ANNEX C

GENERAL PRINCIPLES OF DECONTAMINATION AND WASTE DISPOSAL

Summary of advice

Annex C provides information on the general principles of decontamination and waste disposal for transmissible spongiform encephalopathies (TSEs).

Previous revision date: November 2009 Changes new to this edition:

Date	Change	Notes
February 2015	Change of terminology from	Changed throughout the
	"infection control" to "infection	document as appropriate.
	prevention and control".	
February 2015	Decontamination cycle diagram	This change affects
	updated, to allow for new prion	paragraph C2.
	deactivation technologies.	
February 2015	Addition of advice to clean	Paragraphs C4 and C5
	instruments as soon as possible	have been added and the
	after use.	numbering of subsequent
		paragraphs changed
F 1 0045		accordingly.
February 2015	Clarification that the use of sodium	This change affects
	hypochlorite is at ambient	paragraph C8.
F abricano 0045	temperature.	
February 2015	Additional advice on the use of	This change affects
F 1 0045	formic acid.	paragraph C10.
February 2015	Expansion of the section on 'Other	This change affects
	processes'.	paragraph C17, and
		paragraphs C18-C20 have been added.
Echruory 2015	Addition of a section on 'Protein	
February 2015	detection'.	Paragraphs C21-C23 have been added.
February 2015	Addition of a table with details of	Table C2 has been added.
	recent research projects relating to	
	protein detection and	
	decontamination, funded by the	
	Department of Health.	
February 2015	Update of the references to other	These changes affect Table
	relevant guidance.	C3.

Introduction

C1. This annex provides information on the <u>general principles</u> of decontamination and waste disposal for transmissible spongiform encephalopathies (TSEs). A list of selected guidelines and standards related to decontamination and waste disposal is included as Table C3. Guidance on decontamination and waste disposal <u>in a healthcare setting</u> can be found in Part 4 of this guidance. Guidance on decontamination and waste disposal <u>in a laboratory setting</u> can be found in Part 3 of this guidance.

The Decontamination Cycle for reusable medical equipment

Decontamination and TSE agents

- C3. TSE agents are particularly resistant to standard physical and chemical methods of inactivation and decontamination. Therefore, effective cleaning is of great importance in the removal of these agents.
- C4. Research demonstrates that allowing surgical instruments to dry for more than fifteen minutes before reprocessing greatly increases the amount of

residual protein contamination^{1,2,3,4}. Therefore instruments should be transported to the sterile services department (SSD) immediately after the close of the procedure, for cleaning and reprocessing as soon as practically possible. This will make the cleaning process more effective, hence reducing the risks to the patients and staff handling the devices. If devices cannot be returned in a timely manner, it is important that the instruments are kept moist using appropriate methods approved and verified by the SSD.

- C5. For endoscopes, the bedside clean should take place immediately after the procedure has been carried out, and it is recommended that the endoscopes should be manually cleaned according to the manufacturer's recommendations and passed through an Endoscope Washer Disinfector as soon as possible after use. See Annex F for further guidance about decontamination of endoscopes.
- C6. Details of chemical and gaseous disinfectants and physical processes commonly used for decontamination, and their effectiveness at reducing infectivity, are outlined below. It should be noted that combinations of some agents and/or processes could be effective, for example, physical/chemical combinations such as autoclaving with sodium hydroxide.

Chemical decontamination

C7. Most chemical disinfectants are ineffective at reducing infectivity and some, acting as protein fixatives, may stabilise the agent (see Table C1).

Sodium hypochlorite

- C8. Sodium hypochlorite is considered to be effective at reducing infectivity but only at concentrations (20,000ppm available chlorine for 1 hour at ambient temperature) that pose certain practical constraints. The following should be taken into account when considering the use of sodium hypochlorite:
 - It must not be used on open surfaces *i.e.* benches due to the possible release of chlorine gas
 - It corrodes metal and steel
 - It is incompatible with formaldehyde, alcohols and acids
 - It is rapidly inactivated by protein residues

¹ Lemmer *et al.* 2004. Decontamination of surgical instruments from prion proteins: in vitro studies on the detachment, destabilization and degradation of PrP^{Sc} bound to steel surfaces. *Journal of General Virology*, 85; 3805-3816.

