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FOREWORD 

  i The Committee on Medical Aspects of Radiation in the Environment 

(COMARE) was established in November 1985 in response to the final 

recommendation of the report of the Independent Advisory Group chaired by 

Sir Douglas Black (Black, 1984). The terms of reference for COMARE are: 

  ‘to assess and advise government and the devolved authorities on the 

health effects of natural and man-made radiation and to assess the 

adequacy of the available data and the need for further research’ 

  ii In the course of providing advice to government and the devolved 

authorities for over 28 years, COMARE has published to date 15 major reports 

and many other statements and documents mainly related to exposure to 

naturally occurring radionuclides, such as radon and its progeny, or to man-

made radiation, usually emitted by major nuclear installations. The most recent 

COMARE report focused on the radium contamination in the area around 

Dalgety Bay. 

  iii In August 2011, the Department of Health asked COMARE to produce 

a report on medical radiation dose issues with CT scanners. Issues to be 

considered in the report related to the increased use, justification and 

optimisation of CT exposures on patients. The report would focus on diagnostic 

CT applications, as well as including PET-CT, SPECT-CT and cone beam CT, 

but would not consider exposure of staff or asymptomatic individuals. A future 

report will investigate the use of CT in interventional radiology. COMARE 

reconstituted its Medical Practices Subcommittee, with a new membership 

consisting of committee members and external experts, to conduct this work. 

The subcommittee’s terms of reference are: 

  ‘to advise COMARE on the health effects arising from medical and 

similar practices involving the use of ionising and non-ionising 

radiation through assessment of the available data and to inform 

COMARE of further research priorities’ 

  The investigation of the increased use of CT, together with the potential risks 

associated with the radiation exposure from the examinations detailed in this 

report, lies within the remit of the subcommittee. 

  iv The aim of this COMARE report has been to provide advice to the 

Department of Health on the increased use of diagnostic CT within the UK, 

with consideration of the potential dose reduction benefits of practical 

approaches and supporting initiatives. 

  v When the subcommittee had finished its review, the report was 

presented to COMARE for consideration by the full committee, with the aim 

that the information would be presented to the Department of Health in due 

course. That information is contained in this, our sixteenth report. 
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CHAPTER 1 

INTRODUCTION 

  1.1 Medical imaging is ranked within the top five recent medical 

developments in numerous surveys: for example, see the survey by the Royal 

College of Physicians of Edinburgh (RCPE, 2010). A variety of imaging 

modalities are currently available for clinical use, including radiography, 

fluoroscopy, computed tomography (CT), nuclear medicine (including hybrid 

imaging with CT), ultrasound and magnetic resonance imaging (MRI). Each has 

its advantages and disadvantages (see Appendix B for a comparison of CT, MRI 

and ultrasound).  

  1.2 The development of cross-sectional imaging (CT and MRI) has 

revolutionised the manner in which the body can be visualised to detect disease 

(eg cancer) and to inform treatment in a range of disease areas.  

  1.3 The principal advantages of CT are: 

  (a) Rapid acquisition of images  

(b) Impressive spatial resolution 

(c) A wealth of clear and specific information answering a wide range of 

clinical questions 

(d) A view of a large portion of the body  

(e) The ability to discriminate between structures on the basis of density 

  No other imaging procedure combines these features into a single modality. In 

addition, as with most digital technologies, these developments have been 

achieved with a decrease in the real cost of equipment. The result has been 

increased patient throughput at lower cost per caput, which has consolidated CT 

as a major, first-line, diagnostic modality. 

  1.4 CT, originally known as computed axial tomography (CAT), uses 

specialised X-ray equipment to obtain image data from different angles around 

the body. Digital processing of this information results in detailed cross-

sectional images of body tissues and organs in either two- or three-dimensional 

format. It was the first technique to produce such images and as the diagnostic 

advantages were immediately obvious, it rapidly became established as a 

valuable diagnostic tool. 

  1.5 The idea of CT was conceived in 1961 by W H Oldendorf (Oldendorf, 

1961), although the first clinical application was envisaged in 1967 in England 

by G N Hounsfield at the Thorn EMI Central Research Laboratories, being 

publicly announced in 1972. The system was independently developed by 

A M Cormack at Tufts University and both he and Hounsfield shared the Nobel 

Prize for Medicine in 1979. The original test rig, developed in 1971, used 

americium as a gamma source, and took 160 parallel readings over 180 angles, 

each 1° apart. It took 9 days to collect sufficient information about the object 

being scanned and a further 2.5 hours to reconstruct the data into an image. 
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Later, the gamma source was replaced by a more powerful X-ray source, which 

reduced the scanning time (Hounsfield, 1973). 

  1.6 The first prototype clinical CT scanner (the forerunner of the commercial 

version known as the EMI scanner) was installed in Atkinson Morley’s Hospital, 

Wimbledon. It was limited to making tomographic sections of the brain, and the 

first patient brain scan using the machine was obtained in 1971. To reduce the 

dynamic range of the radiation reaching the detectors, the machine required 

the use of a water-filled Perspex™ tank, with a pre-shaped rubber head cap 

enclosing the patient’s head. The machine took between 4.5 and 20 minutes per 

180° scan to acquire the image data, with 7 minutes required to process each 

image (Beckmann, 2006). 

  1.7 CT scanners have gone through many phases of technological develop-

ment, from single-slice static machines to single-slice spiral/helical machines, 

and in the last decade there have been further significant advances in CT 

technology (see Appendix C for a more detailed history). In particular, the 

continued development of multi-detector (often referred to as multi-slice) CT 

and developments in gantry technology have increased the speed of scanning 

and enabled high resolution reconstruction of images in all planes. Other recent 

developments allow consideration of volume CT acquisition. These improve-

ments mean that more complex and extensive scans can be performed within 

timeframes tolerable to most patients. Large volumes of the chest can be 

scanned within a breath hold and cardiac examinations achieved within a single 

heart beat. An additional dimension has been provided by time-based exposures, 

which make it possible to investigate the perfusion characteristics of organs for 

a range of diseases. 

  1.8 Increased computing power and data processing capacity have 

contributed significantly to the expanded capability of CT systems and this is 

expected to continue. Software packages have been developed to make use of 

these benefits, with modern scanners being able to reconstruct a study yielding 

around 1000 images in less than 30 seconds. Multi-planar and three-dimensional 

imaging, created from the exposed volume, are now common techniques that 

have contributed to an increased demand for CT. 

  1.9 These developments have resulted in a dramatic increase in the number 

of clinical applications of CT. The first systems were designed only for 

examination of the brain. When body systems were first developed, they were 

restricted to selective examination of the trunk, largely in relation to the 

management of cancer. As the modality became more widely available, more 

accurate and more flexible, the number of applications in benign disease and in 

young people increased dramatically.  

  1.10 Today, there are many applications and benefits in the clinical use of 

CT, aiding more effective care management by: 

  (a) Determining the necessity for surgery  

(b) Reducing the need for ‘exploratory’ surgery  

(c) Improving diagnosis, staging and treatment of cancer  

(d) Reducing the length of hospitalisations  

(e) Reducing the need for examination under sedation, especially in very 

young patients 

(f) Guiding the treatment of common conditions such as injury, cardiac 

disease and stroke 
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  1.11 Of around 130 applications of CT recommended by the Royal College 

of Radiologists (RCR) in its guidelines ‘iRefer’, 70% now relate to benign or 

potentially benign conditions (RCR, 2012). In many conditions, which although 

benign can be life threatening, CT has been recommended as a standard investi-

gation: for example, in the investigation of acute appendicitis (Raptopoulos 

et al, 2003; Saito et al, 2013). 

  1.12 CT has now replaced a large number of conventional examinations, such 

as barium studies and angiograms (Lederlin et al, 2011; Makayama et al, 2001). 

Additionally, CT can be used to obtain data from which virtual endoscopy can be 

created, obviating the need for invasive endoscopy (Summers, 2010; Vining, 

1997). As a consequence, in many cases better diagnostic information has also 

been accompanied by a reduction in the radiation dose or the morbidity (and in 

some cases mortality) associated with traditional procedures. This is not always 

the case, however, as in some benign cases the use of CT in place of other 

investigations results in significantly higher radiation exposure, for example, in 

Crohn’s disease (Jaffe et al, 2007). CT pulmonary angiography has in many 

places replaced nuclear medicine ventilation-perfusion lung scanning, but with 

increased breast radiation dose, especially for pregnant and lactating women 

(Anderson, 2007; Shahir et al, 2010).  

  1.13 Wider use of CT in benign disease and in younger patients, especially 

children, whose tissues have a greater radiosensitivity, highlights the need for 

conscientious radiation protection. Children have a longer predicted lifespan in 

which potential harmful effects of radiation exposure have more opportunity to 

emerge. The current success of treatments for a range of cancers and the 

increasing lifespan of the population as a whole means that radiation protection 

has become a matter of importance for all patients receiving CT scans. 

  1.14 Comparing data from the USA between 1980 and 2006 shows a 

significant increase in both the average annual effective dose to the US 

population and the contribution from medical radiation sources (Figure 1.1). 

The data for the UK population in 2003 show a similar distribution to that of 

the 1980s US population; however, more recent data suggest that the UK is 

following a similar trend to the USA, with an increasing contribution from 

medical exposures. 

 

 

Figure 1.1 Average annual effective radiation dose to the US and UK populations from all sources (Mettler et al, 

2009; Watson et al, 2005) 
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  1.15 For the UK population, the annual per caput effective radiation dose 

from all diagnostic X-rays has increased from 0.33 millisievert (mSv) in 1997 to 

0.4 mSv in 2008 (Hart et al, 2010). For some time, medical X-rays have been 

the largest single artificial source of radiation exposure for the UK population. 

In 2008, they contributed 15% of the average annual effective dose to the 

population from ionising radiation
*
. It has been recognised that CT makes a 

disproportionate contribution to the radiation exposure of patients compared 

with other radiation-based imaging techniques. The then National Radiological 

Protection Board (NRPB)
†
 noted in 1989 that while CT comprised around 2.5% 

of all examinations, it contributed around 25% of the collective dose to the 

population from imaging (Shrimpton et al, 1991). By 2008, CT accounted for 

around 7% of all medical and dental X-ray examinations, but produced 68% of 

the collective dose (Hart et al, 2010).  

  1.16 According to statistics from the NHS
‡
, the number of CT scans 

conducted in hospitals in England each year for the period 1996/97 to 2012/13 

steadily increased from just over 1 million to almost 5 million, with no sign of 

reaching a plateau (see Figure 1.2). 

  1.17 The increasingly extensive examinations and more widespread use of 

CT are major contributors to the observation that diagnostic uses of radiation 

have almost doubled the average radiation exposure to the population in some 

20 years, as has been shown for the USA (Hricak et al, 2011).  

 

 

Figure 1.2 Number of NHS CT examinations performed from 1995/96 to 

2012/13 in England 

 
* The average annual effective dose from natural and artificial sources of ionising radiation is 

estimated at 2.7 mSv for the UK, with the majority of this attributed to natural radiation (2.2 mSv) 

(Watson et al, 2005). 

† The NRPB was subsequently incorporated into the Health Protection Agency (HPA). 

On 1 April 2013 the HPA was abolished and its functions transferred to Public Health England. 

‡ www.england.nhs.uk/statistics/statistical-work-areas/diagnostics-waiting-times-and-

activity/imaging-and-radiodiagnostics-annual-data/ 
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  1.18 Documented average exposures to the population in reality reflect even 

higher exposure of a smaller number of people, namely patients. The role of CT 

in the clinical management of some diseases may result in a patient receiving a 

large number of scans in the course of one illness (Katz et al, 2006; Meeson 

et al, 2009; Sodickson et al, 2009). Restricting doses in CT is, therefore, widely 

perceived as an important objective in the practice of the technique and is held by 

some authors to be medicine’s major current challenge in radiation protection 

(Golding, 2005). 

  1.19 The rising use of CT, the radiation exposure used in the examination 

and the potential risks associated with it are described in this report. These 

circumstances indicate that there is potential benefit in recommending steps to 

reduce population exposure due to CT. These are considered in detail in the 

following chapters. 
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CHAPTER 2 

APPLICATIONS AND BENEFITS OF 

CT SCANNING 

  2.1 CT is a powerful, highly flexible clinical tool, capable of making radical 

changes to the management of patients. On the basis of the current state of 

alternative technologies, it is possibly the most important cross-sectional 

imaging modality in the diagnosis and management of a broad array of 

conditions. There is a strong evidence base which demonstrates that CT changes 

patient management in a wide range of applications and disease states (RCR, 

2012). In some conditions it may be the only investigation the patient requires. 

  2.2 As is common to all investigations in medicine, the correct application 

of CT is based on weighing the potential benefit of reliable investigation against 

the inherent risk. While this principle supports the widespread use of CT, active 

measures to achieve greater dose constraint are required in view of the current 

position of CT as a major source of patient irradiation. 

Principles of radiation 

protection relevant to 

CT and regulation 

 2.3 The governance of CT adheres to the established radiation protection 

principles of the International Commission on Radiological Protection (ICRP). 

Three key principles of radiation protection were reaffirmed in 1990 (ICRP, 1991): 

  Justification – exposure to radiation must produce sufficient benefit to 

the exposed individuals, or to society, to offset the potential radiation 

detriment 

Optimisation – implementing procedures and techniques to keep 

exposures as low as reasonably practicable, economic and social factors 

being taken into account 

Dose limitation – keeping radiation doses received within specified 

limits 

  2.4 The ICRP issued new recommendations on radiation protection in 2007 

(ICRP, 2007), which formally replaced its 1990 recommendations (ICRP, 1991). 

  2.5 Only justification and optimisation apply in the context of medical 

radiation exposures for patients, whereas all three key principles apply to the 

occupational exposure of medical staff. Occupational exposure is not considered 

further in this report; rather it focuses on patient exposure. The concept of 

diagnostic reference levels (DRLs) has been introduced to support the control 

and periodic reduction of radiation doses from diagnostic procedures. These are 

based on dose data for a range of commonly requested procedures in the UK 

and are regularly updated. 

  2.6 In the UK, legislation has been put in place implementing key European 

Council Directives, to address the hazards associated with ionising radiation. 

For CT scanning there are three sets of regulations of particular importance: 

  The Justification of Practices Involving Ionising Radiation Regulations 

2004, which address justification of practices at the highest level 
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The Ionising Radiations Regulations 1999, which address protection of 

workers and the public
*
 

The Ionising Radiation (Medical Exposure) Regulations 2000, which 

address protection of patients and others 

  2.7 The guidance on the application and administration of the Justification 

of Practices Involving Ionising Radiation Regulations 2004 includes medical 

exposures using CT for diagnosis as an existing type of practice. The Ionising 

Radiation Regulations 1999 require employers to establish a framework to 

ensure exposures arising from work activities are kept as low as reasonably 

practicable and below dose limits. 

  2.8 The Ionising Radiation (Medical Exposure) Regulations 2000 (IR(ME)R 

2000) (Department of Health, 2000) continue these themes at the individual 

patient level and require that all individual medical exposures are referred, 

justified and optimised. Both the referrer and the practitioner must be registered 

healthcare professionals. 

  2.9 IR(ME)R 2000 require an identified person, known as the ‘practitioner’ 

in the UK, to take legal responsibility for deciding whether an individual 

medical exposure is justified. Such a person must be adequately trained to carry 

out the task of justification and be entitled to do so by their employer. 

Justification of exposures must take into account medical information about the 

individual provided by a referrer and should be based on the available scientific 

evidence. Justification cannot be retrospective. The practitioner’s decision as to 

whether an individual medical exposure is justified must be made prior to the 

exposure, and must be valid whether the test result is subsequently positive or 

negative. Procedures can only be justified if the individual for whom the 

exposure is proposed will receive a benefit that outweighs the detriment, or if 

there is an overall net benefit to society. 

  2.10 Optimisation of every medical exposure is the responsibility of the 

practitioner and of the ‘operator’ who undertakes the practical aspects of a 

medical exposure, to the extent of their respective involvement. To assist in 

optimisation, the employer must ensure that written protocols are in place for all 

standard procedures which must be specific to each piece of equipment. Such 

protocols should include exposure factors for each routine examination. 

  2.11 Effective strategies for reducing radiation exposure due to CT require 

attention to several aspects of clinical, technical and operational management 

and practice (as part of serial and parallel processes): 

  (a) Justification of examinations, including consideration of the use of 

alternative technologies  

(b) Optimisation of examinations  

(c) Maximising the capability of the equipment 

(d) Maximising the capability of staff (practitioners and operators) 

  2.12 These and other governance issues are discussed in further detail in the 

following chapters. 

Applications of CT  2.13 In the past 15 years, the major breakthrough in CT technological 

development has been the introduction of multi-slice or multi-detector helical 

CT, which has made it possible to acquire and analyse patient data within 

 
* The Ionising Radiations Regulations (Northern Ireland) 2000 for Northern Ireland. 
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seconds rather than minutes. Representation of a volume of body tissue is now 

possible with uniform resolution images reformatted in multiple planes, or in 

three dimensions. As a consequence, new investigations are now possible – for 

example, investigation of blood flow through organs or blood vessels. 

  2.14 General clinical indications for CT scanning include, but are not 

limited to: 

  (a) Staging of cancer – response, assessment and surveillance 

(b) Gastroenterology – bowel and organ pathology, including masses, sepsis, 

bleeding and trauma 

(c) Thorax – lung and mediastinal disease, masses, vasculature and trauma 

(d) Urology – identification/characterisation of masses, sepsis, anatomical 

abnormalities, ureteric and renal colic 

(e) Gynaecology – masses and sepsis 

(f) Colo-rectal – large bowel pathology, extent and spread of disease 

(g) Trauma – assessment of injuries  

(h) Musculoskeletal – structural abnormalities, disease or trauma  

(i) Neurology – trauma, disease, sepsis, vascular and to exclude 

haemorrhage 

(j) ENT/head and neck – disease, masses, sepsis and anatomical abnormalities 

(k) Cardiology – angiography  

(l) Vascular – abnormalities, disease and trauma 

(m) Intervention – guide treatment; biopsy, drainage and ablation 

  2.15 CT has also enhanced the capabilities of nuclear medicine imaging by 

providing an anatomical dimension previously missing in this functional 

imaging modality, leading to the production of hybrid imaging systems. CT 

provides a means of localising disease processes shown by the nuclear medicine 

techniques of positron emission tomography (PET) CT and single photon 

emission computed tomography (SPECT) CT. The advent of hybrid PET CT and 

SPECT CT systems has simplified image registration – the PET or SPECT and 

CT datasets are collected sequentially, on the same system, without the need for 

the patient to move to another scanner. This removes the image registration 

problems introduced by different patient set-up positions. 

  2.16 The acquisition parameters of the CT component will be determined by 

the clinical question to be answered by the procedure, and whether a diagnostic 

CT is performed before, or after, the PET/SPECT imaging. The CT in PET CT/ 

SPECT CT systems provides information to assist in the correction of the 

attenuation of photons from the radionuclide as they pass through the body 

in order to improve the PET imaging. A relatively low dose CT examination 

may be appropriate for the purpose of co-registration and localisation of 

abnormalities detected on the PET component (where images of lower quality/ 

higher noise than diagnostic CT are acceptable). A higher dose CT will provide a 

diagnostic quality image, making a separate CT examination unnecessary unless 

contrast is required. 

  2.17 In other cases, a diagnostic CT examination may sometimes be acquired 

in conjunction with the PET imaging, resulting in a study of comparable, and 

sometimes higher, radiation exposure. Clinical indications for the use of 

PET CT include, but may not be restricted to (RCP/RCR, 2013): 
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  (a) Malignancies 

(b) Neurological abnormalities 

(c) Cardiological abnormalities 

(d) Vasculitis 

(e) Sarcoidosis 

(f) Infection imaging 

  2.18 A recent development has been so-called ‘cone beam’ CT (CBCT). This 

particular imaging technique uses a flat panel detector (in contrast to the array 

of individual detectors of conventional CT), coupled with beam exposure that is 

similar to that of conventional radiography. It is essentially a form of rotation 

radiography and its dosimetry differs significantly from that of CT. CBCT 

images contain inherently fewer image data than conventional CT and are 

acquired at lower radiation exposure. The technique was developed for specific 

clinical applications, such as dentistry, but is now being used more widely 

wherever it can be applied. In view of the fundamental difference between 

CBCT and conventional CT, the technique is not considered in detail in this 

report. However, CBCT, where it is clinically applicable, may offer a dose-

sparing alternative to conventional CT and its use should, therefore, be 

considered when justifying referrals for CT. 

  2.19 CT also has applications in veterinary medicine and in industry; 

however, these are not considered in this report. 

  2.20 In the clinical environment CT is now established in a range of differing 

roles. These may be categorised as: 

  (a) Diagnostic and staging 

(b) Guiding  

(c) Planning 

(d) Monitoring 

Additionally, CT has been employed in health assessments of asymptomatic 

individuals. This practice was the focus of the 12th COMARE report 

(COMARE, 2007). 

Diagnostic and staging CT  2.21 CT is the most frequently used imaging technique where cross-sectional 

information is necessary for diagnosis or staging. It is applicable to diseases of 

the brain, musculoskeletal system, chest, abdomen and pelvis, either as a 

complement to other imaging investigations such as radiography, or ultrasound, 

or increasingly as the primary investigatory technique.  

  2.22 Early use of CT provided information within the head that was previously 

unavailable. Rapid development of body scanners quickly established that the 

technique was an accurate method of detecting or excluding many diseases, and 

in showing the extent of disease. This led to changing treatment to a more 

appropriate regime, with the possibility of an improved health outcome. 

Research studies have confirmed the clinical effectiveness of diagnostic CT in 

influencing patient management (Kumta et al, 2002; Moore et al, 1987).  

  2.23 Multi-planar and three-dimensional imaging created from the exposure 

volume are now common approaches that have further extended the role and 

contributed to an increased demand for CT. Time-based exposures make it 

possible to investigate the perfusion characteristics of disease and the combina-

tion of speed and multi-planar reformatting has allowed CT to replace a large 

number of conventional angiograms (Rathbun et al, 2000; Wittram et al, 2004). 
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  2.24 The capability of demonstrating or excluding disease within the trunk 

has established CT as a means of investigating patients before, or instead of, 

surgery. CT has, in effect, become a non-invasive alternative to investigatory 

laparotomy – for example, in suspected critical damage in abdominal trauma 

(Salim et al, 2006). Many of these applications have been supported by research 

studies confirming both the clinical value and cost-effectiveness of this approach 

(Kocher et al, 2011). However, it is perceived that the value of this application 

of CT has led to an impression among some surgeons that all patients under-

going surgery to the trunk merit CT beforehand. Further research is required to 

determine whether such an extended application of CT has an appropriate 

evidence base.  

  2.25 The accuracy of CT has also led to important changes in documenting 

the extent of disease, especially malignant tumours. The margins of the primary 

lesion can be evaluated and the involvement of other organs, by direct extension 

or by vascular spread, can be assessed. Disease staging rapidly became, and has 

remained, a leading use of CT.  

  2.26 The high diagnostic accuracy of CT has meant that it is becoming 

increasingly essential in the early diagnosis phase of trauma care. CT is more 

often being used in place of conventional radiographic imaging and there is 

emerging use of whole-body CT for trauma patients (Smith and Mason, 2012). 

The value of immediate whole-body CT of severely injured trauma patients is 

still to be determined (Sierink et al, 2012a). An initial review of the current data 

suggests that the practice reduces the time spent by the patient in the emergency 

department when compared with conventional radiography (Sierink et al, 2012b). 

CT provides complex imaging that answers a wide range of clinical questions in 

all regions of the body. It affords the ability to reconstruct in any plane while 

being able to focus on small areas of concern. It can include venous and arterial 

phases in a fast single scan and is becoming common practice to use in place of 

conventional imaging when a trauma patient has been stabilised. 

  2.27 Magnetic resonance imaging (MRI) is an alternative imaging modality, 

free from ionising radiation, which is used for many applications. It was 

developed after CT was already established. MRI is now the investigation of 

choice in many clinical situations involving the brain, musculoskeletal system 

and trunk (RCR, 2012). It is arguable that the timing of the development of 

MRI, combined with the relative speeds of acquisition and comparatively 

limited availability and higher cost, has caused the clinical use of MRI to lag 

behind that of CT. The relative use of CT and MRI is considered in more detail 

in Chapter 6. 

Guiding interventions  2.28 The cross-sectional display afforded by CT has been used to guide the 

percutaneous placement of instruments for diagnostic or therapeutic use. These 

so-called ‘interventional’ uses of CT include guided biopsy, catheter placement 

and drainage of pathological fluid collections such as abscesses, nerve blocking 

or other tissue ablative techniques. They represent a particular use of CT in 

assisting a procedure. A specialised form of interventional guidance is real-time 

CT using specialised equipment (CT fluorography). This technique poses 

particular protection issues relating to its individual technology. Interventional 

techniques including CT will be reviewed separately by COMARE and are not 

covered within this report. 

Treatment planning  2.29 Research studies in the 1970s quickly established the advantages of 

using cross-sectional imaging in cancer treatment planning. The technique 

shows the spatial relationships of lesions such as tumours, and can be used to 

determine the appropriate treatment regime. If a tumour is shown to be 
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localised, its resectability can be predicted pre-operatively and the appropriate 

surgical approach defined in advance. 

  2.30 Radiotherapy planning represents a particular use of this aspect of CT, 

for which a separate examination is usually needed under standardised 

conditions. Radiotherapy planning uses CT in two distinct activities, as follows. 

  Accurate localisation of the volume to be treated – three-dimensional 

localisation is now the standard for all but a few radiotherapy episodes. 

