- Mo	2	S		RAL SOILS LTE REPORT	
Report No. 584	667-01 (00)				1774
Date 29-0	October-2021	Contract	Elsenham	Phase II	
Aps Her Her HP3	Frogmore Rd sley nel Hempstead tfordshire 3 9RT				
For the Attention	n of And	drew Tranter			
Samples submit Testing Started Testing Complet	-	15-Octob 19-Octob 29-Octob	er-2021	Client Reference Client Order No. Instruction Type	1921748 n/a Written
Tests marked 'N Laboratory.	ot UKAS Accreo	dited' in this repo	rt are not inclu	ded in the UKAS Acc	reditation Schedule for our
UKAS Accredite	P105 Wa P108 PS	ater Content BS E D BS EN ISO 178 uid and plastic lin	392-4		
Undertake by Su	ubcontractor				
	2.07 pH			Special Digest 1:2005 accordance with BRE	5 E Special Digest 1:2005
Please Note: Rem Test were underta	aining samples w ken on samples 'a	ill be retained for a as received' unless	period of one n otherwise state	ublication of ISO17892 nonth from today and wil ed. cope of accreditation for	
s	Structural Soils Ltd 1	18 Frogmore Rd Hem	el Hempstead HF	P3 9RT Tel.01442 416661	e-mail dimitris.xirouchakis@soils.co.uk

TESTING VERIFICATION CERTIFICATE

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **29/10/2021 15:26:35**.

Testing reported after this date is not covered by this Verification Certificate.

Approved Signatory David Nickells (Laboratory Technician)

(Head Office) Bristol Laboratory Unit 1A, Princess Street Bedminster Bristol BS3 4AG

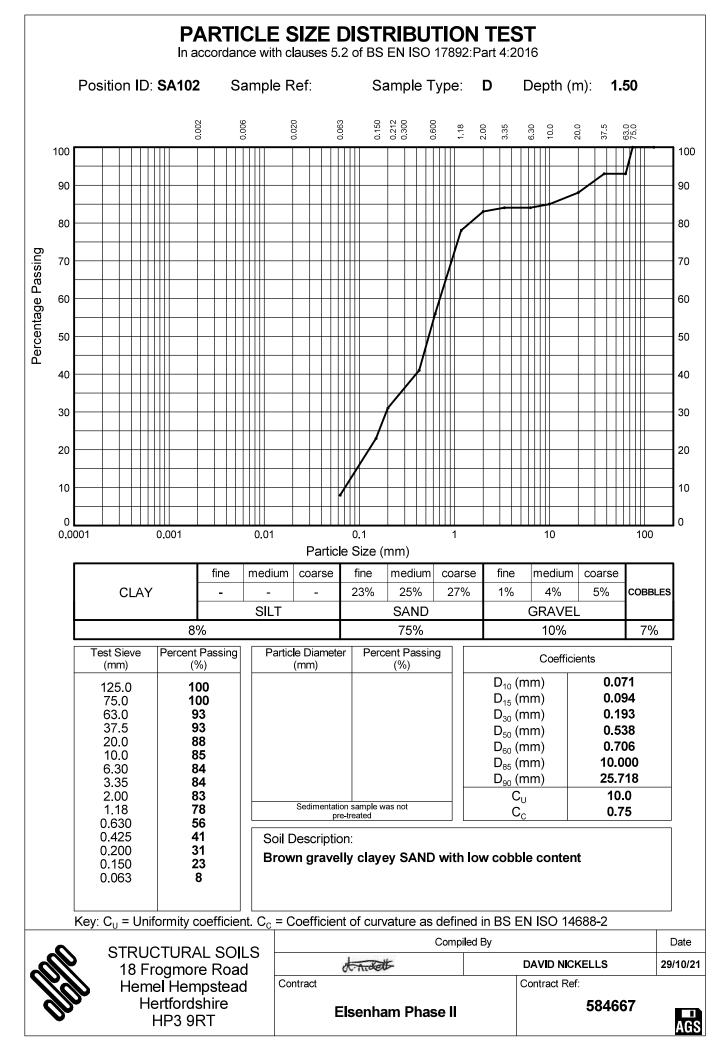
Castleford Laboratory The Potteries, Pottery Street Castleford West Yorkshire WF10 1NJ

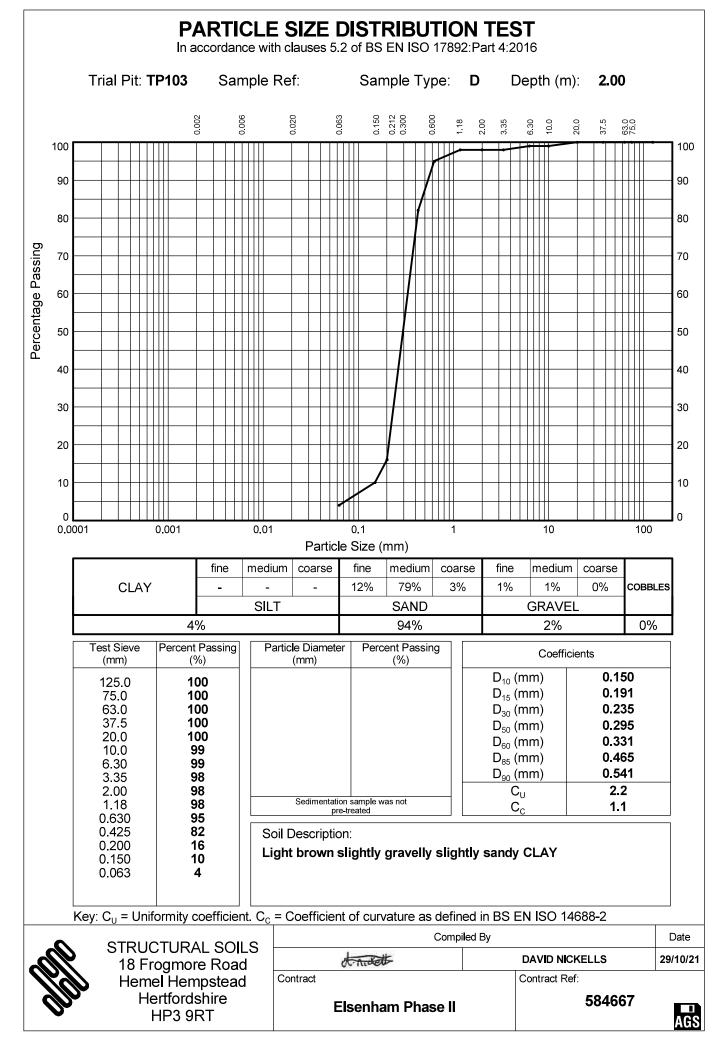
Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory Anerley Court, Half Moon Lane Hildenborough Tonbridge TN11 9HU

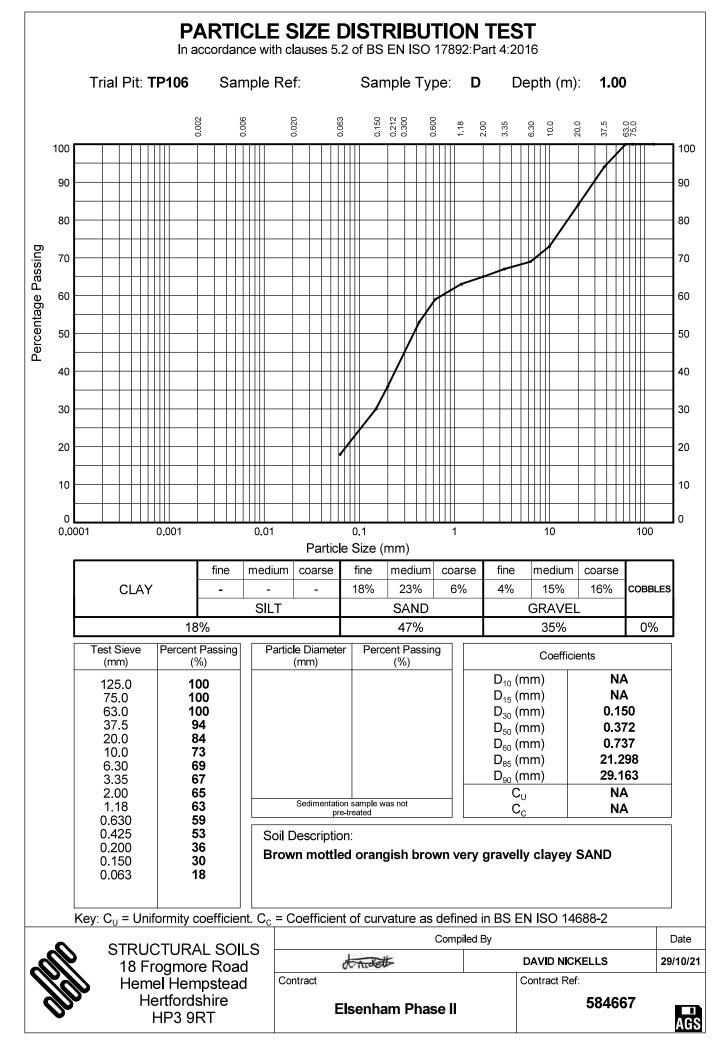
STRUCTURAL	Contract:	Job No:
SOILS LTD	Elsenham Phase II	584667

SUMMARY OF SOIL CLASSIFICATION TESTS

In accordance with Part 1, Part 12 of BS EN ISO 17892


Exploratory Position ID	Sample Ref	Samp l e Type	Depth (m)	Water Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425um	Description of Sample
TP101		D	0.60	14.7	45	35	10	73	Brown slightly sandy SILT
TP101		D	2.30	20.2	45	32	13	94	Brown slightly sandy SILT
WS101		D	0.60	15.1	45	21	24	58	Brown mottled dark brown slightly gravelly slightly sandy CLAY with plant roots
WS101		D	1.30	23.4	55	29	26	91	Brown mottled dark grey slightly gravelly slightly sandy CLAY
WS109		D	0.80	19.4	54	29	25	99	Very light brown mottled white slightly gravelly slightly sandy CLAY
WS109		D	2.00	18.4	35	21	14	95	Very light brown mottled white slightly gravelly slightly sandy CLAY
WS109		D	3.50	19.5	35	22	13	91	Very light brown mottled white slightly gravelly slightly sandy CLAY
SYMBOL	.S: [*] denot	es BS 137	7	1	1	1	1	1]
		RUCTI		Contra	act:				Elsenham Phase II Contract Ref: 584667


