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Research at the Environment Agency 
Scientific research and analysis underpin everything the Environment Agency does. It 
helps us to understand and manage the environment effectively. Our own experts work 
with leading scientific organisations, universities, and other parts of the Defra group to 
bring the best knowledge to bear on the environmental problems that we face now and in 
the future. Our scientific work is published as summaries and reports, freely available to 
all.  
 
This report is the result of research commissioned by the Environment Agency’s Chief 
Scientist’s Group. 
 
You can find out more about our current science programmes at 
https://www.gov.uk/government/organisations/environment-agency/about/research 
 
If you have any comments or questions about this report or the Environment Agency’s 
other scientific work, please contact research@environment-agency.gov.uk. 

 

Dr Robert Bradburne 
Chief Scientist 
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Executive Summary 
The future impacts of climate change on aquatic ecosystems remain uncertain. Strong 
links between surface water temperature, water quality and ecological response show that 
changes in water temperature are likely to be of critical importance. Quantifying the 
amount and timing of warming in rivers can inform the targeting of adaptation measures to 
reduce adverse changes and protect vital functions they provide. While projections of river 
water volumes and flows have been developed for England there are currently no national 
projections of river water temperature. This limits our understanding of future risks and 
management choices that can improve resilience to the impacts of climate change. 

Chalk streams are a globally unique habitat restricted to England and north-west Europe. 
These groundwater-fed streams exhibit a stable, cool water temperature profile supporting 
rich biodiverse ecosystems including important salmonid fish species: Atlantic salmon 
(Salmo salar) and brown trout (Salmo trutta). This group of rivers was selected as a pilot 
for temperature projections in all rivers because of their similar morphology, uniqueness, 
their importance in water supply and in support of a national effort to protect these 
important habitats. 

Chalk stream water temperature and future projections are modelled, following a 
previously identified framework, using historical Environment Agency water temperature 
records along with environment variables (air temperature, land cover and river network 
properties). Sufficient water temperature data were identified at 92 sites to create a 
monthly mean daytime water temperature model, which was then validated at 893 sites 
across the English chalk stream network. 

This ‘global’ model was used to make monthly mean daytime river water temperature 
projections to 2080 – the temporal extent of existing climate change projections that 
provide future warming information. Based on a ‘high emissions scenario’, ecologically 
significant increases in water temperature were projected with summer maxima rising by 
0.58°C per decade above reference levels (1981 to 2005) to 2080. These values indicate 
change in summer monthly mean daytime maximum water temperatures over the next 60 
years and allow spatial comparisons.   Regional differences are seen with sites in the 
north-east of England (Lincolnshire and Yorkshire Wolds) projected to experience the 
lowest increases whereas those in the vicinity of London (rivers Colne, Lee, Hogsmill, 
Mole and Wandle) are projected to experience the highest. Some ‘hotspots’ as well as 
‘cold spots’ can also be identified amongst the sites. Monthly daytime projections are 
particularly affected by the amount of urban land in the catchment.  An important 
temperature threshold for salmonid egg survival during the winter spawning period of 12°C 
will likely be exceeded at over 85% of sites by 2080 and adult brown trout will continue to 
be under threat from high summer temperatures with all sites exceeding that species’ 
upper critical temperature range of 19.5°C by 2080.  

The historic water temperature readings provide a ‘snapshot’ temperature value for water 
from various sources (e.g., upstream flow, precipitation, surface water runoff, groundwater 
influx) all of which will have different temperature profiles and volume contributions which 
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will vary through the seasons and between years. The seasonal aspect of the relationship 
between air and water temperature was essential in model development. To account for 
this variation a minimum of five years monthly mean water temperature data is considered 
an absolute minimum to reflect meaningful interannual water temperature variation.  

While the available historical water temperature records facilitated estimation of monthly 
mean daytime water temperatures for rivers under the influence of climate change, the 
coarse nature of the data (i.e., in space and time) limit the ability to draw conclusions 
about water temperature at specific sites. Mean monthly estimates also disguise the 
influence of short-term climatic fluctuations (e.g., heatwaves) which may have ecological 
implications ahead of the timelines outlined here. The monthly mean maximum 
temperature is therefore likely to underestimate daily maximum temperatures that could be 
experienced. More detailed projections (e.g., daily or along river channels) would be 
possible with higher sampling frequency or a specifically designed temperature monitoring 
network.  
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Introduction 

Overview 
Climate projections for England suggest there will be an increase of warmer, wetter 
winters and hotter, drier summers along with more frequent and intense extreme weather 
events, including short duration, high magnitude precipitation events (UKCP18: Met Office, 
2019). Understanding the consequences of these changes on water quality and aquatic 
biota is important to inform the targeting of management actions and adaptation measures 
to help maintain the integrity of the river ecosystems and the services they provide.  

Flow and water temperature (Tw) are considered important variables having an influence 
on river ecosystems and water quality (Poff et al., 1997, Woodward et al., 2010). There is 
a broad consensus of how the climate is changing including information about how river 
flows will alter. There is much less clarity about how and where Tw may change. Previous 
modelling exercises assessed how water quality and eutrophication risk could change in 
the future, highlighted the sensitivity of future risk to projections of Tw (Environment 
Agency, 2019). Understanding potential changes in thermal regimes will help identify 
priority areas for action (Knouft et al., 2021). Adaptation measures, such as tree planting 
for shade, can reduce thermal maxima but careful targeting is needed as the thermal 
benefit of riparian shade depends on physical location within the river network and on 
prevailing climate conditions (Garner et al., 2017, Wilby and Johnson, 2020). Models to 
identify where rivers are hottest and most sensitive to climate change in Scotland (Jackson 
et al., 2018) are being used to target riparian tree planting to protect cold water dependent 
species such as Atlantic salmon and brown trout. 

River water temperature is controlled by a complex interaction of hydrological, 
climatological and landscape characteristics and previous models for predicting water 
temperature have utilised variables from all three of these categories (e.g., Jackson et al., 
2018). Climatological influences are reflected in air temperature readings which have long 
been recognised as having a strong positive correlation with surface water temperatures.  

Quantifying the amount and timing of future warming in rivers will provide more robust 
evidence to inform where to target measures to adapt to these changes. To understand 
how best to develop future projections of river Tw, Environment Agency (2021) reviewed 
potential modelling approaches and produced a robust framework for doing so. This study 
applied the framework to develop Tw projections for English chalk streams.  

Chalk streams are watercourses dominated by groundwater discharge from chalk geology. 
The chalk has a strong influence on the flow regime and chemical properties supporting 
characteristic assemblages of plants and animals (Berrie, 1992; Sear et al., 1999). 
Groundwater has a stable temperature, resulting in a warming effect in winter and a 
cooling effect in summer (compared to air temperature), and historically,  river 
temperatures have appeared stable between 5 and 17°C (Mackey and Berrie, 1991). 
Previous river temperature modelling studies have demonstrated the importance of river 
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shading and water flow characteristics (water flow, volume, residence time) in modulating 
river water temperatures (Jackson et al., 2020).    

Using chalk streams as a test case allows the modelling approach recommended in the 
scoping project to be tested, applied, and refined. It will demonstrate the effectiveness of 
the modelling approach, develop the specific tools for producing and updating projections 
elsewhere, and produce a specific set of projections that can be immediately used for 
understanding future impacts and how to manage them. 

Project aim and objectives 
The aim of this project was to develop Tw projections for English chalk streams using the 
framework developed in an earlier project (Environment Agency, 2021). Tw, corresponding 
air temperature (Ta) and associated catchment data were collated from available sources 
(Task 1; Figure 1) and assessed for their application to chalk stream catchments and the 
potential modelling options they could support (Task 2). A global model and catchment 
specific models were then developed, tested, and refined (Task 3) before making 
projections of Tw under climate change conditions (Task 4). Both global and catchment 
specific models were developed in Task 3 to help understand how different predictor 
variables influenced the projections at different spatial scales and whether the predictive 
ability of the models could be improved.   

