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Executive summary

The new European Union (EU) water policy, the Water Framework Directive (WFD),
states that all European surface waters achieve good ecological status by 2015. The
ecological status is an expression of the quality of the structure and functioning of
biological elements associated with surface waters, classified in Annex V. Ecological
status should be assessed via a reference condition approach using bio-assessment
tools (further called ‘classification tools’) based on five biological elements (EU 2000)
which in the case of rivers are: (1) phytoplankton, (2) macrophytes and phytobenthos, (3)
benthic invertebrate fauna and (4) fish. The classification tools need to assess the
composition and the abundance of the biological element (as well as the age structure
for the fish classification tool) based on the monitoring results.

In order to ensure comparability of such monitoring systems between the different
Member States, the results of the systems operated by each Member State shall be
expressed as ecological quality ratios (EQRs) for the purposes of classification of
ecological status. These ratios shall represent the relationship between the values of the
biological parameters observed for a given body of surface water and the values for
these parameters in the reference conditions applicable to that body. The ratio shall be
expressed as a numerical value between zero and one, with high ecological status
represented by values close to one and bad ecological status by values close to zero.
Each Member State shall divide the ecological quality ratio scale for their monitoring
system for each surface water category into five classes ranging from high to bad
ecological status by assigning a numerical value to each of the boundaries between the
classes.

The required precision and confidence to be achieved by the monitoring results is
mentioned in four contexts:

1. Estimates of the level of confidence and precision of the results provided by the
monitoring programmes shall be stated in the river basin management plan.

2. In selecting parameters for biological quality elements Member States need to identify
the appropriate taxonomic level required to achieve adequate confidence and
precision in the classification of the quality element.

3. Frequencies shall be chosen so as to achieve an acceptable level of confidence and
precision.

4. Estimates of the level of confidence and precision of the results provided by the
monitoring programmes shall guide the development of cost-effective programmes of
measures.

The first three are ‘legal’ requirements and part of the WFD legislative document. The
fourth has been used so far in the UK related to water quality classification.

In this study, the variability of metrics is estimated for a specific classification tool in order
to quantify precision and confidence as required by the WFD. We will only develop a
method to fulfil the requirements as stipulated under (1). However, once an uncertainty
estimation methodology is developed, it can be used to determine (2) to (4) and even
help in refining the classification tools in several other aspects (e.g. boundary setting).
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1 Introduction

1.1 Background

The new European Union (EU) water policy, the Water Framework Directive (WFD),
states that all European surface waters achieve good ecological status by 2015. The
ecological status is an expression of the quality of the structure and functioning of
biological elements associated with surface waters, classified in Annex V. Ecological
status should be assessed via a reference condition approach using bio-assessment
tools (further called ‘classification tools’) based on five biological elements (EU 2000)
which in the case of rivers are: (1) phytoplankton, (2) macrophytes and phytobenthos, (3)
benthic invertebrate fauna and (4) fish. The classification tools need to assess the
composition and the abundance of the biological element (as well as the age structure
for the fish classification tool) based on the monitoring results.

In order to ensure comparability of such monitoring systems between the different
Member States, the results of the systems operated by each Member State shall be
expressed as ecological quality ratios (EQRs) for the purposes of classification of
ecological status. These ratios shall represent the relationship between the values of the
biological parameters observed for a given body of surface water and the values for
these parameters in the reference conditions applicable to that body. The ratio shall be
expressed as a numerical value between zero and one, with high ecological status
represented by values close to one and bad ecological status by values close to zero.
Each Member State shall divide the ecological quality ratio scale for their monitoring
system for each surface water category into five classes ranging from high to bad
ecological status by assigning a numerical value to each of the boundaries between the
classes.

The required precision and confidence to be achieved by the monitoring results is
mentioned in four contexts:

1. Estimates of the level of confidence and precision of the results provided by the
monitoring programmes shall be stated in the river basin management plan.

2. In selecting parameters for biological quality elements Member States need to identify
the appropriate taxonomic level required to achieve adequate confidence and
precision in the classification of the quality element.

3. Frequencies shall be chosen so as to achieve an acceptable level of confidence and
precision.

4. Estimates of the level of confidence and precision of the results provided by the
monitoring programmes shall guide the development of cost-effective programmes of
measures.

The first three are ‘legal’ requirements and part of the WFD legislative document. The
fourth has been used so far in the UK related to water quality classification.

The panel below provides some basic definitions relating to precision and confidence.
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Interpretation of ‘precision’ and ‘confidence’

The degree of assurance provided by a confidence interval is described by the confidence
coefficient (e.g. 90%, 95%) - often referred to as the confidence level. This is the proportion of
occasions, in the long run, on which a calculated confidence interval will actually contain the true
(but unknown) quantity being estimated. For example, if we calculate a 90% confidence interval
for the mean from monitoring data for each of 40 different sites, we would expect the true site
mean to fall within its corresponding confidence interval for about 36 of those 40 sites.

