Stability of Landfill Lining Systems: Report No. 2 Guidance

R&D Technical Report P1-385/TR2

N Dixon and D R V Jones

Research Contractor: Golder Associates (UK) Ltd.

In conjunction with Loughborough University Consultants Ltd.

Publishing Organisation

Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, BRISTOL, BS32 4UD.

Tel: 01454 624400 Fax: 01454 624409 Website: www.environment-agency.gov.uk

© Environment Agency 2003

January 2003

ISBN 1 85705 946 8

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the Environment Agency.

The views expressed in this document are not necessarily those of the Environment Agency. Its officers, servants or agents accept no liability whatsoever for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained herein.

Dissemination Status

Internal: Released to Regions External: Released to Public Domain

Statement of Use

This report has been produced to accompany R&D Technical Report P1-385/TR1 and should be used in conjunction with that report. This report provides the design assessment framework for the underpinning science provided by the 1st report. Both these reports should be used by people who design, construct, operate and regulate landfill sites, however they should be used in conjunction with advice from a suitably experienced geotechnical engineer. Guidance will be produced as a result of this research. It is essential that any person carrying out an assessment of stability or integrity of a landfill lining system as part of a Pollution Prevention and Control Permit Application for a landfill should use the guidance as a foundation for that assessment. It is recommended that any persons assessing the ongoing stability of a landfill either as a review of a Waste Management Licence or as a result of a identified failure of the waste or liner, should consider the advice and guidance provided as a result these reports.

Keywords

Landfill, Landfill Liner, Stability, Integrity, Geotechnical Assessment, Liner Failure, Engineering, Material Strength, Waste, Landfill Directive.

Research Contractor

This document was produced under R&D Project P1-385 by: Golder Associates (UK) Ltd., Landmere Lane, Edwalton, Nottingham, NG12 4DG Tel: 0115 937 1111 Fax: 0115 937 1100 Website: www.golder.com

Environment Agency's Project Manager

The Environment Agency's Project Manager for R&D Project P1-385 was: Stephen Storey, Southern Region.

Further copies of this report are available from: Environment Agency R&D Dissemination Centre, c/o WRc, Frankland Road, Swindon, Wilts SN5 8YF

tel: 01793-865000 fax: 01793-514562 e-mail: publications@wrcplc.co.uk R&D TECHNICAL REPORT P1-385/TR2 i

ACKNOWLEDGEMENTS

This report has been produced on behalf of the Agency by Golder Associates (UK) Ltd in conjunction with Loughborough University Consultants Ltd. It was produced in consultation with the R&D Contract P1-385 Project Board.

The Project Board consisted of:

Jan Gronow	Landfill Policy Manager
Stephen Storey	Southern Region (Project Manager)
Darren Legge	North West Region
Richard Moss	North West Region

EXECUTIVE SUMMARY

Consideration of landfill lining system stability is a fundamental part of the design and the regulatory process by the application of the EC Landfill Directive (1999) requirements through the Pollution Prevention and Control (PPC) permitting process. The stability of the waste mass, lining system and sub-grade should be ensured. Incorrect or incomplete assessment of stability has led to a number of failures both in the United Kingdom (UK) and overseas. The occurrence of failures, introduction of new materials and construction practices, developments of new design methods and ongoing changes in waste materials, together with the legislative need to remove the risk to human health and the environment have all contributed to the need for this review.

Design of landfills must consider stability both within and between elements of the lining system, within the waste and involving the sub-grade. This is to ensure that uncontrolled slippage of any of the elements does not occur. However, the design must also consider the long-term integrity of the lining system. Stresses, and hence deformations, in both mineral and geosynthetic lining materials must be controlled to ensure preferential flow paths are not formed (e.g. shear zones in clay liners and tears in geomembranes). An assessment of integrity requires knowledge of the lining sub-grade behaviour (i.e. cut and fill slopes, cell base), consideration of interaction between elements of the lining system and an assessment of the influence of time dependent waste deformations (e.g. settlement). Use of traditional limit equilibrium stability methods cannot by themselves provide a full assessment of a lining system. Instability is taken to include failure by complete collapse and loss of integrity, therefore both are covered in this report

Report No. 1 provides information on case studies of failures and a review of international literature on landfill engineering practice, with particular reference to the stability and integrity of lining systems. It has been produced as part of the Environment Agency funded R&D project P1-385: 'Assessment of the stability of landfill lining systems'. From the literature review a series of limitations in current knowledge and current practice have been identified. The information gained in this literature review has been assimilated to produce guidance on the stability of landfill lining systems, and this is presented in this Report.

CONTENTS

ACK	KNOWLEDGEMENTS	ii
EXE	ECUTIVE SUMMARY	iii
1.	INTRODUCTION	1
2.	DESIGN PHILOSOPHY	2
2.1	Introduction	2
2.2	Summary of Design Process	2
2.3	Specification and Interpretation of Factors of Safety	5
2.4	Selection of Appropriate Factors of Safety	9
2.5	Guidance for Waste/Barrier Interaction	12
2.6	Need for Appropriate Monitoring	12
2.7	Evolution of Design Criteria	12
3.	DESIGN ASSESSMENT	13
3.1	Introduction	13
3.2	Design Flow Charts	13
3.3	Key Issues for Consideration	13
4.	EXAMPLE CALCULATIONS	63
4.1	Example 1: Single Clay Liner in Old Clay Pit	64
4.2	Example 2: Composite BES/Geomembrane Liner in Old Sand and Gravel Quarry	86
4.3	Example 3: Geomembrane Capping Liner	121
4.4	Example 4: Self-Supporting Steep Slope Lining System	153
5.	SUMMARY	166
LIS	T OF FIGURES	167
LIS	T OF TABLES	169
REF	FERENCES	170

iv

1. INTRODUCTION

This report gives recommendations on the assessment of landfill liner system stability and integrity. It provides guidance on design philosophy and assessment, and includes example calculations demonstrating the design process and covering a number of issues specific to landfill design. This is the second of two reports and it fully references Report 1: Literature Review, which is a detailed summary of the key issues controlling landfill stability assessment based on the international state-of-the-art.

Guidance on design philosophy is provided in Chapter 2 covering the selection of appropriate safety factors to ensure the stability and integrity of landfill lining systems. It includes a summary of the design process, a description of the key issues influencing the selection of safety factors, selection of characteristic values and specific guidance on selection of appropriate factors of safety.

Chapter 3 covers design assessment. It provides a summary of design issues, controlling factors and methods of analysis. The aim is to provide information on all aspects of landfill liner design with respect to stability and integrity in a format that is readily accessible. This information is a summary of and compliment to the detailed contents of Report 1. It is anticipated that this section will be used as an aid memoir to those involved in producing and checking design calculations. Information is presented in two formats: design flow charts and summary lists of key issues. Design flow charts and supporting information on controlling factors are given for each of the six main landfill elements.

- sub-grade;
- basal lining system;
- shallow side slope lining system;
- steep side slope lining system;
- waste slope; and
- capping lining system.

Four examples are presented in Chapter 4. These have been selected to demonstrate use of the design flow charts and selection of appropriate design cases. Each of the examples has been chosen to highlight specific landfill liner stability and integrity issues. Detailed calculations, including justification of parameters, analysis method and factors of safety, are provided.

2. DESIGN PHILOSOPHY

2.1 Introduction

The purpose of this section is to provide guidance on the selection of appropriate safety factors to ensure the stability and integrity of landfill lining systems. It includes a summary of the design process, a description of the key issues influencing the selection of safety factors, selection of characteristic values and specific guidance on selection of appropriate factors of safety.

Despite the relative simplicity of the concept of safety factors, there is considerable scope for their misuse and misapplication. Any guidance that is provided cannot be prescriptive. Suitable values of safety factor for a particular design case can only be obtained after a careful assessment of all relevant controlling factors and the exercise of sound engineering judgement. It cannot be stressed too strongly or too often that an experienced geotechnical specialist must be involved in all aspects of the design process and that all factors of safety considered acceptable must be justified fully.

2.2 Summary of Design Process

2.2.1 Design concept

The aim of correct design is to ensure that the product or structure being designed performs satisfactorily in its intended environment for the duration of its intended life. It should sustain any adverse effects or actions with an adequate degree of safety. An apposite quote from BS 8110 (BSI:1985a) refers to the design method:

"account should be taken of accepted theory, experiment and experience and the need to design for durability. Calculations alone do not produce safe, serviceable and durable structures. Suitable materials, quality control and good supervision are equally important".

The design forms only part of the process to produce a stable and durable structure. If other aspects of the process are inadequate the design calculations could be misleading and the performance of the structure compromised. In the discussion of the design process in this chapter it is assumed that the approach (i.e. good practice) outlined below is followed (BSI: 1995b):

- data required for design are collected, recorded and interpreted;
- structures are designed by appropriately qualified and experienced personnel;
- adequate continuity and communication exist between personnel involved in data collection, design and construction;
- adequate supervision and quality control is provided in factories, in plants and on site;
- execution is carried out according to the relevant standards and specifications by personnel having the appropriate skill and experience; and
- construction materials and products are used as specified.

A *factor of safety* is a concept or tool used in the design process to assists engineers in the safe and efficient design, specification and construction of structures to an appropriate

standard. This means that for a given application the requirements of safety and function are met, whilst avoiding unnecessary or excessive cost. The use of factors of safety allows engineers to overcome a range of uncertainties in analysis. Such uncertainties may arise from the inevitable simplification and approximation required in analysis methods, uncertainty with respect to the controlling material parameters, the possibility of missing a potential failure mechanism and changes that might occur locally and with time.

Current engineering design practice is to use the limit state approach. Failure can be defined in terms of two states:

Ultimate limit state where there is a complete loss of stability or function (e.g. slope failure); and

Serviceability limit state such that the function of a structure is impaired (e.g. stressing of a landfill liner leading to increased permeability).

In the context of landfill lining system design:

Stability of the lining system is the ultimate limit state; and *Integrity* of the lining system is the serviceability limit state.

2.2.2 Limit equilibrium

Limit equilibrium analysis assesses the possible motion of a rigid body moving on defined planes. The starting point of any analysis is to propose a potential mechanism of failure (i.e. to define the extent of the body involved in the mechanism and the planes along which movement could occur). In many applications there are a number of potential failure mechanisms and each must be assessed in order to find the most likely. For example, assessment of a shallow side slope landfill lining system would require the possibility of failure along each of the interfaces between components and through each of the mineral layers to be checked individually. This does not necessarily mean that calculations are required for each possible mechanism, but that each component or interface is considered to assess the likelihood that it controls behaviour. Simple comparison of the shear strengths measured for each interface and mineral layer will often indicate which will control the design.

While limit equilibrium analysis can be used to design against the occurrence of ultimate limit states (e.g. slope instability) it is less useful in ensuring serviceability limit states are not exceeded. In many design cases, including landfill liner design, serviceability limit states are related to deformations in the system and stress levels within defined components. Deformations and stresses can be controlled in limit equilibrium analyses by increasing the size of the factor of safety, however, it is difficult to quantify strains related to a given factor of safety. It is often more appropriate to analyse the problem as a continuum in order to assess the stresses and strains in the system and hence to design for the serviceability limit state directly. This type of analysis requires the use of computer programs based on analytical techniques such as finite element and finite difference formulations (e.g. as used in Chapter 11, Report 1, to assess waste/barrier interaction). These programs are more complex to use, require users with specific skills and experience and they employ a larger number of material parameters, which often have to be obtained by carrying out sophisticated laboratory and field tests.

2.2.3 Definition of factors of safety

A *factor of safety* is the numerical expression of the degree of confidence that exists, for a given set of conditions, against a particular failure mechanism occurring. It is commonly expressed as the ratio of *the load or action, which would cause failure* against *the actual load or actions likely to be applied during service*. For example the factor of safety (F) can be written as:

 $F = \frac{Available \ restraining \ force}{Disturbing \ force} \ or \ \frac{Ultimate \ load}{Design \ load} \ or \ \frac{Shear \ strength}{Mobilised \ shear \ stress}$

The above forms are generally applied to simple situations where the stress at failure exceeds the stress in service (e.g. slope instability).

In the case of soils, their strength is often described by more than one parameter, the effective cohesion c' and effective angle of internal friction φ' . Rather than applying a single overall or global factor of safety it is sometimes more appropriate to design utilising *partial factors* applied to reflect the uncertainties of individual parameters e.g.:

Design c'= c'/F_c and, design tan ϕ' = tan ϕ'/F_{ϕ}

Where F_c and F_{ϕ} are partial factors for cohesion and friction respectively.

2.2.4 Design process

Two approaches are currently used in the UK for geotechnical design:

- traditional approach based on the use of a global factor of safety; and
- the Eurocode 7 (BSI: 1995b) approach using partial factors applied to both actions and material properties.

Traditional Approach

Calculations are carried out using *conservatively chosen mean values of the material parameters* (see Section 2.4) with the expectation of achieving a factor of safety greater than 1.0 against occurrence of the specific mechanism under consideration. The actual value of the factor of safety required depends upon many factors as discussed in Section 2.3. The factor of safety is considered a global value because it is the only factor explicitly applied in the analysis. However, the material parameters used in the analysis and the actions (e.g. slope angle, pore water pressures, unit weight of materials) are selected to represent unfavourable, and in some instances extreme, conditions and therefore this process represents the application of additional factors. These are essentially derived using engineering judgement. Using the traditional approach, a calculated factor of safety of unity would suggest the structure is only marginally stable and therefore inadequate.

Eurocode 7 Approach

Eurocode 7 (BSI: 1995b) formalises the use of partial factors and limit state design in geotechnical engineering. Calculations are carried out using *characteristic values* of the

material parameters (see Section 2.4) with partial factors applied to obtain the *design values* as described in Section 2.2.3. The magnitude of the factors depends upon the design case considered. In addition, factors are applied to the actions (i.e. dead and live loads). As for the traditional approach the actions are selected to represent unfavourable, or in some cases extreme, conditions. Following the application of the partial factors, the calculations are carried out for the ultimate limit state in the same manor as for the traditional approach. The factor of safety obtained from the calculations is required to be greater than 1.0. Values significantly in excess of 1.0 represent overly conservative designs. Using the Eurocode 7 approach, a calculated factor of safety of unity would suggest the structure is stable and therefore adequate.

For slope stability cases the two approaches have been shown to produce similar designs. The partial factors for the ultimate limit state defined in Eurocode 7 for application to the material parameters, have an effect comparable to the typical global factors of safety applied in the traditional approach. In the remainder of this guidance, the traditional approach will be the focus of discussion.

2.3 Specification and Interpretation of Factors of Safety

2.3.1 Controlling factors

The choice of what is an acceptable value for a global factor of safety requires detailed consideration and the application of engineering judgement to a number of elements. These can be summarised as:

Issues related to confidence in the adequacy of the design

- representative nature of the parameters (i.e. characteristic values) chosen for use in design to the as-constructed conditions (i.e. related to the quality and extent of the geotechnical investigation and predictions of changes that occur with time);
- appropriateness of the analysis method employed;
- appropriateness of the failure mechanism analysed and coverage of all possible failure mechanisms;
- consideration of the deformations implied by the magnitude of the factor of safety obtained;
- control of stresses to pre-peak values in brittle materials (i.e. mobilisation of post-peak values in such materials can lead to large deformations, hence significant consequence of failure); and
- quality of construction (i.e. variability in design standards and specification of materials).

Issues related to the consequences of failure

- risks to persons and/or the environment; and
- ease and cost of remedial actions.

In cases where knowledge of ground conditions is poor or limited, or the consequences of failure are significant, higher factors of safety would be required than if the information on ground conditions is known to be accurate and precise, or where the risks associated with

failure are negligible. In the majority of engineering applications experience plays a major part in the choice of what is an acceptable factor of safety. In more novel applications that have not been 'tried and tested' it is more sensible to adopt a cautionary approach and use a higher factor of safety. Landfill lining systems fall into this category. For most of the lining systems presently in use there is less than 10 years experience and a dearth of information on their long-term performance.

Choosing a low factor of safety results in obvious consequences (i.e. the design will fail to meet the needs of the application and result in increased risks), and any remedial actions will be costly in both monetary and materials terms. Conversely, specifying an excessively high value leads to a wasteful 'over specification' of material property requirements and in the case of landfill design it can result in the loss of valuable void space.

2.3.2 Specific issues related to landfill engineering

A major consideration in the geotechnical design for landfill is that unlike many civil engineering projects, a key material (i.e. waste) is very variable. Design cases that involve the waste body must take into consideration both the heterogeneous nature of waste and the limited amount of information currently available on its material engineering properties. Unlike many above ground structures, it is generally difficult to inspect or check the integrity of the structures after waste has been placed. Monitoring the lining system with geotechnical instruments would provide the required information but this is presently not incorporated in UK landfills. Without the information provided by such instrumentation it is not possible to assess the performance of current lining systems, and hence to review the design, including the appropriateness of currently used factors of safety. Although the consequences of failure may be significant, the risks associated with repair or remediation are often considered to be prohibitively dangerous or expensive.

The combination of the relatively short time period over which landfills have been either designed or "engineered" and the changing composition of waste means that it is difficult to make assumptions regarding characteristic properties of waste or failure mechanisms. Where structures are designed to meet particular and specific needs, materials are usually selected on the basis of their particular properties and the consistency and predictability of these properties. Unfortunately the properties of many waste materials are not beneficial to the function of lining systems. They have poor drainage properties that may result in high pore pressures, high compressibility generating large settlements, non-uniform stress distributions are exerted on structural elements and low stiffness results in poor support conditions. Uncertainty regarding waste material engineering properties should be considered in the selection of an appropriate factor of safety.

2.3.3 Consequences of failure

The value of factor of safety required by a specific design must also reflect the consequence of failure. It is obvious that the nature and volume of deposited materials in the majority of landfills means that failure of the liner is likely to result in increased environmental risks and/or extremely costly and problematic remedial measures. This should be reflected in the choice of factor of safety adopted.

2.3.4 Characteristic values and unfavourable actions

In the traditional approach, partial factors are not explicitly applied to material properties, the problem geometry or forces acting on the system. However, implied partial factors are used through selection of characteristic material values and the use of unfavourable actions (e.g. worst-case slope angle, maximum pore water pressures etc.). Although some formal procedures exist for obtaining characteristic values of material properties (see below), it is rare for sufficient site-specific information to be available to employ statistical techniques. Therefore, the problem definition, including material properties, geometry and actions, is often based on the interpretation of limited information. An experienced geotechnical engineer using past experience to develop engineering judgements must carry this out. The process by which judgements are made must be fully documented in the design calculations (i.e. reference to supporting data and explaining the decision process). Use of favourable or even mean values of parameters can lead to local failure under normal operating conditions and complete failure under exceptional or extreme conditions. There is considerable evidence to show that ignoring unfavourable actions leads to many of the failures observed in landfill engineering (see Chapter 4, Report 1).

Characteristic Values

Conservatively chosen mean values of the material parameters (traditional approach) and characteristic values can be considered to be comparable. The term *characteristic value* is used here. Selection of characteristic values of soil and geosynthetic properties must take account of:

- inherent variability of soil;
- inherent variability of manufactured geosynthetic materials;
- measurement errors; and
- extent of zone governing behaviour of limit state being considered.

Measurement errors are a significant factor and are caused by equipment, procedural, operator and random test effects. These have been discussed in Chapter 7, Report 1, where typical variability of measured strengths is also discussed.

In Eurocode 7 (BSI: 1997), the characteristic value of a soil property is defined as a *cautious estimate of the value affecting the occurrence of the limit state*. The characteristic value should be a cautious estimate of the mean value over the governing zone of soil (Orr & Farrell, 1999). Assessment of an interface between a geosynthetic and soil requires characteristic values of the shear strength parameters that produce a cautious calculated mean shear strength over the entire area of the interface involved in the potential failure. Eurocode 7 advises that: if statistical methods are used, the characteristic value should be derived such that the calculated probability of a worse value governing the occurrence of a limiting state is not greater than 5%.

Schneider (1997) has proposed a statistical approach for determining the characteristic value (X_k) using the mean value of the test results (X_m) and the standard deviation of the test results (σ_m) :

 $X_k = X_m - 0.5\sigma_m$

(Equation 2.1)

The approach aims to ensure in the order of 95% confidence that the real statistical mean of the interface strength is superior to the selected X_k . This equation has been in use in Switzerland for several years and has been proven to produce values that are in close agreement with values estimated by experienced geotechnical engineers (Schneider, 1997).

The process of obtaining design parameters is typically:

- selection of representative samples;
- measure material properties (e.g. results of laboratory direct shear tests at specific normal stress levels);
- calculate derived values based on theory, empirical relationship or correlations (e.g. obtaining α_m and δ_m values that describe the best fit straight line through the measured strengths); then
- calculate characteristic values α_k and δ_k (a cautious estimate of α_m and δ_m as discussed above).

These values are then used in the analysis with the aim of obtaining the required factor of safety. Further guidance on the selection of characteristic values in relation to interface shear strength and an example are included in Section 7.5.5, Report 1.

If there is insufficient data to carry out a statistical analysis of a material property then past experience and engineering judgement must be used to define a *cautious estimate* of the value. It should be noted that this does not always mean obtaining a lower value. For example, the unit weight of a material above a potential failure plane may produce a disturbing action. The characteristic value should be larger than the mean, thus leading to the worst case, while a value below the mean will result in an un-conservative and potentially unsafe design.

Unfavourable Actions

As discussed in Section 2.2 above, a key element of stability calculations is the selection of design values, and their possible ranges, for the controlling actions. This includes; slope geometry, material properties (e.g. unit weight of liner components and waste properties), water pressures, gas pressures, construction plant forces and actions related to the method of construction (e.g. stockpiles of material).

Slope geometry: Design must consider the maximum slope angle, slope height, location and size of berms and all possible combinations of these parameters. Failure to assess all combinations could result in local failures occurring. Tolerances involved in construction of the slopes should also be considered.

Material properties: Characteristic values should be obtained for all material properties used in the analysis. Where there is inadequate data to enable statistical determination, past experience and engineering judgement must be used in conjunction with the available data. As noted above, in the case of destabilising actions such as self-weight of materials, characteristic values may be larger than mean values. Where waste properties are used in analyses and limited information is available, it is appropriate to carry out sensitivity analyses using the range of possible values based on the description of the waste and information in the literature.

Water pressures: Water plays an important role in any analysis of stability. Analyses should be carried out using the expected worst case pressures for normal operation conditions. It might also be appropriate to assess the consequences of extreme pore pressure conditions (e.g. failure of drainage provision).

Gas pressures: Where gas pressures are considered to influence slope stability, the worst case pressures must be assessed using an approach such as described in Section 11.3.3, Report 1. Due to the approximate nature of predicted values, it is appropriate to carry out a sensitivity analysis. If the gas pressure is found to be important for design, a gas pressure relief system should be designed within the lining system to ensure critical gas pressures are not produced.

Construction plant forces: Types of construction plant required to form the slope and the likely mode of operation of such plant must be considered as part of the design. Equipment self weight and operational forces (e.g. braking) should be included. Where particular modes of operation are shown to cause instability (e.g. spreading material down slope), the design must be modified or restrictions placed, and enforced, on the site operations. The possibility of generating post-peak shear strengths on interfaces should also be considered (see section 2.4).

Method of construction: Consideration must be given to the method of construction in all designs in order to identify temporary cases that could produce instability. Such cases could include: locally steeper slopes, removal of toe support, additional loading (e.g. stockpiles of material), short-term stability of cohesive materials and higher pore pressure prior to drainage systems becoming fully operational.

2.4 Selection of Appropriate Factors of Safety

2.4.1 General guidance

This guidance relates specifically to slope stability, basal heave and stresses in components. As discussed above, there are many issues that must be considered when selecting an appropriate factor of safety. The main controls are site specific, material specific, dependent upon the experience of the designer and related to the consequences of failure. Therefore, it is impractical to specify absolute values for use in design as part of this guidance document.

However, if the good practice outlined in sections 2.2 and 2.3 is followed, it is possible to indicate appropriate magnitudes for factors of safety and to suggest how different factors can be deemed acceptable in specific circumstances.

Slope Stability

Slopes should be designed to obtain factors of safety in the region of 1.3 to 1.5. Experience has shown that if factors of this magnitude are obtained having followed accepted practice, then in the general case long-term stability will be assured (see below for cases where this might not be acceptable). This guidance has been in existence for many years (e.g. BS 6031: 1981 {BSI: 1981}) and is supported by general industry experience. Such analyses would be expected to represent unfavourable actions but not necessarily extreme conditions. If an

extreme condition is possible, but it is considered unlikely, it is often appropriate to carry out an analysis for the extreme condition but to accept a lower factor of safety, but obviously still greater than 1.0. An example of where this approach might be used is in the assessment of an extreme groundwater condition.

The primary aim in many stability calculations is to ensure that post-peak shear strengths are not mobilised and hence to control deformations. The factor of safety applied in these cases is partly accounting for uncertainty in measured shear strengths. Where the design case being analysed is controlled by a pre-existing, or interface controlled, slip surface which is known to have residual shear strength, then it is often appropriate to accept a lower factor of safety (i.e. post-peak shear strengths are already mobilised). A factor of safety in the order of 1.2 can be used (e.g. BS 6031: 1981 {BSI: 1981}).

An additional consideration in the selection of an appropriate factor of safety is the size of the problem being assessed in relation to the magnitude of likely variations in actions. For example, a small slope will require a relatively minor increase in pore water pressure to reduce the slope to failure (e.g. Factor of safety < 1.0), although a similar magnitude increase in pore water pressure would have a limited affect on a larger slope. An appreciation of this issue can result in a more considered approach to the selection of appropriate factors for a given design case.

Basal Heave

Basal heave calculations are relatively simple and rely on knowledge of three main parameters; depth to permeable stratum from ground level, unit weight of layers above permeable stratum and pore water pressure in permeable stratum. Of these three parameters it is the pore water pressures which represent the biggest potential for uncertainty (i.e. in situ measurements are often made over a limited time and the values might not reflect worst case conditions). Each permeable layer that could cause basal heave should be analysed independently. Also, the variability of the parameters across the site should be assessed in order to ensure that unfavourable actions are analysed. A factor of safety in the order of 1.5 is generally considered to be appropriate. However, if a particularly detailed ground investigation has been conducted and the designer considers the controlling parameters to be known with a high degree of certainty then it is acceptable to justify the use of a lower factor of safety.

As for slope stability assessments, the size of possible variations in the parameters (actions) should be considered in relation to the size of the factor of safety. For example, a permeable layer located only 1 metre below excavation level would required an increase in pore water pressure of only 7 kPa to reduce the factor of safety from 1.5 to 1.0. For a permeable layer 5 metres below excavation level this same change in pore pressure of 7 kPa would decrease the factor of safety from 1.5 to 1.36.

Tensile Strength

Assessment of the design of geosynthetic components can include calculation of factors of safety on tensile strength (e.g. geotextile protection layers and reinforcement layers). If the primary function of the geosynthetic is reinforcement then a factor of safety in the order of 2.0 is typically required. However, where the control of strains is not a primary concern then a lower factor of safety may be appropriate. In cases where strains in the material control the

design, the factor of safety is selected to limit the tensile stress and hence strain in the material. An example of this is the design of reinforcement layers to control strains in lining components (e.g. Chapter 10, Report 1).

2.4.2 Drained and undrained analyses

Cut slopes and compacted fill formed of cohesive soils can have a higher shear strength in the short-term undrained condition than in the long-term drained condition. The higher undrained shear strength is a function of the pore water suctions generated either during stress relief on slope formation (cut slope) or the compaction process (fill). If it can be shown that the suctions, and hence strength, will be acting during the period of time that the specific design case is valid, then undrained strengths can be used in the analysis (i.e. a total stress analysis). For example, if waste is placed in a cell quickly it might be considered that a mineral liner placed on a shallow side slope remains in an essentially undrained condition up until waste is placed against the slope. A factor of safety in the order of 1.3 to 1.5 would be required as discussed above.

However, if there is doubt that the suctions will remain, a drained analysis using effective stresses and shear strengths must be carried out to ensure that stability is guaranteed if the suctions dissipate. As the suctions dissipate the effective stresses will reduce causing the shear strength to reduce. This will result in the factor of safety decreasing with time. If material assessment and experience indicate that drained conditions are likely to exist and hence control the design, then a factor of safety in the order of 1.3 to 1.5 will be required for this case.

If there is confidence in the existence of undrained conditions, the design will be based on undrained strengths but the drained case should still be checked as the extreme condition (i.e. just in case the suctions dissipate). A factor of safety in the order of 1.3 to 1.5 would be achieved for the undrained condition and a factor of safety greater than 1.0 for the extreme drained case. Guidance on the choice of drained or undrained (i.e. short-term and long-term) analyses is given in Section 9.2.3, Report 1, and in standard soil mechanics and geotechnics textbooks.

2.4.3 Peak and residual conditions

Some materials used in lining systems, and the interfaces between them, can be described as strain-softening (i.e. their strength reduces as they are strained past the peak shear strength), see Chapter 7, Report 1. This strain-softening, or brittle behaviour, must be considered as part of the design process. Designing a lining system to ensure that shear stresses are kept below the peak shear strength (i.e. by the application of an appropriate factor of safety and using peak shear strengths) will limit strains in and between lining components and this can guarantee both stability and integrity. Such analyses must consider all actions that stress the lining system and that could lead to the generation of post peak strengths. These include issues of material strain incompatibility (e.g. deformation of the adjacent compressible waste body) and repeated construction plant loading. If the lining system cannot be isolated from the action stressing it, it may be appropriate to design the slope using residual shear strength and to accept that peak values can not be relied upon. As discussed in Section 2.4.1 above, if the shear strength controlling stability is known to be the residual value then a lower factor of safety might be justified.

The danger in this approach is that the strains required to mobilise the post-peak strength might result in loss of liner integrity. This must be checked as part of the design. A possible design approach is to allow post-peak stresses to develop, use residual shear strengths in the analyses and to design the lining system to accommodate the strains that will occur, and hence ensure both stability and integrity. For example, slippage could be allowed along a specific interface in order to isolate the key elements of the liner from waste settlement, and protection layers can be designed to accommodate the large movements without compromising the integrity of the lining system.

2.5 Guidance for Waste/Barrier Interaction

The key mechanism causing the generation of post-peak strengths discussed in Section 2.4.3 above is the settlement of waste adjacent to the lining system. This issue was discussed in detail in Section 11.4.4, Report 1, and a methodology was proposed based on numerical analysis to assess the likelihood of post-peak strengths being mobilised, and hence to quantify the strains at a given interface. It was shown that limit equilibrium analyses using standard factors of safety can significantly underestimate the possibility of large strains occurring along sections of an interface and that this can lead to loss of integrity. While the results presented and discussed in Section 11.4.4, Report 1, can be used as a guide to likely behaviour, they only cover one interface and a limited range of slope geometries. It is advised that comparable numerical analyses be carried out for site specific conditions in order to assess designs in terms of integrity. Limit equilibrium analyses can be used to assess overall waste/barrier stability but should be used with extreme care and the results assessed by an experienced geotechnical engineer.

2.6 Need for Appropriate Monitoring

Since the engineering solutions applied to landfill are often novel and do not have the benefit of many years of in-service experience, it is essential that appropriate geotechnical instrumentation and monitoring procedures are applied. The information obtained from such instruments is required to assess the structural performance of the lining system and hence to review the design. Without this feedback it is not possible to optimise the selection of suitable factors of safety. Monitoring is of fundamental importance to the continued development of efficient cost effective lining systems that protect the environment.

2.7 Evolution of Design Criteria

It may be evident from examination of the design and construction of many existing sites that appropriate factors of safety may not have been chosen and that some designs have been implemented which are either inherently unsafe or rely on factors which are hard to quantify. The continuing usage of such systems on operational sites may cause a dilemma for operators and regulators alike. The designer should be guided by the state of knowledge at the time of design taking into account the life of the landfill and its aftercare. If, for a particular site there is evidence that indicates the system is not performing as designed, then the design should be reassessed and revised to ensure a valid approach is used in subsequent phases and other similar landfills.

The opportunity to learn from failures should not be missed. Back analysis of failures provides a useful tool to identify mechanisms, and this further informs the design process and avoids repetition of poor design.

3. DESIGN ASSESSMENT

3.1 Introduction

This section provides a summary of design issues, controlling factors and analysis methods. The aim is to provide information on all aspects of landfill liner design with respect to stability and integrity in a format that is readily accessible. This information is a summary of and compliment to the detailed contents of Report 1. It is anticipated that this section will be used as an aid memoir to those involved in producing and checking design calculations. Information is presented in two formats: design flow charts and summary lists of key issues.

3.2 Design Flow Charts

Design flow charts are given for each of the six main landfill elements:

- sub-grade (Figure 3.1);
- basal lining system (Figure 3.2);
- shallow side slope lining system (Figure 3.3);
- steep side slope lining system (Figure 3.4);
- waste slope (Figure 3.5);
- capping lining system (Figure 3.6).

They include information on all main design cases. For each case lists of design issues and controlling factors are provided. It is intended that they be used to identify the design cases and key design issues for a particular site that should be assessed as part of the design process. In many instances it will be necessary to assess a number of design cases, as they are often not mutually exclusive.

3.3 Key Issues for Consideration

A second level of information is provided in support of the flow charts in the form of detailed lists of '*key issues for consideration*' for each possible design case. These are a summary of the key factors identified in Report 1. Information is included on the factors controlling each particular design condition, the input parameters required for design and the appropriate analysis methods. References are given to the appropriate supporting sections of Report 1.

It is not proposed that detailed calculations be required to assess each design case. In many instances a review of the site and liner system specific information will enable the likelihood of a number of possible failure conditions to be discounted. This may entail carrying out simple calculations or using engineering judgement, although the engineering argument must always be fully documented as part of the design assessment.

In the following sections each design case is considered separately. All cases highlighted in the design flow charts (Figures 3.1 to 3.6) are included individually. Where design cases are interrelated, reference to all relevant cases is provided. When design cases are governed by the same or similar sets of issues, a full list is provided under each design case to limit the amount of cross-referencing and hence to simplify access to the information.

3.3.1 Sub-grade

Stability and deformability of the sub-grade are key issues in the design of landfill lining systems. The stability of void side slopes must be ensured both during construction and in the long-term. The deformability of the sub-grade controls the strains in the lining system and hence its integrity. A full assessment is required prior to detailed liner design as information on the sub-grade is required for use in the design calculations. Design issues, controlling factors and analysis methods are given below. Comprehensive information on sub-grade stability is given in Chapter 9, Report 1 including key references.