 

Figure 1: Task outline followed to generate models and predictions of chalk stream water 
temperature from available data. Task and subtask numbering relates to respective R code 
scripts developed to complete analysis (R code availability information needed here).   
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Methods 
An overview of the data sets used, and the modelling approaches employed are presented 
here. Detailed methods are provided in the appendix. 

Data for modelling and projections 

Observed water temperature readings 

River water temperature (Tw) data from the Environment Agency’s Surface Water 
Temperature Archive up to 2007 (Orr et al., 2015) and Water Quality Data (WIMS) archive 
were combined (referred to herein as the ‘combined Tw dataset’). Values above 30 (range 
= 30.2 to 100; 208 records) and below 0 (range = -0.02 to -2.0; 51 records) were removed 
as deemed erroneous and unrealistic for English rivers (Orr et al., 2015), observations 
grouped by unique site identifier and any duplicate measurements (by location, time, and 
water temperature reading) removed, leaving 3.22 million unique Tw records across 
England. Sites were further grouped into clusters if within 20 meters of each other and 
samples combined (1577 close sites combined into 689 clusters). Record length and 
sampling frequency at each of the 28,214 unique sites/clusters were assessed and 
sequences of Tw values sufficient for the generation of monthly mean water temperatures 
were identified that could support model generation (see Appendix – Table A1). It should 
be noted that there is a clear sampling bias with spot measurements almost exclusively 
collected during working hours (median sample time = 11:00, main range = 06:00 – 18:00, 
Monday - Friday), hence, this should be considered as an estimate of monthly mean 
daytime water temperatures (MdTw). 

The boundary of English chalk stream catchments was identified using published chalk 
stream data (Environment Agency’s Catchment Data Explorer; Rangeley-Wilson, 2021) 
and river courses within that boundary identified. Sub-catchments and tributaries were 
grouped into 59 major river catchments (see Appendix for catchment groupings) and 
known chalk stream courses used to split this river network into ‘chalk’ and ‘non-chalk’ 
sections. Sampling sites/clusters associated with a 100-meter buffer of these sections 
were labelled accordingly, and sites falling outside the buffer region were discarded. 

To ensure only robust MdTw estimates were used for model development a site had to 
meet specific data criteria, the minimum criteria of three samples per month with a record 
length of five years to account for interannual variability. Of the 1727 sample locations 
identified within the chalk boundary, 92 sites representing 21 of the 59 chalk river 
catchments met these minimum criteria. A large proportion of sites (𝑛𝑛 = 801) had some 
months with 3+ Tw measurements but not for the required five-year duration; these sites 
were retained for checking the developed model’s performance (= ‘Validation dataset’). 
The 893 sites (92 + 801) participating in model development and validation covered 57 of 
the 59 chalk river catchments in England. 
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Figure 2: Combined Tw dataset sample sites in England (left) and in chalk catchments 
(right). Point colours indicate the number of temperature readings available at each site and 
pink polygons indicate the extent of chalk catchments 

Datasets used for model development 

Observed air temperature data was obtained from 1 km gridded datasets of climatological 
data available from the Met Office (HadUK-Grid products; Met Office 2018). Both the 
monthly mean (temperature at surface; tas) and the monthly mean of daily maximum 
(tasmax) air temperatures were extracted for each sample date and site as potential 
surrogates for the daytime water temperatures used in this study. 

To ensure the developed models were practical and suitable for use in a management 
context, covariates that could be derived solely from available GIS sources were used. 
Indicators of upstream land-use, geology and sample site characteristics were selected, 
along with potential proxies for hydrological regime (e.g., river width, river gradient, 
Strahler stream order; See Table 1).  

Landscape characteristics considered included land cover information maintained by the 
Centre for Ecology and Hydrology (CEH; Land Cover Map 2000 (LCM2000) datasets), 
topographical information derived from a Digital Elevation Model (Nextmap 50m DEM 
hydromodel) and LIDAR data, and watercourse characteristics from the Environment 
Agency’s Detailed River Network GIS layer (Coley et al., 2018). 
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Table 1. List of covariates selected for water temperature model development. The acronym 
is displayed along with description and data source. 

Covariate acronym Description Data source 

USFarmland Upstream land dedicated to farming 
(Arable and improved grassland; %) 

CEH; Land Cover Map 2000 

USUrbSub Upstream land dedicated to urban and 
suburban development (%) 

CEH; Land Cover Map 2000 

USWoodland Upstream land covered in broadleaf 
and conifer woodland (%) 

CEH; Land Cover Map 2000 

USWildgrass Upstream land covered in undisturbed 
natural grassland (+ set-aside; %) 

CEH; Land Cover Map 2000 

Geo_calc_us Upstream calcareous hard geology 
(%) 

British Geological Survey 

Geo_sili_us Upstream siliceous hard geology (%) British Geological Survey 

Cat_size_km2 Size of upstream catchment (km2) Environment Agency’s Detailed River 
Network GIS layer 

Altitude_m Altitude of sampling point (m) Nextmap 50m DEM hydromodel 

Av_Alt_US_m Average altitude of upstream 
catchment (m) 

Nextmap 50m DEM hydromodel 

DRN_WIDTH_M River channel width (m) Environment Agency’s Detailed River 
Network GIS layer 

DRN_GRAD_MKM Gradient of river section (m/km) Environment Agency’s Detailed River 
Network GIS layer 

DRN_MEAN_ALT Mean altitude of river section (m) Environment Agency’s Detailed River 
Network GIS layer 

DRN_DIST2MTH Distance downstream to the end of 
the DRN (m) 

Environment Agency’s Detailed River 
Network GIS layer 

DRN_US_ACCUM Total length of the river upstream of 
section (m) 

Environment Agency’s Detailed River 
Network GIS layer 

DRN_STRAHLER Strahler river order at site Environment Agency’s Detailed River 
Network GIS layer 

Future climate projections 

The Met Office UKCP18 datasets provide probabilistic projections of environmental 
variables (air temperature, rainfall, etc.) based on a range of potential future climate 
outcomes. A range of future emissions scenarios are considered, and each dataset 
comprises an ensemble of 12 potential outcomes representing the uncertainty introduced 
by perturbation of climate model parameters. The UK regional model projections provide 
access to spatially coherent ‘raw’ climate projection data at the highest resolution (12km 
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grid) for the years 1981 to 2080 and were used in this study. These projections are based 
on the high emissions ‘RCP8.5’ scenario and are considered a basis for precautionary 
planning for climate change impacts (Met Office, 2019).  

Projected monthly mean air temperature values for the years 1981 to 2080 and for each of 
the 12 potential outcomes mentioned above were extracted from the 12km RCP8.5 
regional UKCP18 gridded dataset for each Tw sampling site. Values falling in the date 
range January 1981 to December 2005 (25-year reference period) were compared to 
observed air temperature readings for the same period and differences summarised into a 
set of monthly bias corrections which were then applied across each Ta projection dataset 
(Lenderink et al., 2007). This bias correction aligns modelled datasets with a known set of 
values and improves reliability of subsequent modelling outputs. These bias correction 
adjustments are summarised in Figure 3 and, while the majority are small (± 0.5°C), an 
underestimate of springtime air temperatures in the UKCP18 data require more of an uplift 
to align with observed values. 

