Weekly national Influenza and COVID-19 surveillance report
Week 43 report (up to week 42 data)
27 October 2022
Contents

Executive summary .. 4
Laboratory surveillance ... 4
 Confirmed COVID-19 cases (England) .. 6
 Possible SARS-CoV-2 reinfection in England ... 12
 Respiratory DataMart system (England) ... 13
Community surveillance ... 18
 Acute respiratory infection incidents ... 18
 FluSurvey .. 25
 Google search queries ... 28
 Flu Detector ... 30
 NHS 111 .. 31
Primary care surveillance .. 34
 RCGP (England) .. 34
 UK ... 36
 Sentinel swabbing scheme in England ... 37
 GP In Hours, Syndromic Surveillance ... 39
 GP Out of Hours, Syndromic Surveillance ... 41
Secondary care surveillance ... 43
 SARI Watch ... 43
 Hospitalisations, SARI Watch ... 44
 ICU or HDU admissions, SARI Watch .. 48
 ECMO, SARI Watch .. 52
 RSV admissions, SARI Watch .. 53
 Emergency Department attendances, Syndromic surveillance ... 55
Mortality surveillance ... 60
 COVID-19 deaths ... 60
 Daily excess all-cause mortality (England) .. 62
Microbiological surveillance ... 66
 Influenza virus characterisation ... 67
Influenza antiviral susceptibility ... 68
SARS-CoV-2 variants ... 69
Antimicrobial susceptibility ... 72
COVID-19 sero-prevalence surveillance ... 73
Influenza vaccination ... 74
Influenza vaccine uptake in GP patients .. 74
COVID-19 vaccination ... 76
COVID-19 vaccine uptake in England ... 76
International update ... 90
Global COVID-19 update .. 90
Global influenza update .. 90
Other respiratory viruses ... 93
Related links ... 94
About the UK Health Security Agency ... 95

For additional information including regional data on COVID-19 and other respiratory viruses, COVID-19 in educational settings, co- and secondary infections with COVID-19 and other data supplementary to this report, please refer to the accompanying graph pack.
Executive summary

This report summarises the information from the surveillance systems which are used to monitor coronavirus (COVID-19), influenza, and other seasonal respiratory viruses in England. References to COVID-19 represent the disease name and SARS-CoV-2 represent the virus name. The report is based on data from week 42 (between 17 to 23 October 2022) and for some indicators daily data up to 25 October 2022.

At a national level, COVID-19 activity decreased or remained stable in most indicators in week 42 of 2022. Surveillance indicators suggest increasing levels of influenza activity, with increases seen in multiple indicators.

Overall COVID-19 case rates through Pillar 1 decreased slightly in week 42 overall, in all age groups, genders, regions and ethnic groups. Overall Pillar 1 positivity decreased compared to the previous week. Routine asymptomatic testing through NHS settings has been paused from 31 August, this will have an effect on Pillar 1 case rates and positivity rates.

Through Respiratory Datamart, influenza positivity continued to increase to 5.2% in week 42; positivity was highest in the 5 to 14 year olds at 12.0% followed by the 15 to 44 year olds at 9.6%. SARS-CoV-2 positivity decreased slightly to 8.8%. Respiratory syncytial virus (RSV) positivity increased to 6.5% in week 42, with the highest positivity in the under 5 year olds at 23.4%. Adenovirus positivity remained stable at 2.3%. Rhinovirus positivity decreased to 15.4% overall. Parainfluenza positivity remained low at 1.8%, while human metapneumovirus (hMPV) positivity remained low at 0.6% in week 42.

The overall number of reported acute respiratory incidents decreased slightly compared to the previous week, with the highest number of incidents continuing to be in care homes. Through NHS 111, calls for flu or cold remained stable but increases in calls for cough were observed.

Through primary care surveillance, influenza like illness consultations remained stable and below baseline. The lower respiratory tract infection indicator remained stable, and the COVID-19 indicator decreased. Through sentinel GP swabbing, SARS-CoV-2 positivity and influenza positivity decreased.

COVID-19 hospitalisations admissions with COVID-19 decreased in week 42. Influenza hospital admissions have decreased slightly overall and are highest in the under 5 year olds, including critical care. The RSV hospitalisation rate increased in the under 5 year olds. Emergency department attendances for acute respiratory infections and influenza-like illness increased while COVID-19-like attendances decreased.

Deaths with COVID-19 increased in week 41.

COVID-19 vaccine coverage for all ages was 70.8% for dose 1 and 67.3% for dose 2 at the end of week 42. COVID-19 vaccine coverage for all ages for dose 3 was at 53.1% at the end of week 42. The COVID-19 Autumn booster vaccination campaign commenced in early September. By the end of week 42 43.1% of all people aged over 50 years old had been vaccinated with an Autumn booster dose.
Influenza vaccine uptake for the 2022 to 2023 influenza season was reported for the first time two weeks ago. The trend in vaccine uptake compared to the previous 2021 to 2022 season is comparable for 65 year olds and over, for those under 65 years in clinical risk groups, and for pregnant women, but lower in and 2 and 3 years old.
Laboratory surveillance

Confirmed COVID-19 cases (England)

From 1 April 2022, the government ended provision of widespread community testing in England, as outlined in the plan for living with COVID-19. From week 15 2022, confirmed COVID-19 episodes and positivity through Pillar 1 are presented in this report, with Pillar 2 data available in the accompanying graph pack. Routine asymptomatic testing through NHS settings has been paused from 31 August, this will have an effect on Pillar 1 case rates and positivity rates.

As of 9am on 25 October 2022, a total of 1,892,113 episodes have been confirmed for COVID-19 in England under Pillar 1, and 18,275,592 episodes have been confirmed for COVID-19 in England under Pillar 2, since the beginning of the pandemic.

Overall COVID-19 case rates through Pillar 1 decreased slightly in week 42 overall, in all age groups, genders, regions and ethnic groups. Overall Pillar 1 positivity decreased compared to the previous week.

Data notes:
Changes to testing policies over time may affect positivity rates and incidence rates and should be interpreted accordingly.

From 31 January 2022, UK Health Security Agency (UKHSA) moved all COVID-19 case reporting in England to use a new episode-based definition which includes possible reinfections. Each infection episode is counted separately if there are at least 91 days between positive test results (polymerase chain reaction (PCR) or rapid lateral flow device). Each infection episode begins with the earliest positive specimen date. Further information can be found on the UK COVID-19 dashboard.

From the week 32 2021 report onwards, case rates have been updated to use the latest Office for National Statistics (ONS) population estimates for mid-2020. Previously case rates were calculated using the mid-2019 population estimates. Rates by ethnicity and Indices of Multiple Deprivation (IMD) quantile will continue to be presented using the mid-2019 estimates, until the mid-2020 estimates become available.

Please note that positivity is presented as positivity by PCR testing only. Positivity is calculated as the number of individuals testing positive during the week divided by the number of individuals tested during the week through PCR testing.

Data is shown by the week the specimen was taken from the person being tested. This gives the most accurate analysis of this time progression, however, for the most recent week results for more samples are expected therefore this should be interpreted with caution.

Data source: Second Generation Surveillance System (SGSS)
Figure 1: Confirmed COVID-19 episodes tested under Pillar 1, based on sample week with overall weekly PCR positivity for Pillar 1 (%)

Age and sex

Figure 2: Weekly confirmed COVID-19 case rates per 100,000, by episode, tested under Pillar 1, by sex
Figure 3: Weekly confirmed COVID-19 case rates per 100,000, by episode, tested under Pillar 1, by age group

Figure 4: Weekly PCR positivity (%) of confirmed COVID-19 cases tested overall and by sex under Pillar 1
Figure 5: Weekly PCR positivity (%) of confirmed COVID-19 cases tested under Pillar 1, (a) by male and age group and (b) by female and age group

(a) Pillar 1 - Male

(b) Pillar 1 - Female
Geography

Figure 6: Weekly confirmed COVID-19 case rates by episode, per 100,000 population (Pillar 1), by UKHSA centres and sample week

Figure 7: Weekly PCR positivity of confirmed COVID-19 cases tested under Pillar 1 (%) by UKHSA centres and sample week
Figure 8: Weekly rate of COVID-19 episodes per 100,000 population (Pillar 1), by upper-tier local authority (UTLA), England (box shows enlarged map of London area)
Ethnicity

Figure 9: Weekly incidence per 100,000 population by ethnicity (Pillar 1), England

*the incidence rates on Figure 9 have been calculated using the mid-2019 ONS population estimates

Possible SARS-CoV-2 reinfection in England

SARS-CoV-2 reinfections data is not currently being published. For previous updates please see previous editions of this report.
Respiratory DataMart system (England)

The Respiratory Datamart system began during the 2009 influenza pandemic to collate all laboratory testing information in England. It is now used as a sentinel laboratory surveillance tool, monitoring all major respiratory viruses in England. Seventeen laboratories in England will be reporting data for this season. As this is based on a sample of labs, SARS-CoV-2 positivity figures quoted here will differ from those quoted in the Confirmed COVID-19 cases section, however, they are included to allow comparison with data on other respiratory viruses.

In week 42 of 2022, out of the 14,950 respiratory specimens reported through the Respiratory DataMart System (based on data received from 11 out of 16 laboratories), 1,312 samples were positive for SARS-CoV-2 with an overall positivity of 8.8%. The highest positivity was noted in the 65 year olds and over at 12.2%.

The overall influenza positivity continued to increase to 5.2% in week 42, with 203 samples testing positive for influenza (including 5 influenza A(H1N1)pdm09, 39 influenza A(H3), 146 influenza A(not subtyped) and 13 influenza B).

Respiratory syncytial virus (RSV) positivity increased to 6.5% in week 42, with the highest positivity in the under 5 year olds at 23.4%.

Adenovirus positivity remained stable at 2.3% in week 42. Rhinovirus positivity decreased to 15.4% overall. Parainfluenza positivity remained low at 1.8%. Human metapneumovirus (hMPV) positivity remained low at 0.6% in week 42 (Figure 12).
Figure 10: Respiratory DataMart samples positive for influenza and weekly positivity (%) for influenza, England

Figure 11: Respiratory DataMart weekly positivity (%) for SARS-CoV-2, England
Figure 12: Respiratory DataMart weekly positivity (%) for other respiratory viruses, England

Figure 13: Respiratory DataMart weekly positivity (%) for influenza by age, England
Figure 14: Respiratory DataMart weekly positivity (%) for adenovirus by age, England

Figure 15: Respiratory DataMart weekly positivity (%) for rhinovirus by age, England
Figure 16: Respiratory DataMart weekly positivity (%) for RSV by age, England
Community surveillance

Acute respiratory infection incidents

Here we present data on acute respiratory infection (ARI) incidents in different settings that are reported to UKHSA Health Protection Teams (HPTs) and entered onto an online web-based platform called HPZone. Incidents are suspected outbreaks of acute respiratory infections linked to a particular setting. All suspected outbreaks are further investigated by the HPT in liaison with local partners.