GINT_LIBRARY_V10_01.GLB : L - SUMMARY OF CLASSIFICATION - V2 - A4L : 584667-ELSENHAM-PHASE-II-RSK-1921748.GPJ : 29/10/21 15:23 : DN1 :


SOILS LTD

AGS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number: 21/11379 1

Date: 25 October, 2021

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Hemel Lab/Max Battle Elsenham Phase II 1921748 N/A 20/10/21 20/10/21 25/10/21

Prepared by:

Laboratory Coordinator

Approved by:

Richard Wong Client Manager

Page 1 of 6

Envirolab Job Number: 21/11379

Client Project Name: Elsenham Phase II

Client Project Ref: 1921748

Lab Sample ID	21/11379/1	21/11379/2	21/11379/3	21/11379/4	21/11379/5	21/11379/6	21/11379/7			
Client Sample No	3	5	7	2	4	5	4			
Client Sample ID	WS109	WS109	WS109	TP101	TP101	TP103	TP106			
Depth to Top	0.80	2.00	3.50	0.60	2.30	2.00	1.00			
Depth To Bottom						2.50	1.50		ion	
Date Sampled									Detection	ref
Sample Type	Soil - D	"	of	od re						
Sample Matrix Code	6A	6A	6A	6A	6A	4A	4A	Units	Limit	Method
% Stones >10mm _A	<0.1	<0.1	<0.1	2.3	3.0	<0.1	31.0	% w/w	0.1	A-T-044
pH BRE _D ^{M#}	8.55	8.53	8.57	8.32	8.09	8.37	8.19	pН	0.01	A-T-031s
Sulphate BRE (water sol 2:1) ^{D^{M#}}	<10	<10	<10	<10	19	<10	<10	mg/l	10	A-T-026s

Envirolab Job Number: 21/11379

Client Project Name: Elsenham Phase II

Client Project Ref: 1921748

Lab Sample ID	21/11379/8						
Client Sample No	1						
Client Sample ID	SA102						
Depth to Top	1.50						
Depth To Bottom	2.00					ion	
Date Sampled	06-Oct-21					Detection	J.
Sample Type	Soil - D				<u> </u>	e l	od ref
Sample Matrix Code	4A				Units	Limit	Method
% Stones >10mm _A	5.4				% w/w	0.1	A-T-044
pH BRE ^{DM#}	8.26				рН	0.01	A-T-031s
Sulphate BRE (water sol 2:1) _D ^{M#}	<10				mg/l	10	A-T-026s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliguot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample, 9 = INCINERATOR ASH.

Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Page 4 of 6

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client:	RSK Environment Ltd Hemel, 18 Frogmore Road, Hemel Hempstead,
	Hertfordshire, UK, HP3 9RT

 Project No:
 21/11379

 Date Received:
 20/10/2021 (am)

 Cool Box Temperatures (°C):
 14.1

Project:Elsenham Phase IIClients Project No:1921748

Lab Sample ID	21/11379/1	21/11379/2	21/11379/3	21/11379/4	21/11379/5	21/11379/6	21/11379/7
Client Sample No	3	5	7	2	4	5	4
Client Sample ID/Depth	WS109 0.80m	WS109 2.00m	WS109 3.50m	TP101 0.60m	TP101 2.30m	TP103 2.00- 2.50m	TP106 1.00- 1.50m
Date Sampled							
Deviation Code							
E (no date)	~	~	~	~	~	~	 ✓

Key

E (no date) No sampling date provided (all results affected if not provided)

Note: If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3 (for water samples 5 ± 3°C), ISO 18400-105:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

Envirolab Analysis Dates

Lab Sample ID	21/11379/1	21/11379/2	21/11379/3	21/11379/4	21/11379/5	21/11379/6	21/11379/7	21/11379/8
Client Sample No	3	5	7	2	4	5	4	1
Client Sample ID/Depth	WS109 0.80m	WS109 2.00m	WS109 3.50m	TP101 0.60m	TP101 2 <u>.</u> 30m	TP103 2.00- 2.50m	TP106 1.00- 1.50m	SA102 1.50- 2.00m
Date Sampled								06/10/21
A-T-026s	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
A-T-031s	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
A-T-044	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021

The above dates are the analysis completion dates, please note that these are not necessarily the date that the analysis was weighed/extracted.

End of Report

STRUCTURAL SOILS LTD

INSITU TESTING REPORT

1774

Report No.	750163R.02(00)				
Date	07-October-2021	Contract Henham	Road, Elsenham		
Client Address	RSK Environment Ltd Spring Lodge 172 Chester Road Helsby Cheshire WA6 0AR				
For the Atter	ntion of Tim John	ison			
Order receive Testing Start Testing Com	ed	23-September-2021 07-October-2021 07-October-2021	Client Reference Client Order No. Instruction Type	None 1921748 Written	
Tests marked Laboratory.	l 'Not UKAS Accredited' in	this report are not included	l in the UKAS Accreditat	tion Schedule for our	
UKAS Accre	edited Tests				
6no. Plate lo	ad tests carried out at locatio	ons specified by client.			
Not UKAS A	Accredited Tests				
The results re	epresent the ground conditio	ns at the specified location	is and depths at the time of	of testing.	
Test were und	Remaining samples will be retain ertaken on samples 'as received interpretations expressed in this	l' unless otherwise stated.		-	
Structu	aral Soils Ltd 1a Princess Street	Bedminster Bristol BS3 4A0	G Tel.0117 9471000. e-mail	dimitris.xirouchakis@soils.	co.uk

TESTING VERIFICATION CERTIFICATE

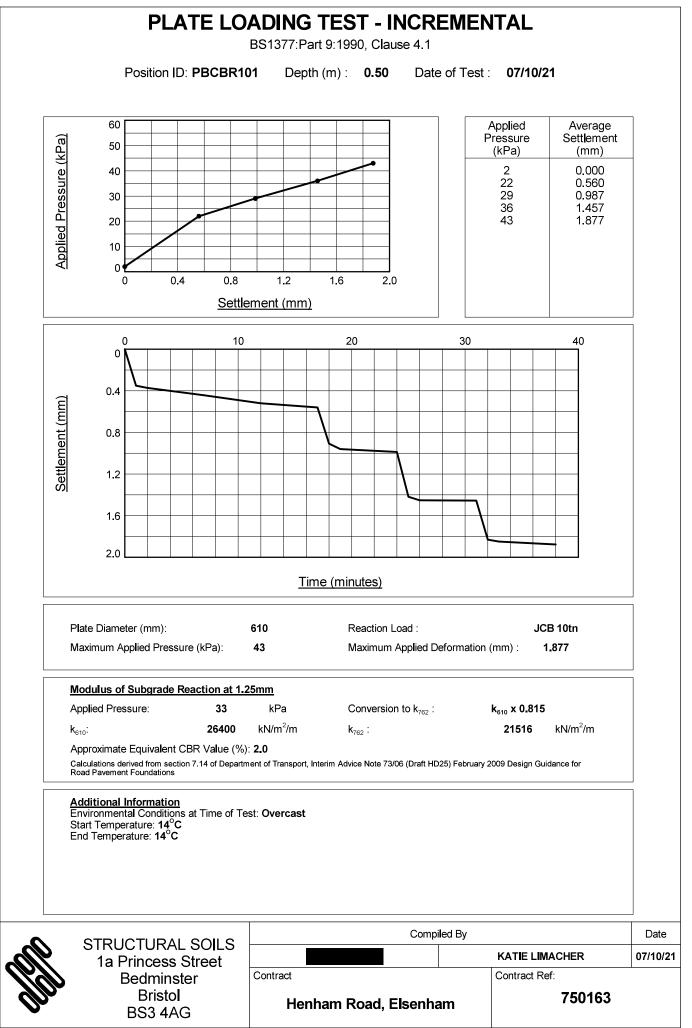
The test results included in this report are certified as:-