 

Figure 3: Ranges of bias corrections applied to the UKCP18 monthly mean air temperature 
projections prior to calculation of water temperature using developed models. 
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Model development and generation of projections 

Selection of water temperature model 

The river water temperature modelling process was guided by the previously established 
framework developed by the Environment Agency (2021). While the availability of 
historical monthly mean water temperature data placed this study outside the 
recommended bounds (daily to weekly model output), the decision-making process 
followed a similar series of steps (flowcharts reproduced here in Appendix; Figures A4 and 
A5). A mixed effect, regression-based approach was selected as most appropriate for 
multi-site, repeated measurement data. This option also maintained visibility of any 
influential covariates allowing an assessment of their physical plausibility to take place. 

Model development and validation 

The strength of the relationship between the observed water temperature values and both 
the mean and maximum air temperature values was assessed. As both relationships were 
statistically equivalent (𝑟𝑟2 = 0.86), the mean air temperature was selected for use in the 
model development process (see Appendix for further rationale). Seasonal variability in 
the air-water temperature slope was identified (Figure 4) and retained as a required 
element in model development (Mohseni and Stefan, 1999; Webb et al., 2008). 

 

Figure 4: Seasonal variation in air temperature / water temperature relationship across 
chalk catchment Tw sampling sites. Lines fitted using ordinary least squares regression. 
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Collinearity between predictor variables, the tendency for one variable to change in a very 
similar way to another, can lead to the development of overly complex models with 
compounded errors that limit predictive capability (Dormann et al., 2013). Landscape and 
river channel covariates that displayed strong correlations with each other (Pearson 
correlation coefficient; 𝑟𝑟 > 0.8) were rationalised (Appendix; Figure A7). The covariates 
taken forward to the modelling stage were:  

• Land cover – percentage upstream farmland, urban development, woodland, and 
wild/natural grassland (USFarmland, USUrbSub, USWoodland and USWildgrass) 

• Percentage upstream hard calcareous geology (geo_calc_us) 
• Upstream catchment size (cat_size_km2) 
• Channel characteristics – river width, river gradient, mean altitude, distance to river 

mouth, Strahler river order (DRN_WIDTH_M, DRN_GRAD_MKM, DRN_MEAN_ALT, 
DRN_DIST2MTH and DRN_STRAHLER) 

All models were developed using R (R core team, 2021) using functions from the base, 
lme4 and MuMin packages. A linear mixed-effects model for chalk stream water 
temperature was developed based on 81 sites and 9521 observations (note the lower 
number of sites due to missing covariate data). Based on exploratory data analysis the 
following features formed the basis of model development:   

• The model must include the seasonal air / water temperature relationship 
• All selected covariates would initially be included to create a ‘full’ model which would 

then be simplified to contain only the most influential factors 
• A spatial component would be included to represent the west-east hydro-climatic 

gradient (Easting value used) 
• Variation between sample sites, catchments and to allow the water/air temperature 

relationship to vary between sites would be permitted, with the variation following a 
‘normal’ distribution (= ‘random effects’ elements) 

The ‘full’ model which included all the available covariates selected above was first fitted to 
available data (‘lmer’ command, lme4 R package) and took the form using the R syntax: 

MdTw = Tair: Season + cat_size_km2 + DRN_WIDTH_M + DRN_GRAD_MKM + 
DRN_MEAN_ALT + DRN_DIST2MTH + DRN_STRAHLER + geo_calc_us + USUrbSub + 
USFarmland + USWoodland + USWildgrass + Easting + (Random effects)  

‘Random effects’ were applied sequentially as follows (1) Absent, (2) the intercept could 
vary between sites (1 | Sites), (3) the intercept could vary between catchments (1 | 
catchments), or (4) the slope and intercept of the Ta / Tw relationship could vary between 
sites (Tair | Sites). The different ‘random effects’ outcomes were compared using 
Bayesian Information Criterion (BIC) and the best performing ‘full’ model reduced to its 
simplest, statistically significant form to give the following optimised ‘global’ model for 
monthly mean water temperature: 

MdTw = Tair: Season + geo_calc_us + USUrbSub + (Tair | Sites) 
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Ideally, predicted Tw values generated by a model would be identical to observed Tw 
values in a training dataset so that all points would fall on the 𝑥𝑥 = 𝑦𝑦 identity line when 
plotting observed against predicted Tw values. Such an outcome would have an 𝑅𝑅2 value 
of 1 and a Root Mean Squared error (RMSE) of 0.  The optimised ‘global’ model 
developed here generated good estimates of MdTw in the training data (𝑅𝑅2 = 0.94, RMSE 
= 0.97°C; Table 2 and Figure 5 (right panel)) and performed well with the validation 
dataset (𝑅𝑅2 = 0.85, RMSE = 1.47°C; Figure 6 (right panel)). These 𝑅𝑅2 and RMSE values 
compared well with those generated by the more complex ‘full’ model (left panels of 
Figures 5 and 6), indicating that all significant factors had been retained in the optimised 
‘global’ model and that it had strong predictive performance for the generation of MdTw 
estimates for chalk stream sites from limited environmental and air temperature 
information. 

Table 2: Structure and summary statistics of the optimised ‘global’ model for chalk stream 
monthly mean daytime water temperatures. σ2 = random effect variance, τ00 = random 
intercept variance, τ11 = random slope variance, ρ01 = random slope-intercept correlation, 
ICC = intraclass correlation coefficient. Marginal R2 conditional R2 
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Figure 5: Performance of the ‘full’ (left) and optimised ‘global’ model (right) for chalk stream 
water temperature prediction against the training dataset (3+ value monthly mean Tw values 
from sites with over 5 years of data; 𝒏𝒏 = 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗). The red line indicates the 𝒙𝒙 = 𝒚𝒚 identity line.  

 

Figure 6: Performance of the ‘full’ (left) and optimised ‘global’ model (right) for chalk stream 
water temperature prediction against the validation dataset (3+ value monthly mean Tw 
values from sites with less than 5 years of data; 𝒏𝒏 = 𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔). The red line indicates the 𝒙𝒙 = 𝒚𝒚 
identity line. 

Future projections of chalk stream water temperatures 

Bias-corrected UKCP18 monthly air temperature values and sample site covariate 
information (percentage chalk geology and percentage urban and suburban land use 
upstream of the sample site) were used in the optimised ‘global’ model to generate 
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predictions of monthly mean river water temperature at each of the 893 sites having some 
historical 3+ value monthly mean water temperature data. Water temperature predictions 
were generated for each of the twelve UKCP18 potential outcomes and the median value 
taken for each month between 1981 and 2080 for each site as a summary statistic.  

These median values of projected water temperature were used to investigate potential 
temperature changes that could impact on the life cycles of two important salmonid fish 
species, brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). Two temperature 
thresholds were analysed: Firstly, the upper critical range over which fish survival is 
compromised, and secondly, the maximum temperatures experienced during the 
spawning season (October/November – February/March) which impact on egg survival. 
The percentage of sites predicted to exceed these temperature thresholds was recorded 
for each decade across the UKCP18 climate change projection range 1981-2080.  

Catchment-specific models 

Catchment specific MdTw models were created for four catchments with more than 5 
monitoring sites each with more than five years of MdTw data: the rivers Avon 
(Hampshire), Hull, Test and Wensum. The ‘full’ model with all selected covariates but 
without any ‘random effects’ elements was applied in turn to each catchment’s qualifying 
data and the resultant model optimised to find the simplest solution. The performance of 
each catchment model at predicting MdTw for other sites in the same catchment, other 
chalk river sites in the same river basin district and other chalk river sites in England was 
assessed by generating predictions of MdTw and comparing these predictions to observed 
MdTw values (see Appendix for details and main observations). 
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Results 

‘Global’ model temperature projections 
Of the median projected monthly mean daytime water temperatures (MdTw) values 
derived from the 12 RCP85 UKCP18 potential outcomes, Figure 7 presents the maximum 
projected MdTw value seen at each of the 893 qualifying sites in each of 4 decades up to 
2080 (2010 to 2019, 2030 to 2039, 2050 to 2059 and 2070 to 2079). These values relate 
to summer monthly mean daytime maximum water temperatures and give an indication of 
the change in water temperature across these decades as well as the spatial distribution 
of these changes across chalk catchments. Regional differences are seen with sites in the 
north-east of England (Lincolnshire and Yorkshire Wolds) projected to experience the 
lowest increases in maximum water temperatures whereas those in the vicinity of London 
(rivers Colne, Lee, Hogsmill, Mole and Wandle) are projected to experience the highest. 
Some ‘hotspots’ as well as ‘cold spots’ can also be identified amongst the sites. 

