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ABSTRACT 
The SECTAR project investigated the potential of statistical techniques to improve 
estimates of the extent of radioactive contamination in the early stages of an accident. 
Two major categories of techniques, geostatistics and Bayesian methods, were 
investigated and applied to measurement data from nuclear accidents at Tomsk, 
Chernobyl and Windscale. Trials were carried out using the statistical techniques alone 
and in conjunction with the traditional assessment methods of atmospheric dispersion 
and foodchain modelling. Results from this process of ‘data assimilation’, the combined 
use of measurements and modelling to make estimates, indicate that several of the 
methods tested have the potential to be useful to the Food Standards Agency. In 
particular they will help in the quick and reliable estimation of food restriction areas and 
in determining areas where sampling effort should be concentrated. 

The Ministry of Agriculture, Fisheries and Food, Radiological Safety and Nutrition 
Division (now part of the Food Standards Agency) funded this study, under contract 
RP0242. This work was undertaken under the Environmental Assessments Department 
and Emergency Response Group’s Quality Management System, which has been 
approved by Lloyd's Register Quality Assurance to the Quality Management Standards 
ISO 9001:2000 and TickIT Guide Issue 5, certificate number 956546. 
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EXECUTIVE SUMMARY 

The aim of SECTAR may be succinctly summarised as the investigation of statistical 
and modelling techniques to make optimal use of the measurement data available after 
an accidental release of radioactivity. 

In the event of an accidental release to the environment, the Food Standards Agency 
(the Agency) will issue restrictions to prevent the sale of food with radionuclide 
concentrations exceeding the maximum permitted activity concentration levels in food, 
specified by the Council of the European Community (CEC 1989a; CEC 1989b; CEC 
1990) *. The Agency will also impose restrictions on animal feed when contamination 
exceeds the relevant CFILs. Decisions on the areas where such action is necessary 
must be taken as soon as possible after the accident, often when there are few results 
available from monitoring programmes. This carries the risk that the restricted area may 
be too conservative and the resulting wastage of food may have economic and legal 
implications. Simple atmospheric and foodchain models of the type used in emergency 
exercises are not designed to cope with the complications of weather and terrain likely 
to be encountered in a real release. Conversely, complex models, which may give 
better predictions, require too much meteorological and other data to be of use at an 
early stage. The Agency and NRPB† identified a need for the development of 
techniques that can work with the limited data available to make assessments that are 
more realistic. 

The techniques investigated under SECTAR fall into two broad categories: geostatistics 
and Bayesian methods. Both have the potential to fill the knowledge gap in the early 
stages of an accident when the emergency plan is no longer adequate but little 
monitoring data are available. Geostatistics allows interpolative estimates to be made 
based on the spatial correlation properties of a phenomenon, which are established 
from a small quantity of data. Bayesian methods have been used to progressively 
improve or replace process model‡ predictions using measurement data. These, or 
closely related statistical techniques, allow the uncertainty on estimates to be assessed, 
for example geostatistical simulations are used to find the probability that the 
contamination in a particular area will exceed a given limit.  

Use of real accident data has been of great importance to the work of SECTAR, since it 
not only provides the input data for the techniques but also the criterion against which 
their success is judged. Data were obtained for the accidents at Chernobyl (Bryansk), 
Tomsk and Windscale; this allowed the performance of the techniques to be evaluated 
for a variety of release conditions. 

 
* These will be referred to as Council Food Intervention Levels (CFILs). 
† The National Radiological Protection Board (NRPB) became the Radiation Protection Division of the 
Health Protection Agency (HPA-RPD) on the 1 April 2005. 
‡A mathematical model of the physical process involved in the transfer of radioactivity through the 
environment. 



STATISTICAL ESTIMATION AND CHARACTERISATION TECHNIQUES FOR USE DURING ACCIDENT 
RESPONSE (SECTAR) 

iv 

Results from these investigations have identified a number of techniques that may, with 
some refinements, prove useful to the Agency in establishing appropriate food 
restriction areas in the early stages of an accident. The ability to estimate the 
uncertainty on predictions should reduce the risk of imposing over-cautious restrictions 
and allow the more effective deployment of monitoring teams. 
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1 INTRODUCTION 

The Food Standards Agency (the Agency*) has a requirement to establish the need for, 
and likely extent of, food restriction zones† as soon as possible after an accidental 
release of radioactivity. The zones must cover all locations where the radionuclide 
concentrations in food exceed the maximum permitted activity concentration levels in 
food, specified by the Council of the European Community (CEC 1989a; CEC 1989b; 
CEC 1990)‡. The Agency would like to estimate the extent of these zones accurately so 
that any additional conservatism introduced to accommodate both practical 
considerations and uncertainty can be controlled. Currently, the Agency supports the 
estimation of zones by the use of its own field measurement teams, monitoring from 
other sources, and both atmospheric and foodchain modelling. However, decisions 
must be substantially formulated within a very short period after the accident. This time 
scale is sufficiently short to raise doubts about the potential of any monitoring 
campaigns to provide robust estimates (ie, estimates which are not excessively 
conservative) within that time scale. Additionally, the uncertainties associated with 
existing rapid modelling approaches are well known. It is thus unlikely that the models 
currently used will provide adequate support for decisions on the appropriate level of 
conservatism to apply under circumstances that deviate substantially from the situations 
rehearsed in exercises. Practical atmospheric dispersion models that may be used in 
the limited time and with the information available will not provide an accurate 
representation of the ground deposition pattern. The Windscale fire of 1957 (Clarke, 
1974) provides an example of the difficulties inherent in modelling a real release. 

Following an accident it is likely that much more monitoring will occur than is assumed 
during exercises. However, the time constraints inherent in responding to an accident 
and carrying out any necessary chemical analyses will still prevent the Agency from 
rapidly assessing the extent of the CFIL boundaries using the traditional modelling and 
measurement approach without the precaution of excessive conservatism. 

Monitoring in the early stages of an event is carried out by the site operators to establish 
the path of the plume, and to identify locations where the emergency countermeasures 
of sheltering, evacuation and iodine prophylaxis may be appropriate. Such monitoring 
will therefore be concentrated near populated areas. More generally, the need for rapid 
assessment will concentrate early measurements in areas easily accessible from a 
road. Use of results obtained in this manner are appropriate when assessing doses to 
people from inhalation and deposition, as people may be expected to live or work within 
a short distance of a road. However, animal and crop production will generally take 
place at some distance from population centres and the roads between them. Thus, the 
monitoring used to assess the immediate protection needs of the population from 
inhalation and external doses is unlikely to provide optimal support for the more 

 
*Formerly the Ministry of Agriculture, Fisheries and Food (MAFF) had this responsibility. 
†This is the area over which a Food and Environmental Protection Act (FEPA) 1985 restriction would 
apply. 
‡ These will be referred to as Council Food Intervention Levels (CFILs). 



STATISTICAL ESTIMATION AND CHARACTERISATION TECHNIQUES FOR USE DURING ACCIDENT 
RESPONSE (SECTAR) 

2 

homogeneous, and therefore more time-consuming, coverage required by the Agency. 
Aerial monitoring is a valuable technique that will partly overcome this difficulty but it is 
expensive and will not eradicate all problems. Aerial monitoring only allows detection of 
a limited range of radionuclides* and the limit of detection is higher than for ground 
based measurements (Bourgeois et al, 1995). This may be compounded by a large and 
potentially varying footprint (the ground area within the detector’s field of view) over 
which the information is averaged. If the size of this footprint is larger than that required 
by the Agency the area might need to be re-sampled using alternative techniques to 
reveal the true level of variability in results sampled at the chosen scale (see Section 4). 

Thus, even a significant increase in monitoring effort will only have a limited effect on 
the problem faced by the Agency. It will provide some additional data but not 
necessarily in the time or form required, by those making decisions on the extent of 
food restrictions. The conversion of monitoring data into a suitable form for these 
purposes may be far from straightforward. 

It was in the light of the known problems that the Agency embarked on this programme 
of work with NRPB (now HPA-RPD) to investigate methods for the effective assimilation 
of information from measurements and simple models. In this context assimilation is the 
use of mathematical techniques to make optimal predictions about levels of 
environmental contamination and, if possible, the uncertainty in those predictions 
through the combined use of all the available sources of information. The requirements 
of the Agency coincided with a realisation at NRPB that the techniques of data 
assimilation, the closer integration of measurements and models, offered the prospect 
of a more efficient and effective use of the available data. Thus for any given level of 
monitoring, the use of assimilation techniques would enable decision-makers to have a 
more thorough and well-founded understanding of the situation on which to base their 
decisions. 

SECTAR therefore seeks to maximise the amount and quality of information available 
to a decision-maker by making use of data from all available sources such as ground 
and aerial monitoring. Ideally, other data sources such as radar rainfall measurements, 
process modelling and known ground susceptibilities (ie the importance of soil types on 
the uptake and persistence of radionuclides in the immediate environment) would be 
included in an analysis†. The use of process modelling has been considered but 
information on the other options was not available for the three accidents considered in 
SECTAR. However, an investigation into the potential use of radar rainfall data in the 
estimation of initial deposition is described in Higgins and Jones (2003). Information on 
ground susceptibility has been reported in, for example, Nisbet et al (1999). 

 
*However geostatistical techniques, for example, may be used in conjunction with aerial monitoring to 
infer more effectively the distribution of radionuclides only detected by less extensive ground-based 
monitoring results. 
†The last option would allow risk maps to be produced showing areas where there is a likelihood of 
larger transfers of deposited radioactivity into crops and animals or a longer environmental half life of 
deposited material. 
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1.1 Organisation of material 

The work undertaken for the SECTAR project depends on the use of measurements 
from past accidents. Such data exhibit a complexity, which is not present in, for 
example, the model-generated data used in emergency exercises. The statistical 
techniques investigated under SECTAR are intended to cope with this complexity. 
Thus, only the use of real data can provide an adequate test of the statistical techniques 
under investigation. Section 2 introduces the data obtained for the project and 
subsequently used in a series of trials designed to test the applicability and usefulness 
of statistical methods under a variety of conditions. Section 3 provides an outline of the 
theoretical approaches employed. These techniques are not widely used in radiation 
protection and it is important to have a broad understanding of the assumptions 
inherent in their use. This division between the theory and its practical application 
allows the discussion of the results to be more succinct and to concentrate on the 
particular features of the data and modelling assumptions that affected the outcome of 
trials. The trials applied to each set of accident data are discussed in turn in Sections 4, 
5 and 6. For intercomparison, some trials have been made with common features using 
data from the different accidents. However, the particular nature of the data in each 
case and the use of techniques applicable to those data are also considered. Section 7 
discusses the results, highlighting the usefulness of the techniques examined, and 
considers what methods can be easily applied and where further development work 
may be appropriate. 

2 COLLECTION OF DATA 

Considerable effort was expended in trying to obtain monitoring data from past 
accidents. The SECTAR project is specifically concerned with improving decision 
making for real events (as opposed to emergency exercises). Monitoring data were 
therefore a vital part of the project, since, as discussed in Section 1.1, they provide the 
only way to test the practical potential of the techniques developed. The data are used 
as both input and as the measure of a technique’s success, that is, the technique must 
be able to reproduce the observed measurement results within an acceptable margin of 
error. Although the simple atmospheric dispersion models available to the Agency and 
NRPB (now HPA-RPD) for use during early accident response have been of 
considerable use in the project, they cannot be used to provide realistic simulations of 
the measurements likely from real events. Thus, data form exercises, designed to test 
administrative aspects of emergency response, may be unsuitable for the testing of 
techniques intended to work with genuine environmental data. This is because exercise 
data are often unnaturally ‘smooth’ or include arbitrary ‘hot-spots’. Access to real data is 
thus an essential prerequisite, if the anticipated improvement over non-adaptive* 
modelling is to be demonstrated. 

 
*An adaptive model in this context will change its predictions as the result of the influence of 
measurements and by more than a simple scaling of the predictions. 
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Three major datasets were obtained for use in SECTAR: measurements from Tomsk in 
Russia after the accident at the Tomsk-7 chemical plant in 1993, measurements of 
137Cs from Bryansk in Russia after the Chernobyl accident, and measurements made 
after the Windscale fire of 1957. However, a sufficiently detailed source of UK 
Chernobyl data has remained elusive, preventing work on the use of rainfall 
measurements as supporting data (Higgins and Jones, 2003). 

2.1 Tomsk data 

The Tomsk accident occurred on 6th April 1993, when an explosion in a facility for 
handling uranium solution at the Tomsk-7 plant started a short release of radioactive 
material. Further details of the accident can be found in Shershakov et al (1995). 
Scientists from the Scientific Production Association (SPA) ‘Typhoon’ Rosgidomet 
(Obninsk, Russia) took environmental dose rate measurements within days of the 
accident. The following September a more extensive survey was undertaken using a 
helicopter-mounted gamma spectrometer to measure 106Ru, 95Nb and 95Zr. The 106Ru 
results from this second survey provided the basic material for the studies undertaken in 
SECTAR. Figure 1 gives an overview of the 812 measurement points in the dataset.  

FIGURE 1 Available measurements from the accident a t Tomsk including those below the Limit 
of detection (LoD). 

 

The figure shows that the investigators concentrated on the area of highest deposition 
closest to the release. Another feature of the data is that, because the helicopter flew at 
varying heights, the lower limit of detection varies between 3700 and 7400 Bq m-2 (100-
200 mCi km-2). Some 118 points at the edge of the plume are marked as being below 
the limit of detection (LoD), however insufficient information was available about which 
LoD applied at any particular location. Several methods exist for handling such data, 
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which can add valuable information to what is known as a censored dataset. Such 
techniques are outside the scope of the SECTAR project but a discussion of their 
application, to measurements of radioactivity in food, is provided in Daniels and Higgins 
(2002). It should be noted that food restriction areas based on European Community 
maximum permitted levels (CEC 1989a; CEC 1989b; CEC 1990) would extend beyond 
the sampled area. This demonstrates that good estimation at the edge and beyond can 
be an important consideration when evaluating techniques. 

Figure 2 illustrates the output of a simple Gaussian atmospheric dispersion model, and 
comparison with Figure 1 shows that such a model appears to describe the Tomsk data 
well. The implications of this for the successful application of geostatistical techniques 
to this data are discussed in Section 4. 

FIGURE 2 Gaussian plume model for Tomsk, using defa ult model parameters and showing 
predicted values that are above and below the Limit  of Detection (LoD) of the measurements 
shown in Figure 1. 

2.2 Bryansk data 

The Bryansk dataset, consisting of 1226 measurements of 137Cs in soil, is illustrated in 
Figure 3. The measurements, supplied by Yatsalo (1997), were made in the 
Novozybkov district of Russia following the Chernobyl accident. Each measurement 
represents averaged ground survey results taken in 1992-93. The averaging procedure 
varies depending on the land classification but for arable land a sample representing an 
area of 250 x 200m2 is the averaged result from 20-25 bores, each of which was 20cm 

Output of Gaussian plume 

model (kBq m-2) 
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deep. The Bryansk data cover a greater area but have a lower percentage variance 
than the Tomsk data. Possible causes of this observation are the greater distance of 
Bryansk from the source (the sampled area is approximately 175 km from Chernobyl), 
and the longer period that the plume was over the area. The relationship between the 
variance of a set of measurements and the area represented by each sample value is 
an important topic in geostatistics and is discussed further in Section 3.1.2.4. 

FIGURE 3 Bryansk data set. 

2.3 The Windscale database 

The Windscale dataset is the largest and most diverse set of post-accident 
measurements currently available to HPA-RPD. In the weeks following the fire at 
Windscale Pile No.1 in October 1957, an extensive programme of district surveys 
(Dunster et al, 1958) was carried out to measure radioactive contamination of the 
environment. These surveys covered the local area in detail and, to a lesser extent, 
more distant locations. In total, approximately 8000 measurements of a range of 
radionuclides in 12 major categories were taken. These categories included animal and 
vegetable products, human thyroid measurements and measurements of the non-living 
environment. This information has been entered into a database and testing undertaken 
to determine the accuracy of the transfer from the original card and paper records. The 
database has also been linked to a Geographic Information system (GIS) to simplify the 
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selection and use of data and importantly to provide a check on the validity of the 
reported measurement locations*. Details of the database and testing undertaken are 
provided in Appendix D. 

FIGURE 4 Two datasets selected from the Windscale d atabase for use in SECTAR geostatistics 
experiments (see Section 6) †. 

 
*The locations written on the typed records occasionally required to be deciphered due to smudging 
over time. 
†At the time of the Windscale accident, activity was measured in Ci, and the milk ban criterion was 
also expressed in these units. Windscale studies concentrate on predicting the milk ban and 
measurements are therefore shown in the original units or in multiples of the milk ban activity level. A 
PHDVXUHPHQW�RI�� &L�O�FRUUHVSRQGV�WR����N%T�O� 
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The Windscale data used in SECTAR were selected from measurements of 131I in milk 
and on grass, with both sample types being thought reliable and reasonably numerous. 
These data are illustrated in Figure 4. The database also contains many measurements 
of gamma dose rates and air samples, but further supplementary information is required 
to make these suitable for use in calculations. For example, the energy response 
characteristics of the type of meter used, for the majority of gamma dose-rate 
measurements, is, as discussed in Section 6.5, already available. However, difficulties 
remain over the timing of the measurements with respect to the release and estimates 
of the mix of radionuclides released. These need to be resolved before the dose rate 
data can be used. HPA-RPD is continuing to search for further supplementary 
information, which may be held by other organisations. 

The database has greatly enhanced the usefulness of the Windscale data in the 
SECTAR project by allowing the rapid selection of data subsets appropriate to particular 
investigations. The connection of the database to a GIS has also simplified the selection 
of suitable data based on their spatial distribution, and the display and analysis of the 
calculated results. 

2.4 Summary 

Although it was only possible to obtain three data sets that were suitable for use within 
SECTAR, each has its own very distinctive characteristics. Factors such as release 
duration, type of sampling (aerial or ground-based), location of sampling relative to 
source, meteorological conditions, and terrain, are different for each of the accidents. 
There is a more detailed discussion of these factors for the individual accidents in 
Sections 4, 5 and 6 respectively but the essential point for the purposes of SECTAR is 
that they cover a wide range of possible accident conditions. It has therefore been 
possible to establish the performance of several of the techniques investigated for more 
than one type of accident, and to determine the conditions under which they are likely to 
be of most benefit. The demonstrated ability of the techniques to handle this range of 
conditions supports the belief that they are likely to be useful in the event of a real 
accident (see Section 7). 

3 THEORETICAL BACKGROUND 

The techniques investigated under SECTAR may be separated into two main areas: 
geostatistics and Bayesian methods. Geostatistics is a branch of spatial statistics 
concerned with inferring the values a variable may have at different locations. At its 
simplest, it calculates the best interpolation estimates for a quantity based on its spatial 
characteristics, which are determined from a limited number of measured values. 
Simple measures of the reliability of the estimates derived by this approach are 
automatically produced with the estimates. The use of geostatistics also enables more 
comprehensive estimates of uncertainty in predicted values (and related probability 
estimates) to be calculated using stochastic simulation (see Section 3.1.4). The 
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Bayesian approach employed uses measurements to calibrate a process model*. The 
particular implementation of this technique within SECTAR also handles poor 
performance of the model predictions through the introduction of a ‘model inadequacy’ 
term. If the predictions of the best fitting model do not agree well with the measured 
values, the importance of the inadequacy term increases to compensate. Thus, in the 
extreme case, the model predictions are replaced with an estimate based on the data 
alone (effectively a simple geostatistical (kriging) estimate, see Section 3.2). The 
different methods are used with a common aim of trying to extract as much information 
as possible from a small amount of data, and ideally providing an estimate of the 
uncertainty in the predictions generated. They both therefore have the potential to be 
useful to the Agency in making decisions based on the few measurements available in 
the early stages of off-site accident monitoring. 

3.1 Geostatistics 

Geostatistics developed from the work carried out by the mining engineer D.G. Krige 
during the early 1950s in the field of ore reserve estimation (Krige, 1951). These ideas 
were formalised and extended by G. Matheron, who was the first to suggest the name 
‘geostatistics’ (Matheron, 1962). As the theoretical development of geostatistics has 
continued, it has found practical application in many areas. In addition to the mining 
industry and earth sciences, the techniques have been used in a wide range of 
environmental disciplines where there is a correlation in space and/or time between 
measured values. 

The techniques of geostatistics apply to measured values that have an observed or 
assumed correlation due to their spatial proximity to one another. At their simplest, the 
techniques do not use any information other than the measured values. This can 
therefore be considered as an approach that is entirely complementary to the use of a 
simple empirical process model that takes no or little account of the measured values 
which the model is attempting to represent. However, the techniques of geostatistics 
also offer ways of combining other information, including information from process 
models, with direct measurements of the quantity of interest. 

The techniques of geostatistics can be used to quantify the high level of spatial 
uncertainty inherent in predictions based on a small number of sample values. 
Geostatistics relies on the theory of ‘regionalised variables’ to represent, using a 
random function, the large-scale spatial correlation and small-scale irregularity 
observed between sample values (Chiles and Delfiner, 1999). In this theory, the 
regionalised variable is the quantity of interest, and it has a spatial (and possibly a 
temporal) dependence. The values measured at each location are considered particular 
realisations of a random function representing the regionalised variable. A random 

 
* The term “process model” is a shorthand term for a model that represents the processes involved in 
the movement of radioactivity between different parts of the environment, as distinct from a statistical 
model of the relationship between measured and possibly modelled values. The distinction can be 
quite minor in practice as environmental models often have (statistically fitted) parameters that are 
only defined by the fitting procedure and the context of their use in a particular model. 
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function representation is chosen because the phenomenon is simply too complicated 
to be modelled with a deterministic function. A probabilistic approach is therefore the 
only practical option. Thus, although there is only one sample environment, it is 
assumed to be drawn from a population of independent but identically distributed 
sample environments which each observe the same spatial correlation between 
individual measurements. Thus, if the processes involved in generating the regionalised 
variable could be re-run under identical conditions, it is assumed that the values 
measured would be different from those found in the previous trial. 

