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Research at the Environment Agency

Scientific research and analysis underpin everything the Environment Agency does. It
helps us to understand and manage the environment effectively. Our own experts work
with leading scientific organisations, universities, and other parts of the Defra group to
bring the best knowledge to bear on the environmental problems that we face now and in
the future. Our scientific work is published as summaries and reports, freely available to
all.

This report is the result of research commissioned by the Environment Agency’s Chief
Scientist’'s Group.

You can find out more about our current science programmes at
https://www.gov.uk/government/organisations/environment-agency/about/research

If you have any comments or questions about this report or the Environment Agency’s
other scientific work, please contact research@environment-agency.gov.uk.

Dr Robert Bradburne
Chief Scientist
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Executive Summary

The future impacts of climate change on aquatic ecosystems remain uncertain. Strong
links between surface water temperature, water quality and ecological response show that
changes in water temperature are likely to be of critical importance. Quantifying the
amount and timing of warming in rivers can inform the targeting of adaptation measures to
reduce adverse changes and protect vital functions they provide. While projections of river
water volumes and flows have been developed for England there are currently no national
projections of river water temperature. This limits our understanding of future risks and
management choices that can improve resilience to the impacts of climate change.

Chalk streams are a globally unique habitat restricted to England and north-west Europe.
These groundwater-fed streams exhibit a stable, cool water temperature profile supporting
rich biodiverse ecosystems including important salmonid fish species: Atlantic salmon
(Salmo salar) and brown trout (Salmo trutta). This group of rivers was selected as a pilot
for temperature projections in all rivers because of their similar morphology, uniqueness,
their importance in water supply and in support of a national effort to protect these
important habitats.

Chalk stream water temperature and future projections are modelled, following a
previously identified framework, using historical Environment Agency water temperature
records along with environment variables (air temperature, land cover and river network
properties). Sufficient water temperature data were identified at 92 sites to create a
monthly mean daytime water temperature model, which was then validated at 893 sites
across the English chalk stream network.

This ‘global’ model was used to make monthly mean daytime river water temperature
projections to 2080 — the temporal extent of existing climate change projections that
provide future warming information. Based on a ‘high emissions scenario’, ecologically
significant increases in water temperature were projected with summer maxima rising by
0.58°C per decade above reference levels (1981 to 2005) to 2080. These values indicate
change in summer monthly mean daytime maximum water temperatures over the next 60
years and allow spatial comparisons. Regional differences are seen with sites in the
north-east of England (Lincolnshire and Yorkshire Wolds) projected to experience the
lowest increases whereas those in the vicinity of London (rivers Colne, Lee, Hogsmill,
Mole and Wandle) are projected to experience the highest. Some ‘hotspots’ as well as
‘cold spots’ can also be identified amongst the sites. Monthly daytime projections are
particularly affected by the amount of urban land in the catchment. An important
temperature threshold for salmonid egg survival during the winter spawning period of 12°C
will likely be exceeded at over 85% of sites by 2080 and adult brown trout will continue to
be under threat from high summer temperatures with all sites exceeding that species’
upper critical temperature range of 19.5°C by 2080.

The historic water temperature readings provide a ‘snapshot’ temperature value for water
from various sources (e.g., upstream flow, precipitation, surface water runoff, groundwater
influx) all of which will have different temperature profiles and volume contributions which
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will vary through the seasons and between years. The seasonal aspect of the relationship
between air and water temperature was essential in model development. To account for
this variation a minimum of five years monthly mean water temperature data is considered
an absolute minimum to reflect meaningful interannual water temperature variation.

While the available historical water temperature records facilitated estimation of monthly
mean daytime water temperatures for rivers under the influence of climate change, the
coarse nature of the data (i.e., in space and time) limit the ability to draw conclusions
about water temperature at specific sites. Mean monthly estimates also disguise the
influence of short-term climatic fluctuations (e.g., heatwaves) which may have ecological
implications ahead of the timelines outlined here. The monthly mean maximum
temperature is therefore likely to underestimate daily maximum temperatures that could be
experienced. More detailed projections (e.g., daily or along river channels) would be
possible with higher sampling frequency or a specifically designed temperature monitoring
network.
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Introduction

Overview

Climate projections for England suggest there will be an increase of warmer, wetter
winters and hotter, drier summers along with more frequent and intense extreme weather
events, including short duration, high magnitude precipitation events (UKCP18: Met Office,
2019). Understanding the consequences of these changes on water quality and aquatic
biota is important to inform the targeting of management actions and adaptation measures
to help maintain the integrity of the river ecosystems and the services they provide.