While the median value of the 12 potential outcomes derived from the UKCP18 climate 
change projections provides a suitable summary statistic, the range of responses 
encompassed by these 12 outcomes is also of interest. Figure 8 presents the range of 
minimum (blue points), mean (black points) and maximum (red points) values predicted for 
each of the twelve UKCP18 potential outcomes across all sites for the UKCP18 projection 
period 1981 to 2080. Though all ranges indicate an increasing Tw trend, the rate of 
change is highest for the maximum values (21.50±1.06°C in the 1981-2005 reference 
period to 26.12±1.12°C in decade 2070-2079; a change of +4.62°C) and lowest for the 
minimum values (3.68±1.09°C in the 1981-2005 reference period to 6.07±0.82°C in 
decade 2070-2079; a change of +2.37°C). 
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Figure 7: Predicted maximum monthly mean daytime water temperatures at English chalk 
stream sample sites for the decades 2010-2019, 2030-2039, 2050-2059 and 2070-2079, based 
on bias corrected UKCP18 RCP8.5 air temperature projections and the global model for 
monthly mean water temperatures. Values represent the maximum median Tw across all 
UKCP18 ensemble members for each site in each decade. Larger figures are available in the 
Appendix.  
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Figure 8: Predicted change in monthly mean daytime water temperature in chalk streams 
over the UKCP18 projection period 1981 to 2080. Each series of coloured points represent 
the values predicted for each of the 12 ensemble members: blue points = minimum values, 
black points = mean values, and red points = maximum values. 

Critical temperature thresholds for brown trout and 
Atlantic salmon 
Brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) are two important salmonid 
fish species found in English chalk streams, both adapted to the cool, stable water 
conditions usually found there (Elliott and Elliott, 2010). The critical temperature range for 
brown trout is between 3.5 and 19.5°C and that for Atlantic salmon is between 6 and 
22.5°C (Solomon and Lightfoot, 2008). The percentage of sites predicted to exceed the 
upper values of these ranges is presented in Figure 9. Maximum monthly mean daily 
water temperatures are projected to exceed the upper boundary for brown trout at all sites 
by 2070. The higher Salmon threshold is projected to start being exceeded in the 2050’s 
increasing to 30% of sites affected by 2080. 
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Figure 9: Percentage of sites projected to reach critical temperature thresholds for two 
salmonid fish species found in English chalk streams 

The spawning season for both Atlantic salmon and brown trout is during the late autumn 
and winter months (October/November to February/March). Egg survival is temperature 
dependent with critical ranges of 0 to 13°C for trout and 0 to 16°C for salmon. An 
additional important threshold of 12°C relates to an increased rate of egg mortality and 
deformity for both species. Sites predicted to exceed this 12°C threshold during the 
spawning season in different decades up to 2080 are shown in Figure 10. While the initial 
sites affected appear few and spread across chalk catchments (Figure 10, 2010 panel), an 
increasing number of catchments have multiple impacted sites as the decades progress 
with 85% of sites projected to be impacted by 2080. Figure 11 shows the percentage of 
sites projected to experience temperatures at or above these three important spawning 
threshold temperatures of 12°C, 13°C and 16°C to 2080 and indicates a significant 
number of sites reaching 12°C and 13°C across this period, particularly after 2040.  
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Figure 10: Sample sites in chalk catchments projected to exceed a monthly mean daily 
water temperature of 12°C in the November to February fish spawning period in the 
decades 2010-2019, 2030-2039, 2050-2059 and 2070-2079. Chalk catchment extent marked in 
yellow, sites exceeding threshold marked in red/orange (total number of sites modelled: 
893) 
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Figure 11: Projected changes in thermal thresholds important for fish egg survival during 
spawning season (Nov – Feb) from 1981 to 2080. The 13°C threshold is the upper limit for 
brown trout egg survival, the 16°C threshold relates to Atlantic salmon egg survival, and the 
12°C threshold is associated with increased egg mortality and increased deformity rates. 

Catchment specific models 
Catchment-specific models were generated to help understand which predictor variables 
influenced water temperature in different catchments.  Models were created for four 
catchments containing multiple sites with more than five years of 3+ value monthly mean 
Tw data (see Appendix for details). While each model started with the same default set of 
covariates as the ‘full’ model, stepwise optimisation selected a different group of 
covariates in each case. The ranges of some of these covariates were very small and, 
while sufficient for modelling within that group of catchment sites, could not support the 
development of Tw predictions for wider groups of sites. 

Example results relating to the River Avon in Hampshire are presented in Figure 12. The 
yellow map markers indicate sites included in model development and the right group of 
graphs indicate the performance of that model with different groups of chalk stream data. 
The top-left graph shows the model performance with the data from the sites marked on 
the map in yellow and indicates a robust model solution but applying that model to data 
from other sites in the same catchment (top-right), the wider river basin district (bottom-
left) or to all chalk sites (bottom-right) shows a deterioration of performance and a 
breakdown of the model’s ability to generate good estimates of water temperature from the 
available data. 
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Figure 12: Catchment-based model developed for the River Avon in Hampshire. MdTw data 
from the sites marked in yellow (left) were used to develop a linear model which was then 
applied sequentially to wider groups of chalk stream sites (right). See main text for more 
information and Appendix for additional details. 

In this case, six covariates were retained by the modelling optimisation process as being 
significant for water temperature estimation: upstream catchment size, distance to the river 
mouth, mean altitude, river width, percentage upstream calcareous geology and the 
percentage upstream land use given over to wild/natural grassland. The ranges of some of 
these covariates within the participating sites (yellow markers, Figure 12) were small 
(percentage upstream calcareous geology: 88.2-100 out of a potential range 0-100; 
percentage upstream wild grassland: 1-14 out of a potential range 0-100) and the model 
failed to generate acceptable estimates of water temperature when encountering values 
outside these limited ranges. This highlights the need for models to be developed based 
on sites that encompass the full environmental range of each significant covariate or 
equivalent data from a catchment with comparable characteristics. 

  



25 of 54 

Discussion 

Data availability 
Effective modelling of water temperature in complex fluvial systems requires a baseline of 
water temperature records at a sufficient sampling frequency and over a sufficient period 
to reflect the temporal dynamics of in-channel temperature variability (Environment 
Agency, 2021). Much of the water temperature data collected under the Environment 
Agency’s long-running environmental monitoring programme has been to inform an 
understanding of water chemistry rather than river water temperature dynamics and the 
data available to this study supported the development of a water temperature model for 
chalk streams based around monthly daytime mean water temperature only. Using a 
monthly mean value as an indicator of a temporally and spatially dynamic variable such as 
water temperature presents obvious limitations but is not without value, particularly when 
projecting long-term trends and relative changes. Averaging water temperature over a 
monthly period could miss the impacts of highly dynamic events (e.g., precipitation, short-
term heatwaves) and modelling at this temporal scale will also limit a model’s sensitivity to 
environmental and landscape characteristics known to influence river water temperature 
(Jackson et al., 2018). It is unsurprising that the broad environmental covariates of 
‘underlying geology’ and ‘percentage urbanisation’ were the only ones found to exert some 
influence on the water temperature modelling outcomes across all chalk catchments when 
modelling at this ‘monthly’ scale. 

