Appraisal Framework Module 4.

Surface Access: Heathrow Airport Hub Station Option

FINAL FOR CONSULTATION

AIRPORTS COMMISSION

28th October 2014
Document Control Sheet

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Client:</td>
<td>Airports Commission</td>
</tr>
<tr>
<td>Document title:</td>
<td>Surface Access: Heathrow Airport Hub Station Option</td>
</tr>
<tr>
<td>Project No:</td>
<td>B1988000</td>
</tr>
</tbody>
</table>

ORIGINAL

<table>
<thead>
<tr>
<th>Originated by</th>
<th>Checked by</th>
<th>Reviewed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>NAME</td>
<td>NAME</td>
</tr>
<tr>
<td>Richard Hibbert</td>
<td>Stephen Rutherford</td>
<td>Stephen Rutherford</td>
</tr>
<tr>
<td>Rajat Bose</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approved by</th>
<th>Document status:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>DRAFT</td>
</tr>
<tr>
<td>Stephen Rutherford</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>July 2014</td>
</tr>
</tbody>
</table>

Revision 1

<table>
<thead>
<tr>
<th>Originated by</th>
<th>Checked by</th>
<th>Reviewed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>NAME</td>
<td>NAME</td>
</tr>
<tr>
<td>Jon Hale</td>
<td>Stephen Rutherford</td>
<td>Stephen Rutherford</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approved by</th>
<th>Document status:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>FINAL</td>
</tr>
<tr>
<td>Stephen Rutherford</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>October 2014</td>
</tr>
</tbody>
</table>

Jacobs U.K. Limited

This document has been prepared by a division, subsidiary or affiliate of Jacobs U.K. Limited (“Jacobs”) in its professional capacity as consultants in accordance with the terms and conditions of Jacobs’ contract with the commissioning party (the “Client”). Regard should be had to those terms and conditions when considering and/or placing any reliance on this document. No part of this document may be copied or reproduced by any means without prior written permission from Jacobs. If you have received this document in error, please destroy all copies in your possession or control and notify Jacobs.

Any advice, opinions, or recommendations within this document (a) should be read and relied upon only in the context of the document as a whole; (b) do not, in any way, purport to include any manner of legal advice or opinion; (c) are based upon the information made available to Jacobs at the date of this document and on current UK standards, codes, technology and construction practices as at the date of this document. It should be noted and it is expressly stated that no independent verification of any of the documents or information supplied to Jacobs has been made. No liability is accepted by Jacobs for any use of this document, other than for the purposes for which it was originally prepared and provided. Following final delivery of this document to the Client, Jacobs will have no further obligations or duty to advise the Client on any matters, including development affecting the information or advice provided in this document.

This document has been prepared for the exclusive use of the Client and unless otherwise agreed in writing by Jacobs, no other party may use, make use of or rely on the contents of this document. Should the Client wish to release this document to a third party, Jacobs may, at its discretion, agree to such release provided that (a) Jacobs’ written agreement is obtained prior to such release; and (b) by release of the document to the third party, that third party does not acquire any rights, contractual or otherwise, whatsoever against Jacobs and Jacobs, accordingly, assume no duties, liabilities or obligations to that third party; and (c) Jacobs accepts no responsibility for any loss or damage incurred by the Client or for any conflict of Jacobs’ interests arising out of the Client’s release of this document to the third party.
Contents

1. Introduction .. 1
 1.1 Background ... 1
 1.2 The Heathrow Hub surface access proposal ... 1
 1.3 Core and Extended Baselines .. 3
 1.4 Report structure .. 5

2. Scheme details .. 6
 2.1 Public Transport schemes .. 6
 2.2 Highway schemes .. 7
 2.3 Other schemes ... 9

3. Delivery and operational considerations ... 10
 3.1 Overview .. 10
 3.2 Public Transport ... 10
 3.3 Highways .. 12
 3.4 Strategic fit ... 14

4. Costs and impacts .. 17
 4.1 Overview .. 17
 4.2 Scheme costs ... 17
 4.3 Rail access .. 19
 4.4 Mode choice .. 19
 4.5 Non-airport user impacts ... 23
 4.6 Potential further benefits .. 24

5. Conclusions .. 25
 5.1 Summary .. 25
 5.2 Positive impacts .. 25
 5.3 Neutral impacts ... 27
 5.4 Negative impacts .. 27
1. Introduction

1.1 Background

1.1.1 The Airports Commission (AC) was established in 2012 by the UK Government to examine the need for additional UK airport capacity and to recommend how any additional capacity requirements can be met in the short-, medium- and long-term. The AC is due to submit a Final Report to the UK Government by summer 2015 assessing the environmental, economic and social costs and benefits of various solutions to increase airport capacity, considering operational, commercial and technical viability.

1.1.2 The AC published an Interim Report in December 2013 that short-listed three options to address the UK’s long-term aviation connectivity and capacity needs, two focussed on expanding Heathrow Airport and one on expanding Gatwick through the provision of a second runway – the work leading up to the publication of the Interim Report is described as Phase 1. The short-listed options were to be further developed and appraised during Phase 2, with further phases of work programmed in the run-up to the submission of the Final Report in the summer of 2015.

1.1.3 One of the three shortlisted options is the provision of additional runway capacity at Heathrow through the extension of the existing northern runway to the west to create two separate in-line runways: one for landing and one for take-off during normal operations. This option is referred to as the ‘Heathrow Extended Northern Runway’ scheme.

1.1.4 The proposal to extend the northern runway was initially developed with an associated surface access package focussed on the provision of a new transport gateway (described as ‘Heathrow Hub’), consisting of a new railway station on the Great Western Main Line (GWML) with extensive parking provision, connected with the airport terminals via an Automated People Mover (APM).

Purpose of this report

1.1.5 This report summarises Jacobs’ review of the aforementioned surface access proposals, submitted to the AC by Heathrow Hub Ltd (HH). These proposals are outlined in the following documents:

- ‘Heathrow Expansion – Updated Scheme Design’ – submitted to the AC in May 2014; and

1.1.6 The purpose of this report is to highlight any areas of particular concern, weakness or omission that were identified by Jacobs during the review. The scope of the review was by necessity determined by the content of the aforementioned submission documents prepared by HH. Aspects of the proposals unrelated to the emerging Surface Access Strategy were excluded.

1.2 The Heathrow Hub surface access proposal

1.2.1 The Heathrow Hub surface access proposal is illustrated in Figure 1-1, which indicates the location of the new transport gateway to the north of the airport; an indicative alignment for the APM; and proposed new vehicular accesses from the A4 and the M25 (via junction 13). HH indicate that the provision of parking at the Hub site and the alternative vehicular access arrangements to the terminals would lead to a greater dispersal of traffic, bringing relief to the M25 and M4 in the vicinity of Heathrow.
1.2.2 Key proposed components of the Heathrow Hub transport gateway include the following:

- high quality interchange facilities between surface access modes;
- travellator and lift access directly from platform level to interchange level;
- kiss and ride facilities and up to 10,000 car parking spaces, with direct enclosed access via travellators to the interchange level;
- bus and coach facilities – HH has not proposed to relocate the Central Terminal Area (CTA) bus/coach station to the hub but independent facilities have been proposed so that bus and coach companies, particularly long-distance coaches, can use the motorway access and the single drop-off/pick-up location for the airport;
- multi-airline self-service check-in machines for airport passengers;
secure baggage drop facilities connecting directly with airside baggage facilities at the airport;

- a high quality, fast, landside APM to transport passengers, free of their baggage, to the main terminals every 90 seconds at peak, with a journey time of around 5 minutes to the Terminal 5 (western) campus and 7 minutes to the Terminal 2 (eastern) campus;

- the potential for commercial development including hotel(s) providing a range of price points for overnight accommodation for passengers.

1.2.3 HH indicate that the Heathrow Hub transport gateway would be facilitated by a range of surface transport proposals, as follows:

- Rail schemes – a rail service frequency of up to 15 trains per hour (tph) would be provided as indicated in Figure 1-2, and would consist of the following:
 - Crossrail and Heathrow Express enhancements;
 - Crossrail/ West Coast Main Line connection;
 - Piccadilly Line upgrade and extension to Heathrow Hub;
 - HS2 connectivity;
 - Southampton via Reading to Paddington new train service (GWML);
 - Southern Rail Access (SRA), which would allow connections to south west London and Waterloo, and to Woking;

- Highway schemes:
 - tunnelling of the M25 under the runway extension;
 - the removal of junctions 14 and 14A on the M25;
 - the provision of new link roads from junction 13 on the M25;
 - direct access/egress from the M4 (West) and M25 (North);

- Various other incentives to use public transport.

1.2.4 These schemes are assessed in more detail in Chapter 2 of this report.

1.3 Core and Extended Baselines

1.3.1 Jacobs’ review of the Heathrow Hub surface access proposals was undertaken with reference to a Core Transport Baseline and an Extended Transport Baseline, which together listed transport infrastructure and services expected or likely to be in place by 2030 regardless of any airport expansion that may be delivered in the UK. The definition for the two baselines is as follows:

- the Core Baseline consists of existing infrastructure and services, combined with enhancements whose delivery the AC considers to be inevitable or close to inevitable;

- the Extended Baseline consists of infrastructure and service improvements that are not firmly committed, but which the AC considers (having taken advice from Network Rail, the Highways Agency, Transport for London and the Department for Transport (DfT)) are likely to be required to support background demand absent any airport expansion.