Data for England, Scotland and Northern Ireland are included in the UK figures.

Data caveats:
1. The incidents captured on HPZone represent a subset of all ongoing ARI clusters and outbreaks in England rather than an exhaustive listing. A variety of arrangements are in place across UKHSA centres, with local authorities and other stakeholders supporting HPTs in outbreak investigation in some areas without HPZone reporting. As a result, the number of outbreaks reported for some of the regions are underestimates.
2. It should be noted that the denominator for the different settings will vary significantly. For example, there are fewer hospitals than workplaces. In addition, the propensity to report incidents to UKHSA also varies significantly by setting. This needs to be considered when interpreting the weekly number of reported incidents by setting and caution should be used when making comparisons between settings.
3. Considering the above, comparisons between regions and settings are not advised as they may be misleading.
345 new ARI incidents have been reported in week 42 in the UK (Figure 17):

- 242 incidents were from care homes where 141 had at least one linked case that tested positive for SARS-CoV-2, 7 for influenza A (not subtyped), 1 for rhinovirus and 1 for picornavirus (no genus available).
- 33 incidents were from hospitals, where 18 had at least one linked case that tested positive for SARS-CoV-2 and 1 for influenza A (not subtyped)
- 5 incidents were from educational settings with no test result available
- 6 incidents were from prisons, where 4 had at least one linked case that tested positive for SARS-CoV-2
- No incidents were from workplace settings
- No incidents were from a food outlet or restaurant setting
- 59 incidents were from other settings where 16 had at least one linked case that tested positive for SARS-CoV-2

Excludes data from Wales
Figure 18: Number of acute respiratory infection (ARI) incidents by setting, England

![Graph showing ARI incidents by setting]

Figure 19: Number of acute respiratory infection (ARI) incidents in care homes by virus type, England

![Graph showing ARI incidents in care homes by virus type]
Weekly National Influenza and COVID-19 Report: week 43 report (up to week 42 data)

Figure 20: Number of acute respiratory infection (ARI) incidents in hospitals by virus type, England

Figure 21: Number of acute respiratory infection (ARI) incidents in educational settings by virus type, England
Figure 22: Number of acute respiratory infection (ARI) incidents in prisons by virus type, England

![Prisons Graph]

Figure 23: Number of acute respiratory infection (ARI) incidents in workplace settings by virus type, England

![Workplace settings Graph]
Figure 24: Number of acute respiratory infection (ARI) incidents in food outlet or restaurant settings by virus type, England

Figure 25: Number of acute respiratory infection (ARI) incidents in other settings by virus type from, England
Table 1: Total number of situations and incidents by institution and UKHSA centres over the past 4 weeks with the total number in the last week in brackets

<table>
<thead>
<tr>
<th>UKHSA Centres</th>
<th>Care home</th>
<th>Hospital</th>
<th>Educational settings</th>
<th>Prisons</th>
<th>Workplace settings</th>
<th>Food outlet/restaurant settings</th>
<th>Other settings</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>East of England</td>
<td>161(34)</td>
<td>1(1)</td>
<td>1(0)</td>
<td>3(1)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>14(4)</td>
<td>180(40)</td>
</tr>
<tr>
<td>East Midlands</td>
<td>47(3)</td>
<td>0(0)</td>
<td>3(0)</td>
<td>4(2)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>54(5)</td>
</tr>
<tr>
<td>London</td>
<td>114(23)</td>
<td>76(9)</td>
<td>13(5)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>17(7)</td>
<td>220(44)</td>
</tr>
<tr>
<td>North East</td>
<td>87(14)</td>
<td>1(0)</td>
<td>1(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>9(5)</td>
<td>99(19)</td>
</tr>
<tr>
<td>North West</td>
<td>48(11)</td>
<td>7(1)</td>
<td>2(0)</td>
<td>1(1)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>21(3)</td>
<td>79(16)</td>
</tr>
<tr>
<td>South East</td>
<td>17(3)</td>
<td>19(3)</td>
<td>0(0)</td>
<td>7(2)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>43(8)</td>
</tr>
<tr>
<td>South West</td>
<td>405(103)</td>
<td>1(0)</td>
<td>1(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>10(4)</td>
<td>417(107)</td>
</tr>
<tr>
<td>West Midlands</td>
<td>49(13)</td>
<td>13(3)</td>
<td>1(0)</td>
<td>1(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>7(2)</td>
<td>71(18)</td>
</tr>
<tr>
<td>Yorkshire and Humber</td>
<td>91(22)</td>
<td>3(0)</td>
<td>1(0)</td>
<td>2(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>10(1)</td>
<td>107(23)</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1019(226)</td>
<td>121(17)</td>
<td>23(5)</td>
<td>19(6)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>88(26)</td>
<td>1270(280)</td>
</tr>
</tbody>
</table>
An internet-based surveillance system has been developed based on FluSurvey. FluSurvey is a web tool survey designed to monitor trends of influenza-like illness (ILI) in the community using self-reported respiratory symptoms from registered participants. The platform has been adapted to capture respiratory symptoms, exposure risk and healthcare seeking behaviours among registered participants to contribute to national surveillance of COVID-19 activity as well as influenza activity since week 44 2020.

Note that ILI is defined as sudden onset of symptoms with at least one of fever (chills), malaise, headache, muscle pain and at least one of cough, sore throat, shortness of breath.

During week 42, there were 2,208 participants completing the weekly symptoms questionnaire of which 244 (11.1%) reported fever or cough and 67 (3.0%) reported influenza like illness (ILI). Both COVID-19 related symptoms and influenza like illness (ILI) increased among participants completing the weekly symptoms survey, a marked increased from rates reported last week.

Healthcare seeking behaviour amongst participants reporting respiratory symptoms relating to COVID-19 (cough, fever or loss of smell) showed that participants were more likely to telephone their GP provider as a result of their symptoms when compared to other healthcare services (Figure 26).

Self-reported daily social contact patterns are also reported. A contact is defined as a person outside the household who is approached at a distance of less than one metre, on the day prior to survey completion. There remains variation on social mixing patterns amongst participants as people are meeting more individuals outside of their households.
Figure 26: FluSurvey participants self-reporting fever or cough and ILI symptoms, and trends in healthcare seeking behaviour among these participants, England
Figure 27: FluSurvey participants' self-reported number of social contacts outside the household
Google search queries

This is a web-based syndromic surveillance system which uses daily search query frequency statistics obtained from the Google Health Trends API (Application Programming Interface). This model focuses on search queries about COVID-19 symptoms as well as generic queries about ‘coronavirus’ (for example ‘COVID-19’). The search query frequency time series is weighted based on symptom frequency as reported in other data sources. Frequency of searches for symptoms is compared with a baseline calculated from historical daily data. Further information on this model is available online.

During week 42, the overall and media-debiasing weighted Google search scores decreased slightly compared to the previous week (Figure 28).
Figure 28: Normalised Google search score for COVID-19 symptoms, with weighted score for media-debiasing and historical trend, England
Flu Detector

FluDetector is a web-based model which assesses internet-based search queries for ILI in the general population.

Daily ILI rate estimates are based on uniformly averaged search query frequencies for a week-long period (including the current day and the 6 days before it).

For week 42, the daily ILI rate remained low and below the baseline threshold of 19.6 per 100,000 for the 2022 to 2023 season (Figure 29).

Figure 29: Daily estimated ILI Google search query rates per 100,000 population, England
NHS 111

Please note that different syndromic surveillance indictors (NHS 111, GP in hours, GP out of hours and emergency department attendances) are presented here than have been included in previous versions of this report. All indictors previously presented will continue to be published in the Syndromic Surveillance bulletins.

The NHS 111 service monitors daily trends in phone calls made to the service in England, to capture trends in infectious diseases such as influenza and norovirus.

Please note that the number of NHS 111 calls are still lower than usual due to widely publicised disruption faced by a clinical software system. The NHS 111 call data presented in this report should therefore be interpreted with some caution.

Up to 23 October, the number of calls for cough increased nationally while the number of calls for cold or flu remained stable nationally (Figure 30 and 31).

Please note that NHS 111 callers (from 11 May 2020) who are assessed as having probable COVID-19 symptoms are now triaged using symptom specific pathways such as cold or flu, which are included in routine syndromic indicators.

Further information about these caveats is available from the Remote Health Advice Syndromic Surveillance bulletin.
Figure 30: NHS 111 telephony indicators (and 7-day moving average) for number of daily cold or flu calls, England (a) nationally and (b) by age group

(a)

NHS 111 calls: cold or flu 24/10/2021 to 23/10/2022

Black line is 7 day moving average adjusted for bank holidays.
Black dotted line is baseline. Grey columns show weekends and bank holidays.

(b)

NHS 111 calls: cold or flu by age (years) 24/10/2021 to 23/10/2022

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON.
Black line is 7 day moving average adjusted for bank holidays.
Figure 31: NHS 111 telephony indicators (and 7-day moving average) for number of daily cough calls, England (a) nationally and (b) by age group

(a)

NHS 111 calls: cough 24/10/2021 to 23/10/2022

Black line is 7 day moving average adjusted for bank holidays. Black dotted line is baseline. Grey columns show weekends and bank holidays.

(b)

NHS 111 calls: cough by age (years) 24/10/2021 to 23/10/2022

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON. Black line is 7 day moving average adjusted for bank holidays.
Primary care surveillance

RCGP (England)

The weekly ILI consultation rate through the RCGP surveillance was 3.3 per 100,000 registered population in participating GP practices in week 42 compared to 3.7 per 100,000 in the previous week. This is below the baseline threshold (11.47 per 100,000) (Figure 32). By age group, the highest rates were seen in the under 1 year olds (6.6 per 100,000). The lower respiratory tract infections (LRTI) consultation rate was at 69.1 per 100,000 in week 42, compared to the rate of 69.6 per 100,000 in the previous week. The COVID-19 indicator rate was at 68.5 per 100,000 in week 41 compared to a rate of 80.8 per 100,000 in the previous week (Figure 33).

Figure 32: RCGP influenza-like illness (ILI) consultation rates, all ages, England
Figure 33: RCGP ILI, LRTI and COVID-19 indicator rates, England
UK

Overall, weekly ILI consultations rates were below baseline levels in all UK schemes (Table 2).