The spot-sample water temperature readings in the combined Tw dataset provide a 
‘snapshot’ temperature value for water from various sources (e.g., upstream flow, 
precipitation, surface water runoff, groundwater supply) all of which will have different 
temperature profiles and volume contributions to the water in the river. These values will 
also contain a reflection of the physical environment surrounding the river channel and the 
dynamics of water exchange between different compartments within the channel. These 
contributions will vary throughout the year and across climatic cycles and model 
development requires a strong baseline of measurements which encompass a significant 
amount of this variation. The qualifying threshold of sites to have a minimum of five years 
monthly mean water temperature data before inclusion in the model development process 
was a pragmatic choice given the data available but was regarded as an absolute 
minimum to reflect meaningful interannual Tw variation. 

Modelling process 
Given the limitations of the data available, the model development process previously 
described by the Environment Agency (2021) was successfully implemented to develop a 
model for chalk stream water temperature based around monthly mean daytime values. 
The selection of suitable covariates known to influence in-channel water temperatures was 
guided by previous studies (Jackson et al., 2016, 2018) and the pragmatic choice to limit 
these to values that could be derived from GIS sources was taken with practical 
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management application in mind. Establishing values for all selected covariates using this 
method was not entirely successful as sample site locations did not always coincide with 
river sections where such values could be derived. Covariate values for river width could 
not be calculated where channel modification (culverts, pipes, underground sections) had 
taken place and ‘distance’ metrics (Distance to mouth of river, Strahler river order) were 
not available where sites where there were multiple river channels (Coley et al., 2018). 
This reduced the number of sites that could be included in model development and could 
be mitigated by closer inspection of site/GIS alignments and/or the development of 
automated processing to establish suitable values from nearby sites. 

The developed models displayed a strong reliance on the air temperature / water 
temperature relationship. The seasonal nature of this relationship (Mohseni and Stefan, 
1999; Webb et al., 2008) was reflected in the monthly mean water temperature 
measurements derived from the combined Tw dataset and a series of seasonal linear 
relationships were included to approximate the ‘S’ shaped curve usually used to describe 
this relationship in river and open water systems. The ‘summer’ Ta / Tw relationship is of 
particular significance when modelling maximum water temperatures as too steep a 
gradient in this section of the relationship will over-estimate water temperatures from the 
corresponding air temperature values. Including this seasonal aspect of the Ta / Tw 
relationship was judged essential in model development and was therefore present in all 
model solutions. 

The ‘global’ model for monthly mean daytime water temperatures for English chalk 
streams presented here is a relatively simple one. Apart from the seasonal Ta / Tw 
relationship, the model is only dependent on two covariate values, the percentage 
upstream calcareous hard geology and the percentage urban and suburban land use 
upstream, and a ‘random effects’ component allowing the seasonal Ta / Tw relationship to 
vary between sites. This concise group of dependencies is seen as a function of the 
coarse monthly timestep employed and the large spatial scale of the modelled sites. The 
influence of landscape and river channel covariates would be expected to increase as the 
modelling timestep, or spatial scale were able to be reduced. Catchment-specific models 
developed for river systems where sufficient Tw data existed did generally select larger 
groups of covariates than the ‘global’ model (Appendix, Case Study) but the limited ranges 
of some of these covariates restricted the ability to use these models to predict water 
temperature values in other catchments or at sites where covariates extended beyond 
these limited ranges. However, in locations where sufficient historic observations of Tw 
exist catchment specific models are worth considering. 

The ‘global’ model outputs presented here are based on the high emissions RCP85 
scenarios of the UKCP18 climate change projections. While these are seen as a suitable 
basis for contingency planning there is some debate whether they present a realistic 
projection given their reliance on continued rises in CO2 levels due to fossil fuel burning 
well into the 21st century. The ‘global’ model is not dependent on this particular projection 
of future Ta and could take input from different scenarios as they are developed and 
refined. 
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Model outputs 
Validation of the developed ‘global’ model for chalk stream water temperatures showed 
strong predictive performance (𝑅𝑅2=0.85). Application of this model to predict monthly 
mean water temperature values at sites under the influence of climate change showed 
significant water temperature increases of ecological significance. Regional variation in the 
level of Tw rise is seen with sites around London showing the highest increases.  

It should be noted that the projections are based on a simple future scenario where only 
air temperature is changing. More complex future scenarios incorporating changes in 
rainfall frequency and intensity, surface water/groundwater balance, evapotranspiration, as 
well as changes in water-temperature-influencing environmental and landscape 
characteristics would help increase confidence in water temperature projections. There is 
also the balance of demands placed on chalk aquifers due to human activity and climate 
change that can influence flow levels in chalk streams and exacerbate water temperature 
rises especially during low summer flows. 

Changes in a monthly mean value will disguise potentially significant fluctuations in water 
temperature that may occur throughout that monthly period. An increased frequency of 
summer heat waves may only influence the monthly mean temperature by a small amount, 
yet may cause significant stress on ecological habitats, including aquatic systems. Model 
sensitivity to such fluctuations would require a move to higher frequency Tw data 
collection in the sub-daily range. 

The ecological significance of these potential increases in chalk river water temperatures 
is demonstrated by the effect on important temperature thresholds for salmonid fish. 
Thermal boundaries are known to affect salmonid fish migration and the increasing 
number of sites projected to experience water temperatures above the upper critical range 
for brown trout (19.5°C) is of particular concern. The challenge to salmonid egg survival 
during the winter spawning period is also projected to increase throughout the UKCP18 
projection period, with the important 12°C threshold, over which increased deformity rates 
and decreased egg survival are experienced, being breached extensively by 2080. 
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Recommendations 
Targeted placement of temperature dataloggers with 15-minute monitoring resolution 
across catchments and regions at sites representative of different temperature-influencing 
landscape and environmental features is driving water quality management decisions in 
Scotland (Jackson et al., 2016; 2018; 2020) and offers an alternative to highly monitored, 
staff-intensive approaches (Webb et al., 2008).  High frequency water temperature data 
from the WISKI network could provide a useful source of information but this has not been 
routinely captured and archived within the Environment Agency and has only recently 
been identified as a priority. The WISKI flow monitoring sites located in chalk catchments 
(𝑛𝑛 =56) could potentially provide useful high-frequency water temperature data once 
collated and quality-assured. Groundwater level and flow data is being combined into a 
national resource which could also provide important modelling inputs once available. 
Maps identifying riparian tree cover and GIS Relative Riparian Shade maps are under 
development (LIDAR | Environment Agency Geomatics Hub - arcgis.com). These sources 
could provide valuable information on riparian shading along the river channel; a factor 
known to influence water temperature and identified as a future management technique to 
mitigate adverse river temperatures (Garner et al., 2017). 