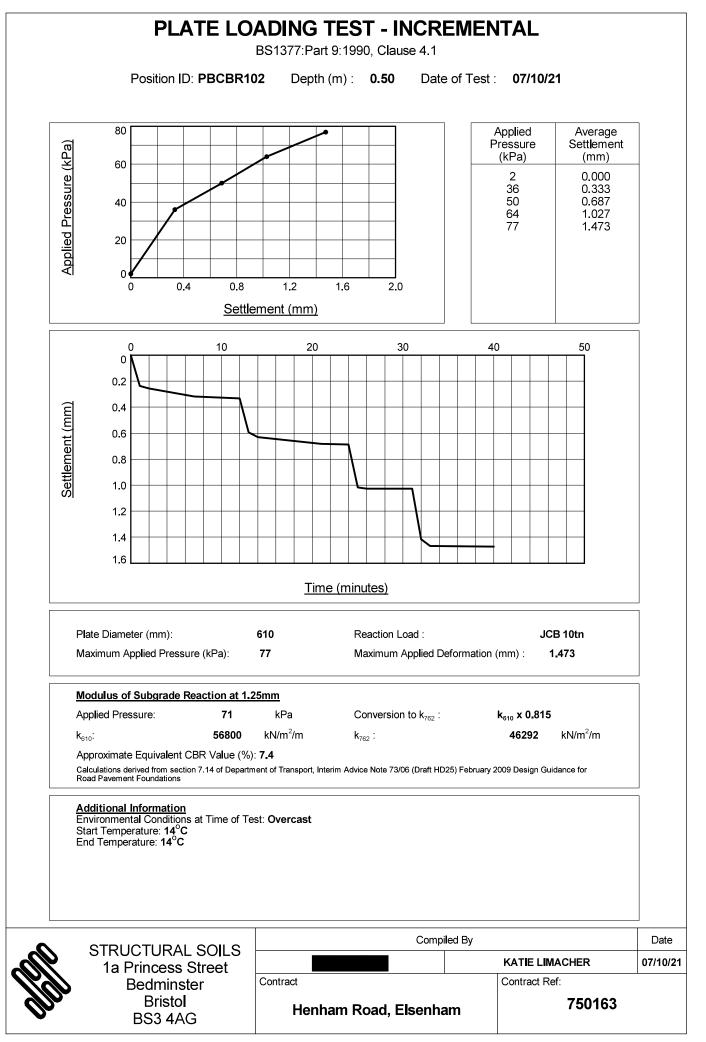
ISSUE STATUS: FINAL

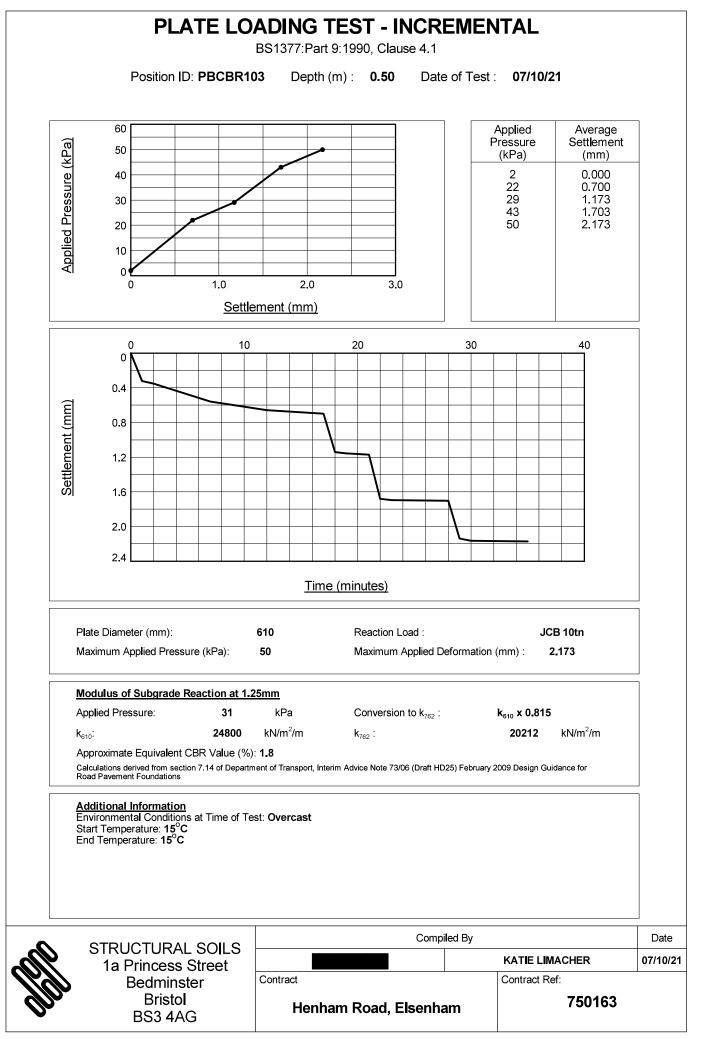
In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

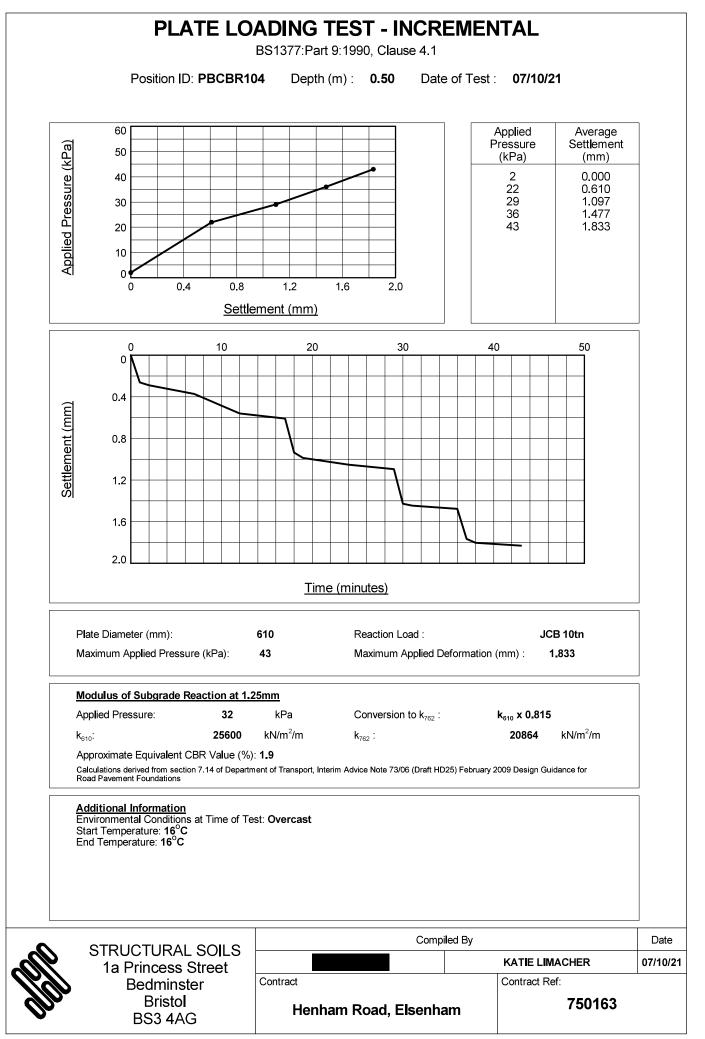
This testing verification certificate covers all testing compiled on or before the following datetime: 07/10/2021 16:45:43.

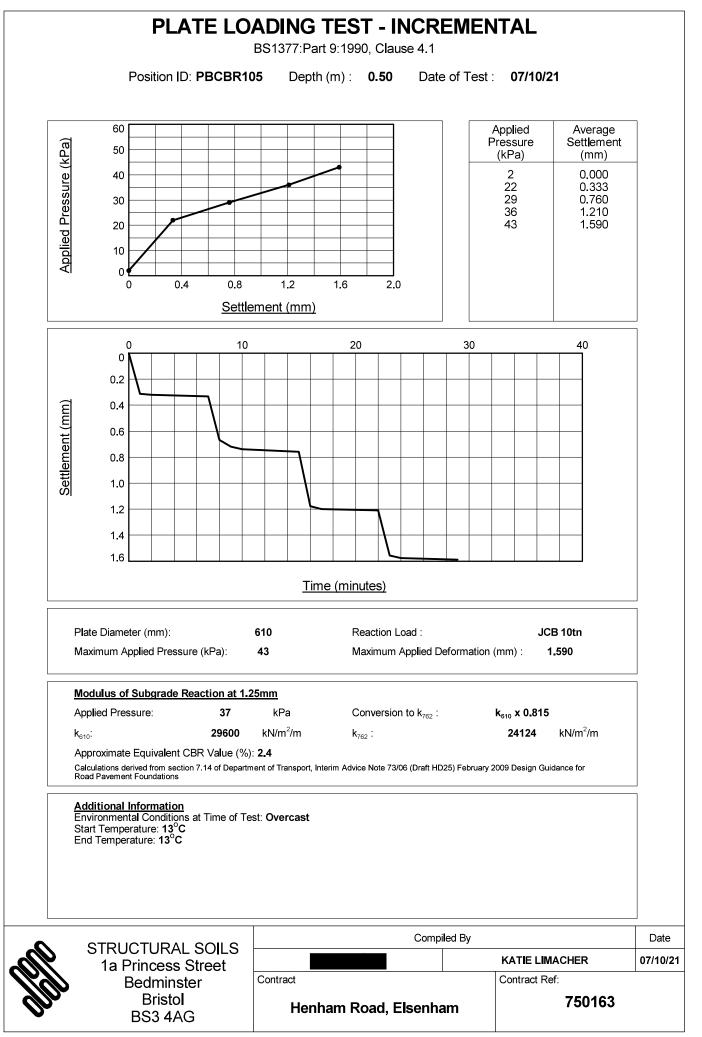
Testing reported after this date is not covered by this Verification Certificate.

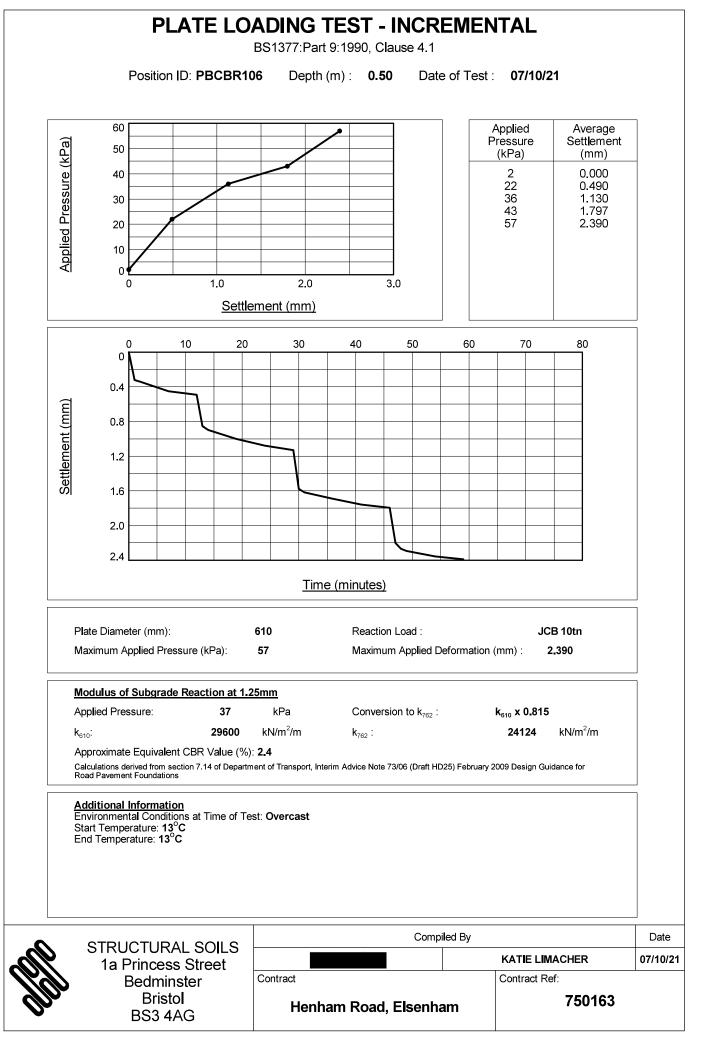

Approved Signatory Sam Handcock (Site Testing Manager)