Flow and water temperature (Tw) are considered important variables having an influence
on river ecosystems and water quality (Poff et al., 1997, Woodward et al., 2010). There is
a broad consensus of how the climate is changing including information about how river
flows will alter. There is much less clarity about how and where Tw may change. Previous
modelling exercises assessed how water quality and eutrophication risk could change in
the future, highlighted the sensitivity of future risk to projections of Tw (Environment
Agency, 2019). Understanding potential changes in thermal regimes will help identify
priority areas for action (Knouft et al., 2021). Adaptation measures, such as tree planting
for shade, can reduce thermal maxima but careful targeting is needed as the thermal
benefit of riparian shade depends on physical location within the river network and on
prevailing climate conditions (Garner et al., 2017, Wilby and Johnson, 2020). Models to
identify where rivers are hottest and most sensitive to climate change in Scotland (Jackson
et al., 2018) are being used to target riparian tree planting to protect cold water dependent
species such as Atlantic salmon and brown trout.

River water temperature is controlled by a complex interaction of hydrological,
climatological and landscape characteristics and previous models for predicting water
temperature have utilised variables from all three of these categories (e.g., Jackson et al.,
2018). Climatological influences are reflected in air temperature readings which have long
been recognised as having a strong positive correlation with surface water temperatures.

Quantifying the amount and timing of future warming in rivers will provide more robust
evidence to inform where to target measures to adapt to these changes. To understand
how best to develop future projections of river Tw, Environment Agency (2021) reviewed
potential modelling approaches and produced a robust framework for doing so. This study
applied the framework to develop Tw projections for English chalk streams.

Chalk streams are watercourses dominated by groundwater discharge from chalk geology.
The chalk has a strong influence on the flow regime and chemical properties supporting
characteristic assemblages of plants and animals (Berrie, 1992; Sear et al., 1999).
Groundwater has a stable temperature, resulting in a warming effect in winter and a
cooling effect in summer (compared to air temperature), and historically, river
temperatures have appeared stable between 5 and 17°C (Mackey and Berrie, 1991).
Previous river temperature modelling studies have demonstrated the importance of river
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shading and water flow characteristics (water flow, volume, residence time) in modulating
river water temperatures (Jackson et al., 2020).

Using chalk streams as a test case allows the modelling approach recommended in the
scoping project to be tested, applied, and refined. It will demonstrate the effectiveness of
the modelling approach, develop the specific tools for producing and updating projections
elsewhere, and produce a specific set of projections that can be immediately used for
understanding future impacts and how to manage them.

Project aim and objectives

The aim of this project was to develop Tw projections for English chalk streams using the
framework developed in an earlier project (Environment Agency, 2021). Tw, corresponding
air temperature (Ta) and associated catchment data were collated from available sources
(Task 1; Figure 1) and assessed for their application to chalk stream catchments and the
potential modelling options they could support (Task 2). A global model and catchment
specific models were then developed, tested, and refined (Task 3) before making
projections of Tw under climate change conditions (Task 4). Both global and catchment
specific models were developed in Task 3 to help understand how different predictor
variables influenced the projections at different spatial scales and whether the predictive
ability of the models could be improved.

Task 2: Select sites within chalk river catchments and
establish site environmental characteristics as
potential covariates for use in water temperature
modelling

Task 1: Prepare and assess river water temperature
data and potential modelling approaches. Establish
air temperature values for each water temperature
reading

1A: Combine avail-
able data.

2A: Establish sites 2C: Visualisation of

2B: Combine site

1B: Analyse time 1C: Build monthly

Remove duplicates
and outliers.

Combine data at
close sites.

series and data
density.

Assess which mod-
elling time step can
be supported

means from avail-
able data.
Combine with air
temperature values
from Met Office

within chalk catch-

ment boundary,
association with
specific rivers and
‘chalk’ and ‘non-

data with environ-
mental and landsc-
ape characteristics

derived from GIS
DRN and land use

water temperature
data density for
chalk rivers.
Selection of candi-
dates for catchment

(hourly, daily, etc.). HADUK data sets. chalk’ reaches. products. specific modelling.

Task 4: Generate and visualise chalk stream water
temperature projections based on UK Climate Change
projections of air temperature (UKCP18, rcp85 high
emissions scenario)

Task 3: Create ‘global’ and catchment-specific models
of monthly mean water temperature for chalk
streams in England

3C: Create Global Tw model
based on air temp and covariates
Reduce and train model

3B: Establish
air / water
temperature
relationship
for modelling
[(EELLE
component).

3A: Covariate
correlation
ELELETES
Reduce collin-

ear predictors
to single
variable

3D: Create catchment-
models. Test ability to estimate
water temps at other sites.

Figure 1: Task outline followed to generate models and predictions of chalk stream water
temperature from available data. Task and subtask numbering relates to respective R code
scripts developed to complete analysis (R code availability information needed here).
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Methods

An overview of the data sets used, and the modelling approaches employed are presented
here. Detailed methods are provided in the appendix.