² Rutala and Weber 2001. Creutzfeldt-Jakob disease: recommendations for disinfection and sterilization. *Clinical Infectious Diseases*, 32; 1348-1356.

³ Lipscomb *et al.* 2007. Effect of drying time, ambient temperature and pre-soaks on prioninfected tissue contamination levels on surgical stainless steel: concerns over prolonged transportation of instruments from theatre to central sterile service departments. *Journal of Hospital Infection*, 65; 72-77.

⁴ Secker *et al.* 2011. Adsorption of prion and tissue proteins to surgical stainless steel surfaces and the efficacy of decontamination following dry and wet storage conditions. *Journal of Hospital Infection*, 78; 251-255.

- o Concentrated stock dilutions last for only approximately 2-3 weeks
- o Diluted solutions are not stable and should be made up daily

Sodium hydroxide

- C9. Sodium hydroxide (2M for 1 hour) has a substantial effect, and will reduce infectivity to an acceptable level when used at ambient temperature. An increase in temperature will increase effectiveness. The following should be taken into account when considering the use of 2M sodium hydroxide:
 - \circ $\;$ It should not be used on aluminium or zinc
 - o It will not cause fumes but is damaging to body tissue
 - o It is an irritant and harmful as dust

Formic acid

C10. Formic acid (96% for 1 hour) may be used for histological samples of human or animal tissue that have previously been fixed in formalin. For material not treated with formic acid prior to processing, the immersion of formalin-fixed tissue sections (5µm or less) in undiluted formic acid (*i.e.* 96% or above) for at least 5 minutes is considered appropriate as a risk reduction measure. However, it should not be used on tissue that has previously been exposed to phenol, as this interacts deleteriously with formic acid.

Table C1: Ineffective chemical disinfectants

	infectants commonly used for decontamination that at reducing infectivity	are
Alcohols ¹		
Ammonia		
ß-propiolactone		
Chlorine dioxide	3	
Ethylene oxide		
Formaldehyde a	and related compounds ¹	
Glutaraldehyde	and related compounds ¹ (e.g. orthophthalaldehyde [OPA])	
Hydrochloric aci	id (Not reliably effective for practicable use)	
Hydrogen perox	kide	
lodophors		
Peracetic acid		
Aqueous solutio	ons of phenol (≤10% phenol)	
Sodium dichloro	pisocyanurate (e.g. 'Presept') ²	
10,000ppm sodi	ium hypochlorite (Not reliably effective for practicable use)	
¹ These agents ar	re strong fixatives, may stabilise infectivity and thereby decreas	e th

¹These agents are strong fixatives, may stabilise infectivity and thereby decrease the efficiency of the decontamination process

²The rate of release of chlorine from this product is insufficient to ensure complete inactivation of the agent

Phenol

C11. Phenol (≥ 90% phenol) is highly effective at eliminating infectivity. Phenol is a toxic, corrosive and irritant chemical which can be absorbed through mucous membranes, wounds and intact skin, and should be used cautiously and with the appropriate personal protective clothing.

Physical processes

Incineration

C12. Incineration is effective at removing the infectious agent and eliminating infectivity. Temperatures over 600°C are likely to be practically effective, and 850°C is commonly used in practice. Temperatures ≥1000 °C can produce sterility. The particle size of material to be combusted should be suitably small to ensure efficient heat penetration to the centre.