1.3.2 The primary focus of all the analysis was on the Extended Baseline as by 2030 it was judged very likely that further enhancements to the UK transport network would have been delivered above and beyond works that were fully committed at the beginning of Phase 2 when the baselines were defined.
Figure 1-2: Proposed rail connectivity for the Heathrow Hub scheme

Source: HH, May 2014, page 54
1.3.3 Rail schemes included in the Core Baseline include the following:
- The ‘main’ HS2 line (excluding spurs);
- The entirety of the Control Period 4 (CP4) infrastructure plan for the railway;
- Almost all of the Control Period 5 (CP5) infrastructure plan for the railway (excluding Western Rail Access to Heathrow, for which funding is not yet fully committed); and
- Those rail and underground schemes for which there are firm policy and funding support.

1.3.4 A key scheme of relevance to the Hub surface access proposal is Western Rail Access to Heathrow (WRAiH), which is included in the Extended Baseline and is currently being developed by Network Rail. Delivery of the scheme is subject to Network Rail developing a satisfactory business case and agreeing acceptable terms with the Heathrow aviation industry. Construction could commence towards the end of CP5 subject to Network Rail agreeing the final business case with the Office for Rail Regulation (ORR) and the DfT, and securing a Development Consent Order (DCO).

1.3.5 The current working assumption is that the scheme would involve the provision of a direct rail link from Reading via Slough to Heathrow via a new junction between Langley and Iver stations linked to a 5km tunnel into the airport. There are a range of timetable scenarios being investigated but our understanding is that the current expectation is that 4 trains per hour would be provided between Reading and Heathrow, serving both Terminal 5 and the CTA.

1.3.6 If the Hub was delivered it is assumed that WRAiH would not be required due to the improved connectivity and accessibility to the Thames Valley and the West/South West of the UK associated with the Hub scheme.

1.3.7 In terms of highway schemes, the following are included in the core baseline:
- M25 junctions 23 to 27 ‘smart motorway’ (all lanes running) – complete by 2015;
- M25 junctions 5 to 6/7 ‘smart motorway’ (all lanes running) – complete by 2014;
- M3 junctions 2 to 4a ‘smart motorway’ (all lanes running) – complete by 2016; and
- M23 junctions 8 to 10 ‘smart motorway’ (all lanes running) – subject to value for money and deliverability assessment.

1.3.8 The following highway schemes are included in the extended baseline:
- M4 junctions 3 to 12 ‘smart motorway’ (all lanes running) – subject to value for money and deliverability assessment; and
- Lower Thames Crossing – although there is no decision yet as to the option that may proceed.

1.4 Report structure

1.4.1 The remainder of this report is structured as follows:
- Chapter 2 provides more details of the transport infrastructure proposals associated with the HH submission;
- Chapter 3 details the delivery and operational considerations highlighted during Jacobs’ review of the promoters’ documentation;
- Chapter 4 details the relative costs of the Hub scheme and summarises the impacts on rail access and mode share for airport users and wider impacts for users on the GWML;
- Chapter 5 summarises Jacobs’ conclusions on the positive and negative impacts of the scheme.
2. Scheme details

2.1 Public Transport schemes

Great Western Main Line (GWML) connections

2.1.1 The proposed configuration of Heathrow Hub station is designed to provide flexibility and operational resilience. The GWML between Paddington and Reading is a four-track route, with two tracks primarily used by Inter City services (the ‘main lines’), and two primarily used by Commuter services (principally Crossrail services from 2019) and freight (the ‘relief lines’). For the main lines, it is proposed to have two platforms in each direction, which will allow successive trains to stop without reducing route capacity. It is also proposed to have a high speed through-line in each direction without a platform. For the relief lines, the proposal is to have four platforms in total, to allow Crossrail trains to terminate there if required. The proposal also includes loops, useable in either direction, to allow maximum length (750 metres) freight trains to be overtaken if required, as shown in Figure 2-1.

Figure 2-1 Heathrow Hub Schematic Track & Platform Layout

Source: HH, May 2014, page 69

2.1.2 It is estimated that there would be fifteen trains an hour in each direction calling at Heathrow Hub. The Inter City services (11 trains an hour each way) would provide fast, direct and regular services on routes to Exeter, Plymouth and Cornwall; Swindon, Bath and Bristol; Bristol Parkway, Cardiff and Swansea; Cheltenham and Gloucester; and Oxford and Worcester.

2.1.3 Almost all of these trains would also call at Reading, providing a frequent service with a journey time of around 16 minutes (compared with the current scheduled coach journey time of 40 to 60 minutes depending on the time of day) and interchange opportunities for other routes. Crossrail services would serve intermediate stations between Reading and Paddington, providing a vital link for airport employees as well as air passengers.

Crossrail and Heathrow Express enhancements

2.1.4 This scheme involves increasing the number of Crossrail trains to CTA/Terminal 5/Terminal 4 from central London to 6tph (potentially up to 8tph) from the currently planned 4tph. The proposal is also to end the current premium fare and lack of fare integration on the 4tph Heathrow Express service, thus maximising the use of available capacity.

2.1.5 Crossrail will provide connectivity for travel from Heathrow via Paddington. It will also provide direct services to the West End, the City, Docklands and the eastern suburbs to Shenfield. Through ‘single interchange’ connections, it will also connect London Underground lines and the National Rail network (via Farringdon and Liverpool Street) to cities and towns in the East of England such as Cambridge, Peterborough, Bedford, Colchester, Ipswich and Norwich. The attraction of the Paddington route will
therefore be expected to increase, potentially mitigating the risk of growth in air passenger numbers putting unsustainable pressure on the Piccadilly Line.

2.1.6 It is envisaged that two Crossrail trains will be extended to terminate at a new bay platform at Staines, further improving connectivity and reducing operational congestion at the Terminal 5 station.

Crossrail/West Coast Main Line (WCML) connection

2.1.7 Studies are taking place into the provision of a link between Crossrail and the WCML, to allow medium distance services to be diverted away from Euston into Crossrail. This is expected to significantly improve accessibility in the WCML corridor, and provide stations like Watford Junction and Hemel Hempstead with a single change connection to Heathrow via Old Oak Common (OOC).

Piccadilly Line upgrade and potential extension to Heathrow Hub

2.1.8 TfL has committed plans for new trains and re-signalling that will increase the capacity of the Piccadilly Line by up to 60%. The upgrade is due to be implemented in the next 10 years.

2.1.9 HH has also proposed that Piccadilly Line services are extended to serve Heathrow Hub. While there are no details for this scheme, if implemented, this would add to the options for accessing the Hub.

Southern Rail Access (SRA)

2.1.10 A connection is proposed between Terminal 5 and the rail network to the south via a new route adjacent to the M25 thus avoiding the problems with the former Airtrack scheme. This would allow a direct connection via Staines from the airport to Waterloo, running at 2tph in the peak and 4tph in the off peak. This would provide access to/from South London and connections to the broader rail network at Clapham Junction. It would also provide a real alternative to the Piccadilly line for some journeys.

2.1.11 The same link is also proposed to facilitate a rail connection between Terminal 5 and Woking. 4tph would run from Woking/Basingstoke/Guildford to Heathrow. Grade separation works at Woking would also relieve a major bottleneck on the South West Main Line (SWML).

HS2 connectivity

2.1.12 This option would provide 6tph from OOC to Heathrow and 6tph between OOC and Heathrow Hub, and the Hub layout safeguards the route for the HS2 spur. If built, the spur could terminate at the Hub.

2.2 **Highway schemes**

M25 tunnelling option

2.2.1 The extension of the northern runway crosses a number of existing highways including the M25. A number of options for relocating the M25 have been considered during the development of the scheme. One was to divert the M25 around the end of the extended runway, and another involved carrying the runway over the M25 creating a tunnel on the motorway.

2.2.2 The M25 diversion option has been rejected for the following reasons:

- The extent of land required and the disruption to communities and overall environmental impact;
- The limitation on the runway length that can be achieved given the constraints of the existing junctions 13 and 15 on the potential for realignment of the M25;
• The possible impact on the Wraysbury Reservoir if junction 13 is retained – the reservoir is understood to be a constraint that cannot be overcome within the timescales contemplated by the AC and which led to southern extension options at Heathrow not being short-listed;
• The impact on junction 13 if a route to avoid the Wraysbury Reservoir is adopted;
• Discussions with Transec/CPNI and the Highways Agency that indicated that there is no objection in principle to a solution that creates a tunnel on the highway.

2.2.3 Tunnel options have therefore been considered. To maximise the area available for airfield and hence the long-term capacity and flexibility of the airport, alignments as far west as possible have been considered. Following testing of options it was concluded that:

• junctions 14 and 14A of the M25 need to be removed;
• two tunnel cells need to be provided in each direction to provide resilience for maintenance and emergency and assist in the management of the motorway in the event that standing traffic occurs; and
• a link road from junction 13 of the M25 has to be provided to replace the routes currently provided from junctions 14 and 14A, with traffic from the north being encouraged to use the Hub as a gateway to Heathrow.