By age group, the highest incidence age groups were in the under 1 year olds in England (6.6 per 100,000), 75+ year olds and over in Scotland (6.2 per 100,000), in the 1 to 4 year olds in Wales (7.9 per 100,000) and the 1 to 4 year olds in Northern Ireland (2.5 per 100,000).

Table 2: GP ILI consultations in the UK for all ages with MEM (Moving Epidemic Method) thresholds applied

<table>
<thead>
<tr>
<th>GP ILI consultation rates (all ages)</th>
<th>Week number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>England (RCGP)</td>
<td>3.0</td>
</tr>
<tr>
<td>Wales</td>
<td>3.5</td>
</tr>
<tr>
<td>Scotland</td>
<td>2.1</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>1.3</td>
</tr>
</tbody>
</table>

The Moving Epidemic Method (MEM) has been adopted by the European Centre for Disease Prevention and Control to calculate thresholds for GP ILI consultations for the start of influenza activity (based on 10 seasons excluding 2020 to 2021), in a standardised approach across Europe. For MEM threshold values for each country, please visit the webpage Sources of UK flu data: influenza surveillance in the UK.
Sentinel swabbing scheme in England

In week 42 2022, 2 samples tested positive for SARS-CoV-2 through the GP sentinel swabbing scheme in England (Figure 34).

In week 42 2022, 0 samples tested positive for RSV and 0 samples tested positive for influenza in England through the GP sentinel swabbing scheme.

* Please note that due to lower sample numbers data from week 14 of 2022 onwards should be interpreted with caution.

Figure 34: Number of positive samples and weekly positivity (%) for (a) COVID-19 and (b) Influenza and (c) RSV, GP sentinel swabbing scheme

(a)
For the most recent week, more samples are expected to be tested therefore the graphs in Figure 34 should be interpreted with caution.

Positivity (%) is not calculated when the total number tested is less than 10.
GP In Hours, Syndromic Surveillance

The GP In Hours (GPIH) syndromic surveillance system monitors the number of GP visits during regular hours of known clinical indicators.

Up to 23 October, GP in-hours consultations for influenza-like illness remained stable nationally (Figure 35).

Further indicators and information about caveats are available from the GP In Hours Syndromic Surveillance bulletin.

Figure 35: GPIH clinical indicators for influenza-like illness GP consultations, England (a) nationally, (b) by age group and (c) by UKHSA centre
GPIH Baselines are modelled from historical data to give current seasonally expected levels. GP consultations rates decreased during 2020 due to changes in guidance on accessing healthcare, therefore separate modelled estimates are provided to show seasonally expected levels pre-COVID-19.
GP Out of Hours, Syndromic Surveillance

The GP Out of Hours (GPOOH) syndromic surveillance system monitors the numbers of daily unscheduled visits and calls to GPs during evenings, overnight, on weekends and on public holidays. This system covers around 55% of England’s out of hour activity.

Please note that due to a disruption with a GPOOH clinical software system provider, GPOOH data from 4 August onwards is not currently available (Figures 36 and 37).

Figure 36: GPOOH number of daily contacts for all ages for influenza-like illness, England
Figure 37: GPOOH number of daily contacts for acute respiratory infections, England (a) nationally and (b) by age group

(a) GP out of hours: acute respiratory infection 08/08/2021 to 03/08/2022

Black line is 7 day moving average adjusted for bank holidays.
Black dotted line is baseline. Grey columns show weekends and bank holidays.

(b) GP out of hours: acute respiratory infection by age (years) 08/08/2021 to 03/08/2022

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON.
Black line is 7 day moving average adjusted for bank holidays.
Secondary care surveillance

SARI Watch

The Severe Acute Respiratory Infection (SARI) Watch surveillance system was established in 2020 to report the number of laboratory-confirmed influenza and COVID-19 cases admitted to hospital and critical care units (ICU and HDU) in NHS acute trusts across England. This has replaced the UK Severe Influenza Surveillance Schemes (USISS) Mandatory and Sentinel data collections for influenza surveillance used in previous seasons, and the COVID-19 hospitalisations in England surveillance system (CHESS) collections for COVID-19 surveillance.

The weekly rate of new admissions of COVID-19, influenza and RSV cases is based on the trust catchment population of those NHS Trusts who made a new return. This may differ from other published figures such as the total number of people currently in hospital with COVID-19.

The Moving Epidemic Method (MEM) thresholds for influenza hospital and ICU or HDU admissions are calculated based on the 2016 to 2017 to the 2021 to 2022 seasons (data from 2020 to 2021 was excluded due to the COVID-19 pandemic). These thresholds have been applied to data from the 2022 to 2023 season onwards.

Trends in hospital and critical care admission rates need to be interpreted in the context of testing recommendations. Please note that routine asymptomatic testing through NHS settings has been paused from 31 August 2022, therefore SARI-Watch data should be interpreted with this in mind.
Hospitalisations, SARI Watch

In week 42 the overall weekly hospital admission rate for COVID-19 decreased to 10.06 per 100,000 compared to 11.61 per 100,000 in the previous week.

By UKHSA centre, the highest hospital admission rate for COVID-19 was observed in the South West. By age group, the highest hospital admission rate for confirmed COVID-19 was in the 85 year olds and over.

The hospitalisation rate for influenza was at 0.72 per 100,000 in week 42 compared to 0.76 per 100,000 in the previous week. There were 71 new hospital admissions to sentinel Trusts for influenza (8 influenza A(H1N1)pdm09, 9 influenza A(H3N2), 48 influenza A(not subtyped) and 6 influenza B) in week 42.

* Figure 38: Weekly overall hospital admission rates of new COVID-19 and influenza positive cases per 100,000 population reported through SARI Watch, England

* influenza hospital admission rate based on 24 sentinel NHS trusts for week 42
* COVID-19 hospital admission rate based on 83 NHS trusts for week 42
* SARI Watch data is provisional
Figure 39: Weekly overall influenza hospital admission rates per 100,000 trust catchment population with MEM thresholds, SARI Watch, England

* MEM thresholds are based on data from the 2016 to 2017 to the 2021 to 2022 seasons (data from 2020 to 2021 was excluded due to the COVID-19 pandemic).

Figure 40: Weekly influenza hospital admissions by influenza type, SARI Watch, England

*number of influenza hospital admissions based on sentinel NHS trusts
Figure 41: Weekly hospital admission rate by UKHSA centre for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch

(a)

(b)
Figure 42: Weekly hospital admission rate by age group for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch

(a)

(b)
ICU or HDU admissions, SARI Watch

In week 42, the overall weekly ICU or HDU admission rates for COVID-19 increased, at 0.38 per 100,000 in week 42 compared to 0.34 per 100,000 in the previous week. Note that ICU or HDU admissions rates may represent a lag from admission to hospital to an ICU or HDU ward.

By UKHSA centre, the highest ICU or HDU admission rates for COVID-19 were observed in North West. By age groups, the highest ICU or HDU admission rates for COVID-19 were observed in the 75 to 84 year olds.

The ICU or HDU rate for influenza was at 0.11 per 100,000 in week 42 compared to 0.07 per 100,000 in the previous week. There were 38 new case report of an ICU or HDU admission for influenza in week 42 (1 influenza A(H3N2), 33 influenza A(not subtyped) and 4 influenza B).

Figure 43: Weekly overall ICU or HDU admission rates of new COVID-19 and influenza positive cases per 100,000 population reported through SARI Watch, England

* influenza ICU or HDU admission rate based on 88 NHS trusts for week 42
* COVID-19 ICU or HDU admission rate based on 75 NHS trusts for week 42
* SARI Watch data is provisional
Weekly National Influenza and COVID-19 Report: week 43 report (up to week 42 data)

Figure 44: Weekly overall influenza ICU or HDU admission rates per 100,000 trust catchment population with MEM thresholds, SARI Watch, England

![Graph showing weekly overall influenza ICU or HDU admission rates per 100,000 trust catchment population. The graph includes different thresholds for baseline, low, medium, high, and very high rates.](image)

Figure 45: Weekly influenza ICU or HDU admissions by influenza type, SARI Watch, England

![Graph showing weekly influenza ICU or HDU admissions by influenza type. The graph includes data for B, A(unknown subtype), A(H3N2), and A(H1N1)pdm09.](image)
Figure 46: Weekly ICU or HDU admission rate by UKHSA centre for new (a) COVID-19 positive cases and (b) influenza, reported through SARI Watch

(a)

(b)
Figure 47: Weekly ICU or HDU admission rate by age group for new (a) COVID-19 positive cases and (b) influenza, reported through SARI Watch

(a)

(b)
ECMO, SARI Watch

There was no new laboratory confirmed COVID-19 or influenza admission reported in week 42 from the 6 Severe Respiratory Failure (SRF) centres in the UK (Figure 48).

Figure 48: Laboratory confirmed ECMO admissions (COVID-19, influenza and non-COVID-19 confirmed) to Severe Respiratory Failure centres in the UK

* SARI Watch data is provisional
RSV admissions, SARI Watch

Data on hospitalisations, including ICU or HDU admissions, with respiratory syncytial virus (RSV) are shown below. RSV SARI Watch surveillance is sentinel.

Figure 49: Weekly overall hospital admission rates (including ICU or HDU) of RSV positive cases per 100,000 population reported through SARI Watch, England

* Please note that in previous seasons, RSV SARI Watch surveillance has run from week 40 to week 20. In the 2020 to 2021 season onwards this was extended to run throughout the year, to allow for surveillance of out-of-season trends
Figure 50: Weekly hospitalisation (including ICU or HDU) admission rates by age group for new RSV cases reported through SARI Watch, England

* Please note that rates are based on the number of hospitalised cases divided by the Trust catchment population, multiplied by 100,000

* SARI Watch data is provisional
Emergency Department attendances, Syndromic surveillance

The Emergency Department Syndromic Surveillance System (EDSSS) monitors the daily visits in a network of emergency departments across England.

Up to 23 October, ED attendances as reported by 137 EDs for acute respiratory infection increased nationally and across all age groups. ED attendances for COVID-19-like-infections remained stable. ED attendances for influenza-like illness have increased nationally, particularly among the 15 to 44 year olds (Figures 51, 52 and 53).

Please note: the COVID-19-like ED indicator is an underestimation of the number of COVID-19 attendances as it only includes attendances with a COVID-19-like diagnosis as their primary diagnosis. The EDSSS COVID-19-like indicator should therefore be used to monitor trends in ED attendances and not to estimate actual numbers of COVID-19 ED attendances. Further information about these caveats is available from the Emergency Department Syndromic Surveillance bulletin.

