UKHSA publishes a weekly national influenza and COVID-19 surveillance report which summaries the information from the surveillance systems which are used to monitor influenza, COVID-19 and other seasonal respiratory viruses in England.

Additional figures based on these surveillance systems are included in this slide set.

The figures presented in this slide set are based on data from week 49 (between 5 December and 11 December 2022).
1) Confirmed COVID-19 episodes in England
2) Respiratory Datamart system (England)
3) Second generation surveillance system (SGSS)
4) Community surveillance
5) Surveillance in ‘educational-age’ cohorts
6) Primary Care surveillance
7) Secondary Care surveillance
8) Mortality surveillance
9) Possible reinfections in England
10) Co/secondary infections with COVID-19
Confirmed COVID-19 episodes in England
Confirmed COVID-19 episodes in England

Data Information

- From the week 32 report onwards, case rates have been updated to use the latest ONS population estimates for mid-2020. Previously case rates were calculated using the mid-2019 population estimates.

- From 11 January 2022 the requirement for confirmatory PCR testing in individuals who test positive using a lateral flow device was temporarily removed.

- Rates by ethnicity and IMD quantile will continue to be presented using the mid-2019 estimates, until the mid-2020 estimates become available.

- From 31 January 2022, UKHSA moved all COVID-19 case reporting in England to use a new episode-based definition which includes possible reinfections. Each infection episode is counted separately if there are at least 91 days between positive test results (PCR or LFD). Each infection episode begins with the earliest positive specimen date. Further information can be found on the UK COVID-19 dashboard.

- Since 1 April 2022, free universal symptomatic and asymptomatic testing for the general public in England is no longer available, as outlined in the plan for living with COVID-19. As such, there will be a reduction in the reporting of data obtained through Pillar 2 from April 2022 onwards. Data in this report should be interpreted in the context of this change to testing. Public health guidance remains in place for cases and their close contacts.
Confirmed COVID-19 episodes tested under Pillar 2, based on sample week with overall weekly PCR positivity for Pillar 2 (%).
Weekly confirmed COVID-19 case rates per 100,000, by episode, tested under Pillar 2, by sex
Weekly confirmed COVID-19 case rates per 100,000, by episode, tested under Pillar 2, by age group
Weekly PCR positivity (%) of confirmed COVID-19 cases tested overall and by sex under Pillar 2
Weekly PCR positivity (%) of confirmed COVID-19 cases tested under Pillar 2, by male and age group
Weekly PCR positivity (%) of confirmed COVID-19 cases tested under Pillar 2, by female and age group.
Weekly confirmed COVID-19 case rates by episode, per 100,000 population (Pillar 2), by UKHSA centres and sample week
Weekly PCR positivity of confirmed COVID-19 cases tested under Pillar 2 (%) by UKHSA centres and sample week.
Weekly incidence per 100,000 population by ethnicity (Pillar 2), England

- White
- Black / African / Caribbean / Black British
- Indian (Asian or Asian British)
- Pakistani (Asian or Asian British)
- Other Asian / Asian British
- Mixed / Multiple ethnic groups
- Other ethnic group

Week number

Incidence rate per 100,000 population

14 December 2022
Weekly COVID-19 episodes tested under Pillar 1, per 100,000 population by age group and region, weeks 40 to 49

East Midlands

East of England

London

North East

North West

South East

South West

West Midlands

Yorkshire and Humber

Legend:
- 0-9
- 10-19
- 20-29
- 30-39
- 40-49
- 50-59
- 60-69
- 70-79
- 80+
Weekly COVID-19 episodes tested under Pillar 2, per 100,000 population by age group and region, weeks 40 to 49
Weekly COVID-19 episodes tested under Pillar 1, per 100,000 population by ethnicity and region, weeks 40 to 49
Weekly COVID-19 episodes tested under Pillar 2 per 100,000 population by ethnicity and region, weeks 40 to 49
Weekly COVID-19 rate tested under Pillar 1, per 100,000 population by IMD quintile (1 being the most deprived and 5 being the least deprived)