2.2.4 The Hub roads proposal is summarised in Figure 2-2.

Figure 2-2: Heathrow Hub roads proposal

Source: HH, May 2014, page 1
2.3 Other schemes

Automated People Mover (APM)

2.3.1 An APM system is proposed to link Heathrow Hub with Terminal 5/6 (5 minutes journey time) and Terminal 2a (7 minutes). APMs are systems with fully-automated driverless vehicles operating on fixed guideways along an exclusive right of way. At this stage, the preferred technology (rubber-tired, monorail, steel-wheeled etc) is yet to be defined.

2.3.2 Using data from a range of supplier products and existing systems, HH has estimated journey times, capacity ranges and fleet sizes for the preferred alignment option, as indicated in Table 2-1.

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>Rubber-Tired APM</th>
<th>Monorail</th>
<th>Steel Wheeled APM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journey Times, mins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hub-T5/6</td>
<td>6-7</td>
<td></td>
<td>4-5</td>
</tr>
<tr>
<td>Hub-T2a</td>
<td>8-9</td>
<td></td>
<td>6-7</td>
</tr>
<tr>
<td>Capacity, pphpd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>2,000</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Ultimate</td>
<td>13,000</td>
<td>26,000</td>
<td>19,000</td>
</tr>
<tr>
<td>Typical Operating Configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>12no. – 1 car Trains</td>
<td>12no. – 1 car Trains</td>
<td>9no. – 1 car trains</td>
</tr>
<tr>
<td>Ultimate</td>
<td>12no. – 6 car Trains</td>
<td>12no. – 6 car Trains</td>
<td>9no. – 6 car trains</td>
</tr>
<tr>
<td>Fleet Size (including hot standby and spares), cars.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>15</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Ultimate</td>
<td>90</td>
<td>120</td>
<td>70</td>
</tr>
</tbody>
</table>

Source: HH, May 2014

Bus and coach enhancements

2.3.3 Heathrow Hub provides a potential alternative hub for bus and, particularly, for coach services. The time penalty for serving the airport for services operating on both the M4 and M25 is significantly reduced, resulting in lower journey times and higher passenger numbers and revenues as a result, and reduced operating costs. Furthermore, Heathrow Hub provides a single drop-off/pick-up point for all terminals, whereas current coach services either have to call at more than one terminal, or do not directly serve all terminals.

2.3.4 It is also envisaged that there is potential for development of regular coach links to significant centres where there is no possibility of justifying a direct rail link. For example, it is proposed to have a half hourly coach link to High Wycombe, connecting with Chiltern rail services.

2.3.5 Local bus operation to Heathrow Hub would also provide an alternative to serving the CTA and contribute to the development of Heathrow Hub as a railhead for the West of England and South Wales, although there would be less benefits for bus services than long-distance coach services.
3. **Delivery and operational considerations**

3.1 **Overview**

3.1.1 This section of the report provides commentary on the key considerations regarding the delivery and operation of the Hub surface access proposal outlined in the following HH documentation:

- ‘**Heathrow Expansion – Updated Scheme Design**’ – as submitted to the AC by HH in May 2014; and

3.1.2 The purpose of this and the subsequent chapter is to highlight any areas of particular concern, weakness or omission that were identified by Jacobs during the review. The scope of the review was by necessity determined by the content of the aforementioned submission documents prepared by HH. Aspects of the proposals unrelated to the emerging Surface Access Strategy were excluded.

3.2 **Public Transport**

Implications for Iver Station and other stations on the GWML

3.2.1 The first issue identified relates to the provision for trains serving the existing Iver rail station, and stations on the remainder of the GWML. In general terms the service levels and stopping patterns of trains that form the timetable is dependent on the achievable capacity of a line. Railway infrastructure, train speed profiles, station layouts and train control systems all constrain the hypothetical capacity of a route, and making significant alterations to any of these elements will influence train service patterns and the timetable.

3.2.2 In 2012/13, National Rail statistics indicate that Iver station was used by 186,132 boarders and alighters with a balanced flow reflecting the predominance of commuting traffic originating at the station. Currently, Iver is served by 4 departures to London Paddington in the peak hours. The addition of Heathrow Hub in close proximity of Iver, along with the associated infrastructure and timetable proposals, may influence Iver stopping patterns, which cannot simply be assumed to remain at current levels. This may make rail usage for passengers at Iver Station less convenient either through a reduced service pattern or a requirement to utilise new Park & Ride facilities.

3.2.3 Although HH indicate in their September submission that their timetable assumptions for the Hub include maintaining the proposed Crossrail service pattern at Iver, our view is that the close proximity of the two stations – Iver and Heathrow Hub – gives reasonable cause for this assumption to be called into question.

Express coaches

3.2.4 The current arrangements, where the Central Bus Station is placed at the busiest point of demand for air passengers and staff travel, will not apply in the expanded Heathrow. With the significant increase in air passenger processing capacity to be provided around Terminal 5, the centre of gravity of demand will shift westwards. While the Terminal 2 campus will remain very busy, it will no longer be the obvious principal location for coach and bus termination.
3.2.5 HH envisage that the APM will be of such high capacity, convenience and quality that it will be possible for the majority of express coaches to serve only one destination, i.e. the Hub coach interchange. We agree that for routes serving destinations to the south west, and west of London, this could be an operational benefit to express coaches as it offers the possibility of keeping services closer to the M25 / M4 / M40 corridors and avoiding the more severely congested access roads approaching the CTA.

3.2.6 The question of how to provide for express coach services for destinations to the east, south east and central London is less clear in the Heathrow Hub strategy. We can identify 3 potentially competing options:

- the Hub as the single coach interchange serving Heathrow;
- develop a second – south facing interchange – in the central area that is aligned to access via M25 junction 13;
- enable multiple express coach pick-up points around Heathrow to serve both Terminal 5 and Terminal 2 campuses plus the Hub.

3.2.7 Each of these has significantly different levels of operational efficiency and operator appeal in our view but further work is needed to define a preferred approach to the management of express coaches.

3.2.8 In June 2014, HH introduced the possibility of Heathrow Hub coach interchange as a potential replacement facility for Victoria Coach Station in central London. Passengers for London would alight at the Hub and transfer to mainline rail services, including Crossrail, to access central London. We are sceptical this approach would be favourable for coach operators, budget travellers or rail operators. In our view this adaptation of the Hub facilities is not a core objective for provision of the Hub and should, if promoted further, be subject to its own demand and capacity appraisals independent of the Surface Access Strategy for Heathrow.

Local buses

3.2.9 HH acknowledge the success of partnership working between TfL, local authorities and operators in planning local bus services to meet the needs of workers and passengers seeking to access/egress Heathrow airport. They express commitment to continue these partnership approaches in deriving enhanced local bus provision to meet the needs of growing demands at Heathrow, including servicing Heathrow Hub as an interchange and employment location in the future.

3.2.10 At this stage, there is little detail on the likely levels of demand for local buses or the resource/operation requirements of servicing the Hub in the future.

Heathrow Hub Interchange experience

3.2.11 A critical aspect of the success of Heathrow Hub would be linked to how passengers respond to the concept of the Hub as the northern gateway to the airport. In their submission, HH offered a number of assurances on seamless passenger interchange at the Hub, as follows:

- the provision of a high quality, innovative APM as a landmark aspect of travel;
- a very high frequency APM service with short wait times to minimise the risk of crowding;
- a secure baggage drop facility linking directly to airside baggage handling systems; and
- onward escalator/ elevator connections to rail platforms and check-in areas.

3.2.12 HH has also provided benchmark data on the resilience of comparator APM systems and we are satisfied that such systems have a high degree of reliability and would provide a robust method of transferring passengers between the Hub station and the terminals.
3.2.13 However, it appears that the HH appraisal of the Hub assumes that the interchange experience using the APM is sufficiently seamless that it should not incur an interchange penalty. While we have adopted this assumption, it is by definition at the lower end of the range and we believe that it will overstate the benefits of the HH scheme.

3.2.14 In addition, according to the HH submission passengers travelling to the airport would be able to use the baggage drop-off facilities at the Hub, but those leaving would have to collect their baggage in the terminal. This could result in a perception among passengers of having left the airport before boarding the APM, increasing the likelihood of the Hub being regarded as an additional interchange. In general terms, the separation of baggage drop and reclaim facilities would also likely lead to a less efficient baggage system that would be more expensive to operate than having all the facilities in one location.

3.2.15 These issues suggest that the generalised cost advantages claimed for Heathrow Hub may be eroded to some degree. Should passengers perceive the interchange experience in the same manner as a standard rail station interchange, comparable treatment in forecasting would incur an interchange penalty of up to 20 minutes for passengers travelling through the Hub.

3.2.16 We believe that investigation of the perceived interchange penalty arising at the Hub needs exploring using Stated Preference techniques to have some reliable insight into the responses and values perceived by users. At present, our view is that the promoters are underestimating this constraint on the attractiveness and performance of the Hub.

3.3 Highways

Access

3.3.1 The highway enhancements to facilitate the Heathrow Hub and associated runway extension have been developed in consultation with the Highways Agency and HH indicate that, in principal, agreement has been reached on the proposed highway configuration.

3.3.2 We note that there is an expectation that the new M25 junction 13 is likely to be spatially constrained, necessitating departures from Design Manual for Roads and Bridges (DMRB) standards. To date, the nature of these departures is unstated but we believe it is necessary to highlight this as a potential network performance, capacity and safety issue given that the revised M25 junction 13 is intended to be the main southern gateway to Heathrow for road traffic. More detailed consideration of achievable design standards and the resultant network performance is needed to confirm a view on this matter.