Precision is usually defined as the half-width of the confidence interval. For this reason, any
statement of precision must be accompanied by a statement of the corresponding confidence
level.

Whenever the words ‘precision’ and ‘confidence’ are used together, they should always be
interpreted in the statistical sense. That is because, as ‘precision’ is the half-width of the
confidence interval, it has no objective meaning unless confidence is defined in the statistical
sense.

However, when the word ‘confidence’ is used on its own, it often has a non-statistical meaning -
such as: “We are highly confident that macroinvertebrates are better indicators of organic
pollution than fish”. Or “We are fairly confident that Site X is representative of average conditions
in water body Y”. It is important, therefore, to be clear which type of ‘confidence’ is being referred
to whenever the word is mentioned.

Risk of misclassification

No estimate of quality based on sampling will be exactly equal to the true value in the underlying
population (except by a lucky chance). This inevitable element of uncertainty is known as
‘sampling error’. Because of sampling error, the estimated EQR for a quality element may cause
the water body to be put into a different class from its ‘true’ class - that is, the class that would be
obtained given perfect information for that location and time period. The risk of this happening is
known as the Risk of Misclassification (RoM).

In this study, the variability of metrics is estimated for a specific classification tool in order
to quantify precision and confidence as required by the WFD. We will only develop a
method to fulfil the requirements as stipulated under (1). However, once an uncertainty
estimation methodology is developed, it can be used to determine (2) to (4) and even
help in refining the classification tools in several other aspects (e.g. boundary setting).

Before we start to explain the methodology as illustrated for the fish classification tool

(European Fish Index), we need to set the scope on which sort of systems this
methodology is applied.

1.2  Types of classification tools

1.2.1 Unimetric versus multimetric classification tools

The classification tool for a specific biological element can be multimetric - that is, it
consists of different metrics which each represents a scoring system for a parameter
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indicative for biological quality elements (such as diversity, evenness, etc.). If it only
consists of one metric (e.g. RIVPACS) then it is a unimetric tool.

1.2.2 EQRs constrained to lie in [0-1] versus EQRs that may go beyond 1

The EFI fish classification tool (European Fish Index) is an arithmetic mean of ten
probabilities (see below), and so no EFI value can ever fall outside the range [0-1]. In
contrast, the macroinvertebrate RIVPACS classification tool does allow EQRs to go
beyond 1 (although for WFD purposes all scores higher than 1 will be set equal to 1).

1.2.3 Stance taken towards uncertainty in ‘Expected’ data

In the RIVPACS tool, error arises in measuring the environmental variables at a site, and
so there is some statistical uncertainty in the Expected value (for number of taxa, say).
Thus there is error due to both the Observed and Expected components of the EQR -
and this is taken account of in the simulation analysis carried out by RIVPACS Il1+.

For other EQRSs, however, it may be that the reference condition for a water body is
assumed to be known without error, in which case the uncertainty will be due solely to
the variability in the Observed data.

1.2.4 The European Fish Index Tool

The analysis given in this paper is confined to the European Fish Index Tool (Pont et
al., 2006). The EFI (European Fish Index) is the Water Framework Directive fish
classification tool for rivers developed by the FAME (Fish-based Assessment Method for
the Ecological Status of European Rivers) EC funded project - for which the Environment
Agency was the UK Applied partner. It scores single-run electric fishing data from a river
survey site on a scale of 0 to 1, using an Index of Biotic Integrity approach with 10
unweighted metrics. These scores equate to the WFD status categories: bad, poor,
moderate, good and high as follows:

0.000 - 0.187 = class 5 = bad (red)
0.187 — 0.279 = class 4 = poor (orange)
0.279 — 0.449 = class 3 = moderate (yellow)
0.449 — 0.669 = class 2 = good (green)
0.669 — 1.000 = class 1 = high (blue)

To quantify possible deviation from a ‘reference condition’ for any given site, they first
established and validated statistical models describing metric responses to natural
environmental variability in the absence of any significant human disturbance. They
considered that the residual distributions of these models described the response range
of each metric, whatever the natural environmental variability. After testing the sensitivity
of these residuals to a gradient of human disturbance, they finally selected 10 metrics,
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each lying on a [0-1] scale, that were combined to obtain a European fish assemblage
index.

In this study, the uncertainty in the EQR is calculated directly-by carrying out an Analysis
of Variance on sets of observed EQR values, and not indirectly from information about
each of the individual metrics (although the latter would in principle be the sounder
approach). It follows that, given the ‘bundled’ nature of the EQR, we do not take into
account separate error estimates related to the observed or the expected quality on its
own.