In terms of the work of SECTAR, the quantity of interest may be, for example, the 
deposition, d, of a particular radionuclide. This has a spatial dependence (and also a 
temporal dependence which is neglected here for clarity), and deposition is therefore a 
regionalised variable d(x) which has a value at all points, x, over the region of interest. 
The measured deposition values are samples of the regionalised variable at particular 
locations. The physical mechanism by which deposition occurs is dependent on many 
factors – meteorology, the form in which the radionuclide was released, terrain and so 
on, and clearly cannot be specified as a deterministic function unless simplifying 
assumptions are made. Further progress thus necessitates the modelling of the 
regionalised variable d(x) as a random variable; that is, a particular selection from a 
random function D(x). 

An important consideration in geostatistics is whether the phenomenon under study can 
be modelled using a stationary random function. Strict stationarity requires that the 
probability distribution Z(x) for the variable of interest is translationally invariant in space 
ie on an appropriately large scale the mean and all higher moments of the distribution, 
calculated within an appropriate neighbourhood of a point, are the same for all 
locations. The condition which is more usually applied is 2nd order, or weak, stationarity. 
This only requires the first 2 moments of the distribution, the mean and covariance, to 
be translationally invariant – the mean m is constant and the covariance C(h) depends 
only on the separation of points, h, not on their absolute locations x, as shown in 
equations 1 and 2 respectively: 

(1) 

(2) 

 

In reality, it is unlikely that the data can be well represented on a global scale (ie over 
the area covered by the entire dataset) by a stationary random function. For example, 
the amount deposited at a location by a dispersing plume decreases with distance from 
the source as the plume broadens and deposited material is lost from the plume. As 
indicated above, the mean surface concentration produced by a plume dispersing 
overhead will depend on factors such as weather conditions and terrain, and will vary 
from area to area and with the size of the area considered. 

Methods for dealing with this global non-stationarity will depend on the scale over which 
the phenomenon varies, relative to the distances between measurement locations. If 
the area over which variation takes place is large, it is possible to define local search 
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areas over which the mean can be considered constant. Estimations may then be 
carried out using the data in each area separately (ordinary kriging, Section 3.1.2.2). 
However, when the change in the mean is apparent in areas which are small in 
comparison to any search area containing enough data points for estimation, it is 
necessary to adopt methods which deal with the change or trend explicitly (kriging with 
a trend, Section 3.1.2.3). 

In addition to the problem of stationarity, directionality is likely to be important. Thus, the 
spatial correlation of a set of measurements is often found to vary with direction, that is, 
it is anisotropic. Typically, this anisotropy is characterised by an ellipse, as shown in 
Figure 5, whose major axis Y’ is along the direction of greatest spatial continuity and 
whose minor axis X’ is perpendicular to this. The direction of the anisotropy is given by 
the angle θ (or equivalently (θ+180°)) of the principal axis from North. Deposition from a 
plume is generally an anisotropic phenomenon, with factors such as the constancy of 
the wind direction and the terrain influencing the shape of the ellipse.  

In practice, it can be difficult to establish anisotropy from the data alone, particularly 
when there are few measurements. In such cases, supporting information such as wind 
direction can be used to predict the likely direction of maximum continuity. The 
anisotropy is expressed quantitatively as the range in the direction of minimum 
continuity divided by the range in the direction of maximum continuity, where the range 
is defined as the maximum separation for which values may be considered correlated. 
Data, which are isotropic, will therefore have an anisotropy parameter equal to one, and 
a highly anisotropic data set will have a parameter close to zero.  

FIGURE 5 Anisotropy ellipse. 

3.1.1 Variograms  
Geostatistics is based on an observation or assumption of spatial correlation; that is, 
measurements taken at locations that are close together are likely to have more similar 
outcomes than are those taken further apart. Semi-variograms (often simply referred to 
as ‘variograms’ in the geostatistical literature, a convention that will be followed in this 
report) are the principal tool used in geostatistics to quantify this change in correlation 
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with increasing distance. The variogram may be defined as half the variance of the 
increment {Z(x) – Z(x+h)} in the random function, as shown in Equation 3. 

(3) 

 

A distinction needs to be made between the empirical or sample variogram, which is 
plotted for a finite set of sample data and which does not have a value for every 
possible separation distance, and the model variogram. The model variogram is the 
result of fitting one or more of a limited number of mathematical functions to the sample 
variogram, with the models chosen to allow the construction of positive definite kriging 
matrices. The positive definiteness condition is imposed to ensure that a single stable 
solution to the kriging equations is obtained. 

There are few hard-and-fast rules for selecting which model(s) to use when fitting an 
empirical variogram. The two most commonly used models are probably the spherical 
and exponential models, which are both transition models; that is, they reach a 
maximum or ‘sill’ value. The spherical model actually reaches its sill value at a 
separation distance equal to the range, whereas the exponential model approaches its 
sill asymptotically and has a ‘practical range’ defined as the separation at which it 
reaches 95% of the actual sill. If the phenomenon is very continuous, a Gaussian model 
may be used, which is also a transition model approaching its sill asymptotically. Often 
these models are used in conjunction with a ‘nugget’ effect model that represents a 
discontinuity at the origin (in particular, kriging matrices using the Gaussian model are 
unstable unless a nugget is included)*. From the definition of the variogram, its value for 
a zero lag† must be zero, since in this case the correlation of a measurement with itself 
is being measured. However, if the data are ‘noisy’, for example, because of 
measurement errors, the variogram value for a very small non-zero lag can be quite 
large. The nugget effect model is equal to zero at the origin and has a constant value 
for all other distances. 

The other common model is the power model. It is distinct from the others discussed 
here in that it does not reach a sill and its behaviour at the origin depends on the power 
chosen. Phenomena which are known or assumed to be 2nd order stationary should not 
be modelled with the power model‡. 

 
* The nugget effect represents the unresolveable variation between measurements due to mircoscale 
processes and measurement error. 
† ‘Lag’ is the term used in geostatistics for the separation distance between pairs of locations. 
‡This model is only positive definite for intrinsic random functions, which are not required to obey the 
full 2nd order stationarity conditions of Equations 1 and 2. An intrinsic random function is one for which 
second order stationarity applies only to the increments {Z(x+h)-Z(x)} rather than the function itself. 
Whilst it is true that a second order stationary random function satisfies the intrinsic hypothesis, it is 
not necessarily true that a random function satisfying the intrinsic hypothesis will be second order 
stationary (see Wackernagel, 1995 (p36)). Whilst the variogram may be defined for any random 
function satisfying the intrinsic hypothesis; other measures of spatial continuity (eg the covariance) 
may not. 
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Figure 6 illustrates the models discussed above with the power model variogram 
represented by a linear term directly proportional to the lag (h). The model variograms 
used in SECTAR calculations were all created using the package Variowin 2.2 
(Pannatier, 1996). 

FIGURE 6 Some commonly used variogram models. 

3.1.2 Kriging 
Kriging is the generic name for a set of techniques that may be used to estimate the 
value of a variable at locations where it has not been measured. In its most basic form, 
a kriging estimate is a weighted linear sum of the measured data. The weights are 
derived from the variogram or covariance model chosen to represent the phenomenon 
of interest. Kriging therefore provides an estimate that is more sophisticated than 
simpler techniques, such as nearest neighbour or inverse distance weighting, because 
it accounts for the spatial structure of the phenomenon in a way that these techniques 
cannot*.  

Several variations on the basic kriging algorithm exist which may be appropriate in 
different situations, these are outlined in Sections 3.1.2.1-4. However, before discussing 
these it is appropriate to introduce two additional pieces of terminology, which are used 
frequently to describe experiments which compare the predictions of any type of kriging 
with the available real measurements. ‘Cross-validation’ refers to an experiment where 
a single location is selected from a dataset and the data at the remaining locations are 
used to calculate a kriging estimate at that point. The cross-validation error, defined as 
the difference between the kriging estimate and the measured value, is then calculated 
for that location. This procedure is repeated for each location in the dataset in turn, and 
the mean cross-validation error that results will give an indication of how good the 

 
* More advanced non-statistical approaches have been shown to be equivalent to kriging. These and 
other approaches to spatial estimation are discussed in Higgins and Jones (2003).  
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kriging estimates are. ‘Jack-knifing’ experiments involve taking a subset from the global 
dataset and using these measurements to calculate kriging estimates at the non-subset 
locations. Again, the estimates can be compared with the measured values at each 
non-subset location, and an average error calculated. Both cross-validation and jack-
knifing have been used extensively with the three SECTAR datasets. 

3.1.2.1 Simple kriging 
This, as the most basic form of kriging, assumes that the measured values are 
realisations of a stationary random function with a constant mean m. The mean must be 
known but a variant of the procedure will provide an estimate of the mean over the area 
(which in turn will reduce to the arithmetic mean of the measurements if they are not 
spatially correlated). The simple kriging estimator for a stationary random function Z(x) 
is given by Equation 4. 

(4) 

 

In Equation 4 the simple kriging estimate is calculated for location x using the 
measurements at the n locations xD , their mean m, and the kriging weights wα(x). 

In most practical situations, a single mean for an entire area is unlikely to provide an 
adequate approximation and the technique of ordinary kriging (see below) is to be 
preferred. 

3.1.2.2 Ordinary kriging 
This filters the mean from the simple kriging estimator by imposing the condition that 
the kriging weights wα(x) sum to 1. This results in the bracketed term in Equation 4 
disappearing and creates an estimator that can be used in the more usual practical 
situation where there are unknown local means, each appropriate to the current local 
search area. It may be described by the acronym BLUE – Best Linear Unbiased 
Estimator. It is linear since the estimate is formed from a weighted linear sum of the 
measured values (within some search radius), and unbiased because it aims to make 
the average difference between estimated and true values equal to zero, that is, there 
are no systematic errors which would result in estimates being consistently above or 
below the true value. In addition to minimising the average error, ordinary kriging also 
aims to minimise the individual errors for each estimate. It does this by attempting to 
minimise the variance of the estimation errors, and in this sense, it is the ‘best’ estimate. 
The ordinary kriging estimator for the stationary random function Z(x) is given by 
Equation 5a, which is subject to the constraint of Equation 5b. An example of the 
solution of this system of equations and the kriging estimate produced for a single 
location is given in Appendix A. 
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(5a) 

 

(5b) 

 

The optimum size of the local search areas for ordinary kriging is generally dependent 
on the particular data. There are differing opinions on the subject of what is an 
appropriate search radius. The number of sample pairs contributing to an experimental 
variogram is generally small at short lags, increases to a maximum at intermediate 
separations, and then declines as there are very few pairs of points at large lag 
separations. Thus, the most reliable data in a variogram plot tend to be at intermediate 
lag separations. This information can be used when fitting the model variogram to the 
experimental data but it could be additionally enforced by restricting the search radius 
used in a kriging calculation. In this case, the search radius would not exceed half the 
variogram range. However, it is also suggested that a radius even greater than the 
range could be used (Isaaks and Srivastava, 1989). Investigations using the Bryansk 
data (Section 5) were carried out to determine the optimal isotropic (circular) search 
radius. The global dataset containing 1226 points was used for this purpose, so it is 
clearly not a calculation which could be performed in a realistic accident situation when 
there are more likely to be a few tens of measurements at most. However, it gives a 
useful guide as to the ‘rule-of thumb’, which might be applied when choosing a search 
radius for other data sets. For this experiment, the technique of cross-validation was 
used, as described in Section 3.1.2. 

The Bryansk global data were modelled with a nugget, a spherical model of range 
7.9km and a Gaussian model with range 25.4km. Ordinary kriging was carried out using 
these models and a selection of isotropic search radii between 1 and 50km. It was 
found that the mean cross-validation error was the same for search radii between 10km 
and 50km (-0.023Bq), and that this error increased with further reduction of the search 
radius. Using a greater search radius led to no further improvement in the estimate. It 
may be expected that large-scale trend effects (see Section 3.1.2.3) could reduce the 
reliability of estimates reliant on data at large lags for some datasets. Thus, these 
results support the idea that it is appropriate to use a search radius approximately equal 
to the variogram range. 

3.1.2.3 Kriging with a trend 
In both simple and ordinary kriging, the assumption of local stationarity is made; that is, 
the mean value of the variable over the search area is assumed constant. However, as 
discussed in Section 3.1 above, in some circumstances a trend is observed in the data 
such that the mean varies over the search area and it is therefore no longer locally 
stationary. This idea is illustrated schematically in Figure 7, where random fluctuations 
take place around a mean that is also changing. 
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FIGURE 7 Illustration of a non-stationary phenomeno n. 

 

Kriging with a trend, or universal kriging, is a variant of ordinary kriging that can 
incorporate the effect of a trend on the local mean. It does not require prior knowledge 
of the mean, but does require a model to be supplied for the trend surface. The 
universal kriging algorithm can generate the trend model by fitting a polynomial function 
to the local data. Alternatively, the trend can be supplied as an external (secondary) 
variable*. 

Kriging with a trend uses a random function model that is expressed as the sum of a 
trend and a residual. The variogram is calculated for the residuals, and used along with 
the specified trend to krig the original data. The choice of trend is to some extent 
arbitrary in that the variation can usually be decomposed into trend and residuals in 
several ways, none of which, of necessity, is clearly favoured by the underlying physics. 

When applying a trend as an external variable it is the shape of the trend that affects 
the estimation by introducing changes to the relative size of nearby residual 
measurements. This trend surface is rescaled for the local search area surrounding 
each location where an estimate is required. 

A requirement for kriging with a trend is the specification of a model variogram of the 
residuals from that trend. Whether the trend is defined as a polynomial surface or by 
means of an external variable that is locally rescaled, this may prove to be difficult. The 
practical solution adopted is usually to identify a zone in which the trend is less 
dominant. The experimental variogram is created from measurements in that weak-
trend zone. This has the drawback in that it reduces the amount of data on which the 
variogram is based. It can also be problematic if such a zone cannot be identified. 

If the density of data is sufficiently high that it is possible to work with a small search 
radius, there will be little difference between ordinary kriging and kriging with a trend for 
estimates within the interior of the estimation area (Journel and Rossi, 1989). This is 

 
*An alternative to the polynomial approach to the same basic division is to use neural network kriging, 
(see Higgins and Jones, 2003). 

Random fluctuations
about mean value
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because ordinary kriging re-estimates the local mean for each search area, and can be 
considered as kriging with a trend where the trend is the constant local mean. In the 
interior, the local mean is very similar to the trend value for a small search area. When 
extrapolating beyond the edge of the dataset, the algorithm has to rely increasingly on 
the trend, whether it is given explicitly when using kriging with a trend or calculated by 
ordinary kriging as the local mean for the data at the edge. Journel and Rossi 
recommend that ordinary kriging is used in preference to kriging with a trend if only 
interpolative estimates are required, unless there is a good physical reason for the 
phenomenon being modelled to be explicitly decomposed into trend and residuals. 
Kriging with a trend has been investigated within SECTAR and compared with ordinary 
kriging using data from Tomsk (see Section 4.2). The approach was justified in this 
case, as there was a reasonably obvious choice of a trend in the form of a Gaussian 
plume model representing the dispersion of radioactivity from a source through the 
atmosphere. 

3.1.2.4 Block kriging and change of support 
Kriging calculations of the types discussed above result in point estimates. It is often 
more useful or physically realistic to calculate an estimate of the average value of the 
variable over some area. One way to do this would be to calculate point kriging 
estimates at many locations within the area of interest and then to use them to calculate 
an average estimate. However, this becomes computationally intensive when many 
such ‘block’ estimates are required, and the problem is better attacked using block 
kriging, which is a more efficient method for obtaining identical results. Where point 
kriging uses the covariances between sample points and the point at which an estimate 
is required, block kriging replaces these with point-to-block covariances. 

A closely related topic is that of block support. The term ‘support’ is used to refer to the 
volume or area represented by the samples. Taking samples of the same variable at 
different levels of support can give very different results, with point support 
measurements typically having a greater variance than those with larger block support, 
which has a ‘smoothing’ effect. It is therefore important to consider the physical 
phenomenon being measured to decide whether samples that have been assigned 
point locations are really representative of area averages. Conversely, if measured 
values are to be compared with estimates obtained, for example, from a process model, 
it is important to ensure that the values being compared share a common level of 
support (see for example Section 6.6). 

3.1.3 Cokriging 
Cokriging is an extension of the basic kriging algorithm which allows one or more 
supplementary variables, which are spatially correlated (or assumed to be correlated) 
with the primary variable of interest, to be included in the estimation process. This is 
potentially useful if there are few samples of the quantity of interest but a greater 
number of measurements of the correlated variable. The development of the method is 
very similar to kriging with a single variable and derivations can be found in, for 
example, Chiles and Delfiner (1999). Estimates are calculated from a linear sum of the 
primary and secondary variables with appropriate weighting factors and suitable 
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constraints on the weights to ensure an unbiased estimate. Cokriging will only improve 
on the estimates of ordinary kriging when the primary variable is appreciably 
undersampled. It has been shown (Goovaerts, 1998) that in the isotopic case, where 
values of primary and secondary data are available at all measurement locations, mean 
absolute errors using ordinary kriging are not reduced when cokriging is used, since the 
relatively weak influence of the secondary data is ‘screened’ by the primary data at the 
same location. If more secondary than primary data are available over the estimation 
area, then a cokriging estimate may be able to provide an improvement over ordinary 
kriging. However, the respective spatial coverage of the primary and secondary data 
also needs to be considered (see Section 6.5). The particular requirements to be met 
and some of the difficulties associated with the technique of cokriging are discussed in 
more detail in Appendix B. 

A variation on the standard approach to cokriging is the much simpler collocated 
cokriging (Xu et al, 1992). In this method, an estimate is calculated by using the primary 
data within the search radius and a single secondary datum at the required location of 
the estimate. This simplifies the variogram modelling for cokriging considerably (see 
Appendix B) and since a secondary datum at the location where an estimate is required 
will receive much greater weighting than more distant secondary data, including this 
more distant data is unlikely to result in a very much better estimate. The practical 
application of the technique is clearly dependent on the organisation of the sampling 
scheme; given that measurements are currently made by several different 
organisations, it is quite possible that the measurements of the sample type chosen as 
secondary data will not cover all the locations where estimates of the primary sample 
type are required, in which case the collocated cokriging option is ruled out. Some 
experiments in applying cokriging to the Windscale dataset are discussed in 
Section 6.5, and they illustrate that one of the principal difficulties in using the technique 
with post-accident measurements is the choice of the most appropriate secondary data. 

3.1.4 Simulations 
Geostatistical simulation differs from estimation (ie kriging) in that simulation attempts to 
model the variability in the surface. Kriging obtains the best estimate value of the 
quantity of interest at a given location. However, a surface generated in this way is likely 
to be unrealistically smooth. In simulation, a surface, known as a realisation, is 
generated which has similar variability properties to the real surface but at the expense 
of accuracy at any specific location – ie its shape, roughness, etc, should resemble the 
real surface. The difference between the output of the two techniques is illustrated in 
Figure 8.  

Figure 8a is an imaginary cross-section of land with three measurement points. 
Figure 8b shows the surface which might result if the three points were used to 
generate an estimate of the cross-section using kriging. The resulting surface has an 
estimate at every location but it is very smooth and does not really bear much 
resemblance to the real landscape. Figure 8c is one possible realisation generated by 
simulation. It is closer in appearance to the real situation although an overall measure of 
accuracy would indicate that it is a worse estimate than the kriged surface. 
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FIGURE 8 Comparison of (b) kriging and (c) simulati on estimates based on 3 spot height 
measurements of a cross-section of land (a). See te xt for explanation. 

 

Realisations are generated using a random number based algorithm that obtains its 
information about the spatial structure of the phenomenon from the variogram. The 
most common use of simulation is to calculate the probability distribution of an event 
occurring, for example the probability that, if measured, the concentration of 
radioactivity at some point will exceed a given level. Large numbers of equally probable 
realisations are generated, each of which is a surface passing through the known 
measurement points (a simulation, which is subject to this condition, is termed a 
‘conditional simulation’) but differing from the other realisations between the 
measurement points. At locations far from any measurement points, the values of the 
different realisations will be more widely distributed than they are closer to 
measurements, where more information is available, and at the measurement locations 
themselves the distribution collapses to the single known value (or to a distribution 
which depends on measurement error). This is illustrated in Figure 9. 

FIGURE 9 Probability distributions from results of simulation using the three measurement 
points of Figure 8(a). Figure 9(a) shows the actual  cross-section as a bold line, along with 5 
possible realisations based on the measurements. Pr obability distributions (see text for 
explanation) are considered halfway between measure ments at A, near a measurement at B, 
and at a measurement location, C. Figure 9(b) shows  how the distributions vary with proximity 
to a measurement location. 

Figure 9a shows the three measurement locations on the cross-section of Figure 8, 
along with five realisations. The probability distributions are considered at A, B and C 
where A is midway between two measurement points, B is quite close to a 
measurement and C is at the location of a measurement. The probability distributions 
for the simulated value at these locations are shown in Figure 9b, and from these the 

A B CA B C(a) (b) 

(c) (a) (b) 
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probability that the land height exceeds a given value at A, B or C can be estimated. It 
can be seen that the probability of this height being greater than the height marked by 
the dotted line is about 50% at A, about 5% at B and 100% at C, because the height at 
that point has been measured and is known within experimental error. 