The clinical target volume and adjacent critical organs are defined on 

the CT images and these are then fed into the dosimetry planning 

system 

Dosimetry – the CT images are used to define the patient contour incident 

to the treatment beams and provide information for the planning 

algorithm on tissue inhomogeneities. Variation between tissues will 

influence absorption of radiation as the beam passes through and, 

therefore, the dose distribution achievable within the treatment volume 

Monitoring the effects of 

treatment 

 2.31 The advantages of CT in defining disease make it suitable for 

demonstrating how diseases respond to treatment, when this information is 

important for further clinical management of the patient. Advantages apply to 

both benign and malignant disease, as follows. 

  Defining response to ongoing treatment – a major impetus for the 

increased use of imaging in follow up arises from a wider range of 

treatment options being available for many diseases, including 

malignant tumours. The frequency of monitoring depends on the nature 

of the disease and whether treatment management decisions rest on the 

result. In acute illnesses such as refractory abdominal abscesses, repeat 

CT may be required every few days, whereas in malignant tumours the 

examination may be needed to assess progress every few weeks. 

Monitoring examinations may be required frequently or over a long 

period and represent an important source of cumulative exposure in 

individual patients. Hybrid imaging has the potential to provide further 

information during a particular treatment episode, eg within a course 

of chemotherapy 

Early recognition of relapse – where treatment options exist for 

relapsed disease there may be clinical advantage in early detection. CT 

is widely used for this purpose in both benign and malignant disease. 

The frequency of investigation should be determined by current 

knowledge of the natural history of the individual disease and 

evaluation of the clinical situation of the individual patient. 

Population screening 

or individual health 

assessment 

 2.32 In recent years, CT has been used on individuals who are asymptomatic. 

The diagnostic accuracy of CT has led to proposals for its use for screening 

populations for disease, or for screening apparently healthy individuals for 

possible disease. The radiation exposure of healthy subjects can only be justified 

on the basis of demonstrable benefit to the population or the individual, balanced 

against the risks involved. 

  2.33 Research studies are proceeding to determine whether screening 

programmes using CT are justifiable, but currently there is no strong evidence 

base supporting this use of the technique for the general population. The 

National Cancer Institute National Lung Cancer Screening Trial (NLST) in the 

USA published findings that low dose CT shows promise as a method for 

detecting lung cancer in highest risk individuals who have yet to show 

symptoms, reducing deaths by 20% compared with chest X-rays (NLST, 2011). 
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The American Lung Association only recommends lung cancer screening using 

low dose CT scans for people meeting specific criteria – current or former 

smokers (aged 55 to 74 years) with a smoking history of an average of a pack a 

day for 30 years and with no history of lung cancer
*
. 

  2.34 A recent publication (Melgies et al, 2013) has considered the place 

of CT coronary angiography (CTCA) as a screening tool for the diagnosis of 

coronary artery disease. The authors conclude that, as yet, CTCA is unable 

to predict the potential vulnerability of plaque and that there is insufficient 

evidence to support a screening role. 

  2.35 COMARE previously reviewed personally initiated CT scanning 

services (individual health assessments) in its 12th report (COMARE, 2007). 

The report concluded that the practice may provide benefits to the individual, 

but these would not be the same as those associated with the use of diagnostic 

CT in a symptomatic patient. The justification for this practice could, therefore, 

not be considered in the same way as justification for patients. Based on the 

available evidence, it was not possible to recommend the use of whole-body CT 

scanning on asymptomatic individuals. It was recognised, with the constant 

developments in the field, that the recommendations from the report should be 

reviewed as new evidence was presented. As a consequence of the COMARE 

report, the Ionising Radiation (Medical Exposure) Regulations were amended in 

2011 to specifically include the provision of individual health assessments as an 

exposure requiring justification (Department of Health, 2011). 

Summary  2.36 CT is a powerful, highly flexible clinical tool with its use governed by 

the radiation protection principles of justification and optimisation. In the UK, 

CT scanning is governed largely by three sets of regulations: the Justification 

of Practices Involving Ionising Radiation Regulations 2004, the Ionising 

Radiations Regulations 1999 and the Ionising Radiation (Medical Exposure) 

Regulations 2000. 

  2.37 Technological developments in CT have greatly expanded its 

applications. In a clinical environment, CT has a distinct role in the diagnosis 

and staging of disease, guiding interventions, treatment planning and 

monitoring the effects of treatment. It is applicable to a range of clinical 

conditions, including diseases of the brain, musculoskeletal system, chest, 

abdomen and pelvis. The use of CT is becoming increasingly common in the 

early diagnosis phase of trauma care and it also has a role in investigating 

patients before, or instead of, surgery. 

  2.38 The increase in scanning speed means that it is now possible to 

investigate perfusion characteristics of disease.  

  2.39 CT is often performed in conjunction with other modalities: for example, 

to enhance the capabilities of nuclear medicine with PET CT and SPECT CT. 

  2.40 CT has been used in recent years in scanning asymptomatic individuals, 

aimed as a form of preventive medicine. COMARE previously reviewed these 

services in its 12th report and determined that the benefits would differ from 

those associated with symptomatic patients. COMARE was not able to support 

the use of whole-body CT scanning on asymptomatic individuals. Research 

studies are in progress to determine if the use of CT is justifiable in population 

screening programmes, but there is currently no strong evidence to support it. 
  

 
* www.lung.org/about-us/our-impact/top-stories/guidance-on-ct-lung-cancer.html 
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CHAPTER 3 

DETRIMENTS ASSOCIATED WITH 

RADIATION DOSE FROM CT SCANS 

 

Benefit versus detriment 

with diagnostic CT scans 

 3.1 While the use of CT has had a clearly beneficial effect on advancing the 

accuracy of diagnostic radiology (see Chapter 2), there are potential detriments 

associated with its use as well. One of the fundamental principles in the practice 

of medicine is ‘First do no harm’. In the context of this report this means 

balancing the potential benefit to be gained by having a CT scan against the 

potential harm that might be caused by the radiation exposure (Lautin et al, 

2008; Pilling, 2008). Although other risks from CT scans exist, such as those 

inherent in the use of contrast agents (Martin and Bradley, 2012), this report 

focuses on the principal risk associated with the exposure to ionising radiation, 

where the dose received by the patient may be significant when compared with 

those from other diagnostic imaging procedures. 

  3.2 In general, the risks associated with ionising radiation can be divided 

into those defined as stochastic effects and deterministic effects. 

  Stochastic effects – generally somatic effects (cancer) in the directly 

exposed population, and potential genetic effects to their offspring. Those 

effects which occur by chance, affecting the probability of a change 

rather than the severity and are a function of dose without a threshold 

Deterministic (tissue reaction) effects – radiation injury due to cell killing 

and radiation disease, defined by the ICRP in its 1990 recommendations 

(ICRP, 1991). These are now termed tissue reaction effects through 

recognition that some effects are not determined solely at the time of 

irradiation, but can be modified after radiation exposure (ICRP, 2007). 

It is assumed that there is a threshold dose, below which there is no 

effect, and the response (probability of effect) smoothly increases above 

that point 

  3.3 For diagnostic exposures, the potential deleterious effects are usually 

considered to be stochastic and consist of potential malignancy arising many 

years after exposure. In addition, benign effects (primarily cataracts) and 

cardiac effects may occur earlier. Deterministic (tissue reaction) effects are not 

expected to occur following exposure from diagnostic CT scans carried out 

correctly. However, rare instances of equipment or administration error have 

resulted in a greater radiation exposure than denoted for the particular 

examination, with visible tissue reaction effects. 

Levels of radiation 

exposure in medicine 

 3.4 Ionising radiation is a potent mutagen and carcinogen. Exposure to 

ionising radiation is a known factor for the induction of human malignancies 

(Cardis et al, 2007; Gilbert, 2009; Mullenders et al, 2009). Radiation can induce 

germline mutations in a variety of experimental systems (Dubrova, 2003; 

Morgan, 2003).  

  3.5 Epidemiological studies have demonstrated that malignant disease, 

particularly leukaemia, is a significant risk for occupational groups such as 

radiologists who have received substantial doses (see the review by Goodhead, 
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2009). The risk of heritable genetic mutations was also considered to be the 

primary concern for human populations exposed to radiation. These investigations 

continue to form a part of the current system of radiation protection, although 

direct demonstrations of such risks in humans remain elusive (Goodhead, 2009). 

  3.6 For low dose exposures, such as from medical X-rays used in radio-

graphs, there are substantial uncertainties in the magnitude of the health risk. It 

has generally been assumed that ionising radiation risks at moderate to low 

doses and dose rates are dominated by stochastic cancer risks in exposed 

individuals. For protection purposes, it is assumed that the risk increases in line 

with increasing dose – the linear no-threshold (LNT) model – but the evidence 

for this is unclear (for more detail see the review by Little et al, 2009a).  

  3.7 As outlined by Harris and others (Harris, 2005; UNSCEAR, 1993, 2000) 

there are biological data to suggest that cancer arises from a failure of cell 

differentiation, and that it may predominantly originate from mutagenic damage 

to a single cell, via damage to the DNA (UNSCEAR, 1993, 2000), although a 

role for non-DNA targeted effects cannot be ruled out (Morgan, 2003).  

  3.8 At high radiation doses, such as those received by patients treated with 

radiotherapy, a variety of other (so-called deterministic or tissue reaction) 

effects are observed, resulting from inactivation of large numbers of cells and 

associated functional impairment of the affected tissue. 

  3.9 The effective radiation dose from CT scans has a broad range, 

depending on the examination undertaken (see Table 3.1). 

  3.10 Reports concerning radiation risk tend to be population-based risk 

projection studies and make no allowance for the age or medical prognosis of 

the individual patient (ARSAC, 2006; Berrington de Gonzalez and Darby, 

2004). Population studies to assess the risk from exposure to ionising radiation 

are different from studies relating to medical exposure where the risk is to an 

individual patient. Relevant factors which influence the risk can be taken into 

account, which is not possible in population studies. 

  3.11 The benefit is also individualised. It may be argued that other sources 

of potential radiation exposure benefit the population, such as nuclear power 

 

Table 3.1 Examples of typical effective doses from diagnostic procedures, equivalent number of chest X-rays and 

equivalent period of natural background radiation (RCR, 2012) 

Examination 

Typical effective dose 

(mSv) 

Equivalent number 

of chest X-rays 

Equivalent period of natural 

background radiation
* 

Chest X-ray (single PA film) 0.015 1 2.5 days 

Skull X-ray 0.07 5 12 days 

Abdomen X-ray 0.4 30 2 months 

CT head 1.4 90 7.5 months 

CT abdomen 5.6 370 2.5 years 

CT chest 6.6 440 3 years 

CT chest, abdomen and pelvis 10 670 4.5 years 

PET CT head 7 460 3.2 years 

PET CT body 18 1200 8.1 years 

* UK average = 2.2 mSv per year    
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  installations which provide electricity, but in medical exposures the benefit is to 

an individual patient and thus can be more readily appreciated. Patients having 

CT scans (or other investigations using ionising radiation) are expected to 

derive some benefit from the examination in terms of directing the management 

of their illness. 

  3.12 The potential harm that might be caused to a patient is determined by a 

range of factors. The radiation dose is dependent on the size of the patient, the 

body position and extent of the scan and also the number of scans undertaken. 

The gender and age of the patient will affect the risk level, with lifetime cancer 

mortality risks from radiation exposure decreasing with increasing age. The 

radiosensitivity of the patient and the prognosis of the disease for which the 

patient requires the CT scan should also be taken into account when considering 

the potential harm. 

  3.13 Since imaging with ionising radiation is just a part of the diagnostic 

process and management of the patient, the risk caused by a CT scan has to be 

judged in relation to the sum of the other risks that occur. For instance, if the 

patient is to have radiotherapy, then the radiation dose from a CT scan might 

be perceived to be negligible in relation to the radiotherapy dose. However, if 

the patient has a benign disease with a good prognosis then the radiation risk 

assumes more importance. 

Radiation dose from 

CT scans 

 3.14 The organ or effective radiation dose from a CT scan can vary depending 

on the area(s) of the body scanned and the type of procedure performed. A scan 

to image the chest, abdomen and pelvis has a typical effective dose of 10 mSv 

(Wall et al, 2011). This type of scan is associated with a lifetime cancer risk in 

a 30 year old of 520 per million for males and 740 per million for females 

(see Table 3.2). 

  3.15 However, this risk is age dependent. For patients below the age of 

10 years the risk for males is 960 per million and 1500 per million for females 

for a CT examination of the chest, abdomen and pelvis. Conversely, for patients 

aged 60–69 years the risk is 240 per million for males and 360 per million for 

females for the same examination (Wall et al, 2011). Thus, the risk of developing 

cancer following an effective dose of 10 mSv varies by three- to five-fold, 

depending on the age at which the exposure occurs. 

  3.16 Lifetime cancer risk associated with CT scans can be categorised into 

broad risk bands according to a scheme proposed in 1995 by the Chief Medical 

Officer of the Department of Health (Department of Health, 1995). 

  Negligible Less than 1 in a million risk (<10
–6

) 

Minimal 1 in a million – 1 in 100,000 risk (10
–6

 – 10
–5

) 

Very low 1 in 100,000 – 1 in 10,000 risk (10
–5

 – 10
–4

) 

Low 1 in 10,000 – 1 in 1,000 risk (10
–4

 – 10
–3

) 

Moderate 1 in 1,000 – 1 in 100 risk (10
–3

 – 10
–2

) 

  3.17 For most of the examinations listed in Table 3.2, the risks typically lie 

in the upper half of the ‘low’ risk band for younger patients. However, in some 

cases (CT of the chest in girls aged 0–9 years and CT of the chest, abdomen and 

pelvis in girls aged 0–19 years) the risk moves into the ‘moderate’ band. 

  3.18 All patient risks must be taken in their clinical context. Most CT scans 

are performed for diagnosis or to follow the treatment of a serious disease. In 
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Table 3.2 Typical total lifetime cancer risk as a function of age at exposure and sex for selected CT examinations 

(per million) (taken and abridged from Table 20 in Wall et al, 2011) 

Examination Sex 

Total lifetime cancer risk (per million) 

Age at exposure (years) 

0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90–99 

CT head M 250 190 130 100 80 57 36 20 9.0 1.2 

F 190 140 100 77 71 46 27 13 4.8 0.3 

CT chest M 530 440 350 300 260 220 160 99 42 2.2 

F 1100 860 680 560 490 390 290 180 68 1.7 

CT abdomen M 670 530 400 310 240 170 110 56 21 1.5 

F 610 480 380 300 240 170 110 59 20 0.6 

CT abdomen and 

chest 

M 850 670 520 410 320 230 150 78 29 1.9 

F 740 590 470 370 310 230 150 80 28 0.8 

CT chest, abdomen 

and pelvis 

M 960 780 630 520 440 340 240 140 58 3.3 

F 1500 1100 910 740 640 500 360 210 80 2.1 

 

  the context of, for example, pancreatic cancer – with a 5-year survival of 2% 

(Cancer Research UK, 2009) – the radiation risk to the individual is of minimal 

relevance to life expectancy. However, other types of cancer have good, and 

increasingly better, prognoses. In these patients, while there may be little 

difficulty justifying an initial CT scan, multiple follow-up scans can result in a 

significant radiation dose and hence increased risk, which needs careful 

consideration, particularly if there is a prospect of cure. In some conditions the 

use of CT in place of conventional investigations results in significantly higher 

radiation exposure, as in the case of Crohn’s disease (Jaffe et al, 2007). It 

should be determined whether the additional information provided by the CT 

scan is relevant to management decisions for these patients. 

  3.19 The use of CT in some diseases may result in patients receiving a large 

number of scans – for example, in excess of 10 – in the course of a single illness 

(Meeson et al, 2009). These higher exposures may be documented by 

departmental dose audit, which is a crucial part of dose monitoring. Limiting the 

number of examinations to only essential events offers an important means of 

dose constraint. 

  3.20 The wider use of CT in patients with advanced malignancy may 

have little impact on late radiation effects since long-term survivors are rare. 

Of greater concern is the use of CT and PET CT in curable malignancies in 

young patients. This applies in particular to those individuals with germ cell 

tumours and lymphoproliferative conditions including Hodgkin’s and non-

Hodgkin lymphoma. 

  3.21 In the case of disease which does not affect longevity or have a good 

long-term prognosis, the risk from the radiation dose must be considered in 

terms of the dose against the benefit. This judgement can be difficult since the 

justification process is, to a large degree, subjective. 

Stochastic effects 

associated with 

radiation exposure 

 3.22 Stochastic effects are those effects which are thought to occur as a 

result of a chance mutagenic damage to a single cell. The probability of 

occurrence is proportional to radiation dose, while the severity is independent of 

dose. In the context of radiation protection, the linear no-threshold (LNT) model 
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is accepted as a core principle and is fundamental to the additive system of 

radiation protection. It also allows the use of effective dose as a surrogate for 

risk (Goodhead, 2009). The main stochastic effects are cancer in the directly 

exposed population and heritable effects (genetic risks to offspring). 

  3.23 For any individual the exposure to radiation can be thought of as 

increasing the probability that stochastic effects will occur: the higher the dose 

absorbed, the higher the chance of developing cancer and other stochastic 

effects (Holmberg et al, 2010). Two recent large epidemiological studies 

provide strong supporting evidence for low dose cancer risk. A UK CT study 

(Pearce et al, 2012a) suggests that there are excess leukaemia and brain cancer 

risks associated with a dose-response finding of about 50 mGy exposure in 

childhood. The risks of such exposure are consistent with those for childhood 

exposures in the Life Span Study (LSS)
*
 of Japanese atomic bomb survivors, 

and suggest that there is little sparing effect of low dose rate exposure. This 

view is reinforced by the results of a large UK case-control study suggesting an 

excess leukaemia risk at even lower levels of dose (about 5 mSv), associated 

with natural background (gamma) radiation exposure (Kendall et al, 2012). 

However, uncertainties in risks in the UK CT study, and to a lesser extent also 

those of Kendall et al, may be substantial. Although recall bias is not an issue in 

the CT study, other sorts of bias (eg confounding by indication) cannot be 

discounted, although their contribution to the observed leukaemia risk is likely 

to be modest. 

Deterministic 

(tissue reaction) effects 

associated with 

radiation exposure 

 3.24 A deterministic (tissue reaction) effect describes damage induced by 

ionising radiation where a dose threshold exists, below which there is no effect, 

and for which the severity of damage increases with increasing dose above that 

threshold (ICRP, 2007, 2011). Examples include radiation burns (skin reddening), 

hair loss, radiation sickness (nausea, vomiting and diarrhoea), depression of 

blood cell formation, decrease in fertility, and teratogenic effects. All of these 

effects result from acute high doses of radiation to either a part of the body or to 

the whole body. For whole-body exposure it is generally thought that an absorbed 

dose of between 3 and 5 Gy will cause 50% of those exposed to die within 

30 days if medical intervention is not given. This is known as the LD50 dose. 

Deterministic effects depend on the rate at which the dose is absorbed in the 

tissue. Cells affected by a lower dose rate may be repaired or replaced more 

quickly if they are damaged. 

  3.25 Cell killing is thought to be central to all tissue reaction effects, 

although it is not clear whether this is the case for cataracts (Ainsbury et al, 

2009) or for circulatory disease (Little et al, 2008, 2010, 2012; Schultz-Hector 

and Trott, 2007). When a sufficiently large number of cells are damaged within 

a certain critical time period in which the body cannot replace them (Edwards 

and Lloyd, 1998), a loss of function in the tissue or organ is observed. Harm to 

a tissue or organ should be nearly zero at low doses, but once the dose increases 

above a minimum level or threshold, detrimental effects would be seen. 

  3.26 The ICRP has reviewed recent epidemiological evidence suggesting that 

there are some tissue reaction effects, particularly those with very late 

manifestation, where threshold doses are, or might be, lower than previously 

considered (ICRP, 2012). For example, the absorbed dose threshold for 

circulatory disease may be as low as 0.5 Gy for potential damage to the heart or 

brain. Patient doses of this magnitude could be reached during some complex 

interventional procedures, but are unlikely in CT. 

 
* www.rerf.jp/glossary_e/lss.htm 
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  3.27 The ICRP continues to recommend that optimised protection should be 

applied in all exposure situations and for all categories of exposure. With the 

recent evidence, the ICRP further emphasises that protection should be optimised 

not only for whole-body exposures, but also for exposures to specific tissues, 

particularly the lens of the eye, and to the heart and the cerebrovascular system. 

  3.28 With the complexity of current CT systems, there are rare and extreme 

cases recorded when patients receive significantly more radiation than would 

be indicated for a particular examination. This can be due to either operator 

error or equipment error. In Mad River Community Hospital in Northern 

California in 2008, a radiologic technologist (radiographer) was reported to 

have administered 151 cervical spine CT scans to a toddler in 68 minutes. There 

was obvious evidence of the overexposure after the examination, with skin 

reddening extending downward from a clearly defined line just below the boy’s 

eyes. The technologist reported administering the examination several times, 

but not 151, in response to table movement errors reported by the CT system.  

  3.29 The standard warnings used in a CT system at the Cedars-Sinai Hospital 

in Southern California were somehow bypassed in a specially programmed 

examination for CT brain perfusion used in the diagnosis and management of 

strokes. The sequence correctly reported the radiation dose emitted during the 

examination (up to eight times greater than required); however, the system did 

not provide the failsafe warning about potential overdose. In total, 385 patients 

from six hospitals were identified as having been exposed to excess radiation 

during CT brain perfusion scans. Some patients reported obvious deterministic 

effects of radiation overexposure, such as hair loss or skin reddening
*
. 

Cataracts  3.30 A cataract is a clouding of the lens of the eye that affects vision. Most 

cataracts are related to ageing. However, the lens is one of the most radiosensitive 

tissues in the body and radiation-induced cataracts have been demonstrated in 

staff involved in interventional procedures using X-rays (Vano et al, 1998). 

Radiation-induced cataracts may take many months or years to appear.  

  3.31 Cataracts can be induced by acute doses of less than 2 Gy of low linear 

energy transfer (LET) ionising radiation and less than 5 Gy of protracted 

radiation. Recent evidence from the LSS cohort indicates a radiation effect for 

vision-impairing cataracts at doses less than 1 Gy (Neriishi et al, 2012). The 

ICRP currently categorises a radiation-induced cataract as a deterministic (tissue 

reaction) effect, only appearing when a threshold dose is exceeded. Although 

some work has been conducted in this area, the exact mechanisms of radiation 

cataractogenesis are not fully understood, with factors such as genetics and cell 

communication yet to be resolved. Several lines of evidence have suggested that 

radiation cataracts may be stochastic (see the review by Ainsbury et al, 2009).  

  3.32 The latest guidance from the ICRP gives the threshold dose for 

radiation-induced eye cataracts as around 0.5 Gy for both acute and fractionated 

exposures (ICRP, 2012). In a study using multi-detector row CT scanners and a 

human head phantom, the dose to the lens received from a single whole-brain 

CT scan was estimated as 50–100 mGy (Suzuki et al, 2010). Research from 

Taiwan reported that repeated head and neck CT exposure is significantly 

associated with an increased risk of cataract (Yuan et al, 2013). Cumulative lens 

dose from a series of CT head scans should, therefore, be a consideration from 

the perspective of radiation protection. 

 
* www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm185898.htm 
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Cardiac effects  3.33 It has generally been assumed that ionising radiation risks at moderate 

to low doses and dose rates are dominated by cancer risks in the directly 

exposed individuals. At high radiation doses, such as those used in radiotherapy, 

a variety of other effects are observed, presumably resulting from inactivation 

(via cell killing) of large numbers of cells and associated functional impairment 

of the affected tissue. Among such effects are direct damage to the structures of 

the heart – including marked diffuse fibrotic damage, especially of the peri-

cardium and myocardium, pericardial adhesions, microvascular damage and 

stenosis of the valves and to the coronary arteries (Adams et al, 2003).  

  3.34 There are plausible, if not completely understood, mechanisms of effects 

at the high doses relevant to radiotherapy (Schultz-Hector and Trott, 2007). 

However, there is emerging evidence of an excess risk of cardiovascular damage 

at much lower radiation doses and occurring over much longer intervals after 

radiation exposure in the LSS cohort (Wong et al, 1993; Yamada et al, 2004) and 

in other groups (Azizova et al, 2010; Howe et al, 2004; Ivanov et al, 2006; 

Laurent et al, 2010; McGale and Darby, 2005, 2008; McGeoghegan et al, 2008; 

Muirhead et al, 2009). A number of recent systematic reviews have highlighted 

the accumulating evidence of an excess risk of circulatory disease in different 

occupationally exposed groups, with cases at both very low dose rates and high 

cumulative doses (Little et al, 2008, 2010, 2012). If these associations are inter-

preted causally, the circulatory disease risks in a general population are expected 

to be similar to those of cancer (Little et al, 2012). Therefore, the radiation 

exposure levels associated with repeated diagnostic scans could be relevant. 

  3.35 A mechanistic (mathematical) model of cardiovascular risk following 

low dose and low dose rate radiation exposure has been proposed (Little et al, 

2009b). The radiation-induced risks predicted by the model are quantitatively 

consistent with the magnitude of excess risk observed in occupational groups 

(Little et al, 2009b). However, the detailed assumptions made by the model 

have yet to be verified. 

Groups at high risk for 

radiation exposure 

Children 

 3.36 Children have a greater radiosensitivity than adults at the same effective 

dose due to more proliferating tissue and different distribution of tissue within 

the body (Vock, 2005). Children not only have smaller organs than adults, but 

usually also have less fat acting as a contrast layer between organs of similar 

density. Additionally, the lifetime cancer mortality risks attributable to the 

radiation exposure from a paediatric CT scan are estimated to be considerably 

higher than from a comparable scan for adults (BEIR V Committee, 1990). A 

single abdominal CT examination on a 1-year-old child is estimated to give a 

lifetime cancer mortality risk of 1 in 550, which is an order of magnitude higher 

than for the equivalent examination on an adult (Brenner et al, 2001). The 

cancer risk is cumulative over a lifetime, with a contribution due to each 

radiation exposure. Many radiation-induced solid cancers will not be evident for 

decades and, therefore, radiation exposure in older adults does not carry the 

same risk level as does exposure in children. 

