Introduction

1. This guidance statement provides an overview of the approaches to characterising the risks associated with exposures to chemical carcinogens. It is part of a series of guidance statements by the Committee on Carcinogenicity of Chemicals in Food, Consumer Products and the Environment and should be read in conjunction with these, and in particular G01, G02, G03 and G05.

2. Risk characterisation is the fourth stage of the risk assessment paradigm and brings together the hazard identification and characterisation stages and the exposure assessment process. For carcinogenic effects, the risk characterisation approach used depends on the mechanisms of carcinogenicity and the relationship between dose and carcinogenic response. For most non-genotoxic carcinogens it is accepted that there is a threshold dose, below which no effect is observed. In contrast, for compounds which are genotoxic and carcinogenic and for which there are no mechanistic data to suggest a threshold for genotoxicity, or for substances where no mode of action or threshold for effect has been identified, it is currently considered prudent to assume that no threshold for carcinogenicity exists. The processes of hazard identification and hazard characterisation are therefore key to determining the approach to be taken in risk characterisation.
Risk Characterisation approaches endorsed by the Committee

Compounds with no identifiable threshold of effect (Non-threshold carcinogenicity)

3. For carcinogens with genotoxic activity, in the absence of mechanistic data to suggest a threshold for genotoxicity, or carcinogens where no threshold for effect has been or can be identified, it is prudent to assume that no threshold for carcinogenicity exists.

As Low As Reasonably Practicable

4. For such carcinogens, the Committee recommends that risk managers adopt measures to ensure that levels are controlled so that exposure is as low as reasonably practicable (the ALARP approach). However, in some cases to aid in risk management decisions, the ALARP approach may be supplemented by providing information on the margin of exposure between a point of departure and likely human exposure. Alternatively, for contaminants or impurities, a pragmatic minimal risk level may be derived which is a dose representing a negligible carcinogenic risk. It is important to note that ALARP remains the overriding principle even when a margin of exposure or minimal risk level suggests there is unlikely to be a concern for human health.

Margin of Exposure approach

5. This approach is a way of prioritising and assisting with the communication of the risks associated with unavoidable exposure to genotoxic chemical carcinogens. It has been developed and used by the European Food Safety Agency (EFSA), the World Health Organisation (WHO) and the International Life Sciences Institute (ILSI), amongst others (EFSA, 2005; JECFA 2005; O’Brien et al., 2006). It is also seeing increasing use for chemicals where no threshold can be identified, including carcinogens, e.g. arsenic, but also where other health effects are observed, as in the case of e.g. lead.

6. The margin of exposure (MOE) is the numerical value obtained by dividing a point of departure on the dose response curve by estimated human exposure to the chemical. The preferred point of departure is generally accepted to be the lower 95% confidence limit of the benchmark dose (BMDL)\(^1\), although others have been suggested (Barlow et al., 2006). The COC considers the BMDL to be preferable to the T25 as a point of departure where the T25 is the dose eliciting a 25% increase in the incidence of a specific tumour above the background level\(^2\). This is because the BMDL takes into account uncertainty regarding the shape of the dose-response relationship, within the observed dose range of carcinogenicity studies.

7. Some analyses of data have been carried out to determine the appropriate benchmark response (BMR) to use as a basis for a MOE approach. It was found

\(^1\) Further details of the BMDL and its derivation can be found in the COC Guidance Statement G05: Points of Departure and Potency Estimates

\(^2\) Further details of the T25 and its derivation can be found in the COC Guidance Statement G05: Points of Departure and Potency Estimates
that, in most cases when using animal data, the data from which the BMDL is derived is such that using a response of less than 10% would make the resulting BMDL more uncertain and similarly affecting the resultant MOE (Benford et al. 2010).

8. The Committee considers that, although ALARP should always apply for compounds with no identifiable threshold of effect, the MOE is a useful means by which to prioritise and communicate the risks from exposure to genotoxic carcinogens.