3.3.3 In addition, it is speculated that medium-term development of proposals for a Heathrow central area cordon access charge will be advantageous to manage mode choices and infrastructure utilisation as part of the Surface Access Strategy. Our view is that development and implementation of such a charge is likely to be highly contentious with far reaching implications for the perception of Heathrow as an international hub and commercial gateway. HH indicate in their September submission that the cordon charge does not form part of their central case.

Car parking

3.3.4 Proposals for Heathrow Hub include the provision of a 10,000 space car park adjacent to the rail station on GWML. This is intended to reinforce the role of the Hub as the northern gateway to Heathrow, enabling car-borne trips to terminate at the Hub and continue to the airport via the APM. The strategic location of this car park, adjacent to the M25 and accessible via the new junction 13 allows drivers to avoid the more congested M25/M4 links closer to the airport and the approach roads to the CTA.

3.3.5 We consider that likely users of the Hub car parking will arise from the following groups:

- Air passengers, arriving by car, using the Hub as a gateway to Heathrow;
The balance between these different user groups will be determined principally by the parking management regime applying at the Hub, including levels of charge, security, duration of stay. Alternative parking options, including parking availability within the central airport area and its environs will be a critical determinant.

HH do not state how the 10,000 space capacity for parking was derived. However, using a number of their stated parameters it is possible to develop a parking accumulation estimate for the Hub as indicated in Table 3-1.

Table 3-1: Estimate of parking accumulation at Heathrow Hub

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car borne arrivals at the Hub</td>
<td>100 pphpd (1)</td>
</tr>
<tr>
<td>Persons per vehicle</td>
<td>1.5(1)</td>
</tr>
<tr>
<td>Vehicles per hour</td>
<td>67 (2)</td>
</tr>
<tr>
<td>Vehicles per day (18 hours)</td>
<td>1,206(2)</td>
</tr>
<tr>
<td>Average dwell time per car</td>
<td>9 days(1)</td>
</tr>
<tr>
<td>Total parking required</td>
<td>10,854(2)</td>
</tr>
</tbody>
</table>

Notes: (1) from HH document, June 2014; (2) estimated based on source data.

This approach appears to support the proposed capacity of car parking provided at the Hub. Critical in the interpretation of this estimate are two assumptions, and at the time of writing we have been unable to verify the validity of either:

- that arrivals at the Hub incorporate all users identified above;
- that the average dwell time is valid, at 9 days.

Independently, we have assessed the aggregate demand for car parking from air travellers arriving at Heathrow. This approach yields a much lower estimate of Hub parking capacity, at approximately 3,000 spaces. With further allowance for other car park user-groups, including 3,000 spaces for Heathrow employees, this approach suggests that, if this level of utilisation is realised, the proposed car park may be over-specified.

HH acknowledge the recent success in reducing single car occupancy travel-to-work by airport workers over past 10 years, and Heathrow Airport Ltd plan to reduce this further to approximately 25% by 2030. We believe that a coherent approach to parking provision for all users, especially airport workers, is needed to successfully pursue this target. Integration of Hub parking into a whole airport parking strategy would be necessary to ensure that available capacity is planned and managed effectively through coordinated provision, charging and enforcement.

Taxis

In 2013, taxis carried 25% of total demand for travel to/from Heathrow Airport. HH state that the inefficient use of taxis, especially low occupancy rates on return trips, are a significant contribution to road congestion within the CTA and on key approaches. We would concur with this observation.

HH indicate that more intense use of taxis can be achieved through enhanced taxi fleet and boarding management, thereby reducing levels of taxi mileage and empty running within the airport road networks and its approaches. However, we can find little evidence of how this management approach will be achieved or comparators of experience where similar approaches have been successful. Given the highly competitive and entrepreneurial nature of the licensed taxi trade, there is concern that the expected benefits of enhanced taxi management will be limited.
3.4 Strategic fit

National policy objectives

3.4.1 HH provide a high-level analysis of the rationale for growth at Heathrow in the context of projections for global growth in aviation and the likelihood that the long-term operational model will be based around international hub airports. Within this context, the HH analysis is based on the AC’s defined Core Baseline and Extended Baseline forecasts.

3.4.2 Key contentions on the strategic fit of the Heathrow Hub in this context are, as summarised below:

- Heathrow Hub further enhances the case for Heathrow in terms of regional connectivity and extension of economic benefits;
- Heathrow is set at the centre of comprehensive networks of road and rail links;
- The costs of developing a new hub elsewhere, covering both immediate airport and transport-related infrastructure and costs of relocations of businesses and workforce, are likely to be significantly greater than expansion at Heathrow;
- The inclusion of Heathrow Hub as part of the offer increases the likelihood of the (demand) forecasts and/or could result in higher growth forecasts;
- The benefits to UK Gross Value Added (GVA) in the form of productivity gains, employment effects and gains from trade for airport expansion, and benefits of Heathrow Hub, are likely to be (potentially significantly) over £45bn in Present Value (PV) terms;
- The proposed scheme could be expected to improve accessibility to the airport resulting in an overall reduction in travel times – analysis of adding Heathrow Hub suggests a benefit of £2.2bn in the form of travel time savings from this infrastructure, and
- National agglomeration and efficiency benefits of Heathrow Hub transport interchange could be in the region of £5bn to £10bn.

3.4.3 It is important to note that all of these expectations of benefits are presented on the basis that they are preliminary, benchmarked or “broad brush” assessments at this stage. Modelling of economic impacts and travel choices has not been completed in sufficient depth to definitively verify the promoters’ claims at this time.

3.4.4 Strategically, Heathrow Hub is seeking to provide a northern gateway to the existing Heathrow site through development of a surface access strategy that effectively extends the airport campus northwards, by approximately 5km, to interface with the national transport networks of West Coast mainline and M25 in the vicinity of Iver, Buckinghamshire.

Local policy objectives

3.4.5 We have considered how this site selection relates to adopted local spatial planning policy frameworks. The relevant spatial strategy is the adopted South Bucks Local Plan (adopted 2011), which makes specific provisions for development in the vicinity of Iver. The relevant adopted policies are summarised below.
The Court Lane industrial area has been identified as a Major Developed Site in the Green Belt, and is indicated on the plan in Figure 3-1. The related sections of the Local Plan indicate that in considering any planning application for redevelopment of the Court Lane area, the Council will take into account the current impact of the significant areas of open storage on the openness of the Green Belt.

Figure 3-1: Land South of Iver Opportunity area

Residential development on the Court Lane site is considered wholly inappropriate, in view of the surrounding land uses. The Court Lane site is identified on the Proposals Map as a Major Developed Site in the Green Belt and comprehensive redevelopment proposals should result in a significant reduction in HGV movements. It is stipulated that any scheme should:

- Result in no greater impact on the openness of the Green Belt;
- Provide for habitat improvements and improved access to the open space and water areas in the Colne Valley Park;
- Provide improved pedestrian and cyclist access routes to Iver High Street and Iver Station, to enhance the sustainability of the site;
- Safeguard and improve the setting of the Grade II Listed Iver Court Farmhouse;
- Recognise the context of the site, and address issues including possible land contamination and the odour and air quality issues associated with the nearby water treatment works and M25;
- Incorporate decentralised and renewable or low carbon technologies (for example, combined heat and power), unless it is clearly demonstrated that this is not viable or feasible – this should
ensure that at least 10% of the energy needs for the development are secured from these sources;

3.4.8 The document indicates that the District Council will generally support appropriate employment generating development or redevelopment on Court Lane, Thorney Business Park and the Ridgeway Trading Estate, with particular encouragement to be given to uses that would result in a reduction in HGV movements.

Core Policy 9 – Biodiversity

3.4.9 This policy indicates that new development that would harm landscape character or nature conservation interests will not be permitted unless the proposal meets a number of key criteria as follows:

- the importance of the development outweighs the harm caused;
- the Council is satisfied that the development cannot reasonably be located on an alternative site that would result in less or no harm;
- appropriate mitigation or compensation is provided, resulting in a net gain in Biodiversity.

3.4.10 The policy indicates that with regard to Biodiversity Opportunity Areas, other non-designated land, and rivers (and their associated habitats), development proposals should seek to conserve and enhance biodiversity and achieve a net gain in local biodiversity resources.

Summary

3.4.11 Clearly, the scope and scale of the Heathrow Hub proposals very much exceeds any development envisaged by the Local Plan. The footprint of the Hub would be far in excess of areas designated for development and the likely impact in terms of local traffic generation, noise and atmospheric emissions are likely to be matters of concern.

3.4.12 Development of facilities associated with the Hub station, particularly with regard to the provision of a hotel(s) and a 10,000 space car park, will challenge the character and biodiversity policy objectives in the Local Plan, and strategic fit with the designated Green Belt is acknowledged by HH, who identify the need for Green Belt deletions in a way not current signalled by policy.