Autoclaving

- C13. Autoclaving remains an important method of reducing infectivity. Different strains of TSE are known to vary in their sensitivity to heat.
- C14. The following methods will reduce infectivity but cannot be relied upon to completely eliminate infectivity (either porous load or gravity displacement).
 - 121°C for 15 minutes
 - 134-137°C for 3 minutes
 - 134-137°C for 18 minutes
 - Six successive cycles of 3 minutes
- C15. The 'Prion Cycle' found on some benchtop vacuum autoclaves will also reduce infectivity **but will not eliminate infectivity entirely**. See MHRA Safety Notice 'SN 2002(11): Benchtop vacuum steam sterilizers the 'prion cycle', available <u>here</u>.

Radiation

C16. Ionising, UV or microwave radiation at conventional doses are not effective at reducing infectivity.

Other processes

- C17. A number of anti-prion technologies are in development. In 2008 the Engineering and Science Advisory Committee into the Decontamination of Surgical Instruments including Prion Removal (ESAC-Pr) produced a report on prion inactivating agents. This report provides advice on various anti-prion technologies then available or in development, their applicability to the current decontamination process for reusable medical equipment, and the direction of future research needs. The report can be accessed <u>here</u>.
- C18. Many products developed for prion inactivation have only been available as a pre-soak. There are problems associated with the soaking of instruments, and the ESAC-Pr report specifically notes that:

"It is apparent that there needs to be greater discussion between the disinfectant product manufacturers, washer disinfector manufacturers and the end users,

particularly the Decontamination Leads and the Sterile Services Managers. The overwhelming conclusion of these professionals is that using these products, as a manual pre-soak is not a viable option in operating departments or in SSDs. It is not possible to validate reliably the soaking of instruments in open containers of chemical. Further, the question of penetration of chemical into serrations and box joints cannot be guaranteed. Therefore, it is vital that chemicals intended for this purpose are incorporated into the existing decontamination cycle practices i.e. as part of the washer disinfector process."

- C19. A Working Group of the Advisory Committee on Dangerous Pathogens TSE Subgroup was convened in 2014 to assess the outputs of Department of Health funded research projects aimed at improving the evidence base for the decontamination of reusable surgical instruments and protein detection. The Working Group reviewed several novel technologies then in development for protein detection and decontamination. It is hoped that these technologies will make decontamination practices even more effective in the future.
- C20. New technologies being developed need to reflect the operational requirements of the service. The Engineering Research Group has suggested that a routine test for washer disinfectors could be developed to measure the cleaning efficacy at validation and routine testing, such as daily or weekly tests. This method could be based on a process challenge device system that will monitor the optimised wash cycles; the results must be quantifiable and objective. This method should be sensitive to the requirements of this document and be able to deliver a consistent and accurate set of results that can be assessed by the unit management and Notified Bodies.

Protein detection

- C21. Work commissioned by the Department of Health indicates the upper limit of acceptable protein contamination after processing is 5µg BSA equivalent per instrument side. A lower level is necessary for neurosurgical instruments.
- C22. It is necessary to use protein detection methods to check for the efficient removal of protein from surgical instruments after processing. Protein levels are used as an indication of the amount of prion protein contamination. Ninhydrin swab kits are commonly used for this purpose, but recent evidence shows that ninhydrin is insensitive^{5,6}. Furthermore, proteins are poorly desorbed from instruments by swabbing⁶. Other commonly used methods have also been shown to be insensitive⁷.

⁵ Lipscomb *et al.* 2006. The sensitivity of approved Ninhydrin and Biuret tests in the assessment of protein contamination on surgical steel as an aid to prevent iatrogenic prion transmission. *Journal of Hospital Infection*, 64; 288-292.

⁶ Nayuni *et al.* 2013. Critical evaluation of ninhydrin for monitoring surgical instrument decontamination. *Journal of Hospital Infection,* 84, 97-102.

⁷ Nayuni and Perrett 2013. A comparative study of methods for detecting residual protein on surgical instruments. *Medical Device Decontamination (incorporating the IDSc Journal),* 18, 16-20.