3.1.4.1 Sequential Gaussian simulation 
All of the simulations carried out within SECTAR have used the simulation algorithm 
SGSIM from GSLIB (Deutsch and Journel, 1998). This is an implementation of the 
sequential Gaussian approach and has been chosen because it is a standard and well-
used method suitable for continuous variables. A number of other algorithms exist 
which may be more appropriate in other circumstances, such as when working with 
categorical variables, but they will not be considered further in this report. The general 
theory behind Gaussian simulation will be discussed here and the results of its 
application to particular datasets presented in Sections 5.2, 6.3 and 6.4. The technique 
has been used to generate probability contour maps and as an aid in determining where 
further measurements should be taken, to reduce the uncertainty in contamination 
estimates. 

A sequential simulation is one in which the conditioning data for any location includes 
not only the measured values but also all previously simulated values within a specified 
region around the location. When a single quantity is to be simulated, it can be 
represented as the realisations of a random variable Zi at N nodes arranged on a grid. 
The realisations are conditioned, initially by a set of n measurements over the area 
covered by the grid, to give the conditional cumulative density function (ccdf)* of 
Equation 6. 

(6) 

An N-variate sample (ie a realisation) can be drawn from this ccdf using the univariate 
ccdfs at each grid node as follows: at the first grid node, draw a value from its univariate 
ccdf with the n measurement values as conditioning data. Move to the next grid node 
and draw a value from its univariate ccdf, using the n measurements plus the first 
simulated value as conditioning data. Continuing this process for every node, the 
number of conditioning data increases until the Nth node is reached, where the 
conditioning data set will contain n measurement values plus (N-1) simulated values 
from the previous nodes. (The order in which the nodes are visited is determined by a 
random number seed, which may, or may not, be changed if multiple realisations are 
required†.) 

Sequential simulation therefore requires the determination of the N univariate ccdfs, 
given by Equation 7. 

 
* Note not to be confused with a complementary cumulative distribution function (ccdf) commonly used 
in probabilistic risk analysis studies to present results.  
† If nodes are visited in the same order for each realisation then kriging weights only need to be 
calculated once (their values are independent of the sample values) saving considerable CPU time. 
However, realisations may then be too similar. 
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(7) 

In sequential Gaussian simulation, these ccdfs are all assumed Gaussian and their 
means and variances are calculated by kriging. The Gaussian simulation algorithm 
works with the normal score transformed* data rather than the raw measurements; the 
variogram must therefore be modelled for these data with the constraint that the nugget 
and sill must sum to one. When a simulated normal-score value has been calculated for 
all nodes, a back-transform is applied to obtain values for the variable of interest. 

Simple kriging is usually the most appropriate technique to use when carrying out the 
simulation of the normal-score transformed data because a stationary random function 
is assumed in the theoretical development. Deutsch and Journel (1998) give a number 
of suggestions as to when a non-stationary random function model could be used 
(including the use of a trend model). For example, if there are sufficient data, using a 
different stationary model for different areas of the grid, each with its own normal score 
variogram. Alternatively, a stationary normal score variogram can be used with a non-
stationary mean for the random variable which is re-estimated at each location using 
ordinary kriging. However, they warn that this usually gives poorer results and state that 
simple kriging should be the ‘preferred algorithm for the simulation of continuous 
variables unless proven inappropriate’.  

Within SECTAR, Gaussian simulations have been run for the Bryansk and Windscale 
datasets. The Tomsk data were considered unsuitable for these experiments, as they 
are strongly trended, and as discussed above this presents problems for standard 
simulation algorithms. The Windscale data are also trended due to both the effect of 
plume dispersion and terrain on deposition and the simulation studies undertaken, 
discussed in Section 6.3, primarily use ordinary kriging. The consequence of using 
ordinary kriging is that data values may be spread beyond their range of influence ie the 
reproduction of the variogram model may be poorer (Deutsch and Journel, 1998). 
However, it is unlikely that in the early stages of an event there will be sufficient data to 
consider applying simple kriging over a patchwork of areas, each with its own stationary 
model. The choice is therefore between applying simple or ordinary kriging using a 
single stationary model. The quality of the resulting simulations is assessed in 
Section 6.4 using the techniques of Section 3.1.4.2. 

3.1.4.2 Accuracy and precision of simulations 
The realisations produced by simulations can be used to model the probability 
distributions of the unknown true values at each point in space. However, considering 
the theoretical assumptions and practical realities involved in such calculations it is 
important to have a method of validating the results, analogous to the cross validation 
and jack-knifing used in the assessment of kriging. The question which needs to be 
considered is therefore how ‘good’ the modelled distributions are in relation to the ‘true’ 
values. Deutsch (1997) has proposed definitions of accuracy and precision for 

 
* The normal-score transform converts the histogram of the data to a normal distribution, whilst 
preserving the quantiles of the original distribution. It therefore does not alter the spatial correlation 
between values in the distribution. 
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simulations, which quantify this problem. The definitions are based on the ‘symmetric 
probability intervals’ of the modelled distributions. A probability interval is ‘symmetric’ if 
a random variable taken from the distribution has an equal probability of being below 
the interval as above it. The ‘width’ of a probability interval is defined as the probability 
that a random variable taken from the distribution is inside that interval. For example, for 
a symmetric probability interval of width 0.5, a random variable has probabilities of 25%, 
50% and 25% of being below, in and above the interval respectively. 

Deutsch (1997) defines accuracy and precision as follows. In these definitions, p refers 
to the width of the symmetric probability interval: 

“A probability distribution is ‘accurate’ if the fraction of true values falling in the p-interval 
exceeds p for all p in [0,1]”. 

“The ‘precision’ of an accurate probability distribution is measured by the closeness of 
the fraction of true values to p for all p in [0,1]”. 

For each fraction, p, it is expected that p of the true values will lie in the symmetric 
probability interval of width p, eg, 50% of the true values should lie in the 50%-interval of 
their associated distribution. A simulation is deemed accurate if there are at least as 
many true values as expected for every possible width of the probability interval. 

Precision is a measure of how closely an accurate simulation resembles the ideal 
situation, where exactly p of the true values lie in the probability interval of width p. It is 
possible, for example, to imagine distributions in which 100% of the true values all lie in 
the 80% symmetric probability interval of their simulated distribution. In this case, the 
simulation is suggesting that there is a high likelihood of values outside the range 
observed, ie the simulated distributions are too wide. Thus, the simulation is accurate 
but not precise. A more precise simulation would include all the true values within say, 
the 95% symmetric probability interval*. A good model has both high accuracy and high 
precision. Deutsch (1997) quantifies these ideas, giving expressions which may be 
evaluated for the accuracy, precision and goodness (a related quantity which gives an 
overall measure taking account of both accuracy and precision). A model, which is 
accurate but not precise, is being overly pessimistic about the degree of uncertainty. 

The accuracy and precision of a chosen model can be checked using either cross-
validation or jack-knifing (see Section 3.1.2). The general approach is to use a large 
number of realisations to produce a large number of simulated values at each location 
where a real measurement value is known. From these values, the conditional 
cumulative density function (ccdf) may be plotted for each location. For each p interval, 
an indicator function ξ(p) can be defined at each location such that ξ(p)=1 when the true 
value at that location falls within the p interval, and ξ(p)=0 when it does not. For each 

interval p such that 0 ≤ p ≤ 1, the average indicator over all locations, )( pξ  is then the 
proportion of locations where the true value falls within the p interval. The average 
indicators can then be plotted against the probability interval to obtain a graph, from 
which the accuracy and precision of the simulation may be assessed, see Figure 10. An 

 
* In terms that are more familiar, an accurate estimate will contain the true value within the error 
bounds and a precise one will have narrow error bounds. 
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accurate simulation will generate a plot in which )( pξ  ≥ p for all 0 ≤ p ≤ 1. The precision 
is judged by how close the graph of )( pξ  against p is to the 45o line on the graph, ie the 
line corresponding to the situation when the proportion of true values falling within each 
p interval is actually equal to p. Deutsch favours the graphical accuracy plot over the 
use of the numerical measures of accuracy, precision and goodness for evaluating the 
accuracy and precision of a simulation (Deutsch, 2000). Plots of this form, produced for 
the Windscale simulation trials, are shown and discussed in Section 6.4. 

FIGURE 10 Features of accuracy plots. (a) A plot in dicating good accuracy and precision. (b) A 
plot indicating that the ccdf is too wide, it is ac curate but not precise. (c) A plot indicating that 
the distribution is too narrow, it is not accurate.  

3.2 Bayesian methods 

Bayesian methods cover the entire gamut of statistical modelling, differentiating 
themselves from the classical frequentist approach by introducing the concept of a 
subjective probability that exists without the need to postulate an infinite number of 
trials. The subjective probability can, through the use of Bayes’ theorem, be changed 
under the influence of evidence ie as trials progress the Bayesian estimate will become 
more similar to the results of frequentist trials. There remain arcane arguments between 
frequentists, Bayesians and philosophers as to the nature of probability, and the validity 
of Bayesian and other approaches. However, Bayes’ theorem and the tools of the trade 
are not generally in dispute and the approach provides many practical advantages. 

In the context of data assimilation after an accident, Bayesian analysis can provide a 
method of evolving the predictions of models to take account of measurement 
information as it arrives. Thus, the prior expectations of critical model parameters are 
updated through the influence of measurements*, and the uncertainty in predictions is 

 
* In the statistical description of a process, the model parameters characterising the phenomena are 
not single numbers but random variables. Measurements provide information to modify the 
distributions of these variables and consequently the expected value of the model (see Section 3.2.1). 
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reduced as they become increasingly based on measurements rather than on the 
generic model* and subjective information used initially. 

The implementation of the Bayesian approach under SECTAR has been carried out in 
collaboration with Professor O’Hagan and colleagues in the statistics department of 
Sheffield University, and further technical details may be found in Kennedy et al (2002). 
A simple Gaussian plume atmospheric dispersion program (Clarke, 1979) was modified 
to take account of measurement data when estimating deposition values. The resulting 
‘Bayesian’ dispersion program goes further than adjusting the model parameter values 
in a calibration process and includes consideration of model inadequacy which gives a 
measure of how well the predictions of the process model compare with the observed 
data (Section 3.2.2). The main features of this Bayesian program are described in the 
following sections. 

3.2.1 Model parameter uncertainty 
The predictions of the Bayesian program before any data are collected are based 
entirely on the output from a process model (in this case the Gaussian dispersion 
model). In reality, few if any, of the parameter values required by this process model will 
be known exactly. However, in practice, most of the values are known approximately 
which allows a tractable result, with uncertainty, to be produced by assuming that only a 
small number of important parameters are uncertain for any particular scenario.  

In this implementation, the source term Q and the deposition velocity VG of the 
dispersion model are assumed to be unknown but can be calibrated against field data 
when these become available. For generality, it is assumed that there is an unknown 
level B of background contamination, which is added to the predicted deposition level 
as a constant. (This background may be due to deposition, which occurred earlier in the 
accident if there are multiple releases or even deposition from a previous accident). The 
effective process model output may then be written in a form consistent with the 
information from measurements as 

(8) 

where (.) is the output of the process model for a single plume (the contribution from 
additional plumes could be added if required). 

Beliefs about the 3 parameters (B, Q, VG) are described using a probability distribution. 
The parameters Q and VG have been singled out because they are both difficult to 
quantify and will have a significant effect on the predictions. 

/HW� � � �ORJ�Q), log(VG), log(B))* denote the vector of the 3 parameters whose values 
are unknown. It is then assumed a priori�WKDW�EHOLHIV�DERXW� �FDQ�EH�DSSUR[LPDWHG�XVLQJ�
a Normal distribution, which is written as: 

 
* The Bayesian formulation employed has the option of minimising the influence of an inadequate 
model if interpolation using only the available measurement data will provide a better result (see 
Section 3.2.2). 

),,,(),,( GVQyxByx ηη +=
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 ~ N( m, v) 
     (9) 

 
Here m is the prior expectDWLRQ�RI� �DQG� v LV�WKH�SULRU�FRYDULDQFH�PDWUL[�IRU� ��([SHUW�
knowledge can be included in the model by specifying suitable values for m and v. For 
H[DPSOH��WR�H[SUHVV�YDJXH�LQIRUPDWLRQ�DERXW� ��ODUJH�GLDJRQDO�HOHPHQWV��YDULDQFHV��IRU�

v would be used. All other parameters for the plume model are fixed at suitable values 
for the scenario under consideration. Of the many parameters that are included in the 
formulation of a Gaussian dispersion model, these were chosen as representing the 
most critical and event specific. Additional uncertain parameters could be added to the 
formulation, but as more parameters that are uncertain are included, more 
measurement information will be required to narrow the uncertainty ranges. However, 
as the chosen parameters will only tend to scale the deposition it may be appropriate in 
future studies to examine uncertainty in other parameters of the process model. The 
general method is not restricted to this or any other particular choice of deposition 
model. Different process models could easily be used to provide a prior estimate, but 
simple models are favoured for several reasons: 

a The process model is only used as a starting point, and observational data are 
used increasingly to modify its predictions. In principle, if there were enough 
data the predictions would be effectively independent of the process model. 

b Complex process models typically include more unknown parameters. 
Specification of prior probability distributions for these parameters can be a 
problem. The number of unknown parameters also has the most significant 
impact on computation time for the Bayesian analysis. This is because with p 
unknown parameters, a number of p-dimensional numerical integrations are 
required. 

c Complex process models may themselves require a significant amount of 
computing time. Although the influence of the process model is reduced as 
more data are obtained, large numbers of model evaluations are required in 
order to learn about the model inadequacy (see Section 3.2.2) and update the 
probability distribution for the process model parameters. Slow complex 
process models will therefore slow the Bayesian analysis significantly. 

With only two uncertain model parameters and the Gaussian plume model, the method 
can be used to plot contours of predicted deposition and variance maps within a few 
minutes for each new set of observations. 

                                                                                                                                                               
*EacK�HOHPHQW�RI� �LV�VWULFWO\�SRVLWLYH��DQG�LW�LV�FRQYHQLHQW�WR�ZRUN�ZLWK�WKH�ORJ�VFDOHV��SDUWLFXODUO\�ZKHQ�
integrating with respect to these parameters. 
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Log {d(x,y)} =  log{ (x,y, )} +I(x,y, ) 

3.2.2 Model inadequacy 
In most situations, the process model will not predict the actual deposition with a great 
deal of accuracy, even if the ‘correct’ input parameters are known*. Thus, in addition to 
the parameter uncertainty described above, the prediction must be corrected for ‘model 
inadequacy’. Model inadequacy is defined to be the difference between the true values 
at a particular location and the prediction of the process model at that location when the 
best parameter values are used to evaluate the process model. The best values of the 
model parameters are initially unknown but may be solved for approximately by 
calibrating the process model against the available measurement data obtained for that 
particular event. Before the results of any measurements are available, generic 
parameters are used which represent the best fit of the model to a variety of data. 
These parameters may be estimated based on previously published data, if it is 
considered suitable, or by expert judgement. 

Let d(x, y) denote the true deposition at co-ordinates (x, y) and let (x, y, ��GHQRWH�WKH�
corresponding process model output, where � LV� GHILQHG� DV� DERYH�� 7KH� DVsimilation 
model assumes that for a known�YDOXH�RI� � � � determined, for example, by calibration 
or expert judgement, the deposition can be written as: 

(10) 

 

where I(x, y, ) is the model inadequacy function and  is a regression parameter to be 
estimated from the data. The regression parameter allows for a systematic discrepancy 
between the process model representation and reality. Thus, the process model may 
predict the deposition to be of broadly the same form ie to have areas of relatively high 
or low deposition similar to that observed but to vary either too much or too little 
depending on whether  is below or above 1. It is important to note that this definition 
LQYROYHV� NQRZQ� YDOXHV� IRU� WKH� SDUDPHWHUV� LQ� �� 7KXV�� WKLV� WHUP� IRUPV� RQH� SDUW� RI� D�
KLHUDUFKLFDO� PRGHO�� LQ� ZKLFK� � DQG� >d(x, y) | ]† are evaluated separately. It is more 
natural to think about [d(x, y) | @� LQ� WKLV�ZD\�DQG�GHDO�ZLWK� XQFHUWDLQW\� DERXW� �DV�D�
second level of modelling. 

3.2.3 Modelling the inadequacy function 
The inadequacy function I(x, y, ) is modelled as a Gaussian process, for reasons of 
simplicity, tractability and flexibility. Modelling the function in this way allows the 
correlation between its values at different locations to be represented in one of several 
simple alternative forms. The properties of the Gaussian model are as follows: 

For any (x, y, ), the expected value of I(x, y, ) is a constant �and for any pair of points 
(x, y) and (x , y ) the covariance function is: 

 
* ‘Correct’ can take on a variety of meanings depending on the application. It may, in some cases, 
refer to the parameters that minimise the least squares error between the model and measurements. 
However, this might result in a very poor representation in key areas, in which case parameters may, if 
possible, be chosen to improve predictions in these key areas. 
† The probability of depoVLWLRQ�G�JLYHQ�D�SDUWLFXODU�  
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(11) 

 

where, for example, the correlation function c((x, y), (x’, y’ )) can be assumed to have the 
following product Gaussian form. 

(12) 

 

Thus, for any set of co-ordinates (x1, y1, )…(xn, yn, �, the corresponding values of I(·) 
have a multivariate Normal distribution. This property is true of any Gaussian process 
by definition. 

The choice of the covariance function is important, as this characterises the belief in the 
smoothness properties of the deposition (the quantity of interest in the assimilation 
model). It defines the nature of the local influence on the observed data points and acts 
in an analogous way to the variogram used in geostatistics. In the case of the product 
Gaussian correlation form, for example, the constants, bx, by, and 2 are parameters of 
the Bayesian model, whose values are estimated from the data. For example, large 
values of bx and by indicate large local variations in the deposition value, so that a 
measurement can only provide information about neighbouring values within a small 
region*. The product form for c(·,·), through the adoption of different values for bx and by, 
can also be used to characterise differences in the extent of correlation in the downwind 
and crosswind directions following deposition from the atmosphere in an analogous way 
to the use of an anisotropy ellipse in geostatistics. 

The inadequacy term acts to ‘correct’ the predictions of the process model if the 
measurements indicate that it provides a very poor representation of the phenomenon 
under study. Under these circumstances, the action of the inadequacy term ensures 
that the contribution of the process model to the final estimate will be very small and the 
technique will produce a form of kriging estimate using the measurement data†. The 
ability of the technique to handle inadequacy is particularly important when models are 
used in the initial assessment of consequences of actual accidents. In this case, only 
simple models that require only the small amount of available input data can be used, 
and it is therefore unlikely that they will be able to represent the physical situation 
accurately. For example, Gaussian dispersion models reproduce the general trend of 
atmospheric dispersion over a short distance but are not well suited to handling 
changes in wind direction, rainfall or complex terrain. This will be demonstrated in 
Section 6.7 where the results of using the Bayesian program with Windscale deposition 
data are presented. The program has also been used with data from Tomsk, which is 
well described by a Gaussian plume model. These results are presented in Section 4.3. 

 
* Note the correlation structure assumed is generally simpler than the form used in geostatistics, which 
may be composed of several structures with distinct ranges of influence. 
† The calibration parameter ρ (see Equation 10) will reduce the influence of the process model to let 
the inadequacy term improve predictions. 
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3.3 Bayesian assimilation 

After the initial (prior) distributions for the calibration parameters and the model 
inadequacy term have been established, the Bayesian program is able to update them, 
as more deposition measurements become available. This allows the posterior 
distribution of the deposition to be calculated, that is, the probability density function of 
deposition estimates, which have been revised given the additional information from the 
measurements. The Bayesian prediction takes account of the uncertainties in the 
measurements, the model and in the calibration parameters; it also estimates the 
scaling parameter and the model inadequacy term. This process of refining prior 
distributions and inadequacy estimates as more data arrives is a form of Bayesian 
assimilation.  

4 APPLICATION OF TECHNIQUES TO TOMSK 

The Tomsk aerial gamma survey data was the first to be used within the SECTAR 
project. As discussed in Section 2.1, this is a set of 812 measurements of 106Ru made 5 
months after the release*. However, many of these 812 measurements were below the 
limit of detection (LoD) of the airborne detector used, thus making them less useful. 
Comparisons with the results of model calculations were generally made with and 
without the aid of these censored measurements, which when included were all given 
the value of the lower LoD (3700 Bq m-2). The deposition pattern appears to be 
remarkably similar to the idealised form produced by a simple Gaussian dispersion 
model (Clarke, 1979). However, although this classic plume shape can be discerned, 
the plume predicted by such a model (see Figure 2) is narrower than the one observed, 
even after adjustment of the model parameters (as advised by Shershakov et al., 1995). 
Another feature of the Tomsk data is that the detector used in the aerial survey has a 
‘footprint’, ie the area on the ground contributing to the detector signal, which is of the 
order 100-150m across. Thus, the measurements have larger support (see 
Section 3.1.2.4) than ground-based measurements. Larger support will smooth out 
small-scale variations in the data, so the results will be averaged across the footprint. 
This has little impact on the calculations carried out for Tomsk, because of the lack of 
data with different support. However, it would need to be considered if ground based 
data were available and the two sources of information were to be used together. 
Support is addressed in the analysis of the multiple data types available in the 
Windscale data set (see Section 6). 

These complications aside, the data from Tomsk can be described as ‘simple’ in that 
they are as ideally represented, as any real measurements can be, by the predictions of 
a simple atmospheric dispersion model. This however, makes any demonstration of the 
benefits of statistical techniques using this data into a difficult test case, as they must 
perform particularly well to improve upon the predictions of a simple process model. 