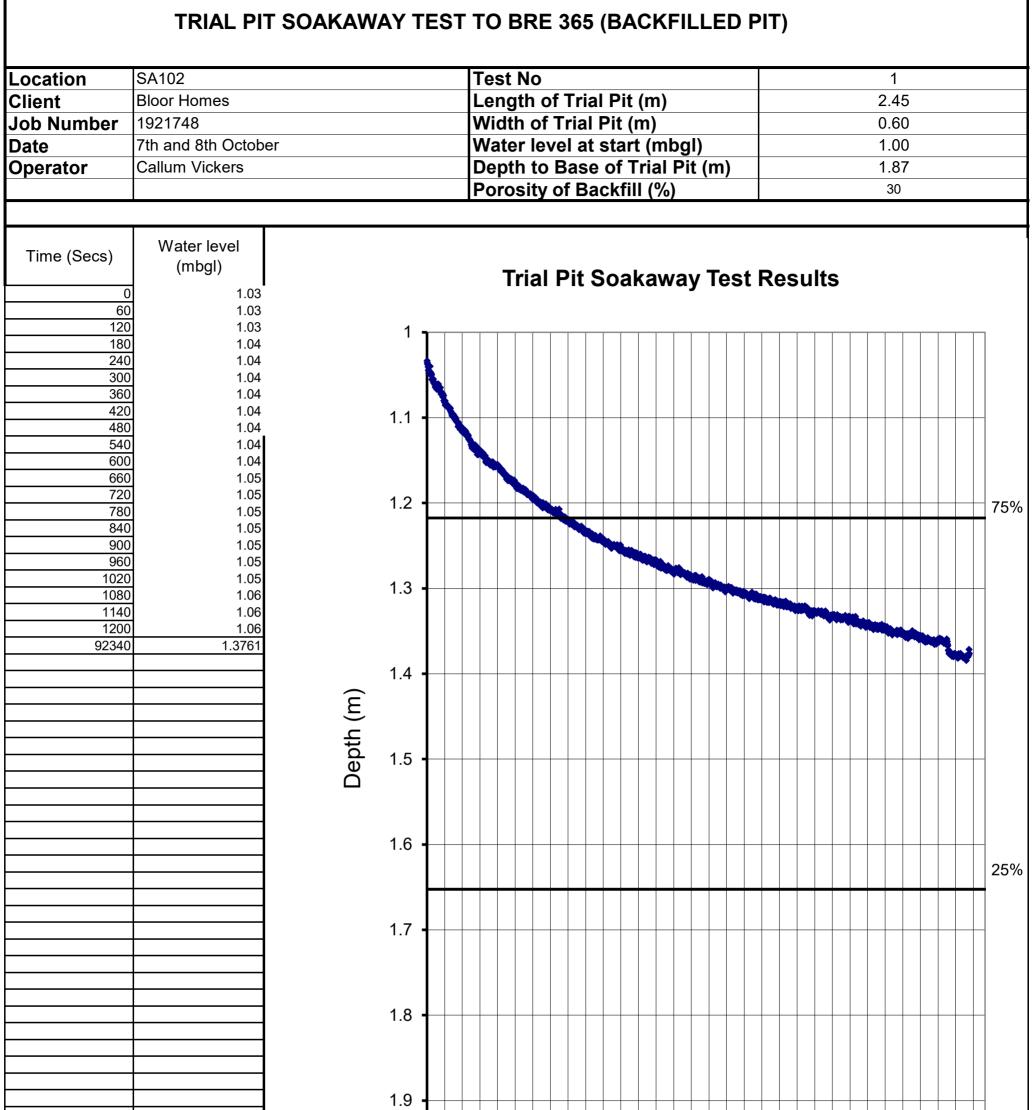

(Head Office) Bristol Laboratory Unit 1A, Princess Street Bedminster Bristol BS3 4AG

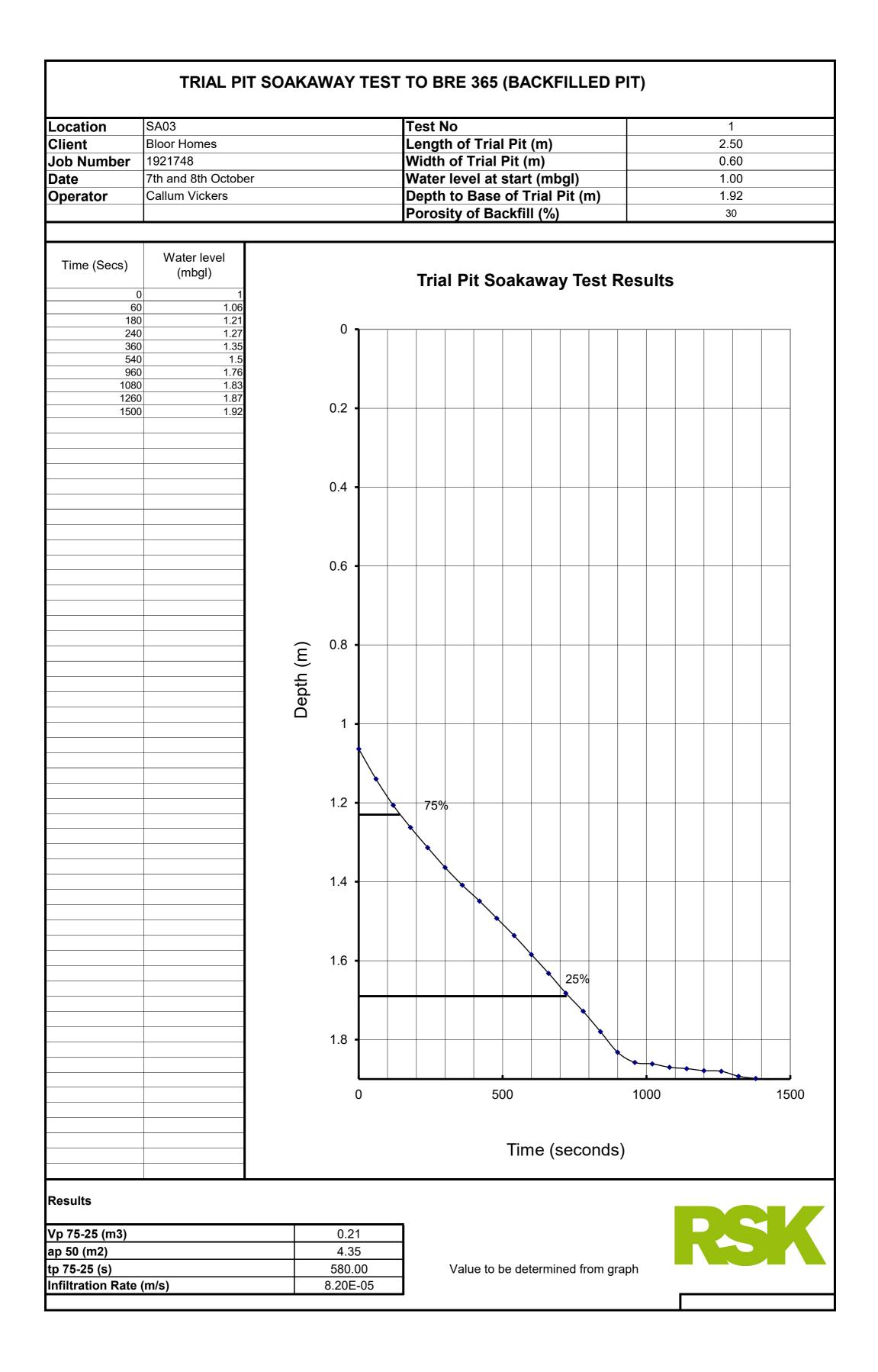

Castleford Laboratory The Potteries, Pottery Street Castleford West Yorkshire WF10 1NJ

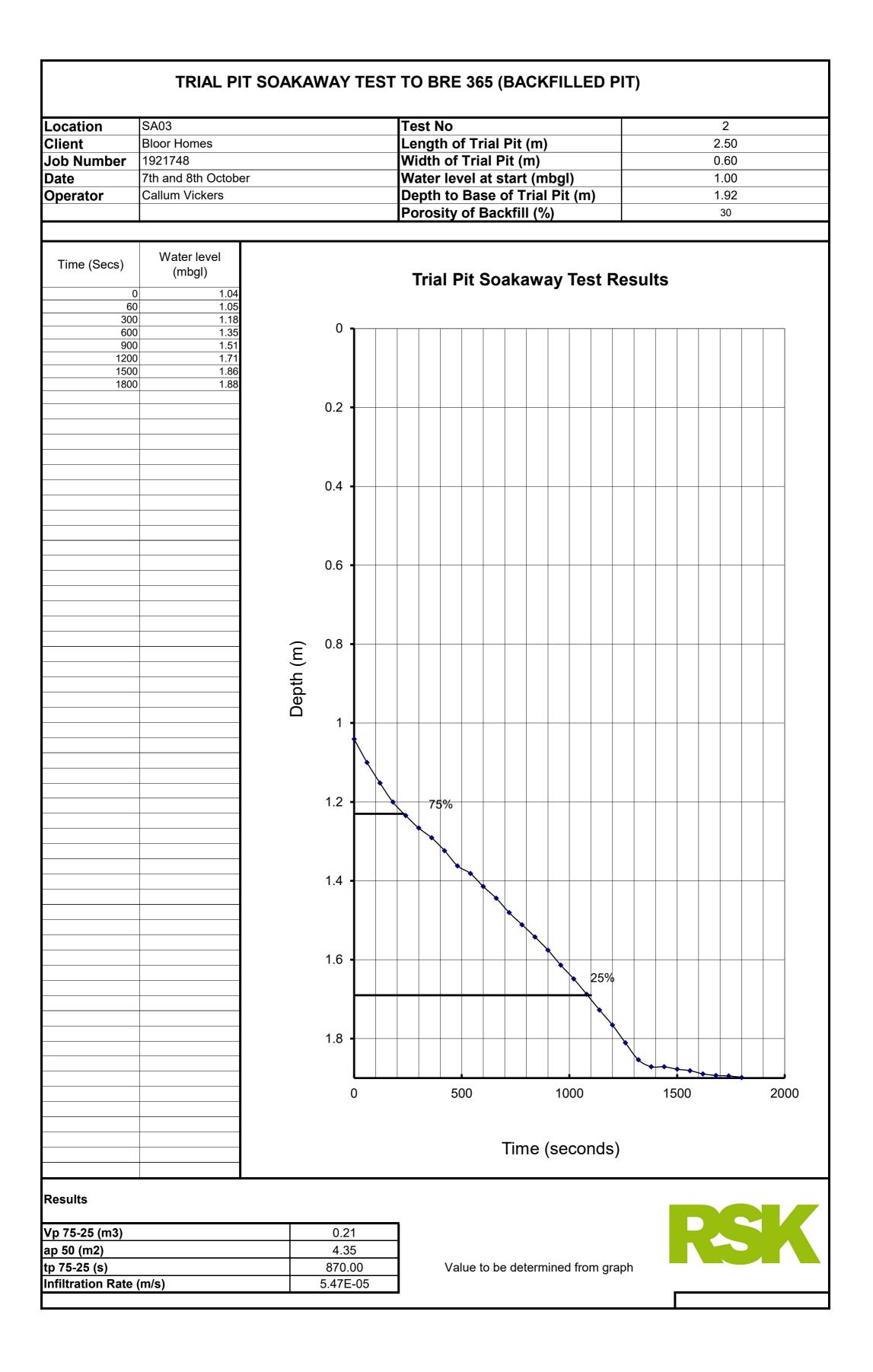

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory Anerley Court, Half Moon Lane Hildenborough Tonbridge TN11 9HU