Incidence rates have been calculated using the mid-2019 ONS population estimates.
Weekly COVID-19 rate tested under Pillar 2, per 100,000 population by IMD quintile (1 being the most deprived and 5 being the least deprived)
Weekly rate of COVID-19 episodes per 100,000 population (Pillar 2), by upper-tier local authority, England (box shows enlarged map of London area)
Respiratory Datamart system (England)
Respiratory DataMart – Influenza subtypes

Influenza A(H1N1)pdm09
- Positive samples
- % 2018/19
- % 2019/20
- % 2020/21
- % 2021/22
- % 2022/23

Week number: 27 to 23
Number of positive samples: 0 to 250
Proportion positive: 0 to 30

Influenza A(H3N2)
- Positive samples
- % 2018/19
- % 2019/20
- % 2020/21
- % 2021/22
- % 2022/23

Week number: 27 to 23
Number of positive samples: 0 to 300
Proportion positive: 0 to 30

Influenza A (not subtyped)
- Positive samples
- % 2018/19
- % 2019/20
- % 2020/21
- % 2021/22
- % 2022/23

Week number: 27 to 23
Number of positive samples: 0 to 600
Proportion positive: 0 to 30

Influenza B
- Positive samples
- % 2018/19
- % 2019/20
- % 2020/21
- % 2021/22
- % 2022/23

Week number: 27 to 23
Number of positive samples: 0 to 250
Proportion positive: 0 to 30

14 December 2022
Respiratory DataMart – Respiratory syncytial virus (RSV)
Second generation surveillance system (SGSS)
The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution.
Previously, this data was presented by report date however is now presented by specimen date.
SGSS reported Influenza B cases by region (all ages)

The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution.

Previously, this data was presented by report date however is now presented by specimen date.
SGSS reported RSV cases by region (all ages)

The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution. Previously, this data was presented by report date however is now presented by specimen date.
The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution.
The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution.
The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution.
SGSS reported hMPV cases by region (all ages)

The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution.
Community surveillance
Acute respiratory infection (ARI) outbreaks linked to educational settings

Data Information

- We report on new acute respiratory infection (ARI) incidents reported to UKHSA Health Protection Teams (HPTs) and entered on HPZone in the previous reporting week by setting and locality.

- Daily and weekly aggregated surveillance reports are extracted from HPZone to generate the line listing.

- The weekly extracts include incidents reported in the previous epidemiological week (Monday to Sunday) by locality and context (setting e.g. school)

- The ARI incidents captured on HPZone represent a subset of all ongoing clusters and outbreaks in England rather than an exhaustive listing.

- SARS-CoV2 testing policies and public health guidance for different settings changed over time. This means that any interpretation of seasonal and temporal trends since March 2020 should take this into account.

- From week 14 2022 all reported outbreaks are considered suspected, in line with changes in reporting and the implementation of the living with COVID-19 plan. (Prior to this, individual cases notes for situations associated with educational settings were reviewed by an epidemiologist and an assessment made about whether the criteria for a confirmed COVID-19 cluster or outbreak were met).

- The ARI definition includes presentations of both of influenza-like illness (ILI) and other acute viral respiratory infections (AVRI). Causal pathogens can include Influenza A and B, Respiratory Syncytial Virus (RSV), adenovirus, rhinovirus, parainfluenza, human metapneumovirus (hMPV) and SARS-CoV-2.