WFD Report — Uncertainty estimation for monitoring results by the WFD biological classification tools
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2 Variability of Metrics

2.1 Components of variation

Any metric is subject to four broadly different types of variation:
o Spatial variation - differences from site to site within a water body;
o Temporal variation - within year, both seasonal and random, and year-to-year;

° Temporal-Spatial interaction - whereby a particular temporal effect operates
differently in some locations than others; and

o Sampling and measurement error.

The extent to which these components of variation have a bearing on water body
classification depends crucially on the details of (a) the stipulated sampling methodology,
(b) the nature of the class limits (e.g. mean or percentile), and (c) the classification
assessment method - including the stance taken towards the burden of proof. These
issues are discussed briefly in the next section.

2.2 Relevance to Confidence of Class

Suppose, for example, that the classification is to apply to a three-year period, and the
limits refer to required mean quality. If sampling is to be carried out on just one date,
some allowance needs to be made for the possibility that quality was unusually good or
poor on that particular occasion; and that requires information on the temporal
components of variation. The same applies if a number of samples are to be taken
through the three-year assessment period. The seasonal component of variation will be
smoothed out by the overall mean, but the random temporal component remains, and
some allowance will be needed for this - especially if a Benefit-of-Doubt stance is being
taken. In addition, it is important to know how the class limits are to be interpreted. For
example, the data assessment would be radically different if the class limits specified the
level of quality to be met for, say, 90% or more of the time rather than on average.

Similar issues arise in considering the spatial component of variation. If a single
sampling point is being used to assess a water body, this may provide an unduly harsh
or favourable picture of mean quality across the whole water body - to an extent that can
be quantified knowing the spatial component of variation. The same applies if sampling is
to be carried out at several sites. And as with the temporal element, the interpretation to
be placed on the class limits has a critical bearing on the outcome. For example, do they
specify the level of quality to be met for, say, 90% or more of the water body, or on
average?

These are complex issues that we cannot pursue in the present paper. In most of what
follows, therefore, we assume that the immediate aim is to determine the Confidence of
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Class (CofC) for a single site on a single occasion. We do, however, give some
indication of how the approach could be generalised to accommodate a broader
assessment over space or time.

In a draft report and an accompanying Excel file (version 11/10/2005) we demonstrated

the Risk of Misclassification Approach based on hypothetical EQR (Ecological Quality

Ratio) values of a certain water body. We set up an example for surveillance monitoring

(all biological elements included) and one for operational monitoring (only pressure

elements included). The final classification (ecological status) was obtained applying the

one-out all-out approach for biological element classification. We apply a Revised
Version of this Risk of Misclassification Approach for the current statistical analysis of
EFI data.

2.3  Estimating components of variation

The surest way to gain an understanding of the components of variation affecting any
given metric is to carry out a survey designed according to sound statistical principles.
For example, the survey design outlined in Figure 1 might be suitable if we wished to
estimate the following components of variation:

e between water bodies (of nominally similar type);

¢ site to site within a water body;

e year to year (possibly varying by site);

e seasonal variation (possibly varying by year or by site);

e local spatial variation; and

e sampling and measurement error.

An excellent account of such an exercise is described by Jones et al (2006).

Unfortunately, however, historical data sets associated with ideal programme designs
are seldom found, and so in practice - initially at least - we have to make do with less
comprehensive data sets. Nevertheless it is often possible to derive at least the main
components of variation from historical data sets, and the following section describes
one such exercise - for EFI data.

WFD Report — Uncertainty estimation for monitoring results by the WFD biological classification tools
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Water Bodies 2
Sites within 3
Water Body

Years 3
Seasons 2
within Year

Replicate locations 2
within sites

Total no of samples: 2x3x3x2x2= 72

Figure 1 Example of a hierarchical survey design

2.4  Practical example - EFI

2.4.1 Overview of available data

For each of the seven river catchments, the sampling that was carried out formed natural
sub-groups from which we can attempt to estimate at least some of the main
components of variability, as follows:

On the Nidd, same-day sampling was carried out on four neighbouring 100m stretches
for each of a number of sites. Thus the within-site variability provides a measure of local
spatial variation plus sampling error.

On the Don, sampling at any location was carried out within a window of no more than
three months. Sampling was carried out at typically 2-4 locations within each broad site
area (for example, Shevock1, Shevock2, Shevock3). Thus the within-site variability
again provides a measure of local spatial variation plus sampling error, with an additional
component of temporal variation.