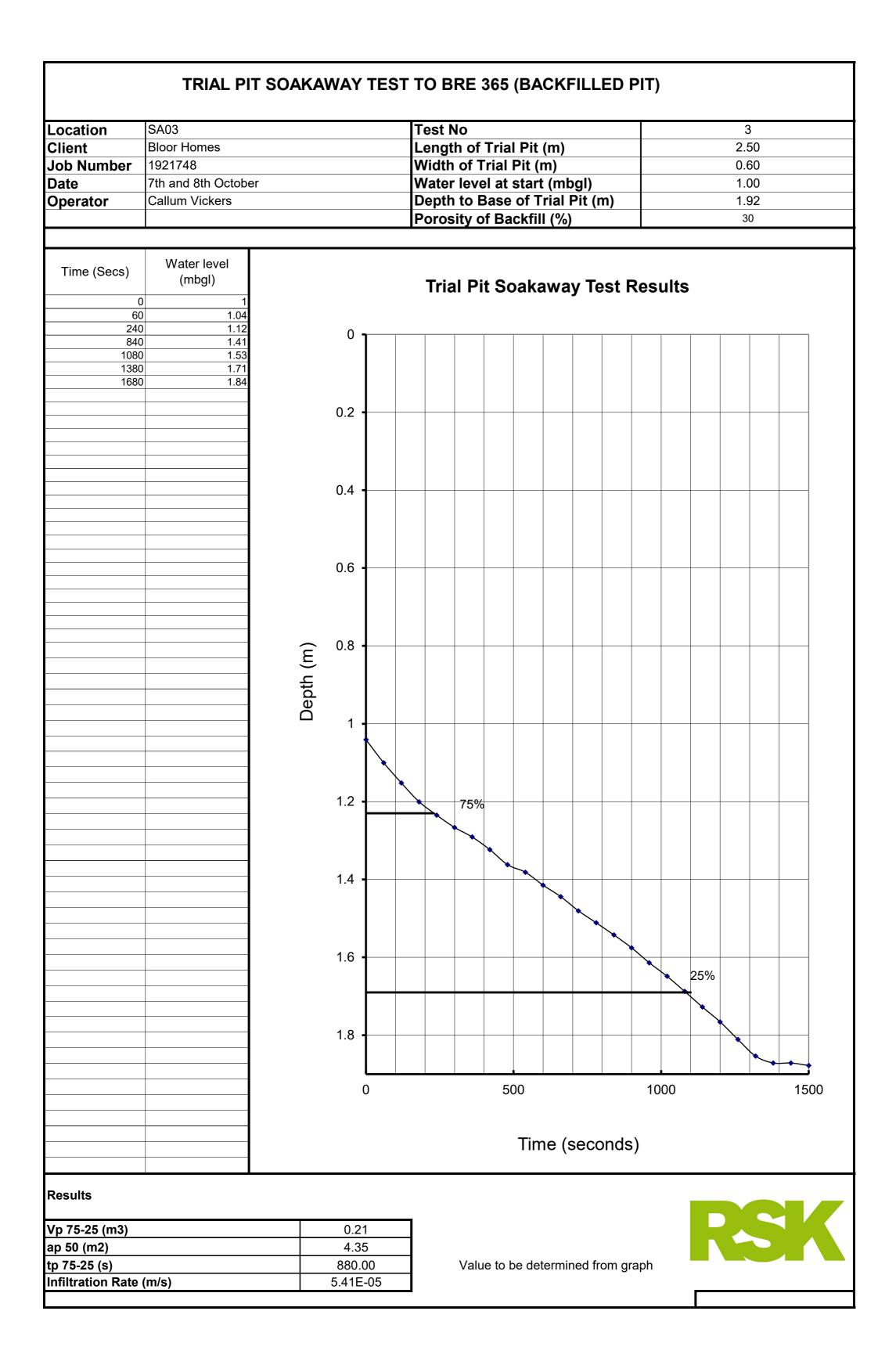

æ		Contract:	Job No:
	STRUCTURAL SOILS LTD	Henham Road, Elsenham	750163
(h)-			AGS

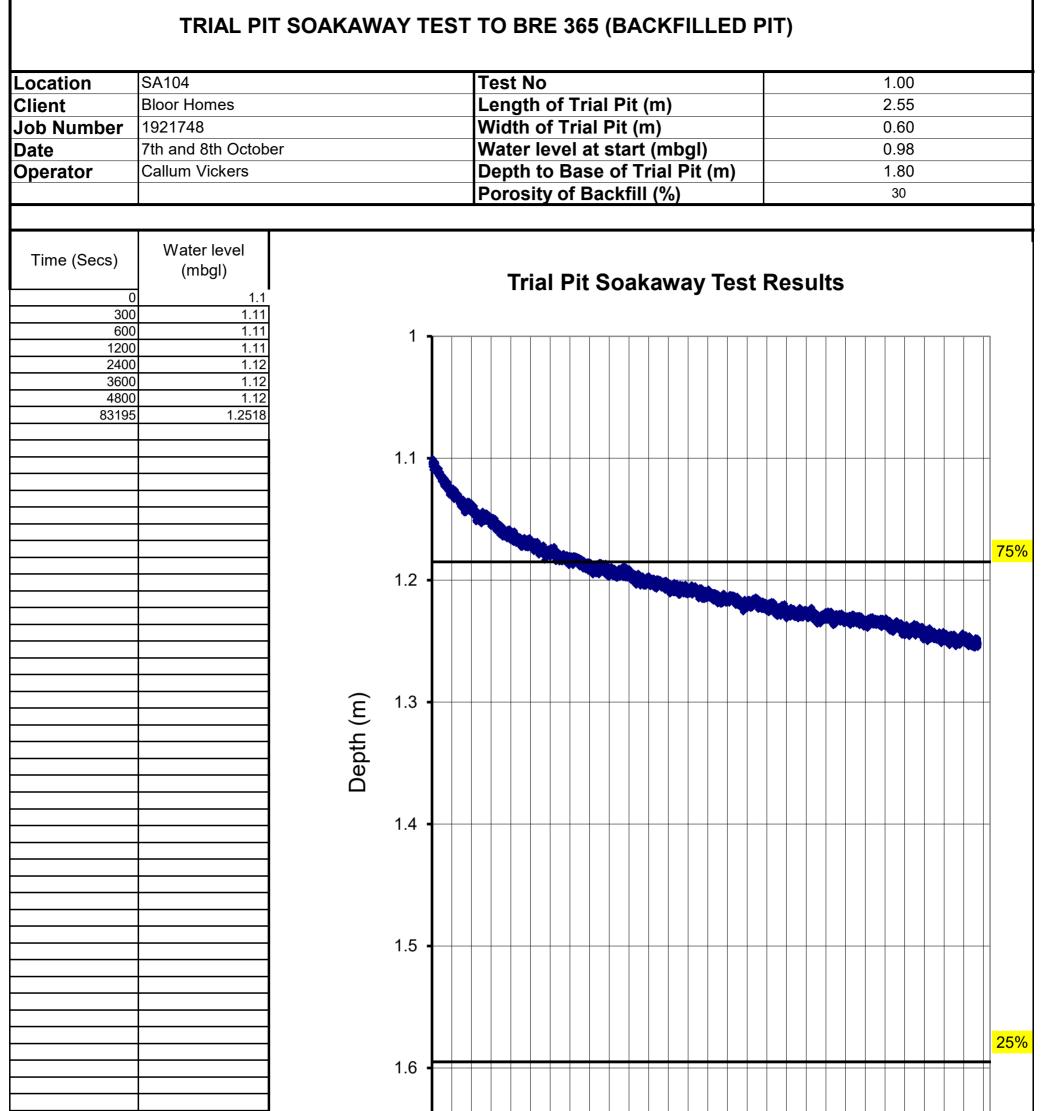





APPENDIX K INFILTRATION TEST RESULTS


_ocation	SA101			Test N	0							1.00)	
Client	Bloor Homes				n of Tria	l Pit (r	n)					2.45)	
Job Number	1921748				of Trial							0.45		
Date	7th and 8th Octob	er		Water	level at	start (, mbgl)		0.95				
Operator	Callum Vickers			Depth	to Base	of Tri	al Pit	 (m)		1.97				
•					ty of Ba							30		
Time (Secs)	Water level (mbgl)													
C	0.94			Ti	rial Pit	Soak	kawa	y Tes	st Re	esul	ts			
60														
120 180			0.8 -											Π
240														
300	0.94													
360 420														
420														
540			l k											
600 660			1											
720			']											
780														
840 900														
960														
1020														
1080 1140														750/
1200			1.2										++-	75%
1260														
1320	0.96													
	0.96													
1320 1380 1440 1500	0.96 0.96 0.96 0.96													
1320 1380 1440 1500 1560	0.96 0.96 0.96 0.96 0.96													
1320 1380 1440 1500	0.96 0.96 0.96 0.96 0.96 0.96		1.4											
1320 1380 1440 1500 1560 1620	0.96 0.96 0.96 0.96 0.96 0.96 0.96	epth (m)	1.4 •											_
1320 1380 1440 1500 1560 1620 1680	0.96 0.96 0.96 0.96 0.96 0.96 0.96		1.4 •											
1320 1380 1440 1500 1560 1620 1680	0.96 0.96 0.96 0.96 0.96 0.96 0.96		1.4 •											
1320 1380 1440 1500 1560 1620 1680	0.96 0.96 0.96 0.96 0.96 0.96 0.96		1.4 •											
1320 1380 1440 1500 1560 1620 1680	0.96 0.96 0.96 0.96 0.96 0.96 0.96		1.4											
1320 1380 1440 1500 1560 1620 1680	0.96 0.96 0.96 0.96 0.96 0.96 0.96													
1320 1380 1440 1500 1560 1620 1680	0.96 0.96 0.96 0.96 0.96 0.96 0.96		1.4 • 1.6 •											
1320 1380 1440 1500 1560 1620 1680	0.96 0.96 0.96 0.96 0.96 0.96 0.96													
1320 1380 1440 1500 1560 1620 1680	0.96 0.96 0.96 0.96 0.96 0.96 0.96													25%
1320 1380 1440 1500 1560 1620 1680	0.96 0.96 0.96 0.96 0.96 0.96 0.96													25%
1320 1380 1440 1500 1560 1620 1680	0.96 0.96 0.96 0.96 0.96 0.96 0.96													25%
1320 1380 1440 1500 1560 1620 1680	0.96 0.96 0.96 0.96 0.96 0.96 0.96													25%