3.4.13 It is acknowledged that Local Plans by nature do not anticipate the scale of required infrastructure associated with a national expansion of airport capacity, and also that any proposal to expand aviation capacity at Heathrow will likely have some implications for local and national planning policy. However, when compared with a surface access proposal for Heathrow that incorporates the provision of WRATH in lieu of the Hub, it is clear that the Hub scheme is likely to present more challenges with regard to planning policy than the former option.
4. Costs and impacts

4.1 Overview

4.1.1 The previous chapter summarises the issues identified with the delivery and operation of the Hub station proposal during Jacobs review. In this chapter, the focus is on the relative cost of the scheme when compared with alternative options, notably WRATH, and the impacts of the Hub station proposal, notably focussed on the following elements:

- Airport passenger rail access and mode share from different regions;
- Non-airport rail user impacts;
- Other potential benefits and revenues.

4.2 Scheme costs

Total capital costs

4.2.1 In June 2014, HH presented the following capital cost estimates for the Hub station infrastructure shown in Table 4-1.

Table 4-1: HH Hub station cost estimate

<table>
<thead>
<tr>
<th>Element</th>
<th>Estimated Cost £m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heathrow Hub</td>
<td>850</td>
</tr>
<tr>
<td>Associated Roadworks</td>
<td>180</td>
</tr>
<tr>
<td>APM</td>
<td>500</td>
</tr>
<tr>
<td>Baggage Transfer System</td>
<td>403</td>
</tr>
<tr>
<td>Phasing</td>
<td>40</td>
</tr>
<tr>
<td>Other development costs including land</td>
<td>excluded</td>
</tr>
<tr>
<td>Fees</td>
<td>295</td>
</tr>
<tr>
<td>Contingency (HH, Roadworks, APM, Baggage system)</td>
<td>552</td>
</tr>
<tr>
<td>Inflation</td>
<td>excluded</td>
</tr>
<tr>
<td>Optimism Bias</td>
<td>excluded</td>
</tr>
<tr>
<td>Estimated Total Cost (2nd Q 2014)</td>
<td>2,820</td>
</tr>
</tbody>
</table>

Source: Table 6.1 (page 51) – ‘HH Updated Scheme Design – Surface Access’

4.2.2 All the estimates provided in the HH documentation are highly provisional and exclude inflation and optimism bias as indicated in the table above. The table also indicates that land costs are excluded from the headline estimate for the station, although it is understood that these are covered separately as a line item under airport masterplan costs. HH has also indicated independently that a spot allowance of £143m has been allocated for relocating the Iver Water Treatment Works.
4.2.3 HH indicated that these costs could be partly mitigated by savings related to the following infrastructure schemes, which would no longer be necessary:

- OOC main line platforms and associated station concourse/ overtrack for interchange to HS2 – HH estimated the saving to be approximately £100m;
- WRAiH – HH estimated a capital cost saving of £700m;
- Woking Station grade separation – HH estimated savings of approximately £200m;
- Crossrail semi-fast services, requiring new infrastructure to optimise benefits of extension to Reading – HH estimate the cost-saving at approximately £200m.

4.2.4 The HH figures therefore suggest a lower net capital cost than the total stated in the table above, and the savings identified were embedded in the cost plan prepared by HH. However, our independent review suggests a number of key issues with these assumed savings, as follows:

- TfL have expressed serious reservations about the suggestion that the OOC works would not be required, as they are investigating the potential for enhancing the interchange between HS2, GWML and Crossrail services in future and mainline platforms at OOC are likely to be a key element of this strategy – TfL views OOC as an opportunity to create a key interchange away from central termini providing the role of ‘the Stratford of west London’;
- Network Rail have indicated that the Woking station grade-separation works are being considered to enhance mainline capacity irrespective of the Hub proposals and will continue to be developed regardless of whether the Hub is introduced or otherwise.

4.2.5 As a result, we believe that the only significant capital cost saving is likely to be derived from not proceeding with WRAiH. In October 2011, Network Rail identified a £500m capital cost for this scheme (based on 2011 prices) in a study undertaken at Stage 2 of their ‘Governance for Railway Investment Projects’ (GRIP) process. The Government has committed to provide capital funding for this scheme, subject to a satisfactory business case and the agreement of acceptable terms with the Heathrow aviation industry. The GRIP Stage 3 submission for the scheme is not expected to pass through the Enhancements Cost Adjustment Mechanism until November 2015 when an efficient cost will be determined.

4.2.6 This indicative cost estimate for WRAiH is significantly lower than the Hub station cost estimate provided in Table 4-1. The table also suggests that the HH costs for the Hub station include an assumption of only 24% for contingency, which in our view is insufficient given the very early stage of development of the scheme at present. In contrast, the WRAiH scheme has already passed through two stages of the GRIP process.

4.2.7 In their September submission, HH appear to indicate costs for WRAiH related to transferring passengers and baggage to the “Northern airfield campus”. However, discussions with Network Rail indicate that while the timetable for WRAiH is still in development, the current working assumption is that it will serve both Terminal 5 and the CTA. As a result Jacobs have taken the view that these cost estimates are not relevant to this review. In addition, there does not appear to be any evidence for the HH cost estimate of £120m assigned to parking associated with the WRAiH scheme in the September submission.

4.2.8 In conclusion, although there is currently some uncertainty surrounding the characteristics of both the WRAiH and Hub schemes (particularly so in the case of the Hub), the available evidence suggests the following:

- the net capital cost of the Hub station is likely to be higher than assumed by HH in their cost plan, as schemes at Woking and OOC appear likely to proceed regardless of airport expansion; and
- the total capital cost of delivering the Hub scheme is likely to be significantly higher than the comparable capital cost of delivering WRAiH.
The remainder of this chapter on the impacts of the Hub station should be read in the context of the two aforementioned conclusions on the likely costs of the scheme.

Rail access

According to CAA passenger survey data, 75% (32.5m) of passengers at Heathrow originated from London and the South East in 2012, with 46% (22.3m) originating from Greater London itself. For the vast majority of these passengers, HEX, Crossrail and Piccadilly Line rail options with direct connections to terminals (and in the case of Crossrail and Piccadilly Line penetration into Central London) are likely to be much more attractive than using the APM to get to the Hub station and then a GWML service to Paddington. Thus it is our view that for the largest current market sector, the Hub is likely to have little attraction. Further discussion on the mode share implications of the Hub are provided later in this chapter.

The Hub will offer a better connection to Heathrow for GWML passengers from the West Country, offering an interchange to the APM with a 5-7 minutes journey time to the terminals. This is likely to be significantly better than the current options of interchanging to a Railair coach at Reading or travelling into and out of Paddington.

However, as indicated in the previous section, WRAI(H) will provide many of the benefits of the Hub rail connection for passengers on the GWML, and it is likely that these benefits will be delivered at a much lower cost. When fully completed, the Reading Redevelopment Programme (RSAR) will provide five extra platforms, a minimum of four additional train paths per hour and an anticipated reduction in delays in the general area of 38%. The modernised station will be an attractive interchange proposition to passengers as the introduction of lifts and escalators ensures access to all platforms is step-free. Our mode choice model predicted that the rail mode share of passengers from the Greater Western sector would be 17% with WRAI(H), compared to 30% with the Hub surface access proposal.

Furthermore, we consider it is reasonable to expect that, with completion of WRAI(H), rail operators currently serving Reading are likely to respond to the enhanced access to Heathrow with revisions to rail services that incorporate Heathrow directly from Reading.

In addition, the design for WRAI(H) includes gauge clearance for Inter City trains to Terminal 5, which is a requirement under interoperability regulations. There will therefore theoretically be the ability to run longer distance Inter City services to Terminal 5 from the west. This could, in due course, achieve many of the direct access benefits arising from the Hub proposals via the mainline rail network to/from Reading. It should be noted that such service options were not included in our WRAI(H) analysis.

The HH proposal also includes the assumption that HEX will not be sustained as a premium fare service, with the charging structure aligned to typical mainline fares either at or before the re-franchising of the service. A failure to achieve this fare realignment would likely have adverse impacts on rail service utilisation on services to Heathrow.

Mode choice

The HH submission to the AC included analysis of the impact of the Hub station on mode share from the following four market sectors: ‘Greater London area’, ‘Great Western area’, ‘Southern Access area’ and ‘Rest of Country’. At the time of reporting, Jacobs has not been able to ascertain how these market sectors were defined from the HH documentation and as a result, we have developed our own interpretation as shown in Table 4-2.
Table 4-2: Jacobs interpretation of HH market sector definition

<table>
<thead>
<tr>
<th>Market sector</th>
<th>UK geographic region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater London</td>
<td>Inner London</td>
</tr>
<tr>
<td></td>
<td>Outer London</td>
</tr>
<tr>
<td>Great Western</td>
<td>South West</td>
</tr>
<tr>
<td></td>
<td>Wales</td>
</tr>
<tr>
<td>Southern Access</td>
<td>South East (not London)</td>
</tr>
<tr>
<td>Rest of Country</td>
<td>East Midlands</td>
</tr>
<tr>
<td></td>
<td>East of England</td>
</tr>
<tr>
<td></td>
<td>North East</td>
</tr>
<tr>
<td></td>
<td>North West</td>
</tr>
<tr>
<td></td>
<td>Scotland</td>
</tr>
<tr>
<td></td>
<td>West Midlands</td>
</tr>
<tr>
<td></td>
<td>Yorkshire and the Humber</td>
</tr>
</tbody>
</table>

4.4.2 The following comparison of our mode share analysis with the numbers provided in the HH submission should therefore be read with regard to the uncertainty over the definition of different market sectors.