The sampling for the Arrow, Avon and Leadon was much longer-term in nature, with
occasional repeat samples at any one site typically spanning a substantial number of
years. For these three rivers, therefore, the within-site variability provides a measure of
overall temporal variation (of widely varying duration) plus sampling error. Note that the
temporal variation will in general be a combination of trend (i.e. a time pattern common to
all sites) and site-specific temporal variations (known collectively as ‘spatial-temporal
interaction’).

The sampling for the river Stour and tributaries was also long term, running from 1981 to
2005. The data was expected to be less prone to trends over time than that for other
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rivers, because of the long history of improved water quality in the Stour. This makes it
likely that natural temporal variability will have the largest influence on EFI. Thus the
within-site variability will provide a measure of random temporal variation plus sampling
error.

A sampling programme was conducted in the Mersey catchment during 2002 in which
samples were taken in May and September at each of 16 sites. The within-site variability
will therefore provide an estimate of the seasonal component of EFI, along with random
temporal variation plus sampling error.

The fish sampling procedure for the Avon, Arrow, Leadon, Stour and Mersey is based
on EA ‘Fisheries Monitoring Programme Work Instruction 2.1°, Electric Fishing in Rivers'.
For the Nidd and Don, the fish sampling was part of a scientific study. The length of the
river stretch sampled was close to 100m for each of the considered sampling sites.

The proposed FAME EFI sampling method will apply electrical fishing in these rivers
over a length of 100m as well. Only first-run sampling data will be used for the calculation
of the EFI. Hence second- and third-run fish sampling data (where it was available) was
not used in this study.

2.4.2 Results - Local variability plus sampling error

As noted above, the variation shown by the repeat samples for the Don and Nidd sites is
due to sampling and measurement error, plus local spatial and short-term temporal
variation. The within-site standard deviations are plotted against mean EFI in Figure 2
below.

Within-site sampling error for Don and Nidd
0.25
(o}
0.2 °
(]
LL< e 2
0.15 A
H: °:°o .: 00© ® Don
S ool 6 %® o | s ° Nidd
ﬁ . (] (]
oo ©
) e o m g
0.05 - o obo® o af o
) ... e o ‘
=] (m ] [}
0 AL B
0 0.2 0.4 0.6 0.8 1
Mean EFI

Figure 2 EFI within-site variability for the Don and Nidd
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2.4.3 Results - Random temporal variability

Figure 3 shows the within-site standard deviations for (a) the Arrow, Avon and Leadon
and (b) the Stour plotted against the number of years spanned by the data. There is a
tendency for the standard deviations to increase with years spanned - as indicated by the
regression lines - but the effects are relatively slight in comparison with the noise in the
data.

Temporal + Sampling variability for Ar, Av, Le and Stour
0.24
1o o e
0.20 °
— 0.16
S
=
2 0.12
=
7 :
0.08
0.04
0.00
0 4 8 12 16 20 24 28
Timespan of site data (years)
0 Ar&Av&le s Stour
—— Linear (Ar & Av & Le) Linear (Stour)

Figure 3 EFI variability for the Arrow, Avon, Leadon and Stour

Figure 4 shows the effect of adding the Don and Nidd data to this plot. These are broadly
consistent with the leftmost points for the other four rivers.
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Temporal + Sampling variability for six rivers
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Figure 4 Within-site EFI variability for six rivers

2.4.4 Results - Seasonality

Figure 5 shows a plot of the May and September 2002 EFI values for each of 16 sites in
the Mersey catchment. Between May and September, EFl increased at six sites and
decreased at the other ten, demonstrating that there is no obvious seasonal effect
common to all sites. This is confirmed by the slight mean decrease in EFI of 0.02, which
is nowhere near being statistically significant.

This analysis reinforces the general message that seasonality (in the statistical sense
indicated above) is not an issue with the EFI tool. This is partly because sampling can
only take place in a fairly restricted spring-summer window of the year, which means that
there is less opportunity for a seasonal effect to occur than with a tool whose sampling
programme spans the full 12 months. The main point, however, is that the temporal
variation in EFI at a site within that sampling window is driven by a variety of river- or
site-specific conditions (e.g. flow, temperature, vegetation, spawning season, fish
mobility) which are likely to swamp any simple seasonal effect. Consequently the main
aim in monitoring is to visit each site just once in the year, at a time judged most likely to
produce a representative picture of the fish populations and communities in the river.
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Within-site seasonal variation for Mersey catchment
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Figure 5 Seasonal variation in EFl values for sites in the Mersey catchment

2.4.5 Results - Spatial variability

There can be a substantial amount of site-to-site variation within a water body. This is
illustrated by Figure 5, which shows a plot of site means for the Nidd according to
position along the river. The figure also shows 90% confidence intervals for each site
mean. It is clear that there is more site-to-site variation - especially in the left-hand water
body - than can be explained by the size of the within-site variability.
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EFI values for sites on Nidd
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Figure 6 EFI means and 90% confidence intervals for the Nidd

As there is relatively little temporal component of variation in this data, Analysis of
Variance (ANoVA) can be used to determine whether or not the between-site variation is
statistically significantly greater than would be expected having regard to the within-site
variation. If it is, then the excess component can reasonably be attributed to spatial
variability. Moreover, this can be further split into spatial trend (as represented
approximately by a quadratic model) and random spatial variability.