Figure 51: Daily ED attendances for COVID-19-like infections, England (a) nationally, (b) by age group and (c) by UKHSA centre

(a)
Weekly National Influenza and COVID-19 Report: week 43 report (up to week 42 data)

(b)
EDSSS: covid-19-like by age (years) 24/10/2021 to 23/10/2022

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON. Black line is 7 day moving average adjusted for bank holidays.

(c)
EDSSS: covid-19-like by region 24/10/2021 to 23/10/2022

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON. Black line is 7 day moving average adjusted for bank holidays. Black dotted line is baseline.
Figure 52: Daily ED attendances for acute respiratory infections, England (a) nationally, (b) by age group and (c) by UKHSA centre

(a) EDSSS: acute respiratory infection 24/10/2021 to 23/10/2022

Black line is 7 day moving average adjusted for bank holidays.
Black dotted line is baseline. Grey columns show weekends and bank holidays.

(b) EDSSS: acute respiratory infection by age (years) 24/10/2021 to 23/10/2022

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON.
Black line is 7 day moving average adjusted for bank holidays.
Figure 53: Daily ED attendances for influenza-like illness, England (a) nationally, (b) by age group and (c) by UKHSA centre
Weekly National Influenza and COVID-19 Report: week 43 report (up to week 42 data)

(b) EDSSS: influenza-like illness by age (years) 24/10/2021 to 23/10/2022

Daily attendances

1. under 1
2. 1 to 4
3. 5 to 14
4. 15 to 44
5. 45 to 64
6. over 65

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON. Black line is 7 day moving average adjusted for bank holidays.

(c) EDSSS: influenza-like illness by region 24/10/2021 to 23/10/2022

Daily attendances

1. North East
2. North West
3. Yorkshire and Humber
4. East Midlands
5. West Midlands
6. East of England
7. London
8. South East
9. South West

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON. Black line is 7 day moving average adjusted for bank holidays. Black dotted line is baseline.
Mortality surveillance

COVID-19 deaths

COVID-19 related deaths by the 28 day definition are reported below. This metric includes a death in a person with a positive COVID-19 test who died within (equal to or less than) 28 days of the first positive specimen date in the most recent episode of infection.

Figure 54: Number of deaths by week of death and time since a positive COVID-19 test (28 day definition), England

* Vertical dotted line indicates the end of provision of free universal testing for the general public in England, as outlined in the plan for living with COVID-19.

* Data is shown by the week of death. This gives the most accurate analysis of this time progression, however, for the most recent weeks’ numbers more deaths are expected to be registered therefore this should be interpreted with caution.
Figure 55: Cumulative mortality rate of COVID-19 cases per 100,000 population tested under Pillars 1 and 2 for the weeks 38 to 41 by 28 day definition.

Please note that the categories have changed since last week’s report.
Daily excess all-cause mortality (England)

Deaths occurring from 1 January 2020 to 19 October 2022 were assessed to calculate the daily excess above a baseline using age-group and region specific all cause deaths as provided daily by the General Register Office (GRO). The deaths were corrected to allow for delay to registration based on past data on these delays and the baseline was from the same day of the year in the previous 5 years plus or minus 7 days with an extrapolated time trend, and with 2 and 3 standard deviation (SD) limits shown (Figure 56).

Weeks in which at least 2 days exceeded the 3SD threshold are shown in Table 3 and the daily difference from the baseline by age and region is given in Figure 56.

Note that as this data is by date of death with delay corrections, numbers are subject to change each week, particularly for more recent days. The current week’s model supersedes models presented in previous week.

No excess all-cause mortality was observed in week 41 overall. Note that level 3 heat-health alerts were issued for June 17 to 18, July 11 to 21, and August 9 to 16 2022, and a level 4 heat-health alert issued for July 18 to 19 2022.
Figure 56: Daily excess all-cause deaths in all ages, England, 1 January 2020 to 19 October 2022

^Baseline calculation:

January to November 2020: same day in previous 5 years plus or minus 1 week with a linear trend.
December 2020 to March 2021: past 3 low flu years plus or minus 2 weeks, no trend.
March 2021 onwards: same baseline as 2020

*corrected for delay to registration from death
Other measures of excess mortality published by UKHSA are the [Fingertips excess mortality in England report](#), which uses ONS death registration data and the [all-cause mortality surveillance report](#), which uses the EuroMOMO model to measure excess deaths.

Table 3: Excess all-cause deaths by (a) age group and (b) UKHSA centres, England

(a)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Excess detected in week 41 2022?</th>
<th>Weeks in excess from week 10 to 53 2020</th>
<th>Weeks in excess from week 1 to 52 2021</th>
<th>Weeks in excess from week 1 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>x</td>
<td>13 to 21, 33, 43, 45, 50, 52 to 53</td>
<td>01 to 07, 29, 31 to 32, 35 to 36, 40 to 44, 48</td>
<td>14 to 15, 18, 23 to 24, 27 to 29, 32 to 33</td>
</tr>
<tr>
<td>under 25</td>
<td>x</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>25 to 44</td>
<td>x</td>
<td>14 to 16</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>45 to 64</td>
<td>x</td>
<td>12 to 19, 49 to 50, 52 to 53</td>
<td>01 to 08, 23 to 30, 36, 41 to 44, 48 to 49</td>
<td>29</td>
</tr>
<tr>
<td>65 to 74</td>
<td>x</td>
<td>13 to 19, 46, 48, 52 to 53</td>
<td>01 to 07, 36, 43, 48</td>
<td>32</td>
</tr>
<tr>
<td>75 to 84</td>
<td>x</td>
<td>13 to 21, 33, 45, 49, 52 to 53</td>
<td>01 to 07, 32, 36, 40, 42</td>
<td>14 to 19, 22 to 24, 27 to 30, 31 to 32, 39 to 40</td>
</tr>
<tr>
<td>85+</td>
<td>x</td>
<td>13 to 21, 33, 53</td>
<td>01 to 07, 31, 36</td>
<td>28 to 29, 32, 39</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>UKHSA Centres</th>
<th>Excess detected in week 41 2022?</th>
<th>Weeks in excess from week 10 to 53 2020</th>
<th>Weeks in excess from week 1 to 52 2021</th>
<th>Weeks in excess from week 1 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>East of England</td>
<td>x</td>
<td>14 to 19, 52 to 53</td>
<td>01 to 07</td>
<td>23, 27, 29</td>
</tr>
<tr>
<td>East Midlands</td>
<td>x</td>
<td>13 to 19, 48</td>
<td>01 to 07</td>
<td>29</td>
</tr>
<tr>
<td>London</td>
<td>x</td>
<td>12 to 19, 33, 52 to 53</td>
<td>01 to 06, 36</td>
<td>32</td>
</tr>
<tr>
<td>North East</td>
<td>x</td>
<td>14 to 21</td>
<td>02 to 04</td>
<td>None</td>
</tr>
<tr>
<td>North West</td>
<td>x</td>
<td>13 to 19, 33, 42 to 47</td>
<td>01 to 07, 31 to 32, 36, 43</td>
<td>14 to 15, 29 to 30, 32</td>
</tr>
<tr>
<td>South East</td>
<td>x</td>
<td>13 to 21, 33, 50 to 53</td>
<td>01 to 07, 36, 41, 49</td>
<td>14, 32, 40</td>
</tr>
<tr>
<td>South West</td>
<td>x</td>
<td>13 to 19, 33</td>
<td>02 to 07, 29, 36</td>
<td>29, 32, 34, 39</td>
</tr>
<tr>
<td>West Midlands</td>
<td>x</td>
<td>13 to 20, 45, 48</td>
<td>01 to 07, 29, 36, 40, 48</td>
<td>13 to 14, 28 to 29, 32</td>
</tr>
<tr>
<td>Yorkshire and Humber</td>
<td>x</td>
<td>14 to 21, 23, 43 to 50</td>
<td>02 to 04, 32, 35 to 36</td>
<td>29, 32</td>
</tr>
</tbody>
</table>
Figure 57: Daily excess all-cause deaths by age group, England, 1 January to 19 October 2022

(a) Daily excess all-cause deaths by age group, England, 1 January to 19 October 2022.

(b) Daily excess all-cause deaths by age group, England, 1 January to 19 October 2022.
Figure 58: Daily excess all-cause deaths by UKHSA centre, England, 1 January to 19 October 2022

(a)

(b)
Microbiological surveillance

Influenza virus characterisation

UKHSA characterises the properties of influenza viruses through one or more tests, including genome sequencing (genetic analysis) and haemagglutination inhibition (HI) assays (antigenic analysis). These data are used to compare how similar the currently circulating influenza viruses are to the strains included in seasonal influenza vaccines, and to monitor for changes in circulating influenza viruses. The interpretation of genetic and antigenic data sources is complex due to a number of factors, for example, not all viruses can be cultivated in sufficient quantity for antigenic characterisation, so that viruses with sequence information may not be able to be antigenically characterised as well. Occasionally, this can lead to a biased view of the properties of circulating viruses, as the viruses which can be recovered and analysed antigenically, may not be fully representative of majority variants, and genetic characterisation data does not always predict the antigenic characterisation.

There is no update for this section this week.

As of week 42, 2022, the UKHSA Respiratory Virus Unit have genetically characterised 82 influenza A viruses (46 A(H3N2) and 36A(H1N1)pdm09 viruses) and 2 influenza B viruses that were detected since week 34 2022 (w/c 22 August 2022), by sequencing of the haemagglutinin (HA) gene.

The forty-six influenza A(H3N2) viruses genetically characterised, all belong in the genetic subclade 3C.2a1b.2a.2. The Northern Hemisphere 2022/23 influenza A(H3N2) vaccine strain (an A/Darwin/9/2021-like virus) also belongs in this 3C.2a1b.2a.2 genetic subclade.

Thirty-six influenza A(H1N1)pdm09 viruses have been characterised to date this season, all belonging in genetic subgroup 6B.1A.5a.2. The Northern Hemisphere 2022/23 influenza A(H1N1)pdm09 vaccine strain (an A/Victoria/2570/2019-like virus) also belongs in genetic subclade 6B.1A.5a, within the 6B.1A.5a.2 cluster.

Two influenza B/Victoria lineage viruses have been genetically characterised, both belonging in subclade V1A3, within the subgroup V1A3a.2. The Northern Hemisphere 2022/23 influenza B/Victoria lineage vaccine strain (a B/Austria/1359417/2021-like virus) also belongs in this V1A3a.2 subclade/group.

