certificates: Toward best practices and standards report; team analysis

DRAFT REPORT

ENERGY SAVING CERTIFICATES – CONNECTICUT Case example – Energy saving certificates (ESCs) (2/2)

Potential benefits in U.K. context

- Provides utilities with a flexible means of achieving energy efficiency targets while rewarding commercial and industrial clients with an additional revenue stream that may enhance project economics
- Enables private actors to identify and access the highest value efficiency opportunities through a market where the most cost effective efficiency measures set the ESC price
- Allows some degree of prescription as to the efficiency measures incentivised through the eligibility criteria for ESCs
- Allows sponsors to use future credits as security for financing
- Prescribes a range of M&V options to set baseline depending on nature of efficiency project

Challenges in U.K. context

- Setting the level of demand reduction required from suppliers and/or the market price for ESCs can be challenging given information asymmetry
- In 2008, number of ESCs generated exceeded total demand, introducing significant price risk for private sector investors
- Developing a sophisticated and robust way of measuring additionality is particularly challenging where a range of actors are able to generate efficiency savings
- ESC regimes also may include demand-response or loadmanagement measures that shift electricity load from peak to off-peak hours
- Carefully tracking ESCs' chain of ownership is necessary to ensure against double-counting
- Source: Energy Savings Certificates report by the World Resources Institute; The Creation of an Energy Efficiency Resource Standard and the Process for Allowing Residential Aggregation report; Energy savings certificates: Toward best practices and standards report; team analysis

Implications for U.K. market

- Would require clarification of potential overlaps with current supplier obligations
- Selection criteria would need to promote the highest potential opportunities that would otherwise not be adopted
- Would require careful setting of supplier obligations / ESC prices ensure that the cost to customers (through the utility) is manageable
- Requires careful setting of baseline with clear focus on proving additionality
- Requires a rigorous M&V process to ensure target EE savings are delivered with clearly identified responsibilities

© ENERGY SAVING CERTIFICATES – CONNECTICUT Explanation of ESCs

Example of an ESC created from the earth markets community energy savings project – lighting

The market

Class III ESCs are being registered, exchanged, and sold through the NEPOOL generation information system (GIS) – see figure 4

Despite the number of registered ESCs (907, 891) exceeding the estimated demand (640, 740) for the EEPS in 2008, the price appeared to be near the DPUC-established ACP of USD 31. One would expect if the market for ESCs is in surplus (267, 151), then the associated price would approach the floor price of USD 10, but this has not been the case. This market inconsistency presents market price risks for private sector investors interested in using the EEPS to finance EE projects in Connecticut. Due to this over-supply of ESCs in the EEPS in Connecticut, earth markets has recommended to the DPUC through docket number 05-07-19RE02 that there be a cap of 25% on the number of ESCs that can be registered and sold by the CEEF

PORTFOLIO MANAGER Case example – Portfolio Manager (1/2)

Context

- Portfolio Manager is an interactive web-accessed energy management tool provided by the EPA that allows individuals to track and assess energy and water consumption across their entire portfolio of buildings in a secure online environment
- Portfolio Manager can help users set investment priorities, identify under-performing buildings, verify efficiency improvements and receive EPA recognition for superior energy performance

Description of mechanism

- Free registration user needs to provide building street address, year built, building gross floor area and key operating characteristics for each major space type in the building
- Statement of Energy Performance After 11 consecutive months of utility bills for all fuel types used in the building a Statement of Energy Performance (SEP) for each building, summarising building characteristics, energy consumption, CO₂ emissions, and energy performance ratings where applicable
- Identify energy savings opportunities Building managers through looking at the performance at the whole building level, can identify opportunities for savings through operational improvements and system optimization as well
- Evaluate results and potential investments -Users can prioritise investments, conduct ongoing measurement and verification of improvements- both financial and environmental and benchmark against similar buildings
- Available to commercial and public buildings Wide coverage including banks/financial Institutions, hospitals (acute care and children's) hotels houses of worship, residences, care facilities, supermarkets etc
- EPA energy performance score Can be awarded to users and Indicates how efficiently buildings use energy on a 1-100 scale (accounts for the impact of weather variations as well as changes in key physical and operating characteristics of each building e.g., size, location, number of occupants and number of personal computers)

Key facts

When certifying building performance the following process is used: M&V/ Verification of the results and impact from implementing the additionenergy strategies and technologies ality Quantification of energy savings from specific measures Tracking of energy use over the life of the building Validation and documentation of energy performance and determine the carbon impact of the building ENERGY STAR Portfolio Manager requires actual billing data to determine and track the energy rating for the facility • STAR rating or another rating that depends on ENERGY STAR (e.g. LEEDS Certification for existing buildings: actual billing data must be used, ٠ not adjusted billing data.

Source: EPA Energy Star Portfolio Manager fact sheet; team analysis

PORTFOLIO MANAGER Case example – Portfolio Manager (2/2)

Potential benefits in U.K. context

- Energy Star Rating would allow communication to prospective tenants and buyers, helping overcome agency barriers
- Benchmarking and online resources effectively act as a low cost audit tools, suggesting highest value efficiency opportunities to overcome lack of awareness / information
- Range of variables used in determining performance against benchmarks acts as a dynamic baselining tool, helping to isolate additionality

Challenges in U.K. context

No significant challenges

Implications for U.K. market

- Could be used to address uncaptured potential in commercial and public administration buildings
- Confidence in benchmarking algorithm is critical in order to generate voluntary participation
- Participation could be made compulsory for buildings above a defined size
- Publication of building ratings could be made compulsory to further address agency issue
- Open question is the extent to which potential tenants and subsequent buyers will consider energy efficiency in decision making
- For large commercial users, provides more granular tracking and data than CRC