The ANoVA results are summarised below. The analysis confirms that the between-site
component of variation is highly significant. There is also a highly significant spatial trend
for water body 1, accounting for about 68% of the spatial variability. In contrast, the
spatial trend component for water body 2 is only 7% of the total, and not statistically
significant.

Component Water body 1 Water body 2
% of % of
Total SS| spatial| Total SS| spatial
Spatial trend 1.694 68.4 0.043 7.3
Spatial random 0.783 31.6 0.548 92.7
Total spatial 2477, 100.0 0.591] 100.0
Residual 1.146 0.776
Grand total 3.623 1.367
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2.4.6 Summary of ANoVA results

A more extensive analysis of the Arrow, Avon and Leadon data - both individually and
pooled - was carried out using the statistical package GenStat. This broadly confirmed
the more informal analyses described above. In particular, there was a statistically
significant temporal component for only one of the three rivers - the Leadon. ANoVAs
were also carried out for the EFI data for the Don, Nidd, Stour and Mersey. In all cases
where the data extended over a number of years, care was taken to exclude any obvious
environmental trend from the between-year temporal component by first fitting a linear or
quadratic time trend model to the data, and then determining the additional component of
variance accounted for by fitting a year factor.

A summary of the components of variance obtained by these various approaches is
provided in Table 1.

Table 1 Approximate components of variability for EFI data

(a) as Variances

River Residual Seasonal Betw-years Spatial
Nidd WB1 0.0133 0.0251
Nidd WB2 0.0105 0.0049

Don 0.0050 0.0000 0.0040
Arrow 0.0120 ns 0.0028
Avon 0.0087 ns 0.0096
Leadon 0.0134 0.0015 0.0133
Stour 0.0046 0.0001 0.0003 0.0044
Mersey 0.0057 0.0000 not applic.

(b) as Standard deviations

River Residual Seasonal Betw-years Spatial
Nidd WB1 0.115 0.158
Nidd WB2 0.102 0.070

Don 0.070 0.000 0.064
Arrow 0.110 ns 0.052
Avon 0.093 ns 0.098
Leadon 0.116 0.039 0.115
Stour 0.068 0.007 0.016 0.067
Mersey 0.075 0.000 not applic.

Note:
1. Shaded cells indicate data sets where the specified variance component does not apply .
2. The ‘Residual’ term includes the Spatial-Temporal interaction component as well as measurement error.
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3 Modelling variability at a site

3.1 Relating standard deviation to mean

Figure 7 reproduces the plot seen earlier (in Figure 2) of EFI within-site standard
deviation against EFI mean. (Ignore the curve for the moment.)

Pooled data for the Don & Nidd
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Figure 7 Within-site EFIl standard deviation v. mean

At first sight the large amount of scatter may seem discouraging. However, two features
should be noted:

1. For any ‘vertical’ slice through the plot, there is no discernible difference between
the two rivers - which is reassuring.

2. Aot of the scatter - especially in the vertical direction - is inevitable because of the
high level of statistical uncertainty in standard deviations calculated from small
numbers of samples. For example, where a standard deviation s is based on four
replicates from a Normally distributed population, the true standard deviation could
fall anywhere in the interval (0.6s - 3.7s) with 95% confidence.

In order to develop a general approach for determining CofC, we need a model relating
typical EFI standard deviation to EFI mean. One approach that we have developed is to
fit a polynomial curve through the data, with the additional constraints that the curve

passes through two ‘anchor’ points at EFl = 0 and EFI = 1. The choice of anchor points
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should ideally be made on the basis of actual replicate data sets with means close to 0
and 1. In the absence of that, we have used arbitrary (but plausible) values of 0.01, as
shown in Figure 7. The best-fit polynomial using these anchor standard deviations is
shown by the red curve.