 
* Other radionuclides were measured but did not provide distinctive additional information and were 
not used.  
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The first experiments were designed to compare the effectiveness of ordinary kriging 
and kriging with a trend using datasets of various sizes. Twelve subsets, four each of 
20, 40 and 60 points, were drawn at random from the global dataset, excluding 
censored values. The aim of the experiments was to use these subsets to estimate the 
non-sampled values in the global data set, including censored values. Excluding the 
censored data from the global data set introduced a bias towards high values that would 
then be reflected in a similar bias in the subsets drawn. Although not exactly 
characteristic of aerial survey sampling this was likely to be a realistic representation of 
ground survey sampling where, in many cases, interest would be drawn to areas of 
expected high deposition. The subset sizes were chosen to represent the paucity of 
data available in the early stages of an accident. From a rigorous geostatistical 
perspective, the smaller subsets are at (or beyond) the extreme limit of acceptability, 
because it is difficult to form a variogram with such a limited supply of data. This is an 
important issue for the practical application of geostatistics to accident data as any 
statistical technique chosen should be able to provide a timely analysis using the 
measurements available. 

Variograms were modelled for each of the subsets and for the global dataset (including 
censored values set to 3700 Bq m-2). This process became more difficult as the size of 
the subset decreased since in this situation the empirical variograms had a tendency to 
be erratic and to differ greatly from the global dataset variogram. For example, although 
there was clearly anisotropy in the global dataset, with the principal axis at 30°, this 
could be lost or completely distorted in the subsets and could only be inferred from 
external information such as wind direction. The kriging routine chosen, ktb3d, (Deutsch 
and Journel, 1998) allowed the specification of a search ellipse which reflected the 
anisotropy of the datasets. 

The comparison between the subsets was performed using a jack-knifing procedure*. 
For the Tomsk data, these locations were divided into the measurements which were 
above the LoD and those which were below it (and were all set to 3700 Bq m-2). The 
jack-knifing was performed on the two groups of data separately because it was 
expected that the technique would perform differently for the censored measurements, 
which were on the edge of the plume and therefore among the least well positioned for 
estimation. Additionally, because the true values for these data were unknown, it was 
expected that estimations of kriging error at their locations would also be less reliable. 

The subsets were also jack-knifed in the same way using the variogram model derived 
from the global data set, although obviously this information would not be available at 
the time of an accident. These calculations were carried out to investigate the effect of a 
better variogram model on the results, if such a model could be obtained or derived. 

Finally the subsets were kriged to generate estimates on a regular grid; to give 
deposition patterns that could be assessed visually. Departures from the expected 

 
*Jack-knifing as previously introduced is when subset data are used to generate kriging estimates at 
the remaining, non-subset, locations in the global dataset. The kriging error, defined as the difference 
between the kriging estimate and the measured value, is then calculated at these non-subset 
locations. 
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pattern, such as unexpectedly high or low activity regions in the plume, were 
qualitatively evaluated. 

The experiments described above were performed using both ordinary kriging and 
kriging with a trend. It is clear from Figure 11 that there is a trend in the data – its 
marked plume shape. On this basis, ordinary kriging, with its assumption of a constant 
local mean, was not expected to be the most appropriate technique. It was nevertheless 
included since, as it only uses the raw data and a variogram, it provides a simple 
baseline against which other techniques can be compared. The ordinary kriging 
experiments are introduced in Section 4.1 but detailed discussion of the results is 
deferred until they can be compared with results from kriging with a trend in Section 4.2.  

FIGURE 11 Tomsk global data set. 

4.1 Ordinary kriging 

Trial runs using ordinary kriging with a short search radius (2-4 km, the approximate 
range of the variograms) produced patchy surfaces, particularly when using the smaller 
subsets. Increasing the search radius produced more continuous surfaces but gave 
greater errors and problems, particularly at the edge of the estimation area. This was 
attributed to the mean over the larger search area being more like the global than the 
local mean, which would reduce the chance of ordinary kriging being able to perform 
well. Ordinary kriging re-estimates the local mean for each search area and would 
therefore require a very small search area if it was to produce good estimates using 

Sample data (kBq m-2) 
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data which had a strong trend, ie, a rapidly changing mean. A strategy of using a large 
search radius but restricting the maximum number of points used to produce a kriging 
estimate at a location to a small number was adopted. This had the effect of only 
including distant points in an estimate if there were insufficient data close to the 
required location. This balanced the conflicting demands of minimising the error and 
maximising the estimation area. 

If all of the Tomsk data are used, ordinary kriging will largely cope with the trend at 
interior locations. This is because the measurements are at a sufficient density for the 
change in the mean that occurs between data points to be low (see Section 4.2). 
Figure 12 shows the experimental and modelled variograms for the global dataset in the 
major and minor anisotropy directions, and the ordinary kriged estimated surface.  

FIGURE 12 Tomsk global dataset variograms in (a) ma jor and (b) minor anisotropy directions, 
with (c) ordinary kriging estimates made using this  variogram model. 

 

Figure 13 shows the variograms and kriged surfaces for example subsets, of 20 and 40 
points respectively. All variograms were modelled using a Gaussian model with a 
nugget. It was felt that the Gaussian model might be an appropriate choice given that 
the dominant underlying process is often represented deterministically using a 
Gaussian dispersion model. 

Although all of the deposition patterns for the subset plumes show a general pattern of 
having high values in the middle of the estimated area and low values at the edge, the 
edges themselves are very ‘noisy’. There are patches on the edge where there are high 
values in otherwise low areas and vice versa. This effect was attributed to the less than 
ideal spatial configuration of the subset sample points. This meant that when estimating 
locations at the edge, the search radius had to extend to its maximum to include 
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enough sample points to generate an estimate. Under these conditions, the kriging 
algorithm is using a mean, which is not local to the edge and more like the local mean 
of the interior*. 

FIGURE 13 Variograms and ordinary kriging results f or Tomsk subsets. Part (a) shows the 
omnidirectional variogram for a 20 point subset, an d (b) the kriging results. An omnidirectional 
variogram is used for the 20 point sample as it is too small to determine the anisotropy. 
Variograms in the major (c i) and minor (c ii) anis otropy directions for the 40 point subset are 
illustrated in (c), with the corresponding kriging output in (d). 

 

The edge effects were most pronounced when an isotropic variogram model and search 
radius had to be used, for the 20-point samples. This observation is most likely due to 

 
* These will be referred to as Council Food Intervention Levels (CFILs). 
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the small sample size, as the dependence of the estimate on the precise parameters of 
the variogram is known to be weak (Wackernagel, 1995)*. 

These features are not surprising given the nature of the Tomsk data, which, as 
discussed above, does not really satisfy the assumptions of ordinary kriging. It was 
concluded that little that could be done to improve on the ordinary kriging estimates. 
The technique has the advantage of being simple to apply and therefore relatively quick 
but it is not appropriate for small, highly trended datasets or when it is important to 
make estimates near the boundary of the sample data. 

4.2 Kriging with a trend 

Trials using kriging with a trend are expected to show an improvement over the ordinary 
kriging results of Section 4.1. The technique can account for the non-stationarity of the 
data within the local search area in addition to local re-estimation of the mean provided 
by ordinary kriging. The trend component of the random function model was supplied by 
the plume shaped deposition profile generated by a simple Gaussian atmospheric 
dispersion model (Clarke, 1979). The predicted plume of deposition from such a model 
is shown in Figure 2 and repeated for convenience in Figure 14. Figure 14 appears to 
show the model output extending further than the observed deposition, but this is 
because the model predictions for the outer region of plume deposition are below the 
limit of detection (LoD). It was mentioned in Section 2.1 that the model used was refined 
to suit the environmental conditions of the accident. In particular, the deposition velocity 
and ground roughness length used were both greater than the generic default values 
recommended for the UK (Clarke, 1979). Much of the Tomsk area is covered by 
coniferous forest, whereas the default parameter values apply to open countryside. The 
defaults are appropriate for use in the early stages of an accident in the UK or 
elsewhere, if more site-specific information is not available. Should more refined 
estimates from a Gaussian dispersion model be required later, as in this case, the 
model can be re-run with site and event specific parameters. When applied to the 
Tomsk data, the use of default parameters in the model results in a deposition pattern 
similar to that of the refined model but with less material deposited within tens of 
kilometres of the site. The discussion of Section 4.3 illustrates how model parameters 
could be adjusted dynamically as new measurement information arrives. 

The variograms for the residual global data and subsets were modelled in a similar 
fashion to that undertaken previously when considering the use of ordinary kriging. 
However, in this case, the highly continuous nature of the Gaussian variogram model 
near the origin was not appropriate for modelling the residual noise. The spherical 
model was therefore chosen (however see Figure 19). When modelling the global 
variogram, shown in Figure 15(a), measurements located in the highest deposition area 
near to the origin of the release were excluded. This was the area where the trend was 

 
* What counts more than the details of the variogram is the type of continuity assumed for the 
regionalised variable (see Section 3.1) and the stationarity hypothesis associated with the random 
function (see Section 3.1.1). 
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strongest and obtaining appropriate residual information the most difficult. However, for 
the subsets this procedure would result in the further reduction of an already small 
number of points, so the entire subset was used. 

FIGURE 14 Output from a simple Gaussian plume model , using estimated source term and 
default parameters with the colour coding indicatin g where measured values are likely to be 
above the Limit of detection (LoD). 

FIGURE 15 (a) Omnidirectional variogram, and (b) su rface kriged with a trend for the Tomsk 
global dataset. 

 

As with ordinary kriging, the jack-knifing was performed for both the global and the 
subset variogram models. The results, for the global data and the subsets used in the 
ordinary kriging experiments, are shown in Figures 15 and 16 respectively. The surface 
in Figure 15 derived from the global data appears to be very similar to that derived using 
ordinary kriging in Figure 12. This, as discussed previously, was expected since both 

Output of Gaussian plume model (kBq m-2) 
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estimates use all 812 measurements. However, the area covered by the kriging with a 
trend estimates is larger than that for ordinary kriging, reflecting the larger search radius 
that could be used. 

FIGURE 16 Kriging with a trend on subsets of Tomsk data. (a) and (b) show the omnidirectional 
variogram and kriged surface for a 20-point subset.  (c) and (d) show the same for a 40-point 
subset. 

 

The Root Mean Square (RMS) errors from the jack-knifing of all subsets used in the 
trials are shown in Figure 17. The results are given for jack-knifing against remaining 
measurements in the global data set which were above the LoD, and separately for 
jack-knifing against those which were censored and had been set equal to the lower 
LoD. These results are further separated into those obtained using the subset 
variograms and those from using the global variogram. 



STATISTICAL ESTIMATION AND CHARACTERISATION TECHNIQUES FOR USE DURING ACCIDENT 
RESPONSE (SECTAR) 

36 

Considering first the ordinary kriging results, the expected result that larger subsets give 
smaller kriging error is not apparent except for the uncensored measurements. These 
measurements tend to be located in the interior of the plume, see Figure 1 and the 
discussion in Section 2.1. This illustrates that it is the spatial distribution of locations 
rather than the absolute number of measurements that is important for kriging with 
small samples. Consequently, ordinary kriging shows particularly poor performance in 
estimating censored data values, located, as they are, on the periphery of the sample 
measurements. The RMS errors are greater than for the uncensored data, and when 
the individual errors are examined, it is found that the technique consistently over-
estimates the contamination at these locations. The overestimation is such that the 
censored data are estimated to have values greater than the lower of the limits of 
detection (3700 Bq m-2). 

FIGURE 17 Barcharts indicating relative errors for (a) ordinary kriging and (b) kriging 
with an external trend, on subsets of 20, 40 and 60  points selected from the Tomsk 
dataset. Results are shown for four different subse ts of each size *. 

 
* In the legends, variogram is abbreviated as ‘SV’, in reference of the correct usage of Semi-Variogram 
(see Section 3.1.1). 
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In comparison, kriging with a trend almost invariably gives a better estimate than 
ordinary kriging. Thus, although the separation of the trend from the residual to create 
the required variograms is a difficult, and to some extent an arbitrary procedure, it does 
not appear to have a prohibitively detrimental effect on the estimates made. Kriging with 
a trend appears to estimate the censored measurements as well as the uncensored. 
Although an examination of the individual errors shows that censored measurements 
are generally over-estimated, this is by less than occurs when using ordinary kriging, 
and some estimates of the censored data are below the lower limit of detection. In a 
sense the algorithm locally fitted the surface shape as defined by the model to the 
available data within the search radius and kriged the resulting residuals to obtain local 
estimates. 

The definition of residual variograms for kriging with a trend proved difficult not only 
because of the strong trend but because the samples were collected by helicopter. The 
samples were collected in four sets of passes, two sets in a north-south direction and 
two sets taken across the plume (ie northwest to southeast). The subsets were sampled 
randomly, so samples that appear to be close in space may have been taken on 
completely separate passes of the helicopter. The height of the helicopter has a big 
impact on the limit of detection and potentially on the reading for any given level of 
deposition. Increasing the height of the helicopter not only leads to greater attenuation 
of the signal from the ground but averages that signal over a greater ground area. Thus, 
it could be argued that the correct residual variogram to use would be pure nugget. This 
position is supported by the plot of measurements from different passes along one 
transect as shown in Figure 18 where the deposition at particular locations was 
recorded by different passes. The intra-pass variability may be less than the inter-pass 
variability shown in Figure 18 but the overall expectation must be that the data are likely 
to have a reasonable amount of superimposed noise. 

Neither ordinary kriging nor kriging with a trend errors were significantly reduced by 
using the global rather than the subset variogram. This suggests either that the global 
variogram was not significantly better than the subset variograms, or that the 
dependence of the kriging estimate on the precise parameters of the variogram is weak. 
It has been shown (Chiles and Delfiner, 1999) that the latter statement is true. An 
imperfectly specified variogram will not cause the computed kriging estimates to differ 
greatly from the optimal estimates, as long as the basic models chosen reflect the 
general characteristics of the data and the behaviour of the variogram near the origin is 
correct. This is further demonstrated in Figure 19, which compares kriging, including the 
use of alternative variogram models, and Bayesian estimates. 



STATISTICAL ESTIMATION AND CHARACTERISATION TECHNIQUES FOR USE DURING ACCIDENT 
RESPONSE (SECTAR) 

38 

FIGURE 18 Pattern of aerial monitoring at Tomsk and  the effect on observed deposition. The 
points in the graph correspond to measurements in t he transect marked on the map, with 
distance measured along the transect line. It can b e seen from the graph that deposition 
measurements made at the same location vary dependi ng on the pass in which they were 
made. This variation is principally due to the vari ation in helicopter height from one pass to 
another. 
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4.3 Bayesian  

The Bayesian assimilation method developed for SECTAR by Kennedy and O’Hagan 
(Kennedy et al, 2002) and outlined in Section 3.2 has been tested using subsets of the 
deposition data from the Tomsk-7 accident. Figure 19 shows a comparison of the 
Bayesian and kriging approaches for a selection of the Tomsk subsets introduced in 
Section 4.1. The figure shows that the Bayesian and kriging techniques have a broadly 
similar performance when the RMS error is calculated using the non-censored data 
found in the interior of the plume. However, if only the censored data (found at the edge 
of the plume) are considered, the kriging results can be seen to over estimate. Ordinary 
kriging is particularly bad in this respect as it relies entirely on a local average 
concentration, which due to a lack of data is determined by values near to the centre of 
the plume. 

Figure 19 also shows the error in the estimated deposition predicted by a Gaussian 
dispersion model that used the source term and other model parameters determined by 
Shershakov et al (1995) that they thought best represented the particular features of the 
release. This fitting included the consideration of factors not considered in these tests of 
interpolation methods such as the ground roughness length. In addition to the refined fit 
of Shershakov et al (1995) the results of fitting the HPA-RPD default Gaussian 
dispersion model to the data using the respective subset results are shown. Model 
parameters are set to the standard values used by HPA-RPD and the source term 
adjusted using least squares to achieve the lowest RMS error between model 
predictions and measurements. The Bayesian model slightly outperforms this simple 
approach when the comparison is against the censored data. However, the reverse is 
true, although again not by very much when only non-censored data are considered. 
The Bayesian method is not an exact interpolator like kriging ie the estimated 
deposition at a sub-sample location will not be equal to the measured value supplied. 
However, the main reason for the relatively poor performance in the plume centre is the 
use of log values in the Bayesian formulation, which increases the importance of the 
low values found at the plume edge when applying the fitting procedure (see 
Section 3.2). The particular Bayesian implementation employed assumes that only two 
of the Gaussian dispersion model parameters are uncertain, namely the source term 
and the deposition velocity. It is therefore to be expected that the results will be similar 
to a simple fitting procedure when a Gaussian dispersion model is a good fit to the data. 

Bayesian calculations were also carried out for evolving data sets ie where a subset of 
40 samples includes the 20 sample subset. This showed that the predictions were 
consistent, in the sense that as more data become available, the RMS error is reduced 
further. 
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FIGURE 19 Comparison of root mean square errors pro duced by a Bayesian model, ordinary 
kriging (OK), and kriging with an external trend (K T), using the Tomsk data which were (a) 
above the limit of detection and (b) censored. 

5 APPLICATION OF TECHNIQUES TO BRYANSK 

The Bryansk data are well suited to the technique of ordinary kriging, as demonstrated 
in Section 5.1, and to geostatistical techniques in general. The data are approximately 
stationary, with only a slight drift in the deposition recorded when moving from west to 
east or north to south.  

 

�

��

��

��

��

��

6X
SS
OLH
G

VR
XU
FH

WH
UP VV

��
D

VV
��
E

VV
��
F

VV
��
G

VV
��
D

VV
��
E

VV
��
D

VXEVHW�XVHG�LQ�HVWLPDWLRQ�
506�FRPSDULVRQ�DJDLQVW�FHQVRUHG�GDWD

50
6�
HU
UR
U�N
%T
�P

��

5HILQHG�*DXVVLDQ�GLVSHUVLRQ
'HIDXOW�*DXVVLDQ�GLVSHUVLRQ��ILWWHG�WR�VXEVHWV
%D\HVLDQ
2.
.7�6SKHULFDO�69
.7�*DXVVLDQ�69

(b) 

�

��

��

��

��

��

6X
SS
OLH
G

VR
XU
FH

WH
UP VV

��
D

VV
��
E

VV
��
F

VV
��
G

VV
��
D

VV
��
E

VV
��
D

VXEVHW�XVHG�LQ�HVWLPDWLRQ�
506�FRPSDULVRQ�DJDLQVW�QRQFHQVRUHG�GDWD

50
6�
HU
UR
U�N
%T
�P

��

5HILQHG�*DXVVLDQ�'LVSHUVLRQ
'HIDXOW�*DXVVLDQ�'LVSHUVLRQ��ILWWHG�WR�VXEVHWV
%D\HVLDQ
2.
.7�6SKHULFDO�69
.7�*DXVVLDQ�69

(a) 



APPLICATION OF TECHNIQUES TO BRYANSK 

41 

5.1 Ordinary kriging 

Ordinary kriging may be expected to perform better for data that do not have a 
pronounced trend. To test this idea, ordinary kriging was applied to the Bryansk data. A 
similar procedure to that adopted for Tomsk was applied, with nine subsets being drawn 
at random from the 1226 measurements in the global data set, three each of 20, 40 and 
60 points. Jack-knifing was then carried out and the RMS relative kriging errors* 
calculated for locations in the complement of each subset. This quantity could then be 
compared with the same quantity calculated for the uncensored Tomsk data. The 
results are illustrated in Figure 20 and they confirm the hypothesis that ordinary kriging 
should perform better on the Bryansk data than it does on the strongly trended Tomsk 
data. 

Neither the Tomsk nor the Bryansk data show an obvious decline in the relative error as 
the sample size used in the estimates increases. In the case of Bryansk, this is likely to 
be due to the relatively small number of additional locations used in increasing the 
subset size from 20 to 60. The change from using the smallest to the largest subset 
only increases the proportion of the global data used from approximately 1.5% to 5%. 
However, for the smaller Tomsk dataset the lack of improvement in the estimates when 
the sample size is increased is much more likely to be caused by the continued 
dominance of edge effects. Sample 60d, for example, has the greatest relative error of 
all the Tomsk subsets, because it contains a large number of clustered measurements 
and therefore many more edge areas. Sample locations within a cluster will also have 
an increased likelihood of being effectively ‘redundant’ because of their proximity to 
other measurements. 

FIGURE 20 Comparison of the RMS relative error in j ack-knife estimates found in Bryansk and 
Tomsk trials using a range of subset sizes. 

 
* The relative error was defined as the difference between the estimated value and the measured 
value, divided by the measured value. 
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5.2 Simulations 

Simulations performed using a sample of 40 randomly selected measurements from the 
complete data set of 1226 measurements were used to plot the contours shown in 
Figure 21. The values illustrated for each location are the 95th percentile from the 
distribution of estimates at that location. The contours delimit areas with estimated 
contamination below the contour value. They show the location and maximum likely 
extent of areas where, for example, restrictions could be considered. As an alternative, 
contour maps indicating the probability of exceeding a selected threshold could be 
shown. Further investigations into the uses of simulation are described in Section 6.3.  

FIGURE 21 Contours showing the 95 th percentile estimates of the contamination for Brya nsk. 

6 APPLICATION OF TECHNIQUES TO WINDSCALE 

The available Windscale data differs from those discussed in the preceding sections in 
containing measurements of a number of different radionuclides in several different 
sample types, taken over a period of approximately six weeks. To a certain extent, this 
allows more flexibility in choosing which data to analyse, however, additional restrictions 
are imposed by the more complicated nature of the release. A comprehensive account 
of the Windscale fire has been given by Arnold (1992); the discussion here will 
concentrate on the features of the accident which are most relevant to the geostatistical 
analysis of the data. 