C23. New technologies are required on the market that can detect protein on instruments *in situ*, in nanogram quantities.

recently funded by the Department of Health					
Project	Торіс	Publications arising to date			
007/0194 Cold Gas Plasma Decontamination of Flexible Endoscopes	Novel technology for decontamination of endoscopes.				
007/0196 Endoscope Decontamination: defining the problem	Decontamination of endoscopes	Hervé, R.C. and Keevil, C.W. 2013. Current limitations about the cleaning of luminal endoscopes. <i>Journal of Hospital</i> <i>Infection</i> 83, 22-29.			
007/0200 Optimisation of Automated Washer Disinfector Performance	Parameters contributing to optimised automated washer disinfector performance.	Nayuni, N. and Perrett, D. 2014. Valipro tags for the monitoring of washer disinfector efficiency. <i>Medical Device</i> <i>Decontamination (incorporating the IDSc</i> <i>Journal)</i> 18, 16-20.			
007/0201 Meta and cluster analysis on Animal Models Used for TSE Decontamination Research	Literature review of animal models used in decontamination research.				
007/0202 Protein Detection Trial in SSDs	High sensitivity protein detection in SSD environments.	Perrett D and Nayuni N 2014. Assessing protein contamination on surgical and dental instruments Chapter 23 <i>in</i> <i>Decontamination in Hospitals and</i> <i>Healthcare</i> . Edited by Dr J.T. Walker, Woodhead Publishers			
		Perrett D, <i>et al.</i> 2014. The <i>in-situ</i> detection of residual protein on surgical instruments: Development of the ProReveal system. <i>Medical Device</i> <i>Decontamination (incorporating the IDSc</i> <i>Journal)</i> 18, 8-17			
		Nayuni N, <i>et al.</i> 2013. A critical evaluation of ninhydrin as a protein detection method for monitoring surgical instrument decontamination in hospitals. <i>J Hospital</i> <i>Infection</i> 84, 97-102			
		Nayuni N. and Perrett D. 2013. A comparative study of methods for detecting residual protein on surgical instruments. <i>Medical Device</i> <i>Decontamination (incorporating the IDSc</i> <i>Journal)</i> 18, 16-20			
007/0203 Protein Detection Trial	Detection of residual protein on instruments.				
		Continued overleaf			

Table C2: Research projects relating to protein detection and decontamination recently funded by the Department of Health

007/0204 Evaluation of EFSCAN Protein Detection for Monitoring Decontamination	Detection of residual protein on instruments.	Smith, A., <i>et al.</i> 2014. Dental handpiece contamination: a proteomics and surface analysis approach. <i>Biofouling</i> , 30, 29-39
007/0208 Selection and Preclinical Evaluation of Coatings for Surgical Instruments	Coating surgical instruments to minimise protein attachment.	

Table C3: Selected	guidelines	and	standards	related	to	decontamination a	nd
waste disposal							

Name	Date	Brief description
	published	p
93/42/EEC	1993	This Directive under European Law covers the
The Medical	UK law	placing on the market and putting into service of
Devices Directive	since 1998	Medical Devices (other than active implantable and <i>in</i>
Devides Directive	51100 1000	<i>vitro</i> diagnostic devices). Available here.
		Essential requirements in the Directive are listed
		under Annex 1. Two essential requirements under
		section 8 – Infection and microbial contamination –
		are particularly relevant:
		"8.4: Devices delivered in a sterile state must have
		been manufactured and sterilised by an appropriate
		validated method."
		"8.5: Devices intended to be sterilised must be
		manufactured in appropriately controlled (e.g. environmental) conditions."
Medical Devices	2002	
	2002	These UK Regulations are drawn from the Medical Devices Directive 93/42/EEC
Regulations		
•		and Facilities Policy (formerly NHS Estates)
Health Building Notes	· · ·	a deciminar and planning party buildings and
		s designing and planning new buildings and
		. HBNs are available at:
		ections/health-building-notes-core-elements
		Facilities Policy (formerly NHS Estates)
		noranda (HTM) and Choice Framework for local
policy and procedure	• •	here due l'au and avidence an the approximation of
		based policy and guidance on the management and
	isable medica	I devices and other aspects of decontamination in
healthcare settings.	0040	This OEDD offers beet are stice muidened on the
CFPP 01-01	2013	This CFPP offers best practice guidance on the
Management and		whole decontamination cycle including the
decontamination of		management and decontamination of surgical
surgical		instruments used in acute care. It is in four parts:
instruments		Part A – Formulation of local policy and choices
(medical devices)		Part B – Common elements
used in acute care		Part C – Steam sterilization
		Part D – Washer disinfectors
		Part E - Alternatives to steam for the sterilization of
		reusable medical devices
		https://www.gov.uk/government/publications/manage
		ment-and-decontamination-of-surgical-instruments-
		used-in-acute-care
CFPP 01-04	2013	This CFPP amalgamates earlier versions of laundry
Decontamination of		guidance. Earlier documentation incorporated in and
linen for health and		superseded by this guidance includes HSG(95)18
social care		and parts of Health Building Note 25 – 'Laundry'.
		https://www.gov.uk/government/publications/deconta
		mination-of-linen-for-health-and-social-care
		Continued overleaf