Table 3.1 Base/Excessive Deformations/Compressible Sub-grade

Design Issues:
Adequate site investigation, information is used in design of basal lining system (see Section
3.3.2)

Table 3.2 Base/Excessive Deformations/Cavities

Design Issues:
Adequate site investigation, information is used in design of basal lining system (see Section
3.3.2)

Table 3.3 Base/Excessive Deformations/Basal Heave

Design Issues:
Adequate site investigation
Prevent heave
Controlling Factors:
Groundwater
pressure distribution
permeability (aquifer and aquiclude)
dewatering
time dependency (e.g. climate)
Stratification
thickness of soil/rock layers and variation across site
relationship between pore water pressures and layers
permeability
shear strength
Unit weight
Modes of deformation
doming
hydraulic fracture and piping
softening
Formation level
Analysis:
Calculate ratio between total stress and pore water pressure at the base of all aquicludes
Stabilisation Techniques:
Pore water pressure dissipation
relief well system
Increase elevation of formation
increases total stress

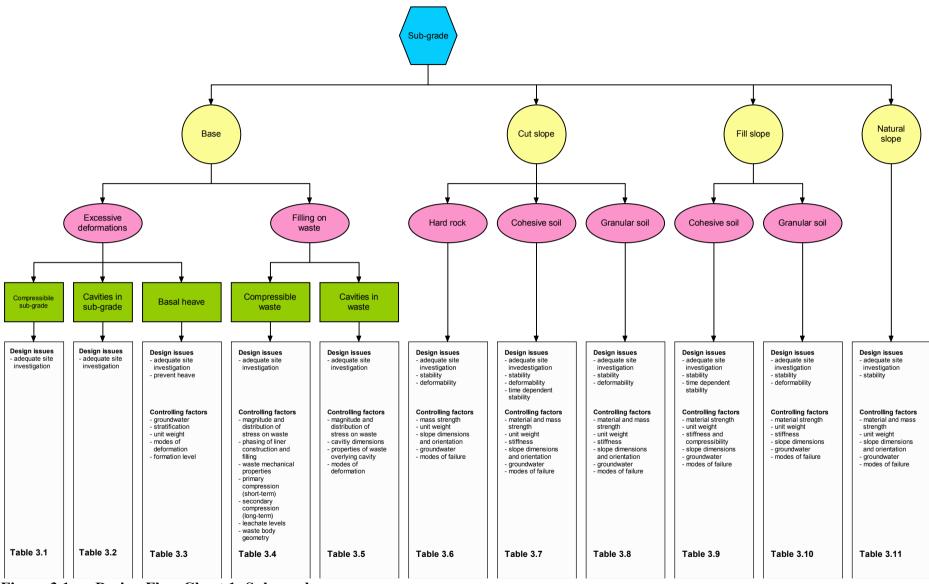


Figure 3.1 Design Flow Chart 1: Sub-grade

Design Issues:
Adequate site investigation
Controlling Factors:
Magnitude and distribution of stress on waste
Phasing of liner construction and filling
Waste mechanical properties
material type
age
density
moisture content
Primary compression (short-term)
elastic compression
Secondary compression (long-term)
creep
degradation
Leachate levels
leachate pressure
degree of saturation
Waste body geometry
thickness of deposit
variation of thickness across site
Analysis:
Quantify magnitude and distribution of both short and long-term settlements for use in design
of the lining system (see Section 3.3.2)
Stabilisation Techniques:
Pre-treatment
compaction (densification)
Raft foundation
geosynthetic reinforced raft increases total stress

Table 3.4Base/Filling on Waste/Compressible Waste

Table 3.5Base/Filling on Waste/Cavities in Waste

Design Issues:
Adequate site investigation
Controlling Factors:
Magnitude and distribution of stress on waste
Cavity dimensions
estimated plan size
depth below lining system
rate of change of size
rate of migration to underside of lining system
Properties of waste overlying cavity
mass strength
Modes of deformation
collapse of overlying material into cavity
deformation of overlying material into cavity
Analysis:
Quantify magnitude and distribution of both short and long-term settlements for use in design
of the lining system (see Section 3.3.2)
Stabilisation Techniques:
Pre-treatment
compaction (densification)
Spanning
geosynthetic reinforced raft

Design Issues:
Adequate site investigation
Stability
 Deformability
Controlling Factors:
Mass strength
stratification
orientation of discontinuities
frequency
shear strength
planarity surface reachings
surface roughness infill
aperture stress relief
strain softening
slope formation
blasting
Unit weight
Slope dimensions and orientation
height
angle
Groundwater
distribution of pressures
flow conditions
perched groundwater
drainage
dewatering
Modes of failure
falls
toppling
wedge
rotational
Analysis:
Site observations
Stability calculations
Stabilisation Techniques:
Drainage
surface
sub-surface
Cut and fill
re-profile slope
Support
retaining structure
rock bolting

Table 3.6Cut Slope/Hard Rock

Design Issues:
Adequate site investigation
Stability
Deformability
 Time-dependent stability
Controlling Factors:
Material and mass strength
stratification
orientation of discontinuities (e.g. bedding planes)
frequency
shear strength
drained
undrained
stress relief
strain softening
slope formation history
Unit weight Stiffness
drained
undrained
Slope dimensions and orientation
height
angle
Groundwater
distribution of pressures
long-term steady seepage values
permeability
consolidation/swelling
consolidation rate
boundary conditions
drainage
dewatering
Modes of failure
translational
rotational
falls
Analysis:
Site observations
Stability calculations
translational
circular
non-circular
undrained
drained
charts
Stabilisation Techniques:
Drainage
surface
sub-surface
Cut and fill
re-profile slope
Support
retaining structure
soil nails
surface sub-surface Cut and fill re-profile slope Support retaining structure

Table 3.7Cut Slope/Cohesive Soil

Design Issues:
Adequate site investigation
Stability
 Deformability
Controlling Factors:
Material and mass strength
stratification
structure
cementation
cohesive soils
orientation of strata (e.g. cohesive soil layers)
shear strength drained
grading
particle shape
density
slope formation history
Unit weight
Stiffness
drained
Slope dimensions and orientation
height
angle
Groundwater
distribution of pressures
seepage
piping
drainage
dewatering
Modes of failure
piping
translational
rotational
Analysis:
Site observations
Stability calculations
translational
circular
non-circular
drained
Stabilisation Techniques:
Drainage
surface
sub-surface
Cut and fill
re-profile slope
Support
retaining structure
soil nails

Table 3.8Cut Slope/Granular Soil

Design Issues:
Adequate site investigation
Stability
Time dependent stability
Controlling Factors:
Material strength
grading
density
moisture content
suctions
swelling/softening
drained
undrained
time related changes
slope formation history
Unit weight
Stiffness/compressibility
density Slope dimensions
Groundwater
distribution of pressures
long-term steady seepage values
permeability
consolidation/swelling
consolidation / sweining
boundary conditions
drainage
dewatering
Modes of failure
translational
rotational
Analysis:
Site observations
Stability calculations
translational
circular
non-circular
undrained
drained
charts
Stabilisation Techniques:
Drainage
surface
sub-surface
Cut and fill
re-profile slope
Support
retaining structure
Compaction

Table 3.9Fill Slope/Cohesive Soil

Design Issues:
Adequate site investigation
Stability
Deformability
Controlling Factors:
Material strength
shear strength
drained
grading
particle shape
density
slope formation history
Unit weight
Stiffness
drained
Slope dimensions
height
angle
Groundwater
distribution of pressures
seepage
piping
drainage
dewatering
Modes of failure
piping
translational
Analysis:
Site observations
Stability calculations
translational
drained
Stabilisation Techniques:
Drainage
surface
sub-surface
Cut and fill
re-profile slope
Support
retaining structure
Compaction

Table 3.10Fill Slope/Granular Soil

Table 3.11Natural Slope

	Design Issues:
	Adequate site investigation
	Stability
	Controlling Factors:
	Material and mass strength
	stratification
	orientation of discontinuities (e.g. bedding planes)
	frequency
	pre-existing shear surfaces
	shear strength
	drained
	residual
	Unit weight
	Slope dimensions and orientation
	height
	angle
	Groundwater
	distribution of pressures
	long-term steady seepage values
	climate
	drainage
	dewatering
	Modes of failure
	translational
	rotational
	falls
	toppling
	wedge
	block
	Analysis:
	Site observations
	Stability calculations
	translational
	circular
	non-circular
	wedge
	toppling
	block
	drained
	Stabilisation Techniques:
	Drainage
	surface
	sub-surface
	Cut and fill
	re-profile slope
	Support
	retaining structure
	soil nails, rock bolts, rock anchors
I	son nuns, rock ons, rock uneners

3.3.2 Basal lining systems

Basal lining system design is primarily concerned with assessing and hence controlling stresses in the liner. Excessive stresses can cause shearing of mineral liners and tearing and/or stress cracking in geomembranes. This will then lead to increased permeability of the liner. Design issues, controlling factors and analysis methods are given below. Comprehensive information on basal lining design is given in Chapter 10, Report 1 including key references.

Table 3.12Mineral Only/Compressible Sub-gr	ade
--	-----

]	Design Issues:
	Control stress in liner to prevent increased permeability
(Controlling Factors:
	Assessment requires information obtained in site investigation for Section 3.3.1 Sub-
	grade/Base/Excessive deformation/Compressible sub-grade
	Liner system details
	thickness of mineral layer
	type and dimensions of ancillary underlying layers
	reinforcement (geogrid)
	drainage layers (mineral, geocomposite)
	Total settlement
	type and extent of compressible deposits
	area affected
	Differential settlement
	settlement profile
	Rate of settlement
	time dependency of settlement profile formation
	Modes of deformation
	tension cracks
	formation of shear zones
	Groundwater
	pore water pressure distribution in sub-grade
	drainage
	dewatering
	Engineering properties of mineral layer
	shear strength
	stiffness
	plasticity of material
	grading (% clay materials)
	clay mineralogy
	Support layer design
	stiffness
	tensile capacity (geosynthetics)
1	Analysis:
	Radius of curvature of deformation profile see Report 1 10.3.2
	Assessment of mineral layer plasticity
	Assessment of control provided by underlying lining system layers (i.e. after Report 1 10.3.3)

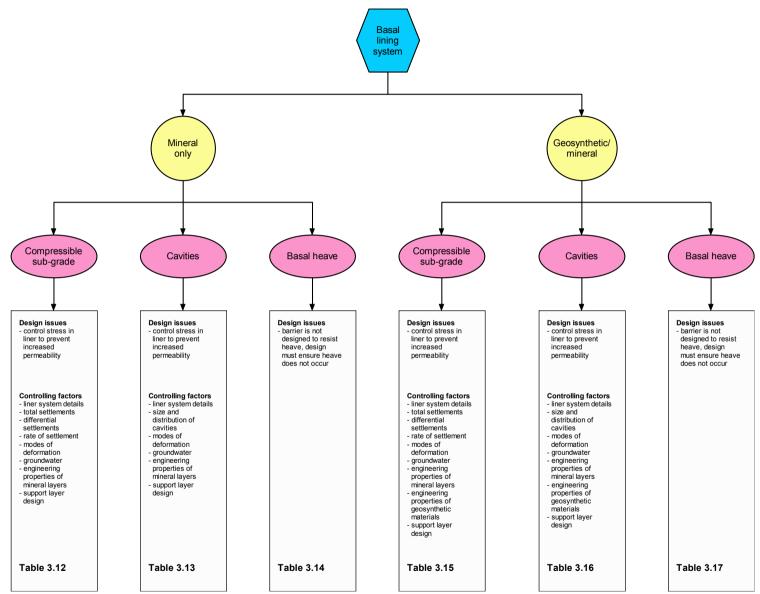


Figure 3.2 Design Flow Chart 2: Basal Lining System

R&D TECHNICAL REPORT P1-385/TR2

Design Issues:
Control stress in liner to prevent increased permeability
Controlling Factors:
Assessment requires information obtained in site investigation for Section 3.3.1 Sub-
grade/Base/Excessive deformation/Cavities
Liner system details
thickness of mineral layer
type and dimensions of ancillary underlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite)
Size and distribution of cavities
size of cavity
depth below liner
rate of migration to underside of liner
maximum settlement
area affected
time dependency of settlement profile formation
Modes of deformation
tension cracks
formation of shear zones
Groundwater
pore water pressure distribution in sub-grade
drainage
dewatering
Engineering properties of mineral layer
shear strength
stiffness
plasticity of material
grading (% clay materials)
clay mineralogy
Support layer design
stiffness
tensile capacity (geosynthetics)
 Analysis:
Radius of curvature of deformation profile see Report 1 10.3.2
Assessment of mineral layer plasticity
Assessment of control provided by underlying lining system layers (i.e. after Report 1 10.3.)

Table 3.13Mineral Only/Cavities

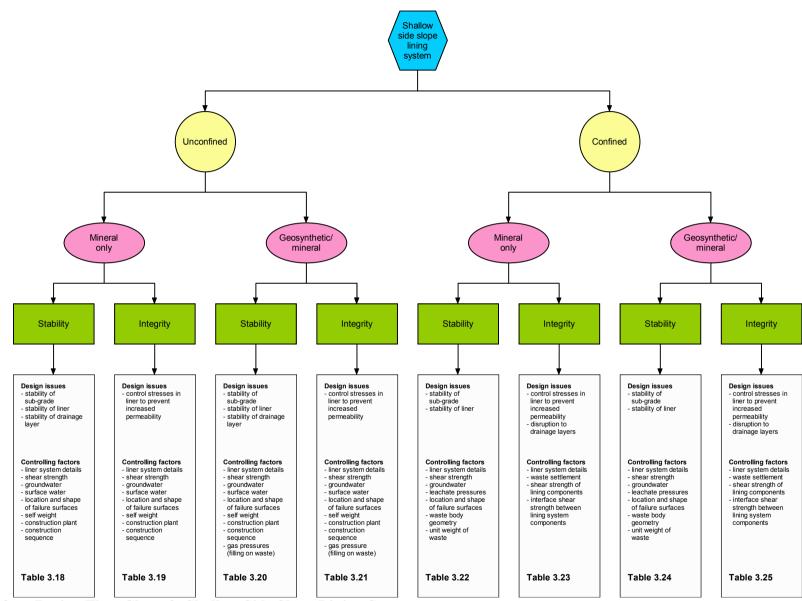
Table 3.14Mineral Only/Basal Heave

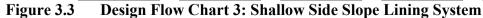
Design Issues:
Barrier is not designed to resist basal heave, design must ensure heave does not occur. See
also Section 8.3.1 Sub-grade/Base/Excessive Deformations/Basal Heave.

Design Issues:
Control stress in liner to prevent increased permeability
Controlling Factors:
Assessment requires information obtained in site investigation for Section 3.3.1 Sub-
grade/Base/Excessive Deformation/Compressible Sub-grade
Liner system details
thickness of mineral layer
type of geosynthetic liner
type and dimensions of ancillary underlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite)
type, thickness and unit weight of overlying layers
Total settlement
type and extent of compressible deposits
area affected
Differential settlement
settlement profile
Rate of settlement
time dependency of settlement profile formation
Modes of deformation
tension cracks in mineral liner
formation of shear zones in mineral liner
tensile failure (tearing) pf geosynthetic liner
excessive strains in geosynthetic liner
Groundwater
pore water pressure distribution in sub-grade
drainage
dewatering
Engineering properties of mineral layer
shear strength
stiffness
plasticity of material
grading (% clay materials)
clay mineralogy
Engineering properties of geosynthetic materials
tensile strength
limiting strains for stress cracking
Support layer design
Stiffness
 tensile capacity (geosynthetics)
Analysis:
Radius of curvature of deformation profile
Assessment of stresses in ancillary support layers (e.g. geosynthetic reinforcement) (see
Report 1 10.3.3)
Assessment of mineral liner plasticity
Assessment of strains in geosynthetic barrier

 Table 3.15
 Geosynthetic-Mineral/Compressible Sub-grade

	Design Issues:
	Control stress in liner to prevent increased permeability
	Controlling Factors:
	Assessment requires information obtained in site investigation for Section 3.3.1 Sub-
	grade/Base/Excessive Deformation/Cavities
	Liner system details
	thickness of mineral layer
	type of geosynthetic liner
	type and dimensions of ancillary underlying layers
	reinforcement (geogrid)
	drainage layers (mineral, geocomposite)
	Type, thickness and unit weight of overlying layers
	Size and distribution of cavities
	size of cavity
	depth below liner
	rate of migration to underside of liner
	maximum settlement
	area affected
	time dependency of settlement profile formation
	Modes of deformation
	tension cracks in mineral liner
	formation of shear zones in mineral liner
	tensile failure (tearing) of geosynthetic liner
	excessive strains in geosynthetic liner
	Groundwater
	pore water pressure distribution in sub-grade
	drainage
	dewatering
	Engineering properties of mineral layer
	shear strength
	stiffness
	plasticity of material
	grading (% clay materials)
	clay mineralogy
	Engineering properties of geosynthetic materials tensile strength
	limiting strains for stress cracking
	Support layer design
	stiffness
	tensile capacity (geosynthetics)
	Analysis:
	Radius of curvature of deformation profile
	Assessment of stresses in ancillary support layers (e.g. geosynthetic reinforcement) (see
	Report 1 10.3.3)
	Assessment of mineral liner plasticity
	Assessment of strains in geosynthetic barrier
L	


 Table 3.16
 Geosynthetic-Mineral/Cavities


Table 3.17 Geosynthetic-Mineral/Basal Heave

ſ	Design Issues:
	Barrier is not designed to resist basal heave, design must ensure heave does not occur. See
	also Section 3.3.1 Sub-grade/Base/Excessive Deformations/Basal Heave.

3.3.3 Shallow side slope lining systems

Shallow side slope lining system design must consider stability and integrity failure modes both during construction (unconfined) and in the long-term following waste placement (confined). Excessive stresses can cause shearing of mineral liners and tearing and/or stress cracking in geomembranes. This will then lead to increased permeability of the liner. In addition, in a number of the design cases the stability of the drainage system and continuity of protection layers also require consideration. Design issues, controlling factors and analysis methods are given below. Comprehensive information on shallow slope lining system design is given in Chapter 11, Report 1 including key references.

Design Issues:
Stability of sub-grade
Stability of liner
Stability of drainage layer
Controlling Factors:
Liner system details
thickness of mineral layer
type and dimensions of ancillary underlying and overlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite)
Shear strength
mineral layers of lining system
sub-grade
drained/undrained conditions
Strain softening
Groundwater
pore water pressure
sub-grade
lining system
influence of dewatering
modification to groundwater regime from construction of barrier
climate controlled time dependency
Surface water
discharges on slope
precipitation
changes in unit weight of mineral layers
changes in pore water pressures (recharge)
seepage Location and shape of potential failure surfaces
weak layers
interfaces between components of lining system
interfaces between phases of compaction in mineral layer
Self weight
unit weight of materials
influence of moisture content changes
Construction plant
dead weight
braking/acceleration forces
mode of operation
uphill/downhill
Construction sequence
method of placement
stockpiling of material
Analysis:
Limit equilibrium stability analysis
infinite slope method (Report 1, 11.3.3)
method of slices (Report 1, 11.4.2)
Construction plant loading (Report 1, 11.3.3)

Table 3.18 Unconfined/Mineral Only/Stability

Design Issues:
Control stresses in liner to prevent increased permeability
Controlling Factors:
Assessment is also required of the Section 3.3.2 design cases of Basal Lining System/Mineral
Only/Compressible Sub-grade and Cavities.
Liner system details
thickness of mineral layer
type and dimensions of ancillary underlying and overlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite
Shear strength
mineral layers of lining system
sub-grade
drained/undrained conditions
strain softening
Groundwater
pore water pressure
sub-grade
lining system
influence of dewatering
modification to groundwater regime from construction of barrier
climate controlled time dependency
Surface water
discharges on slope
precipitation
changes in unit weight of mineral layers
changes in pore water pressures (recharge)
seepage
Location and shape of potential failure surfaces
weak layers
interfaces between components of lining system
interfaces between phases of compaction in mineral layer
Self weight
unit weight of materials
influence of moisture content changes
Construction plant
dead weight
braking/acceleration forces
mode of operation
uphill/downhill
Construction sequence
method of placement
stockpiling of material
Analysis:
Limit equilibrium stability analysis
infinite slope method (Report 1, 11.3.3)
method of slices (Report 1, 11.4.2)
Construction plant loading (Report 1, 11.3.3)
Assessment of factor of safety to control strains in system
Assessment of basal lining system modes (mineral only)
Assessment of basar ming system modes (mineral only)

 Table 3.19
 Unconfined/Mineral Only/Integrity

Table 3.20	Unconfined/Geosynthetic-Mineral/Stability	7
-------------------	---	---

Design Issues:
Stability of sub-grade
Stability of liner
Stability of drainage layer
Controlling Factors:
Liner system details
thickness of mineral layer
type of geosynthetic liner
type and dimensions of ancillary underlying and overlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite)
Shear strength
mineral layers of lining system
sub-grade interfaces
geosynthetic/geosynthetic geosynthetic/soil
Strain softening
Groundwater
pore water pressure
sub-grade
lining system
influence of dewatering
modification to groundwater regime from construction of barrier
climate controlled time dependency
Surface water
discharges on slope
precipitation
changes in unit weight of mineral layers
changes in pore water pressures (recharge)
seepage
Location and shape of potential failure surfaces
weak layers (mineral)
interfaces
Self weight
unit weight of materials
influence of moisture content changes on mineral layers
Construction plant dead weight
braking/acceleration forces
mode of operation
uphill/downhill
Construction sequence
method of placement
stockpiling of material
Gas pressure (filling on waste)
important where existing waste slopes are lined
gas pressure related to
age and type of waste
gas control and extraction system
Analysis:
Limit equilibrium stability analysis
infinite slope method (Report 1, 11.3.3)
finite slope method (Report 1, 11.3.3)
method of slices (Report 1, 11.4.2)
Gas pressure (Report 1, 11.3.3)
Construction plant loading (Report 1, 11.3.3)
Assessment of geosynthetic stress (Report 1, 11.3.3)

Control stresses in liner to prevent increased permeability
lling Factors:
Assessment is also required of the Section 3.3.2 design cases of <i>Basal Lining</i>
System/Geosynthetic-Mineral/Compressible Sub-grade and Cavities.
Liner system details
thickness of mineral layer
type of geosynthetic liner
type and dimensions of ancillary underlying and overlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite
Shear strength
mineral layers of lining system
sub-grade
interfaces
geosynthetic/geosynthetic
geosynthetic/soil
mineral layers – drained/undrained
strain softening interfaces
tensile strength of geosynthetics
Groundwater
pore water pressure
sub-grade
lining system
influence of dewatering
modification to groundwater regime from construction of barrier
climate controlled time dependency
Surface water
discharges on slope
precipitation
changes in unit weight of mineral layers
changes in pore water pressures (recharge)
seepage
Location and shape of potential failure surfaces
weak layers (mineral)
interfaces
Self weight
unit weight of materials
influence of moisture content changes
Construction plant
dead weight
braking/acceleration forces
mode of operation
uphill/downhill
Construction sequence
method of placement
stockpiling of material
Gas pressure (filling on waste)
important where existing waste slopes are lined
gas pressure related to
age and type of waste
gas control and extraction system

 Table 3.21
 Unconfined/Geosynthetic-Mineral /Integrity

 Table 3.21
 Unconfined/Geosynthetic-Mineral /Integrity (continued)

Analysis:
Limit equilibrium stability analysis
infinite slope method (Report 1, 11.3.3)
finite slope method (Report 1, 11.3.3)
method of slices (Report 1, 11.4.2)
Assessment of factor of safety to control strains in system
Gas pressure (Report 1, 11.3.3)
Construction plant loading (Report 1, 11.3.3)
Assessment of geosynthetic stress (Report 1, 11.3.3)
Assessment of tensile force in geosynthetic (Report 1, 11.3.3)
Assessment of basal lining system modes (mineral only)

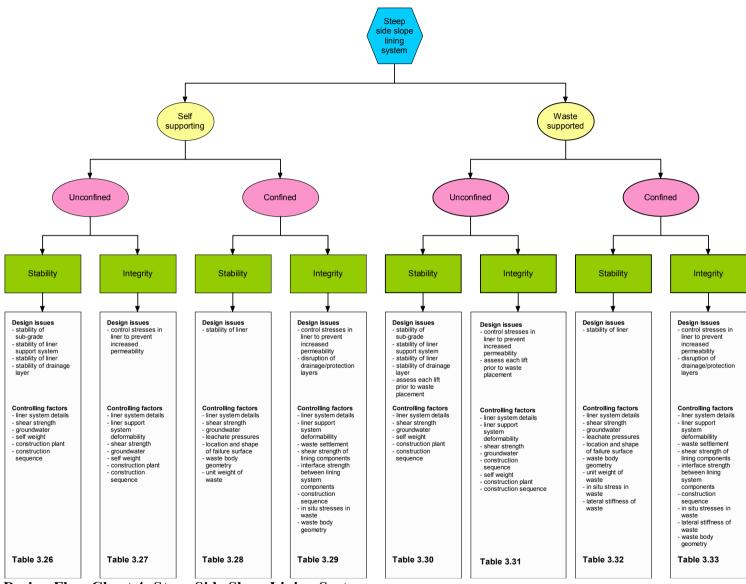
Design Issues:
Stability of sub-grade
Stability of liner
Controlling Factors:
Liner system details
thickness of mineral layer
type and dimensions of ancillary underlying and overlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite)
Shear strength
waste
sub-grade
mineral lining components
strain softening behaviour
drained/undrained conditions (cohesive soils)
characteristic values
Groundwater
in sub-grade
in lining system
pore water pressures generated by construction (undrained loading)
modification to pressures in sub-grade caused by barrier construction
Leachate pressures
Pressure distribution (see Report 1, 11.4.1)
on liner
on cover soil layers
influence of re-circulation of leachate
Location and shape of potential failure surfaces
non-circular surfaces are common
controlling factors \rightarrow weak layers
sub-grade, soft cohesive layers/ discontinuities
lining components, cohesive
daily cover soil layers
through waste body
Waste body geometry
side lining system slope angle
waste external slope angle
waste height
basal length of waste mass
consider temporary geometries
Unit weight of waste (see Report 1, 8.2)
depth (vertical stress level) dependent
modified by cover soil
waste type
placement practices moisture content
 time dependent
Analysis:
Limit equilibrium stability analysis
method of slices (Report 1, 11.4.2)

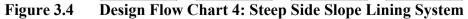
 Table 3.22
 Confined/Mineral Only/Stability

Table 3.23 Confined/Mineral Only/Integrity

Design Issues:
Control stresses in liner to prevent increased permeability
Disruption to drainage layers
Controlling Factors:
Assessment is also required of the Section 3.3.2 design cases of Basal Lining
System/Mineral/Compressible Sub-grade and Cavities.
Liner system details
thickness of mineral layer
type and dimensions of ancillary underlying and overlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite)
Waste settlement (see Report 1, 8.3)
short-term compression (see Report 1, 8.3.3)
long-term creep and degradation (see Report 1, 8.3.4)
magnitude and distribution (laterally and with depth)
Shear strength of lining components
drained conditions/undrained conditions cohesive soil
Interface shear strength between lining components
strain softening shear behaviour
mobilisation of post-peak values
Analysis:
Numerical modelling techniques (see Report 1, 11.4.4)
waste/barrier interaction
non-linear material behaviour

Design Issues:
Stability of sub-grade
Stability of liner
Controlling Factors:
Liner system details
thickness of mineral layer
type and dimensions of ancillary underlying and overlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite)
Shear strength
waste
sub-grade
mineral lining components
strain softening behaviour
drained/undrained conditions (cohesive soils)
characteristic values
geosynthetic/geosynthetic and geosynthetic/soil interfaces
characteristic interface shear strength values (Report 1, 7.5)
Groundwater
in sub-grade
in lining system
pore water pressures generated by construction (undrained loading)
modification to pressures in sub-grade caused by barrier construction
Leachate pressures
Pressure distribution (see Report 1, 11.4.1)
on liner
on cover soil layers
influence of re-circulation of leachate
Location and shape of potential failure surfaces
non-circular surfaces are common
controlling factors \rightarrow weak layers
sub-grade, soft cohesive layers/ discontinuities
lining components, cohesive
interfaces between lining components
daily cover soil layers
through waste body
Waste body geometry
side lining system slope angle
waste external slope angle
waste height
basal length of waste mass consider temporary geometries
Unit weight of waste (see Report 1, 8.2)
depth (vertical stress level) dependent
modified by cover soil
waste type
placement practices moisture content
time dependent
Analysis:
Limit equilibrium stability analysis
method of slices (Report 1, 11.4.2)


Table 3.24 Confined/Geosynthetic-Mineral/Stability


Table 3.25 Confined/Geosynthetic-Mineral/Integrity

Design Issues:
Control stresses in liner to prevent increased permeability
Disruption to drainage layers
Controlling Factors:
Assessment is also required of the Section 3.3.2 design cases of Basal Lining
System/Geosynthetic/Mineral/Compressible Sub-grade and Cavities.
Liner system details
thickness of mineral layer
type of geosynthetic liner
type and dimensions of ancillary underlying and overlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite)
Waste settlement (see Report 1, 8.3)
short-term compression (see Report 1, 8.3.3)
long-term creep and degradation (see Report 1, 8.3.4)
magnitude and distribution (laterally and with depth)
Shear strength of lining components
drained conditions/undrained conditions cohesive soil
Interface shear strength between lining components
strain softening shear behaviour
mobilisation of post-peak values particularly geosynthetic/geosynthetic and
geosynthetic/soil interfaces
Analysis:
Numerical modelling techniques (see Report 1, 11.4.4)
waste/barrier interaction
non-linear material behaviour

3.3.4 Steep slope lining systems

Steep side slope lining system design must consider stability and integrity failure modes both during construction (unconfined) and in the long-term following waste placement (confined). Excessive stresses can cause shearing of mineral liners and tearing and/or stress cracking in geomembranes. This will then lead to increased permeability of the liner. In addition, in a number of the design cases the stability of the drainage system and continuity of protection layers also require consideration. Design issues, controlling factors and analysis methods are given below for the two classes of lining system considered: self-supporting and waste supported. Mineral, geosynthetic and composite lining systems are covered in each design case. Comprehensive information on steep slope lining system design is given in Chapter 12, Report 1 including key references.

Table 3.26	Self Supporting/Unconfined/Stability
-------------------	--------------------------------------

Design Issues:
Stability of sub-grade
Stability of liner support system
Stability of liner
Stability of drainage layer
Controlling Factors:
Assessment is required of design cases in Section 3.3.1 on Sub-grade/Cut Slope, Fill Slope and
Natural Slope
Liner system details
type and dimensions of liner support system
geometry of lining system
slope angle, including variability
slope height
variability of slope along length of slope
thickness of mineral layer
type of geosynthetic liner
type and dimensions of ancillary underlying and overlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite)
Shear strength
strength of structural components (frame, geosynthetic reinforcement, no fines concrete)
mineral layers of lining system
Drained/undrained conditions
interfaces between components
connections between barrier and sub-grade (e.g. rock bolts)
strain softening behaviour
Groundwater
pore water pressures
sub-grade
lining system
influence of de-watering
modification to groundwater regime from construction of barrier
Self weight
structural components (frames, concrete) unit weight of mineral components (granular backfill, clay liner)
influence of moisture content changes
Construction plant
dead weight
braking/acceleration forces
Construction sequence
phasing of construction
stockpiling of material
Analysis:
Shear failure of mineral liners => Limit equilibrium analysis – Method of slices (Report 1,
11.4.2)
Tensile failure of geomembrane under self-weight and loads from adjacent liner components
(Compare tensile stresses with wide width tensile strength)
Structural stability of support systems
reinforced soil design (BS8006:1995)
structural assessment of frame systems (including rock bolt design)
structural assessment of no fines concrete

1	Design Issues:
	Control stresses in liner to prevent increased permeability
	Controlling Factors:
	Assessment is required of design cases in Section 3.3.1 on Sub-grade/Cut Slope, Fill Slope and
	Natural Slope with regard to deformability of sub-grade
	Liner system details
	type and dimensions of liner support system
	geometry of lining system
	slope angle, including variability
	slope height
	variability of slope along length of slope
	thickness of mineral layer
	type of geosynthetic liner
	type and dimensions of ancillary underlying and overlying layers
	reinforcement (geogrid)
	drainage layers (mineral, geocomposite)
	Liner support system deformability
	stiffness of support system (composite behaviour)
	Shear strength
	strength of structural components (frame, geosynthetic reinforcement, no fines concrete)
	mineral layers of lining system
	drained/undrained conditions
	interfaces between components
	connections between barrier and sub-grade (e.g. rock bolts)
	strain softening behaviour
	Groundwater
	pore water pressures
	sub-grade
	lining system
	influence of de-watering
	modification to groundwater regime from construction of barrier
	Self weight
	structural components (frames, concrete)
	unit weight of mineral components (granular backfill, clay liner)
	influence of moisture content changes Construction plant
	dead weight
	braking/acceleration forces
	Construction sequence
	phasing of construction
	stockpiling of material
	Analysis:
	Shear failure of mineral liners => Limit equilibrium analysis – Method of slices (Report 1,
	11.4.2)
	Assessment of factors of safety to control the strains in the liner components
	Tensile stresses in geomembrane under self-weight and loads from adjacent liner components
	(Compare tensile stresses with wide width tensile strength to ensure strains are acceptable)
	Use numerical modelling techniques (see Report 1, 12.6 for general methodology)
	assess barrier/support system/sub-grade interaction
	include non-linear material behaviour

 Table 3.27
 Self Supporting/Unconfined/Integrity

	Design Issues:
	Stability of liner
	Controlling Factors:
	Liner system details
	type and dimensions of liner support system
	geometry of lining system
	slope angle, including variability
	slope height
	variability of slope along length of slope
	thickness of mineral layer
	type of geosynthetic liner
	type and dimensions of ancillary underlying and overlying layers
	reinforcement (geogrid)
	drainage layers (mineral, geocomposite)
	Shear strength
	waste
	sub-grade
	mineral lining components
	strain softening behaviour
	drained/undrained conditions (cohesive soils)
	characteristic values
	geosynthetic/geosynthetic and geosynthetic/soil interfaces
	characteristic interface shear strength values (Report 1, 7.5)
	Groundwater
	in sub-grade
	in lining system
	pore water pressures generated by construction (undrained loading)
	modification to pressures in sub-grade caused by barrier construction
	Leachate pressures
	Pressure distribution (see Report 1, 11.4.1)
	on liner
	on cover soil layers
	influence of re-circulation of leachate
	Location and shape of potential failure surfaces
	non-circular surfaces are common
	controlling factors \rightarrow weak layers
	Sub-grade, soft cohesive layers/ discontinuities
	lining components, cohesive
	interfaces between lining components
	daily cover soil layers
	through waste body
	Waste body geometry
	side lining system slope angle
	waste external slope angle
	waste height
	basal length of waste mass
	consider temporary geometries
	Unit weight of waste (see Report 1, 8.2)
	depth (vertical stress level) dependent
	modified by cover soil
	waste type
	placement practices
	moisture content
	time
	Analysis:
	Limit equilibrium stability analysis
	Method of slices (Report 1, 11.4.2)
L	

 Table 3.28
 Self Supporting/Confined/Stability

Table 3.29	Self Suppor	rting/Confine	ed/Integrity
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

Desig	yn Issues:
2.00.8	Control stresses in liner to prevent increased permeability
	Disruption of drainage and protection layers
Cont	rolling Factors:
	Assessment is required of design cases in Section 3.3.1 on Sub-grade/Cut Slope, Fill Slope and
	Natural Slope with regard to deformability of sub-grade
	Liner system details
	type and dimensions of liner support system
	geometry of lining system
	slope angle, including variability
	slope height
	variability of slope along length of slope
	thickness of mineral layer
	type of geosynthetic liner
	type and dimensions of ancillary underlying and overlying layers
	reinforcement (geogrid)
	drainage layers (mineral, geocomposite)
	Liner support system deformability
	stiffness of support system (composite behaviour)
	Waste settlement
	short-term compression (see Report 1, 8.3.3)
	long-term creep and degradation (see Report 1, 8.3.4)
	magnitude and distribution (laterally and with depth)
	Shear strength of lining components
	cohesive soil (drained/undrained conditions)
	tensile strength of geosynthetic components
	Interface strength between lining components
	strain softening behaviour of interfaces
	mobilisation of post peak shear strengths
	Construction sequence
	phasing of barrier construction and waste placement
	In situ stresses in waste (see Report 1, 8.6)
	influence of waste degradation
	Waste body geometry
	slope angle and variability
	slope height
	variability of slope along length of slope
Analy	
	Use numerical modelling techniques (see Report 1, 12.6 for general methodology)
	consider waste/barrier/support system interaction non- linear material behaviour
	non- meat material behaviour

<b>Table 3.30</b>	Waste Supported/Unconfined/Stability
-------------------	--------------------------------------

Design Issues:	
Stability of sub-grade	
Stability of liner support system	
Stability of liner	
Stability of drainage layer	
Assess each lift prior to waste placement	
Controlling Factors:	1
Assessment is required of design cases in Section 3.3.1 on Sub-grade/Cut Slope, Fill Slope an	d
Natural Slope	
Liner system details	
type and dimensions of liner support system	
geometry of lining system	
slope angle, including variability	
slope height	
variability of slope along length of slope	
thickness of mineral layer	
type of geosynthetic liner	
type and dimensions of ancillary underlying and overlying layers	
reinforcement (geogrid)	
drainage layers (mineral, geocomposite)	
Shear strength	
strength of structural components (frame, geosynthetic reinforcement, no fines concret	e)
mineral layers of lining system	- /
drained/undrained conditions	
interfaces between components	
connections between barrier and sub-grade (e.g. rock bolts)	
strain softening behaviour	
Groundwater	
pore water pressures	
sub-grade	
lining system	
influence of de-watering	
modification to groundwater regime from construction of barrier	
Self weight	
structural components (frames, concrete) unit weight of mineral components (granular backfill, clay liner)	
influence of moisture content changes	
Construction plant	
dead weight	
braking/acceleration forces	
Construction sequence	
phasing of construction	
stockpiling of material	
Analysis:	
Shear failure of mineral liners => Limit equilibrium analysis – Method of slices (Report 1,	
Tensile failure of geomembrane under self-weight and loads from adjacent liner components	
(Compare tensile stresses with wide width tensile strength)	
Structural stability of support systems	
reinforced earth design (BS8066:1995)	
structural assessment of frame systems (including rock bolt design)	
structural assessment of no fines concrete	

# Table 3.31 Waste Supported/Unconfined/Integrity

	Design Issues:
	Control stresses in liner to prevent increased permeability
	Assess each lift prior to waste placement
	Controlling Factors:
	Assessment is required of design cases in Section 3.3.1 on <i>Sub-grade/Cut Slope, Fill Slope</i> and
	Natural Slope with regard to deformability of sub-grade
	Liner system details
	type and dimensions of liner support system
	geometry of lining system
	slope angle, including variability
	slope height
	variability of slope along length of slope
	thickness of mineral layer
	type of geosynthetic liner
	type and dimensions of ancillary underlying and overlying layers
	reinforcement (geogrid)
	drainage layers (mineral, geocomposite)
	Liner support system deformability
	stiffness of support system (composite behaviour)
	Shear strength
	strength of structural components (frame, geosynthetic reinforcement, no fines concrete)
	mineral layers of lining system
	drained/undrained conditions
	interfaces between components
	connections between barrier and sub-grade (e.g. rock bolts)
	strain softening behaviour
	Groundwater
	pore water pressures
	sub-grade
	lining system
	influence of de-watering Assess each lift prior to waste placement
	Modification to groundwater regime from construction of barrier
	Selfweight
	structural components (frames, concrete)
	unit weight of mineral components (granular backfill, clay liner)
	influence of moisture content changes
	Construction plant
	dead weight
	braking/acceleration forces
	Construction sequence
	phasing of construction
	stockpiling of material
	Analysis:
	Shear failure of mineral liners => Limit equilibrium analysis – Method of slices (Report 1,
	11.4.2)
	Assessment of factors of safety to control the strains in the liner components
	Tensile stresses in geomembrane under self-weight and loads from adjacent liner components
	(Compare tensile stresses with wide width tensile strength to ensure strains are acceptable)
	Use numerical modelling techniques (see report 1, 12.6 for general methodology)
	assess barrier/support system/sub-grade interaction
	include non-linear material behaviour
L	

Design Issues:	
Stability of liner	
Controlling Factors:	
Liner system details	liner over out over an
type and dimensions of	
geometry of lining syste slope angle, incl	
slope height	
	pe along length of slope
thickness of mineral lay	
type of geosynthetic lin	
	ancillary underlying and overlying layers
reinforcement (g	
	mineral, geocomposite)
Shear strength	
waste	
sub-grade	
mineral lining compone	
strain softening behavio	
drained/undrained cond	itions (cohesive soils)
characteristic values	
	tic and geosynthetic/soil interfaces
	shear strength values (Report 1, 7.5)
Groundwater	
in sub-grade	
in lining system	narrated by construction (undrained loading)
	nerated by construction (undrained loading) es in sub-grade caused by barrier construction
Leachate pressures	in sub-grade caused by barrier construction
pressure distribution (se	e Report 1 11 4 1)
on liner	
on cover soil lay	ers
	irculation of leachate
Location and shape of potentia	
Non-circular surfaces a	
Controlling factors $\rightarrow$ v	veak layers
Sub-grade, soft of	ohesive layers/discontinuities
lining componer	
	en lining components
daily cover soil	
through waste be	ody
Waste body geometry	
side lining system slope	
waste external slope an	gle
waste height basal length of waste m	
consider temporary geo	
Unit weight of waste (see Repo	
depth (vertical stress lev	
modified by cover soil	
waste type	
placement practices	
moisture content	
time dependent	
In situ stresses in waste (see R	eport 1, 8.6)
influence of waste degr	
Lateral stiffness of waste (see	
influence of waste degr	

 Table 3.32
 Waste Supported/Confined/Stability

# Table 3.32 Waste Supported/Confined/Stability (Continued)

Analysis:
Limit equilibrium stability analysis
Method of slices (Report 1, 11.4.2)

### Table 3.33 Waste Supported/Confined/Integrity

Design Issues:
Control stresses in liner to prevent increased permeability
Disruption of drainage and protection layers
Controlling Factors:
Assessment is required of design cases in Section 3.3.1 on Sub-grade/Cut Slope, Fill Slope and
Natural Slope with regard to deformability of sub-grade
Liner system details
type and dimensions of liner support system
geometry of lining system
slope angle, including variability
slope height
variability of slope along length of slope
thickness of mineral layer
type of geosynthetic liner
type and dimensions of ancillary underlying and overlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite)
Liner support system deformability
stiffness of support system (composite behaviour)
Waste settlement
short-term compression (see Report 1, 8.3.3)
long-term creep and degradation (see Report 1, 8.3.4)
magnitude and distribution (laterally and with depth)
Shear strength of lining components
cohesive soil (drained/undrained conditions)
tensile strength of geosynthetic components
Interface strength between lining components
strain softening behaviour of interfaces
mobilisation of post peak shear strengths
Construction sequence
phasing of barrier construction and waste placement
In situ stresses in waste (see Report 1, 8.6)
influence of waste degradation
Lateral stiffness of waste (see Report 1, 8.5)
Influence of waste degradation
Waste body geometry
slope angle and variability
slope height
variability of slope along length of slope
Analysis:
Use numerical modelling techniques (see Report 1, 12.6 for general methodology)
consider waste/barrier/support system interaction
non- linear material behaviour

#### 3.3.5 Waste slope

Waste stability must be assessed as part of the design process for both the final slope profile condition and temporary waste slope configurations. Stability assessment is required for failure modes wholly within the waste body and failure incorporating elements of the lining system. Failure involving the lining system is essentially the same mode as *Shallow Side slope/Confined/Stability*. Design issues, controlling factors and analysis methods are given below for the two modes of waste slope failure considered. Comprehensive information on waste slope stability assessment is given in Chapters 11 and 13, Report 1 including key references.