The significant consideration of sampling site-selection remains. Utilising pre-defined 
sampling sites from existing datasets can only capture a limited range of the covariates 
known to influence river water temperature (reviewed in Jackson et al., 2016) and reduces 
the potential to apply any generated water temperature models to unmonitored sites. 
Monitoring site selection must maximise the environmental range of covariates and have 
an established relationship to hydrological processes within the catchment. Only then can 
management intervention be considered at a reach or catchment scale for river water 
temperature mitigation based on model outputs. This can only be addressed through 
careful sample site selection and the development of a dedicated temperature monitoring 
network for England’s rivers.  

https://experience.arcgis.com/experience/753ad2ebd3554fa696885b8c366c3049/page/LIDAR/?views=LIDAR-Home
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List of abbreviations 
AIC  Akaike Information Criterion   

AICc  Akaike Information Criterion with correction for small sample sizes  

BIC Bayesian Information Criterion  

CEH Centre for Ecology and Hydrology 

DRN Digital River Network 

GAM Generalized Additive Model 

GAMM Generalized Additive Mixed effect Model 

GIS Geographical Information Systems 

LCM Land Cover Map 

LIDAR Light detection and ranging 

LM Linear Model 

LMM Linear Mixed effect Model 

MdTw Monthly mean daytime water temperature 

RMSE Root Mean Squared Error 

RNS River Network Smoother 

SSN Spatial Statistical Model 

SWTA Surface Water Temperature Archive (Environment Agency) 

Ta Temperature of the air at the land surface 

Tw Temperature of the water 

UCR Upper Critical Range 

WIMS Water quality data archive (Environment Agency) 
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Appendix 

Detailed methodology 
All data analysis presented herein was conducted using R (R Core Team, 2021). In 
addition to the base functions in R the following packages were used: the ‘tidyverse’ 
ecosystem (Wickham et al., 2019), ‘readxl’ (Wickham and Bryan, 2019), ‘lubridate’ 
(Grolemund and Wickham, 2011), ‘data.table’ (Dowle and Srinivasan, 2021) and ‘skimr’ 
(Waring et al., 2021) for data import, manipulation, generating summaries and plotting 
data; ‘car’ (Fox and Weisberg, 2019) for correlation analysis; ‘sp’ (Pebesma and Bivand, 
2005, Bivand et al., 2013) and ‘sf’ (Pebesma, 2018) for spatial data analysis; ‘lme4’ (Bates 
et al., 2015), ‘lmerTest’ (Kuznetsova et al., 2017), ‘MuMIn’ (Barton, 2020), ‘caret’ (Kuhn, 
2021), ‘effects’ (Fox and Weisberg, 2019) and ‘sjstats’ (Lüdecke, 2021) for developing 
mixed effects models and aiding model selection. 

Data preparation 

Observed water temperature data were acquired from 2 sources: the Environment 
Agency’s Surface Water Temperature Archive up to 2007 (Orr et al., 2015) and Water 
Quality Data (WIMS). Details regarding the creation of the former can be found in Orr et 
al., 2015 (and on data.gov.uk). It consists of 7 Microsoft Access databases, one containing 
data for each of the previous 7 Environment Agency regions in England. All water 
temperature data were filtered to select only those samples collected from “RIVER / 
RUNNING SURFACE WATER”. These were then extracted and saved as CSV files for 
each region. Data on OpenWIMS is available from 2000. All samples between the years 
2000 and 2021 were downloaded for the determinand “0076” (Temperature of Water) and 
filtered for those where the sampled Material Type was “RIVER / RUNNING SURFACE 
WATER” and saved as an additional CSV file. 

Gridded air temperature values were downloaded from the Centre for Environmental Data 
Analysis (CEDA) website https://archive.ceda.ac.uk. Historical air temperature values were 
obtained from the HADUK 1km gridded datasets to cover the same date range as seen in 
the Tw samples (1952 to present day). Monthly mean air temperature (tas) and monthly 
mean of the daily maximum air temperature (tasmax) datasets were downloaded in 
NetCDF format (one file per year). ‘tas’ and ‘tasmax’ datasets of monthly data were also 
obtained for the UKCP18 regional projections at 12km resolution for 1980-2080 for all 
RCP85 scenarios from the same site (NetCDF format). 

  



34 of 54 

R code data folder structure 

 
 

Observed water temperature readings: sampling frequency analysis 

Analysis of record extent and sampling frequency of Tw readings was carried out for each 
site/cluster in the combined Tw dataset at hourly, daily, weekly, two-weekly and 30-day 
(≈monthly) levels. Some tolerance was allowed between consecutive readings to account 
for sample timing variability and sequences of consecutive readings were allowed to 
continue if a reading was missed but the next reading occurred within a defined timeframe 
(Table A1). Isolated readings and short time sequences were discarded before calculating 
summary statistics of the sampling time sequences observed (Table A2). The distribution 
of sites with significant run lengths of weekly, 2-weekly and monthly values across 
England is shown in figure A3. Only runs of monthly values had sufficient length to 
summarise the interannual variation required for water temperature modelling. 

Table A1: Tolerances allowed within time series sequence analysis of Tw sampling data at 
each sampling site. 

Frequency of Tw 
reading 

Time 
tolerance 

Allow missed reading if 
subsequent reading 
taken within: 

Sequences ignored 
if reading count is 
less than: 

Hourly +30 minutes 2 hours 24 (= 1 day) 

Daily +12 hours 2 days 7 (= 1 week) 

Weekly +12 hours 2 weeks 26 (= 6 months) 

Two-weekly +12 hours 3 weeks 26 (= 1 year) 

30-day / monthly +12 hours 6 weeks 24 (= 2 years) 
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Table A2: Breakdown of sampling frequency in the combined Tw dataset for England and 
chalk stream catchments.  

Monitoring frequency England (28214 sites*) 

 Number of 
sites** 

Median 
sequence 
with IQR ** 

Sequence 
equivalent 
to:  

Number of 
2+ value 
means 

Number of 
3+ value 
means 

Number of 
5+ value 
means 

Hourly 186 
(0.7%) 

48.5 ± 11 
hours 

~ 2 days 5330 1292 155 

Daily 1206 
(4.3%) 

12 ± 7.1 
days 

~ 1 – 3 
weeks 

21665 5126 2215 

Weekly 1747 
(6.2%) 

44 ± 16.0 
weeks 

~ 6 – 14 
months 

68792 13225 4140 

2-weekly 3034 
(10.7%) 

50 ± 27.0 
fortnights 

~ 1 – 3 
years 

166791 31237 5766 

Monthly (30 days) 11716 
(41.5%) 

51 ± 37.5 
months 

~ 1 – 7.5 
years 

483037 124780 29656 

 Chalk catchments (1727 sites*) 

Hourly 6  
(0.3%) 

48.0 ± 6.2 
hours 

~ 2 days 77 18 10 

Daily 133 
(7.2%) 

13.5 ± 8.0 
days 

~ 1 – 3 
weeks 

2228 297 160 

Weekly 218 
(11.7%) 

37.0 ± 8.5 
weeks 

~ 7 – 11 
months 

8359 1624 732 

2-weekly 393 
(21.2%) 

55.0 ± 43.0 
fortnights 

~ 0.5 - 4 
years 

24846 4163 769 

Monthly (30 days) 1108 
(59.7%) 

54.0 ± 54.5 
months 

~ 0 – 9 
years 

55415 17687 4911 

* Sampling sites in proximity of 20 meters grouped and sampling data combined   
** Minimum threshold applied; 1 day for hourly data, 1 week for daily data, 6 months for weekly data, 1 
year for 2-weekly data, and 2 years for monthly data. IQR = Interquartile range  
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Figure A3: Length of runs of consecutive readings; weekly (top-left), 2-weekly (top-right) 
and four-weekly (bottom-left) and the consecutive four-weekly run lengths available at sites 
within the chalk catchment boundary (bottom-right)  

Selection of water temperature model 

The river water temperature modelling process was guided by the previously established 
framework developed by Environment Agency (2021) and summarised in Figures A4 and 
A5.  The first stage involved identification of the most suitable modelling approaches given 
the data sets available. An initial assessment highlighted that adequate data was not 
available to build a ‘process-based’ or ‘hybrid’ model to predict water temperature. A 
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regression-based approach was favoured over a machine-learning model or black-box 
model as the ability to assess the physical plausibility of coefficients was deemed 
essential. The schematic in Figure A4 was adopted to identify the most suitable regression 
approach. A temporally dynamic model was required and given the data available at 
multiple sites, a mixed model was identified as the most suitable approach. 