Data for modelling and projections

Observed water temperature readings

River water temperature (Tw) data from the Environment Agency’s Surface Water
Temperature Archive up to 2007 (Orr et al., 2015) and Water Quality Data (WIMS) archive
were combined (referred to herein as the ‘combined Tw dataset’). Values above 30 (range
= 30.2 to 100; 208 records) and below 0 (range = -0.02 to -2.0; 51 records) were removed
as deemed erroneous and unrealistic for English rivers (Orr et al., 2015), observations
grouped by unique site identifier and any duplicate measurements (by location, time, and
water temperature reading) removed, leaving 3.22 million unique Tw records across
England. Sites were further grouped into clusters if within 20 meters of each other and
samples combined (1577 close sites combined into 689 clusters). Record length and
sampling frequency at each of the 28,214 unique sites/clusters were assessed and
sequences of Tw values sufficient for the generation of monthly mean water temperatures
were identified that could support model generation (see Appendix — Table A1). It should
be noted that there is a clear sampling bias with spot measurements almost exclusively
collected during working hours (median sample time = 11:00, main range = 06:00 — 18:00,
Monday - Friday), hence, this should be considered as an estimate of monthly mean
daytime water temperatures (MdTw).

The boundary of English chalk stream catchments was identified using published chalk
stream data (Environment Agency’s Catchment Data Explorer; Rangeley-Wilson, 2021)
and river courses within that boundary identified. Sub-catchments and tributaries were
grouped into 59 major river catchments (see Appendix for catchment groupings) and
known chalk stream courses used to split this river network into ‘chalk’ and ‘non-chalk’
sections. Sampling sites/clusters associated with a 100-meter buffer of these sections
were labelled accordingly, and sites falling outside the buffer region were discarded.

To ensure only robust MdTw estimates were used for model development a site had to
meet specific data criteria, the minimum criteria of three samples per month with a record
length of five years to account for interannual variability. Of the 1727 sample locations
identified within the chalk boundary, 92 sites representing 21 of the 59 chalk river
catchments met these minimum criteria. A large proportion of sites (n = 801) had some
months with 3+ Tw measurements but not for the required five-year duration; these sites
were retained for checking the developed model’s performance (= ‘Validation dataset’).
The 893 sites (92 + 801) participating in model development and validation covered 57 of
the 59 chalk river catchments in England.
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Figure 2: Combined Tw dataset sample sites in England (left) and in chalk catchments
(right). Point colours indicate the number of temperature readings available at each site and
pink polygons indicate the extent of chalk catchments

Datasets used for model development

Observed air temperature data was obtained from 1 km gridded datasets of climatological
data available from the Met Office (HadUK-Grid products; Met Office 2018). Both the
monthly mean (temperature at surface; tas) and the monthly mean of daily maximum
(tasmax) air temperatures were extracted for each sample date and site as potential
surrogates for the daytime water temperatures used in this study.

To ensure the developed models were practical and suitable for use in a management
context, covariates that could be derived solely from available GIS sources were used.
Indicators of upstream land-use, geology and sample site characteristics were selected,
along with potential proxies for hydrological regime (e.g., river width, river gradient,
Strahler stream order; See Table 1).

Landscape characteristics considered included land cover information maintained by the
Centre for Ecology and Hydrology (CEH; Land Cover Map 2000 (LCM2000) datasets),
topographical information derived from a Digital Elevation Model (Nextmap 50m DEM
hydromodel) and LIDAR data, and watercourse characteristics from the Environment
Agency’s Detailed River Network GIS layer (Coley et al., 2018).
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Table 1. List of covariates selected for water temperature model development. The acronym
is displayed along with description and data source.

natural grassland (+ set-aside; %)

USFarmland Upstream land dedicated to farming CEH; Land Cover Map 2000
(Arable and improved grassland; %)

USUrbSub Upstream land dedicated to urban and | CEH; Land Cover Map 2000
suburban development (%)

USWoodland Upstream land covered in broadleaf CEH; Land Cover Map 2000
and conifer woodland (%)

USWildgrass Upstream land covered in undisturbed | CEH; Land Cover Map 2000

Geo_calc_us

Upstream calcareous hard geology
(%)

British Geological Survey

Geo_sili_us

Upstream siliceous hard geology (%)

British Geological Survey

Cat_size_km2

Size of upstream catchment (km?)

Environment Agency’s Detailed River
Network GIS layer

Altitude_m Altitude of sampling point (m) Nextmap 50m DEM hydromodel

Av_AIlt_US m Average altitude of upstream Nextmap 50m DEM hydromodel
catchment (m)

DRN_WIDTH_M River channel width (m) Environment Agency’s Detailed River

Network GIS layer

DRN_GRAD_MKM

Gradient of river section (m/km)

Environment Agency’s Detailed River
Network GIS layer

DRN_MEAN_ALT

Mean altitude of river section (m)

Environment Agency’s Detailed River
Network GIS layer

DRN_DIST2MTH

Distance downstream to the end of
the DRN (m)

Environment Agency’s Detailed River
Network GIS layer

DRN_US_ACCUM

Total length of the river upstream of
section (m)

Environment Agency’s Detailed River
Network GIS layer

DRN_STRAHLER

Strahler river order at site

Environment Agency’s Detailed River
Network GIS layer

Future climate projections

The Met Office UKCP18 datasets provide probabilistic projections of environmental
variables (air temperature, rainfall, etc.) based on a range of potential future climate
outcomes. A range of future emissions scenarios are considered, and each dataset
comprises an ensemble of 12 potential outcomes representing the uncertainty introduced
by perturbation of climate model parameters. The UK regional model projections provide
access to spatially coherent ‘raw’ climate projection data at the highest resolution (12km
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grid) for the years 1981 to 2080 and were used in this study. These projections are based
on the high emissions ‘RCP8.5’ scenario and are considered a basis for precautionary
planning for climate change impacts (Met Office, 2019).