	00.10	
CFPP 01-06	2013	This CFPP covers flexible endoscope management
Management and		and decontamination. It is divided into five volumes:
decontamination of		Policy and management
flexible		Design and installation
endoscopes		 Operational management
		Validation and verification
		Testing methods
		https://www.gov.uk/government/publications/manage
		ment-and-decontamination-of-flexible-endoscopes
HTM 01-05 Dental	2013	This guidance has been produced to reflect a
Decontamination		reasonable and rational response to emerging
		evidence around the effectiveness of
		decontamination in primary care dental practices, and
		the possibility of prion transmission through protein
		contamination of dental
		instruments.https://www.gov.uk/government/uploads/
		system/uploads/attachment_data/file/170689/HTM_0
		1-05_2013.pdf
HTM 07-01	2013	This document is a best practice guide to the
Safe management		management of healthcare waste. Healthcare waste
of healthcare waste		refers to any waste produced by, and as a
		consequence of, healthcare activities. For the
		purposes of this document, this guidance also applies
		to offensive/hygiene and infectious waste produced in
		the community from non-NHS healthcare.
		https://www.gov.uk/government/uploads/system/uplo
		ads/attachment_data/file/167976/HTM_07-
		01 Final.pdf
Technical requirement	nts and Guid	
The Glennie	2001	This document specifies the requirements for sterile
framework		service provision across NHS Scotland.
		http://www.scotland.gov.uk/Publications/2001/10/101
		<u>06/File-1</u>
Compliant Dental	2013	This document specifies the requirements for
Local		compliant reprocessing of dental devices in Local
Decontamination		Decontamination Units (Primary Care).
Units in Scotland		http://www.hfs.scot.nhs.uk/publications-
(Primary Care)		1/decontamination/
Provision of	2014	This document specifies the requirements for
Compliant Podiatry		compliant provision of podiatry instruments.
Instruments		http://www.hfs.scot.nhs.uk/services/decontamination-
		services/guidance/
Other relevant		http://www.hfs.scot.nhs.uk/services/decontamination-
decontamination		services/guidance/
guidance		Continued overleaf
galadiloc		Continued Overlear