The fire itself was burning for approximately 2 days, having started on 10th October 
1957 and finally being extinguished on the afternoon of 12th October following the 

 95 percentile estimates (kBq m-2) 

    Subset measurements (kBq m-2) 
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application of water for 30 hours. There is some uncertainty about the duration of the 
release, although it is assumed to have begun on 10th October when air samplers on 
the site detected beta activity 10 times greater than normal levels (Dunster et al, 1958). 
Arnold (1992) states that by 13:30 on 10th October there was a ‘marked increase’ in 
radioactivity in the stack of Pile No. 1. It has been suggested (Chamberlain, 1959) that 
there was ‘serious emission’ from 16:00 on 10th October to 11:00 on 11th October, with 
two peak release periods, the first, of unspecified duration, at about midnight on 
10th October and the second starting when water was first applied at 09:00 on 
11th October and lasting for approximately two hours. Other complicating features of the 
Windscale accident were the varying wind direction and speed whilst the release was 
ongoing, and the Cumbrian terrain which includes both coastal plain and hilly areas. 
This led to the pattern of deposition being very different from that which would be 
obtained if the release was modelled using an estimated source term with a simple 
Gaussian atmospheric dispersion model. Clarke (1974) analysed the Windscale 
accident using the WEERIE code, which used an estimated fission product inventory 
and a precursor of the current Gaussian dispersion model (Clarke, 1979) to predict 131I 
deposition. This obtained a reasonable agreement with a small subset of 
measurements along a relatively narrow band out to a distance of 50km from the 
source. Over the full area that we are attempting to fit, such a simple model cannot 
provide an adequate representation of the overall deposition pattern. A simple Gaussian 
plume model does not account for the effect of hills, a major feature of the Windscale 
area, on the dispersion of radioactivity. In addition, it is not valid over large distances or 
for the complex weather conditions prevailing at the time of the accident. Results 
obtained using a simple program based on the Gaussian dispersion model (Clarke, 
1979) are shown in Figure 22. 

Assuming a source term of 1000 TBq 131I (typical estimated source terms in the 
literature are 700-800 TBq, see for example Chamberlain (1981)), a Gaussian 
dispersion model (Clarke, 1979) was used to estimate the deposition at locations where 
actual measurements had been made on or before 22nd October, some 10 days after 
the release ended. Only those locations less than 5km from the estimated plume centre 
line* were considered, and the maximum distance downwind was approximately 30km. 
A 24 hour release was assumed and the measured and estimated depositions are all 
decay corrected to 22nd October using a 3.6 day effective half life for 131I on grass 
calculated using the HPA-RPD FARMLAND model (Brown and Simmonds, 1995). The 
discrepancies between the modelled and measured deposition confirm that a simple 
dispersion model does not provide an adequate representation of the Windscale 
release.  

It could be argued that the comparison of Figure 22 is not entirely fair. A simple 
dispersion model is much better at estimating the peak deposition than the location of 
the peak, even in ideal conditions. However, it would also be unreasonable to adjust the 

 
* The direction chosen for the plume axis was 146°, as given in Chamberlain (1959). Clarke (1974) 
also makes use of this reference for the plume direction, and reports the wind direction as ‘NW’ (ie 
135°). Chamberlain and Dunster (1958) use 145°. The choice here is therefore consistent with 
previous work on this data. 



STATISTICAL ESTIMATION AND CHARACTERISATION TECHNIQUES FOR USE DURING ACCIDENT 
RESPONSE (SECTAR) 

44 

centre line assumed for the plume at each downwind distance to optimise the fit to the 
measurement at that distance. 

FIGURE 22 Comparison of Gaussian dispersion model e stimates for deposition to grass with 
measurements (lines shown for clarity). The model r esults are discontinuous because the 
estimates are made at the measurement locations and  these are not generally on the 
(assumed) plume centre line. All locations are with in 5km of the centre line.  

6.1 The milk ban and ordinary kriging 

The most serious environmental consequence of the Windscale fire was the 
contamination of milk with 131I. This resulted in the imposition of a ban on the sale of 
milk for human consumption over an area of 520 square kilometres around the site. 
This ban was imposed in two stages; the first stage banned milk from farms in the 
immediate vicinity of the site with effect from 12th October and had an extent of 207 
square kilometres. This area was then increased on the morning of 15th October to its 
final extent. The criterion for the ban was an activity concentration of at least 0.1 µCi l-1 
(3700 Bq l-1)*. 

If such a release were considered in the context of current emergency arrangements, 
the Food Standards Agency would issue precautionary food safety advice from an early 
stage of the accident. They would then be required to consider restrictions under the 
Food and Environmental Protection Act (FEPA) 1985 on the sale of food. This process 
is expected to take at least 24 hours from the start of any emergency. For a large event 
such as Windscale the specification of the restrictions is likely to take longer and is 
unlikely to be definitive until sometime after the release has stopped. The monitoring of 
milk after Windscale did not begin in earnest until the release stopped. However, it took 
several days from then to determine the extent of the ban. It was therefore thought 
appropriate to take advantage of the information available from the Windscale database 

 
* At the time of the Windscale accident, activity was measured in Ci, and the milk ban criterion was 
also in these units. Diagrams in this section will show measurements in the original units or in 
multiples of the milk ban activity level. 
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to test whether the application of geostatistical techniques could have helped specify 
the extent of the ban sooner. The initial approach considered was to concentrate on 
measurements made within the 48 hour period after the fire (ie. on or before 13th 
October). The 131I in milk measurements made during this time could then be used to 
re-derive the extent of the area banned in 1957 using measurements made on or before 
14th October. 

A preliminary analysis of the data revealed that measurements were made at 37 
different locations on 13th October. Measurements had been made at 3 locations on 12th 
October, but these were excluded as there was a possibility that they had been taken 
while the release was ongoing. In any case, these locations were re-sampled on 13th 
October. While 37 is a rather small data set for geostatistical purposes, the work on 
Tomsk and Bryansk had showed that it was feasible to model variograms based on 
samples of this size. However, the sampling undertaken in 1957 extended further from 
the site over the days immediately following the accident. Unfortunately, the earliest 
measurements were all taken close to the site and it was therefore clearly impossible to 
re-derive the large milk ban area using an interpolative technique such as kriging. The 
available sample data simply did not cover the area over which an estimate was 
required. Inclusion of data from 14th October provided an additional 36 measurement 
locations, which then created a data set that covered the area over which estimates 
were required. Obviously using the full 73 measurements in this data set would not be 
an improvement on the methods used in 1957. To create a suitable data set for a 
geostatistical analysis, four samples of 37 measurements (the same number actually 
measured on 13th October) were drawn at random from this global set. It was 
considered reasonable that, had the sampling programme been arranged differently, all 
37 measurements could have been made on 13th October, ie within 48 hours of the 
release*. Variograms were modelled for each sample, as illustrated for one example in 
Figure 23. 

Two of the sample data sets showed clear anisotropy, whereas for the other two 
(including the one illustrated in Figure 23) it was difficult to determine whether they were 
anisotropic. This is a consequence of the small sample size, with one or two points 
having a major effect on the overall anisotropy of the sample. However, the global data 
set† of 73 measurements was clearly anisotropic, with the principal direction being 
determined by both the wind direction, which was from the North-West for the main 
release period, and by the terrain. These factors combined to direct the plume along the 
coastal plain, and consequently the highest deposition values tend to be located along 
this direction. The principal direction was taken as 125° based on the direction of 
maximum continuity indicated by the variogram surface. The direction of the plume 
centre line has been estimated (Chamberlain and Dunster, 1958) as 145°, which is in 
reasonable agreement with the direction assumed here. On this basis, it was decided to 
model each of the samples with anisotropy in this direction. Ordinary kriging was then 

 
* At later stages, many more measurements were being made per day, with the number of locations at 
which samples were taken reaching a peak of 228 on 22nd October. 
† The global data set would obviously not be available at this stage after an accident; however, it 
would still be possible to suggest an anisotropy direction based on the physical characteristics of the 
plume and local terrain. 
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carried out using each of the samples to calculate estimates on a 0.5km grid. The 
search radius in each case was taken as the range of the appropriate subset variogram. 
Convex hulls* were then fitted around those measurements which had been estimated 
as exceeding the 1957 ban limit, as an approximation to the area which would be 
predicted using ordinary kriging. It was found that three of the subsets resulted in 
estimated ban areas which were in very good agreement with the area designated in 
1957 (see Figure 24). Although they were all larger than the original area, it should be 
remembered that they were estimated using half the number of measurements. In any 
case, it is more acceptable to reduce a conservative estimate for a restricted area, as 
more data become available than it is to increase one that is found too small. It can be 
seen from Figure 24 that one of the samples (sample 3) results in an especially large 
overestimate of the ban area. From the kriging surface, the cause of this can be 
identified as a combination of the configuration of points in the sample and a large 
search radius. In practice, when deciding a restriction area this effect could be corrected 
for by further sampling in specific areas. The kriging variance is a simple measure of 
the uncertainty in estimates resulting from the spatial arrangement of sample data, and 
can be used to identify those areas where additional measurements may be beneficial. 
These results highlight the importance of a well-designed sampling scheme, particularly 
when relatively few measurements can be made 

FIGURE 23 Example variogram model along (a) major a nisotropy axis, and (b) minor anisotropy 
axis, for a 37 point random sample of the available  Windscale milk measurement data. 

. 

 
* A convex hull is a polygon having the property that a chord drawn between any pair of points on its 
perimeter always remains within the polygon. The convex hulls in this case therefore enclosed the 
maximum area which could be restricted using the 0.1µCi l-1 limit. 

(a) 

(b) 



  

 

A
P

P
LIC

A
T

IO
N

 O
F

 T
E

C
H

N
IQ

U
E

S
 T

O
 W

IN
D

S
C

A
LE 

47 

FIGURE 24a Comparison of areas predicted to exceed the milk ban criterion used in 1957, 0.1 &L�O-1 (3700Bq l-1), with  the location of restricted 
farms derived using random samples 1 and 2 of four randomly located selections of milk measurements. 
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FIGURE 24b Comparison of areas predicted to exceed the milk ban criterion used in 1957, 0. � &L�O-1 (3700Bq l-1), with  the location of restricted 
farms derived using random samples 3 and 4 of four randomly located selections of milk measurements. 
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To give an indication of the errors in the ordinary kriging estimates for Windscale, each 
subset was also jack-knifed against the remaining locations in the global dataset. The 
RMS errors for each sample together with a scatter plot of the estimated versus 
measured values in the jack-knife comparison are shown in Figure 25. The most 
striking feature of these results is the extent to which ordinary kriging has either 
overestimated or underestimated the milk activity concentrations. The absolute RMS 
errors are all large (compared with the mean of the global dataset, 0.195 µCi l-1 
(7215 Bq l-1)) and the spread of values shown by the scatter plot indicates the 
seriousness of the errors. If comparisons are made with the errors obtained for Tomsk 
and Bryansk, it appears that ordinary kriging has been much less successful at 
achieving good estimates with the Windscale data. It might be expected that ordinary 
kriging would not fair as well with Windscale data as it does with Bryansk data due to 
the greater influence of a dispersion derived trend. However, there are a number of 
other important differences between this data set and the ones studied in previous 
sections. Firstly, only 36 locations* are available (at most, assuming that they can all be 
kriged) at which to calculate the errors. This means that one or two extreme error values 
can have a strong influence on the RMS error for the sample. Figure 25 also shows the 
errors when the three locations with the largest individual errors are excluded. 
Secondly, the Windscale data are less reliable in the sense that there may be factors 
influencing the results, which cannot be quantified due to a lack of information. For 
example, it is not known whether any of the cows were fed on stored (uncontaminated) 
feed, rather than grazing pasture. These factors could have contributed to the observed 
situation in the global dataset where a location with a very high activity concentration 
can be found very close to one where the activity concentration is very low. While this 
does not happen often enough to have a particularly detrimental effect on the 
variograms, it can strongly influence the kriging estimates. Thus, it is likely that if a high 
(low) value point is in the data subset and a nearby low (high) value point is not, the 
jack-knifing algorithm will return an overestimate (underestimate) for the low (high) 
value point. This is simply because the nearby high (low) value has been given a large 
weighting. As the graphs illustrate, this only needs to occur at a few locations to 
produce an RMS error for jack-knifing which is extremely large. The reliability of 
ordinary kriging is discussed again in Section 6.2 using a similar testing scheme to that 
employed for Tomsk and Bryansk. 

For the purposes of determining food restriction areas, the errors at individual locations 
are less important than the overall area estimated. These experiments have 
demonstrated that ordinary kriging can be useful in establishing an initial restriction area 
that can then be modified as more data becomes available. 

 
* These are the locations which are in the global data set of 73 locations but are not in the sample of 
37 locations. At the sample locations, kriging reproduces the measured values exactly. Errors can only 
be calculated for locations where the kriging algorithm is interpolating between measured values in the 
sample. 
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FIGURE 25 (a) Absolute jack-knifing errors for ordi nary kriging estimates of activity 
concentration in Windscale milk and (b) scatter plo t of the estimate versus measured jack-knife 
data for each of the subsets used.  

6.2 Reliability of ordinary kriging 

In order to compare the application of ordinary kriging to the Windscale fire data with 
the trials conducted for Tomsk and Bryansk (discussed in Sections 4.1 and 5.1 
respectively) a similar set of trials were undertaken. In this case, a series of jack-knife 
tests of ordinary kriging using three different sample sizes, with three samples (a, b and 
c) of each sample size, were conducted. A data set of 228 milk measurements taken on 
the 22nd October was used as the reference global data. This is a smaller number than 
was available for either Bryansk or Tomsk but is still substantial. However, unlike those 
examples the measurements are not directly related to ground contamination but to 
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mobile samplers of contamination ie cows. As discussed in Section 6.1, there is no 
information on the amount cows were moved around in the days following the accident, 
or on whether any farmers were able to supply their animals with uncontaminated feed. 

The mechanics of the testing were similar to previous trials with random sub-samples of 
20, 40 and 60 points taken from the global data set and the remaining data then used 
as the jack-knife comparison data set for the sample. The root mean square of the 
difference between the estimate produced by the kriging algorithm and the measured 
value was calculated, and the results are given in Table 1. 

 

�TABLE 1 RMS Error of Kriging Estimates nCi l -1 

Sample Size a b c 

20 58.51 56.51 47.75 

40 60.35 48.10 45.66 

60 48.86 49.20 45.49 

 

To relate the results found for Windscale to the comparison between Tomsk and 
Bryansk shown in Figure 20, the relative RMS error was calculated and is shown in 
Figure 26. 

FIGURE 26 A comparison of the error between measure d and predicted values for a range of 
random samples illustrated using three different er ror measures. The relative RMS error 
calculation divides each difference between sample and estimate by the sample value or 
overall mean, as indicated, before performing the R MS calculation.  

 

The relative error found for each of the Windscale samples is very much greater than 
found in the previous studies. However, as Figure 26 indicates, the major contribution to 
these large errors is the overestimation of a few very small values. This could arise 
through a number of mechanisms, as there is ignorance about where cows grazed with 
respect to where they were measured and if any farmers supplemented or substituted 
for the contaminated grass their cows would otherwise eat. If the low valued outliers are 
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neglected, the quality of the estimation is consistent with previous findings, the error is 
slightly larger than found for Bryansk, but smaller than for the highly trended Tomsk 
data. 

Table 2 gives an indication of the strong dependence of the areal coverage on the 
configuration of the sub-samples. The better the distribution of sample locations the 
more successful the kriging algorithm is likely to be at predicting values within the 
interior of the sampling region and the larger the region that can be estimated. This is a 
consequence of minimising the collection of redundant information by avoiding taking 
samples that are either too close to existing samples and contribute little that is new or 
too far away and isolated from other measurements. Table 2 shows the proportion of 
potential jack-knife points available from the global data at which the kriging algorithm 
was able to generate an estimate. 

 

TABLE 2 Proportion (%) of Estimated Points from 
Kriging Algorithm 

Sample Size a b C 

20 60 93 68 

40 93 90 84 

60 93 95 92 

 
As might be expected, the coverage obtained from samples of only 20 points was 
usually smaller and the RMS error greater than for the other two sample sizes. 
However, the samples of 60 points did not significantly outperform the samples of 40 
points on either of these measures. Thus, for this study, 40 sample locations are 
sufficient for ordinary kriging to produce accurate and useful results. 

6.3 Simulations  

The four random samples of 37 milk measurements selected for ordinary kriging in 
Section 6.1 were also used in a series of simulation calculations. As with the Bryansk 
data, the sequential Gaussian simulation routine supplied in GSLIB (Deutsch and 
Journel, 1998) was used. Variograms were produced for the normal-score transformed 
samples using the same direction for the principal anisotropy axis (125°) as the 
variograms used for ordinary kriging. These empirical variograms were modelled using 
a spherical model and a nugget, with the additional constraint that, for normal-score 
transformed data; the sum of the nugget and sill of the variogram must equal one. 

The parameters obtained from these variograms were used as input to the simulation 
algorithm, and for each sample, 100 realisations were generated. For each point on a 
0.5km grid covering the required estimation area around the site, the mean, relative 
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variance*, 95th percentile value† and the number of realisations whose value exceeded 
the milk ban criterion were calculated.  

The individual results for one of the samples are shown in Figure 27‡. It can be seen 
from the map of the variances, Figure 27(b) that, as expected, the variance is highest in 
those regions that are remote from measurements ie the region beyond the convex hull 
that can be envisaged from the sample locations. Each of the 100 realisations 
computed using this particular sample will have similar values near the sample data. At 
locations further away, where the sample data have less influence, the values of any 
individual realisation are increasingly likely to differ from those of other realisations and 
the variance is therefore greater. Simulation can be used to indicate areas where the 
maximum additional information can be gained from a fixed number of further 
measurements. The areas with the highest variance are those where there is least 
knowledge about the true data values. 

The map of 95th percentiles, Figure 27(c), gives an indication of whether the measured 
value at any location will exceed the ban criterion. In the green areas where the 95th 
percentile estimate is between 0 and 0.1 µCi l-1, the probability of exceeding the 
criterion is no higher than 5%. It can be seen that these areas contain several sample 
locations, each of which is well below 0.1 µCi l-1, so it is possible to be confident that the 
measured value at a nearby location will be similarly small. As the value represented by 
the 95th percentile increases, the probability of exceeding the ban limit also increases. It 
will be noted that the map shows this probability increasing with distance from the site in 
a North-Easterly direction, a result which appears unrealistic. It may be expected that at 
the distances from the release point shown, the opposite effect should be observed. 
This effect is an artefact stemming from the lack of measurement data at this distance; 
since it has no real data available the simulation algorithm returns a value for these 
locations which is close to the global mean value. 

The statistics produced by the simulation become more reliable as an increasing 
number of realisations are used to generate them, although the rate of improvement 
diminishes for very large numbers of realisations. Due to time constraints, it is useful to 
determine a cut-off point beyond which it is deemed inefficient to continue producing 
more realisations. A basic test to assess the reliability of the 100-realisations approach 
is to compare the graphical output from the simulation based on both 100 and 1000 
realisations. The maps of the means are shown in Figure 28. They illustrate that, for 
practical purposes, the difference between the results for the two simulation runs is 
negligible. As one might expect, the map based on 1000 realisations is smoother, but it 
may be expected that a decision-maker would come to similar conclusions irrespective 
of which map is used. 

 
* variance divided by square of the mean 
† 5th highest value from the 100 realisations 
‡ Results from the other three sub-samples are broadly similar to those illustrated in Figure 27 
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FIGURE 27 Maps generated from 100 realisations to s how (a) the mean estimate, (b) relative 
variance, (c) 95 th percentile, and (d) probability of exceeding the W indscale milk ban criterion of 
0.1 PCi l -1 (3700 Bq l -1). 

(a) 
(a)

(b) 

(c) (d) 
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FIGURE 28 Comparison of mean activity concentration  in milk estimated using (a)100 and 
(b)1000 realisations. 

A more extensive discussion of the effect of using different numbers of realisations in a 
simulation is given in Appendix C. 

6.4 Reliability of Gaussian simulation 

To assess the reliability of the sequential Gaussian simulation calculations the 
procedure discussed in Section 3.1.4.2 was applied to the sub-samples introduced in 
Section 6.2. The jack-knife data are used to generate accuracy plots for each of the 
subsets. The results shown in Figure 29 indicate a general improvement in the 
simulations as more sample data are used, with the curves becoming progressively 
closer to the reference ideal as the sample size increases. 

To provide a simpler numerical assessment of the Gaussian simulation output, a 
measure of the uncertainty in the distributions was calculated by finding the average 
variance of the output distributions at the jack-knife data points. The results are given in 
Table 3. 

TABLE 3 Uncertainty of Simulation Distributions 

Sample Size a b C 

20 4.32 10-3 5.58 10-3 2.07 10-3 

40 1.66 10-3 2.71 10-3 2.24 10-3 

60 5.29 10-3 1.35 10-3 1.49 10-3 

(a) (b) 
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FIGURE 29 Accuracy plots for three subsets each of (a) 20, (b) 40, and (c) 60 data. The closer 
the results are to the reference lines shown the mo re accurate and precise the simulation. 
Results above the reference lines are accurate but not precise and those below are not 
accurate. 
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The average variance shown in Table 3 is sensitive to outliers in the data but the results 
nevertheless indicate that apart from the anomalous sample 60a, (see also Figure 26) 
there is an overall decrease in the uncertainty of the simulated distributions as more 
data points are used. The more substantial results shown in the plots in Figure 29 
indicate that the samples of 60 points have greater accuracy and precision than the 
other two sample sizes. There is however, no significant difference between the 
accuracy and precision of the samples of 20 and 40 points. For this study, it could be 
concluded that at least 60 sample locations are necessary to produce accurate and 
precise output, and that the usefulness of the output improves as more locations are 
used. 