It is interesting to see what happens when the data for the other four rivers is included in
the curve-fitting calculation (see Figure 8). Had there been an appreciable year-to-year
component of variation, we would expect to see a general increase in the within-site
standard deviations, and hence the curve to move upwards. No such effect is apparent,
however; and the curve is actually pulled down appreciably in the 0.15 - 0.4 region
because of the relatively low variability seen at the Stour sites (see Figure 3).
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Figure 8 EFI within-site standard deviation v. mean for six rivers

3.2  Statistical distribution of variability

The previous section presented a model for the expected or typical standard deviation in
EFI measurements at a site, given the mean EFI. Before we proceed to a consideration
of CofC, the final step is to decide on a suitable statistical model for the uncertainty in
EFI at a site.

The simplest option is to assume that the EFI uncertainty is Normally distributed around
the specified true EFI value, with the predicted standard deviation. However, although
this model is quite acceptable for most values of EFI it becomes unsatisfactory at either
extreme, because the assumed Normal distribution ‘spills’ outside the allowed 0-1 range.

For this reason we have adopted the logit transformation, whereby the EFI (x) is
transformed to a new variable z given by:
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z = In(x/(1-x)),

where In denotes ‘logs to base e’. As x runs from 0 to 1 the transformed variable z runs
from - to +o0, and so there is no longer any risk of spillage. Thus we can safely use the
assumption of Normal error in the logit world, and then transform the resulting distribution
back into the EFI world.

This is easier to see with the help of a diagram. Figure 9 shows the situation in which the
assumed EFIl mean and standard deviation are 0.85 and 0.10. Under the simple
Normality assumption, an appreciable part of the right-hand tail spills beyond EFI = 1. In
contrast, the logit transformation ensures that the error distribution ends asymptotically at
1 (at the expense of a longer left-hand tail so as to achieve the required standard
deviation).

EFI error distribution models
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0.3 04 0.5 0.6 0.7 0.8
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Norm. using logit trans fin _
st.dev.=0.1
Assumed mean
Figure 9 lllustration of the effect of the logit transformation of EFI
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4 Confidence of Class

4.1 Forming the appropriate measure of variability

It was noted earlier that the variability relevant to assessing Confidence of Class
depends critically on how the status of a water body is to be defined. To illustrate this
point, we discuss five hypothetical scenarios below, and quantify each of them using the
simple Excel calculation tool CAVE (Combines Appropriate Variance Estimates)
illustrated in Table 2. It is important to emphasise that the full specification of each
classification tool will in due course include an objective, unambiguous statement of how
it is to be applied to a particular water body over space and time. Once that is known, the
details can simply be plugged into CAVE to determine the relevant standard error. In the
meantime, this exercise illustrates the substantial uncertainties that can be introduced
where such a specification has not been made explicit.

Each scenario in Table 2 describes a particular way in which water body status might be
defined, coupled with a proposed monitoring programme. The scenarios are as follows:

1. Status is defined by quality on one specific date at one specific location in the
water body. One sample is taken at that location on the specified date.

2. Status is defined by mean quality over a 12-month period at one specific location
in the water body. One sample is taken at that location at a randomly chosen time
during the year.

3. Status is defined by mean quality over a 12-month period over the whole water
body. One sample is taken at a random location in the water body at a randomly
chosen time during the year.

4. Status is defined as in 3, but now four samples are taken at randomly chosen
locations and sampling occasions.

The variability associated with the final EFI result is different for each of these scenarios,
because it depends on (a) which components of variation may be ignored because of the
way status is defined, and (b) how many samples are available to smooth the random
components that do apply. CAVE provides a convenient template for working
systematically through the components deciding which of them are relevant. The yellow
cells indicate values to be supplied by the user, as follows:

e The variability components are specified by the row of seven standard
deviation estimates;

o Nreps is the number of replicate samples to be taken at each time/location;

¢ Nt/s is the number of different times and/or locations to be sampled; and
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e The six No/Yes values are set to 1 or 0 depending on whether or not the
variance component is relevant in the context of the specified definition.

There is inevitably some degree of arbitrariness in supplying the seven input standard
deviations, because it was not possible to identify them all from the historical data sets.
The values currently built into CAVE are based on the plausible subdivisions of the
Residual and Spatial components shown below. However, it is important to note that the
sensitivity of the Confidence of Class outcome to any of these assumptions can easily be
tested using the spreadsheet tool shortly to be described.

Variance component How subdivided
from ANoVAs
Residual 36% Local temporal - measurement error & fish mobility

64%  Site-specific temporal variability

Spatial 32% Local spatial variability
21%  Systematic spatial trend

47% Random spatial variability within water body

The resulting standard errors for the four scenarios addressed by CAVE are shown in the
right-hand column of Table 2. Scenario 1 describes the simplest situation in which a
single location is deemed to represent the whole water body (perhaps because it is in the
area of the water body experiencing the greatest pressure), and a single sampling
occasion is deemed appropriate (perhaps defined by some predetermined condition or
time of year). The standard error (SE) is 0.078. This is substantially lower than that for
the next two scenarios because only two components of variation are relevant: local
sampling error and fish mobility, and local spatial variability.