  3.37 The use of CT examinations in children is increasing and reflects the 

growing availability and technological developments in CT. For the 10-year 

period from 1993 to 2002 in the hospitals included in the UK CT study of 

Pearce and colleagues, the number of examinations approximately doubled, 

from an estimated 25,000 to 48,000 scans per year in patients under 22 years of 

age (Pearce et al, 2012b). The most common examination was of the head, 

particularly in infants. For examinations in young children, the increasing speed 

of CT scans is a notable advantage of CT over other imaging modalities, 

particularly MRI, which may require the use of sedation or anaesthesia to obtain 

the required image. 



26 

  3.38 There is evidence of excess leukaemia and brain cancer risks associated 

with cumulative radiation doses of about 50 mGy in childhood from CT scans in 

the UK (Pearce et al, 2012a). In a retrospective study, almost 180,000 patients 

under 22 years of age who underwent a CT scan between 1985 and 2002 were 

studied and the excess incidence of leukaemia and brain tumours calculated. A 

total of 74 patients were diagnosed with leukaemia and 135 with brain cancer. 

The authors calculated that the relative risk of leukaemia increased by 0.036 per 

extra milligray received and for brain tumours the increased risk was 0.023. 

When compared with patients receiving a dose of less than 5 mGy, patients 

receiving a cumulative mean dose of 50 mGy had around three times the risk of 

developing leukaemia, while those receiving a cumulative mean dose of around 

60 mGy had triple the risk of developing brain tumours. Further increased 

follow-up and analysis of other cancer types is required to identify the total 

excess risk for all cancers associated with CT scans of children. 

  3.39 A recent study in Australia considered the cancer risk from diagnostic 

CT scans carried out during childhood or adolescence between 1985 and 2005 

in 680,000 people (Mathews et al, 2013). A 24% increase in the incidence of all 

cancers was reported when compared with over 10 million unexposed people 

and the increase was greater for people exposed at younger ages. The incidence 

was also significantly increased for many types of solid cancers, leukaemia, 

myelodysplasia and some lymphoid cancers specifically. For leukaemias and 

myelodysplasias, the estimated excess rate ratio per milligray was 0.039 (based 

on a one-year lag) and for brain cancer the estimate was 0.021, both of which 

are comparable to the UK estimates by Pearce and colleagues (discussed above). 

This is the largest population-based study on diagnostic medical radiation 

exposure to date and suggests evidence of increases in other cancers in addition 

to leukaemias, myelodysplasias and brain cancers following exposure to ionising 

radiation from CT scans. 

  3.40 Due to the rising concerns with radiation protection in young people 

undergoing CT scans, an epidemiological study to quantify the risks in paediatric 

computed tomography and to optimise doses (EPI‐CT) has been set up to 

investigate the relationship between the exposure to ionising radiation from CT 

scans in childhood and adolescence and possibly attributable late health effects 

(Thierry-Chef et al, 2013). This multinational collaborative study is bringing 

together the national studies already in progress in France, Germany, Sweden 

and the UK, and has established additional studies in four other European 

countries, with the initial results expected in 2015. For each country-specific 

study, cohorts of paediatric and adolescent patients are assembled from the 

records of radiology departments, as in the original UK CT study. The patients 

will be followed over time to ascertain information on the incidence of leukaemia, 

brain tumours and possibly other cancers. Similarly, there are also studies 

underway in Australia, Canada and Israel (Hricak et al, 2011), with a new CT 

study planned for Brazil. 

  3.41 Radiation exposure from fixed parameters results in a relatively higher 

dose for a child’s smaller cross-sectional area compared with that of an adult. 

Technological parameters, such as tube current, tube voltage and collimation, 

can be adjusted to minimise the radiation dose. At a minimum, basic scanning 

parameters should be adjusted to manage the radiation dose to a paediatric 

patient (Strauss et al, 2010). With the great variability in body size in the 

paediatric population these adjustments are important and necessary to reduce 

the radiation dose received. There is evidence in some countries of the use 

of adult exposure parameters and protocols on paediatric patients (Muhogora 

et al, 2010). 
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  3.42 The ICRP has produced some guiding principles for referring clinicians 

and clinical staff when performing diagnostic imaging on paediatric patients 

(ICRP, 2013). One of the unique aspects of paediatric imaging is the wide range 

of size and weight in children. These are far more important factors than age 

alone and should invoke special attention to the optimisation and modification of 

equipment, techniques and imaging parameters. Use of up-to-date dose reduction 

technology, when appropriate, is also recommended for paediatric CT scans. 

Genetic susceptibility  3.43 There are some genetic conditions associated with an increased 

susceptibility to ionising radiation, characteristically due to DNA repair defects. 

Several of these cancer susceptibility conditions are due to inherited alterations 

in genes which collaborate in DNA repair and cell cycle checkpoint control.  

  3.44 Many of the conditions are rare, and are recognised because of the 

clinical phenotype. Some of these conditions are also associated with immune 

deficiency. Individuals with an inherited susceptibility to specific cancers due to 

the inheritance of germline alterations in certain cancer-predisposing genes may 

have an abnormal response to external irradiation, which could promote the 

initiation of cancer.  

  3.45 Several of these genetic conditions have been characterised and include 

ataxia telangiectasia, Fanconi’s anaemia, Bloom’s syndrome, Werner syndrome, 

Nijmegen breakage syndrome and xeroderma pigmentosum (see Table 3.3). 

They are predominantly autosomal recessive conditions. Ionising radiation 

exposure should be avoided in affected individuals (eg homozygotes for recessive 

mutations). Clinical radiosensitivity is evident in most of these syndromes 

(Digweed et al, 1999; Turnbull et al, 2006). The position regarding any radio-

sensitivity in individuals heterozygous for the mutation in autosomal recessive 

conditions is unclear. For example, ataxia telangiectasia is an autosomal recessive 

disorder characterised by radiosensitivity and an increased risk of lymphoid 

malignancies, but it is uncertain whether or not heterozygotes (individuals 

carrying one copy of a faulty ataxia mutated (ATM) gene) have increased radio-

sensitivity (Taylor et al, 2004). However, there is accumulating evidence that 

some heterozygotes may indeed have an increased risk of breast cancer (Renwick 

et al, 2006). 

  3.46 There are also some autosomal, dominantly inherited, conditions 

which predispose strongly to certain cancers. Gorlin syndrome is one example, 

which predisposes the individual to basal cell carcinomas (BCCs) of the skin, 

with demonstrable radiosensitivity through increases in the development of BCCs 

in the irradiated area (Strong, 1977). Li-Fraumeni syndrome is another example 

of an autosomal dominant cancer susceptibility with radiosensitivity that is linked 

to a predisposition to breast cancer, lymphomas, leukaemias, brain tumours, 

adrenal carcinoma and many other early onset cancer. Sarcomas and solid 

cancers were found in individuals with this syndrome after radiotherapy (Li and 

Fraumeni, 1982; Turnbull et al, 2006). Radiation exposure should be kept to a 

minimum in such individuals. 

  3.47 Children with a germline alteration in the tumour suppressor gene Rb 

have a high risk of developing one or more retinoblastoma of the retina in 

childhood. Long-term follow-up of such children has shown an increased risk of 

a second cancer in the irradiated patients, predominantly in the radiation field 

(Kleinerman et al, 2005, 2007). 

  3.48 Individuals who are carriers of germline mutations in the BRCA1 or 

BRCA2 genes have significantly increased risks of developing breast and 

ovarian cancer or prostate cancer, and a smaller increased risk of certain other 
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cancers. Women carrying such germline mutations have up to an 80% lifetime 

risk of developing breast cancer, and a smaller, but significant risk of 

developing ovarian cancer (Thompson and Easton, 2004; Turnbull et al, 2006). 

A recent publication reported that women with germline mutations in BRCA1 

and BRCA2 exposed to any diagnostic radiation before the age of 30 years had 

an increased subsequent risk of developing breast cancer (hazard ratio 1.90, 

95% CI 1.20–3.00), with a clear dose-response effect. If accurate, this gives 

clear clinical implications that diagnostic radiation exposure should be kept to a 

minimum in carriers of germline mutations in these genes (Pijpe et al, 2012). 

  3.49 About 30% of women with breast cancer also show slightly increased 

lymphocyte radiosensitivity compared with 10% in the general population. The 

observation suggests that such individuals are more likely to develop cancer 

if exposed to radiation, as in CT scans (Scott et al, 1998). However, this has 

not been examined further in any research study to date and the conclusions 

remain speculative.  

  3.50 Increased susceptibility has also been demonstrated in a variety of other 

rare conditions in addition to those listed in Table 3.3. In these conditions the 

evidence is based mainly on increased relative risks of cancers after radiotherapy, 

but it is also possible that smaller doses such as from CT scans could have some 

effect on cancer risks. 

Other groups  3.51 There are other groups, such as pregnant women, who require additional 

consideration with regards to radiation protection when undergoing CT scans. 

Maternal and fetal radiation exposure and dose are clearly affected by gestational 

age, anatomical site, modality and technique. Imaging should be used to evaluate 

pregnant patients only when the benefits outweigh the risks (Wang et al, 2012). 

Summary  3.52 The potential benefit to a patient gained through a CT scan must be 

balanced against the potential detriments. The principal risk is associated with 

the exposure to ionising radiation, where the level of the dose received may be 

significant compared with those from other diagnostic imaging procedures. The 

potential harm may be determined by three factors – the radiation dose, the age 

of the patient and the prognosis of the disease. The radiation dose is dependent 

on the size of the patient, the body position and the extent of the scan.  

  3.53 Risks associated with ionising radiation are divided into stochastic 

effects (genetic effects which occur by chance, eg cancer) and tissue reaction 

(deterministic) effects (radiation injuries with a threshold dose). For diagnostic 

exposures, the potential effects are usually considered to be stochastic and may 

arise years after the exposure. Cataracts and cardiac effects may also occur. 

  3.54 The radiation dose from a CT scan can vary depending on the type of 

procedure performed and the area(s) of the body scanned. The management of 

some diseases can require patients to undergo multiple scans and it would 

be advantageous to limit the number of CT scans to only essential events during 

the care pathway. 

  3.55 Certain groups are at higher risk from radiation exposure. Children have 

a greater radiosensitivity than adults at the same effective dose. Cancer risk is 

cumulative over a lifetime, with a contribution from each radiation exposure, 

resulting in CT scans giving a higher risk to children than to older adults. In the 

UK, there is evidence of excess leukaemia and brain cancers being associated 

with an exposure of approximately 50 mGy in patients under 22 years of age. 

Children present a unique wide range of size and weight against age and these 

factors require special consideration in optimisation and modification of equip-

ment, techniques and imaging parameters. 
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Table 3.3 Examples of some genetic disorders characterised by genomic instability and predisposition to cancer 

(reproduced in part from Little, 2003) 

Clinical disorder Gene Function 

Major cellular 

abnormalities Cancer types 

Ataxia telangiectasia  ATM DNA damage sensor  Chromosomal instability, 

radiosensitivity, cell cycle 

abnormalities 

Primarily leukaemia and 

lymphoma and some solid 

tumours 

Bloom’s syndrome BS Helicase (DNA 

replication) 

Chromosomal instability, 

elevated sister chromatid 

exchanges 

Multiple cancers of all types – 

in vitro studies show impaired 

accuracy of repair of double 

strand breaks in breast cancer 

cells in this syndrome
‡
 

Fanconi’s anaemia FA
*
 DNA damage sensing 

and repair 

Chromosomal instability, 

sensitivity to DNA cross-

linking agents 

Leukaemia and solid tumours 

Familial breast 

cancer 

BRCA1, 

BRCA2 

Recombinational DNA 

repair 

Chromosomal instability, 

radiosensitivity 

Breast and ovarian cancer 

Hereditary non-

polyposis colon 

cancer 

MMR
†
 Mismatch DNA repair Microsatellite instability, 

mutational instability 

Colon and certain other solid 

tumours 

Li-Fraumeni 

syndrome (1) 

TP53 Control of cell division Cell cycle abnormalities Breast cancer, sarcoma, 

adrenocortical carcinoma, 

astrocytoma and glioblastoma 

Nevoid basal cell 

carcinoma syndrome 

(Gorlin syndrome)  

PTCH1 Tumour suppressor Production of an abnormal 

version of receptor 

(patched-1 protein), 

uncontrolled proliferation 

Basal cell carcinoma and 

medulloblastoma  

Nijmegen breakage 

syndrome 

NBS1  Recombinational DNA 

repair 

Chromosomal instability, 

radiosensitivity, cell cycle 

abnormalities 

Lymphoma and leukaemia 

Schwachman-

Diamond syndrome  

SBDS Ribosome biogenesis 

and RNA processing/ 

RNA metabolism 

Increase apoptosis Myeloid hematological 

malignancy (leukaemia, 

myelodysplastic syndrome)  

Werner syndrome  WRN Critical for DNA 

replication and 

maintaining DNA at the 

end of chromosomes 

(telomere) 

Disruption in DNA 

replication, repair and 

transcription 

Sarcoma, melanoma and 

thyroid cancer 

Xeroderma 

pigmentosum (A)  

XPA Nucleotide-excision repair Mismatch repair activity, 

cell cycle abnormalities 

Basal cell carcinoma, 

squamous cell carcinoma 

and melanoma 

Xeroderma 

pigmentosum (C)  

XPC DNA repair/nucleotide 

excision repair pathway 

Recognition of bulky 

DNA adducts in 

nucleotide excision repair 

Basal cell carcinoma, 

squamous cell carcinoma 

and melanoma 

*  There are seven interacting FA genes 

†  Mismatch repair. There are several different MMR genes, inactivation of any one of which will give rise to the disorder 

‡ Tachibana (2004) 
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  3.56 Some genetic conditions are associated with increased sensitivity to 

ionising radiation. Most conditions are rare and radiation exposure in homo-

zygotes of autosomal recessive disorders of this type should be avoided. Certain 

dominantly inherited disorders also confer radiosensitivity, notably Gorlin 

syndrome and Li-Fraumeni syndrome, and radiation exposure should be 

minimised in individuals with these conditions. There is evidence of an increased 

risk of developing breast cancer for women carrying germline mutations in the 

BRCA1 or BRCA2 genes if exposed to any diagnostic radiation before the age of 

30 years. 
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CHAPTER 4 

DEVELOPMENTS IN CT AND TECHNOLOGICAL 

STRATEGIES FOR DOSE REDUCTION 

CT technology  4.1 CT uses X-rays to produce cross-sectional images of the body. X-rays 

are produced when electrons, emitted by the cathode, strike a target (the anode) 

made of a high atomic number material, often tungsten. The energy with which 

the electrons strike the target is dictated by the potential difference (tube 

voltage) between the anode and the cathode. In diagnostic and interventional 

radiography this is expressed as kilovoltage (or kV) – the greater the tube 

voltage, the greater the maximum possible energy of the X-rays and, therefore, 

the more penetrating the resultant X-rays will be. 

  4.2 The production of X-rays is directly proportional to the tube current. In 

diagnostic and interventional radiography, the tube current is expressed as 

milliamperes (or mA) – the greater the tube current, the greater the quantity 

of X-rays produced. The time over which the tube is generating X-rays is 

important, and therefore, in CT, the product of tube current and time expressed 

as milliampere seconds (or mAs) is a useful parameter as it relates to the total 

amount of X-rays produced. It may be required to be known for a single rotation 

of the tube or for the total examination, being referred to as the mAs per rotation 

or the total mAs, respectively. The tube-current–time product is often used when 

discussing radiation dose, as dose is proportional to mAs when other parameters 

are constant for a particular examination. 

  4.3 CT has undergone technological developments rapidly from slice-by-slice 

image acquisition to continuous helical scanning, with volume data acquisition 

providing flexible image manipulation (see Appendix C for a timeline of CT 

development). These advances are well documented in the literature
*
. 

  4.4 In October 1975 CT scan times were approximately 20 seconds per 

slice for a 320  320 pixel image matrix, although early scanners took minutes 

to perform an image slice. By the late 1980s scan times were down to only 

3 seconds and matrix sizes were up to 1024  1024 pixels, reducing movement 

artefacts and improving resolution. The early 1990s saw the introduction of 

helical (continuous) scanning and the development of multi-slice scanners, with 

the availability of four-slice (per rotation) scanners and scan times of 0.5 second 

by the end of the century. These advances increased both the speed of scanning 

and the volume covered in a single breath hold. Developments in technology in 

the 21st century have included 320-slice scanners, dual-source and dual-energy 

CT scanners and modern iterative reconstruction techniques. 

  4.5 While the development of CT in the mid-1990s and following decade 

could be described as relentless, the introduction of dose reduction technology 

within CT only became a major focus in the second half of this period. 

Innovation in CT dose reduction technology is expected to continue as the 

number of CT scans performed worldwide increases and new applications, such 

as cardiac CT, become commonplace. Sub-millisievert scanning has already 
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become a reality for a few CT applications (cardiac and paediatric) (Kalender, 

2011; Schuhbaeck et al, 2013), while the goal of sub-millisievert scanning in 

general will require a significant reduction in dose. Developments in hardware 

are helping to play a part in this. 

  4.6 Technical advances in CT that have an impact on dose include: 

  (a) Detector technology 

(b) X-ray beam width 

(c) Tube current modulation 

(d) Tube voltage optimisation 

(e) Iterative reconstruction  

(f) Dynamic scanning/perfusion 

(g) Dual energy 

(h) Cardiac scanning and reconstruction techniques 

  Each has an effect on dose, dependent on how it is used. Some features are built 

into scan protocols which may not be changed on a daily or individual basis. 

However, the operator needs to understand these technologies and their implica-

tions to ensure patient safety and maximise the use of the equipment. 

  4.7 In this report it is assumed that hospital trusts and departments will 

have met their legal requirement to ensure that the equipment they install is 

appropriately selected, correctly installed and adequately maintained and 

monitored, with appropriate quality assurance programmes. 

Detector technology  4.8 The first-generation CT scanner used a single sodium iodide scintillation 

detector in the scan plane, and a single narrow X-ray beam. This design also 

incorporated a detector in a neighbouring plane to create a two-slice system. 

This concept gave the first multi-slice scanner, but was discontinued until modern 

multi-slice scanners were developed. Second-generation scanners were introduced 

in the mid-1970s with multiple detectors (eg 20) against a small angle fan beam. 

Development of a fan-beam X-ray and the use of an array of detectors resulted in 

the third generation of scanners. Initial models incorporated around 250 detectors 

in the array; later designs expanded this to around 750 detectors. This generation 

also introduced xenon gas detector arrays, although these have been superseded 

by solid-state detectors. Fourth-generation scanners (single-slice) used a ring of 

detectors (Goldman, 2007). However, this design was not favoured and the 

third-generation design proved to have lasting value. 

  4.9 Modern multi-slice scanners are based on the third-generation design 

and were introduced in the early 1990s, with four-slice systems becoming 

available in about 1998. Multiple detector rows enable multiple image or data 

slices to be acquired simultaneously. These detector rows are manufactured for 

the individual detector elements to be extremely small (around 0.5 mm) to allow 

for very narrow image widths. The detector elements are separated by septa to 

prevent photons crossing to neighbouring detectors. 

  4.10 The number of detector rows does not necessarily match the number of 

data or image slices acquired. There may be more rows – particularly for the 

lower-slice scanners (eg four) where the number of data acquisition channels 

was limited – but by having more detector rows there was a greater flexibility 

in terms of acquired image widths. The number of detector rows can also be 

less than the number of slices – this is where the tube technology allows an 



 

33 

oscillating focal spot to acquire double the number of projections – each at a 

slightly different angle from its neighbour. Alternatively, three-dimensional 

reconstruction techniques with the large cone beam scanners can allow for a 

greater number of slices to be produced from one acquisition. 

  4.11 Modern CT scanners use ceramic or crystal-based scintillators as the 

detector material. These have greater detection efficiency than the older – no 

longer used – xenon gas detectors. 

  4.12 Manufacturers continue to develop their detectors for increased 

sensitivity, faster response times and less afterglow – all intended to afford dose 

reduction opportunities and increase the accuracy of image data with higher 

spatial and temporal resolution. 

  4.13 Consideration should be given to detector performance when procuring 

a new system. Involving the medical physicists in the procurement process, as 

well as the radiologists and radiographers, is invaluable.  

X-ray beam width  4.14 Traditionally, the extent of the beam along the patient length is called 

the beam width. As the beams have extended beyond fan beams with narrow 

beam widths to those with wider beam widths, it is more correct to talk about a 

‘cone beam’– from both an imaging and a dosimetric perspective. 

  4.15 Typically, the beam width might be about 40 mm for modern systems; 

however, there are currently two scanners which have greater beam coverage, at 

80 and 160 mm. These systems allow a greater extent of the patient to be scanned 

at any one time, which is advantageous, especially for single organ coverage, 

with a particular application in dynamic scanning. 

  4.16 For the wider beam scanners to provide continuous image coverage, a 

small amount of overlap is required in successive irradiations along the patient 

length, due to the narrower projection of the beam at the patient’s surface 

compared to the iso-centre (centre of rotation). 

  4.17 In multi-slice scanning, primarily only the main beam is used to cover 

the active detectors involved in image reconstruction, and the penumbra of the 

beam is not used for image reconstruction. This is to ensure uniformity of data 

projections and reconstructed slices. The penumbra extends about 2–4 mm 

either side of the main beam along the z-axis, and is generally a fixed amount 

regardless of the beam width. This means that the dose efficiency along the 

z-axis improves with wider beam widths.  

  4.18 In helical scanning, data are required outside the image volume to 

reconstruct the first and last images in that volume, and this is achieved by one 

or more rotations of the tube and detector assembly at each end beyond the 

required image limits. Wider beam widths, therefore, add an additional amount 

of unnecessary irradiation since only part of the beam is required, namely the 

portion that irradiates the detectors whose signal is being used to reconstruct the 

end images. Some manufacturers have developed technology that temporarily, 

and dynamically with the table movement, blocks the part of the X-ray beam 

not used for image reconstruction so that only targeted tissue is irradiated, 

affording dose reduction. Dose reductions of up to 40% have been reported, 

particularly for high pitch and small scanning ranges (Christner et al, 2010). 

  4.19 Additional dose reduction opportunities offered with advanced collima-

tion technology should be taken into consideration and evaluated when procuring 

a CT system. 
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  4.20 Operators also need to be familiar with the optimal beam width required 

for the appropriate clinical scan. For example, the majority of scans would be 

undertaken with the widest beam as it is more dose efficient. 

Tube current (mA) 

modulation 

 4.21 Traditionally, a tube current was established for a given scan protocol 

and subsequently used for all patients (including children). Over time, separate 

protocols were sometimes established for paediatrics, but with both these and 

the adult protocols the fixed tube current was used. With concerns beginning to 

emerge on the use of the same tube current for different patient sizes, some sites 

established protocols for ranges of patient sizes. This ensured that slimmer 

patients did not receive unnecessary radiation dose and larger patients received 

an appropriate amount to ensure an adequate image quality.  

  4.22 Consideration of the variation of attenuation due to overall patient size, 

along a given patient’s length, and around a cross-sectional view, led to the use 

of variable tube current for, and during, an examination. This concept of using 

tube current variation to reduce radiation dose while still maintaining image 

quality was introduced by Haaga and colleagues in 1981 (Haaga et al, 1981). In 

1994, GE Medical Systems produced the first commercial machine to incorporate 

a tube current modulation system, with which dose reductions of up to 20% were 

achievable (McCollough et al, 2006).  

  4.23 Tube current modulation, also known as automatic exposure control 

(AEC), is available on all new CT systems and, since it has tended to be added 

with software upgrades, also to much of the installed base. It automatically 

adjusts the tube current according to patient size, differences in attenuation 

along the patient axis (z-axis modulation) and differences around the patient 

(angular modulation). 

  4.24 AEC systems have a number of potential advantages, including better 

control of patient dose, avoidance of photon starvation artefacts (for example, 

through the pelvis region), reduced load on the X-ray tube, and more uniform 

image noise both on a single patient examination and over a wide range of 

patients (Lee et al, 2008). 

  4.25 Each manufacturer has a slightly different implementation of AEC, with 

some systems enabling all three aspects of modulation to occur at once. The level 

of adjustment is based on measurements taken from one or two (anteroposterior 

and lateral) scan projection radiographs (SPRs), and in two instances, for the 

z-axis modulation, it is also adjusted according to the measured attenuation on a 

previous rotation of the X-ray tube through the patient. Tube current is then 

modulated in response to rapidly changing patient size or attenuation within 

a slice position or from one slice position to the next. This potentially can 

reduce the mAs through the shoulder regions, for example, by 50% (Kalender 

et al, 1999). 

  4.26 The overall adjustment to the tube current is made to a nominated 

required image quality figure (related to image noise), or to a suggested 

reference value tube current – which in turn relates to a pre-determined required 

image quality. Some systems allow the user to specify a maximum and minimum 

tube current limit, which can assist in the overall control of the tube current. 

  4.27 Manufacturers are taking into account that it is not always required – or 

even possible – to adjust the tube current to achieve the same image noise for 

large patients. Conversely, if the tube current is adjusted accordingly for small 

patients, the level of image noise may not be suitable for diagnosis as such 

patients have less fat around the organs. The tendency is now to adjust the tube 
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current to a higher noise level for larger patients and a lower noise level for 

small patients. This has already been implemented for some time by one 

manufacturer, and the others all have this feature in development.  