 

Figure A4: Decision tree for selecting the appropriate regression-based method for water 
temperature modelling. Taken from Environment Agency (2021) 

 

Figure A5: High-level schematic representation of the steps required when developing 
regression-based models for site specific water temperature predictions. Taken from 
Environment Agency (2021).  
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Model development and validation: Air temperature – water temperature 
relationship 

With the inherent daytime sampling bias within the combined Tw dataset, consideration 
was given to whether monthly mean Ta or monthly mean of the daily maximum Ta would 
be the most appropriate air temperature metric to use in model development. Comparison 
of the linear trends in these relationships showed very similar correlation coefficients (𝑟𝑟2 =
0.86) and the monthly mean Ta was selected as a modelling input based on a more 
compressed distribution (trendline slope = 0.79 vs 0.68 for the mean of the daily maximum 
Ta values: Figure A6) 

 

Figure A6: Comparison between air temperature / water temperature relationships using 
monthly mean air temperature (left) and monthly means of daily maximum air temperatures 
(right). The red trendline was fitted using ordinary least squares (OLS) regression. 
n=10,927; 3+ value monthly mean Tw data for chalk sites with at least 5 years of qualifying 
data. 

Model development and validation: Covariate correlation analysis 

Relationships between covariates were assessed and those displaying strong correlations 
(Pearson correlation coefficient; r > 0.8) were rationalised (Figure A7). The ‘Altitude’ 
covariates (Altitude_m, Av_Alt_US_m and DRN_MEAN_ALT) aligned closely with each 
other and the hard geology variables were strongly negatively correlated. 
‘DRN_MEAN_ALT’ was carried forward as the altitude indicator due to greatest data 
availability and ‘geo_calc_us’ used for hard geology indicator. Rationalisation of 
correlations within the upstream land cover variables, particularly farmland and urban 
development, were considered but discounted due to their potential to impact on different 
hydrological processes.   
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Figure A7: Correlation matrix of covariates including Pearson correlation coefficients. Blue 
circles indicate positive correlations and red circles indicate negative correlations. Circle 
size is proportional to the Pearson correlation coefficient. 

Covariate selection was guided by previous studies which had demonstrated the benefit of 
representation across the full environmental range of each covariate to maximise model 
performance (Jackson et al., 2016, 2018). Site selection in this study was dependent on 
the number of Tw readings available rather than a site’s representation of a particular 
environmental characteristic and the ranges of each selected covariate available for 
modelling of chalk stream water temperatures is presented in table A8. 

Table A8: Covariates selected for water temperature model generation. Boxplots indicate 
the median, interquartile range, and distribution of the variables within the chalk catchment 
monitoring sites  

Identifier Description Minimum value Maximum 
Value 

USFarmland Upstream land dedicated to farming 
(Arable and improved grassland; %) 

0 100 

 

USUrbSub Upstream land dedicated to urban and 
suburban development (%) 

0 100 
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USWoodland Upstream land covered in broadleaf 
and conifer woodland (%) 

0 56 

 

USWildgrass Upstream land covered in undisturbed 
natural grassland (+ set-aside; %) 

0 100 

 

Geo_calc_us Upstream calcareous hard geology (%) 0 100 

 

Geo_sili_us Upstream siliceous hard geology (%) 0 100 

 
Cat_size_km2 Size of upstream catchment (km2) 0 1800 

 
Altitude_m Altitude of sampling point (m) 0 190 

 
Av_Alt_US_m Average altitude of upstream 

catchment (m) 
0 215 

 
DRN_WIDTH_M River channel width (m) 0 59 

 
DRN_GRAD_MKM Gradient of river section (m/km) 0 318 

 
DRN_MEAN_ALT Mean altitude of river section (m) -0.85 158.45 

 
DRN_DIST2MTH Distance downstream to the end of the 

DRN (m) 
1570.8 280393.9 

 
DRN_US_ACCUM Total length of the river upstream of 

section (m) 
3.8 3517782.3 

 
DRN_STRAHLER Strahler river order at site 1 7 
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Global model temperature predictions 

 

Figure A9(i): Enlarged version of Figure 7, top-left panel showing the maximum MdTw 
projected at each qualifying site in the decade 2010 to 2019 
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Figure A9(ii): Enlarged version of Figure 7, top-right panel showing the maximum MdTw 
projected at each qualifying site in the decade 2030 to 2039 
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Figure A9(iii): Enlarged version of Figure 7, bottom-left panel showing the maximum MdTw 
projected at each qualifying site in the decade 2050 to 2059 
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Figure A9(iv): Enlarged version of Figure 7, bottom-right panel showing the maximum 
MdTw projected at each qualifying site in the decade 2070 to 2079 

Case Study – Catchment specific models 
During the appraisal of available modelling methods (Task 2), four river catchments were 
identified having multiple (more than 5) monitoring sites with more than five years of 
monthly mean data and the potential for the development of catchment-specific water 
temperature models. 

Table A10: Catchment model candidate sites 

Catchment / Basin River Basin District Sample Sites with >60 months data 

River Test South-East SO-G0003890, SO-G0003918, SO-G0003926,  
SO-G0003929, SO-G0004067, SO-G0004076,  
SO-G0004084, SO-G0004095, SO-G0006183,  
SO-G0006184 
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Hampshire Avon South-West SW-50210209, SW-50220110, SW-50220136,  
SW-50230145, SW-50240116, SW-50250102,  
SW-50250634, SW-50280344, SW-50280585 

River Wensum Anglian AN-TUD070, AN-WEN010, AN-WEN020, AN-
WEN040, AN-WEN160, AN-WEN175, AN-WEN180 

River Hull Humber NE-49200141, NE-49200137, NE-49200090,  
NE-49200071, NE-49200035, NE-49200025 

 

Figure A11: Location of sampling points in catchments proposed for catchment-based 
model development 

Model development started with a similar ‘full’ model to that used in development of the 
‘global’ model except that it lacked the spatial component (Easting) and any random 
effects elements: 

Twmean = Tair: Season + cat_size_km2 + DRN_WIDTH_M + DRN_GRAD_MKM + DRN_MEAN_ALT + 
DRN_DIST2MTH + DRN_STRAHLER + geo_calc_us +  
USUrbSub + USFarmland + USWoodland + USWildgrass 

These linear models (lm) were optimised for each catchment (dredge function, MuMin R 
library) and the model with the minimum AICc value selected as the best model candidate. 
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The covariates remaining in each catchment’s model are set out in Table A12. Each model 
was then applied to increasing sets of chalk sites to assess model transferability and 
robustness. The models were first applied to those sites in the same catchment which had 
not participated in model development, then sites in the same river basin district and finally 
to all chalk sites used in this study (Figures 16 to 19). 

Table A12: Covariates remaining in optimised catchment models 

Catchment model Covariates in optimised model 

River Test DRN_MEAN_ALT, DRN_STRAHLER, DRN_WIDTH_M, USUrbSub 

Hampshire Avon Cat_size_km2, DRN_DIST2MTH, DRN_MEAN_ALT, 
DRN_WIDTH_M, geo_calc_us, USWildgrass 

River Wensum DRN_MEAN_ALT, DRN_WIDTH_M 

River Hull DRN_MEAN_ALT 

 River Test 

 

Figure A13: Performance of the River Test model at different landscape scales: training data 
sites in the Test catchment (top left), additional sites in the Test catchment (top right), chalk sites in 
the same River Basin District (bottom left), all chalk sites (bottom right). Red lines show x = y 
identity lines. 
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Hampshire Avon 

 

Figure A14: Performance of the River Avon model at different landscape scales: training data 
sites in the Avon catchment (top left), additional sites in the Avon catchment (top right), chalk sites 
in the same River Basin District (bottom left), all chalk sites (bottom right). 

River Wensum 
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Figure A15: Performance of the River Wensum model at different landscape scales: training 
data sites in the Wensum catchment (top left), additional sites in the Wensum catchment (top 
right), chalk sites in the same River Basin District (bottom left), all chalk sites (bottom right). 

