

a business of

Imbalance costs and risks

An update CLIENT: DECC DATE: 12.04.13

Reputation built on Results

Copyright 2013 by Baringa Partners LLP. All rights reserved. Confidential and proprietary.

Agenda
Objectives
Balancing arrangements recap
Use of historic data
Simulation methodology
Historic imbalance costs
Imbalance risk sensitivities

- Provide a quantification of the current and possible future risk associated with imbalance costs
- Deploy a simple, transparent approach consistent with understanding the materiality of the risk for project economics
- Assess the potential impact of changes to balancing arrangements and market fundamentals through sensitivities
- Understand the potential benefit of improved forecasting

Balancing arrangements recap

- a business of Baringa
- Market participants buying and selling physical power are responsible for their own balancing on a halfhourly basis.
- To the extent that a participant's net position, including contracts, is not zero, this is treated as an imbalance and settled against 'cash-out' prices.
- The cash-out price that is applied depends on the direction of the imbalance relative to the overall system
 - Opposite direction: a market-related price is applied
 - Same direction: a price is applied reflecting the System Operator cost of balancing ("System Buy Price" or "System Sell Price").
- SBP/SSPs can be at a significant and volatile premium/discount to the underlying wholesale price.

	System long	System short
Participant long	SSP	MIP
Participant short	MIP	SBP

Use of historic data

- The actual imbalance faced by participants will be a function of their portfolio and trading strategy.
- We are aiming to isolate the element of imbalance that can be attributed to uncertainty in relation to the level of outturn generation from an asset.
- We have used public domain data for transmission-connected assets (BM Units).
- Final Physical Notifications (FPNs) represent the information on expected output provided by generators to the System Operator at gate closure, 1 hour ahead of delivery – we use these as our proxy for the forecast information.
- We compare this to Metered Output, and treat the difference as a 'forecast imbalance'.
- We then calculate a forecast imbalance cost by applying the appropriate cashout price for that half-hour (depending on the relative direction of the forecast imbalance).

Risk assessment through simulation

a business of

🛠 Baringa

Copyright 2013 by Baringa Partners LLP. All rights reserved. Confidential and proprietary.

Forecast Imbalance Cost $\sum (MV - FPN). (Cash Out Price - MIP)$ MV = Metered Volume (MWh) $\sum MV$ FPN = Final Physical Notification (MWh)MIP = Market Index Price (£/MWh)

(Note that this is not actual imbalance - but a hypothetical imbalance if contracting matched FPNs at gate closure)

Imbalance Risk

- We define imbalance risk as the potential for increased costs associated with uncertainty around the expected level of imbalance cost
- The proposed metric is the difference between the mean (expected) and a 95th percentile worst case

🔆 🛠 Baringa

Today

2020

- Cost/risk today
- Asset type / portfolio
- Sensitivities on cost/risk under future scenarios

Today

2020

Imbalance cost (£/MWh)

- Cost/risk today
- Asset type / portfolio
- Sensitivities on cost/risk under future scenarios
- Overall uncertainty

Today

2020

Imbalance cost (£/MWh)

- Cost/risk today
- Asset type / portfolio
- Sensitivities on cost/risk under future scenarios
- Overall uncertainty
- Potential benefit of forecast improvement

Today

Imbalance cost (£/MWh)

Historic imbalance costs Onshore/offshore - 2012

Historic imbalance costs Company - 2012

Historic imbalance costs FPN patterns

🛠 Baringa

Historic imbalance costs Key messages

- Significant spread in imbalance cost by BM unit
- Represents 1-6% of annual revenues at minimum
- Different FPN patterns reflected in spread of costs by company
- Independent generators show wider spread
- Relationship between asset size and imbalance cost
- Offshore costs lower than onshore on average
- 2011 shows similar pattern on average slightly lower, potentially due to overall windier year

Early simulation results show relatively tight distribution on annual basis for given asset / FPN pattern due to diversity effects across year

Longer term risk likely to be driven by uncertainty in fundamentals and regulatory outcomes rather than inherent risk within particular scenarios

a business of

🔆 Baringa