  4.28 Implementation of the AEC systems requires understanding of each 

system particular to its manufacturer. Tube current modulation can be 

customised for each protocol and site. It is often guided by the applications 

training specialists, working closely with the users to understand individual site 

preferences and image quality requirements. 

  4.29 Reducing tube current is a valuable manoeuvre when issues of image 

resolution are not paramount. For example, an increase in image noise does not 

compromise diagnosis when looking for renal stones. This applies especially to 

examinations of tissues with inherent high contrast, such as the lung or bone, and 

some evidence is available from research studies indicating those applications 

where reduced current can be used without critically compromising diagnostic 

quality (Diederich et al, 2004; Gurung et al, 2005; Hu et al, 2011). 

  4.30 Tube current may also be reduced in follow-up examinations when the 

initial examination has indicated that demonstrating the disease process does not 

require maximal resolution. 

  4.31 Automatic exposure control has demonstrated reductions in dose of 

about 20–40% when image quality is appropriately specified (McCollough et al, 

2009). Although there is some variation in the dose reduction seen with each 

of the manufacturers’ systems, dose modulation software claims dose reduction 

of up to 50% (Raman et al, 2013). 

  4.32 Clear explanation of how modulation is achieved, and the factors 

influencing this, is crucial. At installation and applications training, a focus on 

the importance of exact positioning at iso-centre is key to understanding the 

correct use of this dose reduction tool. 

  4.33 Patient centring is important for optimal dose and image quality 

distribution even without AEC. For example, patients positioned in the antero-

posterior position and placed too high in the gantry will receive a lower anterior 

surface dose and associated higher noise in the anterior region (and conversely a 

higher posterior dose and lower noise in the posterior region). The explanation 

for this can be understood by considering the X-ray tube in the lateral position. 

At this point in the rotation of the tube, the X-ray beam through the iso-centre of 

the patient will be attenuated by the thicker region of the beam shaping filter. 

This type of effect will occur for both vertical and lateral mis-centring, and 

the extent of the effect will also be dependent on the beam shaping filter (Toth 

et al, 2007). With AEC the requirement of patient centring is even more 

important as there is the additional scope for inaccurate calculations for the 

AEC (Gudjonsdottir et al, 2009; Singh et al, 2011).  

  4.34 If the scan projection radiograph (SPR) does not cover the entire area for 

examination it is important that the operators are aware that modulation may not 

be applied to the area missing from the SPR. For example, a default tube current 

may be implemented which may be inappropriate for the region scanned or for 

the size of patient, or the tube current at the last slice position may be used, which 

again, may be inappropriate. In some situations it may be appropriate to repeat the 

SPR to include all the anatomy required. This highlights the need for operators to 

be adequately trained and familiar with the technology. 

  4.35 All manufacturers offer tube current modulation on their latest 

equipment and it is widely used throughout the CT community. Manufacturers 
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have different implementations of the AEC; one manufacturer integrates tube 

current modulation with simultaneous automatic tube voltage (kV) optimisation, 

offering consistent image quality with the two dose reduction programmes 

working together.  

  4.36 It is essential that operators and physics support have full understanding 

of the operation and implications of the use of these AEC systems, since 

inappropriate use can easily result in increased radiation dose (Keat, 2005). 

Therefore, continuous specialist training throughout the life of the equipment 

is essential to maintain and promote awareness of new techniques, technology 

and innovations. 

X-ray tube voltage (kV) 

optimisation 

 4.37 The X-ray tube voltage may be increased in large patients to achieve 

adequate image quality without needing to raise other exposure factors such as 

tube current. Raising the tube voltage to give a required noise value can have a 

smaller increase in patient dose than the equivalent process of applying an 

increased tube current (Nagel, 2000). It can also be advantageous where there is 

an upper tube current limitation. 

  4.38 Lowering the tube voltage allows for greater image contrast with the 

use of intravenous iodine contrast and, therefore, this introduces the potential 

for lower dose scanning. It also allows for the automatic adjustment of exposure 

according to patient size (including children) circumventing any tube current 

limitation at the lower limit.  

  4.39 Tube voltage in CT examinations should be varied more often than is 

common practice today and done, not only based on patient size, but also 

according to the substance imaged to minimise dose (Kalender et al, 2009). For 

imaging involving iodine or bone, the optimal values are typically 80 kV and 

lower, due to the greater image contrast of these substances, compared with 

tissue. Similarly, low tube voltage values are appropriate for paediatric imaging 

and offer a potential for dose reduction. 

  4.40 An overall dose reduction of 25% has been demonstrated when using 

100 kV (compared with the standard 120 kV protocol) for CT angiography on 

a per-patient basis using automatic tube voltage and current modulation 

(Winklehner et al, 2011a). Similarly, when the tube voltage was reduced from 

120 kV to 100 kV in a paediatric patient, a dose reduction of 23% was achieved, 

demonstrating improved contrast and bowel visualisation (Yu et al, 2009).  

  4.41 Some manufacturers offer the ability to automatically change the tube 

voltage. However, if this is not the case, it is still possible to manipulate (reduce 

or increase) the tube voltage on an individual basis to answer specific clinical 

questions or relating to patient size. The use of this potential dose reduction tool 

is closely linked with balancing acceptable image quality. Tube current 

modulation is often used in conjunction with a reduction in tube voltage to 

ensure adequate image quality. Manufacturers have recognised tube voltage 

adaptation as a dose reduction opportunity and some are offering options from 

70 kV through to 140 kV. 

  4.42 This approach to dose optimisation has not always been common practice 

for various reasons. Operators may have felt reluctant to reduce the tube 

voltage, concerned for the effect on image quality, producing an image unfit for 

diagnostic purposes. Historically, there were fewer options available to change 

the tube voltage and a more limited portfolio of examinations. As technology 

has developed and facilitated new applications (such as cardiac CT and CT 

colonography), the dynamics of the operator’s role have evolved. Operators are 
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now presented with more options to use technology, change parameters and 

reduce dose. 

  4.43 Clinical staff can embrace this change in practice, with the associated 

potential dose reduction, where there are supporting data available to confirm 

optimal tube voltage for specific tissues/compounds, patient size (particularly 

for paediatrics), and where there is appropriate training. Ongoing applications 

training by manufacturers is essential to encourage the appropriate use of all the 

dose reduction tools offered on each individual system. 

Iterative reconstruction   4.44 The first CT scanner model used standard algebraic iterative 

reconstruction techniques, which were unsatisfactory in terms of the length of 

time required to process the images. Subsequently, CT images have been 

reconstructed using the analytical filtered back projection technique. With wider 

beam widths and multi-slice acquisitions (greater than about 12 slices), modified 

versions of filtered back projection are used and, with even wider beams, 

modified three-dimensional complex reconstructions are required. 

  4.45 Iterative reconstruction was introduced in modern scanners in 2008 and 

all manufacturers have such packages available (Karpitschka et al, 2013; 

Neroladaki et al, 2013). 

  4.46 Iterative reconstruction works on the basis of taking the filtered back 

projected image, forward projecting from this to compare with the actual 

measured attenuation profiles, applying a correction and repeating the process 

a number of times. There are two approaches, a statistical approach and a 

model-based approach – the latter is the more complex whereby the forward 

projection process uses real dimensions of the focal spot and detectors. This 

approach has longer computational times, and its implementation has to be 

considered in the context of the workflow. Iterative reconstruction affects the 

look of the image, which can influence its clinical acceptance, but uses more of 

the projection data to the extent that there is lower noise in the images compared 

to filtered back projection.  

  4.47 Many iterative reconstruction packages allow for a combined approach 

of filtered back projection and partial iteration. This approach reduces the 

reconstruction time and also keeps the appearance of the images similar to that 

of filtered back projection to enable clinical acceptability. 

  4.48 Generally, the post-reconstruction reduction in noise enables the 

protocol to use a lower mAs than normally used. This has the potential for dose 

reduction, for example, quoted in the order of 30–50% (Winklehner et al, 

2011b) for CT pulmonary angiogram. A greater than 45% dose reduction, at 

maintained image quality, has been evaluated in oncological patients 

(Karpitschka et al, 2013), demonstrating the potential dose savings achievable 

with iterative reconstruction techniques. 

  4.49 Each manufacturer achieves this by a slightly different route; however, 

this process can have one of three aims:  

  (a) Keep image quality the same and lower doses 

(b) Keep doses the same and improve image quality 

(c) A balance of lower doses and better image quality 

  4.50 The challenge for operators is in setting up iterative reconstruction for 

each individual protocol and gaining a consensus of agreement from clinicians 

as to acceptable image quality. It is crucial to ‘ring fence’ sufficient time and 
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effort with applications training specialists, physicists and radiologists to choose, 

and then objectively evaluate, image quality. Dose audits should be completed 

to ensure a measurable evaluation can be undertaken. 

Dynamic scanning/ 

perfusion 

 4.51 The ability to take successive images of blood or contrast perfusion 

through organs or vessels is dependent on the scanner’s ability to use sequences 

of sets of projections overlapping in time to provide a suitable image refresh 

rate, while scanning the same volume of tissue. Special software packages are 

required to undertake this function. This ability is also dependent on the extent 

of organ coverage provided by the scanner; a wider beam scanner can provide a 

wider region for investigation. 

  4.52 The widest beam scanners can perform dynamic scanning for single 

organs, such as the brain or liver. However, other scanners can achieve the same 

volume coverage by moving the couch rapidly from one neighbouring scan 

position to another (either axially or helically) to provide continuous imaging 

for dynamic studies. Special software and hardware facilities are required for 

this; two of the terms used are ‘jog scan’ and ‘helical shuttle’.  

  4.53 Dynamic scanning for perfusion studies can provide extensive single-

site irradiation and, therefore, has the potential to give high doses if standard 

scan parameters are used (Imanishi et al, 2005). Close attention needs to be given 

to the scan protocols. Most scanners by default will operate at a low tube current, 

with a limited time period for the examination exposure. If standard tube currents 

are used accidentally, there is scope for overdose to a single region
*
.  

  4.54 Operators and physicists need to work closely with applications 

specialists to develop protocols to reflect the dose implications with this 

technique. These should include default limits for patient safety and regular 

reviews of the protocol. 

Dual energy  4.55 Dual-energy CT techniques have become possible with the new tech-

nologies of fast tube voltage switching and dual X-ray source scanners. Some 

manufacturers refer to this as spectral imaging. 

  4.56 Dual-energy techniques were primarily developed to give improved 

image quality. By scanning the same volume at two different tube voltages, 

materials whose composition gives rise to a significant variation in CT number 

with energy, can be separated from other materials. In particular, iodine contrast 

has a significant difference in CT number when scanned with the range of tube 

voltages (ie peak energies) available on a CT scanner. Various technologies and 

methods are available to achieve this. The options include: performing a scan 

at one tube voltage value, then undertaking a repeat scan at a different value; 

scanning using two tubes simultaneously – each operating at a different tube 

voltage; switching tube voltage rapidly during a scan; or using a detector that can 

discriminate between low and high energy photons in one irradiation. 

  4.57 Dual-energy CT, therefore, might allow for better discrimination of 

certain tissues and pathology. For example, it can potentially provide accurate 

differentiation between urinary stones that do and do not contain uric acid, and 

improve the visualisation of tendons of the hand and foot; it might also support 

bone removal, provide an additional method that can remove bony structures from 

CT angiography scans or provide differentiation between plaque and contrast 

media in arteries. 

 
* www.fda.gov/medicaldevices/safety/alertsandnotices/ucm185898.htm 
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  4.58 There is strong evidence that dual-energy CT with dual-source CT is not 

associated with increased radiation dose levels. Radiation dose data on dual-

energy techniques based on rapid tube voltage switching to date are inconclusive. 

Judicious use of dual-energy techniques holds the potential of drastically reducing 

radiation exposure – for example, by the elimination of unenhanced CT scans 

(Henzler et al, 2012).  

Cardiac  4.59 Cardiac imaging is a demanding application of multi-slice CT and is only 

possible due to recent technological advances. Two of these advances include 

faster rotation times and data acquisition at sub-millimetre slice thickness. 

These techniques afford high temporal (for motion-free images) and spatial 

resolution (for visualisation of small coronary segments). 

  4.60 To image the rapidly moving heart, data must be acquired as fast as 

possible to freeze the heart motion. This can be achieved either by prospective 

ECG triggering or retrospective ECG gating. 

  4.61 Prospective ECG triggering is similar to conventional CT, step-and-

shoot. The patient’s cardiac rhythm is ECG monitored and the scanner starts 

the scan at pre-determined intervals to acquire sufficient data for image 

reconstruction. X-rays are on for a limited period and these sequential scans 

typically result in a lower radiation dose.  

  4.62 When retrospective ECG gating is used, the X-rays are on continuously 

and scan data are collected throughout the heart cycle. Retrospectively, data 

from selected points in the cardiac cycle are selected for image reconstruction. 

The radiation dose is greater with this type of scan mode compared to that from 

prospective triggering. 

  4.63 Technological improvements have enabled cardiac CT angiography to 

operate at much reduced doses from its first implementation. For example, the 

fast pitch scanning mode, which allows full coverage of the whole heart in one 

cardiac cycle offers markedly reduced doses, averaging approximately 1 mSv 

(Achenbach et al, 2010; Yu et al, 2009).  

Scanning time  4.64 Radiation dose rises in line with the time the X-ray exposure is applied. 

In practice, this parameter is usually dictated by the need to cover the examina-

tion volume in a short enough time to avoid problems from patient movement. 

Exposure time can, however, be reduced by limiting the examination volume or 

manipulating pitch factors, as below. 

Pitch factors  4.65 The term ‘pitch’ relates to the speed of table movement during image 

acquisition. Setting a pitch factor greater than one allows a larger volume to be 

covered in a shorter time, with proportionately less exposure to the tissues 

contained within the imaging volume. With single-slice scanners this resulted in 

a dose reduction and also a decrease in image resolution due to a wider image 

width. This may not be suitable where high resolution volume acquisition is 

required. For example, to facilitate high resolution multi-planar post-processing 

(three-dimensional image manipulation) or where image resolution does not 

need to be maximal, increasing the pitch factor is a valuable method of reducing 

exposure (Kalender, 2004). 

  4.66 However, in multi-slice scanning on some scanners the tube current 

is automatically adjusted to allow for the average reduced dose along a 

scanned volume. With multiple detectors available the image width will generally 

be unaffected. 
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Summary  4.67 CT has undergone dramatic technical advances, with the introduction 

of helical and also multi-slice scanners, dual-source and dual-energy scanners 

and modern iterative reconstruction techniques. The speed of scanning has also 

increased, allowing a greater volume to be scanned during a single breath hold. 

  4.68 There has been a focus on dose reduction technology since the turn of 

the century, with sub-millisievert scanning already a reality for some applications 

of CT. Technological advances that have the potential for dose reduction 

include detector technology, X-ray beam width, tube current modulation, tube 

voltage optimisation, iterative reconstruction, dynamic scanning/perfusion, dual 

energy and new approaches to cardiac scanning and reconstruction techniques. 

Each of these developments offers potential dose reductions depending on how 

it is employed.  

  4.69 It is, therefore, important that the operators understand the different 

technologies and how to maximise their use, while being aware of the 

implications to ensure patient safety. This is best achieved by education, training 

and continuing professional development related to the concepts of CT and their 

specific application for individual scanners. This, in turn, requires manufacturers 

to ensure that their applications specialists are fully familiar with the capabilities 

of the equipment and the changes enabled by any software upgrades installed as 

part of routine servicing. 
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CHAPTER 5 

DOSE MEASUREMENTS, DOSE SURVEYS AND 

DIAGNOSTIC REFERENCE LEVELS 

Dose measurements  5.1 In general, CT has the same dose quantities as other imaging 

technologies that use ionising radiation. However, there are some additional 

quantities that are specific to CT. 

General exposure and dose 

quantities 

 5.2 Absorbed dose (expressed in gray, Gy) is the radiation energy imparted 

per unit mass of irradiated material, eg air or tissue. In CT, it is proportional to 

the intensity of the emitted X-ray beam and the time for which the material is 

irradiated. Differences in scanned lengths will contribute scatter to the absorbed 

dose at a given position. 

  5.3 A related quantity is kerma, which stands for kinetic energy released in 

matter. It depends on the same factors and has the same units as absorbed dose 

and, at the X-ray energies used in radiography and CT, kerma is equal to 

absorbed dose. 

  5.4 In projection radiography, air kerma per unit mAs may be measured 

with a calibrated ionisation chamber at a fixed distance from the X-ray tube for 

a range of tube voltage and filtration values. Such data may be used to calculate 

the entrance surface kerma and entrance surface (absorbed) dose for specific 

radiographic projections. Subsequently, it is possible to estimate absorbed dose 

at depth or organ dose for a generic patient. The latter requires simulation of 

radiation interactions in tissue (using Monte Carlo methods) and a mathematical 

model of patient anatomy. For practical purposes, organ doses for particular 

investigations are presented in tabular form. Sensitivity to the effects of radiation 

varies between organs, and organ dose is regarded as a good indicator of 

radiation risk (Bushberg et al, 2012). 

  5.5 Equivalent dose (expressed in sievert, Sv) takes account of the fact that 

different types of radiation cause different biological effects for the same 

absorbed dose; it is given by the absorbed dose multiplied by the radiation 

weighting factor (ICRP, 2007). For X-rays, this weighting factor is one and so 

the equivalent dose is numerically equal to the absorbed dose in CT. 

  5.6 A further quantity, effective dose (also expressed in Sv), is calculated as 

the sum of the product of equivalent dose and a tissue weighting factor; this factor 

represents the relative radiosensitivity of the tissue or organ. The summation is 

done over all exposed tissues and organs. Clearly, calculation in this way requires 

an estimate of organ dose. In addition to the factors that determine absorbed 

and equivalent dose, effective dose in CT depends on the scan length and the 

anatomical region imaged. 

  5.7 Effective dose is a useful means of expressing radiation detriment for 

partial-body irradiation, which is characteristic of diagnostic medical exposures 

to ionising radiation. It is the uniform whole-body dose that carries the same 

risk of stochastic biological effects as an actual irradiation. However, effective 

dose is not intended as an indication of risk to an individual patient who has 
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been subjected to a particular radiological investigation, but may be used, for 

example, to compare one type of investigation with another. 

  5.8 In projection radiography and fluoroscopy, the quantity dose-area 

product (DAP) is widely used. It is the product of absorbed dose in air and 

X-ray beam area; typical units are cGy cm
2
. DAP is easily measurable at the 

point where the beam leaves the X-ray tube, and, since the X-ray beam is 

usually well collimated to the clinical area of interest, it will represent all the 

dose the patient receives. 

CT-specific exposure and 

dose quantities 

 5.9 The geometrical features of patient irradiation in CT differ from those 

that apply in projection radiography. First, the radiation source (X-ray tube) 

rotates so that irradiation is continuous around the patient. Second, at any 

instant only a relatively short length of the patient is exposed to radiation, but 

the exposed region moves along the patient until the required volume of tissue 

has been imaged. 

  5.10 The rotational irradiation geometry means that dose distribution within 

the patient is much more uniform in CT than is the case for radiography and 

fluoroscopy. Both of the latter are characterised by large dose gradients from the 

point at which the X-ray beam enters the patient to the exit point. Dose uniformity 

in CT is further enhanced by the use of a beam-shaping (bow-tie) filter. 

  5.11 In CT the whole beam is not incident on the patient, indeed it is designed 

such that the outer edges of the fan beam are incident on reference detectors at 

the end of the arc of the imaging detector array. Therefore it is not possible to 

have a DAP-equivalent parameter in CT.  

  5.12 Instead there are two dose quantities that have been specifically 

developed for use with CT: the CT dose index (CTDI) and dose-length product 

(DLP). These have been introduced because of the unique geometrical features 

of patient irradiation in CT. 

  5.13 Organ dose in CT is estimated using a reference measurement of air 

kerma at the iso-centre of the scanner. As with projection radiography, organ 

doses for specific exposure factors are tabulated using the results of Monte 

Carlo simulations. 

CT dose index (CTDI)  5.14 The CTDI is a measure of the absorbed dose (in Gy) from a single 

rotation of the CT scanner gantry (with no movement of the patient couch); it 

depends on the output of the X-ray tube and the width of the X-ray beam in the 

axial direction (along which the patient lies) (Hufton, 2002). It is defined as the 

integral (with respect to distance) of the dose profile in the axial direction, divided 

by the nominal collimated width of the X-ray beam in the same direction. The 

existence of beam divergence, beam penumbra and scattered radiation means 

that the dose profile has long tails on both sides of the central maximum (at zero 

distance), and so the limits of integration are infinite (Hsieh, 2003; IPEM, 2003; 

Shope et al, 1981). 

  5.15 In practice, the CTDI is measured with a calibrated pencil-shaped 

ionisation chamber which is 100 mm long, thus measuring the integration of 

the single-slice dose profile over 100 mm. With this pencil chamber, the 

dose profile is integrated with limits of ±50 mm, which overcomes the difficulty 

of evaluating an integral over infinite distance. The resulting index is known 

as CTDI100.  

  5.16 The CTDI parameters in common use are the CTDI measured in air 

(CTDIfree-in-air) or in standard phantoms (CTDIw – weighted, CTDIvol – volume). 
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  5.17 For the measurement of the CTDIfree-in-air the ionisation chamber is placed 

at the iso-centre of the scan field of view. 

  5.18 For the measurement of the CTDIw and CTDIvol, the ionisation chamber 

is placed in a cylindrical phantom (test object) made of poly(methylmethacrylate) 

(PMMA, also known as Perspex™) which is positioned at the centre of the CT 

scanner gantry during exposure.  

  5.19 There are two standard adult CT dosimetry phantoms for the 

measurement of CTDI100: a body phantom with a diameter of 32 cm and a head 

phantom with a diameter of 16 cm. Both are 15 cm long. The head phantom 

also serves as a torso phantom for children. The phantoms are used purely for 

the determination of CTDI; more sophisticated phantoms are available for the 

optimisation of dose and image quality. 

  5.20 The ionisation chamber may be inserted into either a central or 

peripheral hole in the phantoms. Adding one-third of the central CTDI100 

measurement and two-thirds of that at the periphery gives a CTDIw value. This 

is a good estimate of the average dose to the phantom at the central CT slice of 

an examination, as though it were scanned with contiguous slices for a range of 

100 mm. 

  5.21 Dose is inversely related to helical pitch, which is defined as the axial 

movement of the patient couch for one complete rotation of the gantry divided 

by the nominal X-ray beam width. Dividing the CTDIw by the pitch gives the 

CTDIvol, an approximation to the average absorbed dose within the volume that 

has been scanned (Allisy-Roberts and Williams, 2008).  

  5.22 Wide beam scanners have a modified approach to the measurement 

of the CTDIvol. This definition has gone through a few iterations by the IEC 

and, therefore, requires close attention when looking at the CTDIvol for scanners 

with beams wider than about 60 mm (IEC, 2010). The current accepted 

definition of CTDI for wide beam scanners requires the CTDIvol to be measured 

using a beam width of less than or equal to 40 mm. This is corrected using 

the ratio of CTDIfree-in-air values measured for the wide beam and the narrower 

beam (for which the CTDIvol has been measured). The CTDIfree-in-air for the 

wider beam can be measured by stepping the chamber through the beam, 

thereby measuring the integration of the dose profile. This is described in 

an IAEA report on the status of CT dosimetry for wide cone beam scanners 

(IAEA, 2011). 

  5.23 The CTDIvol is unique for the particular beam shaping filter that is used 

for an examination. Sometimes a 16 cm phantom is used for the quotation of the 

CTDIvol for paediatric body examinations. Whenever paediatric CTDIvol values 

are compared, the specifying phantom must also be quoted. 

Dose-length product (DLP)  5.24 Dose-length product (DLP), the second CT-specific dose quantity, is 

defined as the product of CTDIvol and the scanned length of the patient. It is a 

measure of the total radiation delivered by the CT scanner. Usually CT scanners 

display both the predicted and actual DLP. 

Applications of CTDI 

and DLP 

 5.25 The CTDI and DLP have specific applications and uses in CT, as well as 

some limitations. 

  5.26 The CTDIfree-in-air is a useful measure of tube output and it can also be 

normalised to the tube-current–time product, ie expressed as mGy per unit mAs. 

In this form, it may be used as an alternative to air kerma as a reference 
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measurement for quality control (IPEM, 2003), as well as with Monte Carlo 

generated organ dose datasets in order to estimate organ doses and hence effective 

dose (ImPACT CTDosimetry calculator
*
, NRPB-SR250

†
). 

  5.27 The CTDIvol and its precursors were originally developed as a means 

of comparing different CT scanners and protocols, and as such the CTDIvol is a 

very valuable tool.  

  5.28 DLP is approximately proportional to effective dose for a particular 

type of CT investigation and factors are available to convert DLP (in mGy cm) 

to effective dose (in mSv). These values are available for specific scanned 

regions of the body, and for adults and children. They originated with European 

quality criteria (European Commission, 1999) and have since been updated 

(AAPM, 2008; Shrimpton et al, 2005). 

  5.29 Although there have been isolated reports of deterministic effects, the 

major concern as regards patient safety in CT is the stochastic risk of cancer 

induction at some time in the future. Effective dose, whether calculated with 

knowledge of organ doses or estimated from DLP, allows the estimation of risk 

to a member of the general population; the accepted risk coefficient for radiation-

induced fatal cancer is 5.7% per Sv. However, effective dose is not suitable for 

risk estimation in individual patients since it does not take account of factors 

such as the patient’s age, sex and body size. 

Pre- and post-scan dose 

estimates 

 5.30 The IEC has a requirement for the display of CTDIvol and DLP 

(IEC, 2010). 