With Scenario 2, the random temporal, seasonal and temporal-spatial interaction
components now have to be included. This has a big impact on the SE, increasing it from
0.078 to 0.119.

Under Scenario 3 the spatial component of variability has to be included as well as the
temporal. This further increases the SE from 0.119 to 0.139. (This is not so dramatic as
before because the spatial variability is relatively small in relation to the spatial-temporal
interaction term, which was introduced in Scenario 2.)

Finally, Scenario 4 shows what happens if three samples are taken at randomly chosen
locations and times, rather than the single sample of Scenario 3. This reduces the SE by
a factor of V3, from 0.139 to 0.080. This is almost exactly the SE under Scenario 1. In
other words, the effect of widening the definition of water body status from a single
specified location and time (Scenario 1) to the full water body over a year (Scenario 4) is
to require a three-fold increase in samples to achieve a comparable level of precision.
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SDInt St.dev. due to spatial-temporal interaction

SDseas  St.dev. due to seasonal cycle

SDtemp  St.dev. due to random temporal variation
SDlocal St.dev. due to local spatial variability at a site
SDgrad St.dev. due to systematic spatial trend along water body

SDspat  St.dev. due to random spatial variability

Table 2
monitoring - four illustrations
CAVE
Combines Appropriate Variance Estimates
Key
SDE St.dev. due to meas. error and fish mobility

nReps No of replicate samples taken at each site/sampling occasion

Nt/s No of times and/or sites sampled

Error

Local
Scenario SDE

Interactn
SDInt

Component of variance

How the definition of WB status influences the standard error of

Temporal

Spatial

Seasonal
SDseas

Random
SDtemp

Local
SDlocal

System.
SDgrad

Random
SDspat

Type any desired

values into the
yellow cells...

0.060

0.080

0.000

0.040

0.050

0.040

0.060

0.0036

0.0064

0.0000

0.0016

0.0025

0.0016

0.0036

No/Yes

Nreps
Nt/s

No/Yes

Nreps
Nt/s

No/Yes

Nreps
Nt/s

No/Yes

Nreps
Nt/s

Note: see text for definition of scenarios

Total N 1
Overall Var| 0.0061
Overall SE 0.078
Total N 1
Overall Var| 0.0141
Overall SE 0.119
Total N 1
Overall Var| 0.0193
Overall SE 0.139
Total N 3
Overall Var| 0.0064
Overall SE 0.080

Returning to Scenarios 1 - 3, the important point to emphasise is that, as the SE of the
assessment statistic increases, so the Confidence of Class decreases (for any given
monitoring outcome). This relationship is quantified in the next section.

WFD Report — Uncertainty estimation for monitoring results by the WFD biological classification tools

24



4.2 Statistical method

4.2.1 Single site and sampling occasion

Suppose the four intermediate class boundaries are denoted by Ls, L4, Lz and L; (in the
order Bad/Poor — Good/High). From our model of standard deviation versus mean EFlI,
we can determine the standard deviations that would apply when quality were truly at
each of those boundaries. Let these be denoted by ss, s4, s3 and s,. We also assume
that the statistical variation in the observed EFI quality at a particular time and place is
Normally distributed (after transforming the EFI scale if necessary, as discussed earlier).

Now suppose we observe an EFI value of x. The aim is to determine the levels of
confidence we have that the frue quality (at the time and place of sampling) is
respectively in Class 5, 4, 3, 2 and 1. To do this, we first do four calculations. For each
class boundary i’ in turn, we ask the question: What is the probability p; of observing an
EFI of x or better if the true mean quality, u, were on the L boundary? This can be

calculated as:

pi = Pr(X>xgiven pu=Lj) = 1-®{(x - n)/si},
where @ denotes the cumulative Normal probability.
This probability statement says that Pr(X > u + u.s;) = p; (where u is the standard Normal
deviate corresponding to 1 - p;). We can turn this into a confidence statement by inverting
it in the customary way, giving:
Confidence(u < x - u.s;) = 100p:.

This enables us to make the following five statements:

e Confidence of class 5 = 100ps.

e Confidence of exactly class 4 = 100(p4 - ps).
e Confidence of exactly class 3 = 100(ps - pa).
e Confidence of exactly class 2 = 100(p2 - p3)-

e Confidence of exactly class 1 = 100(1 - p2).
(Note that these five quantities sum to 100%.)