River Hull 

 

Figure A16: Performance of the River Hull model at different landscape scales: training data 
sites in the Hull catchment (top left), additional sites in the Hull catchment (top right), chalk sites in 
the same River Basin District (bottom left), all chalk sites (bottom right). 

The reducing R2 values in the plot groups above (the four panels in each of figures A13 to 
A16) indicate that the overall performance of these catchment models degrades as the 
model is applied to increasing number of sites, some by a large degree. The ‘Avon’ and 
‘Hull’ models show particularly poor performance when applied to all chalk sites with the 
‘Avon’ model displaying divergence even at the catchment scale. Analysis of the 
covariates selected during the model development stage show that some covariates have 
very compressed numerical ranges which do not represent the overall range seen across 
chalk catchments (Table A17). Stepwise removal of these ‘compressed range’ covariates 
did show improvement in the model fit at larger scales but created a manual assessment 
stage to apply judgement to the validity of each model (data not shown). 
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Table A17: Covariate ranges in catchment-based models. Shaded cells highlight small 
ranges of values when compared to the overall covariate range seen across all chalk water 
temperature sampling sites. 

Covariate Overall Test Avon Wensum Hull 

Min Max Min Max Min Max Min Max Min Max 

Altitude (m) -0.85 158 2.6 69.1 2 114.4 8.7 41.8 3.4 7.5 

River width (m) 0 59 6.1 27.7 5.4 28 2.5 11.9   

Strahler order 1 7 3 6       

Catchment size 
upstream (km2) 

0 1800   0 1707     

Distance to river 
mouth (m) 

1.5k 280k   6.3k 111k 75.7k 81.8k   

Calcareous 
geology (%) 

0 100   88.2 100     

Upstream 
urbanisation (%) 

0 100 3 57   2 4   

Upstream wild 
grassland (%) 

0 100   1 14     

 
  



50 of 54 

Table A18: Chalk stream water body groupings into main catchments. 

Chalk Catchment Water bodies 

Adur Adur, Woodsmill Stream 

Ancholme Ancholme, Rase, Kingerby Beck, North Willingham 

Arun Arun 

Asker Asker 

Avon Hampshire Allen, Ashford Water, Bourne, Chalke Valley Stream, Chitterne 
Brook, Ebble, Etchilhampton Water, Fonthill Stream, Fovant Brook, 
Hampshire Avon, Nadder, Nine Mile River, Sweatfords Water, 
Teffont, The Clockhouse Stream, Till, Wylye, The Were or Swan  

Babingley River Babingley River 

Bride Bride 

Bure Bure, Marys Beck 

Cam Bottisham Lode, Bulbeck Lode, Cam, Cherry Hinton Brook, Debden 
Water, Hobson’s Brook, New River, Slade, Soham Lode, 
Swaffham, Wendon Brook, Wicken Water 

Colne Alderbourne, Bulbourne, Chess, Colne, Ellen Brook, Gade, 
Misbourne, Ver 

Cray Cray 

Darent Darent 

Derwent Yorks Barlam Beck, Bielby Beck, Derwent, Langton Beck, Menethorpe 
Beck, Pocklington Beck, Scampston Beck, Settrington Beck, 
Skirpen Beck 

Dour Dour 

Eaus / Steeping Burwell Beck, Great Eau, Long Eau, Lymn, Steeping, Wainsfleet 
Haven, Willoughby High Drain 
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Foulness Foulness 

Frome Cerne, Frome, Hooke, South Winterbourne, Sydling Water, Tadnoll 
Brook, Win 

Glaven Glaven, Gunthorpe Stream 

Granta Granta 

Great Stour Great Stour, Little Stour, Nailbourne, North and South Streams, 
Wingham 

Gypsey Race Gypsey Race 

Heacham Heacham 

Hull Beverley and Barmston Drain, Bryan Mills Beck, Driffield Trout 
Stream, Ella Dyke, Eastburn Beck,  Frodingham Beck, Garton Wold 
/ Water Forlorns, Hull, Lowthorpe / Kelk / Foston Brooks, Nafferton 
Beck, Scorborough Beck, Scurf Dyke, Skerne Beck, Watton Beck, 
Wellsprings Drain, West Beck   

Humber (Becks 
Northern) 

Barrow Beck, Laceby Beck, Louth Canal, Lud, North Beck Drain, 
Skitter Beck / East Halton Beck, Thoresway Beck, Waithe Beck 

Ingol Ingol 

Isle of Wight 
Rivers 

Caul Bourne, Lukely Brook 

Itchen Arle, Candover Brook, Candover Stream, Cheriton Stream, Itchen 

Ivel Cat Ditch, Hiz, Ivel, Pix Brook, Purwell 

Jordan Jordan 

Kennet Aldbourne, Dun, Froxfield Stream, Kennet, Lambourn, Og, 
Shalbourne, Winterbourne 

Kennett Lee Brook, Kennett 
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Lark Cavenham Stream, Culford Stream, Hawstead Tributary, Lark, 
Linnet, Tuddenham Stream 

Lee Ash, Beane, Bourne Brook, Lee, Mimram, Quin, Rib, Stort 

Little Ouse Little Ouse, Pakenham Stream, Sapiston, Stowlangtoft Stream 

Loddon Blackwater, Loddon, Lyde, Whitewater 

Meon Meon 

Nar Nar 

North Norfolk 
Rivers 

River Burn, Binham Tributary, Stiffkey 

Piddle Bere Stream, Cheselbourne Stream, Devils Brook, Piddle 

Rhee / Cam Mel, Mill River, Rhee, Shep, Whaddon Brook 

Rother Costers Brook, Elsted Stream, Harting Stream 

Stour Dorset Allen, Bourne Stream, Crane, Crichel Stream, Fontmell Brook, 
Gussage Stream, Iwerne, North Winterbourne, Shreen Water, 
Stour, Tarrant 

Test Anton, Blackwater, Bourne Rivulet, Dever, Dun, Pilhill Brook, 
Sombourne Stream, Test, Wallop Brook 

Thame Chalgrove Brook, Kingsey Cuttle Brook, Lewknor Brook 

Thames Ewelme Stream, Ginge Brook, Hamble Brook, Hogsmill, Letcombe 
Brook, Mill Brook, Mole, Ock, Pang 

Thet Buckenham Stream, Larling Brook, Stow Bedon Stream, Thet, 
Whittle 

Upper Hamble Upper Hamble 

Wandle Wandle 
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Wensum Blackwater, Blackwater Drain, Little Ryburgh, Tat, Tud, Wendling 
Beck, Wensum 

Western Streams Bosham Stream, Ems, Fishbourne Stream, Lavant 

Wey Caker Stream, North Wey, Tillingbourne 

Wey (Dorset) Wey (Dorset) 

Wissey Gadder, Gladder, Thompson Stream, Watton Brook, West Tofts 
Stream, Wissey 

Witham Bain, Stainfield Beck 

Wye (Chilterns) Hughenden Stream, Wye 

Yare Tas, Tiffey 
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Would you like to find out more about us or 
your environment? 
Then call us on 

03708 506 506 (Monday to Friday, 8am to 6pm) 

Email: enquiries@environment-agency.gov.uk 

Or visit our website 

www.gov.uk/environment-agency 

incident hotline  
0800 807060 (24 hours) 

floodline  
0345 988 1188 (24 hours) 

Find out about call charges (https://www.gov.uk/call-charges) 

Environment first 
Are you viewing this onscreen? Please consider the environment and only print if 
absolutely necessary. If you are reading a paper copy, please don’t forget to reuse and 
recycle. 

 

mailto:enquiries@environment-agency.gov.uk
https://www.gov.uk/environment-agency
https://www.gov.uk/environment-agency
https://www.gov.uk/call-charges
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