Display of CTDIvol and DLP  5.31 The majority of CT scanners have the facility to display the predicted 

CTDIw (and/or CTDIvol) and DLP, prior to the patient scan after the scan protocol 

has been set (see Table 5.1). This is possible because scanner manufacturers have 

measured the CTDIw for each scanner model over a range of conditions, such as 

tube current and voltage, X-ray beam filter combinations, beam collimations and 

focal spot sizes. The displayed quantity (CTDIw or CTDIvol) is calculated using 

the relevant measurement and the values of exposure factors and pitch for the 

scan protocol as appropriate. 

  5.32 In some cases, the actual CTDI is shown after the scan has been 

completed; this may differ from that predicted due to the operation of automatic 

exposure control (AEC) during the scan acquisition. The actual CTDI (usually 

expressed as an average) from the scan and the associated DLP are usually 

presented in the protocol page, and the DICOM dose reporting object. The 

average tube current, and rotation time, can also be extracted from the DICOM 

headers for each image for more exact calculation of the CTDI. 

Notifications and alerts  5.33 Following a number of high profile CT incidents in the USA
‡
, a US 

technical standard (XR 25) was published in 2010 by the National Electrical 

Manufacturers Association (NEMA, 2010). CT scanners in compliance with this 

standard can be configured to inform users when scan settings would probably 

yield values of CTDIvol or DLP that would exceed pre-assigned values. Compliant 

scanners allow users, before proceeding with scanning, to confirm or correct 

settings that might otherwise lead to unnecessarily high exposures. Manufacturers 

may include pre-assigned values in their default protocols, but all values are 

user-configurable. 

 
* www.impactscan.org/ctdosimetry.htm 

† www.hpa.org.uk/Publications/Radiation/NPRBArchive/NRPBSoftware/ 

‡ www.fda.gov/medicaldevices/safety/alertsandnotices/ucm185898.htm 
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Table 5.1 Normalised values of effective dose per dose-length product (DLP) 

over various body regions and (standard) patient age (Shrimpton et al, 2005) 

 Effective dose per DLP (mSv(mGy cm)
–1

) by age 

Region of body 0
* 

1 y
* 

5 y
* 

10 y
* 

Adult
† 

Head and neck 0.013 0.0085 0.0057 0.0042 0.0031 

Head 0.011 0.0067 0.0040 0.0032 0.0021 

Neck 0.017 0.012 0.011 0.0079 0.0059 

Chest 0.039 0.026 0.018 0.013 0.014 

Abdomen and pelvis 0.049 0.030 0.020 0.015 0.015 

Trunk 0.044 0.028 0.019 0.014 0.015 

* All data normalised to CTDIw in the standard head CT dosimetry phantom 

† Data for the head and neck regions normalised to CTDIw in the standard head CT dosimetry 

phantom; data for other regions normalised to CTDIw in the standard body CT dosimetry 

phantom 

 

 

  5.34 There are two important definitions in the XR 25 standard – a ‘notifi-

cation’ value and an ‘alert’ value. The notification value is where a value of 

CTDIvol (in units of mGy) or DLP (in units of mGy cm) is used to trigger a 

notification when the value would probably be exceeded by the prescribed 

scans. The alert value is where a value of CTDIvol (in units of mGy) or DLP 

(in units of mGy cm) is used to trigger an alert when the system projects that the 

prescribed scans within an ongoing examination would result in a cumulative 

dose index value that exceeded the user-configured alert value. 

  5.35 The cumulative dose index value is compared with the alert value at 

each anatomical position throughout an examination. While any individual scan 

might not trigger a notification or alert, if the cumulative dose index value at 

any anatomical position were expected to exceed the alert value when the next 

scan was performed, an alert would be triggered prior to scanning. An alert 

value is associated with a complete examination protocol, not with individual 

scans. On some systems, it may be possible to set different alert values for 

different examination protocols. 

  5.36 The NEMA Standards Publication XR 25-2010 Computed Tomography 

Dose Check (NEMA, 2010) supplements IEC Standard 60601-2-44 Editions 2.1 

and 3 (Particular Requirements for the Basic Safety and Essential Performance 

of X-ray Equipment for Computed Tomography) (IEC, 2010) until the latter is 

updated to include a version of the features specified. 

Limitations of CTDI and 

DLP  

Patient size and scanned 

length 

 5.37 The CTDIvol is valuable for the purpose intended, and it is not meant to 

represent the dose given to an individual patient since it does not match the size 

or composition of the patient, nor does it represent the typical scanned length. 

Therefore, it should not be used to represent the dose to an individual patient 

(McCollough et al, 2011).  

  5.38 However, for a scanner operator (a radiographer) the CTDIvol presented 

on the scanner console can be misleading in that it represents the dose to a 

specific size of phantom, regardless of the size of the patient (Table 5.2). 

Therefore, when image quality is estimated to be similar for two patients of 

different sizes, a large patient would appear to have a higher dose than a slim 

patient, since a higher tube current is used. However, if actual organ doses were 

measured, the doses would be similar.  
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Table 5.2 Display of CTDI and DLP on the operator’s console for models 

reported in 2009 (Note: this is provided for information purposes only and is not 

designed to demonstrate any advantage of one machine over another) 

Scanner CTDI DLP 

Wide bore CT scanners (NHS CEP, 2009a) 

GE LightSpeed Xtra, RT 16 CTDIvol Predicted 

Philips Brilliance Big Bore Yes Yes 

Siemens SOMATOM Sensation Open 

(24/40) 

CTDIvol Predicted before scan 

Actual after scan 

Toshiba Aquilion LB CTDIw or CTDIvol Planned 

Actual after scan 

128- to 320-slice CT scanners (NHS CEP, 2009b) 

Philips Brilliance iCT Yes Yes 

Siemens SOMATOM Definition AS+ CTDIvol Predicted before scan 

Actual after scan 

Toshiba Aquilion ONE CTDIw.e
*
 or CTDIvol.e

*
 Planned 

Actual after scan 

64-slice CT scanners (NHS CEP, 2009c) 

GE LightSpeed VCT Predicted 

Actual 

Predicted 

Actual 

GE LightSpeed VCT XT Predicted 

Actual 

Predicted 

Actual 

Philips Brilliance CT 64 Yes Yes 

Siemens SOMATOM Sensation 64, 

Definition AS 64, Definition Dual 

Source 

CTDIvol Predicted before scan 

Actual after scan 

Toshiba Aquilion 64 CTDIw or CTDIvol Planned 

Actual after scan 

16-slice CT scanners (NHS CEP, 2009d) 

GE BrightSpeed Elite Yes Yes 

Philips Brilliance CT 16 Yes Yes 

Siemens SOMATOM Emotion 16 CTDIvol Predicted before scan 

Actual after scan 

Toshiba Activion 16, Aquilion 16 CTDIw or CTDIvol Planned 

Actual after scan 

* Termed by the manufacturer as the ‘extended’ CT dose index 

 

  5.39 Body size has a strong influence on organ dose derived from the CTDIvol 

and this is a limitation of the index. It arises because the CTDIvol is based on the 

measurement of absorbed dose (or kerma) in air at two locations in a PMMA 

phantom whose diameter is greater than the average diameter of most members of 

the general population. Hence the CTDIvol as a dose index would also under-

estimate dose for the majority of patients. However, it is possible to derive 

correction factors based on effective patient diameter (AAPM, 2011). These are 

called the size-specific dose estimates (SSDE) for paediatric and adult body CT 

examinations, taking into account a typical scanned length for an abdomen scan. 

  5.40 Another limitation of the CTDIvol arises because scattered radiation is an 

important contributor to radiation dose in CT. Scatter dose profiles extend long 

distances from the primary beam in the axial direction. As the length of the 
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scanned patient region increases, the dose at its centre increases due to an 

increased scatter contribution. However, this increase is asymptotic and as the 

scan length approaches the range of the scattered radiation dose profile tails, the 

dose at the centre approaches a limit. It is possible to address this problem by 

deriving correction factors based on scan length (AAPM, 2010). 

  5.41 Dose may be estimated for a representative patient by correcting the 

CTDI and DLP for patient diameter and scan length. The more accurate 

estimates of organ doses obtained in this way may be multiplied by age- and sex-

specific risk coefficients and these products summed to give a more appropriate 

estimation of the risk of radiation-induced fatal cancer (BEIR VII Committee, 

2005). However, even this cannot be considered as more than a probabilistic 

risk associated with a representative patient, derived from accepted models. 

Image quality measures  5.42 Dose cannot be considered in isolation from image quality, and there 

are a number of objective approaches to image quality determination in addition 

to the clinical interpretation of the final images. 

  5.43 As with other radiological imaging technologies, the information about 

an object that may be retrieved from a CT image may be expressed in terms of 

contrast, spatial resolution and noise as indices of image quality. Contrast depends 

on the physical properties of the object, while spatial resolution depends on the 

construction and operation of the scanner hardware and software. Statistical noise, 

however, depends on radiation dose.  

  5.44 A figure of merit is a quantity that relates dose and image quality and is 

defined for CT by the Q-factor (ImPACT, 2000). The Q-factor is given by 

  Q = √(f
  3

/σ
 2
 z CTDIw)  

  where f is the spatial resolution in the plane of the image slice (expressed as a 

spatial frequency), σ is the statistical noise (expressed as a percentage standard 

deviation in CT number) and z is the width of the image slice profile (expressed 

as a full width at half maximum). The Q-factor is useful for comparing the dose 

efficiency of different CT scanners, with a high Q-factor indicating good image 

quality at low dose. It is appropriate to be applied for standard resolution imaging. 

  5.45 Noise power spectra calculations can be made to quantify the frequency 

content of the noise, thus more comprehensively combining spatial resolution 

together with noise. The DQE (detection quantum efficiency) and the NEQ 

(noise equivalent quanta) also can provide valuable information. Further work 

is underway in the area of subjective assessments of image quality including 

objective ‘subjective’ approaches using ‘model observer’ techniques. These are 

all more complex and comprehensive approaches, but there are no standardised 

approaches as yet.  

National and international 

dose surveys 

 5.46 National CT dose surveys can provide data for use in determining 

population dose from medical X-rays, as well as offering a snapshot of clinical 

practice for diagnostic CT scans on adults and children.  

  5.47 In the absence of a methodology necessary for more comprehensive 

assessments of patient exposure, doses from CT were initially thought to be 

broadly comparable with those from corresponding conventional X-ray 

examinations (Perry and Bridges, 1973). Early CT dose surveys concentrated on 

quality control measurements in standard dosimetry phantoms (Conway et al, 

1992; McCrohan et al, 1987). The high patient doses from CT compared with 

conventional radiography were first established by a national survey for 1989 
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conducted in the UK by the then National Radiological Protection Board 

(NRPB) that included assessments of organ and effective doses from typical CT 

procedures (Shrimpton et al, 1991). By 1992, data from national surveys in 

eight other countries had confirmed, as a general pattern, the increasing 

importance of CT as a significant source of exposure for populations and so a 

necessary focus for efforts in patient protection (Shrimpton and Wall, 1995). 

Accordingly, diagnostic reference levels (DRLs) were developed to promote 

improved CT practice in Europe (European Commission, 1999). The values 

were updated in 2004 on the basis of a European survey for multi-slice CT 

(MSCT) that included 53 CT centres in eight countries (MSCT, 2004). As with 

conventional radiological examinations, DRLs are dose levels for typical 

examinations for groups of standard-sized patients for broadly defined types of 

equipment. They are not intended to be applied to individual patients. 

  5.48 A second CT survey for the UK (for 2003) demonstrated the continuing 

existence of wide variations in practice between CT centres for 12 common 

types of CT examination and their associated specific clinical indications. The 

overall levels of exposure were in general lower by 10–40% than the previous 

UK survey data for 1991 (Shrimpton et al, 2005). However, there was an 

apparent trend for slightly increased doses from MSCT (four or more slices) 

relative to single-slice CT scanners. On the basis of these survey data, an 

updated assessment of population dose from medical X-rays in the UK for 2008 

reported an increase in the dominance from CT examinations, to 68% of the 

total medical population dose (Hart et al, 2010). Similar patterns are now 

prevalent in the USA ((Mettler et al, 2009; NCRP, 2009), elsewhere in Europe 

(Jarvinen, 2012) and worldwide (UNSCEAR, 2010). A third CT survey for the 

UK (for 2011) is shortly to be published by Public Health England (Shrimpton 

et al, 2014). 

  5.49 The periodic assessment of dose is an essential part of quality assurance 

and routine performance testing within X-ray departments in support of 

patient protection. In the UK, the recommended frequency for conducting local 

surveys of typical doses from CT (values of CTDIvol and DLP) is on a three-year 

basis (IPEM, 2005), in support of the local setting and application of DRLs 

(IPEM, 2004). 

  5.50 The national CT surveys for the UK (for 1989, 2003 and 2011) have so 

far involved voluntary participation in the submission of data, but with 

reasonably robust sample sizes (in excess of 25%). Completion of the 2011 CT 

survey will provide a timely opportunity to review and revise methods for 

streamlined data collection. Imminent further developments in European 

legislation concerning radiation protection for patients may impact on the 

electronic health care information systems used for the national monitoring of 

patient doses. The 2011 survey will allow consideration of analyses that will 

make the best use of this information system. 

  5.51 The UK dose surveys were also used in establishing a database of organ 

doses for paediatric and young adult CT scans in the UK, with the objective of 

quantifying the magnitude of the cancer risk in relation to the radiation dose 

(Kim et al, 2012). The younger children received higher doses in the pre-2001 

period, when the use of adult CT settings for children was more common. 

Role of national surveys  5.52 Regular national radiation dose surveys report levels and trends in 

population exposure and are the main strategic tool in planning safe practice. 

National surveys establish a framework within which operational safe practice 

can be defined. To date, only a minority of UK radiology departments contribute 

data to such surveys.  
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  5.53 Evidence from surveys suggests that many CT installations operate 

considerably above the threshold exposure that delivers adequate image quality 

(Hausleiter et al, 2009). There is a natural anxiety to avoid low exposure CT for 

fear of risking an inadequate and unsuccessful examination, resulting in the 

patient requiring repeat examination and therefore increased exposure. 

However, published research studies document selected applications in which 

exposure reduction may be achieved without adversely affecting diagnostic 

quality (Iannaccone et al, 2003; Newton et al, 2011; Tamm et al, 2011; 

Winklehner et al, 2011b). Results continue to be published, but the number of 

applications for which this information is available remains small compared 

with the overall applications of CT. Wider research is required to provide a 

stronger evidence base on which standard protocols may be recommended for 

each application of CT. 

  5.54 Reviews of these standard protocols could be used to establish DRLs for 

a much wider range of CT applications. DRLs can then be used as a trigger for 

assessing examination protocols in use at other institutions (Mohiy et al, 2012; 

Moss and McLean, 2006). The approach would help to standardise practice and 

reduce the wide variations in exposure observed between institutions.  

  5.55 Currently, national DRLs are available for the most common CT 

procedures and local radiology departments, together with associated medical 

physics or radiation protection services, should produce both site-specific and 

scanner-specific dose data for these examinations. The employer has a duty to 

establish DRLs under the Ionising Radiation (Medical Exposure) Regulations 

2000 (IR(ME)R 2000) which should be available to staff working in an area. 

The availability of dose data nationally can help to encourage higher standards 

of practice. 

  5.56 National surveys are also key to establishing current experience of best 

practice, resulting in information which can be conveyed to radiology departments 

as recommended performance criteria. 

  5.57 A challenge exists in CT dosimetry technology in that it has to adapt 

continuously to emerging technology. Survey bodies, therefore, require adequate 

research capacity to extend and update their methods. 

Diagnostic reference levels 

(DRLs) 

 5.58 IR(ME)R 2000 require that employers establish DRLs and undertake 

appropriate reviews if these are consistently exceeded. 

  5.59 Typical patient doses for the same type of X-ray examination can vary 

considerably between hospitals. Reference doses for specific examinations can 

give an indication of unusually high values. The NRPB recommended national 

reference doses for common diagnostic X-ray examinations from 1990; in recent 

years these recommendations have been provided by the Health Protection 

Agency (HPA) and now by Public Health England (PHE). The recommended 

reference doses are reviewed by the Department of Health (DH) and formally 

adopted as DRLs. 

  5.60 The reference doses were originally based on a national patient dose 

survey conducted by the NRPB in the mid-1980s (Shrimpton et al, 1986) and 

are now based on the regular reviews of the (now) PHE National Patient Dose 

Database (Hart and Wall, 2003). Reference doses are set at about the third-

quartile value of the distribution of typical doses seen in this database from 

hospitals all over the country. Hospitals found to be consistently exceeding the 

national reference doses should investigate the reasons for using such abnormally 
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high doses. If they cannot be clinically justified, the hospitals should carry out 

corrective action to bring their doses more into line with the majority.  

  5.61 National dose surveys are of primary importance in providing the 

underpinning data required to set national DRLs. Subsequent local and regional 

surveys enable local and regional DRLs to be established, and also to be 

compared to national DRLs. The ICRP encourages the development and regular 

updating of local/regional/national DRLs to assist in the optimisation process, 

particularly with paediatric patients (ICRP, 2013).  

  5.62 The current national DRLs for CT examinations, as agreed by the 

DH DRL working party, are based on the 2003 review of the National Patient 

Dose Database (Shrimpton et al, 2005). These DRLs include twelve types of CT 

examination on adult patients and four types of CT examination on paediatric 

patients (for three age ranges) (see Tables 5.3 and 5.4). 

Table 5.3 National DRLs for CT examinations on adult patients (Shrimpton et al, 2005) 

Examination 

(clinical indication)  

CTDIvol (mGy)  DLP (mGy cm) 

SSCT MSCT  SSCT MSCT 

Routine head  

(acute stroke) 

Posterior fossa 65 100  – – 

Cerebrum 55 65  – – 

Whole examination – –  760 930 

Chest  

(lung cancer or metastases) 

Lung 10 13  – – 

Liver 11 14  – – 

Whole examination – –  430 580 

Chest – high resolution 

(diffuse lung disease) 

Whole examination 3 7  80 170 

Abdomen  

(liver metastases) 

Whole examination 13 14  460 470 

Abdomen and pelvis  

(abscess) 

Whole examination 13 14  510 560 

Chest, abdomen and pelvis  

(lymphoma staging or 

follow-up) 

Lung 10 12  – – 

Abdomen/pelvis 12 14  – – 

Whole examination – –  760 940 

Table 5.4 National DRLs for CT examinations on paediatric patients (Shrimpton et al, 2005) 

Examination 

(clinical indication)  Age (y) CTDIvol (mGy) DLP (mGy cm) 

Head  

(trauma) 

Posterior fossa 0–1 35 – 

 5 50 – 

 10 65 – 

Cerebrum 0–1 30 – 

 5 45 – 

 10 50 – 

Whole examination 0–1 – 270 

 5 – 470 

 10 – 620 

Chest  

(detection of malignancy) 

Whole examination 0–1 12 200 

 5 13 230 

 10 20 370 
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  5.63 A new set of national DRLs for CT examinations will be based on the  

review of CT doses for 2011 (Shrimpton et al, 2014). The survey has collected 

data from about 30% (183) of the scanners in the UK. This is a similar 

percentage to the previous survey, and represents a slightly higher number of 

scanners (Table 5.5). While the 2003 survey contained data from a mixture of 

single- and multi-slice scanners, all the scanners contributing data to the 2011 

survey are multi-slice scanners. 

Table 5.5 Data collected for the three national CT dose surveys 

Survey Main scanner type Sample size
 

Sample type
 

Doses
 

First (1989) 100% single slice 144 scanners 

(83% UK) 

Protocol data  

– adult 

Organ + effective dose 

(CTDIvol, DLP in 1999
*
) 

Second (2003)  63% single slice 126 scanners 

(27% UK) 

Protocol data 

– adult + paediatric 

CTDIvol, DLP 

UK mean effective dose 

Third (2011) 100% multi-slice 183 scanners 

(30% UK) 

Patient data 

– adult + paediatric 

CTDIvol, DLP  

UK mean effective dose 

* CTDIvol and DLP values were derived retrospectively from the first survey data (European Commission, 1999) 

Table 5.6 Comparison of national reference dose data from 2003 and 2011 (Shrimpton et al, 2014) 

Examination  

(clinical indication)  

CTDIvol (mGy)  DLP (mGy cm) 

2003   2011  2003   2011 

SSCT MSCT  MSCT  SSCT MSCT  MSCT 

Routine head 

(acute stroke) 

Posterior fossa 65 100  80  – –  – 

Cerebrum 55  65  60  – –  – 

All sequences – –  60  760 930  970 

Chest 

(lung cancer or metastases) 

Lung 10  13  –  – –  – 

Liver 11  14  –  – –  – 

All sequences – –  12  430 580  610 

Chest – high resolution 

(interstitial disease) 

Axial – –   4  – –  140 

Helical – –  12  – –  350 

All sequences  3   7  –   80 170  – 

Abdomen 

(liver metastases) 

 13  14  14  460 470  910 

Abdomen and pelvis 

(abscess) 

All sequences 13  14  15  510 560  745 

Chest, abdomen and pelvis 

(lymphoma staging or 

follow-up) 

All sequences 12  14  –  760 940  1000 

Paediatric head: 0–1 y 

(trauma)
*
 

Posterior fossa 35
† 

  –  –   – 

Cerebrum 30
†
   –  –   – 

All sequences –   25  270
†
   350 

Paediatric head: >1–5 y 

(trauma)
*
 

Posterior fossa 50
†
   –  –   – 

Cerebrum 45
†
   –  –   – 

All sequences –   40  470
†
   650 

Paediatric head: >5 y 

(trauma)
*
 

Posterior fossa 65
†
   –  –   – 

Cerebrum 50
†
   –  –   – 

All sequences –   60  620
†
   860 

* Doses refer to measurements in the 16 cm standard CT dosimetry phantom 

† Analysis over all practice (single-slice CT and multi-slice CT scanners together) 
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  5.64 In the 2011 survey CTDIvol and DLP data were collected from actual 

patient studies, with the focus on 14 clinical protocols covering 14 clinical 

indications. Data were collected for both adult and paediatric patients. 

  5.65 Preliminary results show CTDIvol values to be approximately equivalent 

to 2003 levels, with DLP values from some examinations showing a small 

(around 5%) increase, and others demonstrating a more significant increase 

(over 30%). The full results are in Table 5.6, demonstrating the trends against 

the 2003 survey. 

  5.66 While it may be preferable to consider that new technology in CT 

scanners has brought a decrease in dose levels, the 2011 data suggest 

alternative interpretations. For example, the similarity of CTDIvol levels would 

support the view that new technology has resulted in improved image quality, 

and therefore improved diagnostic efficacy. The increase in some of the DLP 

values (essentially implying increased or repeated coverage) demonstrates a 

change in usage of the scanners for certain conditions, where the benefit of 

this change is considered to be a diagnostic advantage. 

  5.67 During the period between the last two CT surveys some examinations, 

such as cardiac scanning, have grown in frequency and have undergone 

significant dose reduction as a consequence of improvements in technology 

(Gosling et al, 2013). Therefore, future developments in CT will require more 

regular surveys or real-time access to dose data to provide an accurate picture 

of CT dose in the UK.  

Summary  5.68 There is evidence from dose surveys that the radiation exposure from 

similar CT investigations can vary widely between different hospitals and, 

sometimes, even within the same radiology department. Optimisation of 

examination protocols is often regarded as one of the most pressing needs in 

modern CT practice. 

  5.69 The ALARP principle (as low as reasonably practicable) is used in the 

optimisation process in the UK, on the understanding that examinations are 

performed to an adequate diagnostic quality without excessive radiation dose. 

Research into applications where exposure reduction could be achieved 

without affecting diagnostic quality could be used to establish DRLs for a 

wider range of CT applications than currently available. National DRLs are 

currently available for most common CT investigations. 

  5.70 A variety of emerging technologies are focusing on CT dose reduction 

and, for a few applications, sub-millisievert scanning has become a reality. 

Developments such as the optimisation of X-ray spectra (tube voltage), more 

efficient detectors, dose management (tube current modulation), image 

reconstruction techniques (dose reduction software) and X-ray beam collimation 

can afford dose reduction potential, if available and if used appropriately. 

  5.71 Since image quality is a key factor determining the extent of use of 

these dose reduction techniques, the evaluation of image quality, in conjunction 

with the measurement of dose, is paramount for quantification of these effects. 
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CHAPTER 6 

CLINICAL STRATEGIES FOR DOSE REDUCTION 

Justification and 

optimisation of 

examinations 

 6.1 As described in Chapter 2, justification and optimisation are key elements 

used to protect the patient from the hazards associated with ionising radiation. 

These processes are particularly important in the practice of CT owing to the 

relatively high level of radiation exposure compared with many other radiological 

investigations (Brenner and Hall, 2007; Hricak et al, 2011). 

  6.2 Adequate patient protection requires that the medical and other staff of 

radiology, radiotherapy and nuclear medicine departments take an active and 

practical approach to implementing these principles in each individual case when 

using CT. They should also be able to demonstrate that their practice is in accord 

with statutory requirements. To serve the needs of patient protection effectively, 

the process of justification is applied on an individual basis to each referral for 

any examination that involves radiation exposure. 

Optimisation  6.3 Optimisation requires that the examination is conducted as efficiently and 

effectively as possible using the lowest reasonably practicable radiation exposure, 

consistent with the intended purpose. The optimisation process consists of a 

chain of responsibilities extending from appropriate manufacture, selection and 

maintenance of equipment to the exposure parameters selected for the individual 

examination (Lewis and Edyvean, 2005; Meeson et al, 2012). For the purpose 

of this report, only those aspects of optimisation which come under the control of 

staff in the radiology department are considered.  