Desi	gn Issues: Stability of waste slope
Con	trolling Factors:
	Slope geometry
	angle
	height
	Waste shear strength
	shear strength of waste and likely variation with depth and laterally
	shear strength of waste/cover soil interfaces and likely variation
	shear strength of cover soil material
	Unit weight of waste (see Report 1, 8.2)
	depth (vertical stress level) dependent
	modified by cover soil
	waste type
	placement practices
	moisture content
	time dependent
	Leachate pressures
	Pore pressure distribution (see Report 1, 11.4.1)
	in waste body
	perched on cover soil layers
	influence of leachate re-circulation
	Location and shape of failure surface
	Controlling factors
	daily cover soil layers
	anisotropic shear strength of waste
	Non-circular surfaces are common
Ana	lysis: Limit equilibrium analysis – Method of slices (see Report 1, 11.4.2)

Table 3.34Failure Wholly in Waste

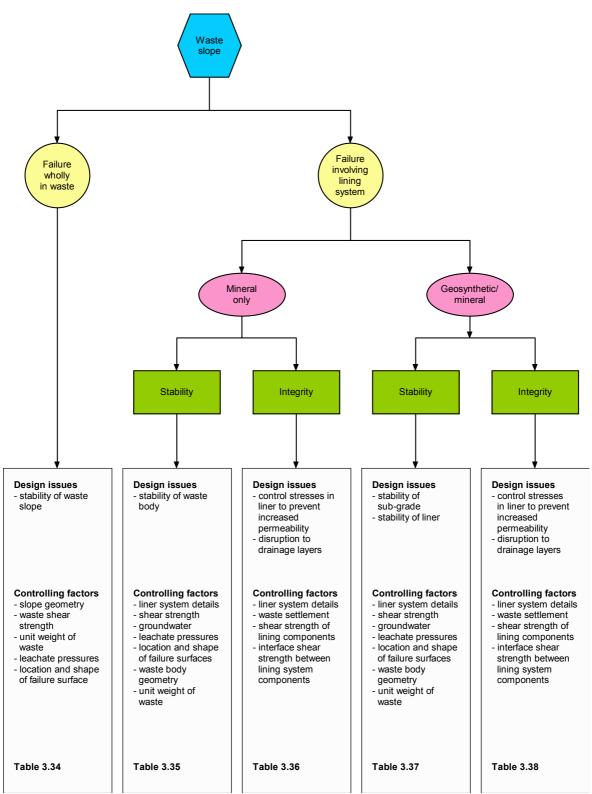



Figure 3.5 Design Flow Chart 5: Waste Slope

	Stability of waste body Iing Factors:
	Liner system details
1	thickness of mineral layer
	type and dimensions of ancillary underlying and overlying layers
	reinforcement (geogrid)
	drainage layers (mineral, geocomposite)
ç	Shear strength
	waste
	sub-grade
	mineral lining components
	strain softening behaviour drained/undrained conditions (cohesive soils)
	characteristic values
(	Groundwater
	in sub-grade
	in lining system
	pore water pressures generated by construction (undrained loading)
	modification to pressures in sub-grade caused by barrier construction
1	Leachate pressures
	Pressure distribution (see Report 1, 11.4.1)
	on liner
	on cover soil layers
-	influence of re-circulation of leachate
1	Location and shape of potential failure surfaces
	non-circular surfaces are common
	controlling factors $\rightarrow$ weak layers
	sub-grade, soft cohesive layers/ discontinuities
	lining components, cohesive
	daily cover soil layers
	through waste body
,	Waste body geometry
	side lining system slope angle
	waste external slope angle
	waste height
	basal length of waste mass
	consider temporary geometries
τ	Jnit weight of waste (see Report 1, 8.2)
	depth (vertical stress level) dependent
	modified by cover soil
	waste type
	placement practices
	moisture content
	time dependent
Analysi	S:
Ī	Limit equilibrium stability analysis
	method of slices (Report 1, 11.4.2)

# Table 3.35 Failure Involving Lining System/Mineral Only/Stability

Design Issues:
Control stresses in liner to prevent increased permeability
 Disruption to drainage layers
Controlling Factors:
Liner system details
thickness of mineral layer
type and dimensions of ancillary underlying and overlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite)
Waste settlement (see Report 1, 8.3)
short-term compression (see Report 1, 8.3.3)
long-term creep and degradation (see Report 1, 8.3.4)
magnitude and distribution (laterally and with depth)
Shear strength of lining components
drained conditions/undrained conditions cohesive soil
Interface shear strength between lining components
strain softening shear behaviour
mobilisation of post-peak values
Analysis:
Numerical modelling techniques (see Report 1, 11.4.4)
waste/barrier interaction
non-linear material behaviour

 Table 3.36
 Failure Involving Lining System/Mineral Only/Integrity

	Design Issues:
	8
	Stability of sub-grade
	Stability of liner
	Controlling Factors:
	Liner system details
	thickness of mineral layer
	type and dimensions of ancillary underlying and overlying layers
	reinforcement (geogrid)
	drainage layers (mineral, geocomposite)
	Shear strength
	waste
	sub-grade
	mineral lining components
	strain softening behaviour
	drained/undrained conditions (cohesive soils)
	characteristic values
	geosynthetic/geosynthetic and geosynthetic/soil interfaces
	characteristic interface shear strength values (Report 1, 7.5)
	Groundwater
	in sub-grade
	in lining system
	pore water pressures generated by construction (undrained loading)
	modification to pressures in sub-grade caused by barrier construction
	Leachate pressures
	Pressure distribution (see Report 1, 11.4.1)
	on liner
	on cover soil layers
	influence of re-circulation of leachate
	Location and shape of potential failure surfaces
	non-circular surfaces are common
	controlling factors $\rightarrow$ weak layers
	sub-grade, soft cohesive layers/ discontinuities
	lining components, cohesive
	interfaces between lining components
	daily cover soil layers
	through waste body
	Waste body geometry
	side lining system slope angle
	waste external slope angle
	waste height
	basal length of waste mass
	consider temporary geometries
	Unit weight of waste (see Report 1, 8.2)
	depth (vertical stress level) dependent
	modified by cover soil
	waste type
	placement practices
	moisture content
├	time dependent
	Analysis:
	Limit equilibrium stability analysis
	method of slices (Report 1, 11.4.2)

 Table 3.37
 Failure Involving Lining System/Geosynthetic-Mineral/Stability

#### Table 3.38 Failure Involving Lining System/Geosynthetic-Mineral/Integrity

Design Issues:
Control stresses in liner to prevent increased permeability
Disruption to drainage layers
Controlling Factors:
Assessment is also required of the Section 3.3.2 design cases of <i>Basal Lining</i>
System/Geosynthetic-Mineral/Compressible Sub-grade and Cavities.
Liner system details
thickness of mineral layer
type of geosynthetic liner
type and dimensions of ancillary underlying and overlying layers reinforcement (geogrid)
drainage layers (mineral, geocomposite)
Waste settlement (see Report 1, 8.3)
short-term compression (see Report 1, 8.3.3)
long-term creep and degradation (see Report 1, 8.3.4)
magnitude and distribution (laterally and with depth)
Shear strength of lining components
drained conditions/undrained conditions cohesive soil
Interface shear strength between lining components
strain softening shear behaviour
mobilisation of post-peak values particularly geosynthetic/geosynthetic and
geosynthetic/soil interfaces
Analysis:
Numerical modelling techniques (see Report 1, 11.4)
waste/barrier interaction
non-linear material behaviour

#### 3.3.6 Capping Systems

Capping system design must consider side slope stability and integrity failure modes. Excessive stresses can cause shearing of mineral liners and tearing and/or stress cracking in geomembranes. This will then lead to increased permeability of the liner. Instability of the capping system can result in disruption of the drainage system and protection layers. Design issues, controlling factors and analysis methods are given below. Stability design cases are essentially the same as *Shallow side slope/Unconfined/Stability*. In addition, integrity of the capping system can be compromised by excessive deformations in the waste sub-grade (*Sub-grade/Base/Filling on waste*) and by slope deformations. Comprehensive information on shallow slope lining system design is given in Chapter 11, Report 1 and base deformations in Chapter 9. These include key references.

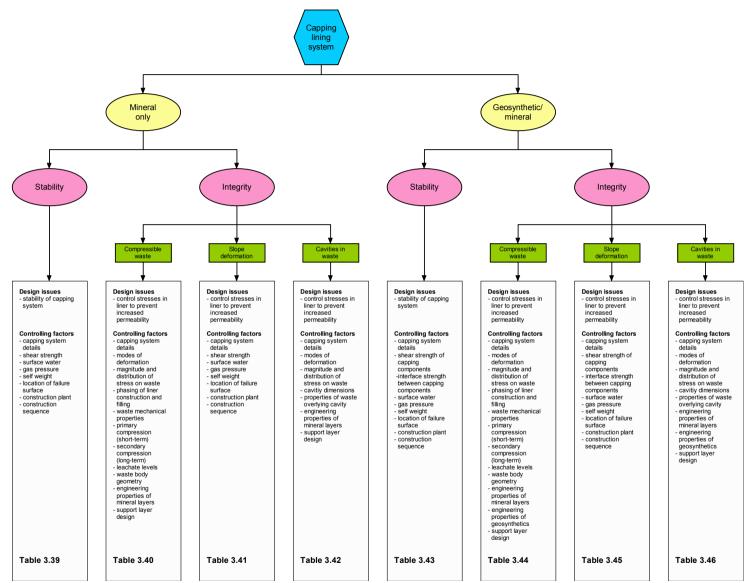



Figure 3.6 Design Flow Chart 6: Capping Lining System

Design Issues:
Stability of capping system
Controlling Factors:
Capping system details
thickness of mineral layer
type and dimensions of ancillary underlying and overlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite)
cover soil
Shear strength
mineral layers of lining system
sub-grade
drained/undrained conditions
strain softening
Surface water
discharges on slope
precipitation
changes in unit weight of mineral layers
changes in pore water pressures (recharge)
seepage
Gas pressure (filling on waste)
important where existing waste slopes are lined
gas pressure related to
age and type of waste
gas control and extraction system
Selfweight
unit weight of materials
influence of moisture content changes
Location and shape of potential failure surfaces
weak layers
interfaces between components of lining system
interfaces between phases of compaction in mineral layer
Construction plant
dead weight
braking/acceleration forces
mode of operation
uphill/downhill
Construction sequence
method of placement
stockpiling of material
Analysis:
Limit equilibrium stability analysis
infinite slope method (Report 1, 11.3.3)
method of slices (Report 1, 11.4.2)
Gas pressure (Report 1, 11.3.3)
Construction plant loading (Report 1, 11.3.3)

# Table 3.39Mineral Only/Stability

	Control stresses in liner to prevent increased permeability
Cont	trolling Factors:
	Capping system details
	thickness of mineral layer
	type and dimensions of ancillary underlying and overlying layers
	reinforcement (geogrid)
	drainage layers (mineral, geocomposite)
	cover soil
	Modes of deformation
	tension cracks
	formation of shear zones
	Magnitude and distribution of stress on waste
	Phasing of capping construction and filling
	Waste mechanical properties
	material type
	age
	density
	moisture content
	Primary compression (short-term) elastic compression
	1
	Secondary compression (long-term)
	creep
	degradation
	Leachate levels
	leachate pressure
	degree of saturation
	Waste body geometry
	thickness of deposit
	variation of thickness across site
	surface slope angle
	Engineering properties of mineral layer
	shear strength
	stiffness
	plasticity of material
	grading (% clay materials)
	clay mineralogy
	Support layer design
	stiffness
	tensile capacity (geosynthetics)
Anal	
1 1141	Radius of curvature of deformation profile see Report 1 10.3.2
	Assessment of mineral layer plasticity
	Assessment of inneral layer plasticity Assessment of control provided by underlying lining system layers (i.e. after Report

 Table 3.40
 Mineral Only/Integrity/Compressible Waste

	ign Issues: Control stresses in liner to prevent increased permeability
Cor	trolling Factors:
	Capping system details
	thickness of mineral layer
	type and dimensions of ancillary underlying and overlying layers
	reinforcement (geogrid)
	drainage layers (mineral, geocomposite)
	cover soil
	Shear strength of capping components
	mineral layers of lining system
	drained/undrained conditions
	tensile strength of geosynthetics
	strain softening
	Surface water
	discharges on slope
	precipitation
	changes in unit weight of mineral layers
	changes in pore water pressures (recharge)
	seepage
	Gas pressure (filling on waste)
	important where existing waste slopes are lined
	gas pressure related to
	age and type of waste
	gas control and extraction system
	Selfweight
	unit weight of materials
	influence of moisture content changes
	Location and shape of potential failure surfaces
	weak layers
	interfaces between components of lining system
	interfaces between phases of compaction in mineral layer Construction plant
	dead weight
	braking/acceleration forces
	mode of operation
	uphill/downhill
	Construction sequence
	method of placement
	stockpiling of material
Ang	lysis:
лца	Limit equilibrium stability analysis
	infinite slope method (Report 1, 11.3.3)
	method of slices (Report 1, 11.4.2)
	Gas pressure (Report 1, 11.3.3)
	Construction plant loading (Report 1, 11.3.3)
	Assessment of factor of safety to control strains in system

# Table 3.41 Mineral Only/Integrity/Slope Deformation

Design Issues:	
Control stresses in liner to prevent increased permeability	
Controlling Factors:	
Capping system details	
thickness of mineral layer	
type and dimensions of ancillary underlying and overlying layers	
reinforcement (geogrid)	
drainage layers (mineral, geocomposite)	
cover soil	
Modes of deformation	
tension cracks	
formation of shear zones	
Magnitude and distribution of stress on waste	
Cavity dimensions	
estimated plan size	
depth below lining system	
rate of change of size	
rate of migration to underside of lining system	
Properties of waste overlying cavity	
mass strength	
Engineering properties of mineral layer	
shear strength	
stiffness	
plasticity of material	
grading (% clay materials)	
clay mineralogy	
Support layer design	
stiffness	
tensile capacity (geosynthetics)	
Analysis:	
Radius of curvature of deformation profile see Report 1 10.3.2	
Assessment of mineral layer plasticity	
Assessment of control provided by underlying lining system layers (i.e. after Report 1 10.3.3)	

# Table 3.42 Mineral Only/Integrity/Cavities in Waste

	Design Issues:
	Stability of capping system
	Controlling Factors:
	Capping system details
	thickness of mineral layer
	type of geosynthetic liner
	type and dimensions of ancillary underlying and overlying layers
	reinforcement (geogrid)
	drainage layers (mineral, geocomposite)
	cover soil
	Shear strength of capping components
	mineral layers of lining system
	mineral layers - drained/undrained
	tensile strength of geosynthetics
	Interface strength between capping components
	geosynthetic/geosynthetic
	geosynthetic/soil
	strain softening
	Surface water
	discharges on slope
	precipitation
	changes in unit weight of mineral layers
	changes in pore water pressures (recharge)
	seepage
	Gas pressure
	important where existing waste slopes are lined
	gas pressure related to
	age and type of waste
	gas control and extraction system
	Self weight
	unit weight of materials
	influence of moisture content changes on mineral layers
	Location and shape of potential failure surfaces
	weak layers (mineral)
	interfaces
	Construction plant
	dead weight
	braking/acceleration forces
	mode of operation
	Uphill/downhill
	Construction sequence
	method of placement
	stockpiling of material
	Analysis:
	Limit equilibrium stability analysis
	infinite slope method (Report 1, 11.3.3)
	finite slope method (Report 1, 11.3.3)
	method of slices (Report 1, 11.4.2)
	Gas pressure (Report 1, 11.3.3)
	Construction plant loading (Report 1, 11.3.3)
	Assessment of geosynthetic stress (Report 1, 11.3.3)
8	

 Table 3.43
 Geosynthetic-Mineral/Stability

Design Issues:
Control stresses in liner to prevent increased permeability
Controlling Factors:
Capping system details
thickness of mineral layer
type of geosynthetic liner
type and dimensions of ancillary underlying and overlying layers
reinforcement (geogrid)
drainage layers (mineral, geocomposite)
cover soil
Modes of deformation
tension cracks in mineral layer
formation of shear zones in mineral layer
tensile failure (tearing) of geosynthetic liner
excessive strains in geosynthetic liner
Magnitude and distribution of stress on waste
Phasing of capping construction and filling
Waste mechanical properties
material type
age
density
moisture content
Primary compression (short-term)
elastic compression
Secondary compression (long-term)
creep
degradation
Leachate levels
leachate pressure
degree of saturation
Waste body geometry
thickness of deposit
variation of thickness across site
surface slope angle
Engineering properties of mineral layer
shear strength
stiffness
plasticity of material
grading (% clay materials)
clay mineralogy
Engineering properties of geosynthetic materials
tensile strength
limiting strains for stress cracking
Support layer design
stiffness
tensile capacity (geosynthetics)
Analysis:
Radius of curvature of deformation profile
Assessment of stresses in ancillary support layers (e.g. geosynthetic reinforcement) (see Report
10.3.3)
Assessment of mineral liner plasticity
Assessment of strains in geosynthetic barrier

 Table 3.44
 Geosynthetic-Mineral/Integrity/Compressible Waste

Des	ign Issues:
	Control stresses in liner to prevent increased permeability
Cor	itrolling Factors:
	Capping system details
	thickness of mineral layer
	type of geosynthetic liner
	type and dimensions of ancillary underlying and overlying layers
	reinforcement (geogrid)
	drainage layers (mineral, geocomposite)
	cover soil
	Shear strength of capping components
	mineral layers of lining system
	drained/undrained conditions
	tensile strength of geosynthetic layers
	Interface strength between capping components
	geosynthetic/geosynthetic
	geosynthetic/soil
	strain softening
	Surface water
	discharges on slope
	precipitation
	changes in unit weight of mineral layers
	changes in pore water pressures (recharge)
	seepage
	Gas pressure (filling on waste)
	important where existing waste slopes are lined
	gas pressure related to
	age and type of waste
	gas control and extraction system
	Self weight
	unit weight of materials
	influence of moisture content changes
	Location and shape of potential failure surfaces
	weak layers
	interfaces between components of lining system
	interfaces between phases of compaction in mineral layer
	Construction plant
	dead weight
	braking/acceleration forces
	mode of operation
	uphill/downhill
	Construction sequence
	method of placement
	stockpiling of material
Ana	alysis:
	Limit equilibrium stability analysis
	infinite slope method (Report 1, 11.3.3)
	method of slices (Report 1, 11.4.2)
	Gas pressure (Report 1, 11.3.3)
	Construction plant loading (Report 1, 11.3.3)
	Assessment of factor of safety to control strains in system

 Table 3.45
 Geosynthetic-Mineral/Integrity/Slope Deformation

Design	Issues:
	Control stresses in liner to prevent increased permeability
Contro	lling Factors:
	Capping system details
	thickness of mineral layer
	type of geosynthetic liner
	type and dimensions of ancillary underlying and overlying layers
	reinforcement (geogrid)
	drainage layers (mineral, geocomposite)
	cover soil
	Modes of deformation
	tension cracks in mineral layer
	formation of shear zones in mineral layer
	tensile failure (tearing) of geosynthetic liner
	excessive strains in geosynthetic liner
	Magnitude and distribution of stress on waste
	Cavity dimensions
	estimated plan size
	depth below lining system
	rate of change of size
	rate of migration to underside of lining system
	Properties of waste overlying cavity
	mass strength
	Engineering properties of mineral layer
	shear strength
	stiffness
	plasticity of material
	grading (% clay materials)
	clay mineralogy
	Engineering properties of geosynthetic materials
	tensile strength
	limiting strains for stress cracking
	Support layer design
	stiffness
	tensile capacity (geosynthetics)
Analys	is:
-	Radius of curvature of deformation profile
	Assessment of stresses in ancillary support layers (e.g. geosynthetic reinforcement) - se
	Report 1 10.3.3
	Assessment of mineral liner plasticity
	Assessment of strains in geosynthetic barrier

 Table 3.46
 Geosynthetic-Mineral/Integrity/Cavities in Waste

### 4. EXAMPLE CALCULATIONS

This Chapter provides details of four example calculations. These have been selected to demonstrate the use of the design flow charts and selection of appropriate design cases. Each of the examples has been chosen to highlight specific landfill liner stability and integrity issues. The examples are:

- Example 1: Single clay liner in an old clay pit, includes assessment of basal heave;
- Example 2: Composite BES/geomembrane liner in an old sand and gravel quarry, includes design solution to the presence of cavities;
- Example 3: Geomembrane capping, includes design solution for construction on compressible waste and the presence of cavities; and
- Example 4: Self-supporting steep slope lining system, includes issues of integrity related to waste settlement.

Design flow charts are included for each design case considered (e.g. sub-grade, basal lining system, shallow side slope lining system etc.) and the issues specific to that example are highlighted. For each case history a summary of the controlling factors is provided along with explanation and justification of the approach taken.

#### 4.1 Example 1: Single Clay Liner in Old Clay Pit

#### 4.1.1 Description

The site is a disused clay pit where the existing slopes are to be cut back to 1 (vertical) in 2 (horizontal) to form the proposed landfill perimeter. The site investigation has shown that the in situ clay is homogeneous. Groundwater was encountered in a sandstone band beneath the site and its piezometric level has been monitored for a representative period. The proposed lining system is a single clay liner, 1m thick, on base and side slopes. A 500 mm thick gravel drainage blanket will cover the base and the side slopes, and a separator geotextile will be placed above and below the gravel. The landfill will be developed as one cell. Design flow charts and calculations for this example are presented in Section 4.1.6 below.

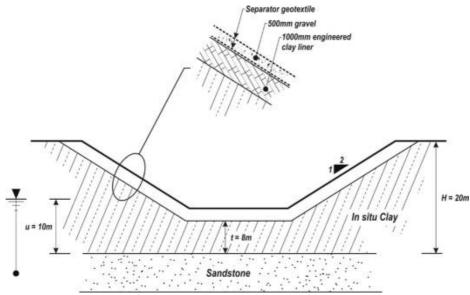



Figure 4.1 Schematic Cross Section of Example 1

#### 4.1.2 Sub-grade

The sub-grade design cases to be considered are highlighted in Figure 4.2.

#### **Base Stability**

The site investigation showed that there was no compressible material or cavities beneath the site.

#### **Excessive Deformations - Basal Heave**

Design issues:

• adequate site investigation.

Based on the results of the site investigation and the groundwater monitoring, the geology and hydrogeology have been well defined. A suitable factor of safety for this calculation would be 1.5.

### 4.1.3 Cut slope stability

#### **Cohesive Soil**

Design issues:

- adequate site investigation;
- stability;
- deformability;
- time dependent stability.

The stability of the cohesive cut slopes need to be assessed for both the short-term and the long-term; this can be carried out by an undrained and drained analysis respectively. A suitable factor of safety for the slope would be 1.5. In the assessment of the long-term stability, consideration needs to be given to the time taken for the build-up of pore pressures within the clay and also the time for which the slope will be exposed (i.e. before the waste is placed). In this example, it is considered that the slope will not be exposed long enough for positive pore pressures to develop and suitable factor of safety would be 1.1.

### 4.1.4 Basal lining system

The basal lining system design cases to be considered are highlighted in Figure 4.3.

### Mineral Only Liner

The site investigation showed that there was no compressible material or cavities beneath the site.

### Basal Heave

Design issues:

• barrier is not designed to resist heave, design must ensure that heave does not occur.

These calculations have been carried out for the sub-grade and therefore do not have to be repeated since the placement of the lining system will increased the factor of safety against basal heave.

#### 4.1.5 Shallow side slope liner

The shallow side slope liner design cases to be considered are highlighted in Figure 4.4.

### **Unconfined Slope**

*Mineral Only Liner – Stability* 

Design issues:

• stability of sub-grade;

- stability of liner;
- stability of drainage layer.

The stability of the unconfined slope needs to be assessed with the liner in place. When the clay liner is placed it will have an undrained shear strength in excess of 70 kPa as this is a specified requirement. As the liner is left exposed, the negative pore pressures (suctions) within the clay will slowly dissipate and the clay will soften, and this can be modelled by considering a reduction in undrained shear strength. A suitable factor of safety would be 1.5.

For the long-term analysis, an effective stress approach is used. As for the cut slope, consideration needs to be given to the time taken for the build-up of pore pressures within the clay and also the time for which the slope will be exposed. In this example, it is considered that the slope will not be exposed long enough for positive pore pressures to develop and suitable factor of safety would be 1.1.

#### Mineral Only Liner – Integrity

Design issues:

• control stresses in liner to prevent increased permeability.

In this instance, the mode of integrity failure is the same as stability failure and therefore no additional calculations are required.

#### **Confined Slope**

Mineral Only Liner – Stability

Design issues:

- stability of sub-grade;
- stability of liner.

If the unconfined slope is demonstrated to be stable then the placement of waste will increase the stability and no further calculations are required.

#### Mineral Only Liner – Integrity

Design issues:

- control stresses in liner to prevent increased permeability;
- disruption to drainage layers.

The integrity of the shallow side slope lining system once waste has been placed can be assessed by carrying out an analysis of the slope with waste placed in front. The contribution of the waste to the stability of the slope can be modelled by applying a load to the slope based on the vertical and horizontal stresses within the waste. The horizontal support is based on a value of the earth pressure coefficient  $K_0$ .

It is considered that there will be no disruption to the gravel drainage layer due to geotextile separator between drainage layer and waste.

#### 4.1.6 Waste slope

The waste slope design cases to be considered are highlighted in Figure 4.5.

# Failure Wholly in Waste

Design issue:

• stability of waste slope.

Since the cell will be filled in one operation and the waste will be placed in horizontal layers for the full width, there will be no temporary waste slope.

# Failure involving Lining System

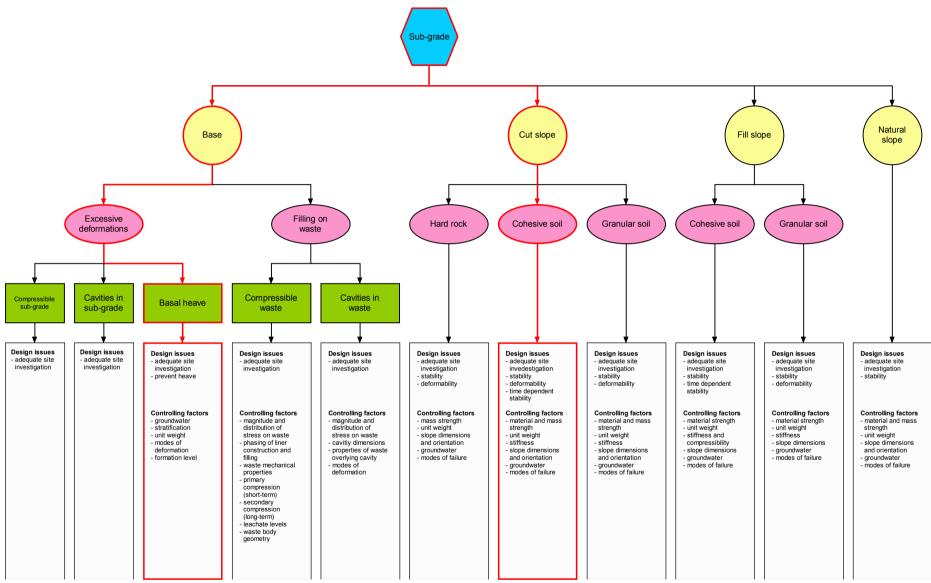
# *Mineral Only Liner – Stability*

Design issues:

- stability of sub-grade;
- stability of liner.

Since the cell will be filled in one operation and the waste will be placed in horizontal layers for the full width, there will be no temporary waste slope.

#### *Mineral Only Liner – Integrity*


Design issues:

- control stresses in liner to prevent increased permeability;
- disruption to drainage layers.

This failure mode has been assessed for confined shallow side slope liner in Section 4.1.4.

#### 4.1.7 Design flow charts and calculations

See Figures 4.2 to 4.6





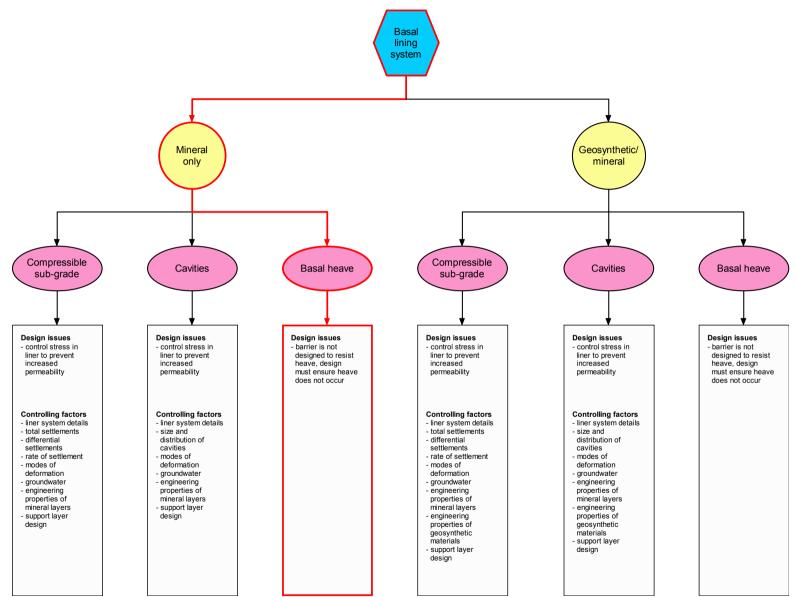



Figure 4.3 Design Flow Chart for Example 1: Basal Lining System

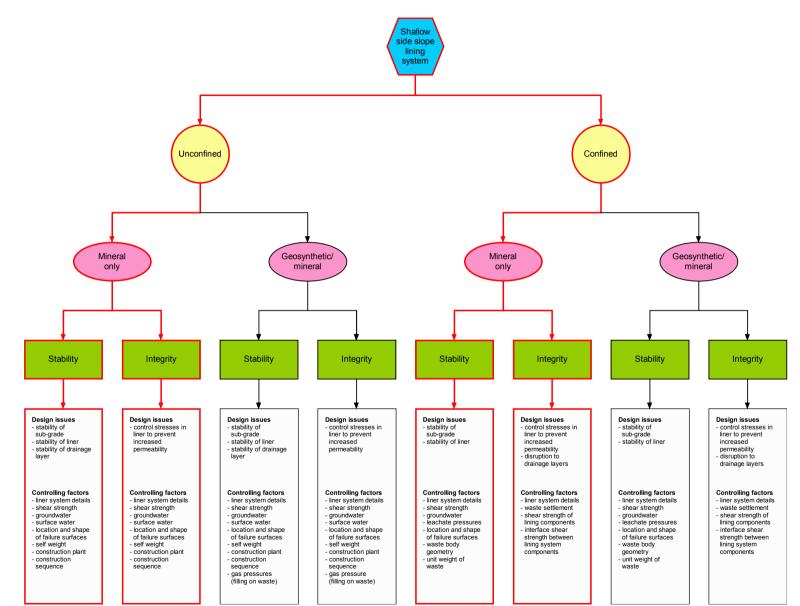



Figure 4.4 Design Flow Chart for Example 1: Shallow Side Slope Lining System

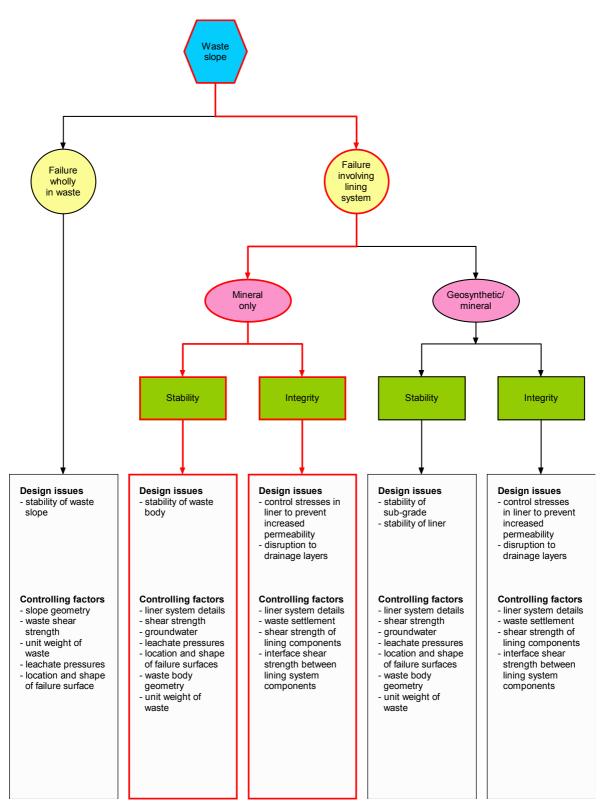



Figure 4.5 Design Flow Chart for Example 1: Waste Slope

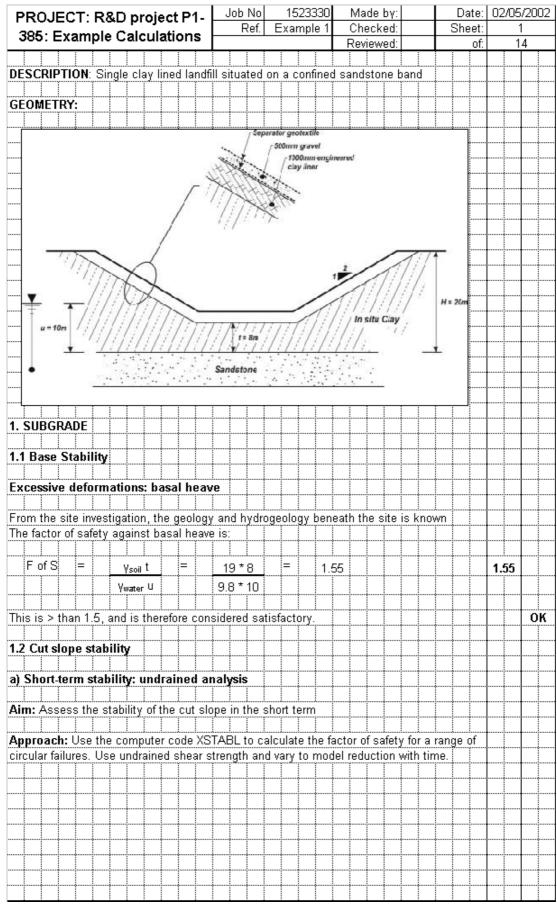



Figure 4. 6 Calculations for Example 1

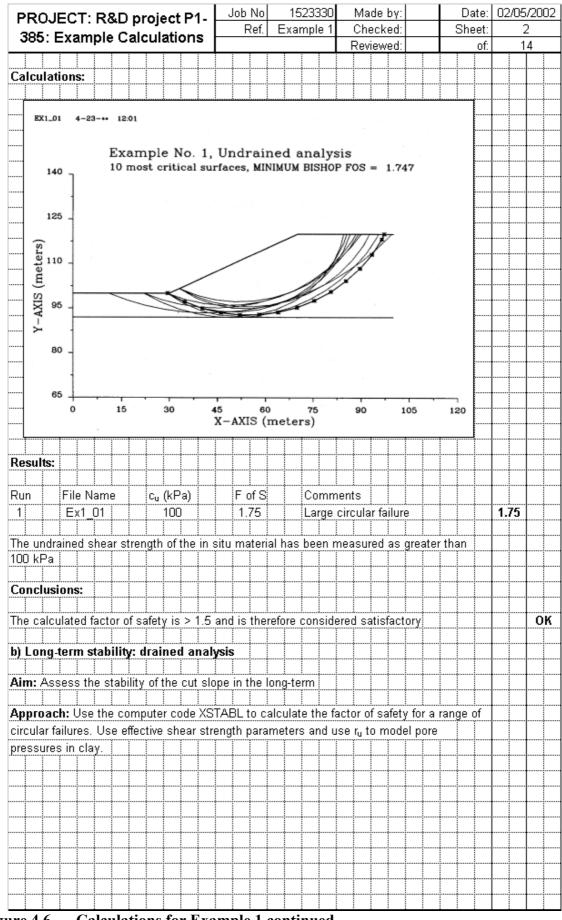
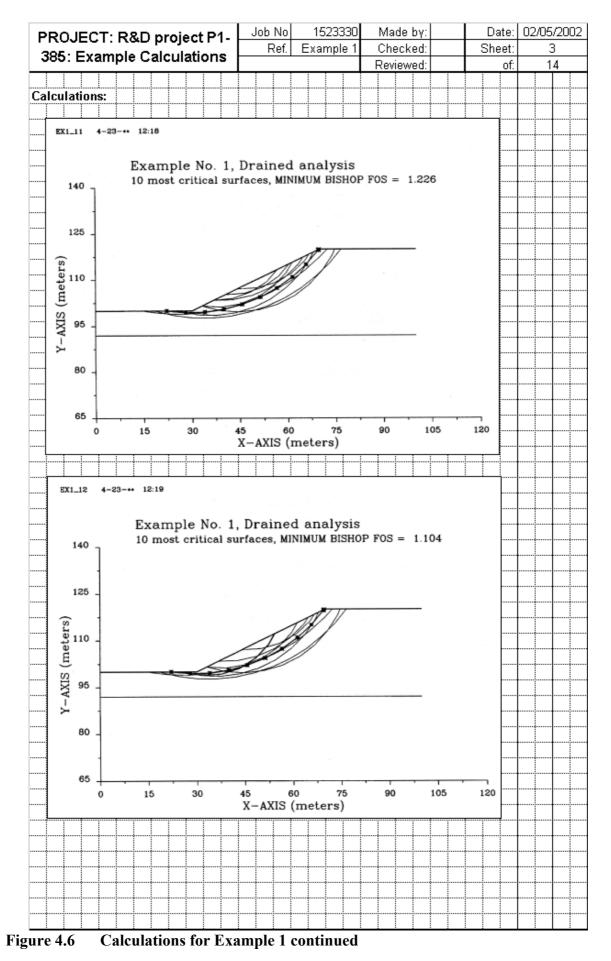