	2 0 15000 30000 45000 60000 75000 90000 Time (seconds)
Results	
Vp 75-25 (m3)	0.17
ap 50 (m2)	4.06
tp 75-25 (s)	
Infiltration Rate (m/s)	



Results	0 15000 30000 45000 60000 75000 90000 Time (seconds)
Vp 75-25 (m3) ap 50 (m2) tp 75-25 (s)	0.19 4.12 Value to be determined from graph
Infiltration Rate (m/s)	

	1.7	15000	30000	45000	60000	75000	
Results			Time	(seconds)		
Vp 75-25 (m3) ap 50 (m2) tp 75-25 (s) Infiltration Rate (m/s)	0.19 4.11	Value t	o be determir	ned from grap	oh		K

APPENDIX L GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH

Generic assessment criteria for human health: residential scenario with home-grown produce

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC

In 2014, the publication of Category 4 Screening Levels (C4SL)^(3,4), as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were initially published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Further C4SL were published in 2021 for vinyl chloride, tetrachloroethene (PCE) and trichloroethene (TCE). Where a C4SL has been published, the RSK GAC duplicates the C4SL using all input parameters within the SP1010 final project report⁽³⁾ and associated chemical specific reports⁽⁶⁾, and adopts them as GAC for these substances. Due to the use of decimal places rather than significant figures applied to the Contaminated Land Exposure Assessment (CLEA) tool outputs, the GAC presented may be marginally differently to the C4SL values, however any differences between the values are minimal and would not equate to an unacceptable risk.

For all other substances the C4SL exposure modifications, with the exception of the "top two" produce type approach taken in the C4SL, have been applied to the current RSK GAC. These include alterations to daily inhalation rates for residential and commercial scenarios, reducing soil adherence factors in children (age classes 1 to 12 only) for residential land use, reducing exposure frequency for dermal contact outdoors for residential land use, and updated produce type consumption rates (90th percentile) based on recent data from the National Diet and Nutrition Survey.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾ or by the USEPA⁽¹⁴⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the CLEA tool v1.071, supporting EA guidance^(5,8,9) and revised exposure scenarios published for the C4SL⁽³⁾. The SAC are also termed GAC.

Conceptual model

In accordance with SR3⁽⁵⁾, the residential with home-grown produce scenario considers risks to a female child between the ages of 0 and 6 years old as the highest risk scenario. In accordance with Box 3.1 of SR3⁽⁵⁾, the pathways considered for production of the SAC in the residential with home-grown produce scenario are

- direct soil and dust ingestion
- consumption of home-grown produce
- consumption of soil attached to home-grown produce
- dermal contact with soil and indoor dust
- inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

In line with guidance in the EA SGV report for cadmium⁽¹⁾, the RSK GAC for cadmium has been derived based on estimates representative of lifetime exposure. Although young children are generally more likely to have higher exposures to soil contaminants, the renal toxicity of cadmium, and the derivation of the TDI_{oral} and TDI_{inh}, are based on considerations of the kidney burden accumulated over 50 years or so. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database for all petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated appendices^{(3,6),} the 2015 LQM/CIEH report⁽⁷⁾ or the USEPA IRIS database⁽¹⁴⁾. Where a LLTC^(3,6) has been published for a substance, RSK has used these input parameters to derive the RSK GAC. Toxicological and specific chemical parameters for 1,2,4-trimethylbenzene, barium, methyl tertiary-butyl ether (MTBE), 1,1,2-trichlorethane, 1,1-dichloroethene, 1,2-dichloropropane, 2-chloronaphthalene, chloroethane, chloromethane, cis 1,2-dichloroethene, dichloromethane, hexachloroethane and trans 1,2-dichloroethene were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C_5 – C_8 were not modelled, as this range comprises benzene (>EC5-EC7) and toluene (>EC7-EC8), which are modelled separately.

Physical parameters

For the residential with home-grown produce scenario, the CLEA default building is a small, twostorey terrace house with a concrete ground-bearing slab. The house is assumed to have a 100m² private garden consisting of lawn and flowerbeds, incorporating a 20m² plot for growing fruit and vegetables consumed by the residents. SR3⁽⁵⁾ notes this residential building type to be the most conservative in terms of potential for vapour intrusion. The building parameters used in the production of the RSK GACs are the default CLEA v1.06 inputs presented in Table 3.3 of SR3⁽³⁾, with a dust loading factor detailed in Section 9.3 of SR3⁽⁵⁾. The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

Summary of modifications to the default CLEA SR3⁽⁵⁾ input parameters for residential with homegrown produce land-use scenario

In summary, the RSK GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in SR3⁽⁵⁾. Modifications to the default SR3⁽⁵⁾ exposure scenarios based on the C4SL exposure scenarios⁽³⁾ are presented in Tables 2 and 3 below.

The final selected GAC are presented by pathway in Table 4 and the combined GAC in Table 5.

Figure 1: Conceptual model for residential scenario with home-grown produce

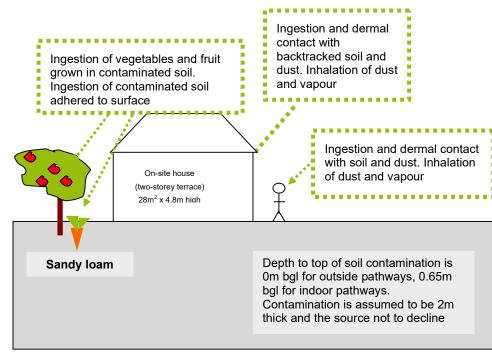


 Table 1: Exposure assessment parameters for residential scenario

 with home-grown produce – inputs for CLEA model

Parameter	Value	Justification				
Land use	Residential with homegrown produce	Chosen land use				
Receptor	Female child age 1 to 6	Key generic assumption given in Box 3.1, SR3 ⁽⁵⁾				
Building	Small terraced house	Key generic assumption given in Box 3.1, SR3. Small, two-storey terraced house chosen, as it is the most conservative residential building type in terms of protection from vapor intrusion (Section 3.4.6, SR3) ⁽⁵⁾				
Soil type	Sandy Loam	Most common UK soil type (Section 4.3.1, from Table 3.1, SR3) ⁽⁵⁾				
Start AC (age class)	1	Range of age classes corresponding to key generic assumption that the				
End AC (age class)	6	critical receptor is a young female child aged 0–6. From Box 3.1, SR3 ⁽⁵⁾				
SOM (%)	6	Representative of sandy loamy soil according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽¹³⁾				
	1	To provide SAC for sites where SOM <6% as often observed by				
Ηα	2.5	RSK Model default				

Name	Consumption rate 90 th percentile (g FW kg ⁻¹ BW day ⁻¹) by age class			Dry weight conversion factor (g DW g ⁻¹	Home- grown fraction (average)	Home- grown fraction (high	Soil Ioading factor (g g ⁻¹ DW)	Preparation correction factor				
	1	2	3	4	5	6	FW)	(average)	end)			
Green vegetables	7.12	5.87	5.87	5.87	4.53	4.53	0.096	0.05	0.33	1.00E-03	2.00E-01	
Root vegetables	10.7	2.83	2.83	2.83	2.14	2.14	0.103	0.06	0.4	1.00E-03	1.00E+00	
Tuber vegetables	16	6.6	6.6	6.6	4.95	4.95	0.21	0.02	0.13	1.00E-03	1.00E+00	
Herbaceous fruit	1.83	3.39	3.39	3.39	2.24	2.24	0.058	0.06	0.4	1.00E-03	6.00E-01	
Shrub fruit	2.23	0.46	0.46	0.46	0.19	0.19	0.166	0.09	0.6	1.00E-03	6.00E-01	
Tree fruit	3.82	10.3	10.3	10.3	5.16	5.16	0.157	0.04	0.27	1.00E-03	6.00E-01	
Justification	Table 3.4, SP1010 ⁽³⁾			Table 6.3, SR3 ⁽⁵⁾	Table 4.19, SR3 ⁽⁵⁾		Table 6.3, SR3 ⁽⁵⁾					

Table 2: Residential with home-grown produce – modified home-grown produce data

Table 3: Residential with home-grown produce – modified and use and receptor data

Devenuenten	1124	Age class							
Parameter	Unit	1	2	3	4	5	6		
EF (soil and dust ingestion)	day yr ⁻¹	180	365	365	365	365	365		
EF (consumption of home- grown produce)	day yr¹	180	365	365	365	365	365		
EF (skin contact, indoor)	day yr-1	180	365	365	365	365	365		
EF (skin contact, outdoor)	day yr-1	170	170	170	170	170	170		
EF (inhalation of dust and vapour, indoor)	day yr¹	365	365	365	365	365	365		
EF (inhalation of dust and vapour, outdoor)	day yr¹	365	365	365	365	365	365		
Justification	Table 3.5, SP1010 ⁽³⁾ ; Table 3.1, SR3 ⁽⁵⁾								
Soil to skin adherence factor (outdoor)	mg cm ⁻² day ⁻¹	0.1	0.1	0.1	0.1	0.1	0.1		
Justification	Table 3.5, SP1010 ⁽³⁾								
Inhalation rate	5.4	8.0	8.9/f	10.1	10.1	10.1			
Justification	Mean value USEPA, 2011 ⁽¹²⁾ ; Table 3.2, SP1010 ⁽³⁾								

of lifetime exposure AC1-18. This is because the TDI_{oral} and TDI_{inh} are based on considerations of the kidney burden accumulated over 50 years. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period. See the Environment Agency Science Report SC05002/ TOX 3⁽¹⁾, Science Report SC050021/Cadmium SGV⁽¹⁾ and the project report SP1010⁽³⁾ for more information.

References

 Environment Agency (2009), 'Science Reports SC050021 - SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'. Available at:

(accessed 4 February 2015)

- 2. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 4. Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination Policy Companion Document', Revision 2.
- 5. Environment Agency (2009), *Science Report SC050021/SR3. Updated technical background to the CLEA model* (Bristol: Environment Agency).
- Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H). DEFRA research project SP1010'. CL:AIRE (2021). Category 4 Screening Levels: Trichloroethene (TCE). CL:AIRE, London. ISBN 978-1-905046-38-6. CL:AIRE (2021). Category 4 Screening Levels: Vinyl Chloride. CL:AIRE, London. ISBN 978-1-905046-36-2. CL:AIRE (2021). Category 4 Screening Levels: Tetrachloroethene (PCE). CL:AIRE, London. ISBN 978-1-905046-37-9.
- 7. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
- 8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2* (Bristol: Environment Agency).
- 9. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 10. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
- 11. CL:AIRE (2010), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.