6.5 Cokriging  

The variety of sample types in the Windscale database provided the opportunity to test 
another geostatistical technique: cokriging. This allows secondary data, which are 
correlated with the primary variable of interest, to be included in the kriging algorithm. 
This, as discussed in Section 3.1.3 and in more detail in Appendix B, is a potentially 
useful approach if the variable of interest is undersampled. It was decided to retain the 
131I in milk measurements as the primary data, given that they would be quantities of 
great interest to the Agency when considering food restrictions. In addition, previous 
work has established the reliability of these data. As cokriging estimates will only be an 
improvement over those of ordinary kriging when the primary variable is appreciably 
undersampled the principal consideration when selecting a secondary variable is the 
number of measurements available. On this consideration alone, the gamma dose rate 
measurements appeared to be the most promising candidate. However, there are 
several difficulties associated with using the Windscale gamma dose rates, the most 
important of which stems from the use of the 1413A meter to measure the great 
majority of them. This device has a highly non-linear energy response, as shown in 
Figure 30. This problem is compounded by ignorance of the precise combination of 
radionuclides contributing to the dose rates. In addition, the correlation between 131I in 
milk and the gamma dose rates could vary spatially as a result of the differing 
deposition velocities of iodine and the aggregation of other radionuclides represented 
by the gamma dose rate measurement. Use of non-contemporaneous milk and gamma 
measurements would add to the complexity through the introduction of a time-
dependence to the existing spatial dependence of any correlation, arising from the 
differing decay rates of the various radionuclides. 

It is possible that the Windscale gamma measurements could be partially salvaged. 
However, this may require additional data and would only provide, if successful, very 
uncertain estimates of dose rates for use in co-kriging calculations. In addition the 
production of the dose rate estimates would probably require a lot of computational 
effort. An alternative secondary variable for the SECTAR investigations was therefore 
sought. The measurements of iodine on grass, although much less numerous than the 
gamma dose rate measurements, were therefore selected. It should be noted that the 
difficulties inherent in interpreting and using the Windscale gamma dose rate estimates 
are essentially historical. Improved instrumentation and the greater availability of 
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gamma spectroscopy to provide a breakdown of the radionuclides contributing to the 
measured dose rate at particular locations would remove most of the uncertainty. 

FIGURE 30 Energy response of 1413A survey monitor. 

 

Prior to specifying the exact data sets for the experiments, the possibility of meeting a 
secondary objective was considered. This would help to demonstrate the potential of 
co-kriging generally and its application to a particular problem ie providing an estimate 
of the extent of the required Windscale milk ban at an early stage. Direct comparison 
could then be made with the Windscale ordinary kriging experiments. Ideally, co-kriging 
would allow the Windscale milk ban to be derived using the limited number of iodine in 
milk measurements available on the day after the end of the release (13th October). 
These data would be used in conjunction with measurements of iodine on grass made 
on the same day. The use of the grass measurements as a secondary variable would 
avoid the need to use data from later dates required in the ordinary kriging trials (see 
Section 6.1). 

Unfortunately, too few deposition measurements were made in the early stages of the 
accident for this calculation to be performed. The alternative approach is therefore to 
concentrate on having a large number of milk measurements as a global data set to 
allow the success of the co-kriging trial to be assessed. Thus, a random sample of 40 
measurements of 131I in milk was selected to be the primary data in the co-kriging trials. 
These were drawn from a global data set of 228 distinct locations where milk was 
sampled 10 days after the end of the release on 22nd October. These global data were 
also used in Section 6.2 in the standard tests of ordinary kriging applied to all the 
available accident data. A small amount of secondary deposition data had accumulated 
by this stage with deposition measurements available from 82 locations. However, 13 of 
these were at least 150 km from the site and were excluded from further consideration, 
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as they were simply too far away to influence kriging estimates near the site. Thus, the 
grass data available as secondary support consisted of the remaining 69 
measurements decay-corrected* to the 22nd October. 

The variogram surface for the milk data showed clear anisotropy, with the principal axis 
at an angle of approximately 130°, which is consistent with the 125° principal axis 
previously determined for the ordinary kriging data of Section 6.1. Given that the same 
underlying processes of atmospheric dispersion and deposition are behind both grass 
and milk measurements, it was expected that the deposition data would exhibit similar 
anisotropy. However, the variogram surface found for the deposition measurements 
was less conclusive, with the observed anisotropy strongly influenced by an 
anomalously high measurement about 6km south-east of the site. Exclusion of this 
measurement resulted in a better behaved empirical variogram but with almost isotropic 
behaviour, whereas retaining it produced a variogram with more scatter, but where the 
anisotropy was similar to that found using the milk data. As there was no known reason 
to exclude this measurement, it was retained. However, this made the fitting of a model 
variogram more difficult. Fitting was expected to become easier if the grass data were 
block kriged to give them a level of support similar to the milk measurements.  

Calculation of mean and variance for the two sample types showed that the relative 
variance of the grass data was much larger. This is to be expected as the milk 
measurements are effectively averaging the deposition over a large area, as they are 
related to the deposition over the area grazed by a herd of cows. This spatial averaging 
should have a smoothing effect and would account for the reduced variance. The grass 
measurements are likely to have been taken over a small area, of the order of one 
square metre, and so their level of support is quite different from that of the milk data. 
To relate the two sample types, it was considered sensible for them to be on a similar 
level of support, this was done using block kriging (see Section 3.1.2.4). 

The block size chosen was a square of side 0.5km, as it was considered that this was a 
reasonable estimate for the area which could be grazed by a herd of cows. A map of the 
area shows that fields tend to be somewhat smaller than this but there is no reason to 
assume that the herd would be confined to a single field over several days. Square 
blocks were chosen to eliminate any ‘artificial’ anisotropy effects, which may arise if the 
data were smoothed more in one direction than in another. The sides of the blocks were 
aligned parallel to the assumed anisotropy axes, again to avoid distortion of the natural 
anisotropy, but it is now thought likely that any distortion caused by not arranging the 
blocks in this way would be minimal. 

Examination of the block kriged estimates showed the expected reduction in relative 
variance. Each of the 69 grass point measurements was replaced with the estimate 
calculated over the appropriate block; resulting in estimates for all but two of these 
measurements†. In addition to providing a common level of support, block kriging also 

 
* Note that no corrections were made for other time-dependent effects eg migration down the soil 
column. The half life was taken to be 8 days. 
† At least 2 measurements within the search radius were required to krig a block, so not all blocks 
could be estimated. 
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enabled the creation of a number of deposition estimates that were collocated with the 
primary milk measurements. These are required to generate a cross-variogram (see 
Section B3), and as might be expected Windscale measurements were not naturally 
collocated. A decision was taken that a grass block estimate and a milk measurement 
would be considered collocated if the milk measurement was contained within the 
extent of the grass block area. Any deposition block that contained the location of a milk 
measurement from the random sample was therefore added to the data used to model 
the cross-variogram. This provided 19 blocks where the deposition value at the milk 
measurement location was taken to be the block estimate for the block that contained it. 

A summary of the final data selection for cokriging is given in Table 4. 

 

TABLE 4 Data for cokriging 

Description Number of data points 

Primary variable: random sample from measurements of iodine-
131 in milk made on 22 October 

40 

Secondary variable: block kriged estimates of deposition at 
locations of original grass measurements or locations in the milk 
random sample 

86 

Cross-variogram data: collocated milk random sample and grass 
block kriged estimates 

19 

Cokriging input data: all primary and secondary data 107 (40+86-19) 

 

Directional variograms and cross-variograms with a principal anisotropy axis of 130° 
were created using VarioWin and modelled to satisfy the linear model of 
coregionalisation (see Section 3.1.3). A nugget and two spherical structures were used 
for each model, one structure having a range of 8 km and the other, 32 km. A trial run 
using traditional ordinary cokriging, with two nonbias conditions, resulted in many 
locations being left unestimated, as there were no primary data within the search radius. 
It was therefore decided that standardised ordinary cokriging was more suitable, since 
its single nonbias condition can still be satisfied when only secondary data are 
available. To allow rescaling of the data according to Equation B4 in Section B3, milk 
and grass data were converted to common units of µCi kg-1. This required the 
assumption of a milk density of 1 kg l-1 and pasture herbage density of 0.5 kg m-2 

(Simmonds, 1985). The primary and secondary means were taken as the arithmetic 
means of the sample data. 

Figure 31 (a) shows that the measurements are separated into two quite distinct areas; 
the ‘main area’ around the site containing primary and secondary data, and an ‘arc’ 
about 100 km south-south-east of the site which only contains secondary data. 
Although standardised ordinary cokriging estimates could be calculated for each area, 
estimates using only the ‘arc’ data will not be reliable. This is because there is a lack of 
primary data in this area with which to calculate a suitable mean value for use in 
Equation B4. The local mean for the primary data would therefore have to be estimated, 
for example by assuming that the ratio of the primary means in the two areas was the 
same as the ratio of the secondary means (which can be calculated from the data). For 



APPLICATION OF TECHNIQUES TO WINDSCALE  

61 

this reason, cokriging estimates have only been calculated for the ‘main’ area where 
primary and secondary data are available. 

Estimates calculated by cokriging over the main area were compared with the results 
obtained through ordinary kriging using the milk random sample alone, shown in 
Figure 31(b). A simple comparison by eye reveals that there is little difference between 
the results. However, co-kriging had the effect of simplifying the boundaries between 
areas of different milk concentration by providing the data necessary to remove gaps in 
the coverage. The kriging errors were evaluated at locations where milk measurements 
had been made on 22nd October, excluding those locations in the random sample itself. 
(By definition kriging is an exact interpolator and the errors at the random sample 
locations will be zero). Note that this is essentially the same as the jack-knifing 
procedure used with the Bryansk and Tomsk data. Calculation of the RMS error for 
each of the kriging techniques confirmed that cokriging offered little benefit in this case, 
with both methods having the same RMS error ie 0.048 µCi kg-1 (1776 Bq l-1). However, 
cokriging did provide an estimate at locations where ordinary kriging lacked sufficient 
data to do so, and the mean absolute cokriging variance at the jack-knifed locations 
was smaller than the mean absolute ordinary kriging variance, 0.002 µCi kg-1 
(74 Bq kg-1) as opposed to 0.071 µCi kg-1 (2627 Bq kg-1). The overall result would 
suggest, however, that there were insufficient secondary data in this experiment to take 
advantage of the improvements possible using cokriging. 

A complication that has not been considered in the application of co-kriging is the role 
time might play in determining the effective correlation between different data types 
(see Section 7.2.3). For example, the concentration expected in milk might be more 
strongly related to the activity on the grass over a period of a few days, a few days prior 
to the milking taking place. This is unlikely to make a dramatic difference in this case, 
as the activity in the grass is likely to be simply related to the activity present a few days 
previously. However, if it had rained in a part of the area of interest a few days before it 
may be appropriate to subdivide the problem into areas where different correlations are 
expected. An alternative and potentially simpler approach to the use of supporting data 
is discussed in the Section 6.6 which allows for time including times in the future to be 
considered. 
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FIGURE 31 Locations of data and areas estimated by (a) cokriging and (b) ordinary kriging. 

(a) 

(b) 
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6.6 Geostatistics and foodchain modelling 

Cokriging requires complex and, without convenient software, time consuming 
procedures to be undertaken to produce an estimate. In many cases, a simpler method 
of producing an estimate of the concentration in one material using information about 
another would be to use existing models representing the transfer of radioactivity 
through the environment. For example, if measurements of deposited activity on grass 
are available, estimates of the resulting activity concentration in milk can be calculated 
as a function of time by an appropriate process model. The FARMLAND model (Brown 
and Simmonds, 1995) used at HPA-RPD is one such model, which represents the 
transfers between different parts of the environment using a series of coupled first order 
differential equations with transfer coefficients determined experimentally. The 
drawback of this approach for emergency assessments is that few measurements are 
available in the early stages of an accident. This limits the number of estimates that can 
be made using a foodchain model alone. In addition, any estimates are restricted to the 
locations of the original measurements. This section discusses work that aimed to 
combine the spatial estimation techniques of geostatistics with the convenience of a 
foodchain model to obtain a large number of milk contamination estimates from a 
limited number of deposition measurements. The errors on the estimates using this 
method were compared with those from the ordinary kriging of milk measurements. 

The first stage in the calculation is to run the FARMLAND model assuming that cows 
are on pasture, for unit deposition (1 Bq km-2) of 131I onto grass and soil. This allows the 
effective half-life of the iodine on grass to be determined. However, the Windscale 
accident was an extended release and it is not clear from the information available 
exactly when it started and stopped. It is known that the release was not uniform, but 
the exact behaviour of the iodine is not known (ie whether it followed the same pattern 
as the general release or came off more rapidly). For simplicity, these trials assume that 
the release of iodine was continuous between midnight and 1100 hours on 11th 
October. Thus, all deposition was assumed to have occurred by the end of this period. 
A more complicated representation, using two peak releases, was also tried but the 
difference was negligible. Deposition was partitioned between grass and topsoil using 
an interception factor of 0.25 (Simmonds, 1985) and FARMLAND was run to obtain the 
time evolution of the activity on grass over a period of nearly 2 weeks after the 
deposition occurred. This is illustrated in Figure 32, from which the effective half-life of 
131I on grass can be estimated to be approximately 3.6 days. This effective half-life was 
used to decay correct back to 11th October the 69 deposition measurements made on or 
before 22nd October. These corrected measurements were then block kriged to obtain 
deposition estimates (for 11th October) at as many as possible of the locations where 
milk was sampled on 22nd October. 
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FIGURE 32 FARMLAND model prediction for decay of 131I on grass. 

 

This approach not only extends the number of matching locations but also assumes, 
reasonably, that it should be better to compare appropriately scaled area averaged 
grass and soil concentrations with the radioactivity found in milk for the same area. 
However, this procedure may mislead for several reasons. It assumes that the same 
half-life applies everywhere. The modelling neglects the effect of rain washing iodine 
down the soil column and shortening the effective half-life. Rain will further complicate 
the results by having a different effect depending on when the deposition measurement 
was made with respect to the rainfall and the time of the milk estimate. There is also 
some ambiguity in the data as to whether grass measurements also included some soil. 
Finally, it assumes that the cows have been in the same area for several days. 
However, the result should be broadly indicative of the activity concentration to be 
expected in milk. Thus, using the FARMLAND curve of Figure 33, which gives the time 
evolution of activity concentration in milk for the unit deposit discussed above, it was 
possible to calculate the activity concentrations on 22nd October corresponding to the 
block kriged deposition estimates for 11th October. To gain an idea of the effectiveness 
of this method a comparison with measured results can be made. However, it is also of 
interest to compare this approach involving two sets of estimations, the use of block 
kriging and a foodchain model, with results obtained by the ordinary kriging of milk 
measurements from 22nd October. A jack-knife calculation on the original milk 
measurements was therefore performed. A random sample of 60 milk measurements 
were selected from the 129 locations where FARMLAND estimates had been possible 
(ie. where a grass block estimate had been made) and measured values were 
available. A jack-knifing calculation using ordinary kriging then gave estimates for milk 
activity concentration at 49 of the remaining 69 locations (the remaining 20 locations 
could not be estimated). The RMS estimation error was calculated for both methods at 
these locations, and the foodchain model approach was found to produce an RMS error 
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an order of magnitude greater than ordinary kriging of the milk data. (The errors were 
2 104 Bq l-1 and 2 103 Bq l-1 respectively; the milk measurements at the jack-knifing 
locations had a mean of 2.1 103 Bq l-1 and a standard deviation of 2.7 103 Bq l-1). It 
should be borne in mind that kriging is an exact interpolator and therefore kriging the 
milk results is likely to produce a better result simply because the smoothed interpolated 
surface is constrained to agree with the known values whereas the transformed grass 
results are not constrained in this way. Thus, at least in this case, it appears that the 
additional data processing involved in using a more complicated approach is not 
justified. The estimates provided by ordinary kriging (and by implication the more 
complex cokriging approach discussed in Section 6.5) are as good (or better) than 
those from the combined use of kriging and process models. Unlike, for example, 
cokriging where the supporting data are event specific, each of the additional layers of 
estimation in the model supported calculation are more likely to contribute additional 
uncertainty to the final result. However, this approach does have two advantages: firstly, 
it allows one type of measurement to be transformed into another, not just at the 
sampling locations but everywhere a kriged estimate can be produced, and secondly, 
because it uses generic models this is potentially a quick and simple procedure.  

 

FIGURE 33 FARMLAND modelling of time evolution of 131I activity concentration in milk, 
following deposition of 1Bq km -2 to grass and soil. 

 

6.7 Bayesian analysis of deposition data 

The Bayesian atmospheric dispersion program described in Section 3.2 was tested 
using 131I deposition data. 81 deposition measurements from the Windscale database 
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were used as the global dataset and the predictions of the model checked by cross-
validation with subsets of 20, 30, 40 and 50 points. The cross-validation estimates were 
then compared with the measured values and the RMS error for each subset was 
calculated. The error in this case is defined as the difference between the measured 
value and the mean of the posterior predictive distribution at the measurement location, 
where the Bayesian method calculates the distribution for the ith point, using all 
measurements except that of the ith point. 

Three prediction strategies were compared, the first relied entirely on the Gaussian 
dispersion model with fixed values obtained from the literature for the calibration 
parameters, the second introduced the model inadequacy corrections to this procedure, 
and the third included Bayesian calibration to give a fully Bayesian analysis. In the first 
two experiments where the calibration parameters were fixed, the values for deposition 
velocity and source term for 131I were taken as 4 10-3 ms-1 and 1000 TBq respectively, 
from Chamberlain (1959, 1981). Large prior variances (5.0) were assumed in the two 
Bayesian analyses so that the source term and deposition information, which obviously 
would not be available in the early stages of an accident, would not have an undue 
influence on the results. For the full Bayesian method, quantile-quantile plots for the 
standardised errors showed that they were approximately N(0,1) distributed* for all four 
subset sizes, thus supporting the validity of the model. 

The RMS errors for the three methods are shown in Table 5 (from Kennedy et al, 2002). 
It can be seen that the estimates are improved when model inadequacy is included, and 
improved further still when the full Bayesian calibration is used. 

 

TABLE 5 RMS errors of prediction for Windscale samp les 

Sample 
size 

Gaussian dispersion  
model only 

Fixed calibration parameters but 
including model inadequacy 

Model inadequacy and 
Bayesian calibration 

n=20 2.98 1.93 0.94 

n=30 3.09 1.79 0.87 

n=40 2.85 1.80 0.96 

n=50 2.83 1.95 0.88 

 

The reason for the improvements shown in Table 5 as more Bayesian attributes are 
used is that a simple Gaussian plume model is a poor representation of the actual 
dispersion process during the Windscale fire. It does not fit the observed data well. 
Running the model for the 50-point dataset using only the Bayesian calibration and not 
the inadequacy term showed that the Gaussian plume model had minimal influence on 
the predictions. The observed results were almost entirely generated by the action of 
the model inadequacy component. This explains why the errors found for the second 
experiment (model inadequacy with fixed calibration parameters) are smaller than those 
found for the first ie. the trial of an unaided Gaussian dispersion model. The further 
reduction in errors observed in the third experiment, when Bayesian calibration is 

 
* normally distributed with a mean of zero and a unit variance. 
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included, is accounted for by the calibration process modifying (reducing) the influence 
of the badly fitting Gaussian dispersion model on the predictions and thus improving the 
results. 

A disadvantage of the full Bayesian analysis is the potential loss of identity of the source 
term scaling the Gaussian dispersion model (see Section 3.2.3). In this case, the 
influence of the dispersion model is automatically reduced if the Bayesian model 
controlling the overall evaluation detects that the dispersion model is acting to distort 
the results. If an estimate of the true source term, at least of those radionuclides that 
deposit, were required from the full model, an integral summing all the estimated 
deposits would have to be carried out. 

The advantages of the Bayesian dispersion model in this case are clear; it allows the 
measurement data to ‘correct’ the Gaussian dispersion predictions to obtain better 
deposition estimates, as more data become available. In areas where there are few 
measurements, the dispersion model will still allow estimates to be made although this 
lack of data will be reflected in a larger variance for estimates at such locations. This 
ability of the model to give an indication of the uncertainty associated with its predictions 
could be of assistance in deciding the best allocation of monitoring resources to reduce 
the uncertainty. 

7 DISCUSSION AND RECOMMENDATIONS 

SECTAR has investigated the application of a number of statistical techniques to the 
problem of assessing the extent of contamination shortly after a nuclear accident. 
Statistical techniques require measurement information; thus there will inevitably be 
some initial period during which there will be insufficient data available for the 
techniques to be used. However, it was not clear at the beginning of this research 
programme how much data would be required for the techniques to be used. It was also 
not clear if the techniques investigated would provide the sought after improvements in 
the understanding and assessment of accident consequences. SECTAR has 
demonstrated that insights and predictions can be gleaned from only a few tens of 
measurements. This is fortunate as there are ultimately only three ways to improve 
estimates of the extent of contamination: enhance process modelling to more 
successfully predict levels found in the environment; apply statistical methods to make 
better use of the available information from both measurements and models, and 
undertake a more rapid and extensive measurement campaign. The best approach is 
probably the last but they are all complementary and the least studied in this context is 
the use of statistical methods. SECTAR has demonstrated that statistical techniques 
can be used with comparatively small amounts of data to give results that are consistent 
with the understanding gained later through further measurement. SECTAR has 
therefore demonstrated that in principle these techniques could be used to help 
decision-makers decide on the extent and timing of appropriate countermeasures. 



STATISTICAL ESTIMATION AND CHARACTERISATION TECHNIQUES FOR USE DURING ACCIDENT 
RESPONSE (SECTAR) 

68 

The questions that the research addressed were: 

a Could statistical techniques using limited data provide an improvement over 
existing methods based on simple model estimates? 

b Could statistical techniques be applied sufficiently easily and rapidly to be 
effective? 

c Could statistical techniques handle the complexity of real accidents? 
d Could they provide information on the uncertainty in estimates and the 

likelihood of exceeding thresholds? 
e Could statistical techniques be used in conjunction with simple model 

estimates? 