9. The Committee has proposed the system in Table 1 for banding MOE values, when based on the lower 95% confidence limit of the benchmark dose (BMDL\textsubscript{10}) from an animal study. This expands proposals for the interpretation of the magnitude of the MOE that were made by JECFA and EFSA, where there was a consensus that a MOE greater than 10,000 indicated low concern. It is hoped that the banding system might improve the communication of advice on genotoxic carcinogens to wider audiences.

10. When other points of departure are used, for example if based on human data, the margin of exposure should be considered on a case-by-case basis.

Table 1: Banding of MOE values based on a BMDL\textsubscript{10} from an animal study to aid risk communication

<table>
<thead>
<tr>
<th>Margin of Exposure</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td><10,000</td>
<td>May be a concern</td>
</tr>
<tr>
<td>10,000-1,000,000</td>
<td>Unlikely to be a concern</td>
</tr>
<tr>
<td>>1,000,000</td>
<td>Highly unlikely to be a concern</td>
</tr>
</tbody>
</table>

Minimal Risk Levels

11. Under certain specific circumstances, for example very low exposures to genotoxic and carcinogenic contaminants or impurities, a pragmatic minimal risk level for these compounds may be identified. This minimal risk level3 would be an estimate of daily human exposure to a chemical identified by expert judgement that is likely to be associated with a negligible risk of carcinogenic effect over a specified duration of exposure (usually a lifetime).

12. The minimal risk level does not negate the need, where practicable, for efforts to reduce exposure, even when levels are below the minimal risk level. This is because for any genotoxic and carcinogenic chemical, there is still a carcinogenic risk (although this may be very small) at any exposure level, and thus the policy adopted by risk managers of controlling levels to ALARP should always apply. Indeed, this advice applies whether or not a minimal risk level for a genotoxic and carcinogenic contaminant or impurity can be estimated or achieved.

3 It should be noted that the minimal risk levels described here differ to those used by the US Agency for Toxic Substances and Disease Registry.
13. The derivation of a minimal risk level for a genotoxic and carcinogenic contaminant or impurity involves assessment of all available dose-response data for carcinogenicity to determine an appropriate point of departure and use of expert judgement to identify a suitable margin between this point of departure and a level of exposure which would result in a minimal risk. One proposal is that a suitable margin might be 10,000 (Gaylor, 1994; Gold et al., 2003), which parallels the margin of exposure approach, where an MOE of 10,000 is considered to be unlikely to be of concern when based on a BMDL\textsubscript{10} from an animal study. For a genotoxic and carcinogenic contaminant or impurity, a comparison of the minimal risk level with estimated exposure can be informative to risk managers.

14. The Committee considers that this approach should apply solely to contaminants for which exposure was unavoidable and to impurities in materials, products and formulations which are subject to regulatory assessment schemes.

Compounds with a threshold of effect (Threshold carcinogenicity)

15. Many non-genotoxic carcinogens induce tumours as a secondary adverse effect arising from an initial toxicological effect, which has a threshold (Ashby et al. 1996). It follows that, for these substances, there is no carcinogenic risk at dose levels that do not produce the primary toxicological event, i.e. at doses below the threshold (Williams, 2001). Therefore, where there is adequate evidence to support a threshold for carcinogenicity (i.e. the compound and metabolites are not DNA reactive and there is an adequate evaluation of the mode of action (MOA) for tumours observed in animal studies), the Committee considers that an approach based on the use of uncertainty factors should be adopted.

16. The risk characterisation of non-genotoxic carcinogens can also be improved by adopting proposals such as those published by the IPCS on mode of action in animals and the ILSI human relevance framework. These approaches can serve to enhance the clarity and transparency of the risk characterisation process (Sonich-Mullin et al. 2001; Cohen et al., 2003; Cohen et al., 2004; Meek et al., 2003; Boobis et al., 2006).