4.2.2 Several sites or sampling occasions

If the required statistic is mean EFI calculated across several sites, or for a number of
sampling occasions at the same site, the relevant standard error is now a function of
several components of variation (as discussed in Section 4.1). Consequently we no
longer have a model showing directly how the standard error would change according to
how far the true mean EFI| was above or below the observed mean.
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Nevertheless, we do know that as the true mean EFI moves close to O or 1, the standard
error must decrease substantially, for otherwise the implied distribution would have too
wide a tail to be plausible.

As a pragmatic solution, therefore, we have retained the simple one-sample model of
standard deviation versus mean EFI at a site, and scaled it up or down so that the
maximum of the curve produces the specified standard error. The CofC calculations then
proceed exactly as before.

4.3 CofC for Scenario 1

This section deals with the simple case in which we choose to define water body status
on the basis of a single sample at a particular site (Scenario 1 in Table 2). We can
calculate the Confidence of Class (CofC) for that specific location and point in time using
the method described in Section 4.1.1. The outcome is shown in Figure 10. Consider,
for example, when the observed EFl is 0.2. We can see from the red, orange and yellow
curves that there are three possible conclusions: the true Class may be Bad (with 50%
confidence); Poor (40%); or Moderate (10%).

Confidence of Class curves

Confidence of Class (%) .

0.6
Observed EFI
Class 5 Class4 — —Class 3 Class 2 Class 1
Limits @ CO05 @ C25
[No of rep. samples: | 1| CO05 0.550
C25 0.620

Figure 10 Confidence of Class - Scenario 1

The legend below the figure gives information about two key points on the High curve.
Thus, when the observed EFI is 0.55 (the red blob in the figure), we have only 5%
confidence that the true class is High. In other words, we can be 95% confident that the
true class is worse than High. Similarly, when the observed EFI is 0.62 (the amber blob),
we can be 75% confident that the true class is worse than High.
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We can recast the information of Figure 10 in a slightly different way, as shown in Figure
11. This plots the risk that a Face-Value interpretation of the observed EFI will put the
site into an incorrect class. For example, when the observed EFl is very close to 0.45,
namely on the border between Moderate and Good, it is not surprising that there is a
50% risk of making the wrong decision. Conversely when the observed EFl is 0.58, in
the middle of the Good class, there is only a 13% risk (i.e. confidence) that the true class
is not Good.

Risk of Face-Value Misclassification (%)
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Figure 11  Risk of Face-Value Misclassification for the Figure 10 scheme

4.4 CofC for Scenario 2

Under Scenario 2, we still define water body status by observed quality at a specific
location, but now the one sample chosen at random is supposed to represent the whole
year. The revised version of the Figure 10 plot is shown in Figure 12. The curves are
now much wider than before, indicating the poorer CofC (for any given EFI) brought
about by the need to recognise the temporal uncertainty.
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Confidence of Class curves

Confidence of Class (%) .

0.4 0.6
Observed EFI
Class 5 Class4 — —CClass 3 Class 2 Class 1
Limits @ CO05 @ C25
[No of rep. samples: | 1| CO05 0.480
C25 0.595

Figure 12 Confidence of Class — Scenario 2

Figure 13 similarly shows the revised version of Figure 11. The risk of a Face-Value
misclassification is still 50% or thereabouts at most of the class boundaries, as before;
but for the relatively narrow class 4 the variability is simply too great for effective
discrimination and the risk of misclassification rises to 70%.

With Scenario 3, the additional uncertainty introduced by the spatial component is
relatively small, and so the CofC results for Scenario 3 are only slightly poorer than those
seen here for Scenario 2.
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Risk of Face-Value Misclassification (%)
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in wrong class (%)
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Observed EFI1

Figure 13  Risk of Face-Value Misclassification for the Figure 12 scheme

4.5 CofC for Scenario 4

Finally, Scenario 4 shows how, even when the definition of water body status requires
the classification to reflect both spatial and temporal variability, the precision can be
brought to a tolerable level if enough samples are taken. Here, three samples are taken
from three different sites at randomly selected times. The resulting Risk of
Misclassification plot is shown in Figure 14.
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Risk of Face-Value Misclassification (%)
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Figure 14 Risk of Face-Value Misclassification for Scenario 4

These examples illustrate the worsening effect on Risk of Misclassification of introducing
additional components of variation. This underlines the importance, for any classification

tool, of having a clear, unambiguous statement about the basis on which water body
status is to be calculated.
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List of abbreviations

ANoVA Analysis of Variance

CAVE Statistical tool in Excel - ‘Combines Appropriate Variance Estimates’

CofC Confidence of Class

EFI European Fish Index

EQR Ecological Quality Ratio

FAME Fish-based Assessment Method for the Ecological Status of European
Rivers

RIVPACS River Invertebrate Prediction and Classification System

SE Standard Error

WB Water Body

WFD Water Framework Directive
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