Observed mode share in 2012

4.4.3 CAA passenger survey data for Heathrow indicates that in 2012, 9% of all surface access trips to Heathrow originated from the Great Western market sector, consisting of the South West of England and Wales – this amounted to some 3.7m trips out of a total of 43.3m as indicated in Table 4-3. The table also indicates that just under 400,000 of the 3.7m trips from the Great Western sector were made by rail, amounting to 1% of all surface access trips to Heathrow.

4.4.4 Greater London was the main market sector in 2012, contributing 51% of all surface access trips (22.3m / 43.3m) and 83% of all rail trips (10m / 12.1m) to Heathrow.

Table 4-3: Heathrow 2012 annual surface access demand by mode and market section (2012 CAA survey data)

<table>
<thead>
<tr>
<th>Market sector (Jacobs definition)</th>
<th>Bus/coach</th>
<th>Private vehicle</th>
<th>Rail</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater London</td>
<td>1,238,166</td>
<td>11,002,540</td>
<td>10,026,237</td>
<td>22,266,943</td>
</tr>
<tr>
<td>Great Western</td>
<td>1,181,532</td>
<td>2,146,076</td>
<td>397,197</td>
<td>3,724,805</td>
</tr>
<tr>
<td>Southern Access</td>
<td>2,036,261</td>
<td>7,745,950</td>
<td>487,573</td>
<td>10,269,784</td>
</tr>
<tr>
<td>Rest of Country</td>
<td>1,102,368</td>
<td>4,770,872</td>
<td>1,165,815</td>
<td>7,039,055</td>
</tr>
<tr>
<td>Total</td>
<td>5,558,327</td>
<td>25,665,438</td>
<td>12,076,822</td>
<td>43,300,587</td>
</tr>
</tbody>
</table>

Note: Olympic-related trips and trips by other modes (including walk and cycle) excluded from analysis

4.4.5 Table 4-4 also indicates that of all trips from the Great Western sector, 11% were made by rail with 32% of trips made by bus/coach and 58% made by private vehicle. Overall, 28% of all trips to Heathrow were made by rail, with 13% by bus/coach and 59% by private vehicle.

Table 4-4: Heathrow 2012 annual surface access mode share by market section (2012 CAA survey data)

<table>
<thead>
<tr>
<th>Market sector (Jacobs definition)</th>
<th>Bus/coach</th>
<th>Private vehicle</th>
<th>Rail</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater London</td>
<td>6%</td>
<td>49%</td>
<td>45%</td>
<td>100%</td>
</tr>
<tr>
<td>Great Western</td>
<td>32%</td>
<td>58%</td>
<td>11%</td>
<td>100%</td>
</tr>
<tr>
<td>Southern Access</td>
<td>20%</td>
<td>75%</td>
<td>5%</td>
<td>100%</td>
</tr>
<tr>
<td>Rest of Country</td>
<td>16%</td>
<td>68%</td>
<td>17%</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>13%</td>
<td>59%</td>
<td>28%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: Olympic-related trips and trips by other modes (including walk and cycle) excluded from analysis
HH 2030 forecasts

4.4.6 The HH documents clearly state that “we have not at this stage been able to undertake detailed modelling of the overall impact on mode share if all our proposed options are implemented”. Nevertheless, they go on to state that when compared to Heathrow Airport Ltd’s forecast for public transport mode share (more than 50%), HH anticipate achieving a higher public transport mode share as they propose “significantly more effective public transport interventions”.

4.4.7 This logic carries through to the presentation of the demand forecast as a result of Heathrow Hub shown in Table 4-5, in the context of planned growth in aviation services at Heathrow. The table indicates that HH expect the total Great Western market sector share of all trips to Heathrow to increase to 10% in 2030. They also expect Great Western rail demand to increase significantly to over 2.7m in 2030, increasing the Great Western rail share of all trips to 4% over the same period.

Table 4-5: Heathrow Hub 2030 annual surface access demand forecast by mode and market section (HH analysis)

<table>
<thead>
<tr>
<th>HH 2030 with rail schemes (adjusted for Crossrail in GLA area)</th>
<th>Bus/coach</th>
<th>Private vehicle</th>
<th>Rail</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater London area</td>
<td>1,588,185</td>
<td>12,191,870</td>
<td>19,172,355</td>
<td>32,952,410</td>
</tr>
<tr>
<td>Great Western area</td>
<td>1,428,457</td>
<td>3,022,011</td>
<td>2,727,706</td>
<td>7,178,174</td>
</tr>
<tr>
<td>Southern Access area</td>
<td>174,054</td>
<td>2,505,465</td>
<td>1,900,855</td>
<td>4,580,374</td>
</tr>
<tr>
<td>Rest of Country</td>
<td>3,781,030</td>
<td>17,778,724</td>
<td>4,972,522</td>
<td>26,532,276</td>
</tr>
<tr>
<td>Total</td>
<td>6,971,726</td>
<td>35,498,070</td>
<td>28,773,438</td>
<td>71,243,234</td>
</tr>
</tbody>
</table>

Source: HH, June 2014, page 42

4.4.8 This significant increase in Great Western rail demand is highlighted in Table 4-6, which indicates that the HH rail mode share forecast for the sector increases to 38% as a result of the improved connections provided by the Hub station. Overall, HH expect 40% of all air passenger trips to be made by rail in 2030 (increasing from 28% in 2012) with 50% by private vehicle and 10% by bus/coach.

Table 4-6: Heathrow Hub 2030 forecast mode share by market section (HH analysis)

<table>
<thead>
<tr>
<th>Heathrow Hub 2030 with rail schemes (adjusted for Crossrail in GLA area)</th>
<th>Bus/coach</th>
<th>Private vehicle</th>
<th>Rail</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater London area</td>
<td>5%</td>
<td>37%</td>
<td>58%</td>
<td>100%</td>
</tr>
<tr>
<td>Great Western area</td>
<td>20%</td>
<td>42%</td>
<td>38%</td>
<td>100%</td>
</tr>
<tr>
<td>Southern Access area</td>
<td>4%</td>
<td>55%</td>
<td>41%</td>
<td>100%</td>
</tr>
<tr>
<td>Rest of Country</td>
<td>14%</td>
<td>67%</td>
<td>19%</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>10%</td>
<td>50%</td>
<td>40%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Heathrow Hub, June 2014, page 42.

Jacobs 2030 mode share forecasts

4.4.9 To assist the AC with interpreting the HH analysis, Jacobs developed a surface access model that predicts main mode share (car, bus/coach and rail) and rail sub-mode share. The model was calibrated using the 2012 CAA data, and the elements of the HH surface access proposal (consisting of the Hub station and associated rail and road enhancements summarised earlier in this report) were coded in to forecast the associated 2030 main mode share and rail sub-mode share. The absolute demand forecast resulting from the Jacobs 2030 model is indicated in Table 4-7.
Table 4-7: Heathrow Hub 2030 annual surface access demand by mode and market section (Jacobs model)

<table>
<thead>
<tr>
<th>Market sector (Jacobs definition)</th>
<th>Bus Coach</th>
<th>Car Taxi Minicab</th>
<th>Rail</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater London</td>
<td>1,771,349</td>
<td>17,047,291</td>
<td>20,329,541</td>
<td>39,148,181</td>
</tr>
<tr>
<td>Great Western</td>
<td>874,809</td>
<td>2,636,081</td>
<td>1,498,408</td>
<td>5,009,296</td>
</tr>
<tr>
<td>Southern Access</td>
<td>3,355,361</td>
<td>7,869,320</td>
<td>4,688,750</td>
<td>15,913,431</td>
</tr>
<tr>
<td>Rest of Country</td>
<td>946,878</td>
<td>2,972,049</td>
<td>3,350,582</td>
<td>7,269,509</td>
</tr>
<tr>
<td>Total</td>
<td>6,948,396</td>
<td>30,524,740</td>
<td>29,867,279</td>
<td>67,340,417</td>
</tr>
</tbody>
</table>

4.4.10 The mode share by market sector forecast produced by the Jacobs model is provided in Table 4-8. This table indicates that overall, the Jacobs model produces forecasts that are broadly similar to the HH analysis, predicting an overall rail mode share of 44% with the Hub scheme in place, compared with a figure of 40% assumed by HH. Rail mode share from the Great Western sector is forecast to increase to 30% compared with 38% indicated by HH.

4.4.11 The table indicates that trips from the Great Western sector account for 7% of all Heathrow departures in the 2030 Jacobs model, with Great Western area rail trips amounting to only 2% of all trips. This compares with the respective figures of 10% and 4% from the HH analysis described above. In both the Jacobs model and the HH analysis, Greater London is still the dominant market sector in 2030, accounting for 58% and 46% of all trips respectively.

Table 4-8: Heathrow Hub 2030 forecast mode share by market section (Jacobs model)

<table>
<thead>
<tr>
<th>Market Sector</th>
<th>Bus Coach</th>
<th>Car Taxi Minicab</th>
<th>Rail</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater London</td>
<td>5%</td>
<td>44%</td>
<td>52%</td>
<td>100%</td>
</tr>
<tr>
<td>Great Western</td>
<td>17%</td>
<td>53%</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>Southern Access</td>
<td>21%</td>
<td>49%</td>
<td>29%</td>
<td>100%</td>
</tr>
<tr>
<td>Rest of Country</td>
<td>13%</td>
<td>41%</td>
<td>46%</td>
<td>100%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10%</td>
<td>45%</td>
<td>44%</td>
<td>100%</td>
</tr>
</tbody>
</table>

The model included the Heathrow Hub concept, the deletion of the WRA/H scheme and the inclusion of a station on the GWML at OOC.