 USEPA (2010). Hydrogen cyanide and cyanide salts. Integrated Risk Information Systems (IRIS) Chemical Assessment Summary. September 2010.
 9 December 2015) GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH HOME-GROWN PRODUCE

2.76E+02 5.39E+00

5.29E+00

1.14E+02

Table 4

2-Chloronaphthalene

	Notes	SAC Appropri	iate to Pathway So	OM 1% (mg/kg)	Soil Saturation	SAC Appropri	ate to Pathway SO	VI 2.5% (mg/kg)	Soil Saturation	SAC Appropr	iate to Pathway S	OM 6% (mg/kg)	Soil Saturati
Compound	tes	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/k
Metals													
Arsenic	(a,b)	3.71E+01	5.26E+02	NR	NR	3.71E+01	5.26E+02	NR	NR	3.71E+01	5.26E+02	NR	NR
Barium	(b)	1.34E+03	NR	NR	NR	1.34E+03	NR	NR	NR	1.34E+03	NR	NR	NR
Beryllium	_	1.13E+02	1.72E+00	NR	NR	1.13E+02	1.72E+00	NR	NR	1.13E+02	1.72E+00	NR	NR
Boron		3.00E+02	5.20E+06	NR	NR	3.00E+02	5.20E+06	NR	NR	3.00E+02	5.20E+06	NR	NR
Cadmium	(a)	2.30E+01	4.88E+02	2.21E+01	NR	2.30E+01	4.88E+02	2.21E+01	NR	2.30E+01	4.88E+02	2.21E+01	NR
Chromium (III) - trivalent	(c)	1.84E+04	9.07E+02	NR	NR	1.84E+04	9.07E+02	NR	NR	1.84E+04	9.07E+02	NR	NR
Chromium (VI) - hexavalent	(a,d)	5.85E+01	2.06E+01	NR	NR	5.85E+01	2.06E+01	NR	NR	5.85E+01	2.06E+01	NR	NR
Copper		2.72E+03	1.41E+04	2.47E+03	NR	2.72E+03	1.41E+04	2.47E+03	NR	2.72E+03	1.41E+04	2.47E+03	NR
ead	(a)	2.01E+02	NR	NR	NR	2.01E+02	NR	NR	NR	2.01E+02	NR	NR	NR
Elemental Mercury (Hg ⁰)	(d)	NR	2.35E-01	NR	4.31E+00	NR	5.60E-01	NR	1.07E+01	NR	1.22E+00	NR	2.58E+0
norganic Mercury (Hg ²⁺)		3.95E+01	3.63E+03	3.91E+01	NR	3.95E+01	3.63E+03	3.91E+01	NR	3.95E+01	3.63E+03	3.91E+01	NR
Methyl Mercury (Hg ⁴⁺)		1.26E+01	1.87E+01	7.52E+00	7.33E+01	1.26E+01	3.62E+01	9.34E+00	1.42E+02	1.26E+01	7.68E+01	1.08E+01	3.04E+0
Nickel	(d)	1.27E+02	1.81E+02	NR	NR	1.27E+02	1.81E+02	NR	NR	1.27E+02	1.81E+02	NR	NR
Selenium	(b)	2.58E+02	NR	NR	NR	2.58E+02	NR	NR	NR	2.58E+02	NR	NR	NR
/anadium		4.13E+02	1.46E+03	NR	NR	4.13E+02	1.46E+03	NR	NR	4.13E+02	1.46E+03	NR	NR
linc	(b)	3.86E+03	3.63E+07	NR	NR	3.86E+03	3.63E+07	NR	NR	3.86E+03	3.63E+07	NR	NR
Cyanide (free)		1.37E+00	1.37E+04	1.37E+00	NR	1.37E+00	1.37E+04	1.37E+00	NR	1.37E+00	1.37E+04	1.37E+00	NR
* • •													
olatile Organic Compounds													
Benzene	(a)	2.62E-01	9.01E-01	2.03E-01	1.22E+03	5.39E-01	1.68E+00	4.08E-01	2.26E+03	1.16E+00	3.48E+00	8.72E-01	4.71E+0
oluene	(4)	1.53E+02	9.08E+02	1.31E+02	8.69E+02	3.49E+02	2.00E+03	2.97E+02	1.92E+03	7.95E+02	4.55E+03	6.77E+02	4.36E+0
Ithylbenzene		1.10E+02	8.34E+01	4.74E+01	5.18E+02	2.61E+02	1.96E+02	1.12E+02	1.22E+03	6.00E+02	4.58E+02	2.60E+02	2.84E+0
(ylene - m		2.10E+02	8.25E+01	5.92E+01	6.25E+02	5.01E+02	1.95E+02	1.40E+02	1.47E+03	1.15E+03	4.56E+02	3.27E+02	3.46E+0
(ylene - o		1.92E+02	8.87E+01	6.07E+01	4.78E+02	4.56E+02	2.08E+02	1.43E+02	1.12E+03	1.05E+03	4.86E+02	3.32E+02	2.62E+0
		1.98E+02	7.93E+01	5.66E+01				1.33E+02		1.08E+03	4.36E+02	3.10E+02	
(ylene - p		1.92E+02	7.93E+01	5.66E+01	5.76E+02 6.25E+02	4.70E+02 4.56E+02	1.86E+02 1.86E+02	1.33E+02	1.35E+03 1.47E+03	1.05E+03	4.36E+02 4.36E+02	3.10E+02	3.17E+0 3.46E+0
Fotal xylene										6.03E+03	4.36E+02 3.21E+02	2.10E+02	
Methyl tertiary-Butyl ether (MTBE)		1.54E+02	1.04E+02	6.22E+01	2.04E+04	2.97E+02	1.69E+02	1.08E+02	3.31E+04				6.27E+0
1,1,1,2 Tetrachloroethane		5.39E+00	1.54E+00	1.20E+00	2.60E+03	1.27E+01	3.56E+00	2.78E+00	6.02E+03	2.92E+01	8.29E+00	6.46E+00	1.40E+0
,1,2,2-Tetrachloroethane	-	2.81E+00	3.92E+00	1.64E+00	2.67E+03	6.10E+00	8.04E+00	3.47E+00	5.46E+03	1.36E+01	1.76E+01	7.67E+00	1.20E+0
1,1,1-Trichloroethane		3.33E+02	9.01E+00	8.77E+00	1.43E+03	7.26E+02	1.84E+01	1.80E+01	2.92E+03	1.62E+03	4.04E+01	3.94E+01	6.39E+0
,1,2 Trichloroethane		1.95E+00	1.25E+00	7.62E-01	4.03E+03	4.21E+00	2.55E+00	1.59E+00	8.21E+03	9.35E+00	5.59E+00	3.50E+00	1.80E+0
,1-Dichloroethene		1.93E+01	3.29E-01	3.23E-01	2.23E+03	3.85E+01	5.82E-01	5.74E-01	3.94E+03	8.15E+01	1.17E+00	1.16E+00	7.94E+0
,2-Dichloroethane		3.17E-02	9.20E-03	7.13E-03	3.41E+03	5.73E-02	1.33E-02	1.08E-02	4.91E+03	1.09E-01	2.28E-02	1.88E-02	8.43E+0
,2,4-Trimethylbenzene		NR	1.76E+00	NR	4.74E+02	NR	4.26E+00	NR	1.16E+03	NR	9.72E+00	NR	2.76E+0
,3,5-Trimethylbenzene	(e)	NR	NR	NR	2.30E+02	NR	NR	NR	5.52E+02	NR	NR	NR	1.30E+(
,2-Dichloropropane		4.28E+00	3.40E-02	3.37E-02	1.19E+03	8.44E+00	6.00E-02	5.96E-02	2.11E+03	1.77E+01	1.21E-01	1.20E-01	4.24E+(
arbon Tetrachloride (tetrachloromethane)		3.10E+00	2.58E-02	2.57E-02	1.52E+03	7.11E+00	5.65E-02	5.62E-02	3.32E+03	1.62E+01	1.28E-01	1.27E-01	7.54E+(
hloroethane		NR	1.17E+01	NR	2.61E+03	NR	1.59E+01	NR	3.54E+03	NR	2.57E+01	NR	5.71E+
hloromethane		NR	1.17E-02	NR	1.91E+03	NR	1.38E-02	NR	2.24E+03	NR	1.85E-02	NR	2.99E+0
is 1,2 Dichloroethene		1.56E-01	NR	NR	3.94E+03	2.66E-01	NR	NR	6.61E+03	5.18E-01	NR	NR	1.29E+(
ichloromethane		7.04E-01	3.05E+00	6.24E-01	7.27E+03	1.27E+00	4.06E+00	1.08E+00	9.68E+03	2.33E+00	6.42E+00	1.92E+00	1.53E+(
etrachloroethene (PCE)		1.33E+01	3.19E-01	3.11E-01	4.24E+02	3.11E+01	7.15E-01	6.99E-01	9.51E+02	7.12E+01	1.64E+00	1.60E+00	2.18E+
rans 1,2 Dichloroethene		6.45E+00	2.76E-01	NR	3.42E+03	1.29E+01	4.99E-01	NR	6.17E+03	2.74E+01	1.02E+00		1.26E+
richloroethene (TCE)		9.30E-03	3.61E-02	NR	1.54E+03	1.95E-02	7.57E-02	NR	3.22E+03	4.34E-02	1.68E-01	NR	7.14E+(
/inyl Chloride (chloroethene)	1	1.13E-02	1.47E-02	6.38E-03	1.36E+03	2.09E-02	1.90E-02	9.97E-03	1.76E+03	3.88E-02	2.91E-02	1.66E-02	2.69E+(

6.59E+02

1.33E+01

1.30E+01

2.80E+02

3.17E+01

1.45E+03

3.10E+01

6.69E+02

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH HOME-GROWN PRODUCE

Table 4

Human Health Generic Assessment Criteria by Pathway for Residential With Home-Grown Produce Scenario