Justification  6.4 Justification is a responsibility of the practitioner who carries out the 

CT examination and is based on information provided by the referrer. It is a 

fundamental principle of medical investigation that any health risks associated 

with the investigation, including exposure to ionising radiation, are outweighed 

by the putative medical benefit (Lautin et al, 2008). The process of justification is 

conducted to demonstrate that the radiation exposure incurred in the examination 

is justified by the probability of conferring benefit to the individual patient. 

Importance of referral 

information in ensuring 

appropriate justification 

 6.5 The referrer who requests CT must ensure that they provide correct and 

adequate information concerning the clinical needs of the individual patient so 

that the decision on whether radiation exposure is justified may be fully informed. 

  6.6 It is inevitable, in practice, that on occasion it is necessary for the person 

justifying the CT examination to obtain additional clinical information from the 

referrer by enquiry. It is recognised that this may be time-consuming and 

operationally undesirable in busy departmental practice, but this must not be 

allowed to impede the justification process. To accept a referral for CT when it 

may not be the optimal modality, on the basis that it is easier to do so than to seek 

the relevant information, is inappropriate practice. 

  6.7 Justification of examinations must be carried out by staff who possess 

adequate knowledge and experience of the imaging investigation and its clinical 

application, to make a fully informed judgement for each individual case. Under 
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ideal circumstances the radiologist should be responsible for supervising or 

reporting that CT examination. Where this is not practicable, other staff may 

provide the justification or authorise a procedure under written guidelines. 

Clinical radiology departments should ensure that they have appropriate 

clinical governance arrangements in place to guarantee competent justification 

in every case. 

  6.8 The process of justification in CT should be based on the following key 

questions: 

  Is the investigation required? 

Does the clinical problem require CT, or would another imaging 

modality using less or no ionising radiation be as effective? 

Does the patient require the volume of CT requested? 

Does the patient require the exposure usually employed, or would 

reduced exposure give equal clinical information? 

What is the risk of adverse effects from the scan (radiation, 

contrast, etc)? 

Is the investigation 

required? 

 6.9 The criterion to be employed in deciding if CT is necessary at all is based 

on the impact on the clinical management of the patient. The person justifying the 

CT scan should consider what action may result depending on the probable range 

of findings from the examination.  

  6.10 In 1990, a joint publication by the Royal College of Radiologists and the 

National Radiological Protection Board suggested that approximately 20% of 

X-ray studies may be clinically unhelpful (RCR/NRPB, 1990). It is quite possible 

that this situation persists in CT. A comprehensive study in Sweden investigated 

the degree of justification of all CT examinations performed in a single day 

(Almén et al, 2009). Referrals were retrospectively evaluated. The main finding 

was that approximately one in five of all examinations was not justified. The 

degree of justification also varied considerably depending on the organ examined. 

The study concluded that if unjustified examinations could be avoided, a large 

dose reduction for the population would result. 

Does the clinical problem 

require CT? 

 6.11 If the clinical problem can be adequately answered by an investigation 

that does not employ ionising radiation, then CT may not be appropriate. Answers 

to the clinical problem may be obtained through other diagnostic investigations 

such as biochemical laboratory tests or, if imaging is required, by ultrasound 

or magnetic resonance imaging (MRI), neither of which employs ionising 

radiation. However, there may be occasions when alternative techniques would 

be preferable, but other factors such as availability, local expertise and time 

constraints may result in CT being the best option. Wherever possible, every 

investigation should yield a result which is adequate and relevant to the clinical 

problem in a timely manner. Misleading, incomplete or inaccurate results may 

impede clinical care, increasing treatment duration and costs.  

  6.12 Radiology departments should take active steps to guarantee that they 

have in place a process ensuring that they have the appropriate knowledge 

and skills to provide informed advice on the alternative investigations. This 

might involve consultation with the referring clinician or appropriate multi-

disciplinary team. 

  6.13 Effective justification requires responsible action from clinical referrers. 

There may be lower acceptance among referring clinicians for ultrasound or 

MRI. Greater preference of clinicians for CT can be a significant source of an 
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unjustified increase in exposure (Boland et al, 2009). Some clinicians may regard 

CT as an appropriate confirmatory investigation following abnormal findings on 

ultrasound. This may be neither appropriate nor necessary; if information 

appropriate to the clinical problem has been adequately revealed by ultrasound 

or MRI then CT is, by definition, unjustifiable. Radiology departments should 

ensure that inappropriate referral patterns do not become established in their 

practice, by providing appropriate advice to referring clinicians. 

Use of alternative 

technologies 

 6.14 In 1992 the NRPB drew attention to the rising contribution to population 

exposure from CT, indicating that the technique made a disproportionate 

contribution to population exposure compared to the incidence of use (NRPB, 

1992). It advised that increasing the use of ultrasound and MRI would result in 

decreased exposure to radiation from CT, particularly in children and in other 

groups at risk. Substitution of CT with techniques that do not use ionising 

radiation remains fertile ground for patient protection. 

  6.15 To provide a diagnostically viable substitute, techniques must be of 

comparable reliability to CT. In imaging practice objective comparison of 

techniques is made by determining their sensitivity and specificity to the presence 

of disease. These two measures define the clinical reliability of an imaging 

investigation by analysing the extent to which the technique detects or excludes 

disease, ie whether positive or negative findings are true or false. A high 

sensitivity score indicates that a test detects disease reliably. A high specificity 

score indicates that the test excludes disease reliably.  

  6.16 Ultrasound has comparable sensitivity and specificity compared with CT 

in many applications involving the abdomen, pelvis, neck, chest wall and soft 

tissues of the limbs. Ultrasound is also a simpler, less expensive alternative to CT 

and it is logical that it should be used as the primary investigation in the areas 

where it provides a clinically reliable alternative. 

  6.17 The applications of diagnostic ultrasound technology include, but are not 

limited to
*
: 

  (a) Cardiology (echocardiography) 

(b) Endocrinology 

(c) Evaluation of structures such as breast, thyroid, testicle and skin 

(d) Obstetrics 

(e) Gynaecology 

(f) Gastroenterology 

(g) Musculoskeletal 

(h) Urology 

(i) Vascular 

(j) Intervention 

  6.18 As indicated above, disease findings on ultrasound, if conclusive, should 

not be regarded as an indication for the use of CT for confirmation.  

  6.19 MRI offers the most comparable cross-sectional technique to CT in 

more complex examinations of the trunk and is also applicable to examination 

of the brain, head, neck and limbs. 

 
* www.bmus.org/about-ultrasound/GoingforanUltrasoundScan1.pdf 
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  6.20 Areas of common application where CT is conventionally regarded as the 

investigation of choice, but where MRI may be regarded as an acceptable 

alternative include: 

  (a) Abdominal sepsis  

(b) Abdominal masses and tumours 

(c) Pancreatic disease 

(d) Liver disease 

(e) Vascular disease 

(f) Mediastinal tumours 

(g) Renal disease, including renal transplants 

(h) Pelvic tumours, abscesses and fistulas 

(i) Disease of the pharynx, larynx and neck 

(j) Congenital anomalies of the skeleton and face 

  6.21 Throughout Europe MRI has been regarded as constrained by its limited 

availability, greater cost and greater complexity of operation, and the acceptability 

of the test to the patient when compared with CT. Patient throughput is also much 

lower with MRI compared with CT. However, these perceived disadvantages have 

been progressively obviated by advancing technology and may be minimised by 

operational change. MRI offers a greater challenge in substituting for CT, but is 

better adapted to the situations of complex anatomy and disease in which CT has 

made its major diagnostic impact. This approach is especially important where the 

extent of the CT examination usually delivers high radiation exposure (Clarke 

et al, 2001).  

  6.22 Clinical research studies have already demonstrated applications in which 

MRI has a greater sensitivity and/or specificity than CT: for example, in the 

examination of the lumbar spine (Forristall et al, 1988; Janssen et al, 1994). In 

these circumstances, MRI should be regarded as the investigation of choice on the 

grounds of both clinical effectiveness and radiation protection. In applications 

where the sensitivity and specificity of MRI and CT are comparable, MRI may be 

regarded as the investigation of choice on the grounds of radiation protection. 

  6.23 Where sufficient capacity exists, departments may also consider using 

MRI as an initial investigation despite reduced sensitivity or specificity compared 

to CT. This approach would result in some patients needing to proceed to CT for 

conclusive investigation, but others would not require an examination using 

ionising radiation when the information from MRI had proved adequate for the 

clinical problem. How effective this approach can be in practice depends upon the 

number of patients who would need to proceed to CT, and would need to be 

established by clinical research studies. 

  6.24 A proactive approach in radiology departments to replace CT with MRI 

where practicable would make a significant impact on the levels of population 

radiation exposure. Departments might not be able to adopt this policy in the 

short term. However, there should be the capacity to change patient pathways as 

time allows services to be restructured: for example, by transferring trained staff 

from one technique to the other. In the longer term, departments should be 

encouraged to develop business plans for substituting some CT installations 

with MRI scanners when equipment comes up for replacement. 

  6.25 Further clinical research is needed to establish how effectively 

substitution of CT may be made across the whole spectrum of its applications. 
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Studies should concentrate on establishing the relative effectiveness of techniques 

in clinical practice, and the extent to which radiation may be avoided in each 

application to clinical problems.  

  6.26 A proactive approach to the substitution of CT by other imaging 

techniques would represent a significant change of culture in UK hospitals, but 

offers a large degree of scope for exposure reduction and an effective response 

to the continual rise in population exposure resulting from CT. To support 

this, radiology departments should ensure that their staff are adequately trained 

to realise the full potential of all of their imaging equipment in offering an 

alternative to CT. 

Role of clinical guidelines  6.27 Clinical guidelines which advise on the relevant investigation pathway 

for different diseases and clinical circumstances, such as those produced by the 

Royal College of Radiologists (RCR, 2012), have an important role in ensuring 

that unjustifiable or irrelevant patient pathways are not followed and that patients 

are not subjected to unwarranted investigation. However, guidelines make general 

recommendations, and the justification process is applied on an individual basis. 

The fact that CT is recommended by guidelines for the clinical circumstances of a 

patient does not automatically mean that CT is justified in that case. As always, 

justification should be applied at the level of the individual referral.  

  6.28 Patients should not be denied appropriate investigation on the grounds 

of radiation protection alone. In these cases it is advisable, for the interests of 

the patient, the person providing the justification, and the institution, that the 

circumstances supporting justification are adequately documented. 

Does the patient 

require the volume 

of CT requested? 

 6.29 Successive international surveys of practice (Shrimpton et al, 2014; 

Zanca et al, 2012) have shown a growing tendency to extend CT examinations 

to a larger volume than that immediately relevant to the clinical problem under 

consideration. This tendency has been facilitated by the ease and speed with 

which CT can now be carried out as a result of advances in technology. It also 

appears to be fuelled by a wish to avoid overlooking additional or incidental 

disease (Dixon and Goldstone, 2002). However, this approach is a failure in 

justification unless supported by adequate published evidence.  

  6.30 The total absorbed dose rises in direct proportion to the volume of 

the body included in CT (Kalender, 2004; Zanca et al, 2012). Limiting the 

examination to the area of the clinical problem can achieve a significant reduction 

in the absorbed dose. All examination protocols should be designed to cover only 

the areas of the body relevant to the individual disease process in the application 

and irrelevant areas should be excluded. The clinical value of finding incidental 

abnormalities by otherwise unwarranted extension of CT has not been established.  

  6.31 In nuclear medicine hybrid imaging, the tendency to extend the CT 

component of the examination to cover the whole body is rarely helpful 

clinically and produces unnecessary radiation exposure. The misconception that 

the CT component provides a small element of the total dose compared with 

that arising from the radiopharmaceutical may influence this practice. These 

protocols should be reviewed. 

  6.32 Departments must have in place standard protocols for the conduct of 

CT, based on application to recognised clinical problems. The protocols should 

specify the volume of examination appropriate to the clinical problem, using an 

evidence-based approach. Extension of examinations with no evidence base 

should be resisted. Repeat or follow-up examinations for monitoring known 

disease offer a particular opportunity to limit the volume of examination. This 
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makes a significant contribution to the protection of patients whose clinical 

management requires exposure to CT on multiple occasions.  

Does the patient require 

the exposure usually 

employed, or would 

reduced exposure give 

equal clinical information? 

 6.33 This is an issue affecting both justification and optimisation. A decision 

on whether a standard or reduced exposure can be employed may be taken when 

CT is optimised at the beginning of the examination. However, an evaluation of 

clinical need at the time of justification, when appropriate clinical information is 

available, may be valuable in exposure constraint by indicating in advance that 

a reduced exposure would be appropriate.  

  6.34 Circumstances where this approach is possible include: 

  (a) The patient is undergoing follow-up CT for monitoring disease progress, 

where the volume of the examination may be limited to the area of 

interest only 

(b) Where previous CT has indicated that disease depiction is of sufficient 

clarity that optimal image resolution is not required (Lewis and Edyvean, 

2005; Tamm et al, 2011)  

(c) When CT is used to guide interventional procedures such as biopsy or 

drainage and in hybrid imaging 

Relationship between 

justification and 

optimisation 

 6.35 Decisions on the above questions have implications as to how some 

examinations may be optimised, particularly regarding the volume of examination 

and reduced exposure. However, it is important that a decision on justification 

does not preclude further consideration of dose constraint at the stage of 

optimisation. The justification decision clears the patient for examination and may 

define the appropriate examination technique, but circumstances influencing 

optimisation may be evident when the patient attends for examination. 

  6.36 Evidence from surveys has indicated that there is wide variation in the 

radiation exposure employed in CT for similar applications in different hospitals 

and sometimes within the same radiology department (Golding et al, 2008; Koller 

et al, 2003; Olerud, 1997; Shrimpton et al, 1991, 2005). While some variation in 

exposure necessarily results from differences in examination technique dictated 

by individual circumstances, the extent of the variation is not adequately 

explained by this alone. Some variation will be due to differences in dose 

efficiency of the systems (ImPACT, 2006), which could potentially account for 

the difference in dose for the same image quality. Other variations will be from 

the individual radiologist’s accepted benchmark of subjective image quality from 

their own training, preference or hospital culture. Optimisation of examination 

protocols is commonly regarded as one of the most pressing needs in the modern 

practice of CT (Golding, 2005; Scheck et al, 1998). 

  6.37 Underlying the process of optimisation is the principle that examinations 

performed are of adequate diagnostic quality and obtained without excessive 

radiation dose. Adequate diagnostic image quality is not an objectively defined 

term and is dependent on the individual radiologist’s preference, training or 

radiology culture. The aspect of ‘without excessive radiation dose’ is expressed 

for all radiation-based investigations by the ALARP principle (as low as 

reasonably practicable) used in the UK. The clinical radiology officers of the 

Royal College of Radiologists agree in principle with the COMARE Medical 

Practices Subcommittee’s statement (see Appendix D):  

  ‘Where a specific clinical question has been asked by the referrer of a 

patient for CT scan, the CT examination should be carried out at the 

lowest dose required to answer the question, accepting that other organs 

in the scan field may not be optimally visualised.’ 
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  6.38 In the case of CT, as described above, a large number of factors influence 

the radiation exposure employed during the examination. CT technology has a 

high in-built tolerance to radiation dose and overexposure of the patient is not 

revealed by obvious changes in the resulting images. 

  6.39 Nevertheless, staff supervising or operating CT scanners have 

considerable scope for limiting exposure of the individual patient by 

manipulating exposure factors according to established principles, as noted in 

Chapter 5. The ideal approach is to establish a standard examination protocol 

that uses a minimal threshold exposure which has been established by prior 

research. Even in a large number of applications where this is not available, 

staff may adapt a range of exposure factors to limit exposure, particularly where 

maximal image quality is not required for diagnostic purposes. 

Staff training and 

optimisation of site-specific 

CT protocols 

 6.40 CT has evolved into a flexible and challenging modality that provides 

varying imaging solutions. These may offer less invasive, safer, day-case 

investigations that afford improved patient acceptability and potential cost 

savings. With the introduction of innovative technologies, new applications such 

as CT coronary angiography and CT colonography are now being performed. 

These bring with them the challenge for operators of training in these techniques, 

to understand the radiation dose implications and have robust processes to ensure 

the whole team is competent in all applications. If the full potential of new CT 

technology is to be realised, the engagement of radiologists, radiographers and 

technicians, physicists and manufacturers’ training specialists is required to 

optimise site-specific protocols. The clinical question to be answered, dose and 

image quality need balance when establishing protocols and all parties should 

afford appropriate time to communicate and reflect on this.  

  6.41 A core CT team is imperative, with an ongoing training plan and 

continuing professional development (CPD) sessions. On-site and remote 

applications training and support throughout the life of the equipment is a 

requirement to ensure continuing optimisation. Focus and training on CT dose, 

groups at high risk for radiation exposure and areas for optimisation should be 

made available for all CT operators, across all modalities using CT. User group 

meetings, workshops and web-based educational material are key to encouraging 

communication between sites and sharing best practice.  

  6.42 A representative training programme should reflect an understanding of 

key optimisation features and may include: 

  (a) Importance of patient positioning and iso-centre 

(b) Understanding clinical questions being asked 

(c) Ensuring only the area required for diagnosis of the clinical question is 

included 

(d) Awareness of when low dose scans are appropriate  

(e) Minimising multi-phase scans 

(f) Understanding dose implications when manipulating parameters including 

pitch 

(g) Understanding features of tube current (mA) modulation and, where 

appropriate, automatic tube voltage (kV) software 

(h) Implementating and using dose reduction software 

(i) Understanding and using dose alert and predicted dose software  

(j) Familiarity with local diagnostic reference levels (DRLs) for common CT 

examinations 
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Summary  6.43 Justification and optimisation are key elements of radiation protection 

for CT examinations. Justification is the responsibility of the practitioner 

carrying out the CT examination and the process should be individually applied 

to each referral. The health risks associated with the medical investigation must 

be outweighed by the medical benefit to the patient. Optimisation requires the 

examination to be carried out as effectively and efficiently as possible, using the 

lowest radiation exposure practicable. 

  6.44 Justification must be carried out by staff with adequate knowledge and 

experience of the examination and with sufficient correct referral information, so 

that a fully informed judgement can be made for each individual case. 

Justification should answer whether the investigation is required, if CT is the most 

appropriate modality, if the patient requires the volume of CT requested and 

whether a reduced exposure would suffice for the investigation. This may also 

influence the optimisation of the examination, particularly regarding the volume 

of the examination and reduced exposure. 

  6.45 Alternatives to the use of CT in an investigation may include biochemical 

laboratory tests or other imaging modalities, such as ultrasound and MRI (neither 

of which uses ionising radiation). Use of alternative technologies should consider 

availability, local expertise and time constraints and there may be occasions when 

CT is the best option. Radiology departments should ensure that their staff are 

adequately trained to realise the full potential of all of the imaging equipment, so 

that the most appropriate modality is used in an investigation. 

  6.46 Clinical guidelines exist, such as those from the Royal College of 

Radiologists, which advise on the relevant investigation pathway for different 

diseases. However, recommendation of the use of CT for a specific circumstance 

may not mean that the use of CT is justified at the individual level. 

  6.47 There is evidence of a wide variation in radiation exposure between 

similar CT applications undertaken in different hospitals. The ALARP principle 

underlies the process of optimisation for CT applications, with the aim of 

achieving adequate diagnostic quality without excessive radiation dose. However, 

there is no definition of ‘adequate diagnostic quality’, no objective image quality 

parameter that adequately mimics the radiologist’s eye – though there are many 

parameters that are along the spectrum towards that goal. ‘Acceptable image 

quality’ is also dependent on the clinical task, on the individual radiologist’s 

training, preference and radiology culture. This is the primary challenge still to be 

achieved in CT. 

  6.48 CT is continuing to evolve. For the full potential of new technologies to 

be realised, it is important for radiologists, radiographers and technicians, 

physicists and manufacturers’ training specialists to be engaged in optimising the 

site-specific protocols for a department. An ongoing training plan is imperative to 

ensure continuing optimisation, not only for image optimisation, but also for dose 

optimisation. This should be supported throughout the life of the equipment. 

 

  



 

61 

CHAPTER 7 

GOVERNANCE 

  7.1 In addition to the specific legal requirements identified through 

regulation and legislation discussed previously, there is the potential for an 

array of other factors and initiatives to influence the governance of diagnostic 

CT scanning. 

Role of industry 

Transparency of industry 

 7.2 As described, rapid technological developments have shaped the clinical 

use of CT. Industry has developed dose reduction technology within its scanners. 

However, it has given insufficient emphasis on the training of radiology 

department staff to ensure they are fully aware of the functions of their scanners 

and how to implement appropriately the protocols and dose reduction technology 

now available. 

  7.3 Initial applications training is often focused on acquiring the best 

images from new technology. Emphasis should also be placed on the provision 

of suitable images to answer the clinical question, even if this means a reduction 

in image quality. Initial training should be supplemented by review visits 

and updates and follow-up training within six months and throughout the 

lifetime of a scanner. At every stage, a key objective of training should be the 

full understanding of potential dose reduction strategies. Employers need to 

demonstrate their commitment to training by making clinical staff available 

whenever this is scheduled. 

Role of dose monitoring 

and audit 

 7.4 In the UK, IR(ME)R 2000 require radiology departments to document 

factors relating to radiation doses from individual examinations and industry 

can facilitate this by providing clear and unambiguous data as part of the 

examination record. These data can be used as part of a regular audit against 

established practice
*
. Examinations where the radiation dose departs significantly 

from national levels should be reviewed.  

  7.5 As more information becomes available concerning threshold examina-

tion protocols and diagnostic reference levels (DRLs) it should become possible 

to define best practice for most routine applications of CT. Industry can help 

to provide and disseminate information, and departments should monitor this 

emerging evidence and audit their practice against it, adapting their protocols 

as necessary. 

  7.6 To further reduce the likelihood of widely varying exposures between 

different institutions, hospitals should be encouraged to share their audit data 

with other hospitals and industry alike. 

National, European and 

international initiatives 

UK initiatives 

 7.7 The UK has a long history in radiation protection and in CT dose 

reduction in particular, and has produced a range of documents, training and 

advice through the NRPB, HPA and now PHE, and other medical and scientific 

bodies and organisations. Many of these have attracted international interest 

and acclaim. 

 
* www.rcr.ac.uk/content.aspx?PageID=293 
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  7.8 As part of a range of activities, over 25 years ago the Department of 

Health established and supported ImPACT (Imaging Performance Assessment of 

CT scanners), an independent evaluation group. The group provided a wide range 

of support and services to the CT scanning community in the NHS, including: 

  (a) Technical evaluation of the imaging and dose performance of CT scanners 

(b) User evaluation of the overall CT system function 

(c) Dose and image quality optimisation 

(d) Dose issues in CT 

(e) Consultancy for CT scanner purchases 

(f) Educational courses 

(g) Market guides 

  7.9 The evaluations were designed to be objective, independent and 

comparative and the reports produced were used worldwide by professionals 

and by industry. CT courses were rated highly by professionals in the CT and 

regulatory communities. ImPACT was closed in September 2011
*
 and the 

international reaction demonstrated the depth of feeling regarding the loss of 

this valuable asset. 

HERCA/COCIR 

collaboration 

 7.10 In 2010 the Heads of the European Radiological protection Competent 

Authorities (HERCA) proposed a collaboration with CT manufacturers because 

of their unique role in the optimisation of medical exposures in a healthcare 

setting
†
. Following meetings between the two groups, a voluntary self-

commitment regarding CT dose was produced by the European Radiological, 

Electromedical and Healthcare IT Industry (COCIR)
‡
. This document included 

four commitments:  

  (a) Development of a standardised benchmarking to characterise a specific 

CT system 

(b) Implementation of dose reduction measures in CT 

(c) Improved user-friendly dose management and reporting system 

(d) Provision of specific training curricula for CT users 

COCIR believes that these measures will help reduce patient dose from CT 

examinations. HERCA continues to work with industry at a general and 

technical level with regard to CT. 

FDA  7.11 In 2010, the US Food and Drug Administration (FDA) investigated the 

radiation overexposure of 206 patients at the Cedars-Sinai Hospital in Southern 

California from CT brain perfusion scans. The investigation uncovered a total of 

385 patients in six hospitals who were exposed to excess radiation from these 

specific scans
§
. The investigation also revealed improvements that could be 

made by industry to the equipment, user information and training to improve 

safety and reduce the likelihood of occurrence of overexposures. 

  7.12 As a consequence, the FDA launched an initiative to reduce unnecessary 

radiation exposure from medical imaging
¶
. Through this initiative, the FDA 

 
* www.impactscan.org/ 

† www.herca.org/WGs.asp?WGnr=3 

‡    www.cocir.org/site/fileadmin/5_Initiatives/COCIR_CT_MANUFACTURER_Commitment_

Version_2_13_May_2011_released.pdf 

§ www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm185898.htm 

¶ www.fda.gov/Radiation-

EmittingProducts/RadiationSafety/RadiationDoseReduction/default.htm 

http://www.herca.org/WGs.asp?WGnr=3
http://www.cocir.org/site/fileadmin/5_Initiatives/COCIR_CT_MANUFACTURER_Commitment_Version_2_13_May_2011_released.pdf
http://www.cocir.org/site/fileadmin/5_Initiatives/COCIR_CT_MANUFACTURER_Commitment_Version_2_13_May_2011_released.pdf
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aims to promote patient safety by extrapolating two of the principles of 

radiation protection – justification and optimisation – developed by the ICRP. 

  7.13 Using its unique position as a regulatory authority, the FDA is pursuing 

key partnerships with professional organisations and industry, and other govern-

mental agencies, with an aim to aid the incorporation of radiation protection 

principles into quality assurance and training requirements for facilities. 