Summary

4.4.12 Both the Jacobs 2030 model and the HH analysis indicate that the Hub surface access proposal will significantly increase rail mode share from the Great Western market sector. The rail mode share from this sector (based on the Jacobs definition) in 2012 was 11%, and the Jacobs model forecasts an increase to 30% as a result of the Hub proposal, while HH indicate an increase to 38%.

4.4.13 However, all the analysis undertaken also indicates that the Great Western market sector share of all trips to Heathrow will remain very low in 2030. According to the Jacobs definition of the sectors, only 9% of all trips to Heathrow in 2012 originated in the Great Western sector, and Great Western rail trips only accounted for 1% of all trips.

4.4.14 In 2030, the Jacobs model forecasts a slight reduction in the overall market share of the Great Western sector to 7% but an increase in the Great Western rail share to 2% as a result of the significant shift to rail forecast from the sector due to the impact of the Hub. Although more optimistic, the HH analysis still indicates that the total Great Western market share is only expected to be 10% by 2030 and that rail trips from that sector are only expected to account for 4% with the Hub scheme in place.

4.4.15 Therefore although the rail mode share from the Great Western sector is predicted to increase with the Hub in place, these trips still contribute a very small percentage (between 2% and 4%) of total Heathrow surface transport demand.
4.5 Non-airport user impacts

4.5.1 Linked to the timetabling issues identified in the previous chapter, the introduction of a new station stop for services on the GWML for trains between London Paddington, Reading and South West England would inevitably incur a penalty for existing users of rail services, whose journeys are extended as a result of the new station stop.

4.5.2 Network Rail advised that the appropriate assumption for this penalty is 4 minutes, which leads to an annual monetised disbenefit to GWML rail users of £30,113,592 (2014 prices), taking account of different (WebTAG) values of time by journey purpose. The following table illustrates the scale of the impact for different stop durations at Heathrow Hub.

<table>
<thead>
<tr>
<th>Duration of Stop at Hub Station (mins)</th>
<th>Value of Additional Delay (2014 prices)</th>
<th>30 year impact (discounted at 3.5% pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>£7,528,398</td>
<td>£141,229,495</td>
</tr>
<tr>
<td>2</td>
<td>£15,056,796</td>
<td>£282,458,990</td>
</tr>
<tr>
<td>3</td>
<td>£22,585,194</td>
<td>£423,688,485</td>
</tr>
<tr>
<td>4</td>
<td>£30,113,592</td>
<td>£564,917,980</td>
</tr>
<tr>
<td>5</td>
<td>£37,641,990</td>
<td>£706,147,475</td>
</tr>
</tbody>
</table>

4.5.3 A number of key assumptions were applied to derive these impacts as follows:

- Total annual patronage on the GWML was estimated at 62m in 2030, which was estimated based on the following:
 - 2011/2 Paddington gateline entry and exit count of 34m according to ORR figures – this excludes HEX users;
 - Assumed annual demand growth factor of 3.4% – this was derived from NR’s 2010 GWML RUS, which indicated an average expected increase in all-day demand of 44% over the period 2008-2019 (including different growth assumptions for Inter City and Suburban services through Reading);
- 88% of all passengers on the GWML are affected – this was derived based on the number of services expected to stop at the Hub (15tph from the HH submission divided by 17tph expected through Reading according to the GWML 2010 RUS long-term forecast);
- An average rail user Value of Time of £8.28 per hour – based on 2014 values from the Webtag databook (May 2014 v1.2) – the calculation of this value is shown in the table below.

Table 4-10: Value of Time estimate for GWML users (2014 prices)

<table>
<thead>
<tr>
<th>Journey purpose</th>
<th>Heavy rail pax journey purpose split (all week average)</th>
<th>Rail passenger VOT 2014 (£/hr - perceived cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work</td>
<td>7.6%</td>
<td>£27.67</td>
</tr>
<tr>
<td>Commuting</td>
<td>52.2%</td>
<td>£7.02</td>
</tr>
<tr>
<td>Other</td>
<td>40.3%</td>
<td>£6.23</td>
</tr>
</tbody>
</table>

Weighted average VOT (£/hr): £8.28
Weighted average VOT (£/min): £0.14

4.5.4 When considered over a 30-year period, the discounted value (at 3.5% per annum) of the non-user impacts of a 4 minute additional station stop at Heathrow Hub is estimated to be £565 million.

4.5.5 HH suggest that the additional stopping time at the Heathrow Hub station could be balanced by omitting the GWML platforms at OOC station, with GWML trains not stopping at OOC. However, as mentioned earlier in this chapter, TfL have serious reservations with this proposal, indicating that OOC
will be a key interchange station for all Londoners and for HS2 users, and that full interchange options should be provided.

4.6 Potential further benefits

4.6.1 While acknowledging the disbenefit highlighted above for GWML users, HH also highlight in their September submission a number of counteracting benefits that they claim outweigh the negative costs. In particular, significant benefits are quoted related to the decongestion of the road network as a result of remote parking provided at the Hub station, and the benefits of shorter journey times to Heathrow for airport passengers travelling on the GWML and transferring via the Hub station – respective annual figures of £130m and £58m are quoted, but without any backup of the derivation of the calculations.

4.6.2 With regard to the decongestion benefits, it is acknowledged that the location of remote parking is likely to remove some airport-related traffic from the final links of their journeys in the vicinity of the airport, particularly from trips approaching from the north and west. However, the Jacobs modelling of the HH scheme suggests that the vast majority of the traffic on the strategic road network serving Heathrow is not related to the airport, and that even without airport expansion these road links will be heavily congested by 2030, which could have significant knock-on impacts for congestion on the road network around the airport. In addition, the removal of junctions 14 and 14a from the M25 associated with the Hub scheme could result in some traffic travelling further distances to reach their destinations than they would with the Heathrow Airport Ltd plan in place.

4.6.3 As a result we do not believe that it is prudent to claim significant decongestion benefits without undertaking dynamic network assignment modelling. It should be noted that such an assessment was not within the scope of this stage of work for any of the short-listed expansion options considered by the AC.

4.6.4 With regard to airport passenger journey time savings, it is acknowledged that rail passengers from the Great Western market sector would benefit from savings when accessing the airport when compared with the equivalent rail journey via WRAI. However, the volume of passengers benefitting from these savings is likely to be very low when compared with the non-airport volumes negatively impacted by the additional stop at the Hub station.

4.6.5 In addition, it appears that the figure quoted by Heathrow Hub assumes no interchange penalty is applied to Hub users, while an interchange penalty is incurred by passengers using WRAI services from Reading. As indicated earlier in this report, it is our view that HH have underestimated the constraints associated with interchanging at the Hub in their assessment of the attractiveness and performance of the facility.
5. Conclusions

5.1 Summary

5.1.1 The review of the HH surface access proposals resulted in the identification of a range of positive, neutral and negative impacts, which are summarised in Table 5-1. Further commentary is provided on each of the impacts described in the table above in the remainder of this chapter.

5.2 Positive impacts

Avoiding interchange at Paddington/Reading

5.2.1 Both the Jacobs 2030 model and the HH analysis indicate that the Hub surface access proposal will significantly increase rail mode share from the Great Western market sector. The rail mode share from this sector (based on the Jacobs definition) in 2012 was 11%, and the Jacobs model forecasts an increase to 30% as a result of the Hub proposal, while HH indicate an increase to 38%.

5.2.2 For this sector of the rail market, Heathrow Hub offers clear benefits by avoiding the current need to interchange at Paddington or Reading stations. Instead the Hub will provide direct access to GWML services to destinations in the Thames Valley, South West England and South Wales, with the APM linking air terminals directly to the GWML.

5.2.3 However, all the analysis undertaken also indicates that the Great Western market sector share of all trips to Heathrow will remain very low in 2030. The Jacobs model forecasts that the Great Western rail share would be 2% of all surface access trips to Heathrow and the HH analysis indicates a comparable figure of only 4%.

Reducing congestion

5.2.4 At the Hub, 10,000 additional parking spaces creates the potential to relieve congested sections of the M4 and M25 of airport-related trips by passengers, airport workers and commuters into London.

5.2.5 In particular, the Hub has the potential to intercept traffic flows destined for Heathrow from the north and west, reducing pressure on already congested sections of the M4 and M25, plus the local roads approaching the terminals. Our traffic analysis provides evidence that the approach reduces pressure on M25 junction 15, with lower peak hour flows approaching from all directions.