- For further info please contact: respscidsc@ukhsa.gov.uk
Number of acute respiratory infection outbreaks reported to UKHSA by type of educational setting, England
Number of acute respiratory infection outbreaks by type of educational setting, England
End of academic year total
Week 35 2021-34 2022

<table>
<thead>
<tr>
<th>UKHSA Centres</th>
<th>Nursery</th>
<th>Primary School</th>
<th>Secondary School</th>
<th>Combined</th>
<th>Special Educational Needs (SEN) schools</th>
<th>College University</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>540</td>
<td>1761</td>
<td>596</td>
<td>161</td>
<td>1306</td>
<td>59</td>
<td>4423</td>
</tr>
</tbody>
</table>

Week 49 2022
Main table

<table>
<thead>
<tr>
<th>UKHSA Centres</th>
<th>Nursery</th>
<th>Primary School</th>
<th>Secondary School</th>
<th>Combined</th>
<th>Special Educational Needs (SEN) schools</th>
<th>College University</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Midlands Centre</td>
<td>3 (0)</td>
<td>2 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (0)</td>
<td>0 (0)</td>
<td>6 (0)</td>
</tr>
<tr>
<td>East of England Centre</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (0)</td>
<td>0 (0)</td>
<td>1 (0)</td>
<td>0 (0)</td>
<td>2 (0)</td>
</tr>
<tr>
<td>London Centre</td>
<td>16 (4)</td>
<td>24 (7)</td>
<td>2 (0)</td>
<td>2 (0)</td>
<td>12 (0)</td>
<td>1 (0)</td>
<td>57 (11)</td>
</tr>
<tr>
<td>North East Centre</td>
<td>3 (0)</td>
<td>3 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>6 (0)</td>
</tr>
<tr>
<td>North West Centre</td>
<td>0 (0)</td>
<td>5 (1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (0)</td>
<td>0 (0)</td>
<td>8 (1)</td>
</tr>
<tr>
<td>South East Centre</td>
<td>0 (0)</td>
<td>1 (0)</td>
<td>2 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (0)</td>
</tr>
<tr>
<td>South West Centre</td>
<td>1 (0)</td>
<td>2 (0)</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>3 (0)</td>
<td>0 (0)</td>
<td>7 (1)</td>
</tr>
<tr>
<td>West Midlands Centre</td>
<td>4 (1)</td>
<td>15 (4)</td>
<td>4 (2)</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>24 (8)</td>
</tr>
<tr>
<td>Yorkshire & the Humber</td>
<td>1 (0)</td>
<td>11 (3)</td>
<td>3 (1)</td>
<td>1 (0)</td>
<td>4 (2)</td>
<td>0 (0)</td>
<td>20 (6)</td>
</tr>
<tr>
<td>Total</td>
<td>28 (5)</td>
<td>63 (15)</td>
<td>13 (4)</td>
<td>4 (1)</td>
<td>24 (2)</td>
<td>1 (0)</td>
<td>133 (27)</td>
</tr>
</tbody>
</table>

* Number of acute respiratory infection for the most recent week in brackets
Primary Care surveillance
Proportion of detections of SARS-CoV-2, influenza and other respiratory viruses amongst virologically-positive respiratory surveillance samples in primary care in England by week

Since October 2021 the UKHSA Respiratory Virus Unit has been undertaking extended respiratory virus testing of samples submitted from primary care surveillance, covering the viruses listed in the figure. Samples which test positive are summed and presented in the figure to indicate recent trends in detections.

Source: RCGP Research and Surveillance Centre sentinel primary care practices and the UKHSA Respiratory Virus Unit
Secondary Care surveillance
Weekly admission rates for hospital and ICU/HDU laboratory confirmed COVID-19 cases reported through SARI Watch, week 49

Source: UKHSA SARI-Watch (Severe Acute Respiratory Infection-Watch, formerly CHESS).