Figure 4.6 Calculations for Example 1 continued



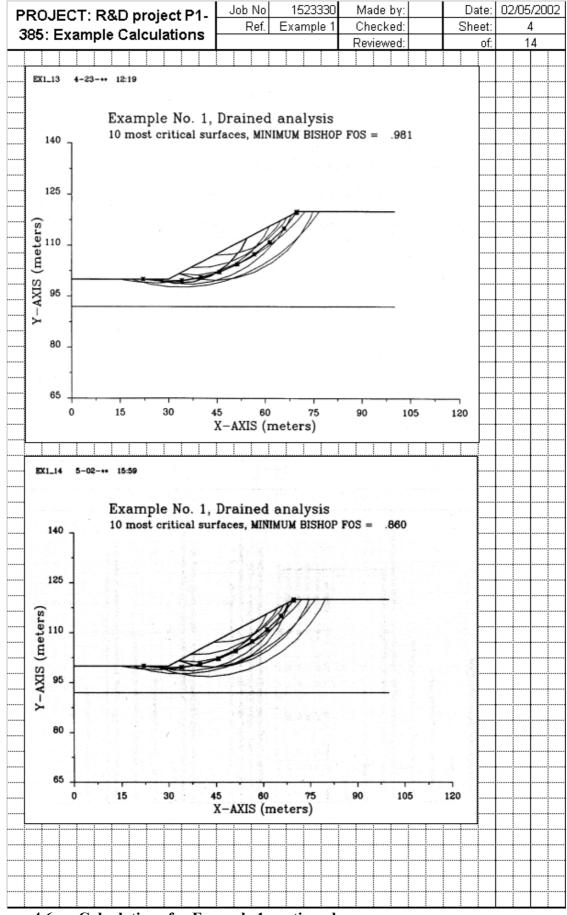
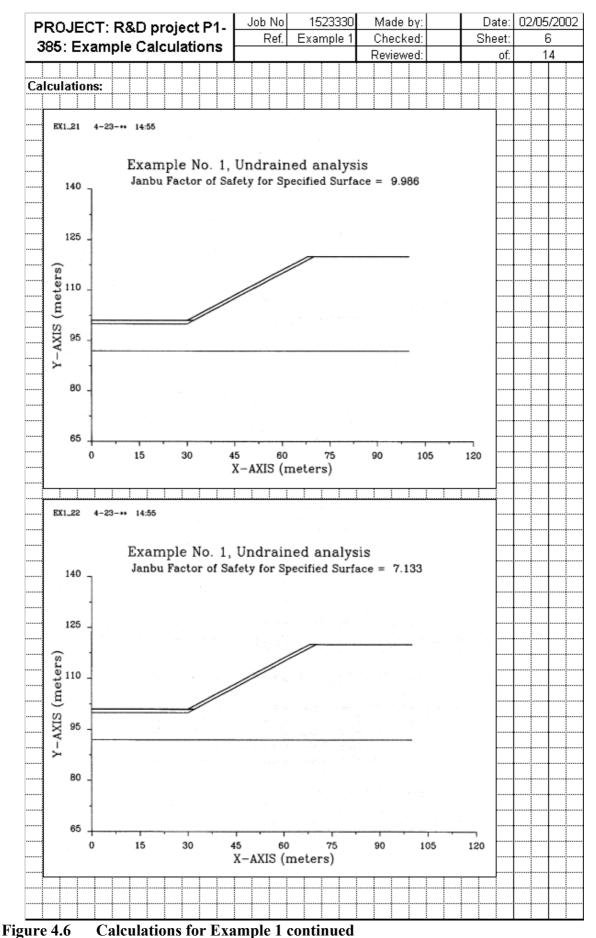
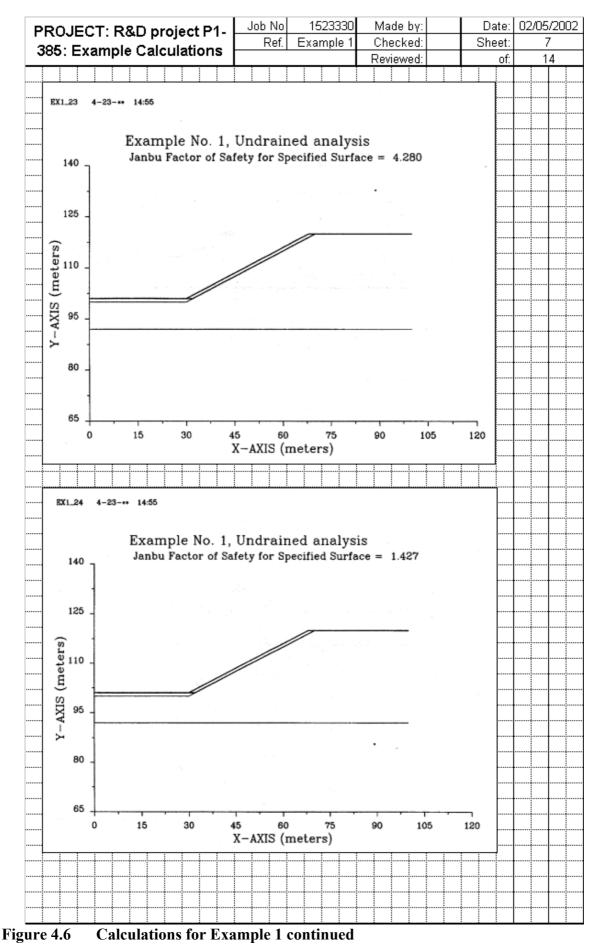





Figure 4.6 Calculations for Example 1 continued

305		UI.	Rg	٤D	pro	ject	: P1-	• ⊢	Job c	Ref.		amp	3330 Jo 1			de Icki				-	She	ate:	02	/05. 5	
000	: E)	cam	ple	Ca	alcu	lati	ons	$\vdash$	г	tei.		am	лет		_	ew	_				one			 1.	
		-				1		_	1				-	R	evi	ew	ea:					of:		<u>ا</u>	4
lesul	te•		•						·																
							•																		
Run		Filer	ii 20100			 c' (kF			 		r _u		F	of S		Co	mm	 Ient							
			iam I 11				raj		<u>'()</u> 24		יי 0			11 S 23						llor	foil	ure	1.2	22	
1			112			5			24 24		0.1			23 .1			allo							2.3	
2 3			1 13			5		····•	24 24		0.2			98			allo							_	
4			14			 5			24 24		0.2	····•		86									0.8	86	
-				•			r				0.0	, 				011	ano	** C	n cu	Jiai	Ian		0.0		
										.i	السلمات		i	LL. - 0\											
							e with															·			
.23. /									•••••		••••••	····· ¥····	d 1ac	toro	DT S	ate	tyc	1ec	rea	ses	, wi	itn			
r _u va	lue o	f0.2	givi	ng a	i fac	tor of	safe	ty le	ss t	han	unit	y.													
																						ļ			
							y froi			·····															
erme	abilit	y ani	d po	re w	/ater	r pres	sure	s wil	l tak	(e n	nany	tens	s of y	(ears	s to	o re	ach	) va	lue	<u>3</u>		ļ			
quiva	lent t	o r _u :	= 0.:	2.																					
		Ĩ			····	ļ		1						Î											
oncl	usio	ns:	1	The second se					1			1													
		Ţ	1		····		1	1		1				ļ.			•••••								
he m	easu	reme	ents	ofn	ore	wate	r pres	ssurø	e in '	the	in si	tu m	ateri	al er	 ແມຣ	ate	to r.	=	0.0	5 a	nd	•			
ince																									
atisfa			T I	piac	,eu (	JUICK	<u>17. 11</u>		1311	iy is		101 3	alety	13 /	<u>، ۱</u>	ıa		13 U	Una	lue	ieu				Ō
11316		(					·							+			•				•••••				
	201			CVC						ļ															
. BA	SAL		NG	212	IFL	л 				ļ															
			L																			<u>.</u>			
													:												
.1 Ba	ISAL	neav	'e				ļ			ļ															
.1 Ba																									
3asal	heav	e wa	l Í s ch																cla	γw	ill				
3asal	heav	e wa	l Í s ch																cla	/ W	ill				
Basal ncrea	heav se th	e wa e fac	s ch tor	ofsa	afety	′aga	inst Ł	basa	l he:	ave.									cla	y w	ill				
3asal	heav se th	e wa e fac	s ch tor	ofsa	afety	′aga	inst Ł	basa	l he:	ave.									cla;	y w	ill				
Basal ncrea	heav se th ALLC	e wa e fac )W S	s ch tor SIDE	ofsa	afety	′aga	inst Ł	basa	l he:	ave.									cla;	/ W					
Basal ncrea	heav se th ALLC	e wa e fac )W S	s ch tor SIDE	ofsa	afety	′aga	inst Ł	basa	l he:	ave.									cla;	/ W					
asal ncrea . SH/	heav se th ALLC	e wa e fac )W S	s ch tor SIDE	ofsa	afety	′aga	inst Ł	basa	l he:	ave.									cla	/ W					
Basal Increa . SH/ .1 Ur	heav se th ALLC	e wa e fac )W S finec	s ch tor SIDE	of sa	afety OPI	' aga E LIN	inst b	SYS	I he:	ave. Vi									cla	/ W					
Basal ncrea	heav se th ALLC	e wa e fac )W S finec	s ch tor SIDE	of sa	afety OPI	' aga E LIN	inst b	SYS	I he:	ave. Vi									cla;	/ W					
Basal Increa . SH/ .1 Ur ) Sta	heav se th ALLC ncon bility	e wa e fac DW S finec y - S	s ch tor SIDE	of sa SL	oPI	/ aga E LIN Undr	inst b IING aine	sys Sys d an	TEI	ave. M sis	Hen	ce t	his i:						cla;	y w					
Basal Increa . SH/ .1 Ur ) Sta	heav se th ALLC ncon bility	e wa e fac DW S finec y - S	s ch tor SIDE	of sa SL	oPI	/ aga E LIN Undr	inst b IING aine	sys Sys d an	TEI	ave. M sis	Hen	ce t	his i:						cla;	/ W					
asal hcrea . SH/ .1 Ur .1 Ur	heav se th ALL( bility	e wa e fac DW S finec y - S ss th	s ch tor SIDE	of sa SL t-ter	oPI m: I	r aga E LIN Undr	inst b IING aine clay	sys d an	TEI	ave. M sis	Hen	ce t	his i: n.	s sat	tisf	act	ory					Jlar			
iasal icrea . SH/ .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst b IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
lasal Increa . SH/ .1 Ur .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst b IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
lasal Increa . SH/ .1 Ur .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst b IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
lasal Increa . SH/ .1 Ur .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst b IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
lasal Increa . SH/ .1 Ur .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst b IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
iasal icrea . SH/ .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst E IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
lasal Increa . SH/ .1 Ur .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst E IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
iasal icrea . SH/ .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst E IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
iasal icrea . SH/ .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst E IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
iasal icrea . SH/ .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst E IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
lasal Increa . SH/ .1 Ur .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst E IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
iasal icrea . SH/ .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst b IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
iasal icrea . SH/ .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst b IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
asal hcrea . SH/ .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst b IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
Basal Increa . SH/ .1 Ur ) Sta	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst b IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				
asal hcrea . SH/ .1 Ur .1 Ur .1 Ur .1 Ur	heav se th ALLO bility Asse	e wa e fac DW S finec y - S ss th Use	s ch tor ( SIDE 1 hort	of sa SL t-ter	oPI m: I ity o	r aga E LIN Undr If the ter co	inst b IING aine clay	d an	in t	ave. M sis he s	Hen	ce t -terr ate	his i n. the f	s sat	tisf r of	fsa	ory.	, fo	r nc	in-c	ircu				

Figure 4.6 Calculations for Example 1 continued





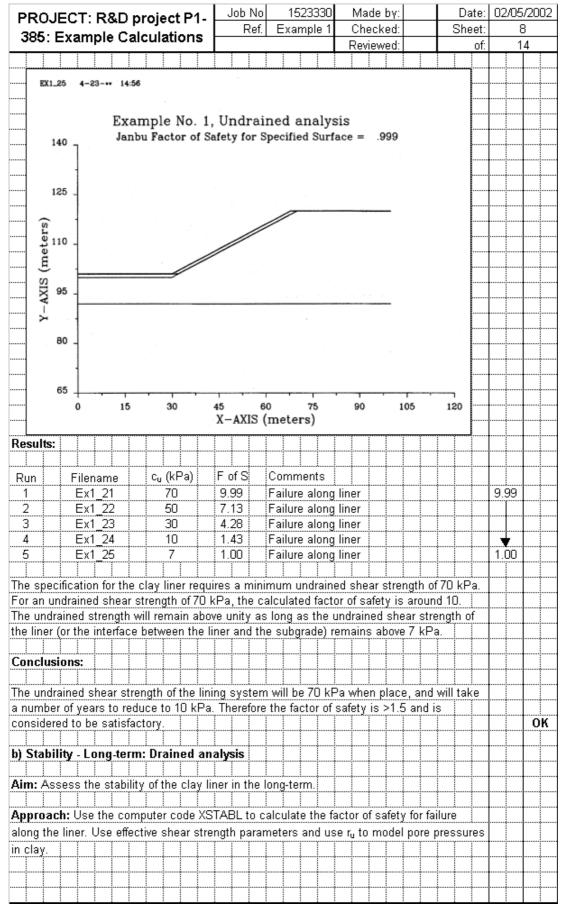



Figure 4.6Calculations for Example 1 continued

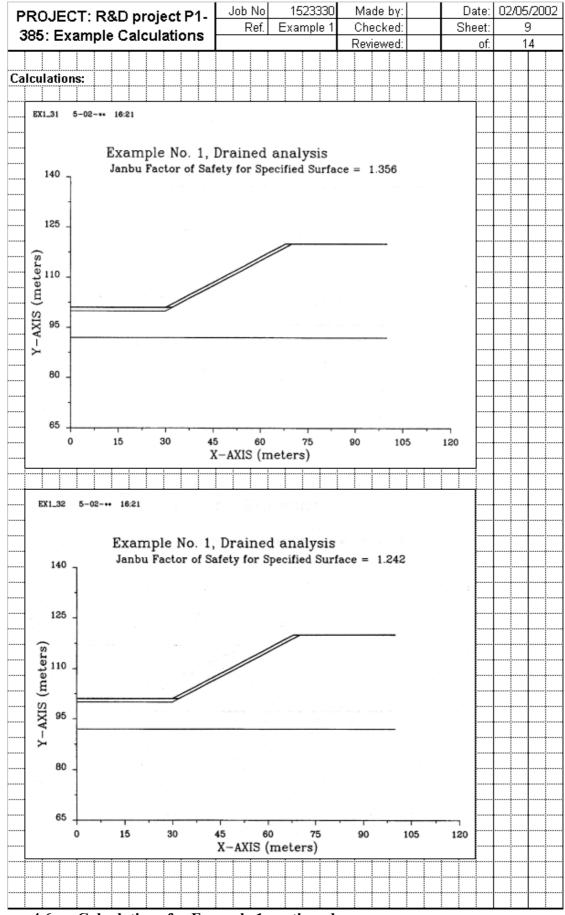



Figure 4.6 Calculations for Example 1 continued

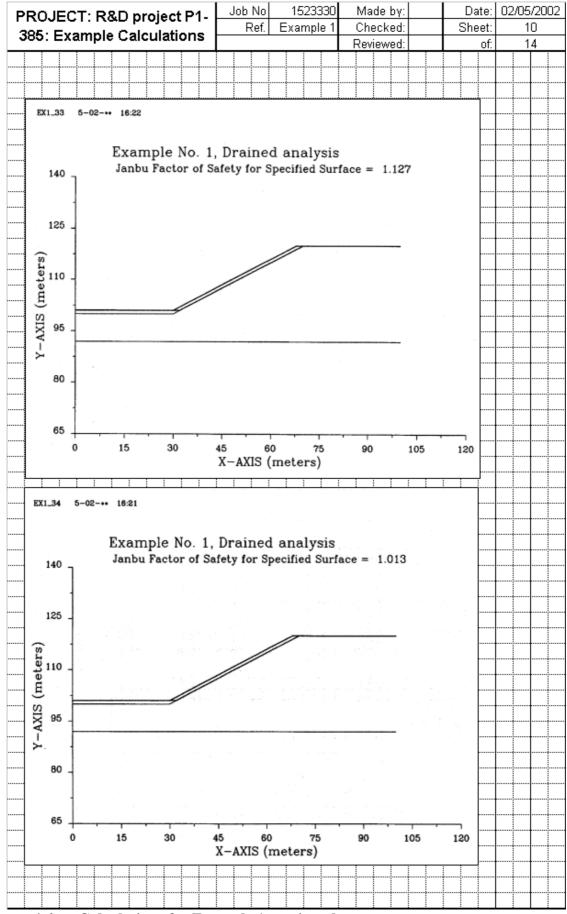



Figure 4.6 Calculations for Example 1 continued

385						P1-	Ť	ob Ni Ref	-	Exa	233 mpl			<u>Ma</u> Che							ate: eet:	102	1	/20( 1
	: Exa	mple	e Ca	alcul	atio	ns		Rei	·   '	_×ai	прі	e 1		Revi						one	of:		1.	·
														.01	011	00.					1			-
Result	s:				†						•													
										1		•								•				
Run	File	name		c' (kF	a)	Φ'	(")		ru		Fο	of S		Со	mm	nent	ts							
1	Ex	1 31	•	3			4	1	).O	1	1.			Fai	ilure	e al	ong	lin	er	•		1.3	36	
2	Εx	1 32		3		2	4	1	D.1		1.	24	þi				ong				•	I		î
3	Ex	1_33		3		2	4	ļ	D.2	1	1.	13		Fai	ilure	e al	ong	lin	er				7	
4	Εx	1_34	ļ	, 3		2	4		D, 3		1.1	D1		Fai	lure	e al	ong	lin	er			1.(	D1	
			ļ		ļļ																			
Conclu	isions									÷														
When t	he cla	v line	ris fi	rst nl	ii. aced	it will	ii I hav	/e su		ns a	nd t	i thei	ll refo	re t	he '	i. fact	or r	nfs	i afet	i V W	i vill			
pe grea																								
even if	the po	re pre	ssure	es rea	ach a	value	e eq	ual to	) a r	u va	lue	ofC	).2,	the	e fai	ctor	of	saf	etγ	is	<u> </u>			
>1.1 ar	nd is th	nerefo	re co	inside	red s	atisfa	acto	ry.		Ĩ										Ĭ				0
		ĺ	ļ			Ì														ļ				
c) Inte	grity				ļ																ļ			
			<u> </u>							<u> </u>		. <u></u>						<u>.</u>		ļ		ļ		
The mo							e aș	s stab	oility	fail	ure	<u>(lor</u>	ng ti	erm	) ai	nd t	her	efoi	re n	0				
additio	nal cal	culati	ons a	are re	quire	d.	ļļ															ļ		0
110-																								
3.2 Co	ntinea																			ļ				
a) Ctal	allity																				·····			
a) Stal	JIIILY									·														
		ifth	ii	ronfin	i i ed el	one i	e et	ahle t	hen	the		nfin	u	slor		will	he (	etał	i 10					0
				1					101	T	- ⁻		Ň		·• ·									Ť
b) Inte	arity				•																			
							÷			••••••••		•						•••••		å				
sj mie	9								1	1														
		grade	e stal	bility v	was r	nargi	nal	(l.e. i	t de	peno	ded	on	the	po	re p	res	sur	res)	, ar	l 1				
Since t	he sut																			) )	•			
Since t	he sub ment i	of the	integ	arity o	fthe	liner	pos	t-was	te p	lace	eme	ent (	can	be						<u>ן</u>				
Since t assess	he sub ment i	of the	integ	arity o	fthe	liner	pos	t-was	te p	lace	eme	ent (	can	be						1	0			
Since t assess	he sub ment	of the e stab	integ ility (	arity o of the	f the confi	liner ined s	pos subç	t-was grade	te p and	lace	eme	ent (	can	be						1				
Since t assess assess Aim: C	he sub ment ing the alcula	of the e stab te the	integ ility ( stab	grity o of the pility o	f the confi f the	liner ined s confi	pos subo ned	t-was grade slop	te p and e	lace l line	eme er s	ysti	can em.	be	cai	rie	3 OL	ıt b	У					
Since t assess assess Aim: C Appro:	he sub ment ing the alcula	of the e stab te the se the	inteç ility ( stab e cor	grity o of the pility o npute	f the confi of the r cod	liner ined s confi le XS	pos subo ned TAE	t-was grade slop BL to	te p and e calc	lace l line ulat	eme er s e tł	ent ( yst) ne fa	can em.	be pro	cai f sa	rrie(	3 оц , fo	ıtb ra	У		of			
Since t assess assess Aim: C Aim: C Appro: circula	he sub ment alcula ach: U failure	of the e stab te the se the es. Ap	integ ility ( stab e cor oply v	of the oility o npute vaste	f the confi of the r cod load	liner ined s confi le XS ing to	pos subo ned TAE the	t-was grade slop 3L to slop	te p and e calc e ba	lace l line ulat	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circula	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У					
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У		of			
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У					
Since t assess assess Aim: C Aim: C Appro: circular norizon	he sub ment ing the alcula ach: U r failure ital loa	of the e stab te the lse the es. Ap d calc	integ ility stab e cor ply v culate	grity o of the pility o mpute waste ed fro	f the confi of the r cod loadi m the	liner ined s confi le XS ing to e K₀ c	pos subo ned TAE the of th	t-was grade slop 3L to e slop e was	te p and e calc e ba ste.	llace I line ulat asec Use	eme ers eth	ent ( yst) ne fa	can em. acto e ve	be or of rtic	cai fsa alli	rrie( nfety pad	ιοι γfo an	ıtb ra da	У					

Figure 4.6 Calculations for Example 1 continued

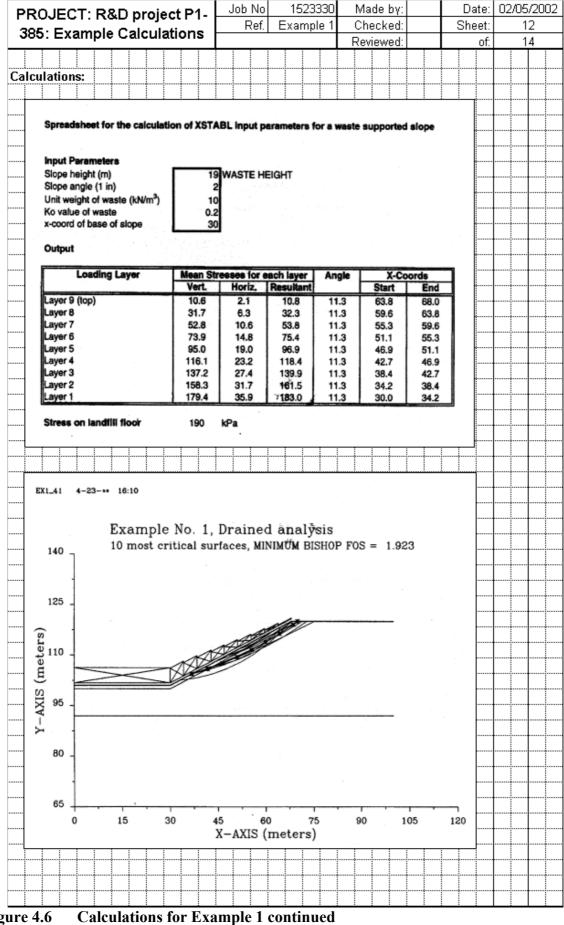



Figure 4.6

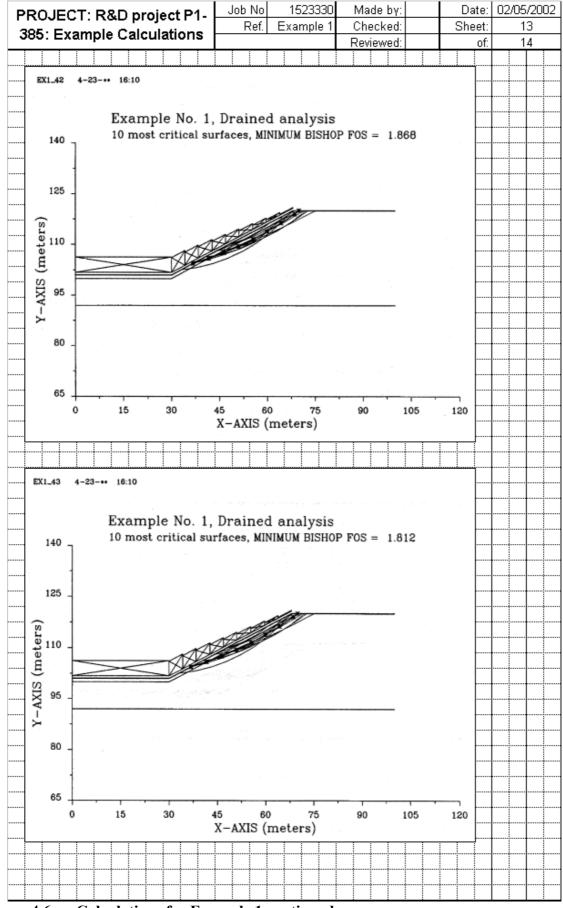



Figure 4.6 Calculations for Example 1 continued

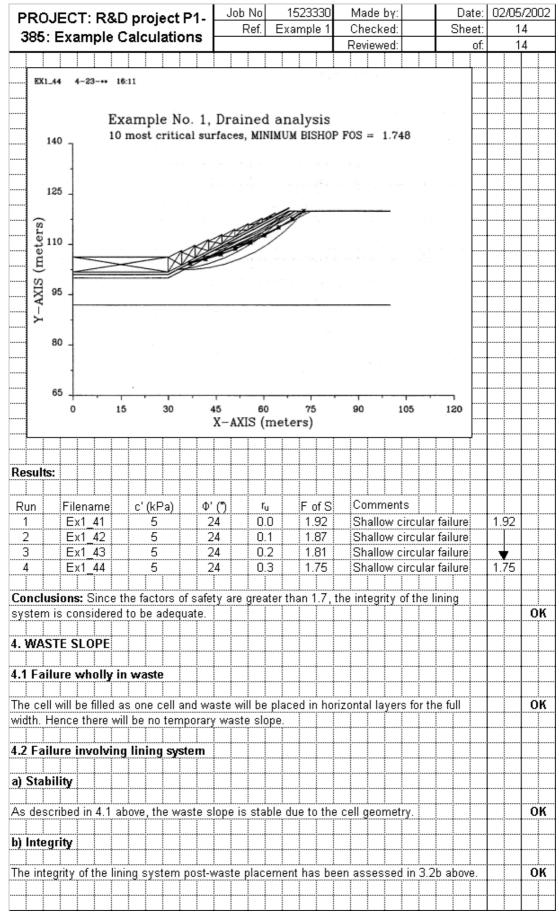



Figure 4.6 Calculations for Example 1 continued

# 4.2 Example 2: Composite BES/Geomembrane Liner in Old Sand and Gravel Quarry

#### 4.2.1 Description

The site is a disused sand and gravel quarry and the existing slopes will be lined to form proposed landfill. In situ sand excavated from the site will be used to produce a BES lining material. The site investigation encountered groundwater in the sand and gravel perched on a clay layer; monitoring has shown this to have a 2m head. A composite BES/HDPE geomembrane lining system will be constructed on the base and side slopes. A 500mm thick gravel drainage layer will be placed on the base and sides with protection geotextile between the gravel and the geomembrane. The landfill will be developed in several cells. Design flow charts and calculations are given in Section 4.2.6 below.

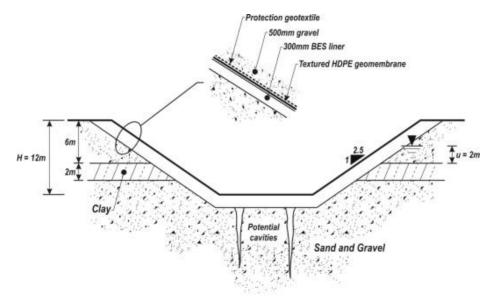



Figure 4.7 Schematic Cross Section of Example 2

#### 4.2.2 Sub-grade

The sub-grade design cases to be considered are highlighted in Figure 4.8.

#### **Base Stability**

The site investigation showed that there was no compressible material beneath the site and no potential for basal heave.

#### **Excessive Deformations – Cavities in Sub-Grade**

Design issues:

• adequate site investigation.

Based on the site investigation results, it has been established that there is a possibility of a 700mm diameter cavity appearing at the surface of the quarry. No design calculations are required for the sub-grade but are needed for the basal liner, see Section 4.2.3 below.

# **Cut Slope Stability**

# Granular Soil

Design issues:

- adequate site investigation;
- stability; and
- deformability.

Based on the site inspection, the existing slopes are observed to be stable and no seepage erosion was observed. Circular and non-circular analysis can be carried out to confirm the stability, and no long-term reduction in stability is expected.

#### 4.2.3 Basal lining system

The basal lining system design cases to be considered are highlighted in Figure 4.9.

#### Geosynthetic/Mineral Liner

Cavities

Design issues:

• control stress in liner to prevent increased permeability.

Calculate the effect of the likely cavities on both the BES and geomembrane components of the lining system. There is little information available in the technical literature for the performance of BES in such an application. However, the available information links the Plasticity Index of the mineral liner to its performance and work has shown that the application of a confining stress reduces the likelihood of cracking.

Calculations can be carried out to assess the likely strain in the geomembrane and a suitable reinforcing layout can be designed. The strain in the geogrid (and hence the geomembrane) should be limited to 3%.

#### 4.2.4 Shallow side slope lining system

The shallow side slope lining system design cases to be considered are highlighted in Figure 4.10.

# **Unconfined Slope**

Geosynthetic/Mineral Liner – Stability

Design issues:

- stability of sub-grade;
- stability of liner; and

• stability of drainage layer.

The installation of the 300mm thick BES liner will have very little effect on the overall stability. It will, however, prevent the escape of the perched groundwater and so a suitable back drainage system should be installed. The stability of the sub-grade and liner can be assessed using the same calculations are described for the cut slope stability in Section 4.2.2 above.

The veneer stability of the drainage blanket on top of the lining system can be assessed by carrying out a finite slope analysis (Jones & Dixon, 1998). The factor of safety against cover soil slippage is calculated for different parallel submergence ratios (PSR's) to model seepage forces above the liner. Since the gravel will be placed by a hydraulic excavator and no plant will traffic on the slope, it is considered that peak interface shear strengths are relevant. A suitable factor of safety for these calculations would be 1.3.

#### Geosynthetic/Mineral Liner – Integrity

Design issues:

• control stresses in liner to prevent increased permeability.

The veneer stability analysis described above can also be used to assess the integrity of the geosynthetic by considering the transfer of stresses through the lining system. A suitable factor of safety would be 1.5.

#### **Confined Slope**

#### Geosynthetic/Mineral Liner – Stability

Design issues:

- stability of sub-grade;
- stability of liner.

Due to the development of the site in cells, placement of waste will not necessarily increase the stability. Non-circular stability analysis of the lining system (including the waste mass) using peak shear strengths on the base and residual strengths on the side slopes can be used to assess the overall stability. A suitable factor of safety would be 1.5.

#### Geosynthetic/Mineral Liner – Integrity

Design issues:

- control stresses in liner to prevent increased permeability;
- disruption to drainage layers.

The integrity of the mineral liner can be assessed by carrying out an analysis of the slope with waste placed in front. The contribution of the waste to the stability of the slope can be modelled by applying a load to the slope based on the vertical and horizontal stresses within

the waste. The horizontal support is based on a value of the earth pressure coefficient  $K_0$ . Since the integrity of the system is being assessed, a higher factor of safety (1.7) would be appropriate.

The integrity of the geosynthetic components once waste has been placed can only be assessed by finite element or finite difference numerical modelling. The results given in Report No. 1 (Chapter 11, tables 11.6 and 11.8) can be used to assess the performance of the present system.

# 4.2.5 Waste slope

The waste slope design cases to be considered are highlighted in Figure 4.11.

# Failure Wholly in Waste

Design issue:

• stability of waste slope.

Since sand will be used as daily cover there are no potential weak planes within the waste and so circular slip analysis is appropriate, a suitable factor of safety would be 1.5. The impact of the Landfill Directive on the shear strength of the waste stream should be investigated and this can be done by reducing the cohesion intercept.

# Failure involving Lining System

#### Geosynthetic/Mineral Liner – Stability

Design issues:

- stability of sub-grade;
- stability of liner.

This has been assessed previously for the confined slope stability in Section 4.2.4 above.

Geosynthetic/Mineral Liner – Integrity

Design issues:

- control stresses in liner to prevent increased permeability;
- disruption to drainage layers.

This has been assessed previously for the confined slope integrity in Section 4.2.4 above.

# 4.2.6 Design flow chart and calculations

See Figures 4.8 to 4.12.