Projected monthly mean air temperature values for the years 1981 to 2080 and for each of
the 12 potential outcomes mentioned above were extracted from the 12km RCP8.5
regional UKCP18 gridded dataset for each Tw sampling site. Values falling in the date
range January 1981 to December 2005 (25-year reference period) were compared to
observed air temperature readings for the same period and differences summarised into a
set of monthly bias corrections which were then applied across each Ta projection dataset
(Lenderink et al., 2007). This bias correction aligns modelled datasets with a known set of
values and improves reliability of subsequent modelling outputs. These bias correction
adjustments are summarised in Figure 3 and, while the majority are small (+ 0.5°C), an
underestimate of springtime air temperatures in the UKCP18 data require more of an uplift
to align with observed values.

Ranges of Bias Corrections applied to UKCP18 projections

Feb - -"_

M artth

Maow TE W R P -I-

Dec O PR P -

2 -1 0 - 2

Bias Correction (°C )

Figure 3: Ranges of bias corrections applied to the UKCP18 monthly mean air temperature
projections prior to calculation of water temperature using developed models.
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Model development and generation of projections

Selection of water temperature model

The river water temperature modelling process was guided by the previously established
framework developed by the Environment Agency (2021). While the availability of
historical monthly mean water temperature data placed this study outside the
recommended bounds (daily to weekly model output), the decision-making process
followed a similar series of steps (flowcharts reproduced here in Appendix; Figures A4 and
A5). A mixed effect, regression-based approach was selected as most appropriate for
multi-site, repeated measurement data. This option also maintained visibility of any
influential covariates allowing an assessment of their physical plausibility to take place.

Model development and validation

The strength of the relationship between the observed water temperature values and both
the mean and maximum air temperature values was assessed. As both relationships were
statistically equivalent (r? = 0.86), the mean air temperature was selected for use in the
model development process (see Appendix for further rationale). Seasonal variability in
the air-water temperature slope was identified (Figure 4) and retained as a required
element in model development (Mohseni and Stefan, 1999; Webb et al., 2008).

Air / Water Temperature Relationship

20

.
mn

Season

Autumn
== Spring
== Zummer

10 Winter

Twater (ccj

mn

Tar (°C)

Figure 4: Seasonal variation in air temperature / water temperature relationship across
chalk catchment Tw sampling sites. Lines fitted using ordinary least squares regression.
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Collinearity between predictor variables, the tendency for one variable to change in a very
similar way to another, can lead to the development of overly complex models with
compounded errors that limit predictive capability (Dormann et al., 2013). Landscape and
river channel covariates that displayed strong correlations with each other (Pearson
correlation coefficient; r > 0.8) were rationalised (Appendix; Figure A7). The covariates
taken forward to the modelling stage were:

e Land cover — percentage upstream farmland, urban development, woodland, and
wild/natural grassland (USFarmland, USUrbSub, USWoodland and USWildgrass)

e Percentage upstream hard calcareous geology (geo_calc_us)

e Upstream catchment size (cat_size_km2)

e Channel characteristics — river width, river gradient, mean altitude, distance to river
mouth, Strahler river order (DRN_WIDTH_M, DRN_GRAD_MKM, DRN_MEAN_ALT,
DRN_DIST2MTH and DRN_STRAHLER)

All models were developed using R (R core team, 2021) using functions from the base,
Ime4 and MuMin packages. A linear mixed-effects model for chalk stream water
temperature was developed based on 81 sites and 9521 observations (note the lower
number of sites due to missing covariate data). Based on exploratory data analysis the
following features formed the basis of model development:

e The model must include the seasonal air / water temperature relationship

e All selected covariates would initially be included to create a ‘full’ model which would
then be simplified to contain only the most influential factors

e A spatial component would be included to represent the west-east hydro-climatic
gradient (Easting value used)

e Variation between sample sites, catchments and to allow the water/air temperature
relationship to vary between sites would be permitted, with the variation following a
‘normal’ distribution (= ‘random effects’ elements)

The ‘full’ model which included all the available covariates selected above was first fitted to
available data (‘lmer command, Ime4 R package) and took the form using the R syntax:

MdTw = Ta.ir: Season + cat size km2 + DRN WIDTH M + DRN GRAD MKM +
DRN MEAN ALT + DRN DIST2MTH + DRN STRAHLER + geo calc us + USUrbSub +
USFarmland + USWoodland + USWildgrass + Easting + (Random effects)