*Only NHS Acute trusts that have reported ≥1 day in the past week; excludes Specialist trusts. Acute NHS trusts (including Specialist trusts) reporting into SARI-Watch COVID-19 hospitalisation surveillance are typically around 100 per week. This was 89 for the hospitalisation (all levels of care) indicator in week 05 December 2022 to 11 December inclusive and 79 trusts for the ICU/HDU indicator. For the maps, as Specialist trusts are excluded, the number of trusts providing data on COVID-19 hospitalisations in week ending 11 December 2022 was 82 and 74 for ICU/HDU admissions for COVID-19.
Weekly COVID-19 hospitalisation rate per 100,000 trust catchment population by age group and region, weeks 40 to 49

[Graphs showing hospitalisation rates by region and age group from weeks 40 to 49]
Hospital admission rate (excluding ICU/HDU) by ethnicity per 100,000 trust catchment population, by month

Caveat: From week 24 (2021) the ethnicity analysis is based on a new method for assigning ethnicity, developed by UKHSA. The previous method used the most recent ethnicity recorded through linkage to Hospital Episode Statistics. However, this method led to unfeasibly high rates in the ‘Other’ ethnic group when applied to COVID-19 cases, hospitalisation or mortality. The new method uses the most frequent ethnicity recorded through linkage to Hospital Episode Statistics, unless the most frequent was ‘Other’ when the second most frequent was chosen.
Rate of admission to ICU/HDU by ethnicity, per 100,000 trust catchment population, by month

Caveat: From week (24 2021) the ethnicity analysis is based on a new method for assigning ethnicity, developed by UKHSA. The previous method used the most recent ethnicity recorded through linkage to Hospital Episode Statistics. However, this method led to unfeasibly high rates in the ‘Other’ ethnic group when applied to COVID-19 cases, hospitalisation or mortality. The new method uses the most frequent ethnicity recorded through linkage to Hospital Episode Statistics, unless the most frequent was ‘Other’ when the second most frequent was chosen.
COVID-19 as primary reason for admission among SARS-CoV-2 positive patient by week of admission

Notes
1) Case-level sentinel data from SARI-Watch, form week 35 2021 (commencing 30 August 2021) to week 47 2022 (ending 27 November 2022) inclusive
2) Total 30,417 records in period of analysis, of which 33% (n=10,112) had COVID-19 as primary reason for admission ('Yes').
3) SARS-CoV-2 patients with evidence of COVID-19 treatment but have 'No' or 'Unknown' for COVID-19 as primary reason for admission (n=1,084) are reassigned to COVID-19 as primary reason of admission ('Yes').
4) Reassignment increases COVID-19 as primary reason for admission ('Yes') from 10,112 to 11,196
5) 24% (7,446/30,417) of total records in this period have missing data on the 'Admission due to COVID-19' indicator – these are excluded from analysis
6) Caveats: London trusts under-represented and most recent weeks are subject to retrospective updates
SARS-CoV-2 Whole Genome Sequencing (WGS) coverage, England
Coverage of sequencing with a valid result and genotyping over time (12 December 2021 to 12 December 2022)

Episodes where the individual only tested using a lateral flow device are excluded. Grey shading was applied to the previous 14 days to account for reporting delays in sequencing data.

Data extract from 13 December 2022; data from 12 December 2021 to 12 December 2022.
Grey shading was applied to the previous 14 days to account for reporting delays in sequencing data.
Episodes where the individual only tested using a lateral flow device are not included in the percentage denominator.
Preceding/co-/secondary infections with COVID-19

Slides for weekly covid flu report

HCAI, Fungal, AMR, AMU & Sepsis Division
Preceding/co-/secondary infections with COVID-19

Background

• Numbers of preceding/co-/secondary infection remain low across UKHSA surveillance systems.

• For patients with severe respiratory failure requiring Extra Corporeal Membrane Oxygenation (ECMO), analysis of data from six adult ECMO centres in England indicates that among patients with severe respiratory failure due to COVID-19, almost a third of these have co/secondary infections. Note there have been no reports of COVID-19 admissions to SRFs requiring ECMO since September 2022.