It is too early to predict which influenza lineages will dominate throughout the season, and a close watch will be kept on the proportion of different viruses circulating to assist with the evaluation of vaccine effectiveness.
Influenza antiviral susceptibility

Influenza positive samples are genome sequenced and screened for mutations in the virus neuraminidase (NA) and the cap-dependent endonuclease (PA) genes known to confer neuraminidase inhibitor or baloxavir resistance, respectively. The samples tested are routinely obtained for surveillance purposes, but diagnostic testing of patients suspected to be infected with antiviral-resistant virus is also performed.

There is no update for this section this week.

Influenza virus sequences from samples collected between weeks 34 2022 and 40 2022 have been analysed. No viruses with known markers of resistance to neuraminidase inhibitors were detected in 41 A(H3N2) and 36 A(H1N1)pdm09. No viruses with known markers of resistance to baloxavir marboxil were detected in 34 A(H3N2) and 33 A(H1N1)pdm09.

Table 4: Antiviral susceptibility of influenza positive samples tested at UKHSA-RVU

<table>
<thead>
<tr>
<th>(Sub)type</th>
<th>Neuraminidase Inhibitors</th>
<th>Baloxavir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Susceptible</td>
<td>Reduced Susceptibility</td>
</tr>
<tr>
<td>A(H3N2)</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>B/Victoria-lineage</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
SARS-CoV-2 variants

This section is updated fortnightly. The last update was in week 42 2022 report.

UKHSA conducts genomic surveillance of SARS-CoV-2 variants.

This section provides an overview of new and current circulating variants in England.

Detailed surveillance of particular variants of concerns can be found in recent technical briefings.

Information on whole genome sequencing coverage can be found in the accompanying slide set.

The prevalence of different UKHSA-designated variants amongst sequenced episodes is presented in Figure 57.

Of the sequenced episodes from 01 February 2022 to 18 October 2022, 0.6% were BA.2 (V-22JAN-01), 0.6% were BA.4 (V-22APR-03), 4.4% were BA.4.6 (V-22SEP-01), 89.5% were BA.5 (V-22APR-04), 4.4% were BA.2.75 (V-22JUL-01), and 0.6% were classified as Other.
Figure 59. Prevalence of SARS-CoV-2 variants amongst available sequences episodes for England from 1 February, as of 18 October 2022

The grey line indicates proportion of cases sequenced.
The vertical dashed lines (red) denote changes in policies:
• April line denotes the start of England’s ‘Living with COVID’ Plan.
• End of August line denotes the change in asymptomatic testing

Note recombinants such as XD, are not specified but are largely within the ‘other’ group currently as numbers are too small.
Weekly National Influenza and COVID-19 Report: week 43 report (up to week 42 data)
As of week 41 2022, BA.5 continues to be the predominant circulating variant in England (Table 5).

Table 5. Total distribution of SARS-CoV-2 variants detected in England in the last 12 weeks, up to week 41 (week ending 16 October 2022)

<table>
<thead>
<tr>
<th>Variant</th>
<th>Other names by which this variant is known</th>
<th>Total confirmed (sequencing) cases in the last 12 weeks</th>
<th>Last reported specimen date</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC-21APR-02</td>
<td>Delta</td>
<td>1</td>
<td>15-08-2022</td>
</tr>
<tr>
<td>VOC-21NOV-01</td>
<td>Omicron BA.1</td>
<td>20</td>
<td>04-10-2022</td>
</tr>
<tr>
<td>V-22JAN-01</td>
<td>Omicron BA.2</td>
<td>291</td>
<td>11-10-2022</td>
</tr>
<tr>
<td>V-22APR-02</td>
<td>Omicron XE</td>
<td>1</td>
<td>30-07-2022</td>
</tr>
<tr>
<td>V-22APR-03</td>
<td>Omicron BA.4</td>
<td>1744</td>
<td>10-10-2022</td>
</tr>
<tr>
<td>V-22APR-04</td>
<td>Omicron BA.5</td>
<td>36085</td>
<td>12-10-2022</td>
</tr>
<tr>
<td>V-22JUL-01</td>
<td>Omicron BA.2.75</td>
<td>933</td>
<td>12-10-2022</td>
</tr>
<tr>
<td>V-22SEP-01</td>
<td>Omicron BA.4.6</td>
<td>2068</td>
<td>11-10-2022</td>
</tr>
</tbody>
</table>

*Sequencing data has a lag of approximately two weeks therefore the presented numbers should be interpreted in this context
*Cumulative numbers may be revised up or down as a results of reclassification of results, re-infections and changes to diagnostic tests, new variants or public health management levels
*Confirmed individuals are confirmed COVID-19 cases with a validated sequencing result meeting the confirmed case definitions.
Antimicrobial susceptibility

Table 6 shows in the 12 weeks up to week 42 2022, the proportion of all lower respiratory tract isolates of *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Staphylococcus aureus*, MRSA (Methicillin-resistant *Staphylococcus aureus*) and MSSA (methicillin-susceptible *Staphylococcus aureus*) tested and susceptible to antibiotics. These organisms are the important causes of community-acquired pneumonia (CAP) and the choice of antibiotics reflects the British Thoracic Society empirical guidelines for management of CAP in adults.

Table 6: Antimicrobial susceptibility surveillance in lower respiratory tract

<table>
<thead>
<tr>
<th>Organism</th>
<th>Antibiotic</th>
<th>Specimens tested (N)</th>
<th>Specimens susceptible (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneumoniae</td>
<td>Penicillin</td>
<td>1,422</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Macrolides</td>
<td>1,578</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Tetracycline</td>
<td>1,512</td>
<td>83</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>Amoxicillin orampicillin</td>
<td>6,996</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Co-amoxiclav</td>
<td>8,125</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Macrolides</td>
<td>1,683</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Tetracycline</td>
<td>8,381</td>
<td>98</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Methicillin</td>
<td>4,157</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Macrolides</td>
<td>5,010</td>
<td>70</td>
</tr>
<tr>
<td>MRSA</td>
<td>Clindamycin</td>
<td>209</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Tetracycline</td>
<td>255</td>
<td>75</td>
</tr>
<tr>
<td>MSSA</td>
<td>Clindamycin</td>
<td>2,829</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Tetracycline</td>
<td>3,502</td>
<td>94</td>
</tr>
</tbody>
</table>

Macrolides = erythromycin, azithromycin and clarithromycin

Data source: UKHSA’s SGSS Antimicrobial Resistance (AMR) module, please note that this is different to the data source used in the reports published between weeks 41, 2020 to 5, 2021 inclusive of the 2020 to 2021 influenza season when the SGSS Communicable Disease Report (CDR) module was used instead due to a UKHSA SGSS AMR data infrastructure issue which has now been resolved. Therefore, the above results are not directly comparable to the results reported between weeks 41, 2020 and 5, 2021. The AMR module of SGSS was used during the 2019 to 2020 influenza season. There has been a reduction in the total number of bacterial positive lower respiratory tract clinical samples reported to UKHSA since mid-March 2020.
COVID-19 sero-prevalence surveillance

Since week 42 2021, updates on COVID-19 sero-prevalence estimates have been published in the weekly COVID-19 vaccine surveillance report.
Influenza vaccination

Influenza vaccine uptake in GP patients

Up to week 42 of 2022, in 97.1% of GP practices reporting weekly to ImmForm for the main collection, the provisional proportion of people in England who had received the 2022 to 2023 influenza vaccine in targeted groups was as follows:

- 25.7% in under 65 years in a clinical risk group
- 17.9% in all pregnant women
- 59.0% in all 65 year olds and over
- 15.2% in those aged 50 to 64 who are not in a clinical risk group

Weekly vaccine coverage data are provisional.

Figure 60: Cumulative weekly influenza vaccine uptake by target group in England

![Cumulative weekly influenza vaccine uptake by target group in England](image_url)
In 2022 to 2023, all 2 and 3 year olds continue to be eligible for influenza vaccination through their GPs. Up to week 42 of 2022, in 98.2% of GP practices reporting weekly to ImmForm for the childhood collection, the provisional proportion of children in England who had received the 2022 to 2023 influenza vaccine in targeted groups was as follows:

- 16.0% in all 2 year olds
- 17.1% in all 3 year olds

Figure 61: Cumulative weekly influenza vaccine uptake in 2 and 3 year olds, in England

This week, monthly data which cover vaccinations that were given between 1 September and 30 September 2022 for GP patients, frontline healthcare workers and school aged children has been published and for the first time this season. This is the second season that monthly data has been published this early in the season. For seasons prior to 2021 to 2022 monthly data was published for the first time in November (covering vaccinations given between 1 September and 31 October).
COVID-19 vaccinations began in England on 8 December 2020 during week 50 2020 (week ending 13 December 2020). Cumulative data up to week 42 2022 (week ending 23 October 2022) was extracted from the National Immunisation Management Service (NIMS). The data presented this week is the provisional proportion of living people resident in England who had received at least one dose, 2 doses and 3 doses of a COVID-19 vaccination by age group. The overall vaccine uptake in the living and resident population for those with at least dose 1 was 70.8%, 67.3% for dose 2 and 53.1% for dose 3. The breakdown by sex showed vaccine uptake in males was 68.3% and 73.2% in females for dose 1. For dose 2 vaccine uptake by sex was 64.8% in males and 70.0% in females. For dose 3 vaccine uptake by sex was 50.4% in males and 56.1% in females. The vaccine uptake rate in adults aged 18 and over was 82.4% (41,141,468 out of 49,924,462) for dose 1; 79.7% (39,769,448 out of 49,924,462) for dose 2 and 65.8% (32,867,288 out of 49,924,462) for dose 3.