‘Random effects’ were applied sequentially as follows (1) Absent, (2) the intercept could
vary between sites (1 | sites), (3) the intercept could vary between catchments (1 |
catchments), or (4) the slope and intercept of the Ta / Tw relationship could vary between
sites (T.:: | Sites). The different ‘random effects’ outcomes were compared using
Bayesian Information Criterion (BIC) and the best performing ‘full’ model reduced to its
simplest, statistically significant form to give the following optimised ‘global’ model for
monthly mean water temperature:

MdTw = Tair: Season + geo calc us + USUrbSub + (Tair | Sites)
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Ideally, predicted Tw values generated by a model would be identical to observed Tw
values in a training dataset so that all points would fall on the x = y identity line when
plotting observed against predicted Tw values. Such an outcome would have an R? value
of 1 and a Root Mean Squared error (RMSE) of 0. The optimised ‘global’ model
developed here generated good estimates of MdTw in the training data (R? = 0.94, RMSE
= 0.97°C; Table 2 and Figure 5 (right panel)) and performed well with the validation
dataset (R? = 0.85, RMSE = 1.47°C; Figure 6 (right panel)). These R? and RMSE values
compared well with those generated by the more complex ‘full’ model (left panels of
Figures 5 and 6), indicating that all significant factors had been retained in the optimised
‘global’ model and that it had strong predictive performance for the generation of MdTw
estimates for chalk stream sites from limited environmental and air temperature
information.

Table 2: Structure and summary statistics of the optimised ‘global’ model for chalk stream
monthly mean daytime water temperatures. 2 = random effect variance, Too = random
intercept variance, 111 = random slope variance, p01 = random slope-intercept correlation,
ICC = intraclass correlation coefficient. Marginal R? conditional R?

Tw _mean mo

Predictors Estimates CI )4
(Intercept) 2.00 0.91-310 =0.001
geo calc us 0.02 001-003 0.003
USUrbSub 003 002-004 =0.001
Season [Aut] * Ta mean 0.72 0.69-076 =0.001
Season [Spr] * Ta mean 0.74 0.71-078 =0.001
Season [Sum] * Ta mean 0.77 0.74-080 =0.001
Season [Win] * Ta mean 0.61 0538 -064 =0.001

Random Effects
G2 095
T00 Sites 1.94
T11 Sites.Ta_mean 0.02
PO1 Sites -0.89
ICC 0.67
N gjte g1
Observations 9521
Marginal R?/ Conditional R 0.833/0.945
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Training data - 'full' model Training data - optimised 'global’ model

2 R%=0.94 RMSE = 0.97°C

¥
wh

R%=0.94 RMSE = 0.97°C

g

20

Predicted Tw (°C)
Predicted Tw (°C)

o 5 10 15 20 25 o 5 10 15 20
Observed Tw (°C) Observed Tw (°C)

Figure 5: Performance of the ‘full’ (left) and optimised ‘global’ model (right) for chalk stream
water temperature prediction against the training dataset (3+ value monthly mean Tw values
from sites with over 5 years of data; n = 9521). The red line indicates the x = y identity line.

Validation data - 'full' model Validation data - optimised 'global’ model

2 R”=0.84 RMSE = 1.50°C = R%=0.85 RMSE = 1.47°C

Predicted Tw (°C)
Predicted Tw (°C)

o 5 10 15 20 5 5 5
Observed Tw (°C) Observed Tw (°C)

(=]
=]

10 15 20 25

Figure 6: Performance of the ‘full’ (left) and optimised ‘global’ model (right) for chalk stream
water temperature prediction against the validation dataset (3+ value monthly mean Tw

values from sites with less than 5 years of data; n = 6080). The red line indicates the x =y
identity line.

Future projections of chalk stream water temperatures

Bias-corrected UKCP18 monthly air temperature values and sample site covariate
information (percentage chalk geology and percentage urban and suburban land use
upstream of the sample site) were used in the optimised ‘global’ model to generate
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predictions of monthly mean river water temperature at each of the 893 sites having some
historical 3+ value monthly mean water temperature data. Water temperature predictions

were generated for each of the twelve UKCP18 potential outcomes and the median value
taken for each month between 1981 and 2080 for each site as a summary statistic.

These median values of projected water temperature were used to investigate potential
temperature changes that could impact on the life cycles of two important salmonid fish
species, brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). Two temperature
thresholds were analysed: Firstly, the upper critical range over which fish survival is
compromised, and secondly, the maximum temperatures experienced during the
spawning season (October/November — February/March) which impact on egg survival.
The percentage of sites predicted to exceed these temperature thresholds was recorded
for each decade across the UKCP18 climate change projection range 1981-2080.