• Published data analyses from pandemic wave 1 (W-1) indicates increased mortality associated with COVID-19 and influenza, key bacterial and fungal infections and invasive pneumococcal disease (IPD) in comparison to patients without co/secondary infection.

• Data analysis from W-1 indicates that Aspergillus and candidemia cases have increased risk of mortality in comparison to patients without co/secondary infection.

• Free community testing ended 31 March 2022 as part of the government’s Living with COVID-19 plan, with asymptomatic testing continuing in some settings. As of 31 August 2022, asymptomatic testing in all settings, including hospitals, has been paused. Please use caution when comparing incidence of bacterial, fungal and viral preceding/co-/secondary infections with COVID-19 over time due to these differences in testing strategies.
Co/secondary infections among patients with severe respiratory failure requiring Extra Corporeal Membrane Oxygenation (ECMO)

Analysis is based on cumulative data from six adult ECMO centres in England. Surveillance is all year round. Each season commences around October (ISO week 40) ending in September (ISO week 39) in the following year.

Current season 2022-23

- Data for the 2022-23 season so far is from 3 October 2022 to 4 December 2022 inclusive (week 40 to 48). In this period there was a total of 30 admissions across SRFs requiring ECMO.
- Of 30 ECMO admissions, 13 were for laboratory confirmed respiratory infection as the main aetiology including nine due to influenza. There were no COVID-19 admissions (the last admitted case was in September 2022).
- Of 13 laboratory confirmed respiratory infections, three had clinically significant co/secondary infections reported. Data is presently too small for meaningful percentages or a breakdown of the co/secondary infections.

Prior season

Data from the 2021-22 season (4 October 2021 to 2 October 2022) showed that 34% (33/96) of all laboratory confirmed respiratory infections admitted to SRFs requiring ECMO had clinically significant co/secondary infections. Note that 80% (77/96) of laboratory confirmed respiratory infections were due to COVID-19. Among COVID-19 admitted cases, 40% (31/77) had clinically significant co/secondary infections reported.
Surveillance of bacterial, fungal and respiratory viral infections, in COVID-19 and influenza patients in England

Data information

- Data are provisional and subject to change due to possible delayed reporting of microbiological samples
- Undertesting for other pathogens may result in an underestimate of preceding/co-/secondary infection cases.
- Preceding/co-/secondary infections refers to when a patient has a COVID-19 or influenza infection with one or more other pathogen (Please see Appendix 1 – Preceding/co-/secondary infection definitions.)
 - Preceding infection: SARS-CoV-2 or influenza acquired after another pathogen
 - Co-infection: SARS-CoV-2 or influenza and other pathogen acquired at the same time
 - Secondary infection: SARS-CoV-2 or influenza acquired before another pathogen
- The following outputs included in this section have been produced via the Unified Infection Dataset (UID)
- Bacterial, fungal and respiratory viral infection data sources:
 - Fungal, bacterial and respiratory viral data (excluding Clostridioides difficile & Invasive pneumococcal disease): Second Generation Surveillance System (SGSS)
 - Respiratory viral data: Respiratory Datamart
 - Clostridioides difficile: HCAI Data Capture System
 - Invasive pneumococcal disease: reference lab

14 December 2022
Number of COVID-19 patient-episodes with bacterial, fungal or respiratory viral infections in COVID-19 patients diagnosed in England from ISO week 27 of 2022*, by infection type and timing of diagnosis