Table 7: Provisional cumulative COVID-19 vaccine uptake by age in England

<table>
<thead>
<tr>
<th>NATIONAL</th>
<th>People in NIMS cohort who are living and resident in England</th>
<th>Vaccinated with at least 1 dose</th>
<th>Vaccinated with at least 2 doses</th>
<th>Vaccinated with at least 3 doses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Number vaccinated</td>
<td>% vaccine uptake</td>
<td>Number vaccinated</td>
</tr>
<tr>
<td>Over 80</td>
<td>2,939,940</td>
<td>2,834,929</td>
<td>96.4</td>
<td>2,819,623</td>
</tr>
<tr>
<td>75 to under 80</td>
<td>2,376,122</td>
<td>2,289,901</td>
<td>96.4</td>
<td>2,276,149</td>
</tr>
<tr>
<td>70 to under 75</td>
<td>2,706,822</td>
<td>2,571,006</td>
<td>95.0</td>
<td>2,549,966</td>
</tr>
<tr>
<td>65 to under 70</td>
<td>2,967,151</td>
<td>2,766,020</td>
<td>93.2</td>
<td>2,736,057</td>
</tr>
<tr>
<td>60 to under 65</td>
<td>3,596,729</td>
<td>3,296,024</td>
<td>91.6</td>
<td>3,253,199</td>
</tr>
<tr>
<td>55 to under 60</td>
<td>4,120,698</td>
<td>3,695,811</td>
<td>89.7</td>
<td>3,637,705</td>
</tr>
<tr>
<td>50 to under 55</td>
<td>4,172,842</td>
<td>3,638,579</td>
<td>87.2</td>
<td>3,567,128</td>
</tr>
<tr>
<td>45 to under 50</td>
<td>3,874,338</td>
<td>3,195,575</td>
<td>82.5</td>
<td>3,110,726</td>
</tr>
<tr>
<td>40 to under 45</td>
<td>4,290,138</td>
<td>3,338,323</td>
<td>77.8</td>
<td>3,220,965</td>
</tr>
<tr>
<td>35 to under 40</td>
<td>4,590,523</td>
<td>3,370,524</td>
<td>73.4</td>
<td>3,217,385</td>
</tr>
<tr>
<td>30 to under 35</td>
<td>4,747,970</td>
<td>3,353,199</td>
<td>70.6</td>
<td>3,160,725</td>
</tr>
<tr>
<td>25 to under 30</td>
<td>4,351,563</td>
<td>3,045,166</td>
<td>70.0</td>
<td>2,834,802</td>
</tr>
<tr>
<td>20 to under 25</td>
<td>3,810,715</td>
<td>2,754,452</td>
<td>72.3</td>
<td>2,512,655</td>
</tr>
<tr>
<td>18 to under 20</td>
<td>1,378,911</td>
<td>991,839</td>
<td>71.9</td>
<td>872,363</td>
</tr>
<tr>
<td>16 to under 18</td>
<td>1,394,064</td>
<td>898,266</td>
<td>64.4</td>
<td>711,445</td>
</tr>
<tr>
<td>12 to under 16</td>
<td>2,938,118</td>
<td>1,496,936</td>
<td>50.9</td>
<td>1,120,020</td>
</tr>
<tr>
<td>5 to under 12</td>
<td>5,005,427</td>
<td>557,164</td>
<td>11.1</td>
<td>310,936</td>
</tr>
<tr>
<td>Total*</td>
<td>62,267,060</td>
<td>44,093,975</td>
<td>70.8</td>
<td>41,911,763</td>
</tr>
</tbody>
</table>

*Caution should be exercised when summing the age figures as the sum of these will not equal the England total. This is due to individuals vaccinated in England where the individual had an unknown age.
group or where age is less than 5 years old. Individuals vaccinated in England who have a registered address outside of England or where their address is unknown have been excluded.

From 18 November 2021 (week 46 2021) UKHSA started to report on those in the population with at least 3 doses of COVID-19 vaccine. These figures count the number of doses a person has had in chronological order and includes vaccinations given before the start of the programme where data is available to provide a more complete record of the population coverage estimates.

Age was previously calculated as age on the 31 August 2021 (academic cohort for all ages). Please note that from 14 April 2022 (week 15 2022), age is calculated on the date data is extracted. The weekly vaccine coverage data is extracted on a Tuesday with data capped to the previous Sunday and all backing data is updated each week going back to the start of the programme.

From 1 September 2022 (week 35 2022), the definition used in the table looking at eligibility by month for the spring booster campaign was changed from ‘6 months since the last dose’ to ‘3 months since the last dose’ to account for the earliest time a person can become eligible for the campaign. Eligibility table for the autumn booster campaign are calculated using the same method where a person is eligible after a 2 doses primary course provided there is an interval of at least 3 months since their last dose.

From 6 October 2022 (week 40 2022), all England coverage figures are of living people who are resident in England. Individuals vaccinated in England who have a registered address outside of England or where their address is unknown have been excluded.

Data is provisional and subject to change following further validation checks. Any changes to historic figures will be reflected in the most recent publication. Please note that numbers published by UKHSA are for public health surveillance purposes only.
Figure 62: Cumulative weekly COVID-19 vaccine uptake by age in those who are living and resident in England for (a) Dose 1, (b) Dose 2 and (c) Dose 3 (please note the data for this graph is shown from week 36 (week ending 11 September 2021))

(a)
From the 6 January 2021 (week 1 of 2021), the Joint Committee on Vaccination and Immunisation (JCVI) advised initially prioritising delivery of the first vaccine dose to maximise the effect on public health in the short term and reduce the number of preventable deaths from COVID-19.
Weekly National Influenza and COVID-19 Report: week 43 report (up to week 42 data)

(c)
Table 8: Provisional cumulative people vaccinated with any dose of COVID-19 vaccine in the last 3 months, 3 to 6 months and vaccinated more than 6 months ago

<table>
<thead>
<tr>
<th>National</th>
<th>People in NIMS cohort who are living and resident in England</th>
<th>Vaccinated in the last 3 months (84 days)</th>
<th>Vaccinated 3 to 6 months ago (85 to 168 days)</th>
<th>Vaccinated 6 months ago (169 or more days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Numbers vaccinated</td>
<td>Percentage vaccinated</td>
<td>Numbers vaccinated</td>
</tr>
<tr>
<td>Over 80</td>
<td>2,939,940</td>
<td>2,011,733</td>
<td>68.4</td>
<td>248,503</td>
</tr>
<tr>
<td>75 to under 80</td>
<td>2,376,122</td>
<td>1,652,752</td>
<td>69.6</td>
<td>206,267</td>
</tr>
<tr>
<td>70 to under 75</td>
<td>2,706,822</td>
<td>1,763,603</td>
<td>65.2</td>
<td>41,936</td>
</tr>
<tr>
<td>65 to under 70</td>
<td>2,967,151</td>
<td>1,684,704</td>
<td>56.8</td>
<td>36,811</td>
</tr>
<tr>
<td>60 to under 65</td>
<td>3,596,729</td>
<td>1,162,081</td>
<td>32.3</td>
<td>42,865</td>
</tr>
<tr>
<td>55 to under 60</td>
<td>4,120,698</td>
<td>973,891</td>
<td>23.6</td>
<td>45,662</td>
</tr>
<tr>
<td>50 to under 55</td>
<td>4,172,842</td>
<td>718,364</td>
<td>17.2</td>
<td>48,499</td>
</tr>
<tr>
<td>45 to under 50</td>
<td>3,874,338</td>
<td>341,162</td>
<td>8.8</td>
<td>52,244</td>
</tr>
<tr>
<td>40 to under 45</td>
<td>4,290,138</td>
<td>268,693</td>
<td>6.3</td>
<td>66,283</td>
</tr>
<tr>
<td>35 to under 40</td>
<td>4,590,523</td>
<td>228,372</td>
<td>5.0</td>
<td>83,394</td>
</tr>
<tr>
<td>30 to under 35</td>
<td>4,747,970</td>
<td>199,094</td>
<td>4.2</td>
<td>102,857</td>
</tr>
<tr>
<td>25 to under 30</td>
<td>4,351,563</td>
<td>159,721</td>
<td>3.7</td>
<td>118,809</td>
</tr>
<tr>
<td>20 to under 25</td>
<td>3,810,715</td>
<td>122,777</td>
<td>3.2</td>
<td>146,432</td>
</tr>
<tr>
<td>18 to under 20</td>
<td>1,378,911</td>
<td>41,826</td>
<td>3.0</td>
<td>90,838</td>
</tr>
<tr>
<td>16 to under 18</td>
<td>1,394,064</td>
<td>50,354</td>
<td>3.6</td>
<td>132,388</td>
</tr>
<tr>
<td>12 to under 16</td>
<td>2,938,118</td>
<td>102,530</td>
<td>3.5</td>
<td>254,374</td>
</tr>
<tr>
<td>5 to under 12</td>
<td>5,005,427</td>
<td>229,929</td>
<td>4.6</td>
<td>240,945</td>
</tr>
</tbody>
</table>

Table 8 is presented to provide an overview of how recently a person has been vaccinated either through the primary vaccination campaign or subsequent booster campaigns. This helps us understand the data in the context of vaccine waning across the whole COVID-19 programme. Breakdowns by Ethnicity, and IMD, by age can be found in the backing tables.
Figure 63: Provisional cumulative people vaccinated with any dose of COVID-19 vaccine in the last 3 months, 3 to 6 months and vaccinated more than 6 months ago

- Not vaccinated
- Vaccinated 3-6 months ago (85-168 days)
- Vaccinated 6 months ago (169+ days)
- Vaccinated in the last 3 months (84 days)

Number of people
Figure 64: Age-Sex pyramid for COVID-19 vaccine uptake by age in those living and resident in England for dose 1

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 80</td>
<td>96.4</td>
<td>96.5</td>
</tr>
<tr>
<td>75 to under 80</td>
<td>96.3</td>
<td>96.4</td>
</tr>
<tr>
<td>70 to under 75</td>
<td>94.8</td>
<td>95.1</td>
</tr>
<tr>
<td>65 to under 70</td>
<td>92.8</td>
<td>93.6</td>
</tr>
<tr>
<td>60 to under 65</td>
<td>90.6</td>
<td>92.7</td>
</tr>
<tr>
<td>55 to under 60</td>
<td>87.9</td>
<td>91.6</td>
</tr>
<tr>
<td>50 to under 55</td>
<td>84.4</td>
<td>90.1</td>
</tr>
<tr>
<td>45 to under 50</td>
<td>78.5</td>
<td>86.7</td>
</tr>
<tr>
<td>40 to under 45</td>
<td>73.1</td>
<td>82.8</td>
</tr>
<tr>
<td>35 to under 40</td>
<td>68.8</td>
<td>78.2</td>
</tr>
<tr>
<td>30 to under 35</td>
<td>66.8</td>
<td>74.4</td>
</tr>
<tr>
<td>25 to under 30</td>
<td>67.2</td>
<td>72.6</td>
</tr>
<tr>
<td>20 to under 25</td>
<td>70.5</td>
<td>73.8</td>
</tr>
<tr>
<td>18 to under 20</td>
<td>69.6</td>
<td>74.3</td>
</tr>
<tr>
<td>16 to under 18</td>
<td>63.1</td>
<td>65.7</td>
</tr>
<tr>
<td>12 to under 16</td>
<td>50.7</td>
<td>51.1</td>
</tr>
<tr>
<td>5 to under 12</td>
<td>11.1</td>
<td>11.1</td>
</tr>
</tbody>
</table>

% Vaccine Uptake (Dose 1)

Figure 65: Age-Sex pyramid for COVID-19 vaccine uptake by age in those living and resident in England for dose 2