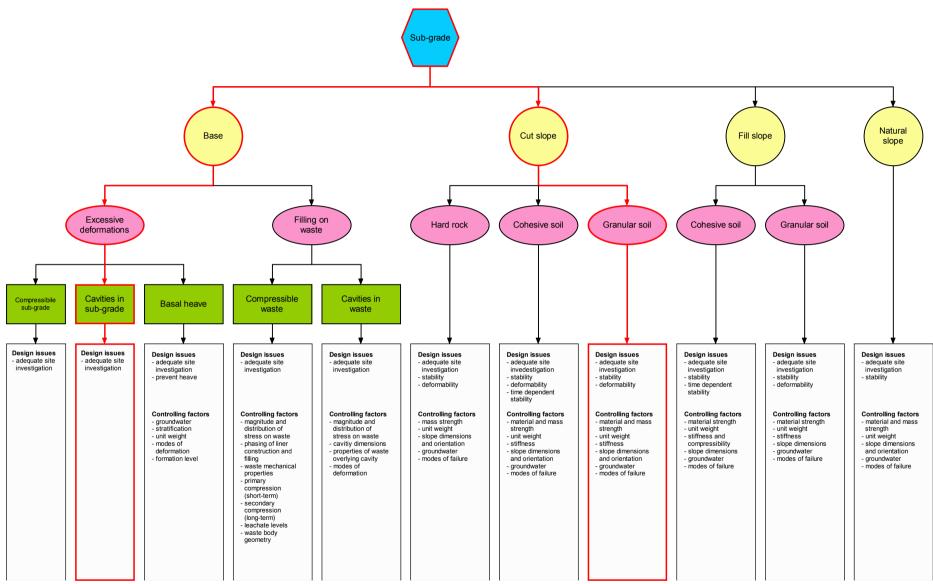







Figure 4.9 Design Flow Chart for Example 2: Basal Lining System

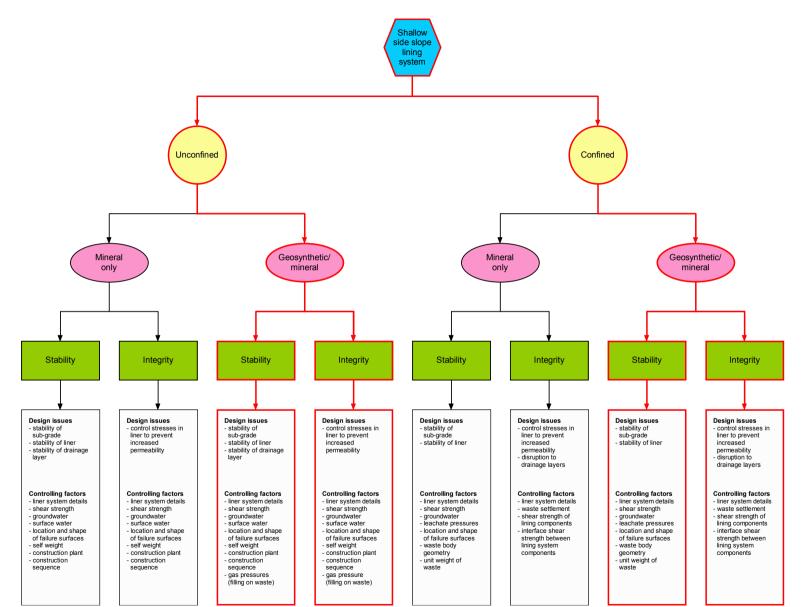



Figure 4.10 Design Flow Chart for Example 2: Shallow Side Slope Lining System

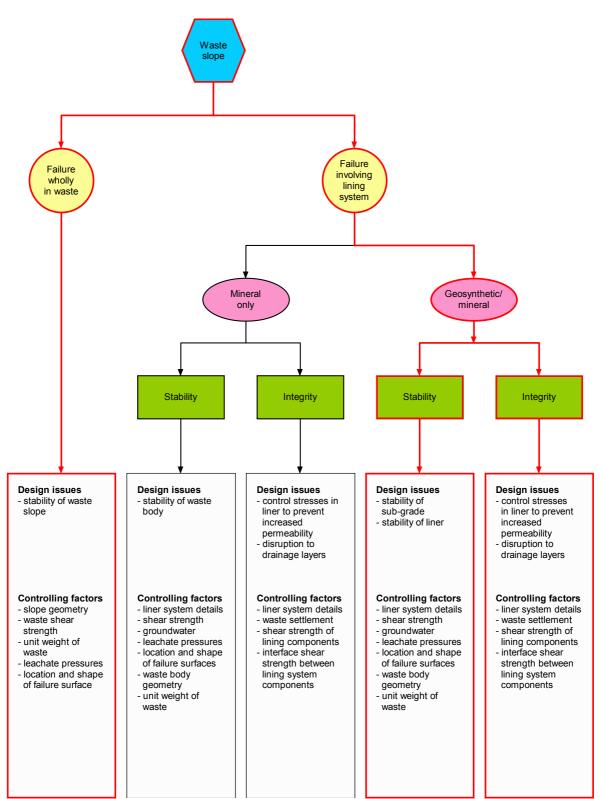



Figure 4.11 Design Flow Chart for Example 2: Waste Slope

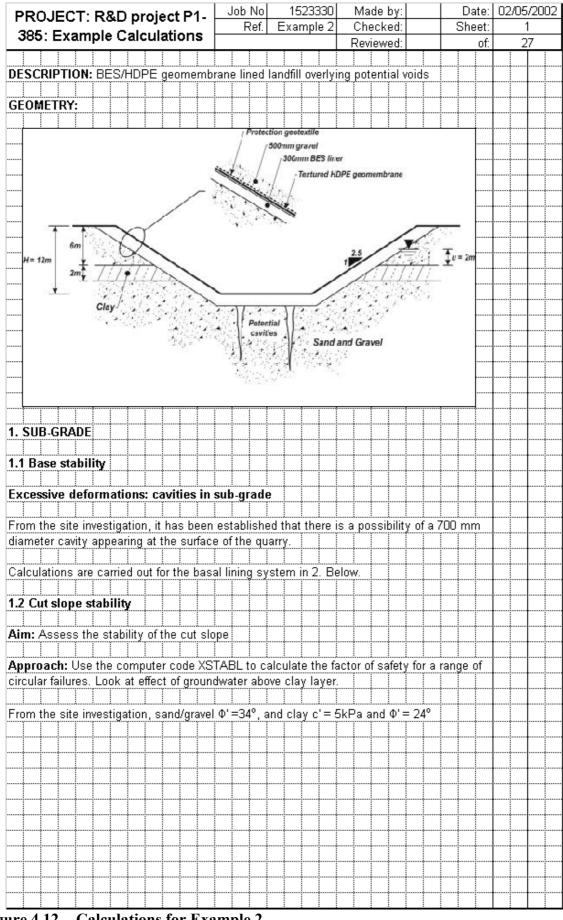



Figure 4.12 Calculations for Example 2

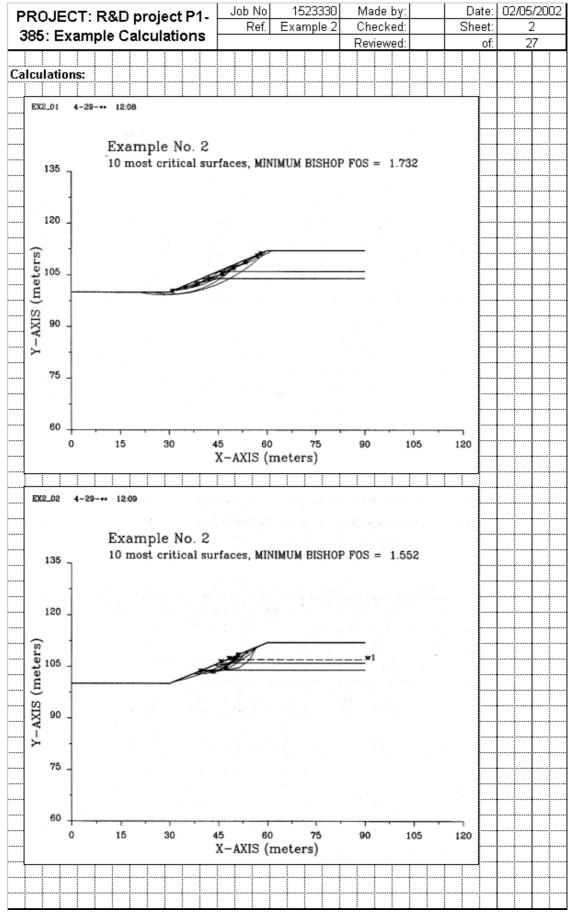



Figure 4.12 Calculations for Example 2 continued

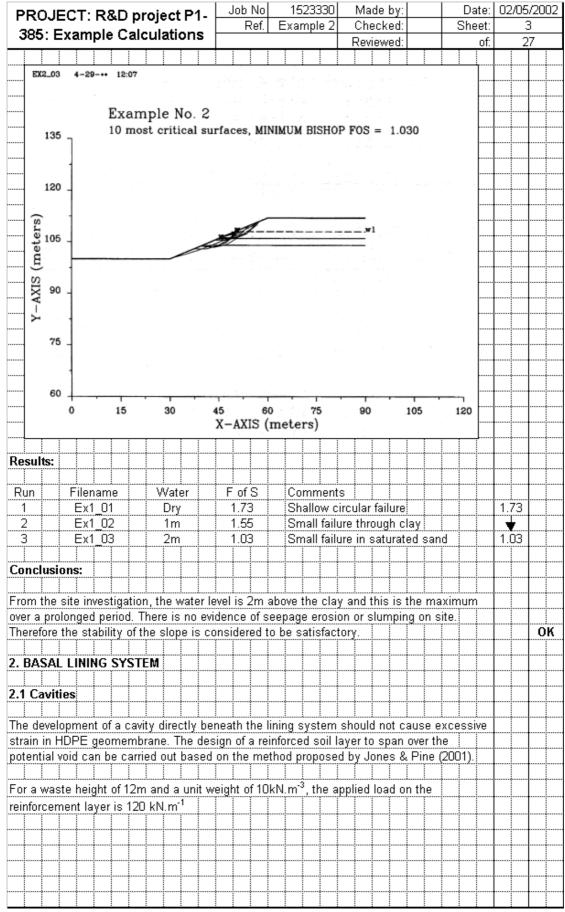



Figure 4.12 Calculations for Example 2 continued

ROJECT: R&D project P1-	Job No Ref.	1523330 Evenuela 2	:	Sh	ate:	UZA	2/05/20 4		
385: Example Calculations	Rei. [	Example 2	Checked		Sn			· ·	
			Reviewed	:		of:		27	-
						·			
May, 2002				015233	30.501				
Spreadsheet for catenary solution to slop	ing liner with	volds							
Ref. Jones & Pine (2001)	6. 10. 10. 10. 10.								
Stage 1: inputs			전자들의 전						
auge I: inputs									
Td 100 (kN/m)		aximum allowabk		n (* 1997)					
γ 19.6 (kN/m ³ )		nit weight of sand hickness of sand							••••
h 0.5 (m) g 120 (kN/m ² )		urcharge above s	oil cap						••••
a 0.7 (m)	W	lidth of void							
β O (deg) ten8	S	lope angle							
tanβ 0		a de la composición d							
Step 2: Arching reduced pressure									
	1.1.2.2.2.1.1.1								
$w = 2\gamma a(1 - e^{-0.51/b}) + q e^{-0.51/b}$	92.20169	R. S. A.							
Step 3: solution of quadratic									••••
· · · · · · · · · · · · · · · · · · ·									••••
$A' = 1 + \tan^2 \beta$ B' = w a tan $\beta$	1								••••
$C' = (wa)^2 / 4 - Td^2$	-8958.609								
a and a set of the set of the	83. S.		e ne e des la color						
H = (-B' + (B ² -4A'C') ^{0.5} )/2A'	94.64993		2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1						
					÷.				
Step 4: Constants A and B									
R1 = wa/2 - Htanß	32,27059		Salar en gran						
A = w/(2H)	0.487067								
B = R1/H	0.340947		01 - M C C P				·····		
Step 5: Length of catenary, hence strain						t			••••
Step 5. Lenger of cateriary, nerice stant		asinh							••••
J = 2Aa-B	0.340947	0.3346	65						
K = -B j = [arcsinh J + J(1+J ² ) ^{1/2} ]	-0.340947 0.694883								••••
k= [arcsinh K+ K(1+K ² ) ^{1/2} ]	-0.694883								
L = (j-k)/(4A)	0.713335								
$D = a / \cos\beta$ $\epsilon = (L-D)/D$	0.7								
		54 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -							
					ļ				
m the above calculation, using a 0.5	5m thick sa	and layer and	reinforceme	ent with	a				
	i ¹ , the max	imum strain	in the reinfor	rcement	t (and				
ximum tensile strength of 100 kN.m									C
	1.9%.			*****		1	····		•••
	1.9%.					2			••••
refore the HDPE geomembrane) is 1		sen based on	the auidelir	ies aive	n in B			I	
refore the HDPE geomembrane) is 1		sen based on	the guidelir	ies give	n in B				
refore the HDPE geomembrane) is 1		sen based on	the guidelir	ies give	n in B				
refore the HDPE geomembrane) is 1 uitable reinforcing layer (or layers) c 6 for partial factors etc.	can be cho								
refore the HDPE geomembrane) is 1 uitable reinforcing layer (or layers) o 6 for partial factors etc.	can be cho								
refore the HDPE geomembrane) is 1 uitable reinforcing layer (or layers) o 16 for partial factors etc.	can be cho								0
refore the HDPE geomembrane) is 1 uitable reinforcing layer (or layers) of 6 for partial factors etc. sed on current knowledge, the perfor isidered to be satisfactory.	can be cho								0
refore the HDPE geomembrane) is 1 uitable reinforcing layer (or layers) of 6 for partial factors etc. sed on current knowledge, the perfor isidered to be satisfactory.	can be cho								0
refore the HDPE geomembrane) is 1 uitable reinforcing layer (or layers) of 6 for partial factors etc. sed on current knowledge, the perfor isidered to be satisfactory. SHALLOW SIDE SLOPE LINING S	can be cho								0
refore the HDPE geomembrane) is 1 uitable reinforcing layer (or layers) of 6 for partial factors etc. sed on current knowledge, the perfor isidered to be satisfactory. SHALLOW SIDE SLOPE LINING S	can be cho								0
refore the HDPE geomembrane) is 1 uitable reinforcing layer (or layers) of 16 for partial factors etc. sed on current knowledge, the perfor isidered to be satisfactory. SHALLOW SIDE SLOPE LINING S	can be cho								0
refore the HDPE geomembrane) is 1 uitable reinforcing layer (or layers) of 6 for partial factors etc. sed on current knowledge, the perfor isidered to be satisfactory. SHALLOW SIDE SLOPE LINING S Unconfined	can be cho								0
refore the HDPE geomembrane) is 1 uitable reinforcing layer (or layers) of for partial factors etc. sed on current knowledge, the perfor sidered to be satisfactory. SHALLOW SIDE SLOPE LINING S Unconfined	can be cho								0
refore the HDPE geomembrane) is 1 uitable reinforcing layer (or layers) of for partial factors etc. Sed on current knowledge, the perfor isidered to be satisfactory. SHALLOW SIDE SLOPE LINING S Unconfined Overall slope stability	rmance of t	the BES liner	under these	e condit	ions is				0
refore the HDPE geomembrane) is 1 Suitable reinforcing layer (or layers) of for partial factors etc. Sed on current knowledge, the perfor isidered to be satisfactory. SHALLOW SIDE SLOPE LINING S Unconfined Overall slope stability e installation of the 300mm thick BE	rmance of t	the BES liner	under these	e condit	ions is				0
refore the HDPE geomembrane) is 1 Suitable reinforcing layer (or layers) of for partial factors etc. Sed on current knowledge, the perfor sidered to be satisfactory. SHALLOW SIDE SLOPE LINING S Unconfined Overall slope stability a installation of the 300mm thick BE bility. It will however, prevent the eso	rmance of t	the BES liner	under these	e condit	ions is	om			0
refore the HDPE geomembrane) is 1 uitable reinforcing layer (or layers) of for partial factors etc. Sed on current knowledge, the perfor isidered to be satisfactory. SHALLOW SIDE SLOPE LINING S Unconfined Unconfined Diverall slope stability installation of the 300mm thick BE bility. It will however, prevent the eso calculations in 1.2 above, it is clear	rmance of t	the BES liner	under these	e condit	ions is all yer. Fr	om			0
refore the HDPE geomembrane) is 1 uitable reinforcing layer (or layers) of for partial factors etc. Sed on current knowledge, the perfor isidered to be satisfactory. SHALLOW SIDE SLOPE LINING S Unconfined Unconfined Diverall slope stability i installation of the 300mm thick BE bility. It will however, prevent the eso calculations in 1.2 above, it is clear Coveral slope stab.	rmance of f rmance of f YSTEM S liner will cape of gro r that grour ble back-di	the BES liner	under these	e condit	ions is all yer. Fr	om			
ximum tensile strength of 100 kN.m refore the HDPE geomembrane) is 1 suitable reinforcing layer (or layers) of 6 for partial factors etc. sed on current knowledge, the perfor isidered to be satisfactory. <b>SHALLOW SIDE SLOPE LINING S</b> <b>Unconfined</b> <b>Overall slope stability</b> installation of the 300mm thick BE bility. It will however, prevent the esc calculations in 1.2 above, it is clear 2m above the clay. Therefore a suita installed behind the liner to ensure of	rmance of f rmance of f YSTEM S liner will cape of gro r that grour ble back-di	the BES liner	under these	e condit	ions is all yer. Fr	om			0

# Figure 4.12 Calculations for Example 2 continued

				:Т:								┝		<u>No</u> Ref.		15 Exar		330 e 2		<u>Ma</u> Che					(	Da She		02	2/05 E		<u> </u>
З	85	5: E	EX	am	ple	e C	alc	ul	ati	on	S									Rev							of:		2	7	-
																			<u> </u>	101	011	1					01.			İ –	T
ñ	Vei	i nee	ers	lop	e s	i tab	ilit	i V								·		·		·											1
χ.,			T		<u> </u>	<u> </u>		<b>.</b>	•		•		•		•		•••••		•								•				
lir	n: /	i Ass		sth	: e s	: tabi	: ilit v	i of t	the	dra	ina	: ae l	blar	iket	t on	tor	) of	the	ae	 ΟS\	nth	itic	 100	npo	ne	nts	of			·	1
				ster			· · ·				r	<u>.</u>	Ī		· · · ·				-9-	,	(										
Ť		1.13	Ţ.,	Ī	ľ.																										1
i Ini	пгс		h∙∣	Use	i the	: > m	i ethi	ii	i hror	1 109	ii ed l	ί hγ	i Ioni	i pc {	: 8. N	ixor	n (1	qqp	i N												-
:r	P	100	-	Î		· ···	-	<u> </u>		Î		,		Ĩ	Î		÷۸.	ľ	7			·								·	1
'ro	m	lah	i orat	tory	i tec	tin.	i n tł	i he f	ollo	 win	ii n n	i ook	i	i erfs	i are	etra	- na	th r	i Iara	me	ter:	: 2 10/6	oro	oht	aine	he					-
ij		1 ab	1	T T		í	1	<u>, c i</u>		1	9.P	i an		1	100	1	-ng		l	r inc		,	10			.u.					-
	~	i	.i	1	l	i													- 0			Φ'		-0							-
			•••••	nage	•••••		•••••	l		ļ								o		o		o									-
···· ?			•••••	tectio							ļ		ļ	ļ	ļ			α	= U			δ'=	= 30	۱°					ļ		4
	Pro	tect	ion	geot	extil	e/te:	dure	ed H	DPE	geo	omei	mbre	ane i	inter	face	э		α':	= 8	kΡ	a	δ' = δ' =	= 28	}°				ļ			
	Tex	dure	ed H	DPE	geo	men	nbra	ine/E	9ES	inte	rfac	е	[		ļ			α':	= 51	kΡa	I	δ'=	= 25	j°							_
	BES	Sime	ateri	al															= 0			Φ'									-
		Ĭ	1	Ì		•••••		•••••		••••••		••••••										•••••									-
à	lcu	lat	ion	S:	•		<b>.</b>				•		<b>.</b>	[	1				•••••												
1		Ĩ	1	Ĩ	[	<b>*</b>		<b>*</b>		<b>.</b>	[	<b>.</b>		•				•		•••••		<b>.</b>									-
)ei	вs	hee	etsl	6 to	11		<u> </u>		•••••		<b>.</b>		<u> </u>	[	1				•••••								•••••				-
Ţ		Ĩ	1	T	[	1		<b>.</b>		<u></u>		<b>.</b>		•				•••••		•••••		<b>.</b>									•
			1		•		•		•		•		•		1		•		•								•				
		•	1	1		•		•				<b>.</b>		<u></u>		·		•		•		•						[			-
"			Í		•		•		•••••		•		•						•••••												-
			1															·		·											-
			†	1	•		•				•		•																		-
-		•	<u> </u>	İ		•		•		•		•		<u>.</u>		<u> </u>		•		•		•						t			-
			†	<u> </u>	•		<u> </u>		•••••		•		<u> </u>		<u>.</u>		·		•								·		·		-
-		•	·	•				·				•		•		·		·		·		•						t			-
			†											<u>.</u>																	-
-			<u>+</u>			·		·								·												t			-
			†	·										<u> </u>	¦																
			·													·															-
			÷												¦														·		
			<u> </u>													·		·		·								ł			-
			ł	·										<u> </u>	<u>.</u>																
				<u>.</u>																		ļ									-
			ł	·				<b>.</b>		<b>.</b>		<b>.</b>		<u> </u>	ļ							<b>.</b>									
				<b>.</b>																								<u> </u>			
			ł												ļ																
			·													·															,*
			ł																												
			·	ļ																											
			ł	·											¦																-
															<b> </b>			·		·								<u> </u>			
			ł	·			<b> </b>						<b> </b>	<b> </b>	<u>.</u>																
				ļ																											
			ļ	<b>.</b>		ļ		ļ						<u> </u>	ļ	l						ļ						i			
															ļ			·····		·····								<u> </u>			
			ł											<u>.</u>	ļ																
		ļ	ļ	ļ		ļ		ļ		ļ		ļ		ļ		ļ						ļ						ļ			
ļ			ļ				ļ						ļ	ļ	ļ																
		ļ	ļ	ļ		ļ		ļ		ļ		ļ		ļ	ļ							ļ						ļ	ļ		
			ļ		ļ		ļ				ļ		ļ	ļ	ļ														ļ		
		ļ	ļ	ļ		ļ		ļ		ļ		ļ		ļ	ļ	ļ		ļ		ļ		ļ						ļ	ļ		
			ļ	ļ	ļ		ļ				ļ		ļ	ļ	ļ												ļ		ļ		
			1																												

Figure 4.12 Calculations for Example 2 continued

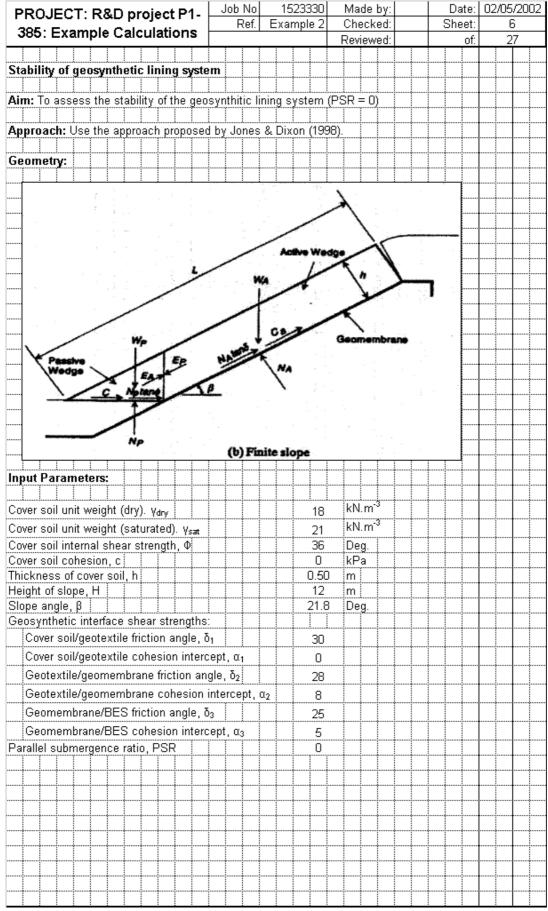



Figure 4.12 Calculations for Example 2 continued

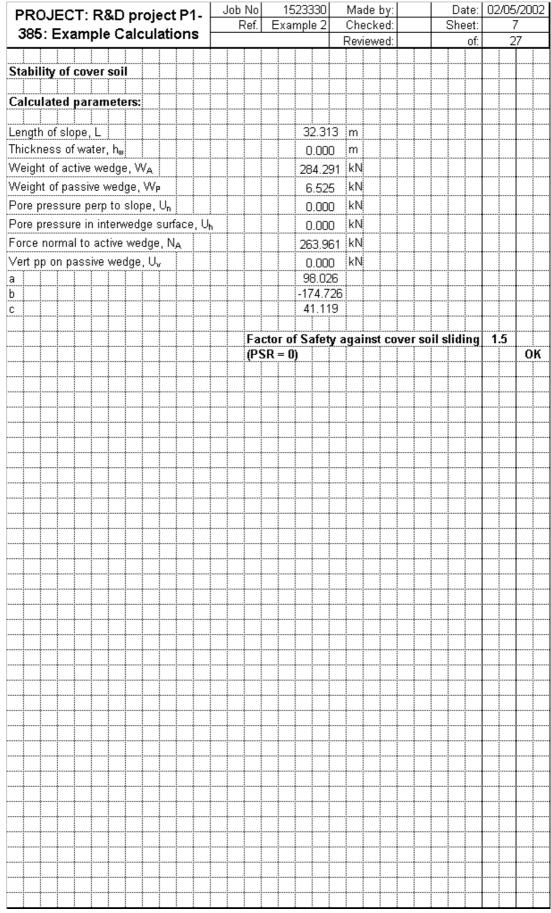



Figure 4.12 Calculations for Example 2 continued

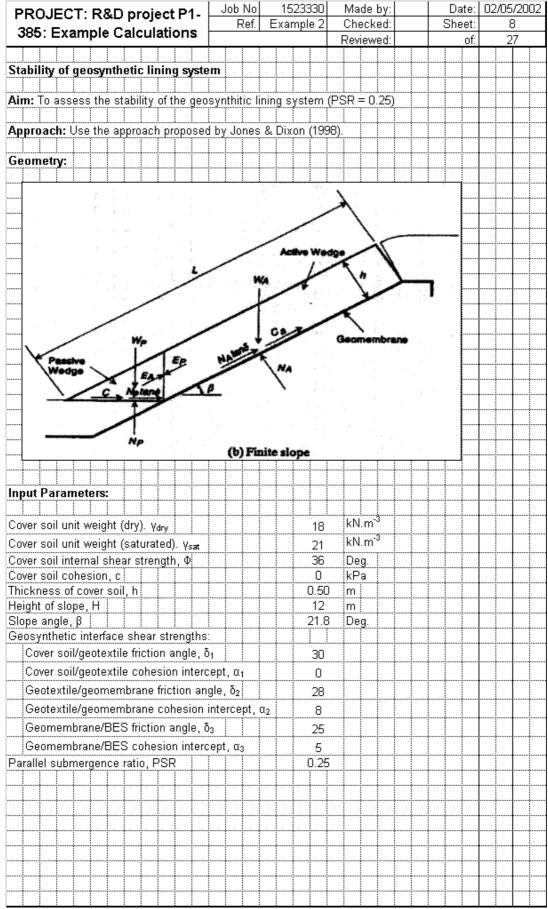



Figure 4.12 Calculations for Example 2 continued

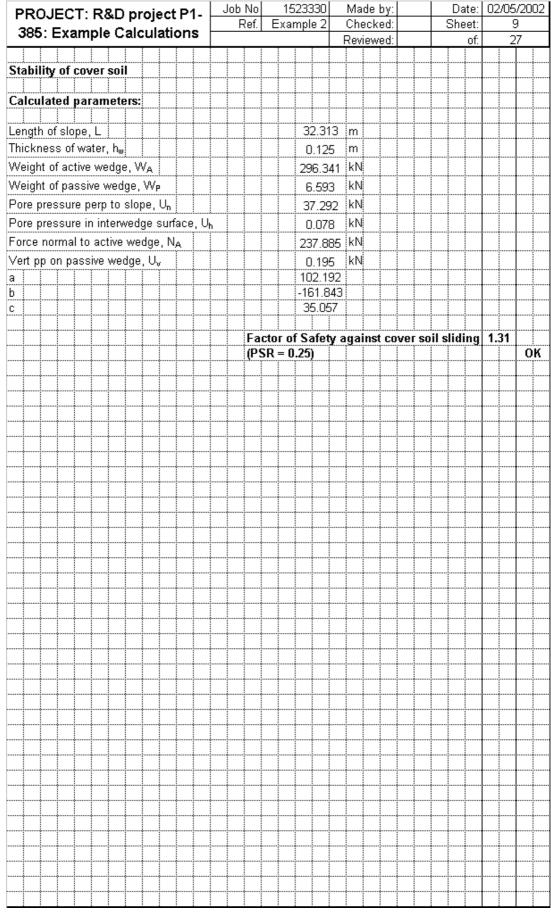



Figure 4.12 Calculations for Example 2 continued

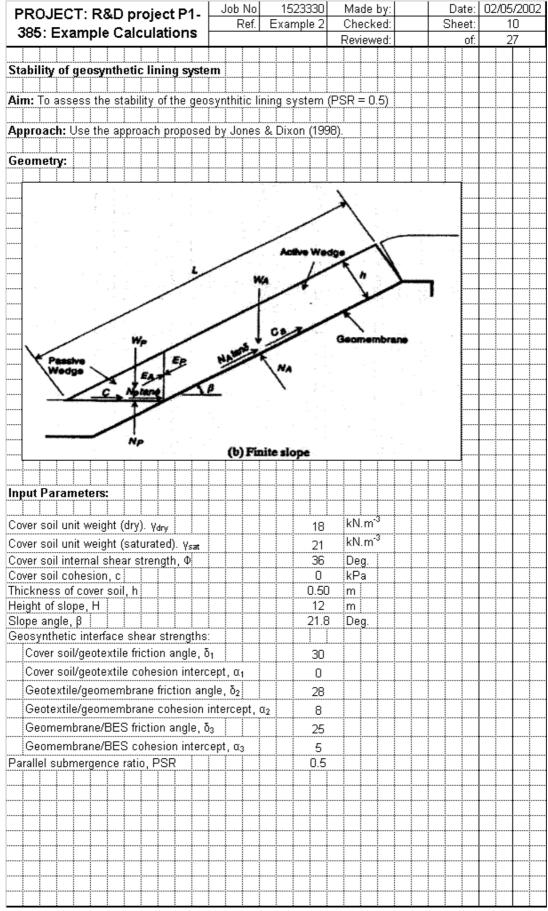



Figure 4.12 Calculations for Example 2 continued

PROJECT: R&D project P1-	Job No Ref.		23330 mple 2		e by: cked:			Date Sheet		05/2 11	
385: Example Calculations	1.00.	EXa		Revie			+	oncer of	+	27	
				10010	.mea.				<u>.</u>	1	
Stability of cover soil	·								1		1
Calculated parameters:											
ength of slope, L hickness of water, hw			32.31								
			0.250								
Veight of active wedge, W _A			308.25								
Veight of passive wedge, VV _P			6.797						-		
Pore pressure perp to slope, Un			74.16								
Pore pressure in interwedge surface, U	h		0.313								
orce normal to active wedge, N _A			212.16	2 kN							
/ert pp on passive wedge, U _v			0.781								
			106.33								
			-148.91	·····							
			33.05	<u> </u>							
	Fa	ctor of	f Safety	/ agair	ist co	ver s	oil s	lidina	1 1.1	2	-
		SR = 0									Ö
esults:											
he stability of the drainage gravel on th	ne geosynt	thetic v	will dep	end on	the se	epaç	je for	ces i	4		
ne gravel as follows:		L. : 1:4									
F of S against g	·····	σιπγ							-		
PSR = 0.25	·····										
PSR = 0.5 1.12	·····.										
Note the PSR is the parallel subme	rgence rati	o and	is 0.5 v	/hen th	e drair	nage	layer	is			
full of water											
Conclusion:											
onclusion:									-		
he factor of safety under normal condi	tions (PSF	2 <0 24	1	3 It is	consi	derer	l that	the			
tability of the gravel drainage layer is s											
) Integrity of the geosynthetic mate	rials										
						,Ĺ,					
im: Assess the stresses in the geosy	nthetic m	aterials	s due to	the pla	aceme	nt of	the				
rainage gravel.											
pproach: Use the method proposed t	i i i i 1v.lones &	L Dixo	1								
									+		
rom laboratory testing, the following te	ensile strer	ngth pa	aramete	rs were	e obtai	ned:					
Protection geotextile			30	kN.m ⁻¹							
Textured HDPE geomembrane				kN.m ⁻¹							
				ļ	ļ						
alculations:											
ee sheets 12 to 17											
	••••••	i				•••••					

Figure 4.12 Calculations for Example 2 continued

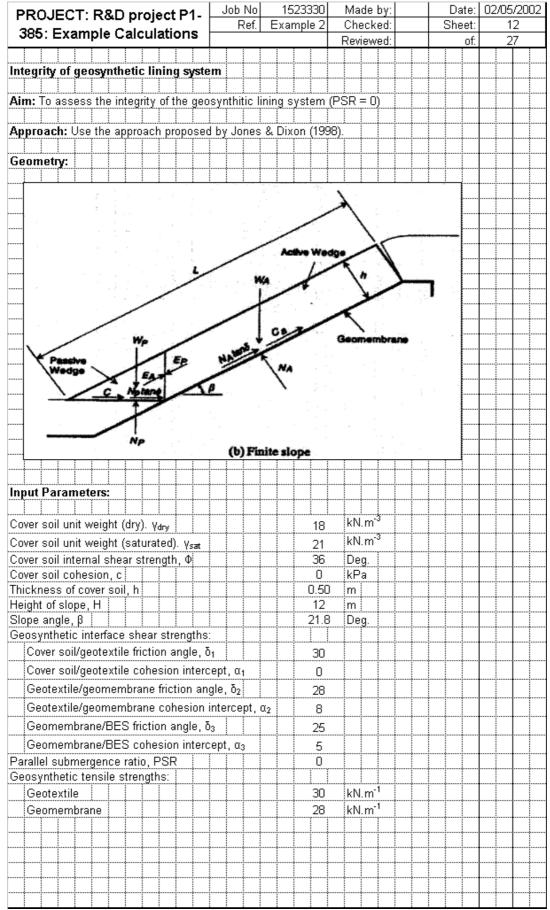



Figure 4.12 Calculations for Example 2 continued

	Job No Ref.	1523330 Example 2	Made by: Checked:	Date: Sheet:	02/05/20 13	.00
385: Example Calculations	T(G).		Reviewed:	of:	27	
Stability of cover soil						
Calculated parameters:						
zaiculateu palametels:						
_ength of slope, L		32.313	3 m			
hickness of water, h _w		0.000	m			
Veight of active wedge, W _A		284.29	1 kN			
Veight of passive wedge, W _P		6.525	kN			
Pore pressure perp to slope, Un		0.000	kN			
^o ore pressure in interwedge surface, U _h		0.000	kN			
Force normal to active wedge, N _A		263.96	1 kN			
/ert pp on passive wedge, U _v		0.000				
		98.028				
		-174.72				
,		41.113				
	Fac	tor of Safety	against cove	r soil sliding	1.5	
. Integrity of geosynthetics						
) Protection geotextile						
Mobilised shear stress at upper interfa	ce	103.69	3 kN			
Shear strength at lower interface		402.07	6 LN			
		402.07				
Tension developed in the geotextile		0.000	kN			
Tensile strength of the geotextile			kN			
		Factor	of safety agai	inst rupture	Inf	
ii) Geomembrane						
Shear strength at upper surface		151.57	2 LN			
		101.07				
Mobilised shear stress at upper interfa	ce	103.69	3 kN			
		400.04				
Shear strength at lower interface		130.91	Z KIN			
Tension developed in the geotextile		0.000	kN			
Tensile strength of the geotextile		28	kN			
		Factor	of safety agai	inst runture	Inf	
				ļļ		
				ļ		

Figure 4.12 Calculations for Example 2 continued

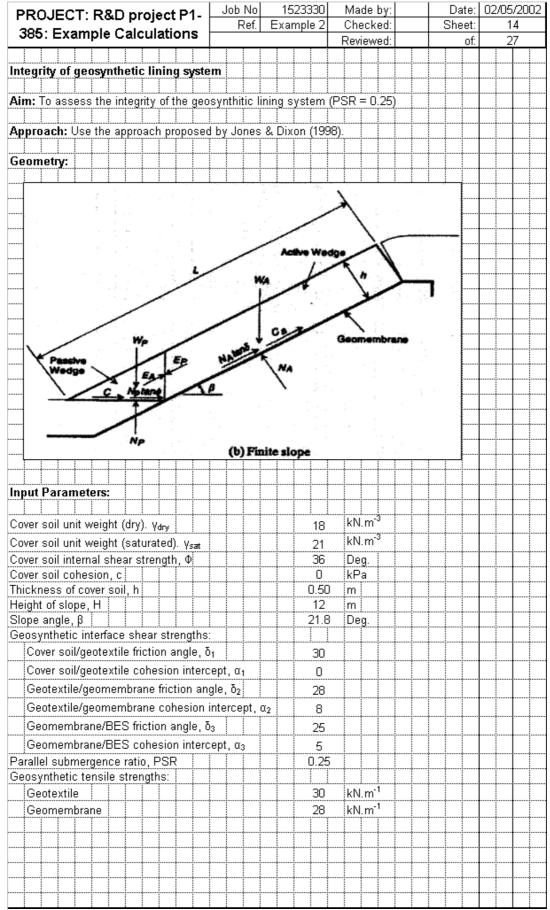



Figure 4.12 Calculations for Example 2 continued

PROJECT: R&D project P1-	Job No Ref.	1523330 Example 2	Made by: Checked:	Date: Sheet:	02/05/200 15
385: Example Calculations	Rei.	⊂xample ∠	Reviewed:	of:	27
			Kevieweu.	01.	21
Stability of cover soil					
Calculated parameters:					
Length of slope, L		32.313	3 m		
Thickness of water, hw		0.125	m		
Veight of active wedge, WA		296.34	1 kN		
Veight of passive wedge, WP		6.593	kN		
Pore pressure perp to slope, Un		37.292	2 kN		
Pore pressure in interwedge surface, U _h		0.078	kN		
Force normal to active wedge, NA		237.88	5 kN		
/ert pp on passive wedge, Uv		0.195			
		102.192	2		
		-161.84			
····		37.057			
	Fa	tor of Safetv	against cover	soil slidina	1.31
. Integrity of geosynthetics					
) Protection geotextile					
) Flotecabli geotexale					
Mobilised shear stress at upper interfa	ce	124.33	5 kN		
Shear strength at lower interface		408.058	3 kN		
Tension developed in the geotextile		0.000	kN		
Tensile strength of the geotextile		30	kN		
		<b>F</b> 4	-66-4		1
		Factor	of safety agai	nst rupture	Inf
ii) Geomembrane					
Shear strength at upper surface		157.554	4 kN		
Mobilised shear stress at upper interfa		124.33	5 LN		
		124.00			
Shear strength at lower interface		136.158	3 kN		
			1.61		
Tension developed in the geotextile	+	0.000	kN		
Tensile strength of the geotextile		28	kN		
	+	Factor	of safety agai	nst rupture	Inf
	+				
	·				