<table>
<thead>
<tr>
<th>Bacterial/ fungal/ viral infection by specimen type</th>
<th>COVID-19 patient-episodes with bacterial/ fungal/ viral infection</th>
<th>Timing of bacterial/fungal/viral diagnosis in relation to COVID-19 diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>% of COVID cases</td>
</tr>
<tr>
<td>Preceding infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacterial/fungal bloodstream & lower respiratory infection</td>
<td>41</td>
<td><0.01</td>
</tr>
<tr>
<td>Bacterial/fungal bloodstream infection</td>
<td>3,542</td>
<td>0.36</td>
</tr>
<tr>
<td>Bacterial/fungal lower respiratory infection</td>
<td>680</td>
<td>0.07</td>
</tr>
<tr>
<td>Clostridioides difficile infection</td>
<td>378</td>
<td>0.04</td>
</tr>
<tr>
<td>Other respiratory virus infection</td>
<td>934</td>
<td>0.10</td>
</tr>
<tr>
<td>Any site†</td>
<td>5,593</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Key findings:
- 0.6% of COVID-19 patient-episodes had a bacterial, fungal or other respiratory viral infection detected in either the 28 days prior or following their COVID-19 diagnosis.
- Most infections with key organisms were categorised as preceding infections (42.5%).

Please see appendix 1 for pre-/co-/secondary infection definitions with SARS-CoV-2.
Please note patients can have multiple COVID-19 infection-episodes, numbers here do not reflect the number of patients.
† other sites not listed in table but included in total: Bacterial/fungal bloodstream & *Clostridioides difficile* infection (9 preceding, 1 coinfection & 4 secondary) & Bacterial/fungal lower respiratory & *Clostridioides difficile* infection (2 preceding & 2 secondary)
Most frequent bacterial/fungal species in blood or lower respiratory tract specimens, by timing of diagnosis, in COVID-19 patients diagnosed in England from ISO week 27 of 2022

Key findings:
From ISO week 27 of 2022, the most frequent bacterial/fungal organisms identified from blood specimens were *Escherichia coli*, *Staphylococcus aureus* and *Klebsiella pneumoniae* and from respiratory specimens were *S. aureus*, *Pseudomonas aeruginosa* and *E. coli.*
Key findings:
From ISO week 27 of 2022, the most frequent viral organisms identified from respiratory specimens were RSV, influenza A and rhinovirus.
Number of influenza patient-episodes with bacterial, fungal or respiratory viral infections in influenza patients diagnosed in England from ISO week 27 of 2022*, by infection type and timing of diagnosis

<table>
<thead>
<tr>
<th>Bacterial/ fungal/ viral infection by specimen type**</th>
<th>Influenza patient-episodes with bacterial/ fungal/ viral infection</th>
<th>Timing of bacterial/fungal/viral diagnosis in relation to influenza diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>% of Influenza cases</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>% of Influenza cases</td>
</tr>
<tr>
<td>Preceding infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coinfection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary infection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key findings:
- 10.1% of influenza patient-episodes had a bacterial, fungal or other respiratory viral infection detected in either the 28 days prior or following their influenza diagnosis.
- Majority of infections with key organisms were categorised as co-infections (68.9%).
- Most influenza patients with a preceding, co- or secondary infection with key organisms were categorised as 0 to 9 years old (35.4%).

Please see appendix 1 for pre-/co-/secondary infection definitions with Influenza
Please note patients can have multiple influenza infection-episodes, numbers here do not reflect the number of patients.

*Influenza specimen dates from 4 July 2022 to 30 Oct 2022 (N=7,059). Last updated 05 Dec 2022.

**The baseline infection is any type of influenza (influenza A or B or both) for all bacterial/fungal/respiratory viral preceding/co-/secondary infections except for influenza B where the baseline infection is influenza A

*** Respiratory virus infection includes influenza B (where the baseline infection is influenza A)
Most frequent bacterial/fungal/respiratory viral infections, by timing of diagnosis, in influenza patients diagnosed in England from ISO week 27 of 2022

Key findings:
From ISO week 27 of 2022, the most frequent organisms identified were COVID-19, rhinovirus and RSV.