  7.14 This initiative aims to help ensure that each patient is getting the correct 

imaging examination, at the most suitable time, with the appropriate radiation 

dose. The FDA hopes to provide a comprehensive approach for this effort with 

collaborative activities in the following areas: 

  (a) Facility guidelines and personnel qualifications 

(b) Education and communication 

(c) Appropriate use 

(d) Equipment safety features 

(e) Monitoring dose data and adverse events 

(f) Research and development 

  7.15 In 2012, the FDA launched an initiative to help reduce unnecessary 

radiation exposure of children
*
. In its draft guidance

†
, the FDA recommended 

that manufacturers design new X-ray imaging devices with protocols and 

instructions that address use for paediatric patients. It also proposed that 

manufacturers who do not adequately demonstrate that their new X-ray imaging 

devices are safe and effective for paediatric patients should include a label on 

their device that cautions against use with paediatric populations. 

  7.16 In addition to this initiative, the FDA launched a website on paediatric 

imaging that includes information on the benefits and risks of imaging using 

ionising radiation, recommendations for parents and health care providers to 

help reduce unnecessary radiation exposure, and information for manufacturers 

of X-ray imaging devices
‡
. 

Image Gently and 

Image Wisely 

 7.17 Also in the USA, two initiatives have been set up by the imaging 

community to promote radiation awareness and radiation protection – Image 

Gently and Image Wisely. The Image Gently campaign was established by the 

Alliance for Radiation Safety in Pediatric Imaging, with the aim to change 

practice by increasing awareness of the opportunities to promote radiation 

protection in the imaging of children
§
. The Alliance chose to focus first on CT 

scans based on the dramatic increase in the number of paediatric CT scans 

performed in the USA in the past five years and the rapid evolution, change and 

availability of CT technology and equipment. The campaign’s second focus 

concerns safety in paediatric interventional radiology and began in late August 

2009. Image Gently provides information for staff and parents as well as 

providing guidance on how to develop CT protocols for children. 

  7.18 Image Wisely (which focuses on adult imaging) is run by the American 

College of Radiology, the Radiological Society of North America, the American 

 
* www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm303386.htm 

†    www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm3008

50.htm 

‡ www.fda.gov/Radiation-

EmittingProducts/RadiationEmittingProductsandProcedures/MedicalImaging/ucm298899.htm 

§ www.pedrad.org/associations/5364/ig/ 
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Association of Physicists in Medicine and the American Society of Radiologic 

Technologists, with the objective of lowering the amount of radiation used in 

medically necessary imaging studies and eliminating unnecessary procedures
*
. 

The campaign offers resources and information to radiologists, medical 

physicists, other imaging practitioners and patients. 

  7.19 Both campaigns invite staff to pledge to promote radiation protection 

and reduce the radiation dose from imaging.  

Local governance 

IR(ME)R 

 7.20 As described previously, regulation of radiation protection of those 

subject to medical exposures is provided by IR(ME)R 2000. These regulations 

follow a health and safety format and require employers to provide a framework 

of procedures under which professionals can act as further duty holders. These 

duty holders have responsibilities relating to justification and optimisation.  

  7.21 Responsibilities regarding justification are placed on a single practitioner, 

but those relating to practical aspects of an examination, including those elements 

which ensure optimisation, are placed on the operator. In practice, it falls on a 

number of operators who undertake a range of activities, including calibrating 

equipment, performing scans and evaluating the resulting images. 

  7.22 While the regulations require individual duty holders to be identified, 

they also require duty holders to work together on optimisation. By recognising 

the operator as a duty holder, the regulations establish the importance of all the 

professional groups and individuals involved in optimisation.  

Governance within 

departments  

Governance of protocols 

 7.23 Increasingly, consistent and good quality imaging is delivered through 

adherence to written protocols, required by employers, but established by 

professionals, taking into account clinical requirements, service provision, 

equipment availability and capability, and staffing structures. Protocols need to be 

reviewed annually by the key professional groups involved in their management, 

unless significant practice or equipment changes require more frequent revision. 

  7.24 Areas that need attention are the image quality and dose levels required, 

and consistent protocol nomenclature, as well as the actual scan parameters in 

the protocols.  

  7.25 Robust protocol management systems should be in place. It is important 

to consider all scanners within the same organisation – in particular taking into 

consideration variations in scanner type and model, staff training and expertise, 

etc – to ensure consistent services and standard of care for all patients, 

regardless of where and when a patient presents to the organisation. 

Guidance to staff as to 

what is available for 

monitoring dose, eg dose 

monitoring software 

 7.26 To support these requirements, a number of commercial companies have 

launched dose monitoring software products. These have a range of functions 

which include monitoring protocols, patient doses and performing dose 

benchmarking within or between organisations. These products also allow for 

alerts to be set which notify staff when DRLs or other dose levels are exceeded. 

Radiology department 

rules 

 7.27 It may be possible for radiology departments to establish good practice 

guidelines for undertaking examinations that would aid dose reduction. 

  7.28 A representative set of guidelines for optimisation may include: 

  (a) Ensure the exposure is justified 

(b) Plan your approach to optimisation 

 
* www.imagewisely.org/ 
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(c) Know your equipment 

(d) Know what is required from the image to answer the clinical question 

(e) Ensure all staff are appropriately trained to be competent in all aspects 

and applications of the equipment 

(f) If changes are implemented, make sure all staff are aware and have a 

robust system in place to ensure all staff are informed 

(g) Do not simply adopt manufacturer setting/protocols – develop locally 

optimised protocols to answer the clinical question, focusing on dose 

image quality 

(h) Establish local DRLs 

(i) Share good practice 

(j) Get advice from specialist centres 

  7.29 Vock (2005) suggested seven rules for optimised CT dose reduction in 

children: 

  (a) Justify CT examination rigorously 

(b) Prepare the patient 

(c) Accept noise as long as the scan is diagnostic 

(d) Optimise scan parameters within the axial plane 

(e) Optimise scan parameters for volume coverage 

(f) Scan minimal length 

(g) Minimise repeated scanning of identical area 

Importance of key 

professional groups and 

the appointment of 

‘radiation protection 

champions’ 

 7.30 While optimisation covers a range of activities within CT services, 

protocol development and review offers perhaps the greatest opportunity to 

optimise and improve on existing safe practices. Within the process, input will 

be required from a number of key professional groups if this is to be successful 

and the key components and stages of protocol development are reviewed, 

revised and adopted. 

  7.31 Physicists have a knowledge of the scanners and their performance in 

different scan parameter conditions. Radiographers implement the protocols and 

are uniquely aware of the limitations of any protocol and the effect on image 

quality at the time of scanning. Radiologists have a requirement for the appropriate 

image quality to be able to interpret the image and to make a satisfactory diagnosis. 

There may also be the requirement for a specialist in radiology information and 

picture archiving and communication systems (RIS/PACS). 

  7.32 All these professionals should work together to ensure the optimal 

management of protocols and their implementation. However, to reflect the 

importance of each of these staff groups, the employer should allocate time 

within job plans to work together to improve the optimisation of clinical 

protocols. To support these activities, the employer should consider appointing 

these individuals to form a team of radiation protection champions. 

  7.33 The role of champion should be on a par with that of the radiation 

protection adviser, medical physics expert or radiation protection supervisor 

(RPA, MPE or RPS). The champions should report to the radiation protection or 

IR(ME)R committee. The period of greatest activity for these staff will always 

be at the introduction of a new CT scanner. However, they should be involved 

whenever new hardware or software enhancements are discussed, when 

techniques and protocols are modified or introduced, and when new services are 

proposed and introduced. 
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  7.34 To maximise the impact of their role, the champions should:  

  (a) Review literature 

(b) Attend national and international meetings 

(c) Liaise with the MPE and RPS 

(d) Represent the department as appropriate regarding the development of 

new services 

(e) Act as an advocate to ensure that all colleagues are aware of 

developments within the department 

(f) Implement any protocol changes designed to improve optimisation 

Current requirements for 

the UK 

 7.35 The establishment of an independent evaluation group would provide 

impartial and objective assessments of CT scanners that are available in the UK, 

to take account of manufacturer bias and inconsistency. Scanner evaluation 

reports that are independent and detailed would help to support purchasing 

decisions for investment in high cost capital equipment for the NHS and other 

health care providers. Diagnostic imaging and radiotherapy departments have 

specific requirements for the applications of a scanner and guidance on these 

aspects would be of great value, both for radiation protection and for value for 

money. Departments preparing specifications for the purchase of a scanner 

require information on many aspects, from its ease of use to its imaging and 

dosimetric capabilities. The latter two are vital for the optimisation of the image 

and dose reduction. With further technological developments in CT equipment 

by all manufacturers, automatic exposure control and dose measurement become 

essential aspects and will facilitate future dose surveys. 

Summary  7.36 Governance of CT works on a variety of different levels, from industry, 

through to national, European and international initiatives, to local governance 

and down to the departmental level. 

  7.37 Industry has a role in developing dose reduction technology and in 

ensuring that the associated protocols and software are implemented and used 

appropriately. Data from examination records can be used as part of a regular 

audit against established practice and help in the definition of best practice for 

most routine CT investigations. 

  7.38 A number of initiatives exist at national, European and international 

levels, which consider radiation protection and dose reduction in CT investi-

gations, some of which are targeted specifically at children, such as the Image 

Gently initiative in the USA.  

  7.39 In the UK a wide range of services and support were provided to the 

CT scanning community by an independent evaluation group (ImPACT) until 

2011. It may be argued that there still exists a need for a group that is able to 

provide impartial and objective advice on CT scanners, balanced against 

manufacturers, to support equipment purchasing decisions for the NHS and 

other health care providers. 

  7.40 For the UK, local governance involves IR(ME)R 2000, which place 

responsibilities both on the practitioner and operator as well as on the employer. 

The regulations require the duty holders to work together on optimisation. 

  7.41 Within radiology departments, the use of protocols establishes another 

level of governance. These should be reviewed annually by key professional 

groups involved in protocol management, with particular focus on image quality, 



 

67 

required dose levels and consistent protocol nomenclature. There should be 

consideration of providing a consistent service and standard of care for all 

scanners within an organisation. Departments could consider establishing good 

practice guidelines for examinations, which may be especially applicable to 

optimising CT dose reduction in children. 

  7.42 Within radiology departments, input is required from a number of key 

professional groups (physicists, radiographers and radiologists) to ensure the 

optimal management of protocols and their implementation. Individuals within 

these groups could be appointed as ‘champions’ to optimise and improve on 

existing safe practices, to support the introduction of new equipment into the 

department, and maintain an awareness of current research and technological 

developments in the field.  
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CHAPTER 8 

CONCLUSIONS 

  8.1 The use of CT in a clinical environment has expanded dramatically 

since its introduction, as have its technological developments. CT provides a 

unique combination of features in an imaging modality which makes it 

applicable to a wide range of clinical examinations. 

  8.2 The increased use of CT has raised concerns regarding the radiation 

dose to patients from CT scans. There is evidence that CT makes a larger 

contribution to the radiation exposure of patients when compared with other 

imaging modalities based on ionising radiation. There is an associated concern 

for the increase in the number of younger patients undergoing CT scans, due to 

their greater radiosensitivity. 

  8.3 In recent years there has been an emerging use of CT to scan 

asymptomatic individuals. This issue was covered in the 12th COMARE report 

(COMARE, 2007), which determined that the benefits to the individual would 

not be the same as those for a symptomatic patient and that the practice of 

whole-body scanning on asymptomatic individuals could not be supported.  

  8.4 The use of CT is governed by the radiation protection principles of 

justification and optimisation. The potential benefit to a patient must be 

balanced against the potential detriments. Although other risks exist, the 

principal risk is from the ionising radiation exposure. For diagnostic exposures 

the potential effects from the radiation exposure are considered to be stochastic, 

although cataracts and cardiac effects can also occur. There have been reports of 

tissue reaction (deterministic) effects being observed in extreme cases. 

  8.5 Specific groups are at greater risk from radiation exposure. Children have 

a much higher radiosensitivity than adults at the same effective dose. Some 

genetic conditions are associated with an increased sensitivity to radiation.  

  8.6 Since the turn of the century, manufacturers have been developing dose 

reduction technologies, which offer potential reductions of radiation dose to 

varying degrees depending on their deployment. Each CT scan undertaken 

should be optimised to achieve adequate diagnostic quality without excessive 

radiation exposure. Operators should understand the equipment available to them 

(including the use of dose reduction technologies) and how to maximise the use 

of that equipment, while considering the clinical question to be answered and the 

radiation protection of the patient. Children present a unique range of size and 

weight against age, which requires special consideration in optimisation and 

modification of equipment, techniques and imaging parameters. 

  8.7 Despite developments by manufacturers regarding dose reduction in 

CT, the modality remains a major contributor to individual and population dose. 

The demise of the ImPACT group in 2011 has removed the amount of 

independent cross-manufacturer information available to purchasers and users 

of CT scanners. Current international initiatives may improve manufacturer 

transparency, but are not intended to substitute for all the work previously 

provided by ImPACT. 
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CHAPTER 9 

RECOMMENDATIONS 

Recommendation 1  During the next 10 years, the importance of the radiosensitivity of high risk 

groups is expected to become more widely recognised as a factor in a range of 

clinical applications involving ionising radiation, including CT. We recommend 

that the UK is actively involved in further research in this area. Professional 

bodies and medical and scientific societies should continue to provide educational 

opportunities to increase the understanding of clinical staff regarding all of the 

potential risks to patients, and not just the dose received, from CT scans. This is 

particularly relevant for CT scans on children and other high risk groups. 

Recommendation 2  The continuing development of technology and the growing range of clinical 

applications in CT suggest that individual and population dose from CT will 

continue to rise. We recommend that Public Health England should undertake 

more frequent UK dose surveys to provide data to support regular updating of 

national diagnostic reference levels, including those specifically regarding 

children. To facilitate this, the Department of Health should include within 

regulations a requirement for health care providers to submit patient dose data at 

a frequency which reflects the changes in the application of the modality. 

Recommendation 3  Optimisation of CT scanning can be best achieved when scanners include a full 

range of dose reduction features. We recommend hospitals should be required to 

include these features and options as part of any procurement process for new 

equipment. Manufacturers and suppliers should ensure the application and 

performance of these features is fully understood by customers and should be a 

major feature of initial and ongoing applications training for radiographers and 

radiologists. Employers should recognise the value of continued training as part 

of continuing professional development as well as for patient safety and should 

release staff so that the benefits of manufacturer training are maximised. 

Recommendation 4  Although we recognise the value of a range of international initiatives on 

radiation dose in CT, there remains a need for detailed independent information 

on CT scanner performance. We recommend that the Department of Health 

reviews the sources of available information and, if necessary, provides funding 

to support an independent evaluation group, acting collaboratively where 

appropriate, but also providing assessments of CT scanners as and when required. 

Recommendation 5  Modern CT scanners are capable of providing precise detail of patient anatomy, 

but this is not always required. Requests for imaging should include a clear 

statement regarding the clinical question to be answered and the scan should be 

performed to provide this. We recommend that the Royal College of Radiologists 

should continue to work with referrers and its own fellows and members to 

ensure an appreciation that CT scans should be optimised, taking into account 

both image quality and dose.  

Recommendation 6  The most appropriate use of CT relies upon a range of factors involving the 

referring clinician and the radiologist or other clinician who justifies the scan. In 

many cases, the most appropriate outcome of a referral may be that the CT scan 

is not performed as an alternative diagnostic procedure may be more effective. 
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We recommend that the Royal College of Radiologists, together with other 

appropriate organisations, continues to review and produce referral guidelines 

and includes within these an even greater emphasis on alternative imaging 

techniques using less or no ionising radiation. The Department of Health should 

continue to actively support this process by facilitating the availability of 

referral guidelines and, while doing so, highlight the importance of alternative 

techniques for patient groups who may have enhanced radiosensitivity.  

Recommendation 7  Optimisation of scanning protocols offers significant potential for dose 

reduction. This can only be achieved at local level through active promotion and 

cooperation between professional groups. We recommend that in conjunction 

with the production of new regulations for medical exposures, the Department 

of Health provides supporting guidance on optimisation, including a 

requirement for radiology services to consider formally appointing a team of 

radiation protection champions, consisting of a radiologist, a radiographer and a 

medical physicist. 

   

  We recognise that some of the recommendations may impact on organisations 

other than the Department of Health, including professional bodies and the NHS. 

The recommendations are aimed at promoting good practice and encouraging 

a more proactive approach to protecting the patient and reducing radiation 

dose, recognising the patient benefit associated with a reduced incidence of 

radiation‐induced disease. Implementation of the recommendations should, 

where possible, consider equipment and procedures already in place and is not 

expected to result in a significant additional cost burden. It should be noted, 

however, that some of the dose reduction features described in this report are 

only available on newer CT scanners and the use of old machines can result in a 

significantly higher dose to the patient from some types of examination; this 

should be borne in mind when formulating capital equipment programmes. Any 

impact on the NHS that is incurred through the recommendations being 

implemented should be balanced against the overall costs of diagnostic services 

and the predicted costs to the service of radiation‐induced disease. Stakeholders, 

such as Public Health England and scanner manufacturers, may be expected to 

help minimise any impact. 
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APPENDIX A 

GLOSSARY AND ABBREVIATIONS 

ABSORBED DOSE  The quantity of energy imparted by ionising radiation to a unit mass of matter 

such as tissue. Absorbed dose has the units of joules per kilogram (J kg
–1

) and 

the specific name gray (Gy), where 1 Gy = 1 J kg
–1

 

ALARP  As low as reasonably practicable: the principle used in radiation protection in 

the UK that doses to people should be as low as possible once all the 

‘reasonable’ methods of dose reduction have been employed 

ANGIOGRAM  An X-ray of one or more blood vessels, used in diagnosing pathological 

conditions 

ASYMPTOMATIC  Without obvious symptoms of disease 

AXIAL  Relating to, forming, or characteristic of an axis. For CT scans, the term applies 

to slices through the body 

BENIGN  Non-cancerous or non-malignant. A benign tumour may grow but it does not 

invade surrounding tissue or spread to other parts of the body 

CARCINOGEN  An agent that causes cancer 

CARDIAC  Pertaining to the heart 

CATARACT  An opacity, partial or complete, on the lens of the eye which may impair vision 

and, if dense enough, can cause blindness 

COMPUTED 

TOMOGRAPHY (CT) 

 A special radiographic technique that uses a computer to assimilate multiple 

X-ray images into a two-dimensional cross-sectional image 

CONTRAST AGENT  A substance that is introduced into or around a structure and, because of the 

difference in absorption of X-rays by the contrast medium and the surrounding 

tissues, allows radiographic visualisation of the structure 

CT DOSE INDEX 

(CTDI) 

 A description of the ionising radiation dose from a single rotation of a CT 

scanner 

CT NUMBER   In volumetric (three-dimensional) digital radiology, the radiographic density 

(= X-ray attenuation power) in each voxel of the volume of interest is expressed 

by a number called the CT number 

DETERMINISTIC  A deterministic health effect has a severity that is dependent on dose and is 

believed to have a threshold level below which no effect is seen 

DIAGNOSTIC 

REFERENCE LEVELS 

(DRLs) 

 Dose levels in medical radiodiagnostic practices for typical examinations for 

groups of standard-sized patients or standard phantoms for broadly defined 

types of equipment 

DOSE  A measure of the amount of radiation received. More strictly it is related to the 

energy absorbed per unit mass of tissue (see Absorbed Dose). Doses can be 

estimated for individual organs or for the body as a whole 
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DOSE-AREA PRODUCT 

(DAP) 

 A measure of radiation risk calculated by multiplying the absorbed dose by the 

area irradiated (in Gy per cm
2
) 

DOSE-LENGTH 

PRODUCT (DLP) 

 A basic measure of radiation risk calculated by multiplying the CTDI for a scan 

sequence by the length of coverage (along the patient’s length) 

EFFECTIVE DOSE  Effective dose is the sum of the weighted equivalent doses in all the tissues and 

organs of the body. It takes into account the biological effectiveness of different 

types of radiation and variation in the susceptibility of different organs and 

tissues to radiation damage. Thus it provides a common basis for comparing 

exposures from different sources. Unit = sievert (Sv) 

ENDOSCOPY  An endoscopy is a procedure where the inside of a person’s body is examined 

internally using an endoscope. An endoscope is a thin, long, flexible tube that 

has a light source and a video camera at one end 

EPIDEMIOLOGY  The study of factors affecting health and illness of populations, regarding the 

causes, distribution and control 

EQUIVALENT DOSE  The quantity obtained by multiplying the absorbed dose by a factor to allow for 

the different effectiveness of the various ionising radiations in causing harm to 

tissue. Unit = sievert (Sv) 

GENERIC  Something that is general, common, or inclusive rather than specific, unique or 

selective; relating to or descriptive of an entire group or class 

GERMLINE  Usually used to refer to those cells called germ cells as well as the final egg and 

sperm 

GRAY (Gy)  The international (SI) unit of absorbed dose. One gray is equivalent to one joule 

of energy absorbed per kilogram of matter such as body tissue 

HELICAL CT  Combines continuously rotating X-ray tube and table/patient movement through 

the gantry aperture. The path traced by X-ray tube describes a spiral and 

produces a volume of data 

HETEROZYGOTE  An organism having two different alleles of a particular gene 

HOMOZYGOTE  An organism having two identical alleles of a particular gene 

ICRP  International Commission on Radiological Protection. It consists of experts in 

radiology, genetics, physics, medicine and radiological protection from a 

number of countries. Established in 1928 it meets regularly to consider the 

research on the effects of radiation and publishes recommendations on all 

aspects of radiation protection including dose limits to man 

INCIDENCE  This is the number of new cases of a disease arising in a population over a 

specific period of time, usually one year 

IONISING RADIATION  Radiation that is sufficiently energetic to remove electrons from atoms in its 

path. In human or animal exposures ionising radiation can result in the 

formation of highly reactive particles in the body which can cause damage to 

individual components of living cells and tissues 

IRRADIATION  The process by which an item is exposed to radiation, either intentionally or 

accidentally 

ISO-CENTRE  The intersection of the central scan plane with the axis of rotation of the X-ray 

tube and detector around the patient 
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JUSTIFICATION  Consideration that a medical exposure shall show a sufficient net benefit, 

weighing the total potential diagnostic or therapeutic benefits it produces, 

including the direct health benefits to an individual and the benefits to society, 

against the individual detriment that the exposure might cause, taking into 

account the efficacy, benefits and risks of available alternative techniques 

having the same objective but involving no or less exposure to ionising 

radiation 

LINEAR 

NO-THRESHOLD 

HYPOTHESIS 

 The hypothesis used in radiation protection to estimate the long-term, biological 

damage caused by ionising radiation, which assumes that the damage is directly 

proportional (‘linear’) to the dose of radiation, at all dose levels and that any 

radiation exposure is always considered harmful with no safety threshold 

LONGEVITY  An individual’s lifespan or the duration of an individual life beyond the norm 

for the species 

LEVEL OF RADIATION 

DOSE 

 Radiation dose can be defined into different levels. An example is used in 

Kadhim et al (2013)
*
: 

Very high doses above 15 Gy 

High doses of 5–15 Gy 

Medium doses of 0.5–5 Gy 

Low doses of 0.05–0.5 Gy 

Very low doses below 0.05 Gy 

MAGNETIC 

RESONANCE 

IMAGING (MRI) 

 The use of nuclear magnetic resonance of protons to produce proton density 

images 

MALIGNANT  Cancerous growth, a mass of cells showing uncontrolled growth, a tendency to 

invade and damage surrounding tissues and an ability to seed daughter growths 

to sites remote from the primary growth 

MEDICAL PHYSICS 

EXPERT (MPE)  

 An MPE is a physicist, expert in an area of medical radiation, appointed to 

support and advise the employer in the safe use of radiation for patients 

(Ionising Radiation (Medical Exposure) Regulations 2000, IR(ME)R 2000). The 

MPE and RPA may be same individual 

MODALITY  The method of application of a therapeutic agent or regimen 

MONTE CARLO 

METHODS 

 Monte Carlo methods are a statistical approach for modelling X-ray interactions 

in and through tissue, and are used to determine an estimate of radiation dose 

MULTI-DETECTOR 

CT/ MULTI-SLICE CT 

(MDCT/MSCT) 

 A form of CT technology used in diagnostic imaging, where a two-dimensional 

array of detector elements replaces the linear array typically used in 

conventional and helical CT scanners. This arrangement allows the acquisition 

of multiple slices or sections simultaneously and therefore greatly increases the 

speed of image acquisition 

MUTAGEN  Any chemical or physical environmental agent that induces a genetic mutation 

or increases the mutation rate 

MUTATION  A permanent transmissible change in the genetic material, which may alter a 

characteristic of an individual or manifest as disease 

 
*  Kadhim M et al (2013). Non-targeted effects of ionising radiation – implications for low dose risk. Mutat Res 752, 84–98.  
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OPERATOR  Any person who is entitled to carry out the practical aspects of a medical 

exposure 

OPTIMISATION  Consideration that a medical exposure be conducted as efficiently and 

effectively as possible using the lowest reasonably practicable radiation 

exposure, consistent with the intended purpose. The optimisation process 

consists of a chain of responsibilities extending from appropriate manufacture, 

selection and maintenance of equipment to the exposure parameters selected for 

the individual examination 

PAEDIATRIC  Of, or relating to, the medical care of children 

PATIENT DOSE  The ionising radiation dose to a patient or other individual undergoing a medical 

exposure 

PERFUSION  The passage of fluid (such as blood) through a specific organ or area of the 

body (such as the heart) 

PHANTOM  Object generally comprised of tissue substitute materials used to simulate a 

patient or part thereof 

PICTURE ARCHIVING 

AND 

COMMUNICATION 

SYSTEM (PACS) 