The SECTAR project has attempted to provide answers to the above questions within 
the limitations imposed by the amount and form of post accident data available to test 
the techniques. The three sets of accident data obtained, fortunately from the 
perspective of the project, cover a broad range of possible scenarios: 

a Tomsk: a short duration release well represented by conventional dispersion 
modelling of the type regularly used in emergency response exercises. 

b Bryansk: a large release with a complex far-field deposition pattern. 
c Windscale: a release lasting several hours in changing meteorological 

conditions with dispersion occurring over complex terrain. 

It should be noted that for each of the accidents investigated it was possible to take a 
small sample from the global accident data set and to use this sample to produce 
predictions and estimates that were consistent with the remaining unused 
measurements (see Sections 4, 5 and 6). 

7.1 Performance of SECTAR methods 

SECTAR has used data from three accidents to assess the merits of a variety of 
techniques. The complexity of the real data used, the techniques presented and the 
necessarily complex arrangements required to assess the techniques can obscure the 
essential findings. It is therefore appropriate to consider how successful the techniques 
investigated under the SECTAR project might be at meeting the needs of decision 
makers by considering the answers to the questions of Section 7 in some detail.  

7.1.1 Improvement over simple model estimates 
Simple model estimates will always be central to assessing the consequences of an 
accident in the early stages. In some circumstances eg the accident at Tomsk (see 
Section 4) they may provide a wholly adequate description of the dispersion and 
deposition of the contamination that covers the lifecycle of the event, except possibly for 
detailed studies of the long term environmental and ecological follow-up of the release. 
Nevertheless, some of the statistical techniques tested against Tomsk data did provide 
as good or better a representation of the measured reality than the simple dispersion 
models employed. However, the improvements were small and difficult to judge 
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conclusively because of the uncertain effect of the partly censored data. Thus, although 
kriging with a trend was superficially the best performing of the techniques tried when 
estimating deposition near the centre of the plume path the advantages of applying the 
technique in this sort of application are not clear-cut. 

Unsurprisingly, the Gaussian dispersion model that incorporated the use of Bayesian 
assimilation generally performed as well as a standard Gaussian dispersion model fitted 
to the Tomsk data (see Section 4.3). However, by integrating Bayesian assimilation 
within the dispersion modelling process (see Section 3.3) the model is also capable of 
providing reasonable results when the plume deviates from the Gaussian dispersion 
ideal represented by the Tomsk data. For example, the Bayesian technique produced 
results that showed a greater fidelity to the Windscale measurements than could be 
achieved using a simple dispersion model. (See the comparisons of a fitted Gaussian 
dispersion model with a Bayesian analyses in Sections 4.3, 6.7).  

Ordinary kriging, although an inappropriate technique for such highly trended data as 
Tomsk, would be applicable to the assessment of far field contamination as illustrated 
by the Bryansk results of Section 5. If the UK were to be contaminated following an 
overseas release, this technique would complement and refine the predictions available 
from the Nuclear Accident Model (NAME) run by the Meteorological Office (Ryall, 2000) 
by helping to confirm the situation on the ground using only a few tens of 
measurements in an affected area. The use of ordinary kriging is also supported by the 
results of the Windscale trials of Section 6 where the technique was used to estimate 
the extent of the milk ban required after the Windscale fire, although there was 
excessive conservatism introduced into the prediction if the measurement locations 
were not adequately spread over the area.  

Co-kriging is a technique that might be of use in particular circumstances ie were there 
are comparatively few measurements of the data of primary interest available in an area 
with a large amount of other data that are expected to be correlated with the 
measurements of interest. Unfortunately, the data available for testing the potential of 
the technique within the SECTAR project were limited. However, applying the technique 
to the non-optimal mix of data available produced results that were little better than 
ordinary kriging (see Section 6.5).  

Simulation, although limited to situations where simple or ordinary kriging may be used, 
will provide information on uncertainty. This complements the uncertainty information 
available through a Bayesian analysis in circumstances when ordinary kriging is 
inappropriate. Simulation shares the preliminary calculation requirements of ordinary 
kriging and therefore acts as a natural extension to the procedure with the discussion of 
Section 6.4 indicating how the accuracy and precision of simulations are likely to 
improve as more data become available.  

Thus, Bayesian assimilation, ordinary kriging and simulation have been demonstrated 
to work under the conditions described above and by their nature may be expected to 
make progressively better predictions as more data become available. All these 
techniques provide more information than simple models. In the case of Bayesian 
assimilation, this is because information on the uncertainty of the estimate is always 
provided with the result, even if the best estimate is similar to that of a simple dispersion 
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model due to lack of data*. Ordinary kriging automatically provides more information 
when it is used to estimate the pattern contamination from an overseas release as there 
is no alternative simple model available. More generally, the kriging variance will 
indicate the regions where estimates are likely to be uncertain and simulations will 
provide uncertainty estimates showing the probability of exceeding particular criteria in 
particular areas. The use of these three techniques also has the advantage of 
effectively requiring the data, both measurements and predictions, to be shown in 
context on a map. This avoids the alternate problems of ignoring information, and 
focussing attention on one or two particular measurements, or interpolating by eye 
without any mechanism to provide an independent check on the impression gained. 

7.1.2 Speed and ease of use 
The techniques discussed vary in complexity and none should be applied without an 
understanding of the approach used and the implementation steps required. However, 
some of the techniques can be both easy to use and produce distinct results shortly 
after sufficient data become available. For example, the Bayesian method will operate 
as a conventional Gaussian dispersion model until sufficient measurement results are 
available for an assimilation process to begin. Similarly ordinary kriging, although not 
useable until a few tens of measurements are available, is a comparatively simple 
sequence of procedures to apply. It also has the advantage that the additional work 
needed to implement the method requires the measurements and their spatial 
correlation to be critically examined before any kriging results are calculated. This 
examination, as well as ensuring the use of all the data, at least in the review stage, will 
potentially improve the quality of the data selected to support particular calculations 
even if no kriging then takes place. 

Other indicators of the speed and ease of use of statistical techniques have been 
touched on, for example, when discussing the number of realisations required for a 
simulation to estimate contours indicating the probability of exceeding a threshold (see 
Sections 3.1.4.2, 6.4 and C3) or when discussing the use of kriging in conjunction with a 
process model (see Section 6.6). In the first case, like all statistical techniques, 
simulations improve as more data become available. An expected drawback of using 
simulations is the need to carry out a very large number of calculations. However, as 
indicated in Appendix C a reasonably stable result can be produced after only 100 
realisations. In the second case, process models allow estimates of unmeasured 
quantities to be estimated not just at the sampling locations of the measured data used 
to derive the result but everywhere a kriged estimate can be produced, using a quick 
and simple procedure.  

There is in general no computational bottleneck; the length of time taken by a 
calculation increases with the complexity of the calculation and the refinement of the 
answer required. The time taken for a calculation also conveniently matches to some 

 
* It will improve on the estimates of simple models, as soon as a few tens of measurements are 
available unless the simple model is a near perfect description of the event eg the deposition arising 
from the accident at Tomsk.  
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degree the decision makers’ needs and expectations, with initial estimates having 
higher uncertainty (due to lack of data) but being reliable enough to guide a robust early 
response. This is particularly true of the Bayesian assimilation process, as it does not 
require the initial exploratory data analysis of kriging techniques before it is applied and 
is no more difficult to use in practice than a standard Gaussian dispersion model that 
does not include a fitting procedure. However, in contrast, kriging with a trend was 
found difficult to use because of the large amount of exploratory data analysis and 
modelling required. It is therefore inappropriate to pursue the further development and 
application of this technique at this stage. 

Very early decisions will, of necessity, be based on very few measurements and be 
dependent on estimates from simple process models, without the possibility of 
statistical support. As more data arrive, decisions will be required on which 
measurements to rely on, as the data as a whole are likely to be increasingly 
inconsistent with the predictions of a simple model. In these circumstances, there may 
be a gap before statistical methods are able to help (see Section 7.2.1). However, 
statistical methods are likely to be the best way of supporting and reconciling the 
assessment of a real world accident, allowing predictions that are more detailed with 
lower uncertainty to be made as the amount of monitoring data increases and 
refinements to countermeasures are considered. 

The limitations on the application of the techniques considered in this study are lack of 
skills and data*. There should be no limitation introduced by the time taken to carry out 
a calculation once started. Given sufficient data and the skills to use it, the problem 
becomes primarily a question of organising the flow and manipulation of that data. The 
time consuming steps are making the data available in an appropriate form and gaining 
a general understanding of the event and the data so that the correct calculations with 
appropriate modelling assumptions are made. The use of databases and GIS will 
simplify the task, so that by the time there are sufficient data to influence estimates of 
what is occurring, beyond the scaling of process model predictions, calculations will be 
ready to proceed. To reach this stage would require some software development to 
streamline the process but off-the–shelf products that only need to be linked together 
and configured to handle the particular problems of environmental radioactivity 
measurements can meet most of these requirements. However, ensuring that there are 
sufficient skilled personnel to carry out the calculations is likely to be a greater obstacle 
to the effective use of these techniques. One approach to maintaining the appropriate 
skill base would to use the techniques more widely, for example in the assessment of 
contaminated land. 

7.1.3 Use of real data 
The techniques considered in SECTAR were specifically tested with past accident data. 
This has caused a number of problems due to the limited and generally messy nature of 
real data. A number of techniques, co-kriging being the prime example but also the use 
of process models and the techniques applied to the censored data from Tomsk, could 

 
* Badly configured measurements will also affect the success of any calculation. 
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not be tested as effectively as was wished because the data or meta-data were 
inadequate. The most dramatic failing was the inability to use the large number of 
gamma dose rate measurements collected following the Windscale fire to support other 
assessments (see Section 6.5). Windscale also highlighted the consequences of data 
not being collected in a way that allowed for the most effective use of geostatistical 
techniques (see Section 6.1). This having been said, the use of real data was necessary 
to demonstrate the true worth of the methods tested when tackling realistic problems. It 
also avoided the use of techniques with artificial data derived from a process model. 
The techniques rely on modelling the spatial correlation between measurements and 
are not likely to perform well where the data are excessively smooth (with the possible 
exception of any arbitrary discontinuities added to make scenarios more realistic). 
Where artificial data are used, simple dispersion models are likely to be a more 
effective alternative. 

7.1.4 Uncertainty 
One of the most important attributes of the statistical methods under test is that they 
provide information on the uncertainty of estimates and the likelihood of exceeding 
thresholds. Simple geostatistical methods such as kriging provide a map of the kriging 
variance that highlights regions where more data are required if estimates in those 
areas are to be reliable. More substantially, it is possible using the simulation 
techniques discussed in Sections 5.2 and 6.3 to provide probability contours that 
indicate the likelihood of exceeding a particular value. For example, the probability of 
exceeding the Windscale milk ban criterion and the related results of Figure 27, derived 
using only 37 measurements and 100 realisations, demonstrate that simulation can 
provide results that are both useful and timely. The technique can also be used to 
provide contours of a chosen high percentile of each point estimate, to give decision-
makers a conservative view of the extent of contamination. For example, a 95% 
confidence level could be selected instead of the mean estimate obtained from kriging. 
Similar uncertainty estimates are available from a Bayesian calculation with the 
possibility in this case of considering model parameter uncertainty as well as model 
inadequacy. Although the approximate nature of the process model calculations used to 
support emergency decision making is well understood the ability to apply some 
confidence measures to predictions made under these conditions is a novel and 
potentially very useful benefit of applying statistical methods. 

7.1.5 Combining simple models and statistical techn iques  
The combined use of statistical techniques and simple process models has already 
been discussed in the context of the Bayesian adapted Gaussian dispersion model 
used in the SECTAR studies. However, it should be noted that the same basic 
Bayesian formulation could also be used with other dispersion models or simple 
process models. Similarly, geostatistical methods can also be used in conjunction with 
simple modelling as demonstrated by the use of Windscale deposition data to derive 
estimated concentrations in milk (see Section 6.6). The results were not particularly 
good but, as discussed, this is not necessarily a limitation of the technique, and the 
approach would have the merit of being both quick and easy to do (see Section 7.1.2). 
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7.2 Future developments 

SECTAR has established that statistical techniques can be of use in the analysis of 
post-accident data in the short term. Several authors have used similar techniques to 
look at the distribution of deposition in the years following an accident as part of a 
radioecological analysis of the distribution and migration of radioactivity (Kanevsky et al, 
1995; Dubois et al, 1998). However, there has been very little interest in using these 
techniques from the beginning of an event to improve accident response. This is partly 
a consequence of different communities having different perspectives and using 
different tools in their work. It is also a result of a misunderstanding of the requirements 
of rapid assessment shortly after a release ends, and the needs of the techniques 
employed. For example, geostatistical analyses are traditionally used to produce 
accurate results from large datasets. This is true in radioecology, where assessments 
are made without the overwhelming time constraints of accident response, and 
particularly in geostatistics’ foundation discipline of geological prospecting. In this case, 
large financial commitments are considered by mining or oil companies partly based on 
such analyses but again without the acute time pressure of accident response. 
However, this does not preclude the successful use of geostatistical methods in 
situations where data are limited or when results must be obtained very quickly, 
although the accuracy of the results obtained under such circumstances will obviously 
be lower than in traditional uses of geostatistics. SECTAR has shown that the accuracy 
of the results is sufficient to enable a reasonable estimate of the extent of contamination 
to be made for the purposes of nuclear accident response. 

7.2.1 Data 
To critically test and evaluate statistical techniques requires a supply of data. The 
SECTAR project has been fortunate in having access to data from the accidents at 
Tomsk, Chernobyl (Bryansk) and Windscale. However, additional sources of data would 
be useful if new methods are to be tested and the work of SECTAR further developed. 
For example, work on temporal aspects as discussed in Section 7.2.3 will require time 
stamped data. The data within the Windscale database although often including time, 
usually as a date, is not sufficiently detailed to support such work. Data from accidental 
chemical releases and fires may help but the most likely source of the detailed 
information required would come from the enhanced routine monitoring of a pollutant 
source such as a chimney stack. 

In addition to getting more measurements of the quantities to be assessed, getting more 
supporting data would also be of benefit. The SECTAR project has been unable to 
consider fully the use of supporting (secondary) data in the analysis of accident events. 
The analyses of both Tomsk and Windscale (see Sections 4.2 and 6.5) consider the 
use of supporting data. In the former case, this is provided by a model of atmospheric 
dispersion that captures the main features of the event and in the latter by a very limited 
supply of related radioactivity measurements. These examples are far from ideal and 
may not demonstrate the wider role secondary information could play. For example, the 
co-kriging trials conducted with Windscale data failed to demonstrate that the technique 
offered advantages that outweighed the burden of the procedure. However, the 
technique may have a use if sufficient supporting data could be made available eg a 
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large amount of dose rate information. Dose rates are likely to be available at an early 
stage and may be one way to help bridge the information gap and allow statistical 
techniques to be used at an early stage. However, the quantitative use of dose rate 
information to support other estimates would not be straightforward (see Section 7.2.3)*. 

An area where supporting information is likely to be important has recently been 
considered by NRPB (now HPA-RPD) and a report describing how radar rainfall 
information could be used to improve estimates of radioactive deposition has been 
published (Higgins and Jones, 2003). Unfortunately, a lack of data has prevented the 
techniques discussed being quantitatively tested. Although it may not be possible to test 
all aspects, if data from Chernobyl fallout measured in the UK were available, it might 
be possible for some trial calculations to be undertaken. 

7.2.2 Uncertainty and process models 
Simulation techniques have been used in the examination of Bryansk and Windscale 
but as discussed in Section 3.1.4.1 this technique has not been applied to highly 
trended data such as that of Tomsk. The potential of such techniques when the data are 
highly trended should be explored. However, the likely practical difficulty of developing 
geostatistical techniques that might work with limited amounts of highly trended data 
make further work in this area inappropriate.  

When handling highly trended data Bayesian methods are more likely to be successful 
if a process model can adequately represent the trend. Although not explored within 
SECTAR, Bayesian techniques could also be used to provide probability contours and 
contours of high percentile estimates of the value of interest. If the process model were 
a good representation of the observed environmental behaviour, this would amount to 
an uncertainty analysis of some or all of the variables of the process model, conditioned 
by the available measurement results.  

7.2.3 Temporal modelling 
The use of statistical techniques within SECTAR has been largely confined to the 
assimilation of measurements made at different spatial locations. The data are taken to 
be representative of a single time or, in the case of Tomsk and Bryansk, at times 
sufficiently long after the deposition occurred for the time between measurements to be 
unimportant. Problems with using measurements made at different times were 
discussed in the context of the Windscale results in Section 6. In this case, data were 
corrected to a common time by using either simple radioactive decay or a process 
model to introduce an effective environmental half-life for the radioactive deposition. 
However, in many cases a more integrated approach would be useful, providing a more 
rapid and flexible assimilation procedure. There are schemes for including time as an 
extra dimension within a conventional geostatistical framework (De Cesare et al, 2002). 

 
* The use of dose rates would present a number of theoretical and practical difficulties related to the 
changing radionuclide composition of the deposition in time and space. This would require additional 
information or modelling assumptions to be made. 
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However, a Bayesian* formulation may be a more appropriate perspective as it naturally 
evolves as more data become available. Whichever approach is chosen, it will extend 
the range of events that statistical techniques could help analyse, including an extended 
or long duration release. 

One significant development that does not go as far as fully introducing time would be 
to develop the existing Bayesian tools produced for SECTAR to allow ground gamma 
dose rate information to be used. The problems with the Windscale gamma dose rate 
data available to SECTAR make the testing of a new formulation extremely difficult. 
However, it is known that gamma dose rates will be available from an early stage 
following a release and that they are quick and easy to take. They will therefore be one 
of the predominant measurement types likely to be available in the early stages of an 
accident, and, at least initially, will represent an important source of information about 
the release. Currently, theoretical limitations to the Bayesian formulation require the 
measurement data supporting a calculation either to precede or to be simultaneous with 
the quantities being predicted. Thus, time integrated air concentrations and deposition 
measurements can be used to support deposition estimates. However, the use of 
gamma dose rates to infer the level of deposition at other locations would require 
theoretical developments that enabled a posterior result (dose rate) to infer a prior result 
(deposition). 

7.3 Recommendations 

Section 7.2 has provided a list of investigations and technical developments that would 
provide both valuable underpinning of the statistical approaches advanced and useful 
additional capability. However, the priority must be to make the most promising of the 
techniques investigated under SECTAR readily available for use in an emergency. As 
discussed previously at a technical level this requires the linking together of software 
such as databases holding measurement and other information on the accident with a 
GIS and the necessary statistical tools. Unfortunately, although necessary, this is not a 
sufficient requirement to ensure that these tools will be available when required. To 
make the application of these techniques more likely in the early stages of a real event 
requires that staff maintain a familiarity with them. This requires the techniques to be in 
regular use either as part of a continuing research effort or as part of an emergency 
exercise programme. The former option is currently the most practical as exercises are 
generally of too short a duration for these techniques to come into their own. They 
would also be at a disadvantage in exercises, if results assumed for measurements 
were largely based on the predictions of a Gaussian dispersion model. 

The priorities for future work are therefore to make the successful techniques of 
SECTAR (principally ordinary kriging and simulation in the far field†, and Bayesian 

 
* Or Bayesian kriging 
† For a simple Gaussian dispersion model the near field can be interpreted as the distance the plume 
is likely to travel under constant atmospheric conditions. This may be as little as a few kilometres and 
Jones (1981) recommends that a simple Gaussian dispersion model (Clarke, 1979) should only used 
to estimate concentrations at distances less than 50 km from the source. 



STATISTICAL ESTIMATION AND CHARACTERISATION TECHNIQUES FOR USE DURING ACCIDENT 
RESPONSE (SECTAR) 

76 

assimilation in the near field) easily useable by trained staff in the unlikely event of an 
accident and to continue with a research programme in this area. The latter will 
maintain the pool of trained staff and could be designed to improve the applicability of 
the techniques to limited duration exercises by further developing approaches that used 
air concentration and gamma dose rate measurements. 

7.4 Conclusions 

The SECTAR project has demonstrated the potential of statistical techniques to provide 
guidance in estimating the spread of radioactivity following an accident. It is 
recommended that a phased programme of further work be undertaken to capitalise on 
the results of SECTAR. The following simple steps are suggested: 

a Establish the ability to apply the technique of ordinary kriging rapidly to 
measurements of deposited radioactivity and the radioactivity then found in 
plants and animals after an accident as appropriate. This will fill the gap that 
currently exists in modelling at a local level contamination that has arrived from 
a distant source, complementing the use of long range dispersion models and 
aerial monitoring. 

b Extend the capability to the use of simulation in the far field once an ordinary 
kriging capability has been established. This work will complement the 
potential use of ensemble predictions by the meteorological office to predict 
the probability of contamination in particular areas. 

c Incorporate Bayesian assimilation as part of the standard repertoire of 
assessment tools. This will provide an opportunity for improved deposition 
estimates when either simple dispersion modelling or ordinary kriging may be 
unreliable eg in the former case beyond about 10 km from the site (Jones, 
1981). 

d Prioritise further research activities in this area in line with the discussion of 
Section 7 in particular extending the capabilities of the Bayesian tools to use 
dose rate information. 

Task a is, as discussed in Section 7.3, predominately a simple computing task that a 
reputable consultancy could undertake. Task b is slightly more complicated as common 
GIS software does not yet provide this functionality but guidance on the implementation 
and practical use of the utility routines used in this work could be provided to the 
implementing software consultancy by several research and university organisations 
that use these techniques. In a similar vein task c should be straightforward to 
implement with the assistance of the authors of the Bayesian method (Kennedy et al, 
2002). However, some additional work may be required by them if the technique is to be 
used with alternative atmospheric dispersion models such as ADMS (CERC, 2002).  
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Appendix A  Ordinary kriging worked example 

 

A1 INTRODUCTION 

This example of an ordinary kriging estimate for a single location is intended to illustrate 
the steps in the calculation as performed by the GSLIB routine okb2d Deutsch and 
Journel, 1998). The data are selected from one of the random samples of Windscale 
iodine in milk data discussed in Section 6.1. All measurements are in units of µCi l-1. 
Figure A1 shows the location at which an estimate is to be calculated and the values of 
the 9 measurements which fall within the isotropic search radius (11.5km) of this 
location. The variogram model parameters are those for the entire random sample, as 
used previously. They are: Range = 11.5km, sill = 0.0172, anisotropy angle (θ in 
Figure A2) = 125°, anisotropy ratio (amin/amax; see Figure A2) = 0.59. 