Northern Gateway to Heathrow

5.2.6 Heathrow Hub interchange can provide a focal point for access to Heathrow from the north by road. The Hub can also provide an effective terminal/interchange for express coaches serving Heathrow from the South West, the Midlands and the North, enabling them to avoid accessing the CTA to pick-up and set-down passengers. We also anticipate that the Hub will become a focal point for taxi operations, especially for arrivals and onward links to destinations in the Thames Valley and Outer West London.
Table 5-1: Summary appraisal of HH surface access proposals

<table>
<thead>
<tr>
<th>Positive</th>
<th>Neutral</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better rail access for passengers using the GWML, with direct interchange at Heathrow Hub. Our model predicts that the rail mode share from the Greater Western sector will increase from 11% in 2012 to 30% in 2030 with the scheme, while HH predict an increase to 38%. However, as a percentage of all surface access trips to Heathrow, rail trips from the Great Western sector are predicted to increase from just under 1% in 2012 to between 2%-4% in 2030, based on either the Jacobs or HH analysis of Hub station impacts respectively.</td>
<td>In 2012, 75% (32.5m) of passengers at Heathrow originated from London and the South East, with 46% (22.3m) originating in Greater London. For the vast majority of these passengers, HEX, Crossrail and Piccadilly Line rail services would offer a better option to travel to the airport and the Hub would have little attraction.</td>
<td>The HH analysis assumes no interchange penalty associated with the Hub station. Even with a high-quality interchange, passengers will still be required to transfer between rail services and the APM, and passengers leaving the airport will have to reclaim their baggage before boarding the APM. As a result, we believe that the interchange experience at the Hub has been over-stated by HH.</td>
</tr>
<tr>
<td>10,000 additional parking spaces has potential to relieve congested sections of M4 & M25 of airport-related traffic.</td>
<td></td>
<td>Contributes to further dispersal and extension of airport land-uses and impacts across a wider area of the Thames Valley and West London. The scheme would also lead to more complex planning considerations than that associated with the provision of WRAfH.</td>
</tr>
<tr>
<td>Hub interchange could provide a focal point for access to Heathrow from the north by road, express coach and taxi.</td>
<td></td>
<td>Introduction of an additional 4-minute station stop for GWML services, disadvantaging rail users to the value of £565m over 30 years. It is acknowledged that this would be off-set to some degree by journey time savings for airport rail passengers although the benefits are very likely to be significantly lower than the disbenefit for non airport-related GWML passengers.</td>
</tr>
<tr>
<td></td>
<td>Infrastructure costs for the Hub (£2.82bn according to the HH submission) are likely to be significantly higher than those for WRAfH (£500m at the end of GRIP 2), and the analysis undertaken by both HH and Jacobs indicates that the Hub station will only benefit a small proportion of airport users.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The separation of baggage drop and reclaim facilities would likely lead to a less efficient baggage system that will be more expensive to operate when compared with having all facilities in one place.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adverse implications are likely for existing users (186,000 ppa) of Iver Station and potentially for users at other stations on the GWML as a result of timetabling issues.</td>
</tr>
</tbody>
</table>
5.3 Neutral impacts

Passengers destined for Greater London and the South East

5.3.1 According to CAA passenger survey data, 75% (32.5m) of passengers at Heathrow originated from the South East in 2012, with 46% (22.3m) originating in Greater London.

5.3.2 For the vast majority of these passengers, HEX, Crossrail and Piccadilly Line rail options with direct connections to terminals (and in the case of Crossrail and Piccadilly Line penetration into Central London) are likely to be much more attractive than using the GWML via Paddington and the APM at the Hub station. Thus it is our view that for the largest current market sector, the Hub is likely to have little attraction.

5.4 Negative impacts

Scheme costs

5.4.1 Infrastructure costs for the Hub are likely to be significantly higher than those for WRAiTH, and the Hub scheme will benefit a very small proportion of surface access trips to Heathrow in 2030 (i.e. those passengers expected to travel by rail from the Great Western market sector). The current indicative estimate for WRAiTH is approximately £500m, in contrast to HH’s estimate of £2.82bn for the Hub station and associated works in their June submission. Rail trips from the Great Western sector are forecast to range from 2%-4% of all surface access trips to Heathrow based on either the Jacobs or HH analysis of Hub station impacts in 2030.

5.4.2 It was also noted that HH included a 24% contingency factor in their June cost estimate for the Hub station scheme, which we consider to be insufficient given the current stage of development of the scheme. In contrast, the WRAiTH scheme has already passed through two stages of Network Rail’s GRIP process.

5.4.3 With the completion of recent improvements at Reading station, the quality of interchange at Reading is much enhanced, to a level where we would not expect the benefits of the Hub to offset the likely additional costs. Indeed, we consider it is reasonable to expect that, with completion of WRAiTH, rail operators currently serving Reading are likely to respond to the enhanced access to Heathrow with revisions to rail services that incorporate Heathrow directly from Reading. This could, in due course achieve many of the direct access benefits arising from the Hub proposals via the mainline rail network to/from Reading.

Interchange experience and baggage handling

5.4.4 While a high-quality interchange experience could undoubtedly be provided at the Hub station, passengers will still be required to transfer between rail services and the APM. This will inevitably result in some inconvenience and waiting time.

5.4.5 In addition, the HH proposal assumes that passengers leaving the airport would still have to collect their baggage in the terminal before boarding the APM. This could result in a perception among passengers of the Hub station as an additional interchange on their journey from the airport.

5.4.6 As a result, we believe that HH have overstated the benefits of the Hub as an interchange experience, particularly with regard to their associated assumption of no interchange penalty when assessing the generalised cost of rail trips to and from the airport. Should passengers perceive the interchange experience in the same manner as a standard rail station interchange, comparable treatment in forecasting would incur an interchange penalty of between 10-20 minutes for passengers travelling through the Hub.
5.4.7 In addition, in general terms, the separation of baggage drop and reclaim facilities would also likely lead to a less efficient baggage system that would be more expensive to operate than having all the facilities in one location within each terminal.

Additional trip generation associated with land-use

5.4.8 It is noted that the current proposals for Hub station car parking included in the HH submission do not envisage additional trip generation resulting from development in the vicinity of the station. However, if development is proposed (i.e. hotels, shopping centres, conference centres etc) this is likely to result in additional trip generation that could create significant congestion issues over a wide area.

Impact on existing users of GWML

5.4.9 The introduction of a new station stop for services on GWML trains between London Paddington, Reading and South West England / South Wales will inevitably incur a penalty for existing users of rail services, whose journeys are extended as a result of the new station stop. Network Rail advised that the appropriate assumption for this penalty is 4 minutes.

5.4.10 This leads to an annual monetised disbenefit of £30,113,592 (2014 prices) for GWML users stopping at the Hub in 2030. Over a 30-year period, the discounted value of the non-user impacts at Heathrow Hub is estimated to be £565m (discounting at 3.5% per annum).

5.4.11 It is acknowledged that this disbenefit would be off-set to some degree by journey time savings for rail passengers accessing Heathrow via the Hub when compared to WRATH. However, out of all current GWML users, a very low percentage make trips to and from Heathrow and as a result, any benefits for airport passengers are very likely to be significantly lower than the disbenefits incurred by the majority of GWML passengers.

Implications for Iver Station and other stations on the GWML

5.4.12 In general terms the service levels and stopping patterns of trains that form the timetable is dependent on the achievable capacity of a line. Railway infrastructure, train speed profiles, station layouts and train control systems all constrain the hypothetical capacity of a route, and making significant alterations to any of these elements will influence train service patterns and the timetable.

5.4.13 In 2012/13, National Rail statistics indicate that Iver station was used by 186,132 boarders and alighters with a balanced flow reflecting the predominance of commuting traffic originating at the station. Currently, Iver is served by 4 departures to London Paddington in the peak hours. The addition of Heathrow Hub in close proximity of Iver, along with the associated infrastructure and timetable proposals, may influence Iver stopping patterns, which cannot simply be assumed to remain at current levels. This may make rail usage for passengers at Iver Station less convenient either through a reduced service pattern or a requirement to utilise new Park & Ride facilities.

5.4.14 Although HH indicate in their September submission that their timetable assumptions for the Hub include maintaining the proposed Crossrail service pattern at Iver, our view is that the close proximity of the two stations – Iver and Heathrow Hub – gives reasonable cause for this assumption to be called into question.
Land-use dispersal and planning policy

5.4.15 We believe that the proposal for Heathrow Hub contributes to further dispersal and extension of airport land-uses and their impacts across a wider area of the Thames Valley and West London than at present. We question whether this is, on balance, to the advantage of economic, environmental and social objectives both locally and nationally. Indeed, there is some doubt whether further dispersal effectively enhances operational efficiency and resilience for Heathrow Airport itself.

5.4.16 In addition, the scope and scale of the Heathrow Hub proposals very much exceeds any development envisaged by the South Bucks Local Plan. The footprint of the Hub would be far in excess of areas designated for development and the likely impact in terms of local traffic generation, noise and atmospheric emissions are likely to be matters of concern. Development of facilities associated with the Hub station, particularly with regard to the provision of a hotel(s) and a 10,000 space car park, would challenge the character and biodiversity policy objectives in the Local Plan, and strategic fit with the designated Green Belt is acknowledged by HH, who identify the need for Green Belt deletions in a way not current signalled by policy.

5.4.17 It is acknowledged that Local Plans by nature do not anticipate the scale of required infrastructure associated with a national expansion of airport capacity, and also that any proposal to expand aviation capacity at Heathrow will likely have some implications for local and national planning policy. However, when compared with a surface access proposal for Heathrow that incorporates the provision of WRaTH in lieu of the Hub, it is clear that the Hub scheme is likely to present more challenges with regard to planning policy than the former option.