Figure 4.12 Calculations for Example 2 continued

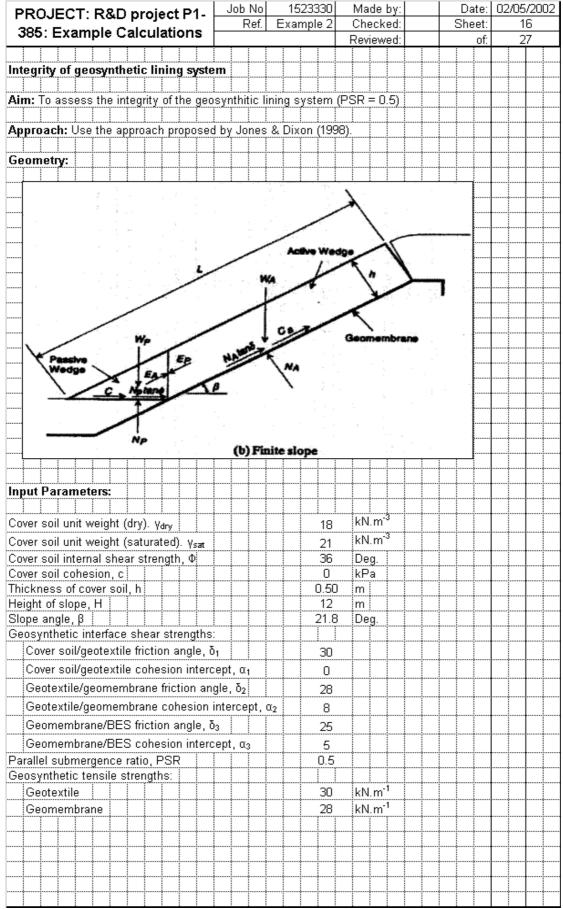



Figure 4.12 Calculations for Example 2 continued

	Job No Ref.	1523330 Example 2	Made by: Checked:	Date: Sheet:	02/05/20
385: Example Calculations	Rei.	Example 2	Reviewed:	of:	27
			Revieweu.	01.	21
Stability of cover soil					
Calculated parameters:					
ength of slope, L		32.31	3 m		
hickness of water, h		0.250			
Veight of active wedge, WA		308.25			
Veight of passive wedge, WP		6.797	•••••		
Pore pressure perp to slope, Un		74.16			
Pore pressure in interwedge surface, Uh		0.313	· · · · · · · · · · · · · · · · · · ·		
orce normal to active wedge, NA		212.16			
/ert pp on passive wedge, Uv		0.781			
		106.33			
		-148.91			
		33.050	]		
		xor of Safety	r against cove	er soll sliding	1.12
. Integrity of geosynthetics					
) Protection geotextile					
		450.07	2 1.01		
Mobilised shear stress at upper interfa		150.27		•	
Shear strength at lower interface		414.04	0 kN		
Tension developed in the geotextile		0.000	kN		
			1.51		
Tensile strength of the geotextile		30	kN		
		Factor	of safety aga	inst rupture	Inf
i) Geomembrane					
		163.53	C LN		
Shear strength at upper surface		103.53			
Mobilised shear stress at upper interfa	ice	150.27	2 kN		
Shear strength at lower interface		141.40	5 kN		
Tension developed in the geotextile		8.867	kN .		
		0.00/	IN IN		
Tensile strength of the geotextile		28	kN		
		Factor	of safety aga	inst rupture	3.16
	+				
	+				

Figure 4.12 Calculations for Example 2 continued

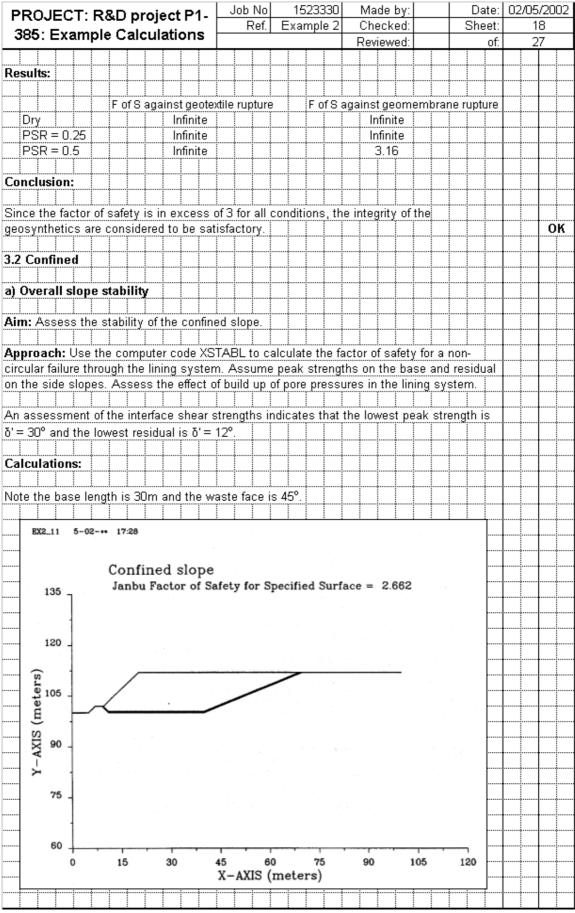



Figure 4.12 Calculations for Example 2 continued

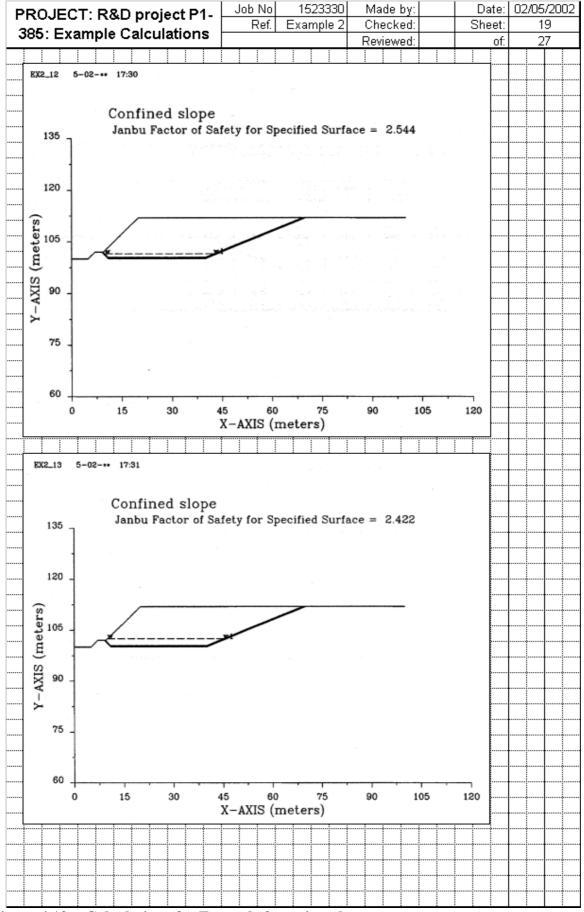



Figure 4.12 Calculations for Example 2 continued

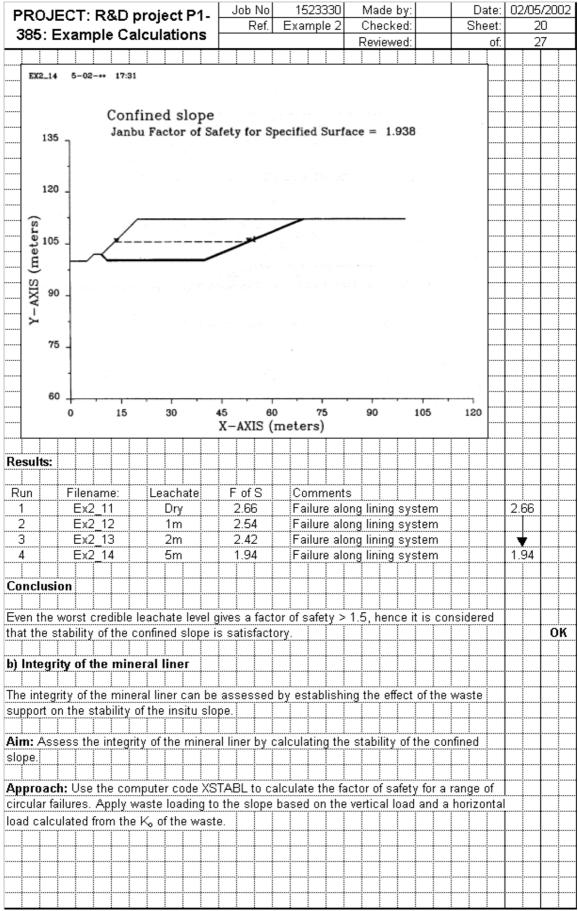



Figure 4.12 Calculations for Example 2 continued

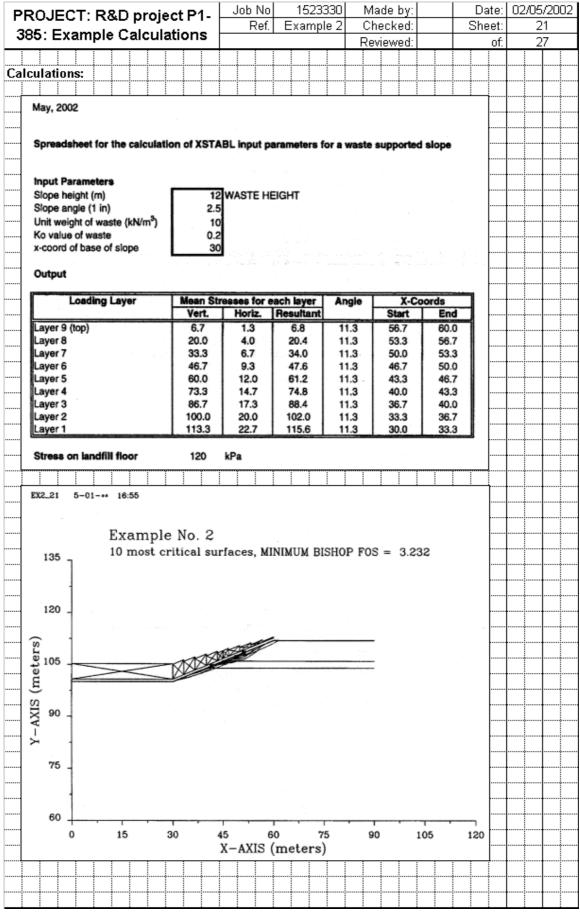



Figure 4.12 Calculations for Example 2 continued

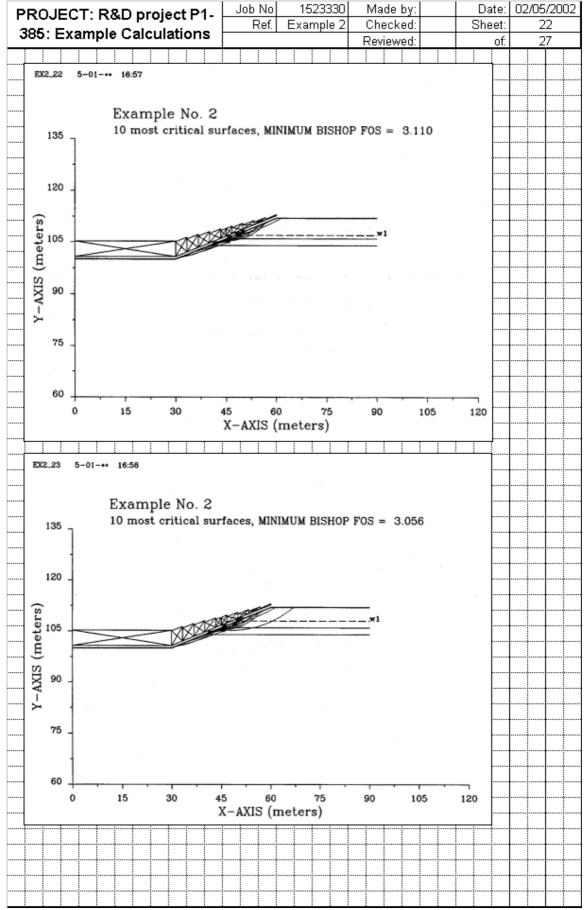
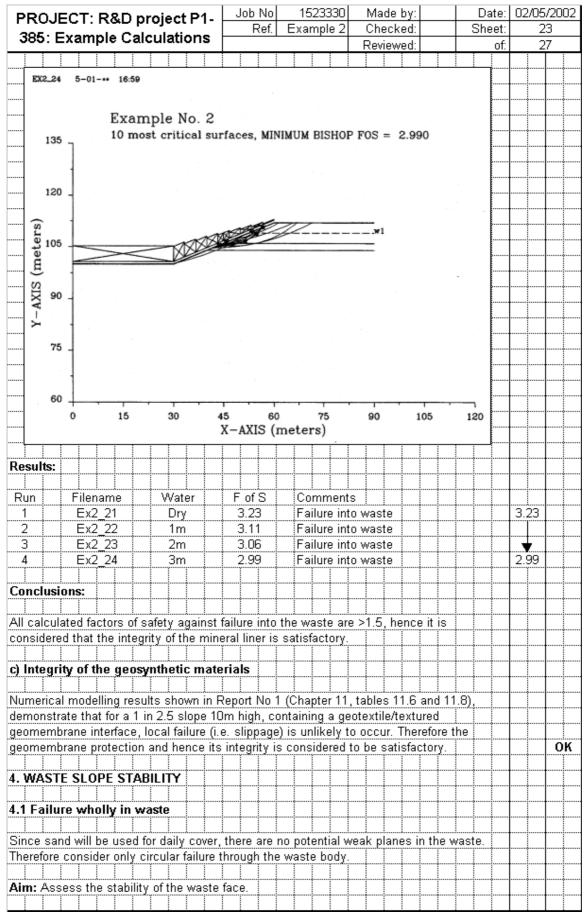




Figure 4.12 Calculations for Example 2 continued



#### Figure 4.12 Calculations for Example 2 continued

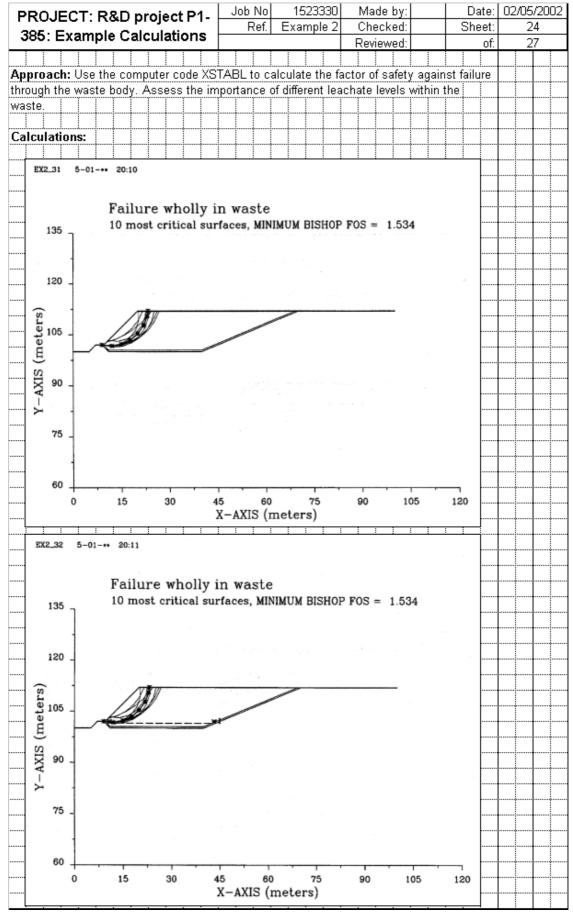



Figure 4.12 Calculations for Example 2 continued

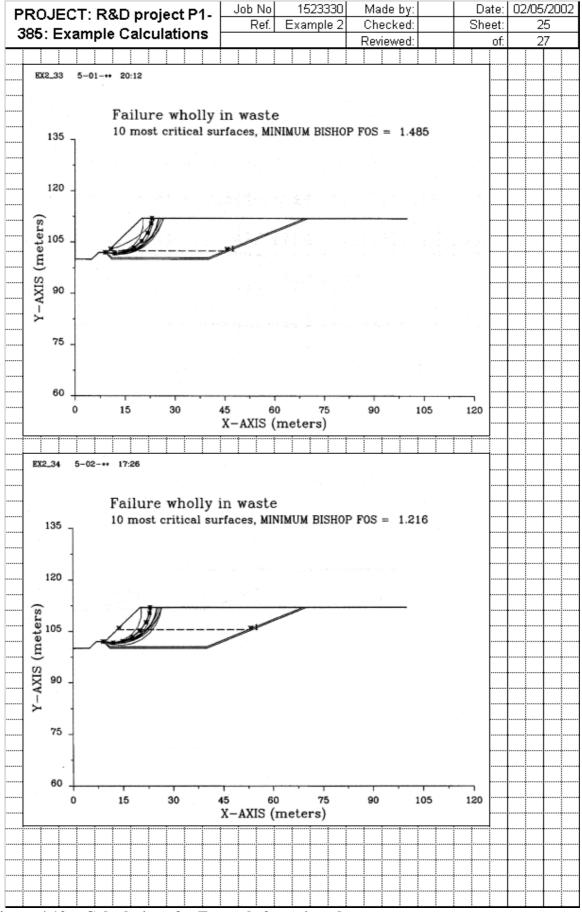



Figure 4.12 Calculations for Example 2 continued

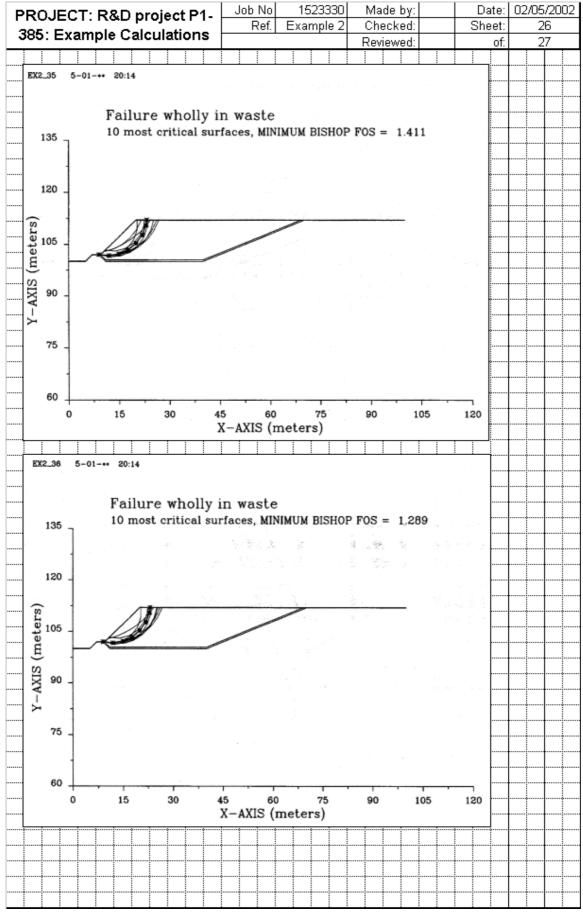



Figure 4.12 Calculations for Example 2 continued

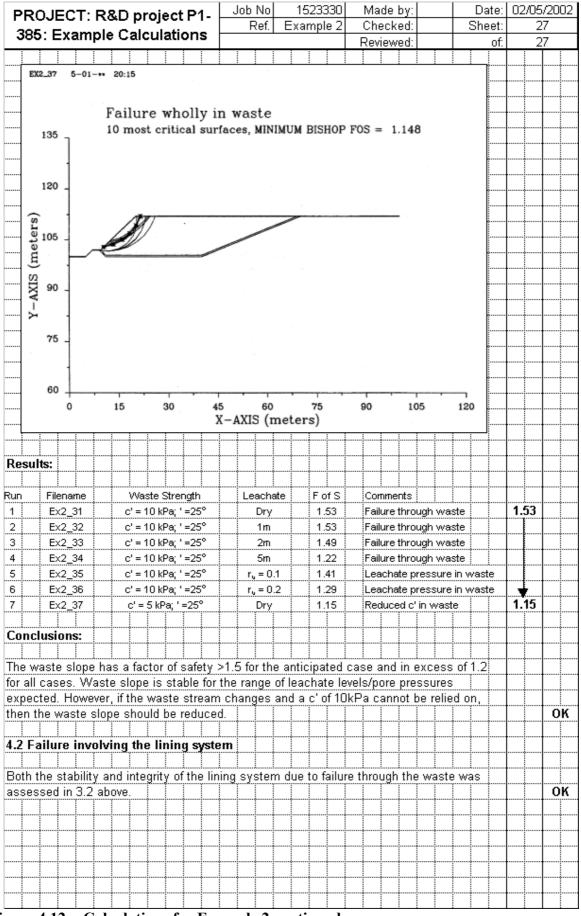
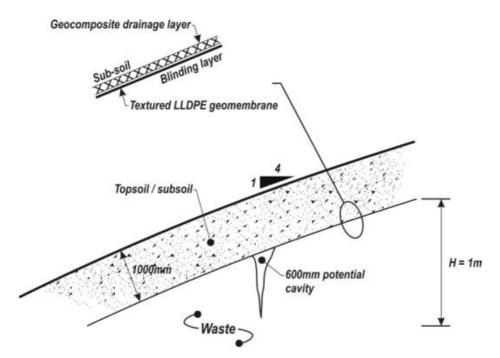




Figure 4.12 Calculations for Example 2 continued

# 4.3 Example 3: Geomembrane Capping Liner

#### 4.3.1 Description

This example is a capping system which comprises (from the top down) topsoil/subsoil, geocomposite drain, textured LLDPE geomembrane, blinding layer, waste. The height of slope is 10 m and the gradient is 1 (vert.) to 4 (horiz.). It is known that drums of waste were placed near the surface of the waste and it is possible that these will degrade and potentially give a 600mm diameter void at the surface. The design flow chart and calculations are given in Section 4.3.3 below.



## Figure 4.13 Schematic Cross Section of Example 3

## 4.3.2 Capping lining system

The capping lining system design cases to be considered are highlighted in Figure 4.14.

## **Geosynthetic/Mineral Liner**

Stability

Design issues:

• stability of capping system.

In the assessment of the stability of the cover soil both peak and residual interface shear strengths should be considered. This is due to the possibility of the construction plant loading inducing post-peak shear strengths at the interfaces. Laboratory testing is required to establish characteristic interface shear strength values. Suitable factors of safety would be 1.5

for the peak strengths and 1.0 for the residual strengths (assuming the worst credible conditions). The analysis should consider the effect of seepage forces in the cover soil.

The effect of uplift pressures from landfill gas should be assessed for the interface underneath the geomembrane. A suitable factor of safety would be 1.3 for peak strengths and 1.0 for residual strengths.

It is also necessary to consider the possibility of internal shearing through the geocomposite; this can be addressed by ensuring that the internal strength is greater than the interface strength –should be confirmed by conformance testing.

*Integrity – Compressible Waste* 

Design issues:

• control stresses in liner to prevent increased permeability.

The multi-axial performance of the LLDPE geomembrane is better than HDPE geomembrane, and is considered to be suitable for the proposed capping system.

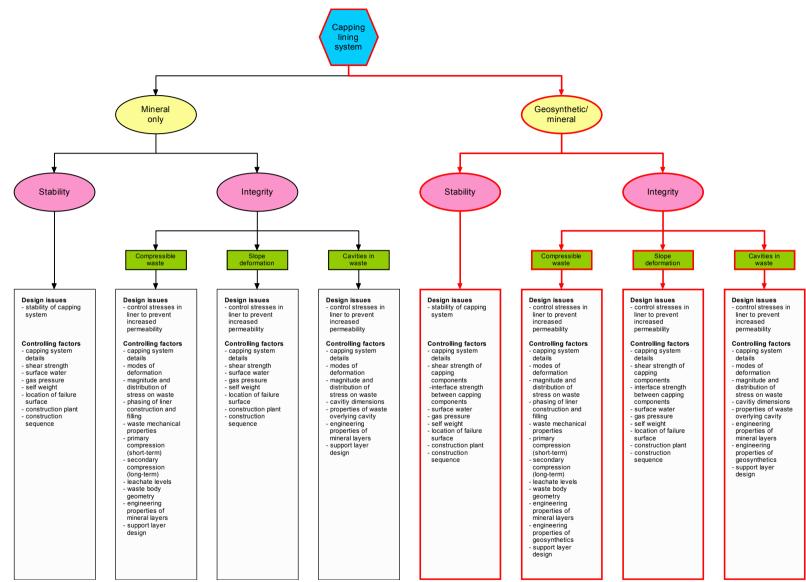
#### *Integrity – Slope Deformation*

Design issues:

• control stresses in liner to prevent increased permeability.

The veneer stability analysis described above can also be used to assess the integrity of the geosynthetic by considering the transfer of stresses through the lining system. A suitable factor of safety would be 1.5.

#### *Integrity – Cavities in Waste*


Design issues:

• control stresses in liner to prevent increased permeability.

Assess the strain in the geomembrane due to the development of cavities in the waste. If strain is considered excessive then use a geosynthetic reinforcing layer.

## 4.3.3 Design flow charts and calculations

See Figures 4.14 and 4.15.





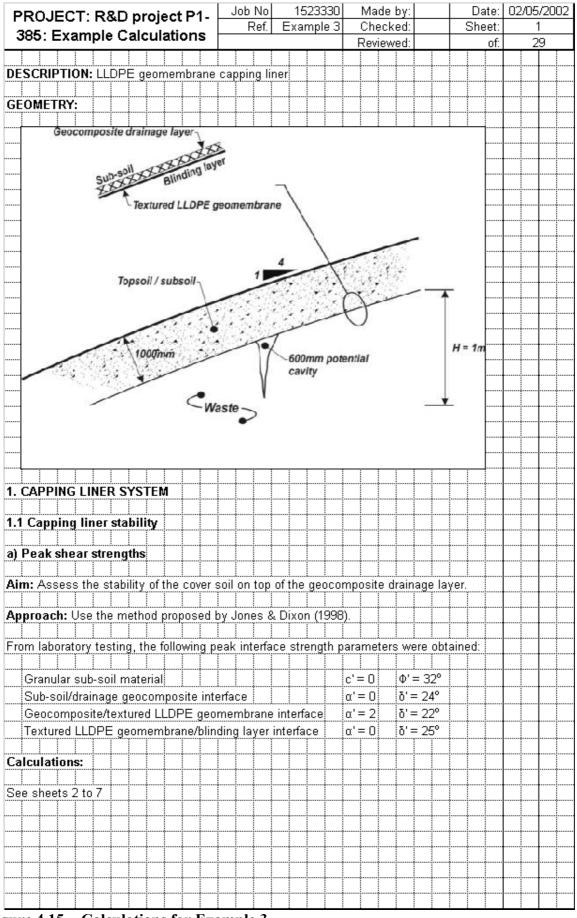



Figure 4.15 Calculations for Example 3

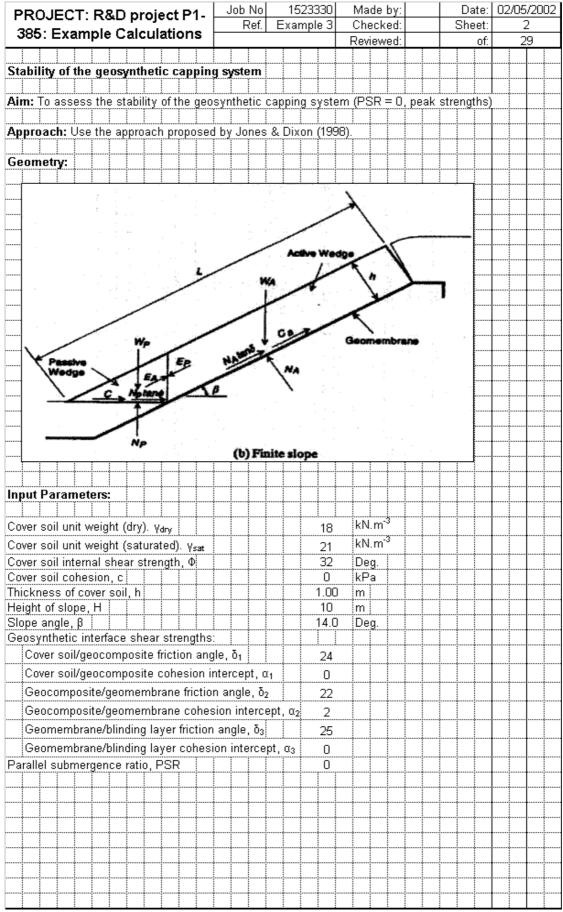



Figure 4.15 Calculations for Example 3 continued

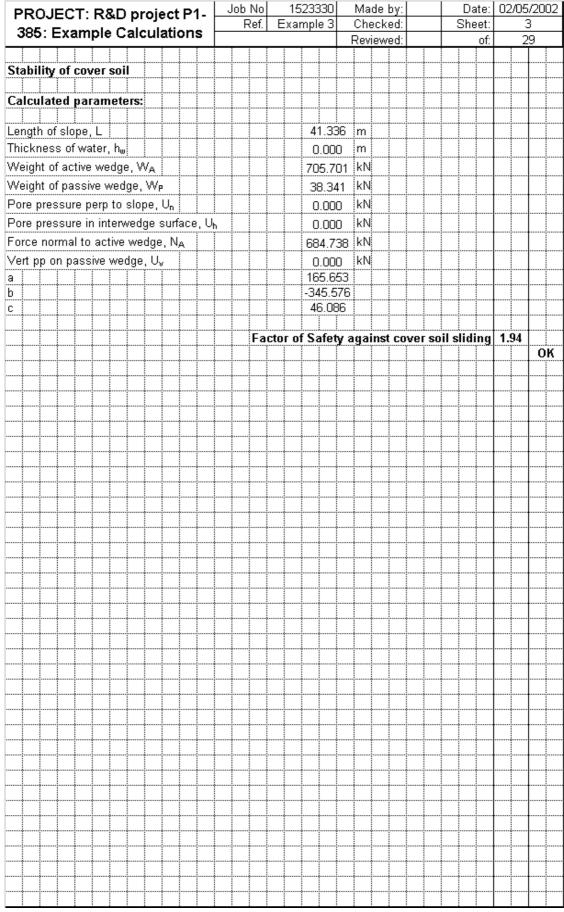



Figure 4.15 Calculations for Example 3 continued

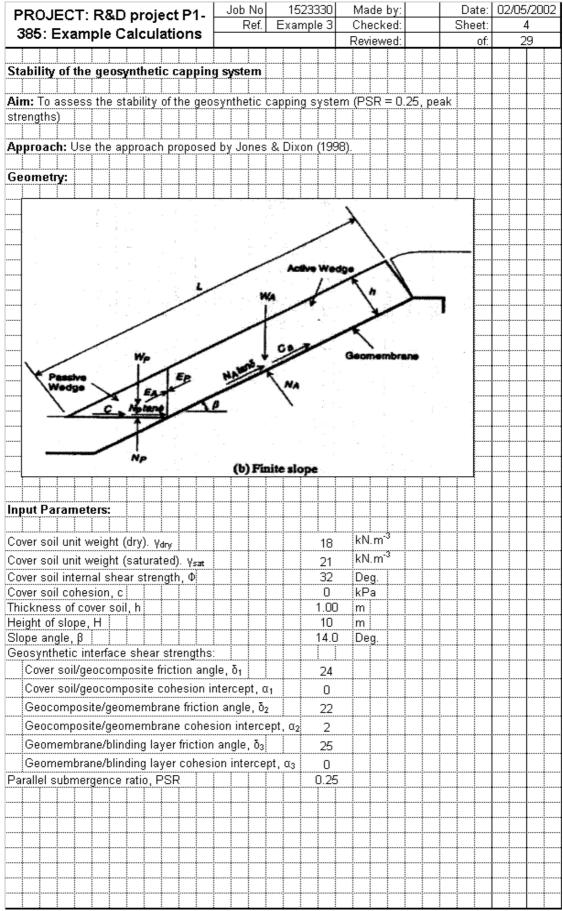



Figure 4.15 Calculations for Example 3 continued

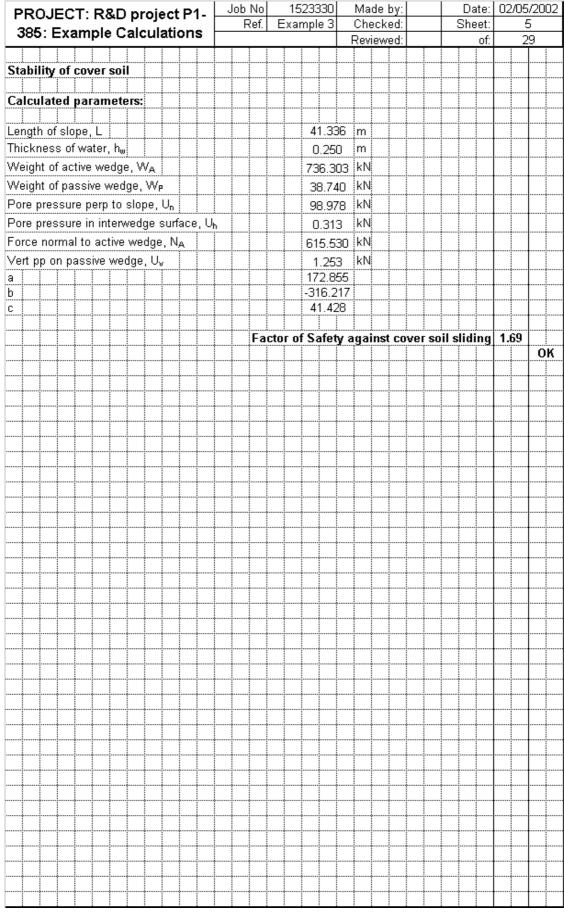



Figure 4.15 Calculations for Example 3 continued

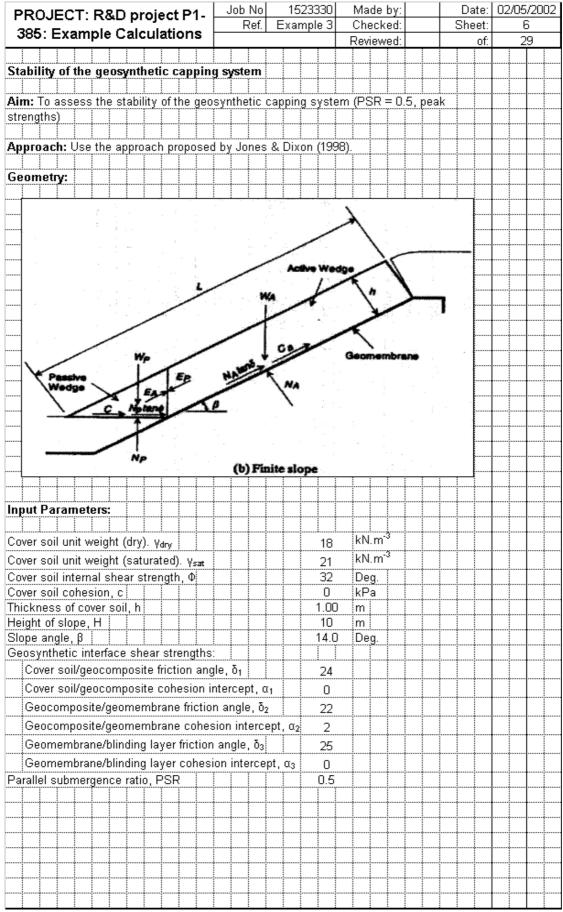



Figure 4.15 Calculations for Example 3 continued

PROJECT: R&D project P1-	Job N Re	_		23330 nple 3		<u>ade</u> neck			+	Dat Shee		02/05	<u>#20</u> 7	<u></u>
385: Example Calculations		я.   L	_Xai	ilpie J		view			+		of:		<u>,</u> 9	
					1	1000	ieu.						ř	T
Stability of cover soil			1						1					t
														÷
Calculated parameters:			÷				ł						<u> </u>	÷
ength of slope, L				41.33	16 m				·	· · · · ·				-
hickness of water, h _w			÷	0.500			1		-				t	t
Veight of active wedge, W _A				766.10					÷	1				-
Veight of passive wedge, W _P			÷	39.93			<u>+</u>						<u>+</u>	1
				•••••					·					-
Pore pressure perp to slope, Un			÷	195.37			ł						<b> </b>	+
Pore pressure in interwedge surface, U _h	·			1.250										-
Force normal to active wedge, N _A			ļ	548.28	·····	N	ļ			ļļ.			ļ	-
/ert pp on passive wedge, U _v				5.013		NĮ			.ļ				<b> </b>	
				179.90	·····		ļ						ļ	-
				-286.5 36 an	·····					·				
			+	36.90	<u>۲</u>		<u> </u>							-
	F	actr	)r of	f Safet	y au	ains	t co	ver si	i. Dil s	lidir	าล	1.45		
			1				T						Ō	)
									1					······
lesults:									ļ					
F of S against gr		tabili	ity										ļ	
Dry 1.94												1.94		
PSR = 0.25 1.69 PSR = 0.5 1.45			÷										<b> </b>	
									÷			1.43		1
Note the PSR is the parallel submergen	ice ratio	i and	ie f	l 15 whe	n the	drai	inan	e lave	ur is	ii. full r	of		<u>+</u>	t
vater		1	10 0		1	- drai	i ag		10	T T				*
			1				1		1	1			İ	Î
Conclusions									1					1
													[	ļ
<u>Since all factors of safety &gt;1.5, it is con</u>	isidered	l that	the	stabilit	ty of t	the o	çove	r soil	is				ļ	1
atisfactory.										ļ			0	
							ļ						<b> </b>	+
a) Residual shear strengths										·				ļ
Aim: Assess the stability of the cover s	oil on tr	n of	i the	neocor	nnos	ite d	Irain	ane la	wer				<u>+</u>	
		<u> </u>		geocor	11000	100	l		10	i di				1
Approach: Use the method proposed b	y Jones	s & D	)ixor	n (1998)	).		1		-				t	1
	1	Ĩ			(	···•			1	1				-
rom laboratory testing, the following re	sidual ir	nterfa	ace	strengt	h par	ame	ters	were	obt	aineo	1:			1
			Ļ							ļ			ļ	1
Granular sub-soil material					c' = (	]	••••••••	= 32°	Ļ					
Sub-soil/drainage geocomposite inte				L	α' = (	<u>ן</u>	δ'=	= 17°		ļ			ļ	
Geocomposite/textured LLDPE geor	nembra	ne in	terfa	ace	α' = (	<u>ן</u>	δ'=	= 16°	ļ					
Textured LLDPE geomembrane/bling	Jing lay	er int	erfa	ce	α' = (	<u>ן</u>	δ'=	= 18°						
									Ļ					÷
Calculations:			ļ				ļ			ļļ.			ļ	-
				ļļļ						ļ				
							ļ						<b> </b>	-
See sheets 8 to 13								:					1	1
ee sheets 8 to 13									·	┝╍╍┾				î
See sheets 8 to 13			-										   	•••••••••••••••••••••••••••••••••••••••
See sheets 8 to 13														÷