 PACS (picture archiving and communication system) is a standard healthcare 

technology for short- and long-term storage, retrieval, management, distribution 

and presentation of medical images 

PITCH FACTOR  Pitch is the ratio of the distance travelled for one complete rotation of the X-ray 

tube. When the distance the table travels during one rotation of the tube equals 

the slice thickness or beam collimation, the pitch ratio is one 

POSITRON EMISSION 

TOMOGRAPHY (PET) 

SCAN 

 A diagnostic examination involving the acquisition of physiological images 

based on the detection of radiation through the emission of positrons. The 

positrons are emitted from a short-lived radionuclide incorporated into a 

metabolically active substance administered to the patient prior to the 

examination 

PRACTITIONER  A registered health care professional, who is entitled to take clinical 

responsibility for an individual medical exposure in accordance with national 

requirements 

PROGNOSIS  A prediction of the probable course and outcome of a disease and the prospects 

of recovery as indicated by the nature of the disease and the symptoms of the 

case 

RADIATION 

PROTECTION 

ADVISER (RPA) 

 An RPA is an expert in radiation protection, certified as competent by an HSE 

approved body, to advise the employer in radiation safety for the public and 

staff (under the Ionising Radiations Regulations 1999, IRR99). The RPA and 

the MPE may be same individual 

RADIATION 

PROTECTION OR 

IR(ME)R COMMITTEE 

 Local hospital or trust group of experts (eg RPA, MPE, RPS, senior clinicians, 

risk manager and radiology services manager) who meet on a regular basis to 

discuss radiation safety issues, and ensure the compliance with IR(ME)R 2000 

and IRR99 policies and procedures 

RADIATION 

PROTECTION 

SUPERVISOR (RPS) 

 An RPS is a line manager, or person of similar status, working in and having 

knowledge of the equipment and practices in a radiation controlled area – 

appointed under IRR99 to ensure local rules are adhered to in that area 

RADIODIAGNOSTIC  Pertaining to in vivo diagnostic nuclear medicine, medical diagnostic radiology 

and dental radiology 
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RADIOLOGIST  A medically qualified doctor who specialises in the use of imaging techniques 

(X-rays, ultrasound, CT, MR, fine needle biopsy, etc) for diagnosis (diagnostic 

radiologist) or one who specialises in the use of imaging techniques in assisting 

treatment – for example, in inserting catheters into blood vessels or in choking 

the blood supply of a tumour by injection of a type of glue (interventional 

radiologist) 

RADIOLOGY 

INFORMATION 

SYSTEM (RIS) 

 A radiology information system is networked software used for managing 

radiological records and associated data in a multiple locations. It is often seen 

used in conjunction with a picture archiving and communication system (PACS) 

to manage workflow 

RADIONUCLIDE   A type of atomic nucleus which is unstable and which may undergo 

spontaneous decay to another atom by emission of ionising radiation (usually 

alpha, beta or gamma) 

RADIOSENSITIVITY  The relative susceptibility of cells, tissues, organs, organisms, or any other 

substances to the effects of radiation 

RADIOTHERAPY  The treatment of disease with ionising radiation. The purpose of radiotherapy is 

to deliver an optimal dose of either particulate or electromagnetic radiation to a 

particular area of the body with minimal damage to normal tissues. The source 

of radiation may be outside the body of the patient (external radiotherapy) or it 

may be a radionuclide that has been implanted or instilled into abnormal tissue 

or a body cavity 

RECONSTRUCTION  The computerised creation of images from a series of X-ray projections in 

computed tomography 

REFERRER  A registered health care professional who is entitled in accordance with the 

employer’s procedures to refer individuals for medical exposure to a 

practitioner 

RISK  The probability that an event will occur, eg that an individual will become ill or 

die before a stated period of time or age. This is also a non-technical term 

encompassing a variety of measures of the probability of a (generally) 

unfavourable outcome 

SENSITIVITY  A measure for assessing the results of diagnostic and screening tests. Sensitivity 

is the proportion of diseased people who are identified as being diseased by the 

test. It is the probability of correctly diagnosing a condition in a person who has 

that disease 

SIEVERT (Sv)  The international (SI) unit of effective dose obtained by weighting the 

equivalent dose in each tissue in the body with the ICRP-recommended tissue 

weighting factors and summing over all tissues. Because the sievert is a large 

unit, effective dose is commonly expressed in millisieverts (mSv) – ie 

one-thousandth of one sievert. The average annual radiation dose received by 

members of the public in the UK is 2.7 mSv 

SPECIFICITY  A measure for assessing the results of diagnostic and screening tests. Specificity 

is the proportion of normal individuals who are so identified by the screening 

test. It is the probability of correctly excluding a disease in a normal individual 

STAGING  A CT scan to assess the extent to which a cancer has spread from its original 

source. Staging is used to inform treatment and prognosis 

STOCHASTIC  Stochastic effect or ‘chance effect’ is a classification of radiation effects that 

refers to the random, statistical nature of the damage. The severity is 

independent of dose. Only the probability of an effect increases with dose 
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TERATOGENIC  Of, or relating to, substances or agents that can interfere with normal embryonic 

development 

TORSO  The main part of the human body, without the limbs and head; the trunk 

TRANSVERSE   In anatomy, lying in a crosswise direction 

TUMOUR  Mass of tissue formed by unregulated growth of cells; can be benign or 

malignant 

ULTRASOUND  The use of ultrasonic waves for diagnostic or therapeutic purposes, specifically 

to visualise an internal body structure, monitor a developing fetus, or generate 

localised deep heat to the tissues 

VASCULAR  Of, relating to, or containing blood vessels 

X-RAY  An image obtained using high energy radiation with waves shorter than those 

of visible light. X-rays possess the properties of penetrating most substances 

(to varying extents), of acting on a photographic film or plate (permitting 

radiography), and of causing a fluorescent screen to give off light (permitting 

fluoroscopy). In low doses X-rays are used for making images that help to 

diagnose disease, and in high doses to treat cancer 
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APPENDIX B 

CT VERSUS MRI VERSUS ULTRASOUND 

 CT MRI Ultrasound 

Principle CT imaging uses X-rays 

to create visual images 

of the body. Three-

dimensional images can 

be produced through 

computer reconstructions 

MRI uses strong 

magnetic fields along 

with radiofrequency 

pulses to create visual 

images of the body 

Ultrasound uses high 

frequency sound waves 

to create visual images 

of the body 

Details of bony 

structures and soft 

tissue 

Provides good details of 

bony structures. Gives less 

tissue contrast compared 

to MRI 

MRI scans give the best 

soft tissue contrast of all 

the imaging modalities. 

Bony structures may be 

less detailed compared 

to CT 

Allows visualisation of 

detailed tissue structure 

with advanced technology. 

Not used for bony 

structures 

Contrast agents Contrast media often used May be used Occasionally used 

Ionising radiation use Yes No No 

Contraindications Not routinely used for 

pregnant women but may 

be considered in certain 

circumstances 

Cannot be used if patient 

has implanted metal 

(eg pacemaker) 

No current evidence of 

any contraindications 

Expense (equipment)    

Timing (relative)
*
 ~ 5–10 minutes ~30 minutes ~10–15 minutes 

Availability in the NHS Widely available Available Very widely available 

Portability in the NHS No No Yes 

Number of machines in 

the NHS in the UK 

462 369  

Total number of NHS 

examinations in 

England in 2010/11
†
 

3.98 million 2.12 million 8.60 million 

Disadvantages Involves ionising 

radiation; often requires 

contrast enhancement 

with risks of 

nephrotoxicity or 

anaphylaxis; weight 

limitations 

Claustrophobia; noisy 

exams, possibly lengthy; 

some nephrotoxic 

contrast agents; weight 

limitations; pacemakers 

and some medical 

equipment cannot be put 

in a magnetic field safely 

Does not show function, 

only anatomy; difficult 

with obese, immobile 

patients; hard to see 

deep structures; difficult 

to scan through bone or 

gaseous areas (eg lung) in 

the body  

* Timings are examination and patient dependent. Times shown are for indicative purposes only 

† http://www.dh.gov.uk/en/Publicationsandstatistics/Statistics/Performancedataandstatistics/HospitalActivityStatistics/DH_077487 

 



92 

APPENDIX C 

KEY EVENTS IN THE HISTORY OF CT 

AND X-RAYS 

Adapted from Impactscan.org 

(http://www.impactscan.org/CThistory.htm) 

1895 Wilhelm Conrad Röntgen discovers X-rays (Würzburg, Bavaria, Germany)  

1896 Francis Henry Williams takes the first successful chest X-ray (Boston MA, USA) 

Carl Schleussner, working with Wilhelm Röntgen, develops the photographic X-ray plate 

(Frankfurt am Main, Germany) 

First X-ray department established, at Glasgow Royal Infirmary (Scotland, UK)  

Skin burns reported resulting from use of X-rays 

1902 First case of skin cancer reported associated with ionising radiation 

1913 William David Coolidge invents the hot cathode X-ray tube  

1917 Johann Radon demonstrates that the image of a three-dimensional object can be reconstructed from 

an infinite number of two-dimensional projections of the object, providing the mathematical basis 

for CT image construction (Vienna, Austria)  

1921 André Bocage develops focal-plane tomography (Paris, France)  

1930–

1931 

Alessandro Vallebona develops ‘stratigraphy’ (Genova, Italy) and Bernard Ziedes des Plantes 

develops ‘planigraphy’ (Utrecht, Netherlands): both are forms of tomography  

1937 William Watson patents axial transverse tomography and obtains the first radiographic images using 

this technique (London, UK)  

1940 Gabriel Frank patents back-projection (Budapest, Hungary)  

1961 William Oldendorf builds a model tomographic scanner that uses the techniques later developed 

independently by Hounsfield and Cormack (Los Angeles, USA)  

First PET scanner demonstrated by James Robertson and associates (New York, USA)  

1963–

1964 

Allan Cormack publishes a theoretical analysis and the results from experimental scanner using a 

computer to reconstruct cross-sectional images from data (Medford MA, USA)  

1966 David Kuhl, John Hale and Walter Eaton publish a paper with the transmission images of a subject’s 

thorax, using an external radiation source (Philadelphia, USA)  

1968 Godfrey Hounsfield’s original project proposal at EMI (London, UK)  

1971 First patient (head scan) at Atkinson Morley’s Hospital using prototype EMI head scanner 

(London, UK) 

1972 Godfrey Hounsfield and James Bull lecture, New York, showing first clinical CT images 

(New York, USA)  

The first CT scanner demonstration in the USA, at the Mayo Clinic (Rochester MN, USA)  

1973 320  320 image matrix  

First clinical patient scan in the USA, at the Mayo Clinic (Rochester MN, USA)  

Robert Ledley designs ACTA, a whole-body CT scanner (Washington DC, USA)  
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1974 First body CT scan (of Hounsfield) in a prototype of the EMI body scanner (London, UK)  

35 EMI head scanners installed worldwide; 60 more on order  

1975 Prototype of the EMI CT1010 body scanner installed at Atkinson Morley’s Hospital (London, UK)  

First commercial PET scanner installed (Los Angeles, USA)  

First scans from EMI body scanner shown, at first international conference on CT (Bermuda)  

Research body scanner installed at Northwick Park Hospital (London, UK)  

First body scan in the USA, under the direction of Ron Evans at the Mallinkrodt Institute (St Louis, 

USA)  

1976 5 second scan time for an image  

17 companies now offering ‘third-generation’ CT scanners  

650 scanners now installed worldwide; 450 supplied by EMI  

1977 First MRI body scan on humans, by Raymond Vahan Damadian, Larry Minkoff and 

Michael Goldsmith (Nottingham, UK)  

1978 512  512 image matrix  

200 scanners sold in the USA  

ECG-synchronised CT scanning  

1979 Hounsfield and Cormack jointly awarded the Nobel Prize for Medicine (Stockholm, Sweden)  

Around 1000 scanners in operation worldwide  

1980 FONAR markets the first commercial MRI scanner (Melville NY, USA) 

1981 3 second scan time for an image  

1983 800 CT scanners sold in the USA  

1985 1 second scan time  

‘Superfast CT’ (electron beam tomography) is developed by Douglas Boyd (San Francisco, USA)  

1987 1024  1024 image matrix  

1989 First spiral (helical) CT, manufactured by Siemens, enters the market (Erlangen, Germany)  

1992 Elscint CT Twin, first modern multi-slice scanner; sub-millimetre slices (Haifa, Israel)  

1994 0.75 second scan time  

1998 4-slice scanners  

0.5 second scan time  

1999 PET CT developed, by David Townsend and Ron Nutt (Pittsburgh, USA)  

2002 8- and 16-slice scanners introduced  

2004 640-slice scanners 

2005 Dual X-ray source scanner 

2007 320-detector row scanner 

72 million CT scans performed in the USA 
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APPENDIX D 

LETTER FROM THE ROYAL COLLEGE 

OF RADIOLOGISTS 
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APPENDIX E 

REPORTS OF THE COMMITTEE ON 

MEDICAL ASPECTS OF RADIATION 

IN THE ENVIRONMENT 

COMARE Fifteenth 

Report 

 Radium contamination in the area around Dalgety Bay. PHE, Chilton, 

May 2014 

COMARE Fourteenth 

Report  

 Further consideration of the incidence of childhood leukaemia around nuclear 

power plants in Great Britain. HPA, Chilton, May 2011 

COMARE Thirteenth 

Report  

 The health effects and risks arising from exposure to ultraviolet radiation from 

artificial tanning devices. HPA, Chilton, June 2009 

COMARE Twelfth 

Report  

 The impact of personally initiated X-ray computed tomography scanning for the 

health assessment of asymptomatic individuals. HPA, Chilton, December 2007 

COMARE Eleventh 

Report  

 The distribution of childhood leukaemia and other childhood cancer in Great 

Britain 1969–1993. HPA, Chilton, July 2006 

COMARE Tenth Report   The incidence of childhood cancer around nuclear installations in Great Britain. 

HPA, Chilton, June 2005 

COMARE Ninth Report   Advice to Government on the review of radiation risks from radioactive internal 

emitters carried out and published by the Committee Examining Radiation 

Risks of Internal Emitters (CERRIE). NRPB, Chilton, October 2004 

COMARE Eighth Report   A review of pregnancy outcomes following preconceptional exposure to 

radiation. NRPB, Chilton, February 2004 

COMARE Seventh 

Report  

 Parents occupationally exposed to radiation prior to the conception of their 

children. A review of the evidence concerning the incidence of cancer in their 

children. NRPB, Chilton, August 2002 

COMARE and RWMAC

 

Joint Report  

 Radioactive contamination at a property in Seascale, Cumbria. NRPB, Chilton, 

June 1999 

COMARE Sixth Report   A reconsideration of the possible health implications of the radioactive particles 

found in the general environment around the Dounreay nuclear establishment in 

the light of the work undertaken since 1995 to locate their source. NRPB, 

Chilton, March 1999 

COMARE Fifth Report   The incidence of cancer and leukaemia in the area around the former Greenham 

Common Airbase. An investigation of a possible association with measured 

environmental radiation levels. NRPB, Chilton, March 1998 

COMARE Fourth Report   The incidence of cancer and leukaemia in young people in the vicinity of the 

Sellafield site, West Cumbria: further studies and an update of the situation 

since the publication of the report of the Black Advisory Group in 1984. 

Department of Health, London, March 1996 

 
 Radioactive Waste Management Advisory Committee. 
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COMARE and RWMAC
*
 

Joint Report  

 Potential health effects and possible sources of radioactive particles found in the 

vicinity of the Dounreay nuclear establishment. HMSO, London, May 1995 

COMARE Third Report   Report on the incidence of childhood cancer in the West Berkshire and North 

Hampshire area, in which are situated the Atomic Weapons Research 

Establishment, Aldermaston and the Royal Ordnance Factory, Burghfield. 

HMSO, London, June 1989 

COMARE Second Report   Investigation of the possible increased incidence of leukaemia in young people 

near the Dounreay nuclear establishment, Caithness, Scotland. HMSO, London, 

June 1988 

COMARE First Report   The implications of the new data on the releases from Sellafield in the 1950s for 

the conclusions of the report on the investigation of the possible increased 

incidence of cancer in West Cumbria. HMSO, London, July 1986 

 

 

  

 
* Radioactive Waste Management Advisory Committee.  



 

97 

APPENDIX F 
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APPENDIX G 

DECLARATION OF MEMBERS’ INTERESTS 

CODE OF PRACTICE 

1 Introduction  This code of practice guides members of COMARE as to the circumstances in 

which they should declare an interest in the course of the Committee’s work. 

To avoid any public concern that commercial interests of members might affect 

their advice to Government, Ministers have decided that information on 

significant and relevant interests of members of its advisory committees should 

be on the public record. The advice of the Committee frequently relates to 

matters which are connected with the radiation industry generally and, less 

frequently, to commercial interests involving radioactivity. It is therefore 

essential that members should comply with the code of practice which is set 

out below. 

2 Scope and definitions  This code applies to members of COMARE and its subcommittees, subgroups, 

working groups and working parties which may be formed.  

For the purposes of this code of practice, the ‘radiation industry’ means: 

(a) companies, partnerships or individuals who are involved with the 

manufacture, sale or supply of products processes or services which are 

the subject of the Committee’s business. This will include nuclear 

power generation, the nuclear fuel reprocessing industry and associated 

isotope producing industries, both military and civil and also medical 

service industries 

(b) trade associations representing companies involved with such 

products 

(c) companies, partnerships or individuals who are directly concerned 

with research or development in related areas 

(d) interest groups or environmental organisations with a known 

interest in radiation matters 

This excludes government departments, professional bodies, international 

organisations and agencies. 

It is recognised that an interest in a particular company or group may, because 

of the course of the Committee’s work, become relevant when the member had 

no prior expectation this would be the case. In such cases, the member 

should declare that interest to the Chairman of the meeting and thereafter to 

the Secretariat. 

In this code, ‘the Department’ means the Department of Health, and ‘the 

Secretariat’ means the secretariat of COMARE. 

3 Different types of 

interest – definitions 

 The following is intended as a guide to the kinds of interests which should 

be declared. Where a member is uncertain as to whether an interest should be 

declared they should seek guidance from the Secretariat or, where it may 

concern a particular subject which is to be considered at a meeting, from the 
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Chairman at that meeting. Members of the Committee and the Secretariat are 

under no obligation to search out links between one company and another, for 

example where a company with which a member is connected has a relevant 

interest of which the member is not aware and could not reasonably be 

expected to be aware. 

If members have interests not specified in these notes but which they believe 

could be regarded as influencing their advice they should declare them to the 

Secretariat in writing and to the Chairman at the time the issue arises at 

a meeting. 

3.1 Personal interests  A personal interest involves current payment to the member personally. The 

main examples are: 

(a) Consultancies and/or direct employment: any consultancy, 

directorship, position in or work for the radiation industries which 

attracts regular or occasional payments in cash or kind. 

(b) Fee-paid work: any work commissioned by those industries for 

which the member is paid in cash or kind. 

(c) Shareholdings: any shareholding in or other beneficial interest in 

shares of those industries. This does not include shareholdings through 

unit trusts or similar arrangements where the member has no influence 

on financial management. 

(d) Membership or affiliation: any membership role or affiliation that 

the member or close family member has to clubs or organisations with 

an interest or involvement in the work of the Department. This will not 

include professional bodies, organisations and societies. 

3.2 Non-personal interests  A non-personal interest involves current payment which benefits a department 

to which a member is responsible, but is not received by the member 

personally. The main examples are: 

(a) Fellowships: the holding of a fellowship endowed by the radiation 

industry. 

(b) Support by industry: any payment, other support or sponsorship by 

the radiation industry which does not convey any pecuniary or material 

benefit to a member personally, but which does benefit their position or 

department, eg: 

(i) a grant from a company for the running of a unit or 

department for which a member is responsible; 

(ii) a grant or fellowship or other payment to sponsor a post or a 

member of staff in a unit or department for which a member is 

responsible. This does not include financial assistance for 

students, but does include work carried out by postgraduate 

students and non-scientific staff, including administrative and 

general support staff; 

(iii) the commissioning of research or work by, or advice from, 

staff who work in a unit or department for which a member is 

responsible. 

(c) Support by charities and charitable consortia: any payment, other 

support or sponsorship from these sources towards which the radiation 

industry has made a specific and readily identifiable contribution. This 

does not include unqualified support from the radiation industry 

towards the generality of the charitable resource. 



102 

(d) Trusteeships: where a member is trustee of a fund with 

investments in the radiation industry, the member may wish to consult 

the Secretariat about the form of declaration which would be 

appropriate. 

3.3 Specific interests  A specific interest relates explicitly to the material, product, substance or 

application under consideration by the Committee. 

A member must declare a personal, specific interest if they currently receive a 

payment, in any form, for any significant fundamental development work 

undertaken previously or at this time, on a material, product or substance or its 

application under consideration. This will include the production of radioactive 

substances and devices designed to use ionising or non-ionising radiation for 

diagnostic, treatment or other purposes. 

A member must declare a non-personal, specific interest if they are aware that 

the department to which they are responsible currently receives payment for 

significant fundamental development work undertaken previously or at this 

time, on a material, product or substance or its application under consideration, 

but they have not personally received payment for that work in any form. 

This will include the production of radioactive substances and devices 

designed to use ionising or non-ionising radiation for diagnostic, treatment or 

other purposes. 

3.4 Non-specific interests  A non-specific interest relates to a company or associated material, product, 

substance or application, but not to the specific material, product, substance or 

application under consideration by the Committee. 

A member must declare a personal, non-specific interest if they have a current 

personal interest in a material, product, substance or application from a 

particular company, which does not relate specifically to the material, product, 

substance or application from that company under consideration. 

A member must declare a non-personal, non-specific interest if they are aware 

that the department to which they are responsible is currently receiving 

payment from the company concerned which does not relate specifically to a 

material, product, substance or application under discussion. 

If a member is aware that a material, product, substance or their application 

under consideration is or may become a competitor of a material, product or 

substance manufactured, sold or supplied by a company in which the member 

has a current personal interest, they should declare their interest in the company 

marketing the rival material, product or substance. 

Members are under no obligation to seek out knowledge of such work done for 

or on behalf of the radiation industry within departments to which they are 

responsible if they would not reasonably expect to be informed. This applies to 

all non-personal, specific and non-specific interests. 

4 Declaration of interests 

4.1 Declaration of 

interests to the Secretariat 

 Members should inform the Secretariat in writing when they are appointed of 

their current personal and non-personal interests and annually in response to a 

Secretariat request. Only the name of the company (or other body) and the 

nature of the interest is required; the amount of any salary, fees, shareholding, 

grant, etc, need not be disclosed. An interest is current if the member has a 

continuing financial involvement with the industry, eg if they hold shares in a 

radiation company, have a consultancy contract, or if the member or the 
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department to which they are responsible is in the process of carrying out work 

for the radiation industry. Members are asked to inform the Secretariat at the 

time of any change in their personal interests, and may be invited to complete a 

form of declaration when required. It would be sufficient if changes in non-

personal interests are reported at the next annual declaration following the 

change. (Non-personal interests involving less than £5000 from a particular 

company in the previous year need not be declared.) 

The register of interests should be kept up-to-date and be open to the public. 

4.2 Declaration of 

interests at meetings and 

participation by members 

 Members are required to declare relevant interests at Committee meetings and 

to state whether they are personal or non-personal interests. The declaration 

should include an indication of the nature of the interest. 

(a) If a member has a current (personal or non-personal) interest in 

the business under discussion, they will not automatically be debarred 

from contributing to the discussion subject to the Chairman’s 

discretion. The Chairman will consider the nature of the business under 

discussion and of the interest declared (including whether it is personal 

or non-personal) in deciding whether it would be appropriate for the 

relevant member to participate in the item. 

(b) If a member has an interest which is not current in the business 

under discussion, this need not be declared unless not to do so might be 

seen as concealing a relevant interest. The intention should always be 

that the Chairman and other members of the Committee are fully aware 

of relevant circumstances. 

A member who is in any doubt as to whether they have an interest which 

should be declared, or whether to take part in the proceedings, should ask the 

Chairman for guidance. The Chairman has the power to determine whether or 

not a member with an interest shall take part in the proceedings. 

If a member is aware that a matter under consideration is or may become a 

competitor of a product, process or service in which the member has a current 

personal interest, they should declare the interest in the company marketing the 

rival product. The member should seek the Chairman’s guidance on whether to 

take part in the proceedings. 

If the Chairman should declare a current interest of any kind, they should stand 

down from the chair for that item and the meeting should be conducted by the 

Deputy Chairman or other nominee if the Deputy Chairman is not there. 

 

  



104 

4.3 Members’ declarations 

of interests – 2013 Member Company 

Personal 

interest 

 

Company 

Non-personal 

interest 

Dr J Bithell   None   None 

  Dr P Darragh    None   None 

  Prof A Elliott   None   None 

  Prof W Evans   None   None 

  Prof S Hodgson   None   None 

  Prof P Hoskin   None   None 

  Dr B Howard   None   None 

  Prof M Kadhim    None   None 

  Prof S McKeown    None   None 

  Prof P Marsden   None   None 

  Dr G Maskell   None   None 

  Dr T Nunan    None   None 

  Dr M Pearce   None   None 

  Prof R Taylor    None   None 

  Mr I Robinson  AMEC Consultancy   None 

  Prof R Wakeford  1 Sellafield Ltd  Consultancy   None 

   2 Compensation 

Scheme for Radiation-

linked Diseases 

Consultancy    

   3 Canadian Nuclear 

Safety Commission 

Contract    

   4 Augean Contract    

  Prof P Warwick 1 Enviras Ltd Director and 

shareholder 

 NDA Grants 

   2 Sellafield Ltd/ 

Golder 

Contract    

   3 NNL/LLWR Ltd Consultancy    

  Prof C West   None   None 
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