Catchment-specific models

Catchment specific MdTw models were created for four catchments with more than 5
monitoring sites each with more than five years of MdTw data: the rivers Avon
(Hampshire), Hull, Test and Wensum. The ‘full’ model with all selected covariates but
without any ‘random effects’ elements was applied in turn to each catchment’s qualifying
data and the resultant model optimised to find the simplest solution. The performance of
each catchment model at predicting MdTw for other sites in the same catchment, other
chalk river sites in the same river basin district and other chalk river sites in England was
assessed by generating predictions of MdTw and comparing these predictions to observed
MdTw values (see Appendix for details and main observations).
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Results

‘Global’ model temperature projections

Of the median projected monthly mean daytime water temperatures (MdTw) values
derived from the 12 RCP85 UKCP18 potential outcomes, Figure 7 presents the maximum
projected MdTw value seen at each of the 893 qualifying sites in each of 4 decades up to
2080 (2010 to 2019, 2030 to 2039, 2050 to 2059 and 2070 to 2079). These values relate
to summer monthly mean daytime maximum water temperatures and give an indication of
the change in water temperature across these decades as well as the spatial distribution
of these changes across chalk catchments. Regional differences are seen with sites in the
north-east of England (Lincolnshire and Yorkshire Wolds) projected to experience the
lowest increases in maximum water temperatures whereas those in the vicinity of London
(rivers Colne, Lee, Hogsmill, Mole and Wandle) are projected to experience the highest.
Some ‘hotspots’ as well as ‘cold spots’ can also be identified amongst the sites.

While the median value of the 12 potential outcomes derived from the UKCP18 climate
change projections provides a suitable summary statistic, the range of responses
encompassed by these 12 outcomes is also of interest. Figure 8 presents the range of
minimum (blue points), mean (black points) and maximum (red points) values predicted for
each of the twelve UKCP18 potential outcomes across all sites for the UKCP18 projection
period 1981 to 2080. Though all ranges indicate an increasing Tw trend, the rate of
change is highest for the maximum values (21.50+1.06°C in the 1981-2005 reference
period to 26.12+1.12°C in decade 2070-2079; a change of +4.62°C) and lowest for the
minimum values (3.68+1.09°C in the 1981-2005 reference period to 6.07+£0.82°C in
decade 2070-2079; a change of +2.37°C).
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Figure 7: Predicted maximum monthly mean daytime water temperatures at English chalk
stream sample sites for the decades 2010-2019, 2030-2039, 2050-2059 and 2070-2079, based

on bias corrected UKCP18 RCP8.5 air temperature projections and the global model for
monthly mean water temperatures. Values represent the maximum median Tw across all
UKCP18 ensemble members for each site in each decade. Larger figures are available in the

Appendix.
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Figure 8: Predicted change in monthly mean daytime water temperature in chalk streams
over the UKCP18 projection period 1981 to 2080. Each series of coloured points represent
the values predicted for each of the 12 ensemble members: blue points = minimum values,
black points = mean values, and red points = maximum values.

Critical temperature thresholds for brown trout and
Atlantic salmon

Brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) are two important salmonid
fish species found in English chalk streams, both adapted to the cool, stable water
conditions usually found there (Elliott and Elliott, 2010). The critical temperature range for
brown trout is between 3.5 and 19.5°C and that for Atlantic salmon is between 6 and
22.5°C (Solomon and Lightfoot, 2008). The percentage of sites predicted to exceed the
upper values of these ranges is presented in Figure 9. Maximum monthly mean daily
water temperatures are projected to exceed the upper boundary for brown trout at all sites
by 2070. The higher Salmon threshold is projected to start being exceeded in the 2050’s
increasing to 30% of sites affected by 2080.
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Figure 9: Percentage of sites projected to reach critical temperature thresholds for two
salmonid fish species found in English chalk streams

The spawning season for both Atlantic salmon and brown trout is during the late autumn
and winter months (October/November to February/March). Egg survival is temperature
dependent with critical ranges of 0 to 13°C for trout and 0 to 16°C for salmon. An
additional important threshold of 12°C relates to an increased rate of egg mortality and
deformity for both species. Sites predicted to exceed this 12°C threshold during the
spawning season in different decades up to 2080 are shown in Figure 10. While the initial
sites affected appear few and spread across chalk catchments (Figure 10, 2010 panel), an
increasing number of catchments have multiple impacted sites as the decades progress
with 85% of sites projected to be impacted by 2080. Figure 11 shows the percentage of
sites projected to experience temperatures at or above these three important spawning
threshold temperatures of 12°C, 13°C and 16°C to 2080 and indicates a significant
number of sites reaching 12°C and 13°C across this period, particularly after 2040.
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Figure 10: Sample sites in chalk catchments projected to exceed a monthly mean daily
water temperature of 12°C in the November to February fish spawning period in the
decades 2010-2019, 2030-2039, 2050-2059 and 2070-2079. Chalk catchment extent marked in
yellow, sites exceeding threshold marked in red/orange (total number of sites modelled:

893)
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Figure 11: Projected changes in thermal thresholds important for fish egg survival during
spawning season (Nov — Feb) from 1981 to 2080. The 13°C threshold is the upper limit for
brown trout egg survival, the 16°C threshold relates to Atlantic salmon egg survival, and the
12°C threshold is associated with increased egg mortality and increased deformity rates.