17. The risk characterisation for non-genotoxic carcinogens should ideally be based on a BMDL for carcinogenicity or more often for a precursor event linked to tumour induction, though often a No Observed Adverse Effect Level (NOAEL) is used. The robustness of this evaluation is dependent on the quality of the animal bioassays, or human studies if relevant and available, and dose setting procedure and on the available information to support the MOA. Where the carcinogenicity data are obtained from animal studies, the MOA should be relevant to humans. The BMDL is divided by an appropriate uncertainty factor to give a health-based guidance value i.e. an estimated dose in humans without appreciable risk over a lifetime. Examples of such health-based guidance values are an Acceptable Daily Intake (ADI), which is used for food additives or pesticide residues in food, or a Tolerable Daily Intake (TDI), such as is used for environmental contaminants. However, in the risk characterisation of a non-genotoxic carcinogen, it is important to consider all relevant toxicological endpoints caused by the chemical and the
uncertainty factor which should be applied, before deciding on the appropriate health-based guidance value.

18. The uncertainty factor allows for the uncertainties involved in extrapolating findings in animals to humans (interspecies variation) and in the differences in sensitivity to the adverse effect among the human population (interindividual variation). Other factors may also be used, on a case-by-case basis, to take into account the quality of the toxicity data and the nature of the toxic effect. The uncertainty factor used is in essence a margin of exposure which results in there being no concern for human health.

19. The numerical value of the uncertainty factor needs to be considered on a case-by-case basis, but as a general default a value of 100 (based on a factor of 10 for interspecies variation and a factor of 10 for interindividual variation) is frequently used when based on adequate animal data. Higher uncertainty factors might be used for non-genotoxic carcinogenicity depending on the quality of the animal data and uncertainties in evaluation of the toxicological data. If available data provide adequate information on interspecies or human variability, the default values may be replaced in part or entirely by chemical-specific adjustment factors (Meek et al. 2002).

20. The approaches to deriving uncertainty factors have been reviewed in detail by the Interdepartmental Group on Health Risks of Chemicals document (IGHRC, 2003) and the Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT, 2007). More recently, EFSA has also discussed uncertainty factors and when they should be used or considered (EFSA, 2012).

21. The application of uncertainty factors generates a single estimate of a dose (or exposure) for a human that is considered to be without appreciable risk over a lifetime, the so-called deterministic approach. Normally, no numerical estimate is provided of the confidence limits for this value. Any exposure below the derived ADI or TDI is considered to produce no appreciable risk. Qualitative estimations of risk above this level need to be considered on a case-by-case basis, taking into account the frequency, duration and extent by which it is exceeded, and the nature and dose-response relationship for carcinogenicity, or other relevant form of toxicity of the substance in question. The Committee considers that this approach may be used for non-genotoxic carcinogens provided that the underlying mode of action is adequately understood.

22. In the absence of an ADI or TDI, the margin between the estimated exposure and the BMDL for carcinogenicity, precursor event or other sensitive endpoint derived from long-term bioassays (i.e. the margin of exposure), can be informative to risk managers in deriving risk management policies.

Estimation of cancer risk by extrapolation from human studies

23. If adequate epidemiological or occupational evidence is available, it is possible to estimate cancer risks from human data. This is the approach used in the Hodgson and Darnton model to estimate the lifetime risk of asbestos-related cancers at low doses (Hodgson & Darnton, 2000).
The use of epidemiological studies for identification of carcinogenic hazard is valuable. However, often the exposure estimates in such studies limit the possibility of quantifying the relationship between exposure and effects. Occupational studies can be used as a basis for risk characterisation, often with linear extrapolation to the exposures experienced by the general population. The following uncertainties must be considered: uncertainties in the dose response, the differences in the exposure scenarios experienced by the workers compared to the general population, inter-individual differences, and the uncertainties associated with the design and interpretation of epidemiological data.