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 80</td>
<td>95.9</td>
<td>95.9</td>
</tr>
<tr>
<td>75 to under 80</td>
<td>95.8</td>
<td>95.8</td>
</tr>
<tr>
<td>70 to under 75</td>
<td>94.1</td>
<td>94.4</td>
</tr>
<tr>
<td>65 to under 70</td>
<td>91.9</td>
<td>92.6</td>
</tr>
<tr>
<td>60 to under 65</td>
<td>89.5</td>
<td>91.5</td>
</tr>
<tr>
<td>55 to under 60</td>
<td>86.5</td>
<td>90.3</td>
</tr>
<tr>
<td>50 to under 55</td>
<td>82.7</td>
<td>88.6</td>
</tr>
<tr>
<td>45 to under 50</td>
<td>76.3</td>
<td>84.8</td>
</tr>
<tr>
<td>40 to under 45</td>
<td>70.4</td>
<td>80.3</td>
</tr>
<tr>
<td>35 to under 40</td>
<td>65.5</td>
<td>75.1</td>
</tr>
<tr>
<td>30 to under 35</td>
<td>62.8</td>
<td>70.6</td>
</tr>
<tr>
<td>25 to under 30</td>
<td>62.4</td>
<td>68.1</td>
</tr>
<tr>
<td>20 to under 25</td>
<td>64.1</td>
<td>68.0</td>
</tr>
<tr>
<td>18 to under 20</td>
<td>60.7</td>
<td>66.1</td>
</tr>
<tr>
<td>16 to under 18</td>
<td>49.7</td>
<td>52.5</td>
</tr>
<tr>
<td>12 to under 16</td>
<td>37.8</td>
<td>38.4</td>
</tr>
<tr>
<td>5 to under 12</td>
<td>6.2</td>
<td>6.2</td>
</tr>
</tbody>
</table>

% Vaccine Uptake (Dose 2)
Figure 66: Cumulative weekly COVID-19 vaccine uptake by ethnicity in those living and resident in England, aged 18 and over

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>% Vaccine uptake at least 1 Dose</th>
<th>% Vaccine uptake at least 2 Doses</th>
<th>% Vaccine uptake at least 3 Doses or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>White - British</td>
<td>77.8%</td>
<td>63.5%</td>
<td>91.1%</td>
</tr>
<tr>
<td>White - Irish</td>
<td>70.8%</td>
<td>66.1%</td>
<td>82.9%</td>
</tr>
<tr>
<td>White - Other</td>
<td>47.1%</td>
<td>62.2%</td>
<td>89.1%</td>
</tr>
<tr>
<td>Mixed - White and Black Caribbean</td>
<td>37.7%</td>
<td>57.8%</td>
<td>70.8%</td>
</tr>
<tr>
<td>Mixed - White and Black African</td>
<td>41.0%</td>
<td>70.8%</td>
<td>78.6%</td>
</tr>
<tr>
<td>Mixed - White and Asian</td>
<td>57.4%</td>
<td>75.0%</td>
<td>82.5%</td>
</tr>
<tr>
<td>Mixed - Any other mixed background</td>
<td>50.6%</td>
<td>68.9%</td>
<td>72.9%</td>
</tr>
<tr>
<td>Asian or Asian British - Indian</td>
<td>61.8%</td>
<td>79.2%</td>
<td>82.1%</td>
</tr>
<tr>
<td>Asian or Asian British - Pakistani</td>
<td>73.4%</td>
<td>82.3%</td>
<td>82.5%</td>
</tr>
<tr>
<td>Asian or Asian British - Bangladeshi</td>
<td>77.5%</td>
<td>80.5%</td>
<td>82.1%</td>
</tr>
<tr>
<td>Asian or Asian British - Any other Asian background</td>
<td>55.7%</td>
<td>76.5%</td>
<td>80.5%</td>
</tr>
<tr>
<td>Black or Black British - Caribbean</td>
<td>55.0%</td>
<td>62.5%</td>
<td>78.3%</td>
</tr>
<tr>
<td>Black or Black British - African</td>
<td>64.2%</td>
<td>69.4%</td>
<td>82.1%</td>
</tr>
<tr>
<td>Black or Black British - Any other Black background</td>
<td>57.5%</td>
<td>64.6%</td>
<td>82.5%</td>
</tr>
<tr>
<td>Chinese</td>
<td>47.0%</td>
<td>58.4%</td>
<td>67.9%</td>
</tr>
<tr>
<td>Other ethnic groups - Any other ethnic group</td>
<td>43.6%</td>
<td>63.9%</td>
<td>67.9%</td>
</tr>
<tr>
<td>Not Stated/Unknown</td>
<td>43.7%</td>
<td>61.1%</td>
<td></td>
</tr>
</tbody>
</table>

For a regional breakdown of the ethnicity data, please see the data file that accompanies this report.
Autumn Booster Campaign

Immunity derived from vaccination declines over time and following on from the Spring campaign, the JCVI has recommended an Autumn Booster campaign with the primary objective to boost immunity in those at higher risk from COVID-19 and thereby optimise protection against severe COVID-19, specifically hospitalisation and death, over winter 2022 to 2023.

The Autumn booster data reported below covers any booster dose administered from the 1 September 2022 provided there is at least 3 months from the previous dose. Eligible groups for the Autumn booster campaign are defined in the COVID-19 healthcare guidance [Green Book](#) and include residents in a care home for older adults, staff working in care homes for older adults, frontline health and social care workers, all adults aged 50 years and over, persons aged 5 to 49 years in a clinical risk group, household contacts of people with immunosuppression, and carers.

Table 9 presents coverage as measured against the total population and includes people who are not yet due to have their Autumn booster. It is important that unvaccinated individuals, especially vulnerable adults, receive a primary course of vaccination, irrespective of whether individuals have had previous infection. Table 9 should be interpreted in the context of Table 8 which shows how recently a person who is living and resident in England has been vaccinated either through the primary vaccination campaign or a subsequent booster campaign. This helps us understand the data in the context of vaccine waning across the whole COVID-19 programme.

By the end of week 42 2022 (week ending 23 October 2022), 43.1% (9,855,267 out of 22,880,304) of all people aged over 50 years old had been vaccinated with an Autumn booster dose since 1 September 2022, Table 9.
Table 9: Provisional cumulative people vaccinated by age with a booster of COVID-19 vaccine from the 1 September 2022 as part of the Autumn booster campaign in England

<table>
<thead>
<tr>
<th>National</th>
<th>People in NIMS cohort who are living and resident in England</th>
<th>Vaccinated with an Autumn booster since 1 September 2022*</th>
<th>Percentage vaccine uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 80</td>
<td>2,939,940</td>
<td>1,988,284</td>
<td>67.6</td>
</tr>
<tr>
<td>75 to under 80</td>
<td>2,376,122</td>
<td>1,629,020</td>
<td>68.6</td>
</tr>
<tr>
<td>70 to under 75</td>
<td>2,706,822</td>
<td>1,749,451</td>
<td>64.6</td>
</tr>
<tr>
<td>65 to under 70</td>
<td>2,967,151</td>
<td>1,671,852</td>
<td>56.3</td>
</tr>
<tr>
<td>60 to under 65</td>
<td>3,596,729</td>
<td>1,150,079</td>
<td>32.0</td>
</tr>
<tr>
<td>55 to under 60</td>
<td>4,120,698</td>
<td>961,203</td>
<td>23.3</td>
</tr>
<tr>
<td>50 to under 55</td>
<td>4,172,842</td>
<td>705,378</td>
<td>16.9</td>
</tr>
<tr>
<td>Total aged 50 and over</td>
<td>22,880,304</td>
<td>9,855,267</td>
<td>43.1</td>
</tr>
</tbody>
</table>

*autumn booster defined as any additional dose of vaccine after a 2 dose primary course provided there is an interval of at least 3 months and it is given since the 1 September 2022
Table 10: Provisional cumulative people vaccinated with an autumn booster COVID-19 vaccine against those eligible by the end of December 2022

<table>
<thead>
<tr>
<th>Age at end of December</th>
<th>Eligible by the end of December</th>
<th>Of those eligible by the end of December, numbers vaccinated</th>
<th>Percentage vaccine uptake eligible end of December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 80</td>
<td>2,826,961</td>
<td>1,990,969</td>
<td>70.4</td>
</tr>
<tr>
<td>75 to under 80</td>
<td>2,282,763</td>
<td>1,630,891</td>
<td>71.4</td>
</tr>
<tr>
<td>70 to under 75</td>
<td>2,558,579</td>
<td>1,751,403</td>
<td>68.5</td>
</tr>
<tr>
<td>65 to under 70</td>
<td>2,749,391</td>
<td>1,673,783</td>
<td>60.9</td>
</tr>
<tr>
<td>60 to under 65</td>
<td>3,272,571</td>
<td>1,152,384</td>
<td>35.2</td>
</tr>
<tr>
<td>55 to under 60</td>
<td>3,660,577</td>
<td>963,350</td>
<td>26.3</td>
</tr>
<tr>
<td>50 to under 55</td>
<td>3,590,654</td>
<td>706,772</td>
<td>19.7</td>
</tr>
<tr>
<td>Total aged 50 and over</td>
<td>20,941,496</td>
<td>9,869,552</td>
<td>47.1</td>
</tr>
</tbody>
</table>

Table 10 looks at people aged 50 and over at the end of December 2022 who are eligible for an autumn booster if they have completed a primary course of 2 doses and are at least 3 months (84 days) from their previous dose.

Please note that this uses a different age cut off definition to the rest of the report and is therefore not a subset of other tables. In the last two weekly reports, the data presented was incorrect as some vaccinations were being excluded, this has now been corrected.

Eligible population figures in this table do not include those who are aged 50 and over and have not been vaccinated; unvaccinated people are taken into consideration in the coverage tables above. This table is based on those who have been vaccinated and may include those who are no longer resident in England or have an unknown address.
Immunosuppression

Provisional vaccine uptake data in living and resident people identified as immunosuppressed in England to the end of week 42 (week ending 23 October 2022) can be found in Table 11. This shows that vaccine uptake in the 496,386 identified as immunosuppressed was 96.2% for at least dose 1, 95.1% for at least 2 doses and 89.6% for at least 3 doses.