Walah Haalth Taahu:			
Welsh Health Technic			
		ge.cfm?orgid=254&pid=64101	
WHTM 01-01	2013-2014	This document gives guidance on the whole	
Decontamination of		decontamination cycle in the management and	
medical devices		decontamination of surgical instruments used in	
within acute		acute care. It is in five parts:	
services		Part A – Management and environment	
		Part B – Common elements	
		Part C – Steam sterilization and steam for sterilization	
		Part D – Washer disinfectors	
		Part E - Alternatives to steam for the sterilization of	
		reusable medical devices	
WHTM 01-05	2014	This guidance relates to locally conducted	
Decontamination in		decontamination in primary care dental services	
primary care dental			
practices and			
community dental			
services			
WHTM 01-06	2014	This guidance allows local decisions to be made in	
Decontamination of		the formulation of an appropriately developed, risk	
flexible		controlled, operational environment within the	
endoscopes		healthcare facilities that decontaminate flexible	
•		endoscopes. It is in five parts:	
		Part A - Policy and management	
		Part B - Design and installation	
		Part C - Operational management	
		Part D - Testing methods	
		Part E - Validation and verification	
Guidance in Northerr	n Ireland		
PEL (13) 12: Choice	2013	Management and Decontamination of Surgical	
Framework for		Instruments (Medical Devices) Used in Acute Care:	
Local Policies and		Parts A, B,C,D, and E for use in Northern Ireland.	
Procedures		http://www.dhsspsni.gov.uk/pel_13_12_part_1.pdf	
(CFPP)01-01			
PEL (13) 15: Choice	2013	Reprocessing of Flexible Endoscopes: For use in	
Framework for	2010	Northern Ireland.	
Local Policies and		http://www.dhsspsni.gov.uk/pel-13-15.pdf	
Procedures			
(CFPP)01-06			
PEL (13) 16:	2013	Management and Decontamination of Surgical	
Northern Ireland	_0.0	Instruments (Medical Devices) Used in Acute Care	
Addenda to Choice		and CFPP 01-06: Reprocessing of Flexible	
Framework for		Endoscopes. NI/CFPP/01, NI/CFPP/02 and	
Local Policies and		NI/CFPP/03 : Testing Requirements.	
Procedures (CFPP)		http://www.dhsspsni.gov.uk/pel-13-16.pdf	
01-01		http://www.uriooponi.gov.ur/per-10-10.put	
HSS(MD)4/01	2001	Protocol for local decontamination of surgical	
	2001	instruments	
HSS(MD)4/01	2001	Decontamination of reusable medical devices	
133(191)4/01	2001	Addendum 3	
		Continued overleaf	

	4000	
HSS(MD)16/99	1999	Controls Assurance in Infection Control:
		Decontamination of Medical Devices. (and
		accompanying Decontamination Guidance CD-ROM)
HSS(MD)12/2007	2007	Decontamination of Surgical Instruments in light of
		National Institute for Health and Clinical Excellence
		(NICE) Guidance – Patient Safety and Reduction of
		Risk of Transmission of CreutzfeldtJakob Disease
		(CJ) via Interventional Procedures
PEL (13) 13	2013	Updated Northern Ireland Guidance on
		Decontamination in Primary Care Dental Practices:
		Health Technical Memorandum 01:05 2013 Edition
		http://www.dhsspsni.gov.uk/pel_13_13.pdf
Other relevant guida	nce	
Standards and	2012	The Institute of Decontamination Sciences (IDSc),
Practice		formerly the Institute of Sterile Services Management,
		has produced a revised third edition of this guidance,
		which sets out in detail the operational, technical and
		managerial requirements of decontamination services
		and provides a useful resource for anyone working in
		or around decontamination. The revised 3rd edition
		has been extensively updated to include the latest
		legislative framework referencing the work of the
		Healthcare Commission, ISO 13485 and the revised
		HBN13.
		A hardcopy of 'Standards and Practice' is free to full
		members of the Institute. Non-members can
		purchase hardcopies of the guidance. More information available at
Ctondordo ond	2015	http://www.idsc-uk.co.uk/publications.php
Standards and	2015	The Association for Perioperative Practice (AfPP),
Recommendations		formally NATN, has produced the fourth edition of
for Safe		their perioperative standards and recommendations.
Perioperative		The Decontamination Section is found within chapter
Practice		6 providing direction and guidance on all aspects of
		the decontamination life cycle processes, including
		direct links to all UK regions, National and
		International standards. The book is available to
		purchase via AfPP's website
		(www.afpp.org.uk/books-journals/afpppublication)