FIGURE A1 Example input data for ordinary kriging a t a single location. 
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The ordinary kriging estimate for the location of interest is calculated from a weighted 
linear sum of the 9 measurement values, subject to the constraint that the weights sum 
to 1 to ensure that the estimate is unbiased. Since the measurement values are 
assumed to be realisations of a random function, the estimate formed in this way 
(Equation A1) is likewise a random function. 

 

(A1) 

 

(A2) 

 

(A3) 

 

The unbiasedness of the estimate ensures that on average the estimation errors, 
defined by Equation A2, are zero. For a ‘best’ estimate, it is required that the individual 
errors are also as small as possible, which may be achieved by finding the set of 
weights which minimise the error variance, Equation A3. The variance is minimised by 
setting equal to zero its partial derivatives with respect to each of the weights, but with a 
constraint imposed by the unbiasedness condition. Thus, the method of Lagrange 
multipliers is used to solve the constrained minimisation problem. 

The first step in the calculation is to obtain an expression for the error variance in terms 
of the covariances between pairs of measurement locations, Cij and between the 
estimate location and each measurement location, Ci0. Assuming a stationary random 
function, that is, one whose mean is not location-dependent (at least over the search 
area) and whose covariance is only dependent on separation distance, Equation A4 
may be derived for the error variance. 

 

(A4) 

 

This equation uses covariances but it is more common in geostatistics to use the 
variogram to quantify the spatial autocorrelation. The covariance and variogram of a 
stationary random function are related by Equation A5. Given the variogram model it is 
therefore possible to calculate the covariances required in the above expression for the 
error variance. 

(A5) 

 
The constrained minimisation of A4 uses partial differentiation with respect to the 9 
weights and a Lagrange parameter to give, in this case, a set of 10 equations in 10 
unknowns, which can be solved for the weights and the Lagrange parameter. The 
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solution is completed by substitution of the weights back into A1 to calculate the value 
of the random variable at the location of interest. The system of equations resulting from 
the minimisation can be compactly written in matrix form as shown in Equation A6. 

 

 

(A6) 

 

 

That is, C.w=D. The matrix C is the matrix of covariances between pairs of 
measurement locations, and is therefore symmetric. The final row and column of this 
matrix are used to incorporate the constraint that the sum of weights must equal one. D 
is the matrix of covariances between the location at which an estimate is required and 
each of the 9 the measurement locations. 

From Equation A6 the vector of weights may be obtained by a simple rearrangement, 
as shown in Equation A7. 

w=C-1D (A7) 

The calculation is complicated slightly if, as in this case, the phenomenon is anisotropic. 
The kriging equations assume an isotropic variogram model and so a transformation of 
the separation vectors h=(dx, dy) must be performed to work in the co-ordinate system 
defined by the axes of anisotropy. This transformation rotates the axes and stretches 
the scale along the anisotropy axes, as shown in Figure A2 and Equation A8. 

Figure A2 Illustration of anisotropy parameters. 
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(A8) 

Where  

 

 

And  

 

 

The isotropic (ie post-transformation by Equation A8) variogram model for the 
Windscale data in this example is given by Equation A9. 

 

 (A9) 

 

To calculate the covariance for any separation h’ Equation A5 is used so that the 
variogram value given by Equation A9 must be subtracted from the variance of the 
random function, which is the variogram sill value 0.0172. The covariance matrix C and 
its inverse C-1 can now be calculated, as can the vector D. 

For the Windscale data in this example, these matrices and the resulting vector of 
kriging weights are given below: 
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Substituting into Equation A7 gives the weights, which are the first nine rows of the 
vector w. The tenth row in this vector is the Lagrange parameter, whose value is not 
needed when calculating the kriging estimate but is used if the kriging variance is also 
required. The kriging estimate is then obtained by substituting the weights into Equation 
A1, as shown in Equation A10, where the row vector V contains the measurement 
values within the search radius (see Figure 1) and the corresponding weights are in the 
column vector w’ . 

=0.130 (A10) 

That is, the ordinary kriging estimate for the location at the centre of the search area in 
Figure A1 is 0.130 µCi l-1. 

A2 REFERENCES 

Deutsch CV and Journel AG (1998). GSLIB Geostatistical Software Library and User’s Guide. Oxford 
University Press. 
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Appendix B Cokriging requirements 

 

B1 INTRODUCTION 

The discussion of Section 3.1.3 on cokriging is continued at greater depth in this 
Appendix. The intention is to highlight some of the particular difficulties associated with 
the technique.  

B2 CHOICE OF NONBIAS CONDITIONS IN COKRIGING 

The GSLIB routine (cokb3d) (Deutsch and Journel, 1998) used for cokriging in 
SECTAR offers three types of cokriging, which differ in their nonbias conditions. Simple 
cokriging is analogous to simple kriging in that there are no constraints on the weights 
applied to the primary or secondary variables. As with simple kriging, it is unlikely that a 
uniform mean can be assumed over the entire estimation area so this method is not 
very useful in practice, and ordinary cokriging is to be preferred. For p primary data at 
locations x i and s secondary data at locations x j, traditional ordinary cokriging uses the 
nonbias conditions of Equation B1. 

 

(B1) 

In this method, the local means are estimated and used by the kriging algorithm in the 
same way as for ordinary kriging with one variable. The disadvantage of constraining 
the sum of the secondary weights to equal zero is that some of them will necessarily be 
negative which increases the risk of obtaining negative estimates. The weights also 
tend to be small which results in the influence of the secondary variable being severely 
limited. The method also has the disadvantage that it cannot be used over local areas 
where there are no primary data because the constraint on the primary weights cannot 
be satisfied and the matrix of covariances will be singular. The third method is known as 
standardised ordinary cokriging, and it uses the nonbias conditions of Equation B2. 

(B2) 

 

The name of this method refers to the new rescaled (‘standardised’) secondary 
variables, which it uses. These have the same mean as the primary variable and are 
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calculated using Equation B3, where the vj are the secondary data, and ms and mp are 
the means of the secondary and primary data respectively over the estimation area. 
These must be estimated by the user and supplied as input to the cokriging routine. 

(B3) 

 

This rescaling clearly is only possible if primary and secondary data are either 
dimensionless or can be expressed in the same units. 

The obvious difficulty with this method is the need to supply the primary and secondary 
means. Isaaks and Srivastava (1989) suggest that arithmetic averages of the primary 
and secondary sample data are suitable estimates for the means as long as the 
samples are not clustered. The local means (which will be the same for primary and 
rescaled secondary data) within each search neighbourhood will still be re-estimated by 
the standardised ordinary cokriging algorithm (Goovaerts, 1998). If data are clustered, it 
may be more appropriate to carry out cokriging separately for each area, using the 
appropriate sample mean for each cluster. 

The advantages of using the single nonbias condition are twofold. Firstly, the likelihood 
of obtaining negative weights for secondary data (and consequently negative estimates 
which are often physically nonsensical) is reduced. Secondly, the magnitudes of the 
secondary weights are generally greater than they are in ordinary cokriging so the 
influence of the secondary data is increased. This is obviously beneficial when the 
primary data are scarce. 

B3 VARIOGRAMS AND THE LINEAR MODEL OF 
COREGIONALISATION 

If it has been possible to select appropriate data, the next issue is the creation and 
modelling of variograms to describe the spatial correlation and cross-correlation 
between the sample types. This process is considerably more involved than that 
described for a single variable in Section 3.1.1, both at the empirical variogram and 
modelling stages. For any of the three cokriging options in GSLIB (simple, ordinary or 
standardised; not collocated cokriging), empirical variograms for primary and secondary 
data are required. A cross-variogram which summarises the spatial cross-correlation 
between the two sample types is also needed, and for variables u, v at lag separation h 
this is defined by Equation B4. 

(B4) 

 

This implies that a certain number of collocated primary and secondary data are needed 
whatever variety of cokriging is chosen. This situation may not always be easily 
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achieved for post-accident data as illustrated in Section 6.5, where ‘artificially’ 
collocated data are created for the cokriging trials undertaken. 

Having created the three empirical variograms, they must be modelled subject to the 
constraint that the resulting cokriging matrix is positive definite (or equivalently, that the 
cokriging variance is always positive). The linear model of coregionalisation (Isaaks and 
Srivastava, 1989) is a method for doing this, and it is essentially a set of restrictions on 
the type and the parameters of the basic models which are used to fit the variograms*. 
Full mathematical descriptions are given in most geostatistics textbooks (eg 
Wackernagel, 1995), but the idea may be summarised as stating that the models for the 
individual primary and secondary variograms, and the cross-variogram, must be 
composed from a linear sum of the same basic variogram models. To ensure positive 
definiteness of the linear model, the nuggets and sills of these basic variogram models 
must satisfy the conditions of Equation B5. 

(B5) 

 

Here, c0u and c0v are the nuggets of the primary and secondary variograms and c0uv = 
c0vu (it is symmetric) is the nugget of the cross-variogram. C1u and c1v are the sills of 
the primary and secondary variograms and c1uv = c1vu is the sill of the cross variogram. 

In general, if N structures were used to model the variogram (including the nugget), N 
determinants would need to be checked, one for the nugget plus one for the sills of 
each of the N-1 additional structures. It can be seen that these equations require that 
any structure included in the cross-variogram model must appear in the primary and 
secondary models, although the converse is not true; for example, including a nugget in 
the cross-variogram means that the primary and secondary variograms also need 
nuggets (which may be different), however, it is permissible for the primary and 
secondary variograms to have nuggets but not to include one in the cross-variogram 
model. 

Modelling a coregionalisation can be time-consuming and there are a number of 
software packages available that automate the procedure to a greater or lesser extent. 
One such program, which was tested using the Windscale data, is Agromet (Bogaert et 
al, 1995), which will calculate appropriate sills and nuggets given the basic models and 
their ranges selected by the user. While this has the potential to save time and effort, 
the software was unable to work with anisotropy and so was unsuitable for the final 
cokriging experiments of SECTAR. The VarioWin software used for the single variable 
variograms was also used for the cokriging variograms. This effectively required the 
fitting to be done ‘by eye’, since the variograms and cross-variogram were modelled 
separately with the constraint that choosing nuggets and sills to satisfy the linear model 
of coregionalisation was more important than obtaining the ‘best fit’ for any individual 

 
* This approach is sufficient but may not be necessary. Unfortunately, there is no generally available 
method of meeting the requirements with fewer imposed restrictions.  
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variogram. If cokriging is to be used in a practical accident situation, then variogram 
modelling will need to be automated to as great an extent as possible. 

It was mentioned in Section 3.1.3 that collocated cokriging did not require the 
complicated variogram modelling procedure of the other varieties. Although lack of 
suitable data has prevented the practical investigation of collocated cokriging as part of 
SECTAR, the variogram requirements are outlined here for completeness. Collocated 
cokriging only needs a variogram for the primary data and a way to describe the cross-
correlation. No secondary variogram is used because only the single collocated 
secondary datum is retained for each estimate location. An approximation for the cross-
covariance can be calculated using a Markov model (Xu et al, 1992). 

All investigations into cokriging under SECTAR were carried out using the Windscale 
dataset, as it was the only one to contain measurements of several different sample 
types and radionuclides. The data selection process and the experiments are described 
in Section 6.5. 
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Appendix C The effect of simulation options 

 

C1 INTRODUCTION 

This section illustrates the effects of the choice of simulation parameters on the 
observed results. 

C2 USE OF SIMPLE KRIGING 

It was stated in Section 3.1.4.1 that theoretically, simple kriging should be used when 
carrying out simulations. However, it was also stated that ordinary kriging was thought a 
more appropriate choice for the Windscale data. Repeating the simulation experiments 
of Section 6.3 using simple kriging instead of ordinary kriging produced results, which 
were, for all practical purposes, identical. 

C3 NUMBER OF REALISATIONS 

An investigation was carried out into the effect of changing the number of realisations 
on the results obtained at specific locations in the Windscale analysis. Five points were 
selected at random from the simulation grid used in Section 6.3 and the statistics were 
calculated at regular intervals of 10 realisations up to 1000. Examples of how these 
statistics behaved as the number of realisations increased are shown in Figure C1. It 
can be seen that the statistics tended to settle down at the 300-realisations mark, this 
was generally the case for all points considered. The relative variance was the most 
erratic of the statistics, whereas the mean and the probability of exceeding the 
Windscale ban criterion converged to a limit relatively smoothly. 

There appears to be very little to gain from using more than 300 realisations to produce 
statistics similar to those used in the Windscale simulations. However, for statistics on 
more extreme outliers, such as the 1st or 99th percentiles, more than 300 realisations 
should be considered. 

To summarise, for an overall appreciation of the values and their uncertainties in the 
different regions of the map, it is reasonable to use statistics based on 100 realisations. 
For robust information on a smaller scale, 300 realisations would be sufficient, but more 
than this may be needed if highly detailed statistics are being calculated. 
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FIGURE C1 Effect of changing the number of simulati on realisations on (a) the mean, and (b) 
the relative variance of the estimated milk activit y concentration. 
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FIGURE C1 Effect of changing the number of realisat ions on (c) the 95 th percentile of the 
estimated milk activity concentration, and (d) the probability of the estimates exceeding the 
Windscale milk ban criterion of 3700 Bq l -1 (0.1 PCi l -1). 
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Appendix D Windscale Database 

 

D1 INTRODUCTION 

The Windscale database was designed to hold data collected during the extensive 
programme of environmental surveys carried out after the 1957 fire at Windscale Pile 
No.1* for example, Chamberlain and Dunster (1958) and Dunster et al (1958). In the 
months following the accident, the results of the monitoring programme undertaken in 
the days and weeks following the fire were transferred to large punched cards, known 
as ‘Paramount’ cards†. Several copies of these cards were produced, and one set was 
subsequently acquired by NRPB (now HPA-RPD). The process of transferring these 
data to an ORACLE database has taken place over several years. The first version of 
the database organised the data in a structure that closely resembled the way it was 
stored on the punched cards. It was thought that this mirroring of the Paramount card 
structure would help to minimise the likelihood of errors being introduced on copying the 
data. However, it became clear that the data, once entered into the database, were 
awkward to retrieve. Thus, a major revision of the database structure was undertaken to 
make it easier to use. Most recently, data for meteorological measurements and 
polonium measurements, the latter of which were classified at the time of the accident 
(and hence not recorded on the Paramount cards) were added (Crabtree, 1959; Stewart 
et al, 1961). A comprehensive testing programme was also undertaken to establish the 
reliability of the record transfer for the various types of measurement. 

D2 STRUCTURE OF THE DATABASE 

The Windscale database consists of 15 tables holding accident related data and 3 ‘QA’ 
tables which are not directly connected to the main database. The QA tables hold 
details of any changes to the main database, the version number associated with the 
change and a record of any subsets of material from the database that has been 
supplied to others. The tables holding the accident data are arranged in the structure 
shown diagrammatically in Figure D1. The figure illustrates both the one-to-many 
relationships and the participation class of the tables. For example, the symbolic 
connection between the Results and Units tables illustrates that there may be many 
results with the same units in the Results table and that every row in the Results table 

 
* A review of the history of the Windscale pile and accident can be found in Arnold (1992). 
† Before the widespread availability of computers, the Paramount cards allowed data meeting 
particular criteria to be selected using a mechanical system of needles. The card holder and selector 
mechanism was not available at NRPB. 
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must have an associated unit. However, there may be units stored in the Units table, 
which are not used by the Results table. 

 

 

 

FIGURE D1 Structure of database v2.3. The participa tion class of the relationship is denoted by 
the two circles. A black circle indicates mandatory  participation by the adjacent table, ie, every 
entry in that table must refer to an entry in the t able to which it is connected. An empty circle 
indicates optional participation, ie, the entries i n the adjacent table are not necessarily 
referenced by the connected table. 

 

A great deal of effort was devoted to the transfer of the information from the Paramount 
cards and other sources to the Oracle database and the subsequent testing of the 
accuracy of the transcription from the paper records. A further development which also 
proved successful was the connection of the database to a Geographic Information 
System (GIS). This allowed the location of the measurements to be checked for 
consistency. In the initial stages of database testing this assisted in the identification of 
locations that may have been wrongly reported or transcribed. As indicated in the 
introduction the results of sampling for radionuclides such as 210Po, which were not 



APPENDIX D 

93 

published at the time of the accident,* have also been included (Chamberlain, 1981; 
Crick and Linsley, 1982, 1983). 

To help detect any systematic problems associated with transcribing specific types of 
measurements, the statistics quantifying the reliability of the transfer process were 
calculated for each sample type. These values were calculated as part of the testing 
procedure using a program based on Defence Standard 05-58/2 (Ministry of Defence, 
1986). This program determined how many records should be tested and if errors were 
found how many more records had to be subsequently tested to achieve the set criteria. 

D3 DATA QUALITY IN V2.3 

A program supplied with the Ministry of Defence standard for testing isolated lots 
(Ministry of Defence, 1986) was used to determine the requirements for assessing of 
the reliability of the data transfer process that Version 2.3 of the Windscale database 
depended on. The program was run and the testing carried out for each sample class 
held in the database in case there were systematic errors that made particular sample 
classes more likely to contain errors than others. The program provides a number of 
test plans, which list the number of records to test each time and the number of allowed 
errors for each plan until the result is within the error bound selected. 

The N records to test of the NLOT records of that type were selected using a random 
number generator. If the allowed number of errors for the particular test plan were 
exceeded, the lot was deemed to have failed the test. In this case, the tester must 
proceed to the second and subsequent test plans until the lot passed. However, before 
starting the next cycle of testing any data that had been found to be in error were 
corrected.  

Given the number of plans used until the lot passed and the number of errors in the final 
sample, statistics can be compiled for the reliability of records in each sample class. 
The statistic quoted in Table D1 is the Lower Confidence Limit (LCL). This is the 
greatest expected percentage number of records in error for data of the given sample 
class. The test procedure statistics are formulated on the assumption that testing with 
replacement occurs in which case there is a 5% probability that the actual percentage 
error will be greater than that suggested by the LCL. However, testing without 
replacement was employed (which would result in more distinct records being tested 
when multiple lots had to be drawn) so that in these instances the LCL quoted would be 
an underestimate†. Additionally, the human thyroid, meat, miscellaneous and urine 
sample classes contain too few records for the program to generate a test plan. These 
were therefore tested exhaustively and their reliability can be stated as 100%, 
corresponding to an LCL of zero. The results of the testing are summarised in Table D1. 

 
* These results were omitted from the Paramount cards. 
† Multiple non-exhaustive testing did not occur in practice. 
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TABLE D1 Testing the reliability of the transcripti on of data from paper records to the 
Windscale Oracle database 

Sample class NLOT Test 
number 

Test conditions (sample to 
test, allowed no. of errors) 

Errors† Test result LCL 

Air 1948 1 (228,4) 2 PASS 2.772 

Animal thyroid 117 1 (53,0) 1 FAIL  

Animal thyroid* 117 2 All remaining 0 PASS 0.000 

Dairy 90 1 (46,0) 0 PASS 4.444 

Gamma 2780 1 (235,4) 3 PASS 3.417 

Human thyroid 4  ALL 0  0.000 

Meat 7  ALL 0  0.000 

MET 876 1 (180,3) 1 PASS 2.511 

Milk 3310 1 (238,4) 3 PASS 3.414 

Miscellaneous 11  ALL 2  0.000 

Urine 40  ALL 1  0.000 

Vegetable 1124 1 (186,3) 2 PASS 3.292 

Water 150 1 (78,1) 1 PASS 4.000 
†All errors found were corrected 
*No advantage in limiting the number tested  

 

D4 DATA SOURCES 

Table D2 below lists the origin of all records in version 2.3 of the Windscale database. 
The polonium measurements are taken from Stewart et al (1961), which was 
declassified in 1962. Paramount cards with locations, measurement dates and sample 
type (air) information exist for these measurements, however no actual results are 
recorded on the cards as they were typed in 1958 when the polonium data was still 
classified. This report also contains measurement data for mainland Europe but these 
have not been included, as the values recorded are very low in comparison with the UK 
measurements and unlikely to be of any practical use in data analysis. 
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Table D2 Sources of Windscale data 

Measurement 
number 

Source Notes 

1-669 File 1, Paramount cards  

670-730 File 6, Paramount cards Special location cards 

731-1774 File 1, Paramount cards  

1775-3141 File2, Paramount cards  

3142  NOT IN DATABASE 

3143-4158 File 3, Paramount cards  

4159-5278 File 4, Paramount cards  

5279-7243 File 5, Paramount cards  

7244-7396 Files 6, Paramount cards Special location cards 

7400-7434 Stewart et al (1961)  Table 1 data in pCi m-3 and held in air_tests table. 
Derived data from Crick and Linsley (1983), in Bq s 
m-3, held separately in Crick_results table. 

7435-7440 Crick and Linsley (1983)  Table 4 

7441-7443  NOT IN DATABASE 

7444 A C Chamberlain (1981), File 4 Corney 90Sr, 210Po in milk, Corney, 16/10/57: 147, 26 dpm/l 

7445-7459 D.V Booker (1958) Table 1 

7460-7493 D.V Booker (1958) Table 4 

7494-7530 D.V Booker (1958) Table 5 

7531-7537 Stewart et al (1961) Table 1 

8001-8900 Document E18 in file B1055/02 Met data for the Windscale area on 10th – 11th 
October, 1957 
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