Figure 4.15 Calculations for Example 3 continued

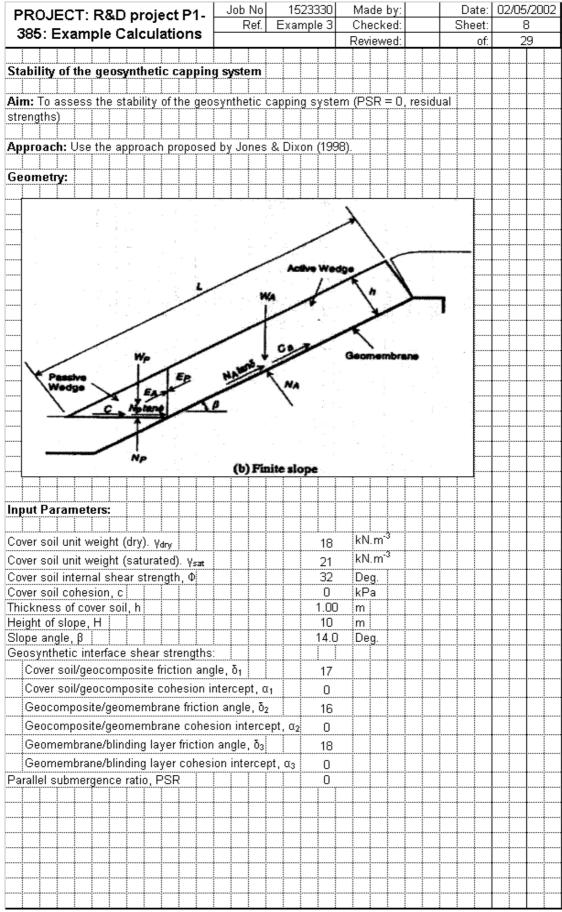



Figure 4.15 Calculations for Example 3 continued

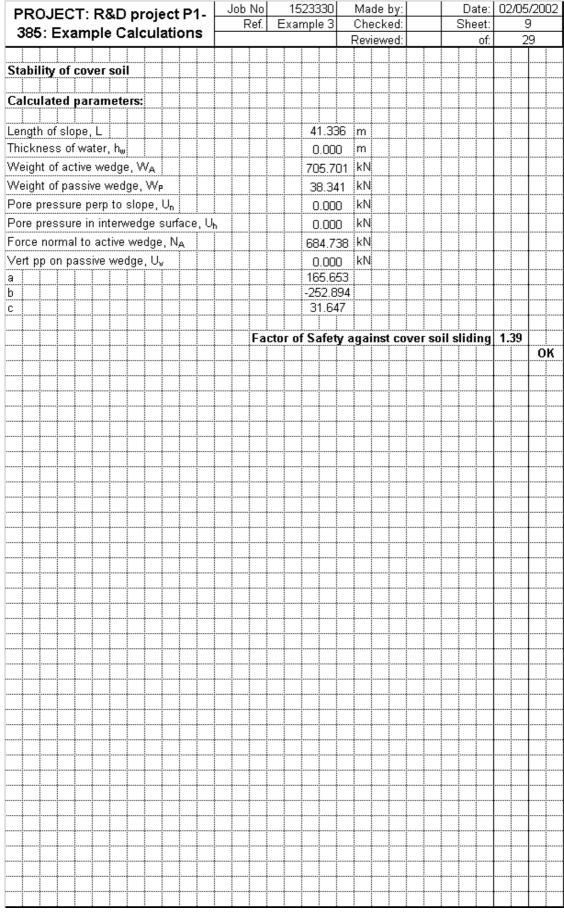



Figure 4.15 Calculations for Example 3 continued

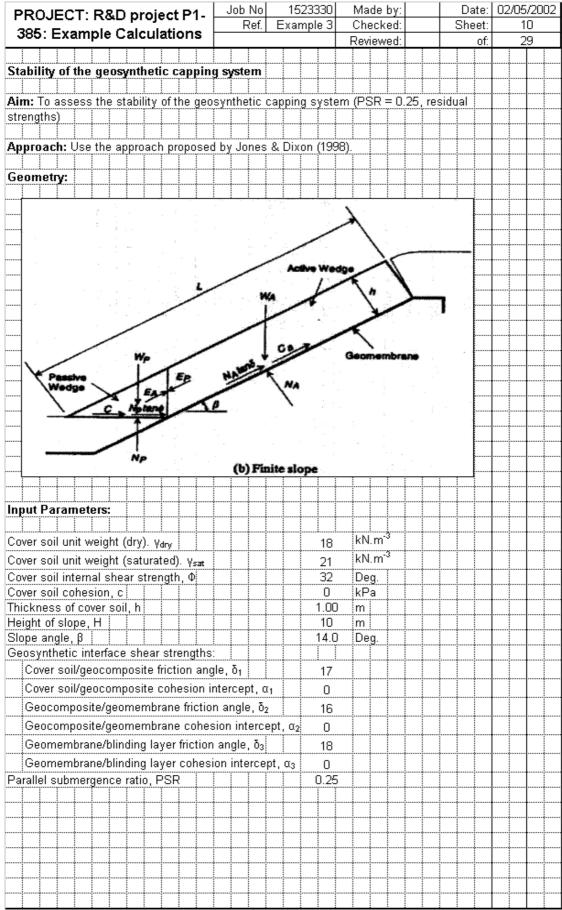



Figure 4.15 Calculations for Example 3 continued

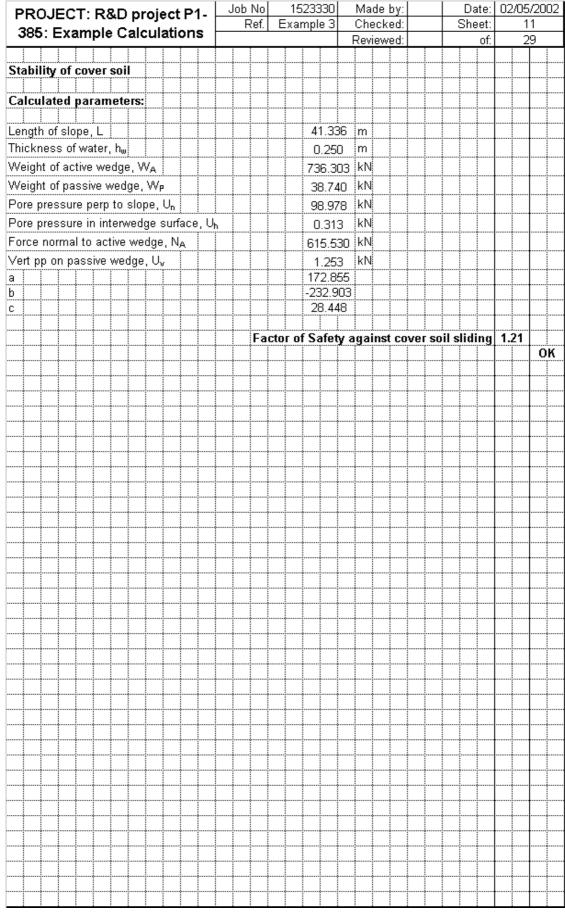



Figure 4.15 Calculations for Example 3 continued



Figure 4.15 Calculations for Example 3 continued

PROJECT: R&D project P1-	Job No Ref.	1523330 Example 3	Made by: Checked:	Date: Sheet:	02/05/20 13
385: Example Calculations	Rei.		Reviewed:	of:	29
					Ĩ
Stability of cover soil					
Calculated parameters:					
.ength of slope, L		41.330	5 m		
hickness of water, h		0.500			
Veight of active wedge, WA	••	766.10	····••••••••••••••••••••••••••••••••••		
Veight of passive wedge, W _P		39.939	····		
Pore pressure perp to slope, Un					
······································		195.37	≂		
Pore pressure in interwedge surface, U	h Y	1.250	•••••		
orce normal to active wedge, NA		548.28			
/ert pp on passive wedge, U _v		5.013			
		179.90 -212.30			
		25.340			
	Fa	ctor of Safety	against cove	r soil sliding	1.05
	ļ				0
	ļļļ				
lesults:		L : I'a			
Dry F of S against g	······	bility			1.39
PSR = 0.25					1.J3 
PSR = 0.5 1.05					1.05
				•••••••••••••••••••••••••••••••••••••••	
Conclusions:					
Even if all the interfaces were at residua	al strength	, the factor of :	safety > 1.0, Tl	his is	
onsidered to be adequate.					0
) Consider the effect of landfill gas	nressure	e			
y consider the effect of failurin gas	pressure				
he active landfill gas extraction system	n should e	nsure that the	re is no build u	pofgas	
ressure beneath the geomembrane ca	ap. Howeve	er, in the event	of a failure of t	he system, it	
as been calculated that there is a pos	sibility of 4	IkPa of landfill	gas acting ber	neath the cap.	
<b>Nim:</b> Assess the stability of the covers	المنابعة الم		na hanaath		
<b>um:</b> Assess the stability of the covers	son with ga	as pressure iru	im beneath.		
pproach: Use the infinite slope method	i i i i i i i i i i i i i i i i i i i	nstitute das pr	essure for nore	water	
ressure.					
	ļļ				
*****					
		ļļ			

Figure 4.15 Calculations for Example 3 continued

PROJE	CT: R8	D pro	oject	: <b>P</b> 1	۱-	<u> </u>	lob				233			Ma							ite:	02	/05.		10)
385: Ex	ample	Calc	ulati	ons	S		<u> </u>	₹ef.		:xai	mpl	еј		<u>Che</u> Rev						She	et: of:	-	1. 2	-	
														<u>τυν</u>	lew	ea.					01.	+		9	Т
Calculatio	ns:			•								•••••										<u> </u>			t
															•				·						ì
From Thiel	(1999), tl	he fact	orofs	afet	ty f	or a	in ir	fini	tes	slop	ie w	/ith	gas	s pr	ess	ure	is	give	n b	γ:					T
					ſ		Ĩ				Ĩ		(*******	[				Ť		r					Î
	s = <u>α'</u> ·	+ (h v (	cos B	- Ua	Ìtai	nδ'												<u> </u>							T
	S = <u>-</u>	<u>h</u>	γ sin	ß	/							•				•									t
			.1.3	r	· · · · ·		·								·				·						t
where:										·												t			t
	the cohe	sion in	itercer	ot of	fth	e lo	wei	' ae	om	eml	brai	ne i	ntei	: rfac	і е				·						t
	the frictio													,	Ē	•		<u>.</u>		•		<b> </b>			t
	he cover														·····										Ť
	he slope					Ī		1		1		- -				·									t
	the gas		ire her	neat	h tl	he r		mei	nhr	ane	i 1				•				·····						Ť
	he unit v							1		,		•				·						ł			ŀ
		vergint i				1					•								•						÷
Results:				•																•••••		<b> </b>			t
							·				·								·····						t
Using n	ak stren	iaths:		•										·								t			t
							·				•		•		•				·						t
F of	O+	-(1*18*(	cos14	-4)ta	an j	 25		·		i 		•		·		·		•				1.	44		t
+ ot	S = <u></u>	1*1	18*sin	14)				=	1.	44		•				•						†			t
			- <u> </u>	i Ż	(										•				·····						t
Usina re	sidual st	renath	s:	•						·····												<b> </b>			t
											•				·····										Ť
	_ 0+		cos14	-4)ta	an	18		•				•						•				1.	DO		T
F of	S= <u></u>	<u>(1*18*))</u> 1*1	8*sin	14				=	1.	UU		•		·		·									t
			T		[		·								•				•						Ť
Conclusio	1:			•		•		•		•				•		•		•							T
															•										Î
Since the fa	actor of s	afety i	s > 1.3	3 fo	r th	ie p	eak	са	se	and	= 1	1.0	for	the	res	sidu	al c	case	e, a	nd t	the				Τ
analysis m																								0	)K
of landfill ga	is pressu	jre. 🕴																							l
																									Ι
Note:																									
						ļ		ļ		ļ				ļ				ļ							
The above o																									ļ.
geosynthet																						ļ!			
within the g					tha	an t	he	exte	erna	al in	terf	ace	e sti	renç	atha	з. Т	nis	sho	ould	be					ļ.
confirmed b	y confor	mance	testir	ıg.		ļ				ļ				ļ				ļ				ļ			
							ļ				ļ											ļ			ļ.
1.2 Cappin	g liner i	ntegri	ty	ļ		ļ										ļ		ļ				ļ			-
				ļ																					Ļ
a) Compre	ssible w	raste																							-
The multi-a																		ļ				ļ!			L
geomembra	ine, and	is cons	sidere	d to	be	su	itab	le f	or t	he	proj	oos	edi	cap	pin	g sy	ste	em.						0	ļ
						ļ						ļ		ļ		ļ		ļ				ļ			
b) Slope d	eformat	ion									ļ														ļ.
				ļ		l	L.,	ļ		ļ						ļ		ļ				ļ			Ļ
	ss the int	egrity	ofthe	geo	psy	nth	etic	ma	ater	ials									ļ						ļ.
Aim: Asse								:		:	:			:		:		:				1	.		1
Aim: Asse:				ļ		ļ		ļ			ļ			ļ		ļ		<b>.</b>				<b> </b>		•	÷
Aim: Asse																						 			ţ

# Figure 4.15 Calculations for Example 3 continued

							) pi					⊢'	Job F	Ref.			5233 mpl			Ma Che	ue ark	od: od:				Da She		02	2/05	5 5	10
38	35	: E	Exa	am	ple	e C	ald	cul	ati	on	s	$\vdash$		(er.		. x ai	mpi	eJ		Rev						one	of:	$\vdash$		<u>9</u>	_
					-	1														i.	lew	eu.					01.			<u> </u>	T
aa.		ac	ի: Լ	i Jse	th	ėm.	: ieth	i od i	i prot	1 205	ed I	μ. bv.	i. Jone	i es l	8. D	iixoi	n (1	: 998	1 31					•							1
																					•••••				•••••				·		
ror	n li	abo	orat	ory	tes	stin	g,tl	he f	ollo	win	ig te	ensi	ile s	stre	ngtl	h p:	arar	net	ers	we	re c	bta	ine	d:		1					
				<u>.</u>		<u> </u>		<u> </u>	<u> </u>	ļ	<u> </u>	ļ				ļ				ļ						ļ				[	
I	Dra	ina	ge	geo	oco	mp	osit	е	ļ		ļ		ļ		2	0	kΝ	.m ⁻	1												_
T	Гeх	tur	ed		DPE	Ξge	eom	nem	bra	ne					1	6	kΝ	.m ⁻	1												
								1	ļ	<u> </u>	ļ	1			ļ		ļ									[					
alı	cul	ati	on	S		ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ				ļ	
					l <u>.</u>	<u> </u>	ļ		ļ		ļ		ļ		ļ		ļ		ļ				ļ		ļ		ļ				
ee	sh	iee	tsí	16 t	<u>o 2</u>	<u>.</u> 7	ļ	ļ		ļ	ļ	ļ		ļ		ļ	ļ	ļ		ļ		ļ				ļ		ļ		<b> </b>	
					ļ			ļ	ļ		ļ	ļ	ļ		ļ		ļ		ļ				ļ				ļ	l			-
						÷		ļ		ļ		ļ			ļ											ļ				<b> </b>	-
						·	·	·				·			<b>.</b>																-
						ł	·				<b>.</b>													•••••					ļ		
							•																		•••••				·		
1				•		•	1			<u>.</u>				•		•		•				•		•••••							,.
1					•	1	1	1	<u>.</u>		é	1	•		•		<u>.</u>		•		•••••		•		•••••		•				•
T						1		<u>.</u>				<u> </u>								•••••				•••••							
								ļ	[		<b>_</b>	ļ					[									ļ					
					ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ				ļ				ļ				
				ļ		ļ	ļ	ļ	<u> </u>	ļ	ļ	ļ		ļ	<u> </u>	ļ	<u> </u>	ļ		ļ		ļ		ļ		ļ		ļ		ļ	
					ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ		
				ļ		ļ	ļ	ļ		ļ	ļ	ļ		ļ		ļ		ļ		ļ		ļ				ļ		ļ		<b> </b>	
				ļ	ļ		ļ	ļ	ļ	ļ	ļ	ļ	ļ		ļ	ļ	ļ		ļ	ļ			ļ				ļ				
								ļ		ļ	ļ	ļ			ļ											ļ				<b> </b>	
						·	·																								
						÷																									-
-							·																								••
t						·	1																							<b> </b>	
1	-				•	1		1				1									•				•				·		
T				•		1	1	1		1		1		•		•				•						<b>.</b>					
1							1		1		1						1														
ļ					ļ						ļ		ļ																		
				ļ		ļ		ļ		ļ	ļ	ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ	ļ	ļ	
					ļ	ļ		ļ	ļ		ļ	ļ	ļ		ļ		ļ														
				ļ		ļ		į		ļ	ļ	į				ļ				ļ						ļ		ļ			
																															•
-						÷																									
-							•	·				·									•••••				•••••						
+						†	·																	•••••							
1					•	1	1		•		•		•		•		•		•		·		•		·		•		}		•••
T				•		1	1	1		1	<u> </u>	1		•		•		•		•		•		•		1					
1							1																								
						Γ	ļ	[	ļ		ļ	[		[	ļ		ļ	[								[					
				ļ		ļ		ļ		ļ		ļ				ļ								ļ		ļ				ļ	
				ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ				ļ		ļ		ļ	
							ļ		ļ						ļ		ļ														
				ļ		ļ		ļ		ļ		ļ		ļ		ļ		ļ				ļ				ļ		ļ		<b>.</b>	
					ļ	. <b>.</b>		ļ	ļ		į	ļ					ļ														

Figure 4.15 Calculations for Example 3 continued

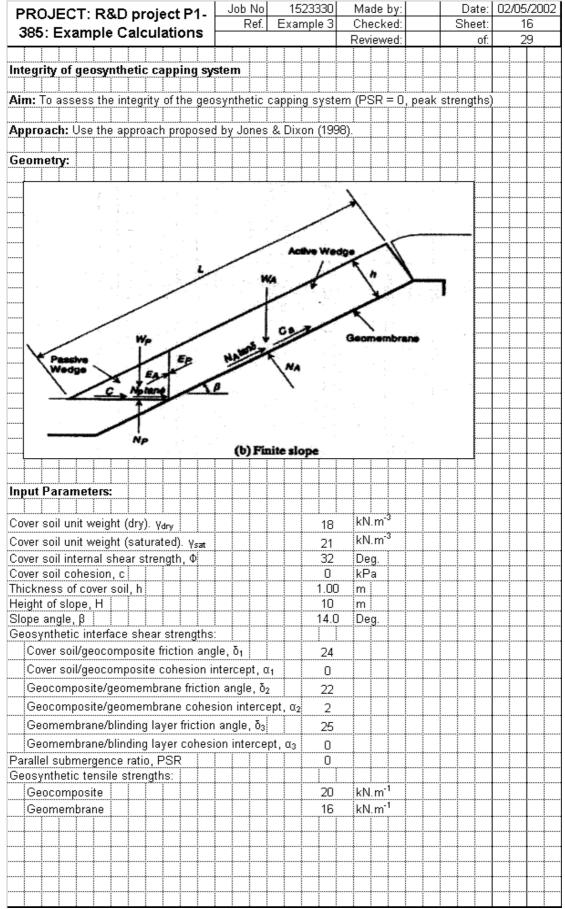



Figure 4.15 Calculations for Example 3 continued

Ref.	1523330 Example 3	Made by: Checked:	Sheet:	17
				29
	41.338	i m	-	
		m		
		1 kN		
	0.000	kN		
<b>1</b>	0.000	kN		
	684.73	3 kN		
	0.000	kN		
	165.65	3		
	·····			
	46.086	)		
Fac	tor of Safetv	against cove	er soil slidina	1.94
rface	165.43	3 kN		
	3/4.35	4 KN		
	0.000	kN		
	20	kN		
	Eactor	of eafoty ana	inet runturo	Inf
		υι ναισιγ άιμα	mocrupture	
	293.68	3 KIN		
rface	165.43	3 kN		
	336.640	5 kN		
		kN		
	16	kN		
	<b>F</b> 4	-66		
	Factor	ui saiety aga	inst rupture	Inf
				ļļ
	Fat	Image: state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state	Reviewed:           41.336         m           0.000         m           705.701         kN           38.341         kN           0.000         kN           165.653         -245.576           46.086	Reviewed:       of:         41.336       m         0.000       m         705.701       kN         38.341       kN         0.000       kN         165.653       -245.576         46.086

Figure 4.15 Calculations for Example 3 continued

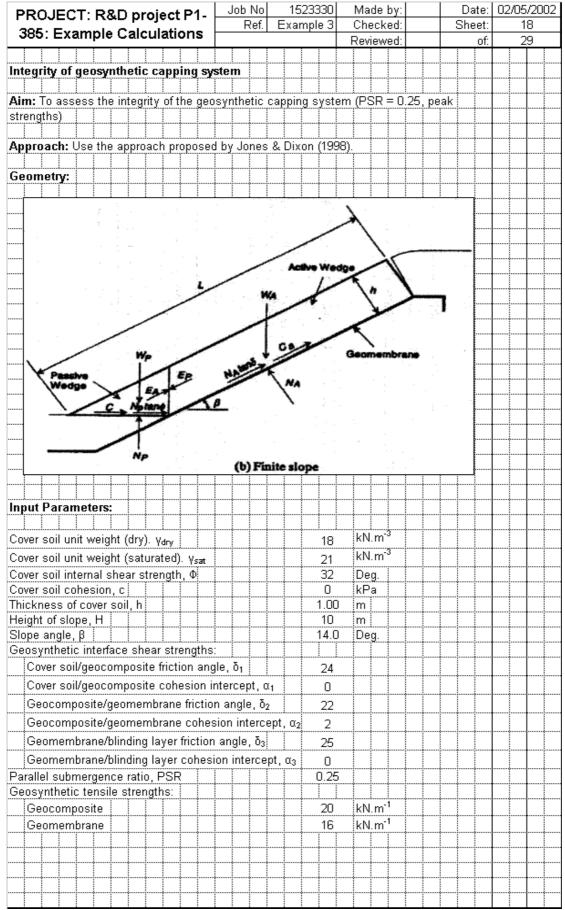



Figure 4.15 Calculations for Example 3 continued

PROJECT: R&D project P1-	Job No Ref.	1523330 Example 3	Made by: Checked:	Date: Sheet:	02/05/20
385: Example Calculations	INCI.		Reviewed:	of:	29
. Stability of cover soil					
Calculated parameters:					
ength of slope, L		41.336	3 m		
hickness of water, h _w		0.250	m		
Veight of active wedge, W _A		736.30	3 kN		
Veight of passive wedge, Wp		38.740	) kN		
Pore pressure perp to slope, Un		98.978	3 kN		
Pore pressure in interwedge surface, Uh		0.313	kN		
orce normal to active wedge, NA		615.53	o kN		
/ert pp on passive wedge, U _v		1.253	kN		
		172.85			
		-316.21			
		41.428			
	Fac	ctor of Safety	r against cove	r soil sliding	1.69
. Integrity of geosynthetics					
) Drainage geocomposite					
/ Dramage geocomposite					
Mobilised shear stress at upper interfa	ace	198.43	2 kN		
Shear strength at lower interface		386.50	8 kN		
Tension developed in the geotextile		0.000	kN .		
Tensile strength of the geotextile		20	kN		
		Eactor	of safety aga	inet runturo	Inf
		Faciui	UI Salety aya	mscrupture	
i) Geomembrane					
Shear strength at upper surface		305.83	6 KN		
Mobilised shear stress at upper interfa	ace	198.43	2 kN		
Shear strength at lower interface		350.67	3 kN		
Tension developed in the geotextile		0.000	kN		
			IN IN		
Tensile strength of the geotextile		16	kN		
		Factor	of safety aga	inst rupture	Inf
				•	

Figure 4.15 Calculations for Example 3 continued

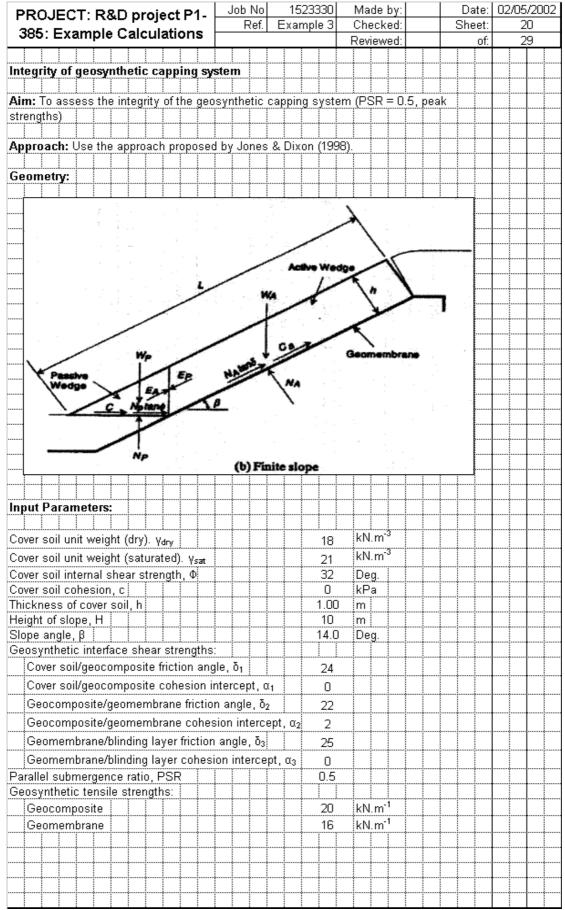



Figure 4.15 Calculations for Example 3 continued

	Job No Ref.	1523330 Example 3	Made by: Checked:	Date: Sheet:	02/05/2	_
385: Example Calculations	Kei.		Reviewed:	of:	29	
I. Stability of cover soil						
Calculated parameters:	••					
_ength of slope, L		41.338	6 m			
Thickness of water, hw		0.500	m			
Veight of active wedge, WA		766.10	7 kN	••••••••••••••••••••••••••••••••••••••		
Veight of passive wedge, WP		39,939				
Pore pressure perp to slope, Un		195.37	2 kN	••••••••••••••••••••••••••••••••••••••		
Pore pressure in interwedge surface, U _h		1.250	kN			
orce normal to active wedge, NA		548.28	o kN			
/ert pp on passive wedge, Uv		5.013				
		179.90				
		-286.51				
	ļļ	36.902	2			
	Fai	tor of Safety	against cove	r soil slidina	1.45	
			- ugunot core			
. Integrity of geosynthetics	ļļ,					
) Drainage geocomposite						
Mobilised shear stress at upper interfac	ce	239.94	D kN			
	Ì					
Shear strength at lower interface		398.66	1 kN			
Tension developed in the geotextile		0.000	kN			
Tensile strength of the geotextile		20	kN			
		Factor	of safety agai	inst rupture	Inf	
ii) Geomembrane						
Shear strength at upper surface	ļļ	317.99	D kN			
Mobilised shear stress at upper interfac		239.94				
		239,94				
Shear strength at lower interface		364.70	D kN			
Tension developed in the geotextile		0.000	kN			
Tensile strength of the geotextile		16	kN			
	ļ	Factor	of safety agai	inst rupture	Inf	
	•					
	1					
					1 1 1	

Figure 4.15 Calculations for Example 3 continued

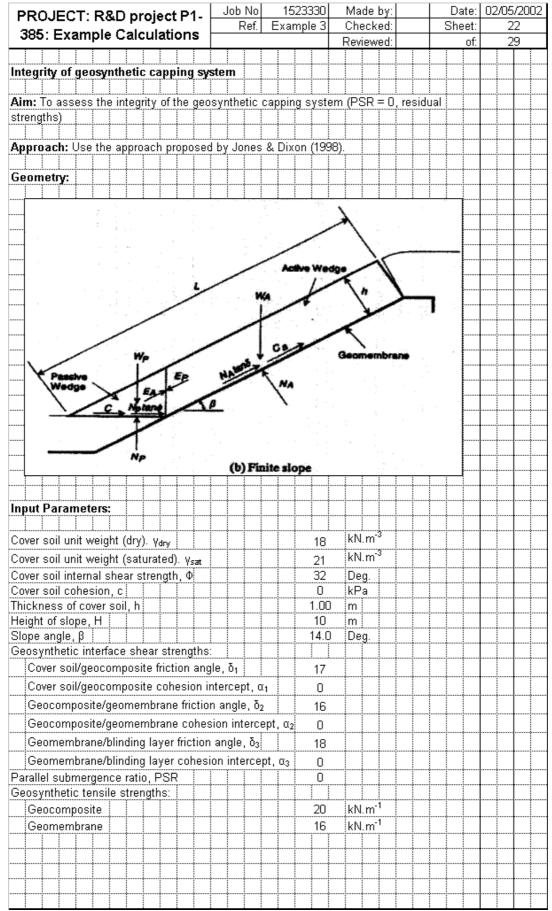



Figure 4.15 Calculations for Example 3 continued

Checked:           Reviewed:           Reviewed:           Reviewed:           Image: State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State Sta	Sheet: of:	23 29
6 m 6 m 1 kN 1 kN 1 kN 38 kN 38 kN 33		
) m		
) m		
) m		
) m		
1     kN       1     kN       1     kN       1     kN       1     kN       1     kN       1     kN       1     kN       1     kN       1     kN		
1     kN       1     kN       1     kN       1     kN       1     kN       1     kN       1     kN       1     kN       1     kN       1     kN		
) kN ) kN 38 kN ) kN		
) kN 38 kN ) kN		
38 KN ) KN 33		
) kN		
3		
M	•••••	
7		
/ against cover	soil sliding	1.39
92 kN		
3 kN		
) kN		
kN		
of safety again	et runturo	Inf
or salety again	istrupture	
3 kN		
92 kN		
'3 kN		
) kN		
kN		
or safety again	ist rupture	Inf
ſ	r of safety again	r of safety against rupture

Figure 4.15 Calculations for Example 3 continued

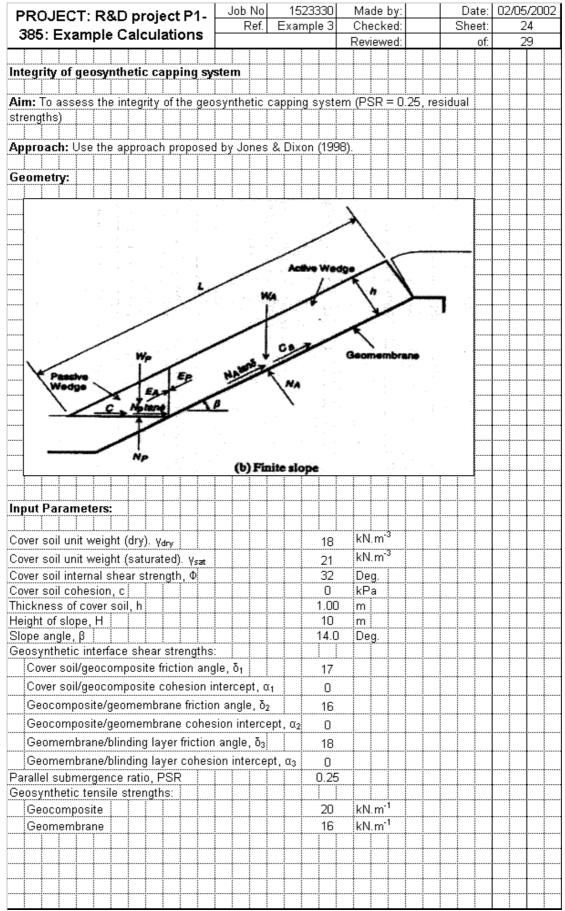



Figure 4.15 Calculations for Example 3 continued

PROJECT: R&D project P1-	Job No Ref.	1523330 Exemple 2	Made by: Checked:	Date: Sheet:	
385: Example Calculations	Rei.	Example 3	Reviewed:	of:	25 29
I. Stability of cover soil					
Calculated parameters:					
_ength of slope, L		41.33	6 m		
Thickness of water, h _w		0.250			
Veight of active wedge, WA		736.30			
Veight of passive wedge, W _P		38.74			
Pore pressure perp to slope, Un		98.97	8 kN		
Pore pressure in interwedge surface, U	h	0.313	) kN		
Force normal to active wedge, NA		615.53	10 kN		
/ert pp on passive wedge, Uv		1.253			
		172.85	6		
		-232.90			<b>  </b>
		28.44	Ø		
	Fa	ctor of Safety	/ against cover	soil sliding	1.21
. Integrity of geosynthetics					
) Drainage geocomposite					
i Diamage geocomposite					
Mobilised shear stress at upper inte	rface	189.77	'1 kN		
Shear strength at lower interface		215.63	19 kN		
Tension developed in the geotextile		0.000	) kN		
Tensile strength of the geotextile		20	kN		
		F4	-66-4		
		Factor	of safety agair	ist rupture	Inf
ii) Geomembrane					
Shear strength at upper surface		215.63	19 kN		
Mobilised shear stress at upper inte	rface	189.77	'1 kN		
	indec	100.11			
Shear strength at lower interface		244.34	17 kN		
Tension developed in the geotextile		0.000	) kN		
Tensile strength of the geotextile		16	kN		
		Factor	of safety agair	ist rupture	Inf

Figure 4.15 Calculations for Example 3 continued

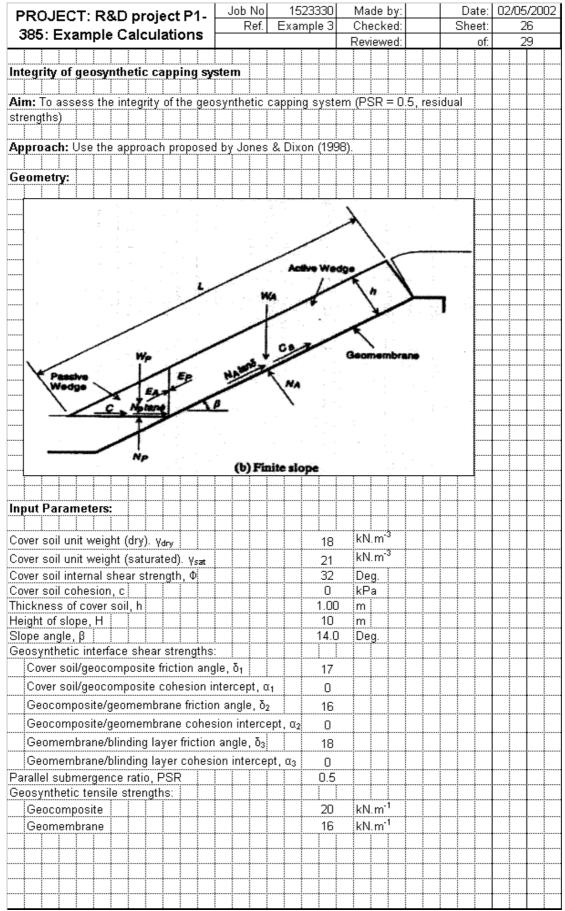
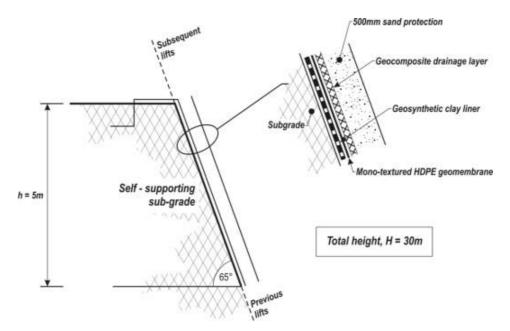



Figure 4.15 Calculations for Example 3 continued

PROJECT: R&D project P1-	Job No Ref.	1523330 Example 3	Made by: Checked:	Date: Sheet:	02/05/20
385: Example Calculations	Kei.		Reviewed:	of:	27
. Stability of cover soil					
Calculated parameters:					
ength of slope, L		41.336	i m		
hickness of water, h		0.500	m		
Veight of active wedge, VVA		766.107	7 kN		
Veight of passive wedge, W _P		39.939			
Pore pressure perp to slope, Un		195.372			
^l ore pressure in interwedge surface, U _h		1.250	- kN		
orce normal to active wedge, NA		548.280	ר kN		
/ert pp on passive wedge, Uv		5.013			
		179.900			
		-212.30			
		25.340	)		
	Eas	tor of Safety	against cove		1 05
	Га		against cove	i son snunig	1.05
. Integrity of geosynthetics					
) Drainage geocomposite					
Mobilised shear stress at upper inter	face	228.740	1 kN		
Shear strength at lower interface		224.264	4 kN		
			1.51		
Tension developed in the geotextile		4.476	kN		
Tensile strength of the geotextile		20	kN		
		Factor	of safety aga	inst rupture	4.47
i) Geomembrane					
Shear strength at upper surface		224.264	4 kN		
Mobilised shear stress at upper inter	face	224.264	4 kN		
Shear strength at lower interface		254.120	א ר געא ר		
		204.120			
Tension developed in the geotextile		0.000	kN		
Tensile strength of the geotextile		16	kN		
		Factor	of safety aga	inst rupture	Inf
					ļļ

Figure 4.15 Calculations for Example 3 continued

PROJ					-	-				<u> </u>	lob F	NO Ref.	F	is xar	233 nnl			<u>Ma</u> Che						Da She	ate:		2/05	/ <u>//</u> 8	<u> </u>
385:	Exa	am	ple	; C;	alc	ul	atio	on	S			.01.			npi			Revi						0110	of:	$\vdash$		9	_
																												_	T
lesults:	1																								•••••		•		1
									ļ																				
Using	į pe	<u>ak s</u>	tre							ļ						L		ļ		ļ				ļ		ļ			
				Fo	ofS	aga					ite r	uptu	re		F	of S	aga	inst				ne r	uptu	ire		ļ	ļ		
Dry		<u> </u>							nite											nite						ļ			
PSR									nite											nite						ļ	ļ		
PSR	= U.	5			·	·		Intu	nite	·						r		r	Infi	nite		·i		·····		ļ			
				l																									
Using	į res	idua	ars	,				L	I	l					-	L				l	l	L		l		ļ			-
				FC	ofS	aga			nite		πer	uptu	re		F	DT S	aga	inst		men nite		ne r	uptu	ire					
Dry PSR									nite											nite						<b> </b>			-
PSR								4.												nite									-
	- 0.	ř							4, 	[						[		T 1		ince				ſ					-
Conclus	ion	s:							·												•				•••••		·		-
										•						·		†		·····				•		t			-
ince all	the	fac	tors	s of	saf	fetv	> 1	1.5.	it i	: S CI	ons	ider	red	tha	t th	e ir	ntec	, rit v	of	the	qeo	JSVI	nth	 etic	·····	i			
naterials													_					·····			W							C	)
	Ĩ								Ĭ																		•••••		1
) Caviti	ies i	n w	/ast	te						<b>.</b>						[				<b></b>				[]					
																	[												
he deve																									9				
train in																										ļ			
otential	voic	1 ca	n b	e ca	arrie	ed o	out	bas	ed.	on	the	me	tho	d p	rop	ose	d b	y Jo	one	s &	Pi	ne (	200	<u>]1).</u>			ļ		
		ļ								ļ						l				ļ				ļ	ļ,	ļ			
ora 1 m	ı lay	er o	fto	psç	pil a	Ind	sub	)-sc	oils.	the	ap	plie	d lo	ad	on	the	ge	ome	mb	ran	je is	20	kN	l.m	•1 ;		ļ		
		ļ																ļ								ļ	ļ,		
									ļ																		ļ		- in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
																		ļ						ļ		ļ	ļ		-
									ļ								ļ												-
																										ļ			-
		•																•								<b> </b>			-
										•																ł			-
	······								·		·										·						<u>.</u>		
																		•		•••••				•		t			-
	···						•								•••••						•				•		•		
	-	•														•••••		•		•••••				·····		t			•
	1								•		•••••						•				•				•••••				
										•••••						•		1		•••••				•					-
																													<u> </u>
		ļ																ļ								ļ			
							ļ		ļ								ļ				ļ				ļ		ļ		
		ļ					ļ		ļ									ļ							ļ	ļ	ļ		
		ļ			ļ		ļ		ļ								ļ	ļ									ļ		
		ļ																ļ								ļ			
									ļ																		ļ		.,
																										I			
																	:				:			******					