<table>
<thead>
<tr>
<th>Immunosuppression</th>
<th>People in NIMS Cohort who are living and resident in England</th>
<th>Numbers vaccinated with at least 1 dose</th>
<th>Percentage vaccine uptake with at least 1 dose</th>
<th>Numbers vaccinated with at least 2 doses</th>
<th>Percentage vaccine uptake with at least 2 doses</th>
<th>Numbers vaccinated with at least 3 doses</th>
<th>Percentage vaccine uptake with at least 3 doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>England</td>
<td>496,386</td>
<td>477,376</td>
<td>96.2</td>
<td>472,196</td>
<td>95.1</td>
<td>444,982</td>
<td>89.6</td>
</tr>
</tbody>
</table>

Table 12: Vaccine uptake in people identified as immunosuppressed in England with a booster of COVID-19 vaccine from the 1 September 2022 as part of the Autumn booster campaign*

<table>
<thead>
<tr>
<th>Immunosuppression</th>
<th>People in NIMS cohort who are living and resident in England</th>
<th>Vaccinated with an autumn booster since 1 September 2022*</th>
<th>Percentage vaccine uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>England</td>
<td>496,386</td>
<td>231,425</td>
<td>46.6</td>
</tr>
</tbody>
</table>

*autumn booster defined as any additional dose of vaccine after a 2 dose primary course provided there is an interval of at least 3 months and it is given since the 1 September 2022

Tables 11 and 12 present coverage as measured against the total population of people identified as immunosuppressed. The current uptake of the autumn booster in people identified as immunosuppressed is 46.6%. Many people in this group have been vaccinated more recently and are still becoming eligible for their autumn booster. This can be seen in Table 11, in which 64.3% of people identified as immunosuppressed are covered by a vaccine given in the last 6 months.
Table 13: People identified as immunosuppressed in England vaccinated with any dose of COVID-19 vaccine in the last 3 months, 3 to 6 months and vaccinated more than 6 months ago

<table>
<thead>
<tr>
<th>Immunosuppression</th>
<th>People in NIMS cohort who are living and resident in England</th>
<th>Vaccinated in the last 3 months (84 days)</th>
<th>Vaccinated 3 to 6 months ago (85 to 168 days)</th>
<th>Vaccinated 6 months ago (169 or more days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Numbers vaccinated</td>
<td>Percentage vaccinated</td>
<td>Numbers vaccinated</td>
<td>Percentage vaccinated</td>
</tr>
<tr>
<td>England</td>
<td>496,386</td>
<td>242,321</td>
<td>76,716</td>
<td>15.5</td>
</tr>
</tbody>
</table>

Table 13 is presented to provide an overview of how recently a person identified as immunosuppressed has been vaccinated either through the primary vaccination campaign or a subsequent booster campaign. This helps us understand the data in the context of vaccine waning across the whole COVID-19 programme and shows that most people identified as immunosuppressed have been recently vaccinated.

Detailed information on the NHS Digital characterisation of the immunosuppressed group can be found on the [NHS Digital website](https://www.digital.nhs.uk).

For UK COVID-19 daily counts of vaccinations, please see the [Vaccinations' section of the UK COVID-19 dashboard](https://www.gov.uk/government/publications/weekly-covid-vaccinations-report).
International update

Global COVID-19 update

For further information on the global COVID-19 situation please see the [World Health Organisation (WHO) COVID-19 situation reports](https://www.who.int/covid-19).

Global influenza update

Updated on 17 October 2022 (based on data up to 2 October 2022) ([WHO website](https://www.who.int/countries/en/)).

Globally, influenza activity remained low with influenza A(H3N2) viruses predominant among detections. In the temperate zones of the southern hemisphere, overall influenza activity appeared to further decrease this reporting period, except in temperate South America where activity increased.

In Oceania, influenza detections of primarily influenza A(H1N1)pdm09 (among the subtyped influenza A viruses) and influenza-like activity (ILI) activity were at low levels overall.

In Southern Africa, there was a decrease in influenza activity with influenza A and B viruses reported.

In temperate South America, influenza detections increased due to increased activity in Argentina. Elsewhere, influenza activity remained low or below the seasonal threshold. Influenza A viruses predominated with A(H1N1)pdm09 predominant among subtyped viruses in Argentina and other countries reporting mostly A(H3N2) viruses.

In the Caribbean and Central American countries, low influenza activity was reported with influenza A(H3N2) most frequently detected.

In the tropical countries of South America, influenza detections were low and A(H3N2) detections predominated.

In tropical Africa, influenza activity remained low with predominantly influenza B/Victoria lineage and A(H3N2) viruses detected but also A(H1N1)pdm09 detections reported in a few countries.

In Southern Asia, influenza detections were generally low or decreasing with predominantly A(H1N1)pdm09 viruses detected, but with influenza A(H3N2) and influenza B viruses also reported.
In South-East Asia, influenza activity continued to be reported, with trends varying by country. Influenza A(H3N2) viruses accounted for the majority of detections but influenza A(H1N1)pdm09 and B viruses were also reported.

In the countries of North America, influenza activity remained low at levels typically observed at this time of year. Influenza A(H3N2) was predominant among the few subtyped viruses.

In Europe, overall influenza activity remained at inter-seasonal levels with influenza detections and ILI activity slightly increased in only a few countries. Influenza A viruses predominated among the reported detections in general with A(H3N2) viruses accounting for the majority of subtyped influenza A virus detections.

In central Asia, Kazakhstan reported a few influenza B virus detections and ILI and severe acute respiratory infections (SARI) activity increased slightly in recent weeks.

In Northern Africa, no influenza detections were reported.

In East Asia, influenza activity of predominantly influenza A(H3N2) remained stable in general.

In Western Asia, detections of influenza slightly increased in some countries of the Arab Peninsula.

The WHO Global Influenza Surveillance and Response System (GISRS) laboratories tested more than 133,934 specimens during the period 19 September to 2 October 2022. A total of 5,323 were positive for influenza viruses, of which 4,706 (88.4%) were typed as influenza A and 617 (11.6%) as influenza B. Of the sub-typed influenza A viruses, 630 (18.3%) were influenza A(H1N1)pdm09 and 2,808 (81.7%) were influenza A(H3N2). Of the characterized B viruses, 208 (100%) belonged to the B Victoria lineage.

Influenza in Europe

Updated for data for week 41, 2022 (Joint ECDC-WHO Europe Influenza weekly update).

For the Region as a whole, influenza activity was at inter-seasonal levels.

For week 41 2022, of 41 countries and areas reporting on intensity of influenza activity, 30 reported baseline-intensity, nine reported low-intensity, one reported medium-intensity (Kazakhstan) and one reported high-intensity (Malta). Of 41 countries and areas reporting on geographic spread of influenza viruses, 20 reported no activity, 17 reported sporadic spread, one reported local spread (Malta), two reported regional
spread (Germany and United Kingdom (Scotland)) and one reported widespread activity (Kazakhstan).

For week 41 2022, 41 (4%) of 956 sentinel specimens tested positive for an influenza virus, of which 98% were type A and 2% was type B. Of 33 subtyped A viruses, 85% were A(H3) and 15% A(H1)pdm09. The type B virus was not ascribed to a lineage.

For the season to date, 77 (4%) of 2 005 sentinel specimens tested positive for an influenza virus. More influenza type A (n=75, 97%) than type B (n=2, 3%) viruses have been detected. Of 65 subtyped A viruses, 49 (75%) were A(H3) and 16 (25%) were A(H1)pdm09. The influenza B viruses were reported without a lineage.

For week 41 2022, 398 of 31,588 specimens from non-sentinel sources tested positive for an influenza virus; 360 (90%) were type A and 38 (10%) were type B. Of 98 subtyped A viruses, 52 (53%) were A(H1)pdm09 and 46 (47%) were A(H3). Four of 38 type B viruses was ascribed to the Victoria lineage.

For the season to date, more influenza type A (n=788, 92%) than type B (n=64, 8%) viruses have been detected. Of 274 subtyped A viruses, 160 (58%) were A(H3) and 114 (42%) were A(H1)pdm09. Of five influenza type B viruses ascribed to a lineage, all were B/Victoria (92% of type B viruses were reported without a lineage).

Influenza in North America

For further information on influenza in the United States of America please see the [Centre for Disease Control weekly influenza surveillance report](https://www.cdc.gov/flu/weekly/). For further information on influenza in Canada please see the [Public Health Agency weekly influenza report](https://www.phac-aspc.gc.ca/influenza/).

Influenza in Australia

For further information on influenza in Australia please see the [Australian Influenza Surveillance Report and Activity Updates](https://www.ai-surveillance.org.au/).
Other respiratory viruses

Avian influenza and other zoonotic influenza

Latest WHO update on 5 October 2022

From 31 August to 5 October 2022, one human case of infection with an avian influenza A(H5N6) virus, one human case of infection with an avian influenza A(H10N3) virus, and one human case of infection with an influenza A(H1N1) variant virus were reported officially. Additionally, three human cases of infection with influenza A(H1N2) variant viruses were detected.

The overall public health risk from currently known influenza viruses at the human-animal interface has not changed, and the likelihood of sustained human-to-human transmission of these viruses remains low. Human infections with viruses of animal origin are expected at the human-animal interface wherever these viruses circulate in animals.

Middle East respiratory syndrome coronavirus (MERS-CoV)

From April 2012 to August 2022, a total of 2,591 laboratory-confirmed cases of MERS-CoV and 894 associated deaths were reported globally to WHO under the International Health Regulations (IHR 2005).

On 28 April 2022, the National IHR Focal point of Oman notified WHO of one case of MERS-CoV in Oman (WHO website).

Between 22 March and 3 April 2022, the National IHR Focal Point of Qatar reported 2 laboratory-confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection to the WHO (WHO website).

A total of 5 cases of Middle East respiratory syndrome coronavirus, MERS-CoV, (3 imported and 2 linked cases) have been confirmed in the UK through ongoing surveillance since September 2012.

Further information on management and guidance of possible cases is available online. The latest ECDC MERS-CoV risk assessment highlights that risk of widespread transmission of MERS-CoV remains very low.
Related links

Previous national COVID-19 reports
Previous weekly influenza reports
Annual influenza reports
COVID-19 vaccine surveillance reports
Previous COVID-19 vaccine surveillance reports
Public Health England (PHE) monitoring of the effectiveness of COVID-19 vaccination
Investigation of SARS-CoV-2 variants of concern: technical briefings

UKHSA has delegated authority, on behalf of the Secretary of State, to process Patient Confidential Data under Regulation 3 The Health Service (Control of Patient Information) Regulations 2002

Regulation 3 makes provision for the processing of patient information for the recognition, control and prevention of communicable disease and other risks to public health.
About the UK Health Security Agency

The UK Health Security Agency is an executive agency, sponsored by the Department of Health and Social Care.

© Crown copyright 2022

Prepared by: Immunisation and Vaccine Preventable Diseases Division
For queries relating to this document, please contact: Enquiries@ukhsa.gov.uk

Published: 27 October 2022

You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.