*The baseline infection is any type of influenza (influenza A or B or both) for all bacterial/fungal/respiratory viral preceding/co-/secondary infections except for influenza B where the baseline infection is influenza A.
Appendix 1: Pre-/co-/secondary infection definitions with COVID-19

The day pertains to the date of the sample collection that yielded a positive result. These definitions do not apply to persistent COVID-19 patients. Patients with persistent COVID-19 require independent clinical assessment.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Definition co-infection with SARS-CoV-2 †</th>
<th>Definition of infection pre-SARS-CoV-2 infection (other pathogen is primary infection) or Definition of post SARS-CoV-2 secondary infection (SARS-CoV-2 is primary infection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza A</td>
<td>+/- 1d</td>
<td>2-28d^</td>
</tr>
<tr>
<td>Influenza B</td>
<td>+/- 1d</td>
<td>2-28d^</td>
</tr>
<tr>
<td>RSV</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Enterovirus</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Human metapneumovirus</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Parainfluenza (any subtype)</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Seasonal coronavirus</td>
<td>+/- 1d *</td>
<td>2-28d</td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Co-infections in ECMO patient (patients with most severe clinical respiratory signs)</td>
<td>Individual case review</td>
<td>Individual case review</td>
</tr>
<tr>
<td>ECMO patients</td>
<td>Individual case review</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Blood stream and respiratory infections (bacterial and fungal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achromobacter xylosoxidans</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Acinetobacter spp.,</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Aspergillus</td>
<td>+/- 1d</td>
<td>2-28d (pre) 2-60d (post, continually hospitalised patients only)</td>
</tr>
<tr>
<td>Bordetella pertussis</td>
<td>+/- 28 d Culture/PCR (based on pertussis sample date)</td>
<td>N/A (Pertussis presentation is often delayed)</td>
</tr>
<tr>
<td></td>
<td>+/- 28 Serology/Oral fluid (anti-pertussis toxin Ig) (based on pertussis symptom onset date, excluding cases without onset date)</td>
<td>N/A (Pertussis presentation is often delayed)</td>
</tr>
<tr>
<td>Burkholderia cepacia</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Candida spp.</td>
<td>+/- 1d</td>
<td>2-28d (pre) 2-60d (post, continually hospitalised patients only)</td>
</tr>
<tr>
<td>Chlamydia pneumoniae</td>
<td>0-7d PCR</td>
<td>PCR within 14-28 d (8-13d PCR*)</td>
</tr>
<tr>
<td>Enterobacter spp.,</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Enterococcus spp.</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>E. coli</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>+/- 2d</td>
<td>3-28d</td>
</tr>
</tbody>
</table>

Continued overleaf
Appendix 1 continued: Pre-/co-/secondary infection definitions with COVID-19

The day pertains to the date of the sample collection that yielded a positive result. These definitions do not apply to persistent COVID-19 patients. Patients with persistent COVID-19 require independent clinical assessment.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Definition co-infection with SARS-CoV-2 †</th>
<th>Definition of infection pre-SARS-CoV-2 infection (other pathogen is primary infection) or Definition of post SARS-CoV-2 secondary infection (SARS-CoV-2 is primary infection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood stream and respiratory infections (bacterial and fungal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Legionella pneumophila/species</td>
<td>Individual case review</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Mycoplasma pneumoniae</td>
<td>0-7d PCR, IgM serology 0-21d <16y</td>
<td>PCR within 14-28 d (8-13d PCR*)</td>
</tr>
<tr>
<td>Neisseria meningitidis</td>
<td>+/- 2d</td>
<td>3-28d</td>
</tr>
<tr>
<td>Pseudomonas spp.,</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Serratia spp.,</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Coag-neg Staphylococcus (S. haemolyticus)</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Stenotrophomonas spp., (S. maltophilia)</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Streptococcus spp. ‡</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>+/- 2d</td>
<td>3-28d</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>Individual case review</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Pathogens of the immunocompromised (eg HIV)</td>
<td>Individual case review</td>
<td>Individual case review</td>
</tr>
<tr>
<td>HIV</td>
<td>Individual case review</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Gastrointestinal infections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listeria</td>
<td>0-5d *</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>0-5d *</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Shiga toxin-producing E. coli (STEC)</td>
<td>0-5d *</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Norovirus</td>
<td>0-5d *</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Salmonella</td>
<td>0-5d *</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Shigella</td>
<td>0-5d *</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Anaerobes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. difficile</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Bacteroides sp. (B. fragilis and non-fragilis Bacteroides)</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
</tbody>
</table>