Figure 4.15 Calculations for Example 3 continued

	U. II	EC	Τ·Ι	R8	&D.	pr	oie	ect	P'	1 - 1	J	ob No		5233			Ma								U2	2/05	
20						-	-					Ref.	Exa	ampl	е З		Che	eck	ed:			9	She	et:		2	9
38	5: E	573	unk	Jie	- Ci	aiC	ula	aur	JU:	3						F	Revi	ew	ed:					of:		2	9
																				ļ							
Calc	ulati	ions	:																								ļ
													_													ļ	
	May,	2002	.,ç.																	01	5233	30.5	01				ļ
														$d_{i,ji}$			: :									ļ	
							solu	tion	to s	slopi	ng ili	ner with	voids														ļ
	Ref.	Jone	6 & F	Pine	(200	1)																				ļ	
	Stage	e 1: li	nput	3																							ļ
[^]			Td				1	6 (ki	N/m	)			Aaximu	m alko	wabl	e ge	ome	mbra	ane t	tensi	00					ļ	
			γ				19.	6 (ki	N/m				Init wei														ļ
			h q					0 (m 0 (kl		3			Thickne Surchan				emb	rane									
			a				0.	6 (m	1)	÷.		N N	Nidth of	void		1.1			-								<b> </b>
			β tani	8		0.24	1 1932	4 (c) 8	eg)			5	Slope a	gle													
	_																										<b> </b>
	Step	2: A	rchi	ng n	educ	ed p	pres	aure	•																	ļ	
	w = 2	γa(1-	e ^{-0.56}	<b>*</b> )+	qe ⁻⁰	57via						20															<b> </b>
	Step	3. 8-	dutie	00.0	f and	active	die																				
			-		que																						<b> </b>
	A' = 1 B' = v											62164 91936															
	C'=(			ſď²							2.8	-220															<b> </b>
	H = (-					-						05215															
	rt = (·	<b>b</b> +	(B	A.C	1.1	24					13.	05215															<u>+</u>
	-											and a															
	Step				A																-						t
	R1 = A = w			anβ								45734															
	B=R		·									10366															ŧ
1	-									-1																·	
	Step		-	h of	cate	mar	y, he	ence	str	ain					inh												
	J=2	Aa-B	-	h of	f cate	nar	y, he	ence	str	ain		09022			inh .660	042											
		Aa-B B	arcs	inh .	J + J	(1+J	² ) ^{1/2} ]	i.	str	ain	-0.2	10366 29199				042											
	J = 2/ K = -{ j = k=	Aa-B B	arcs [arc	inh .		(1+J	² ) ^{1/2} ]	i.	str	ain	-0.2 1.5 -0.4	10366 29199 23816				042										•	
	J = 2/ K = -{ j = k= L = (j- D = a	Aa-B B -k)/(4 / cos	[arcs [arcs A) sβ	inh .	J + J	(1+J	² ) ^{1/2} ]	,	str	ain	-0.2 1.5 -0.4 0.6	10366 29199 23816 37276 18368				042											
	J = 2/ K = -{ j = k= L = (j	Aa-B B -k)/(4 / cos	[arcs [arcs A) sβ	inh .	J + J	(1+J	² ) ^{1/2} ]	,	etr	ain	-0.2 1.5 -0.4 0.6	10366 29199 23816 37276				042											
<b> </b>	J=2/ K=-l j= L=(j D=a ε=(L	Aa-B B -k)/(4 / cos	[arcs [arcs A) sβ	inh .	J + J	(1+J	² ) ^{1/2} ]	,	etr	ain	-0.2 1.5 -0.4 0.6	10366 29199 23816 37276 18368				042											
<b> </b>	J=2/ K=-l j= L=(j D=a ε=(L	Aa-B B -k)/(4 / cos	[arcs [arcs A) sβ	inh .	J + J	(1+J	² ) ^{1/2} ]	i.	• etr	ain	-0.2 1.5 -0.4 0.6	10366 29199 23816 37276 18368				042											
Resu	J = 2/ K = -l j = k= L = (j D = a ε = (L	Aa-B B -k)/(4 -D)/D	[arcs [arc A) ββ	inh . sinh	J + J h K+ l	(1+J K(1+	ייין איין-איין-איין-איין-איין-איין-איין-	<b>~</b> ]			-0.2 1.5 -0.4 0.6	10366 29199 23816 37276 18368 3.06%		0	.660												
Resu From	J=2/ K=- j= L=0 D=a ε=(L Ilts:	Aa-B B -k)/(4 / cos -D)/C	(arcs [arcs A) sβ )	inh sinh	J+J K+I	(1+J K(1+	<b>້າ"]</b> ເ <b>ເ</b> ີງ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	.660	. m ⁻¹	for	the		LDF	PE						
Resu From	J=2/ K=- j= L=0 D=a ε=(L Ilts:	Aa-B B -k)/(4 / cos -D)/C	(arcs [arcs A) sβ )	inh sinh	J+J K+I	(1+J K(1+	<b>້າ"]</b> ເ <b>ເ</b> ີງ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06%	ngth c	o 16	.660	. m ⁻¹	for 6.	the	e Li	LDF	PE						
Resu From geom	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	. <b>660</b>	. m ⁻¹	for	the		LDF	ΡE						
Resu From geom	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	. <b>660</b>	. m ⁻¹	for 6.	the	e Li	LDF	PE						(
Resu From georr	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	. <b>660</b>	. m ⁻¹	for 6.	the	e Ll		PE						(
Resu From georr	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	.660	. m ⁻¹	for 6.	the		LDF	PE						(
Resu From georr	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	.660	. m ⁻¹	for 6.	the	e Li		PE						(
Resu From georr	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	.660	. m ⁻¹	for 6.	the	e Ll	LDF	PE						
Resu From georr	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	.660	. m ⁻¹	for 6.	the	e Li		PE						
Resu From georr	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	.660	. m ⁻¹	for 6.	the			PE						
Resu From georr	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	. <b>660</b>	. m ⁻¹	for 6.	the	e Ll		PE						
Resu From georr	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	. <b>660</b>	. m ⁻¹	for 6.	the			2E						(
Resu From georr	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c embra	o 16	. <b>660</b>	. m ⁻¹	for 6.	the			PE						
Resu From	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	.660	. m ⁻¹	<b>for</b>	the			PE						
Resu From georr	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	.660	. m ⁻¹											•
Resu From geom	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	.660	. m ⁻¹		th			PE						
Resu From georr	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	. <b>660</b>	. m ⁻¹	for 6.				PE						
Resu From georr	J=2 K=-{ j= k= L=() D=a c=(L llts:	Aa-B B -k)/(4 / cos -D)/C abo	(arcs [arcs A) sβ ) vve ( e, t)	inh sinh sinh calc	J+J K+I cula may	(1+J K(1+	<b>ຳ"າ</b> ••ເຈົ້າ	<b>")</b> usii	ng	a te	-0.2 1.5 -0.4 0.6 0.6	10366 29199 23816 37276 18368 3.06% e stre	ngth c	o 16	. <b>660</b>	. m ⁻¹	for 6.				PE						

## 4.4 Example 4: Self-Supporting Steep Slope Lining System

### 4.4.1 Description

The site is a former hard rock quarry with steep  $(65^\circ)$  side slopes. A steep side slope lining system has been designed such that the liner is self-supporting and its subgrade is unyielding. The landfill will be 30 m high and the lining system will be constructed in a series of 5m lifts. The lining system comprises (from the top down) 500 mm thick sand protection layer, drainage geocomposite, HDPE geomembrane, geosynthetic clay liner, sub-grade. The design flow chart and calculations are given in Section 4.4.5 below.



## Figure 4.16 Schematic Cross Section of Example 4

#### 4.4.2 Sub-grade

From the site investigation, the sub-grade is considered to be stable.

#### 4.4.3 Basal lining system

The basal lining system is not considered in this example.

#### 4.4.4 Steep side slope lining system

The steep side slope lining system design cases to be considered are highlighted in Figure 4.17.

## **Self-Supporting**

## Unconfined – Stability

Design issues:

- stability of sub-grade;
- stability of liner support system;
- stability of liner;
- stability of drainage layer.

Both the sub-grade and the liner support system are stable. The geosynthetic elements (geocomposite, geomembrane and GCL) are anchored at each bench level and are therefore stable. Note that the geocomposite is only fixed during the filling of each 5 m lift, and will then be un-anchored prior to the construction of the subsequent 5 m lift since it is designed to move as the waste settles.

The sand protection layer will need to be placed ahead of waste placement since it will not stand unsupported on the 65° slope.

## *Unconfined* – *Integrity*

Design issues:

• control of stresses in liner to prevent increased permeability.

Prior to waste placement the only stresses acting on the lining system components will be self weight; this should be compared with the tensile strength of each geosynthetic.

## *Confined* – *Stability*

Design issues:

• stability of liner.

Since the waste will be placed in horizontal layers for the full width of the cell, the lining system will be stable. Sufficient sand should be placed to prevent a reduction in protection layer thickness due to sand slumping into the waste.

## *Confined – Integrity*

Design issues:

- control of stresses in liner to prevent increased permeability;
- disruption of drainage/protection layers.

The geocomposite material will be placed on top of the smooth face of the geomembrane and is designed to slide past the geomembrane as the waste settles. The amount of slippage at this interface depends on the shear strength at the interface, the geometry of the slope and the engineering properties of the waste. An assessment of the slippage can be carried out using the finite difference code FLAC.

A mono-textured geomembrane with the smooth surface upwards can be used to minimise stress transfer into the geomembrane. An assessment of the stresses induced through the geosynthetic layers is carried out to establish the integrity of each component.

In the assessment of the GCL consideration needs to be given to the possibility of bentonite extrusion through the geotextile; this is of particular concern when a woven geotextile is used. The shear strength of the interface that suffers bentonite extrusion is dramatically reduced and the effect of this should be investigated.

#### 4.4.5 Design flow chart and calculations

See Figures 4.17 and 4.18

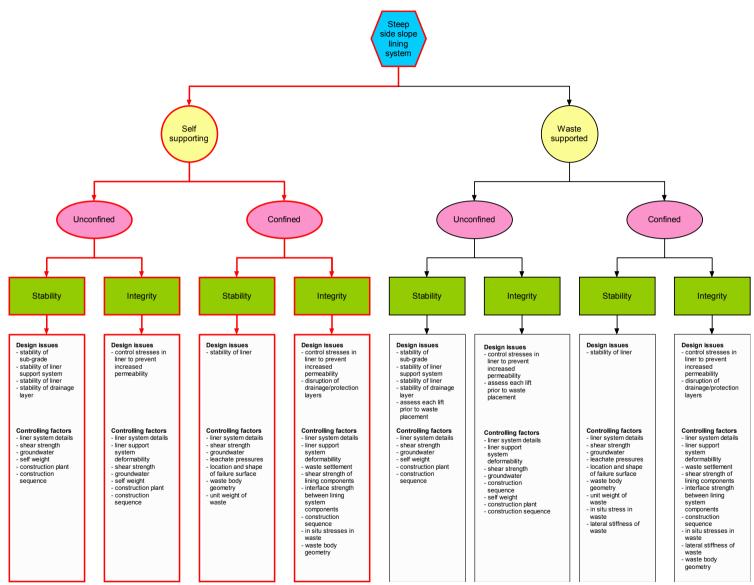



Figure 4.17 Design Flow Chart for Example 4: Steep Side Slope Lining System

PROJECT: R&D project P1-	Job No Ref.	1523330	Made by: Checked:	Date Sheet		15/200
385: Example Calculations	Rei.	Example 4	Reviewed:	of	+	9
					·	ŤI
ESCRIPTION: Steep slope lining syst	tem					
EOMETRY:						
			500mm sand protection			
Subsequent		/	oounn sand piotocoon			
, Subs		Land .				
		ANS	Geocomposile drain	age layer		
	/		<i>ij</i>			
• · · · · · · · · · · · · · · · · · · ·	/	XX.1818:	Geosynthetic cl	y liner	+	
	Sul	bgrade 8	X			
			81		+	
		XXID	P ⁴			
Salf automation (	\	, v	Mono-textured HDPE geo	membrane	1	
h= 5m Self - supporting sub-grade	\					
NXXXX -	11					
	1/1	Total	height, H = 30m			
	1/10	rutar	insight, H = 30m			
	65"			ļ		
······································	11 .	5				
	Previous lifts					
	1					
. SUBGRADE						
					+	
rom the site investigation, the sub-grad	de is consi	dered stable.		••		
. BASAL LINING SYSTEM				°		
his is not considered in this example.						
. STEEP SIDE SLOPE LINING SYST	EM					
.1 Unconfined					+	
) Stability						
) Stability					-	
loth the sub-grade and the liner suppor	rt system a	ure stahle and	I not considered in	this		
xample.						
				†	-	
he geocomposite, geomembrane, and	GCL liners	are anchore	d in at the top of ea	ich 5 m		
t and are therefore stable.						
he sand protection layer by inspection						
	its ahead of	f waste place	ement to ensure sta	bility.		
				ļļ		
herefore the sand must be placed in lif	ļļ				1 1	
herefore the sand must be placed in lif				ļ		····
herefore the sand must be placed in lif  Integrity						
herefore the sand must be placed in lif  Integrity	nthetics pri	or to waste p	lacement.			
herefore the sand must be placed in lif Integrity Integrity Integrity Integrity Integrity of the geosyr						
herefore the sand must be placed in lif	each of the	e geosyntheti	cs and compare w			

# Figure 4.18 Calculations for Example 4

	OJECT: R&D project P1-	• ⊢	Job R	INO lef.			3330 ple 4		<u>Mad</u> Chei				_	Da She	ate:	02	2/05 2	-	<u>.u</u>
385	5: Example Calculations		- 10	.61.	L/	am	016 4	+	Revie		_			One	of:		- 2	_	_
														ļ					I
alcu	ılations:														ļ				
	ngth of geosynthetics, I, is given	n hv:																	ŀ
Le		1 Dy.			=		<u>h</u> sinβ												ŀ
															•		•		÷
wh	nere:		ļ												ļ				Į.
	h is the height of each lift		ļ																ļ
	β is the slope angle							·											÷
	Hence 1 5 _																		ł
	Hence I = <u>5</u> sin 65 = 5.	51m									-								t
1								1			Ť			1	•				÷
Ģe	ocomposite		ļ																ļ
					<u></u>														ŀ
	Mass per unit area	-	1900	Jg.	m ⁻²														····è····
	Mass of 1m strip		55	1 x	1 x	0.90	i 10	=	····.,	5.0	ka.								1
			1.0	. ^	ŕÎ			÷	Ì		<u>ୁ</u>				•		•		÷
	Weight of 1m strip =	=	5.0	хS	9.81	/ 10	00	=	(	).04	9 k	N.n	n ⁻¹						Ĵ
								1						ļ					1
	Tensile strength at yield =	-	30	kΝ	m ⁻¹			Ļ							ļ		ļ		ļ
	<u>↓</u> ↓_↓_↓_↓																		
	Factor of safety =		30	/ U.	049			=		612	4								•
Ge	omembrane																		ł
Ť			<b>†</b>					÷						-			•		ì
	Thickness =	=	2 n	۱m															ļ
			ļ		L														ļ
	Density =	-	940	) k(	3.m ⁻²														•
	Mass of 1m strip =	_	55	1 v	1 x	n n		9/0		-			kg						
-			10.0	^		0.00	12 1	140				0.4	тy				•		•
	Weight of 1m strip	=	10.	4 x	9.8	1/1	 000		-	=	0	). 10	2 kN	J. m ⁻¹	i I				ľ
						Ĩ											<b>.</b>		
	Tensile strength at yield =	=	29	kΝ	.m ⁻¹			ļ					ļ		ļ		ļ		•
																			-
	Factor of safety =	-	29	/ U.	102					=		284	1						•
GC	y																		-
Ť								1									•		÷
	Mass per unit area	=	500	)O (	3.m ⁻²		1												ľ
						Ì								ļ					1
	Mass of 1m strip =	=	5.5	<u>1 x</u>	1 x	5.0		=	-	27.6	i kg						ļ		ļ
													1						1
	Weight of 1m strip =	-	27.	οх	9.8′	1/1		=		0.27	- KIV	i.m							*
	Tensile strength at yield	=	10	kΝ	.m ⁻¹				·····										ł
			1.0					÷									·····		
	Factor of safety =	=	10	/ 0.	27			=		37				1					
			ļ,																Í
onc	lusions:														ļ		ļ		
	le failure in the geosynthetics du		thei	ro	un u		انىر. <del>ا</del>	l ne	t oci									ō	1
1181		-e (U	T	1 01	/VII W	eigr	ir AAU	110		-ur.									۲I ۲

Figure 4.18 Calculations for Example 4 continued

PROJECT: R&D project P1-	Job No				02/05/2002
385: Example Calculations	Ref.	Example 4		Sheet:	3
			Reviewed:	of:	9
3.2 Confined					
a) Stability					
Since the waste will be placed horizonta					
system will remain stable during waste	placemen	nt. The sand j	protection layer may	slump	
into the waste and therefore there is a n	eed to co	ntrol waste p	placement to ensure	that a	
minimum thickness is always achieved.					
b) Integrity					
M megny		·····			
1. Geocomposite					
		••			
The geocomposite material will be place	ed on top i	of the smoot	h face of the geomer	nbrane	
and is designed to slide past the geome					
slippage at this interface depends on the					
the slope and the engineering properties			essment of the slipp	age can	
be carried out using the finite difference	CODE FLA	AC.			
Approach: Use the method proposed b	v longe (*	1000) ucina I			
Approach. Ose the method proposed b					
Calculations:					
The interface shear strength parameters	; used are	e given on she	eets 4 and 5.		

Figure 4.18 Calculations for Example 4 continued

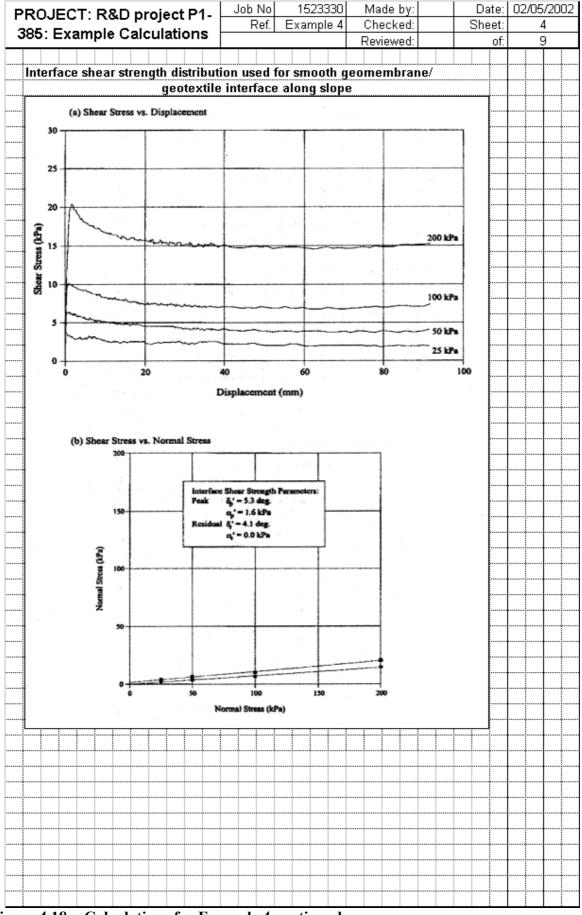



Figure 4.18 Calculations for Example 4 continued

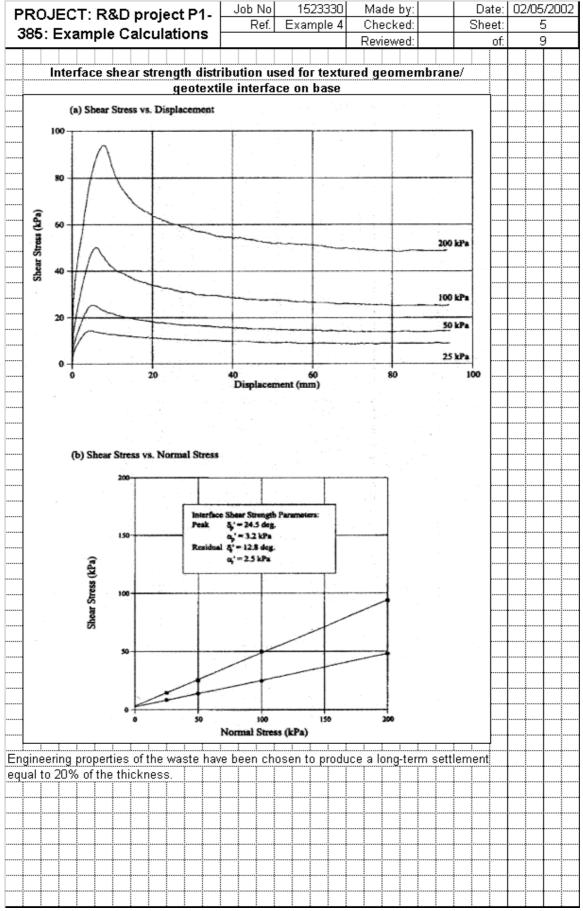



Figure 4.18 Calculations for Example 4 continued

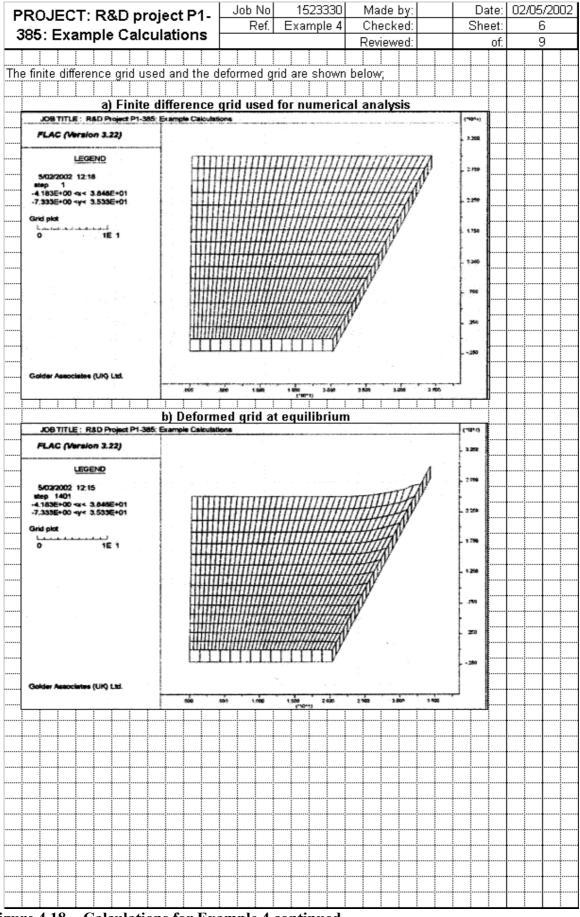



Figure 4.18 Calculations for Example 4 continued

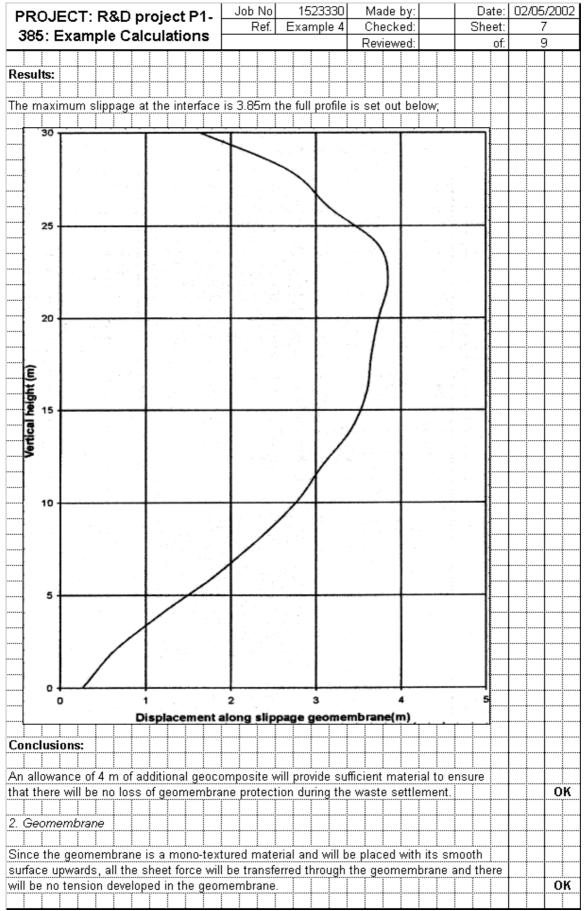



Figure 4.18 Calculations for Example 4 continued

PROJECT: R&D project P1-	Job No		523330			Date:	02/05/2002
385: Example Calculations	Ref.	Exa	mple 4	Checke	_	Sheet:	8
				Reviewe	ed:	of:	9
3. GCL			ļ				·····
<b>0</b> ima Accesso the integrity of the CCI							
Aim: Assess the integrity of the GCL, material.	by conside	ering tr	ie tran:	ster of stre	sses throi	Jgn the	
Approach: Consider the stresses in th	e lining ev	etem :	ii. at the k	i i i i i i i i i i i i i i i i i i i	eide elon	0	
Calculations:			1	•••••••••••			
	•						
The following peak interface shear s	trengths v	vere m	easure	d:			
			ļ				
Geocomposite/smooth geomembra	ne interfac	e α'	= 1.6 k	(Pa δ'=	: 5.3°		
Textured geomembrane/GCL interfa	ce	α'	= 0 kP	a  δ'=	= 26°		
GCL/sub-grade interface		α'	= 0 kP	a  δ'=	: 18°		
			ļ				
a) Stress acting normal to the interface	, III		ļ,	ļ,			
	ļļ	ļļ	Ļļ	ļļļ			<b> </b>
$\sigma_n = \sigma_v \cos \beta + \sigma_h \sin \beta$							
				ļ			
$\sigma_n$ is the effective stress normal to t	he lining s	ystem					
$\sigma_v$ is the vertical effective stress at t	he base o	f the li	ning sγ	/stem			
σ _h is the horizontal effective stress	at the bas	e of the	e linina	svstem			
β is the slope angle	T T						
The unit weight of the waste is take	:i n. as 10 kN	ii J. m ⁻³	•				
		1.111					
$\sigma_{\rm n} = (30 \times 10)\cos 65 + (0.2 \times 30 \times 10)\cos 65$		: = 181 k	Pa	••			
b) Geocomposite/geomembrane interfa	ace		<u> </u>	•			
The shear strength at this interface,	Imax. İS		1				
$\tau_{max} = \alpha + \sigma_n \tan \delta$			•				
τ _{max} = 1.6 + 181 tan 5.3 = 1	i i i 18.4 kN.m	-1	•	•			
As the waste settles, there will be mov	ement alo	i i i na this	interfa	ice and this	s maximu	m shear	
stress must be overcome before mover							
transferred to the interface below.							
	•••••••	<b>י</b>	1				
c) Geomembrane/GCL interface		<b>`</b>	1				
The shear strength at this interface,	ī _{max} , is						
τ _{max} = 0 + 181 tan 26 = 8	38.3 kN.m	-1					
	I I I	r 1					
Since 88.3 > 18.4, there will be no t	ension in [.]	the ge	omemt	orane (as d	iscussed	in 2	
above)		×					
	ļ						
		ļ	Ļ				
	ļļ						
	ļļ	ļ	ļļ	ļļļ			
	ļ	ļ	ļļ	ļ			
····			ļ	ļ			

Figure 4.18 Calculations for Example 4 continued

PROJECT: R&D project P1-	Job No Ref.	1523330 Example 4	Made by: Checked:	Date: Sheet:	<u>02/05/200</u> 9
385: Example Calculations	1101.]	Example 4	Reviewed:	of:	9
					ПŤП
GCL/sub-grade interface					
The shear strength at this interface,	T _{max} , is				
τ _{max} = 0 + 181 tan 18 = 5	58.8 kN.m ⁻¹				
Since 58.8 > 18.4 there will be no te	ension in the	a GCI			
wever, if the woven surface of the GC	CL. is place	d on the sub-	arade and there is	some	
trusion of saturated bentonite, then t					
nificantly, to a friction angle of 5°.	Ì				
The shear strength at this interface	then becom	ies;			
т _{max} = 0 + 181 tan 5 = 1	15.8 kN.m ⁻¹				
Since 15.8 < 18.8, there will be a te	nsion force	induced in th	ne GCL.		
Tension in the GCL = (18.4 - 15.8) »	length of C	CL			
Tension = (18.4 - 15.8) x 5.51 = 1	14.3 kN.m ⁻¹				
e strength of the GCL is 10 kN.m ⁻¹ , a	and so the f	actor of safet	y against tensile f	ailure is	
		ÎÎ		1	
F of S = 10 / 14.3 = 0	).7				
onclusions:					
om the above calculations, it is clear					
otextiles should be used. In this inst			geosynthetic com	1ponents	
the lining system are considered to b	pe satisfact(	ory.			0
	••				
	+				
	••				
	†				
	r i i		····		

Figure 4.18 Calculations for Example 4 continued

# 5. SUMMARY

Assessment of landfill liner and waste body stability is a key element of the Landfill Directive. Both stability and integrity of the lining components must be assessed in order to demonstrate performance of the barrier system during the design life of the facility. This report gives recommendations and provides guidance. It should be used in conjunction with Report No. 1: Literature Review, which provides a detailed summary of the key issues - controlling landfill stability assessment based on the international state-of-the-art.

This document (Report No. 2) consists of three main sections; design philosophy, design assessment criteria and example calculations.

Design philosophy includes guidance on the selection of appropriate safety factors and of characteristic values. It stresses that a prescriptive approach is not appropriate and highlights the need for sound engineering judgement of site specific factors by an experienced geotechnical engineer. Appropriate ranges of factors of safety for common assessments are introduced. The importance of waste/barrier interaction and the need for appropriate monitoring in order to assess design assumptions and performance are stressed.

Guidance on design assessment has been provided in the form of design flow charts and aide memoir of key issues for consideration. Design is considered through six main landfill elements; sub-grade, basal lining system, shallow side slope lining system, steep side slope lining system, waste slope and capping lining system.

Flow charts for each element list the main design cases and design issues. It is proposed that these charts can be used to identify the key design cases and hence to ensure that all potential failure modes are assessed as part of the design process. The aide memoir of key issues can be used to check that all factors influencing behaviour are considered in the analysis.

The methodology presented in this report is designed to provide a logical comprehensive framework for the selection of all relevant design cases and their analysis.

# LIST OF FIGURES

Figure 3.1	Design Flow Chart 1: Sub-grade	15
Figure 3.2	Design Flow Chart 2: Basal Lining System	24
Figure 3.3	Design Flow Chart 3: Shallow Side Slope Lining System	29
Figure 3.4	Design Flow Chart 4: Steep Side Slope Lining System	39
Figure 3.5	Design Flow Chart 5: Waste Slope	49
Figure 3.6	Design Flow Chart 6: Capping Lining System	54
Figure 4.1	Schematic Cross Section of Example 1	64
Figure 4.2	Design Flow Chart for Example 1: Sub-grade	68
Figure 4.3	Design Flow Chart for Example 1: Basal Lining System	69
Figure 4.4	Design Flow Chart for Example 1: Shallow Side Slope Lining System	70
Figure 4.5	Design Flow Chart for Example 1: Waste Slope	71
Figure 4.6	Calculations for Example 1	72
Figure 4.7	Schematic Cross Section of Example 2	86
Figure 4.8	Design Flow Chart for Example 2: Sub-grade	90
Figure 4.9	Design Flow Chart for Example 2: Basal Lining System	91
Figure 4.10	Design Flow Chart for Example 2: Shallow Side Slope Lining System	92
Figure 4.11	Design Flow Chart for Example 2: Waste Slope	93
Figure 4.12	Calculations for Example 2	94
Figure 4.13	Schematic Cross Section of Example 3	121
Figure 4.14	Design Flow Chart for Example 3: Capping Lining System	123
Figure 4.15	Calculations for Example 3	124
Figure 4.16	Schematic Cross Section of Example 4	153
Figure 4.17	Design Flow Chart for Example 4: Steep Side Slope Lining System	156
Figure 4.18	Calculations for Example 4	157

# LIST OF TABLES

Table 3.1	Base/Excessive Deformations/Compressible Sub-grade	14
Table 3.2	Base/Excessive Deformations/Cavities	14
Table 3.3	Base/Excessive Deformations/Basal Heave	14
Table 3.4	Base/Filling on Waste/Compressible Waste	16
Table 3.5	Base/Filling on Waste/Cavities in Waste	16
Table 3.6	Cut Slope/Hard Rock	17
Table 3.7	Cut Slope/Cohesive Soil	18
Table 3.8	Cut Slope/Granular Soil	19
Table 3.9	Fill Slope/Cohesive Soil	20
Table 3.10	Fill Slope/Granular Soil	21
Table 3.11	Natural Slope	22
Table 3.12	Mineral Only/Compressible Sub-grade	23
Table 3.13	Mineral Only/Cavities	25
Table 3.14	Mineral Only/Basal Heave	25
Table 3.15	Geosynthetic-Mineral/Compressible Sub-grade	26
Table 3.16	Geosynthetic-Mineral/Cavities	27
Table 3.17	Geosynthetic-Mineral/Basal Heave	27
Table 3.18	Unconfined/Mineral Only/Stability	30
Table 3.19	Unconfined/Mineral Only/Integrity	31
Table 3.20	Unconfined/Geosynthetic-Mineral/Stability	32
Table 3.21	Unconfined/Geosynthetic-Mineral /Integrity	33
Table 3.22	Confined/Mineral Only/Stability	35
Table 3.23	Confined/Mineral Only/Integrity	36
Table 3.24	Confined/Geosynthetic-Mineral/Stability	37
Table 3.25	Confined/Geosynthetic-Mineral/Integrity	38
Table 3.26	Self Supporting/Unconfined/Stability	40
Table 3.27	Self Supporting/Unconfined/Integrity	41
Table 3.28	Self Supporting/Confined/Stability	42
Table 3.29	Self Supporting/Confined/Integrity	43
Table 3.30	Waste Supported/Unconfined/Stability	44
Table 3.31	Waste Supported/Unconfined/Integrity	45
Table 3.32	Waste Supported/Confined/Stability	46
Table 3.33	Waste Supported/Confined/Integrity	47

Table 3.34	Failure Wholly in Waste	48
Table 3.35	Failure Involving Lining System/Mineral Only/Stability	50
Table 3.36	Failure Involving Lining System/Mineral Only/Integrity	51
Table 3.37	Failure Involving Lining System/Geosynthetic-Mineral/Stability	52
Table 3.38	Failure Involving Lining System/Geosynthetic-Mineral/Integrity	53
Table 3.39	Mineral Only/Stability	55
Table 3.40	Mineral Only/Integrity/Compressible Waste	56
Table 3.41	Mineral Only/Integrity/Slope Deformation	57
Table 3.42	Mineral Only/Integrity/Cavities in Waste	58
Table 3.43	Geosynthetic-Mineral/Stability	59
Table 3.44	Geosynthetic-Mineral/Integrity/Compressible Waste	60
Table 3.45	Geosynthetic-Mineral/Integrity/Slope Deformation	61
Table 3.46	Geosynthetic-Mineral/Integrity/Cavities in Waste	62

## REFERENCES

British Standards Institution(BSI) (1981), BS 6031:1981 Code of Practice for Earthworks, British Standards Institution, London, ISBN 0 580 11835 5.

BSI (1985), BS 8110:1985 Structural Use of Concrete Part 2 Code of Practice for Special Circumstances, British Standards Institution, London, ISBN 0 580 14490 9

BSI (1995)a, BS 8006: 1995 Code of Practice for Strengthened/reinforced soils and other fills, British Standards Institution, London, ISBN 0 580 24216 1.

BSI (1995)b, DD ENV 1997-1:1995 Eurocode 7: Geotechnical Design: General Rules (Together with United Kingdom National Application Document) (1995), British Standards Institution, London, ISBN 0 580 24511 X.

BSI (2000), DD ENV 1997-2:2000 Eurocode 7: Geotechnical Design: Design Assisted by Laboratory Testing (2000), British Standards Institution, London, ISBN 0 580 34718 4.

Orr, T.L. and Farrell, E.R. (1999). Geotechnical Design to Eurocode 7. Springer Verlag, London, UK ISBN 1 852 33038 4.

Schneider, H.R. (1997). Definition and determination of characteristic soil properties. Proc. 14th International Conference on Soil Mechanics and Geotechnical Engineering, Hamburg, 4, 2271-2274. Book News Inc., Portland OR, USA.