Catchment specific models

Catchment-specific models were generated to help understand which predictor variables
influenced water temperature in different catchments. Models were created for four
catchments containing multiple sites with more than five years of 3+ value monthly mean
Tw data (see Appendix for details). While each model started with the same default set of
covariates as the ‘full’ model, stepwise optimisation selected a different group of
covariates in each case. The ranges of some of these covariates were very small and,
while sufficient for modelling within that group of catchment sites, could not support the
development of Tw predictions for wider groups of sites.

Example results relating to the River Avon in Hampshire are presented in Figure 12. The
yellow map markers indicate sites included in model development and the right group of
graphs indicate the performance of that model with different groups of chalk stream data.
The top-left graph shows the model performance with the data from the sites marked on
the map in yellow and indicates a robust model solution but applying that model to data
from other sites in the same catchment (top-right), the wider river basin district (bottom-
left) or to all chalk sites (bottom-right) shows a deterioration of performance and a
breakdown of the model’s ability to generate good estimates of water temperature from the
available data.
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Figure 12: Catchment-based model developed for the River Avon in Hampshire. MdTw data
from the sites marked in yellow (left) were used to develop a linear model which was then

applied sequentially to wider groups of chalk stream sites (right). See main text for more
information and Appendix for additional details.

In this case, six covariates were retained by the modelling optimisation process as being
significant for water temperature estimation: upstream catchment size, distance to the river
mouth, mean altitude, river width, percentage upstream calcareous geology and the
percentage upstream land use given over to wild/natural grassland. The ranges of some of
these covariates within the participating sites (yellow markers, Figure 12) were small
(percentage upstream calcareous geology: 88.2-100 out of a potential range 0-100;
percentage upstream wild grassland: 1-14 out of a potential range 0-100) and the model
failed to generate acceptable estimates of water temperature when encountering values
outside these limited ranges. This highlights the need for models to be developed based
on sites that encompass the full environmental range of each significant covariate or
equivalent data from a catchment with comparable characteristics.

24 of 54



Discussion

Data availability

Effective modelling of water temperature in complex fluvial systems requires a baseline of
water temperature records at a sufficient sampling frequency and over a sufficient period
to reflect the temporal dynamics of in-channel temperature variability (Environment
Agency, 2021). Much of the water temperature data collected under the Environment
Agency’s long-running environmental monitoring programme has been to inform an
understanding of water chemistry rather than river water temperature dynamics and the
data available to this study supported the development of a water temperature model for
chalk streams based around monthly daytime mean water temperature only. Using a
monthly mean value as an indicator of a temporally and spatially dynamic variable such as
water temperature presents obvious limitations but is not without value, particularly when
projecting long-term trends and relative changes. Averaging water temperature over a
monthly period could miss the impacts of highly dynamic events (e.g., precipitation, short-
term heatwaves) and modelling at this temporal scale will also limit a model’s sensitivity to
environmental and landscape characteristics known to influence river water temperature
(Jackson et al., 2018). It is unsurprising that the broad environmental covariates of
‘underlying geology’ and ‘percentage urbanisation’ were the only ones found to exert some
influence on the water temperature modelling outcomes across all chalk catchments when
modelling at this ‘monthly’ scale.

The spot-sample water temperature readings in the combined Tw dataset provide a
‘snapshot’ temperature value for water from various sources (e.g., upstream flow,
precipitation, surface water runoff, groundwater supply) all of which will have different
temperature profiles and volume contributions to the water in the river. These values will
also contain a reflection of the physical environment surrounding the river channel and the
dynamics of water exchange between different compartments within the channel. These
contributions will vary throughout the year and across climatic cycles and model
development requires a strong baseline of measurements which encompass a significant
amount of this variation. The qualifying threshold of sites to have a minimum of five years
monthly mean water temperature data before inclusion in the model development process
was a pragmatic choice given the data available but was regarded as an absolute
minimum to reflect meaningful interannual Tw variation.

Modelling process

Given the limitations of the data available, the model development process previously
described by the Environment Agency (2021) was successfully implemented to develop a
model for chalk stream water temperature based around monthly mean daytime values.
The selection of suitable covariates known to influence in-channel water temperatures was
guided by previous studies (Jackson et al., 2016, 2018) and the pragmatic choice to limit
these to values that could be derived from GIS sources was taken with practical
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management application in mind. Establishing values for all selected covariates using this
method was not entirely successful as sample site locations did not always coincide with
river sections where such values could be derived. Covariate values for river width could
not be calculated where channel modification (culverts, pipes, underground sections) had
taken place and ‘distance’ metrics (Distance to mouth of river, Strahler river order) were
not available where sites where there were multiple river channels (Coley et al., 2018).
This reduced the number of sites that could be included in model development and could
be mitigated by closer inspection of site/GIS alignments and/or the development of
automated processing to establish suitable values from nearby sites.

The developed models displayed a strong reliance on the air temperature / water
temperature relationship. The seasonal nature of this relationship (Mohseni and Stefan,
1999; Webb et al., 2008) was reflected in the monthly mean water temperature
measurements derived from the combined Tw dataset and a series of seasonal linear
relationships were included to approximate the ‘S’ shaped curve usually used to describe
this relationship in river and open water systems. The ‘summer’ Ta / Tw relationship is of
particular significance when modelling maximum water temperatures as too steep a
gradient in this section of the relationship will over-estimate water temperatures from the
corresponding air temperature values. Including this seasonal aspect of the Ta/ Tw
relationship was judged essential in model development and was therefore present in all
model solutions.

