

LOCAL AIR QUALITY MANAGEMENT

- Nitrogen dioxide
 - in urban areas arises mainly from vehicle exhaust
 - secondary pollutant, not linearly related to NO_x emissions
 - annual mean objective is major problem for air quality management
 - changes in background ozone affect NO₂
 concentrations

UK ANNUAL URBAN ROAD TRANSPORT EMISSIONS OF NO_x, 1970-2025 (ktonnes)

20% diesel car sales; Central 1997 NRTF; Assumes Euro III emission reductions for all new vehicles in 2001, EURO IV reductions for cars, LGVs only in 2006; Fuel standards reduce emissions in 2000 & 2006 for all vehicles

THE PROBLEM WITH NITROGEN DIOXIDE

- Nitrogen dioxide is a secondary pollutant and will not reduce as rapidly as precursor emissions of NO_x decline.
- Emissions of primary NO₂ appear to be increasing and secondary NO₂ is formed by reaction of primary NO_x emissions with ozone.
- Increases in the background ozone concentration will lead to production of more nitrogen dioxide, so concentrations may not decline at all.
- The National Air Quality Strategy objective for nitrogen dioxide of 40µg m⁻³ is widely exceeded at heavily trafficked locations currently.

A SHORT TUTORIAL IN NO_X-OZONE CHEMISTRY

- Emissions of NO_x from combustion sources are typically 95% NO and 5% NO₂ (the more harmful substance)
- Conversion of NO to NO₂ occurs primarily by reaction with ozone, although this is partially reversible in sunlight

 $NO + O_3 \rightarrow NO_2 + O_2$ $NO_2 + h\upsilon \rightarrow NO + O$ $O + O_2 \rightarrow O_3$

- Urban concentrations of NO_x can far exceed those of ozone in the background air, and the process of NO₂ production is then oxidant-limited
- An increase in the 5% of primary emitted NO₂ will lead to increased NO₂ in air
- Cutting NO_x emissions when NO₂ formation is oxidant-limited will have little effect on NO₂ concentrations

Relationship between Hourly Mean NO₂ and NO_x Concentrations

Note: Measurements taken 20th May 1991- 30th June 1992 in Exhibition Road, London.

ANNUAL MEAN NO_x VS. NO₂ (1992-2000) DERIVED USING THE ERG APPROACH

SOURCE: ENVIRONMENTAL RESEARCH GROUP, KINGS COLLEGE, LONDON

NITROGEN DIOXIDE

Abatement measures:

- 1. Reduce all NO_x emissions
- 2. Reduce NO_2/NO_x ratio in primary emissions
- 3. Reduce background ozone

Where is the NO₂ problem worst?

In street canyons

H=W=18m dx=dz=0.3m, dy=1m dz(max)=5m Lx=36m, Ly=40m Lz=90m

LES of NO_x-O₃ in a street canyon

Influence of shading of street canyon upon nitrogen dioxide concentrations (isopleths in ppb).

From: D. Grawe, X.-M. Cai and R.M. Harrison, Atmos. Environ., 41, 7304-7313 (2007).