See next slides for notes
Appendix 1 continued: Pre-/co-/secondary infection definitions with COVID-19

Notes
† From the first specimen date of a SARS-CoV-2 patient episode.
* Additional data check required. (Resistance is not detailed, data for MERS is not currently available).
^ Definition post- SARS-CoV-2 secondary infection (SARS-CoV-2 is primary infection). This has been extended from prior 14d secondary infection definition for influenza used by UKHSA to account for disparities in testing throughout the 28d period after SARS-CoV-2 detection.
‡ Streptococcus species includes the following groups and species:

<table>
<thead>
<tr>
<th>Group</th>
<th>Species/other names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anginosus Group</td>
<td>Streptococcus anginosus; Streptococcus constellatus (Streptococcus constellatus subspecies constellatus Streptococcus constellatus subspecies pharynges); Streptococcus Group F; Streptococcus intermedius; Streptococcus milleri group; Streptococcus sinensis</td>
</tr>
<tr>
<td>Bovis Group</td>
<td>Streptococcus alactolyticus; Streptococcus bovis untyped; Streptococcus equinus; Streptococcus gallolyticus subspecies gallolyticus (Streptococcus bovis biotype I); Streptococcus infantarius (Streptococcus infantarius sp infantarius; Streptococcus bovis biotype II); Streptococcus lutetiiensis; Streptococcus infantarius subspecies coli (Streptococcus bovis biotype II); Streptococcus pasteuri anus (Streptococcus bovis biotype II)</td>
</tr>
<tr>
<td>Closely Related Genera</td>
<td>Abiotrophia spp.; Aerococcus spp.; Faklamia spp.; Gemella spp.; Globicatella sanguinis; Granulicatella spp.; Leuconostoc spp.; Pedicoccus spp.; Peptostreptococcus spp.</td>
</tr>
<tr>
<td>Mitis Group</td>
<td>Streptococcus cristatus; Streptococcus mitior; Streptococcus mitis; Streptococcus oralis; Streptococcus pseudopneumoniae; Streptococcus infantis; Streptococcus peroris</td>
</tr>
<tr>
<td>Mutans Group</td>
<td>Streptococcus mutans; Streptococcus sobrinus</td>
</tr>
<tr>
<td>Other streptococci (including but not limited to)</td>
<td>Anaerobic streptococcus; Streptococcus acidominimus; Streptococcus spp., other named/not fully identified; Streptococcus suis; Streptococcus uberis</td>
</tr>
<tr>
<td>Salivarius Group</td>
<td>Streptococcus vestibularis; Streptococcus thermophilus</td>
</tr>
<tr>
<td>Sanguinis Group</td>
<td>Streptococcus gordonii; Streptococcus massiliensis; Streptococcus parasanguinis; Streptococcus sanguinis</td>
</tr>
<tr>
<td>Streptococcus Group A</td>
<td>Group A; Streptococcus pyogenes; Streptococcus dysgalactiae subspecies equisimilis</td>
</tr>
<tr>
<td>Streptococcus Group B</td>
<td>Group B; Streptococcus agalactiae</td>
</tr>
<tr>
<td>Streptococcus Group C</td>
<td>Group C; Streptococcus dysgalactiae subspecies equisimilis; Streptococcus equi subspecies zooepidemicus</td>
</tr>
<tr>
<td>Streptococcus Group G</td>
<td>Group G; Streptococcus canis; Streptococcus dysgalactiae subspecies equisimilis</td>
</tr>
</tbody>
</table>