The ‘global’ model for monthly mean daytime water temperatures for English chalk
streams presented here is a relatively simple one. Apart from the seasonal Ta/ Tw
relationship, the model is only dependent on two covariate values, the percentage
upstream calcareous hard geology and the percentage urban and suburban land use
upstream, and a ‘random effects’ component allowing the seasonal Ta / Tw relationship to
vary between sites. This concise group of dependencies is seen as a function of the
coarse monthly timestep employed and the large spatial scale of the modelled sites. The
influence of landscape and river channel covariates would be expected to increase as the
modelling timestep, or spatial scale were able to be reduced. Catchment-specific models
developed for river systems where sufficient Tw data existed did generally select larger
groups of covariates than the ‘global’ model (Appendix, Case Study) but the limited ranges
of some of these covariates restricted the ability to use these models to predict water
temperature values in other catchments or at sites where covariates extended beyond
these limited ranges. However, in locations where sufficient historic observations of Tw
exist catchment specific models are worth considering.

The ‘global’ model outputs presented here are based on the high emissions RCP85
scenarios of the UKCP18 climate change projections. While these are seen as a suitable
basis for contingency planning there is some debate whether they present a realistic
projection given their reliance on continued rises in COz2 levels due to fossil fuel burning
well into the 215t century. The ‘global’ model is not dependent on this particular projection
of future Ta and could take input from different scenarios as they are developed and
refined.
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Model outputs

Validation of the developed ‘global’ model for chalk stream water temperatures showed
strong predictive performance (R?=0.85). Application of this model to predict monthly
mean water temperature values at sites under the influence of climate change showed
significant water temperature increases of ecological significance. Regional variation in the
level of Tw rise is seen with sites around London showing the highest increases.

It should be noted that the projections are based on a simple future scenario where only
air temperature is changing. More complex future scenarios incorporating changes in
rainfall frequency and intensity, surface water/groundwater balance, evapotranspiration, as
well as changes in water-temperature-influencing environmental and landscape
characteristics would help increase confidence in water temperature projections. There is
also the balance of demands placed on chalk aquifers due to human activity and climate
change that can influence flow levels in chalk streams and exacerbate water temperature
rises especially during low summer flows.

Changes in a monthly mean value will disguise potentially significant fluctuations in water
temperature that may occur throughout that monthly period. An increased frequency of
summer heat waves may only influence the monthly mean temperature by a small amount,
yet may cause significant stress on ecological habitats, including aquatic systems. Model
sensitivity to such fluctuations would require a move to higher frequency Tw data
collection in the sub-daily range.

The ecological significance of these potential increases in chalk river water temperatures
is demonstrated by the effect on important temperature thresholds for salmonid fish.
Thermal boundaries are known to affect salmonid fish migration and the increasing
number of sites projected to experience water temperatures above the upper critical range
for brown trout (19.5°C) is of particular concern. The challenge to salmonid egg survival
during the winter spawning period is also projected to increase throughout the UKCP18
projection period, with the important 12°C threshold, over which increased deformity rates
and decreased egg survival are experienced, being breached extensively by 2080.
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Recommendations

Targeted placement of temperature dataloggers with 15-minute monitoring resolution
across catchments and regions at sites representative of different temperature-influencing
landscape and environmental features is driving water quality management decisions in
Scotland (Jackson et al., 2016; 2018; 2020) and offers an alternative to highly monitored,
staff-intensive approaches (Webb et al., 2008). High frequency water temperature data
from the WISKI network could provide a useful source of information but this has not been
routinely captured and archived within the Environment Agency and has only recently
been identified as a priority. The WISKI flow monitoring sites located in chalk catchments
(n =56) could potentially provide useful high-frequency water temperature data once
collated and quality-assured. Groundwater level and flow data is being combined into a
national resource which could also provide important modelling inputs once available.
Maps identifying riparian tree cover and GIS Relative Riparian Shade maps are under
development (LIDAR | Environment Agency Geomatics Hub - arcgis.com). These sources
could provide valuable information on riparian shading along the river channel; a factor
known to influence water temperature and identified as a future management technique to
mitigate adverse river temperatures (Garner et al., 2017).

The significant consideration of sampling site-selection remains. Utilising pre-defined
sampling sites from existing datasets can only capture a limited range of the covariates
known to influence river water temperature (reviewed in Jackson et al., 2016) and reduces
the potential to apply any generated water temperature models to unmonitored sites.
Monitoring site selection must maximise the environmental range of covariates and have
an established relationship to hydrological processes within the catchment. Only then can
management intervention be considered at a reach or catchment scale for river water
temperature mitigation based on model outputs. This can only be addressed through
careful sample site selection and the development of a dedicated temperature monitoring
network for England’s rivers.
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