The Committee advises caution in the extrapolation of human data from epidemiological or occupational studies to estimate the risk to the general population due to the uncertainties involved, but where there is adequate information the Committee considers it appropriate to use human data.

Note This statement has been written prior to drafting Guidance Statement G02; Interpretation of Evidence of Carcinogenicity in Humans: Epidemiology and Case Reports. This section (paragraph 23-25) may be superseded or updated in light of discussions of G02.

Other approaches

Estimation of cancer risk by low dose extrapolation of animal data

In the latest US EPA Guidelines for Carcinogen Risk Assessment (2005), linear extrapolation from a point of departure on the dose response curve in animals to the origin, adjusting for background, is advised under specific circumstances. One is when there are data to suggest a linear response below the point of departure. This could be for substances which are DNA reactive and have mutagenic activity. Alternatively, it could be in situations where human exposure or body burden is close to doses associated with precursor events in the carcinogenic process and extrapolation would be in the approximately linear part of the dose-response curve. Linear extrapolation is also advised for use when the data are insufficient to establish a mode of action for a tumour site and where a linear component below the point of departure is scientifically plausible (US EPA, 2005).

The Committee does not recommend the use of this approach because the resultant cancer risk estimate has a degree of precision which does not reflect the uncertainties about the shape of the dose response curve orders of magnitude below the doses administered in animal studies. Instead, the Committee recommends using a margin of exposure approach to characterise the risk of such compounds.

Linear extrapolation to identify a Derived Minimal Effect Level (DMEL)

Within the technical guidance for the risk assessment of substances under the European REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) Regulation, two approaches are proposed for dealing with "non-threshold" genotoxic carcinogens. One is based on linear extrapolation from animal bioassay data to a low level of risk and the other is based on application of a large 'assessment factor' to a suitable reference point on the dose-response for
cancer. The recommended assessment factor for use with a BMDL$_{10}$ as a point of departure is 10,000. The latter approach was included because not all risk assessment bodies in the EU approve the use of the linear extrapolation approach (ECHA, 2010).

30. For the reasons described in paragraph 28, the Committee would not recommend using the linear extrapolation approach suggested by ECHA to derive a DMEL. The recommended ‘assessment factor’ used in the second approach parallels the lowest MOE value at which exposure is unlikely to be of concern. The Committee highlights that the ALARP principle should also apply.

T25 Approach

31. The T25 (see Guidance Statement G05: Points of Departure and Potency Estimates) has also been proposed as a basis for calculating risk from human exposure to carcinogens (Dybing et al. 1997). The appropriate animal T25 is selected and converted to an equivalent Human T25 (HT25) by the use of scaling factors for interspecies differences, based on difference in metabolic rate. The human health risk is then estimated by linear extrapolation to human exposure levels.

32. The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) has evaluated the use of T25 estimates for regulatory risk assessment of non-threshold carcinogens (ECETOC, 2002). It identified limitations in the methodology and concluded that the data and approach advocated were not sufficient to support quantitative risk assessment. The COC concurs with this view.

Summary

33. For carcinogens which do not show a threshold for effect, exposure should be as low as reasonably practicable (ALARP). In addition, the Committee recommends that the Margin of Exposure approach be adopted as a tool to indicate the level of concern in situations where exposure if unavoidable. When it is necessary to set a standard or guideline value for a genotoxic contaminant, identification of a Minimal Risk Level may be appropriate. For risk assessment of chemicals where a threshold has been established, the Committee advocates the use of the uncertainty factor approach.

COC

October 2012
References

Dybing E, Sanner T, Roelfzema H, Kroese D & Tennant RW (1997) T25: a simplified carcinogenic potency index: description of the system and study of correlations between carcinogenic potency and species/site specificity and mutagenicity. Pharmacology and Toxicology, 80, 272-279

EFSA (2012) Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA Journal, 10 (3), 2579.

Williams GM (2001) Mechanism of chemical carcinogenesis and application to human cancer risk assessment. Toxicology, 166, 3-10