	Notes	SAC Appropriate to Pathway SOM 1% (mg/kg)		Soil Saturation SAC Appropriate to Pathway SOM 2.5% (mg/kg)			Soil Saturation	SAC Appropr	iate to Pathway S	OM 6% (mg/kg)	Soil Saturation		
Compound	tes	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)
Acenaphthene		2.27E+02	4.86E+04	2.26E+02	5.70E+01	5.41E+02	1.18E+05	5.38E+02	1.41E+02	1.18E+03	2.68E+05	1.17E+03	3.36E+02
Acenaphthylene		1.85E+02	4.59E+04	1.84E+02	8.61E+01	4.42E+02	1.11E+05	4.40E+02	2.12E+02	9.78E+02	2.53E+05	9.74E+02	5.06E+02
Anthracene		2.43E+03	1.53E+05	2.39E+03	1.17E+00	5.53E+03	3.77E+05	5.45E+03	2.91E+00	1.10E+04	8.76E+05	1.09E+04	6.96E+00
Benzo(a)anthracene		1.01E+01	2.47E+01	7.18E+00	1.71E+00	1.42E+01	4.37E+01	1.07E+01	4.28E+00	1.69E+01	6.26E+01	1.33E+01	1.03E+01
Benzo(a)pyrene	(a)	4.96E+00	3.51E+01	NR	9.11E-01	4.96E+00	3.77E+01	NR	2.28E+00	4.96E+00	3.89E+01	NR	5.46E+00
Benzo(b)fluoranthene		2.96E+00	1.93E+01	2.56E+00	1.22E+00	3.89E+00	2.13E+01	3.29E+00	3.04E+00	4.43E+00	2.22E+01	3.69E+00	7.29E+00
Benzo(g,h,i)perylene		3.77E+02	1.87E+03	3.14E+02	1.54E-02	4.09E+02	1.94E+03	3.38E+02	3.85E-02	4.23E+02	1.97E+03	3.48E+02	9.23E-02
Benzo(k)fluoranthene		8.92E+01	5.41E+02	7.66E+01	6.87E-01	1.10E+02	5.76E+02	9.22E+01	1.72E+00	1.21E+02	5.91E+02	1.00E+02	4.12E+00
Chrysene		1.66E+01	1.19E+02	1.46E+01	4.40E-01	2.54E+01	1.49E+02	2.17E+01	1.10E+00	3.19E+01	1.66E+02	2.67E+01	2.64E+00
Dibenzo(a,h)anthracene		2.90E-01	1.45E+00	2.41E-01	3.93E-03	3.43E-01	1.64E+00	2.84E-01	9.82E-03	3.69E-01	1.74E+00	3.04E-01	2.36E-02
Fluoranthene		2.87E+02	3.83E+04	2.85E+02	1.89E+01	5.63E+02	8.87E+04	5.60E+02	4.73E+01	9.00E+02	1.83E+05	8.96E+02	1.13E+02
Fluorene		1.77E+02	6.20E+03	1.72E+02	3.09E+01	4.19E+02	1.53E+04	4.07E+02	7.65E+01	8.98E+02	3.62E+04	8.77E+02	1.83E+02
Hexachloroethane		2.68E-01	NR	NR	8.17E+00	6.57E-01	NR	NR	2.01E+01	1.55E+00	NR	NR	4.81E+01
Indeno(1,2,3-cd)pyrene		3.09E+01	2.12E+02	2.70E+01	6.13E-02	4.22E+01	2.38E+02	3.59E+01	1.53E-01	4.92E+01	2.50E+02	4.11E+01	3.68E-01
Naphthalene		2.78E+01	2.33E+01	1.27E+01	7.64E+01	6.66E+01	5.58E+01	3.04E+01	1.83E+02	1.53E+02	1.31E+02	7.06E+01	4.32E+02
Phenanthrene		9.85E+01	7.17E+03	9.72E+01	3.60E+01	2.24E+02	1.76E+04	2.22E+02	8.96E+01	4.48E+02	4.07E+04	4.43E+02	2.14E+02
Pyrene		6.25E+02	8.79E+04	6.20E+02	2.20E+00	1.25E+03	2.04E+05	1.24E+03	5.49E+00	2.05E+03	4.23E+05	2.04E+03	1.32E+01
Phenol		1.60E+02	4.58E+02	1.20E+02	2.42E+04	2.96E+02	6.95E+02	2.09E+02	3.81E+04	5.86E+02	1.19E+03	3.93E+02	7.03E+04
Total Petroleum Hydrocarbons					-								
Aliphatic hydrocarbons EC5-EC6		4.99E+03	4.24E+01	4.23E+01	3.04E+02	1.13E+04	7.79E+01	7.78E+01	5.58E+02	2.50E+04	1.61E+02	1.60E+02	1.15E+03
Aliphatic hydrocarbons >EC6-EC8		1.49E+04	1.04E+02	1.03E+02	1.44E+02	3.43E+04	2.31E+02	2.31E+02	3.22E+02	7.11E+04	5.29E+02	5.28E+02	7.36E+02
Aliphatic hydrocarbons >EC ₈ -EC ₁₀		1.61E+03	2.68E+01	2.67E+01	7.77E+01	2.91E+03	6.55E+01	6.51E+01	1.90E+02	4.26E+03	1.56E+02	1.54E+02	4.51E+02
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂		4.57E+03	1.33E+02	1.32E+02	4.75E+01	5.51E+03	3.31E+02	3.26E+02	1.18E+02	5.98E+03	7.93E+02	7.65E+02	2.83E+02
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆		6.27E+03	1.11E+03	1.06E+03	2.37E+01	6.34E+03	2.78E+03	2.41E+03	5.91E+01	6.36E+03	6.67E+03	4.34E+03	1.42E+02
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	(b)	6.46E+04	NR	NR	8.48E+00	9.17E+04	NR	NR	2.12E+01	1.10E+05	NR	NR	5.09E+01
Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	(b)	6.46E+04	NR	NR	8.48E+00	9.17E+04	NR	NR	2.12E+01	1.10E+05	NR	NR	5.09E+01
Aromatic hydrocarbons >EC8-EC ₁₀		5.76E+01	4.74E+01	3.45E+01	6.13E+02	1.38E+02	1.16E+02	8.38E+01	1.50E+03	3.07E+02	2.77E+02	1.94E+02	3.58E+02
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂		8.29E+01	2.58E+02	7.52E+01	3.64E+02	1.96E+02	6.39E+02	1.79E+02	8.99E+02	4.25E+02	1.52E+03	3.91E+02	2.15E+03
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆		1.47E+02	2.85E+03	1.45E+02	1.69E+02	3.36E+02	7.07E+03	3.32E+02	4.19E+02	6.81E+02	1.68E+04	6.74E+02	1.00E+03

Notes:

EC - equivalent carbon. SAC - soil assessment criteria.

The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.

(b)

(b)

(b)

2.63E+02

1.09E+03

1.09E+03

NR

NR

NR

NR

NR

NR

5.37E+01

4.83E+00

4.83E+00

Aromatic hydrocarbons >EC16-EC21

Aromatic hydrocarbons >EC21-EC35

Aromatic hydrocarbons >EC35-EC44

Calculated SAC exceeds soil saturation limit and may significantly affect the interpretation of any exceedances as the contribution of the indoor and outdoor vapour pathway to total exposure is >10%.

NR

NR

NR

NR

NR

NR

9.34E+02

1.70E+03

1.70E+03

NR

NR

NR

NR

NR

NR

3.21E+02

2.90E+01

2.90E+01

1.34E+02

1.21E+01

1.21E+01

Calculated SAC exceeds soil saturation limit but the exceedance will not affect the SAC significantly as the contribution of the indoor and outdoor vapour pathway to total exposure is <10%. Calculated SAC does not exceed the soil saturation limit.

The SAC for organic compounds are dependant upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994. SAC for TPH fractions, PAHs napthalene, acenaphthene and acenaphthylene, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway (Section 10.1.1, SR3)

5.45E+02

1.47E+03

1.47E+03

(a) SAC for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead are derived using the C4SL toxicology data.

(b) SAC for boron and selenium should not include the inhalation pathway as no expert group HCV has been derived; aliphatic and aromatic hydrocarbons >EC16 should not include inhalation pathway due to their non-volatile nature and inhalation exposure being minimal (oral, dermal and inhalation exposure is compared to the oral HCV); arsenic should only be based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report. The Oral SAC should be adopted for zinc and benzo(a)pyrene.

(c) SAC for CrIII should be based on the lower of the oral and inhalation SAC (see LQM/CIEH 2015 Section 6.8)

(d) SAC for elemental mercury, chromium VI and nickel should be based on the inhalation pathway only.

(e) SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used.

Table 5
Human Health Generic Assessment Criteria for Residential with home-grown produce

ompound	SAC for Soil SOM 1% (mg/kg)	SAC for Soil SOM 2.5% (mg/kg)	SAC for Soil SOM 6% (mg/kg)
letals			
rsenic	37	37	37
arium	1,300	1,300	1,300
oron	1.7 300	1.7 300	1.7 300
admium	22	22	22
hromium (III) - trivalent	910	910	910
hromium (VI) - hexavalent	21	21	21
opper	2,500	2,500	2,500
ead (1. 0)	200	200	200
(lemental Mercury (Hg ⁰)	0.2	0.6	1.2
norganic Mercury (Hg ²⁺) 1ethyl Mercury (Hg ⁴⁺)	39	<u>39</u> 10	<u>39</u> 10
lickel	130	130	130
elenium	258	258	258
anadium	410	410	410
inc	3,900	3,900	3,900
yanide (free)	1.4	1.4	1.4
olatile Organic Compounds			
enzene	0.20	0.41	0.87
oluene	130	300	680
thylbenzene	50	110	260
ylene - m	59	140	327
ylene - o ylene - p	61 57	143 133	332 310
otal xylene	57	133	310
ethyl tertiary-Butyl ether (MTBE)	60	110	210
1,1,2 Tetrachloroethane	1.20	2.78	6.46
1,2,2-Tetrachloroethane	1.6	3.5	7.7
1,1-Trichloroethane	9	18	39
1,2 Trichloroethane	0.8	1.6	3.5
1-Dichloroethene 2-Dichloroethane	0.32	0.57 0.011	1.16 0.019
2-Dichloroethane 2,4-Trimethylbenzene	1.8	4.3	9.7
3,5-Trimethylbenzene	NR	NR	NR
2-Dichloropropane	0.034	0.060	0.120
arbon Tetrachloride (tetrachloromethane)	0.026	0.056	0.127
hloroethane	11.7	15.9	25.7
hloromethane is 1,2 Dichloroethene	0.012	0.014 0.27	0.019
ichloromethane	0.62	1.08	1.92
etrachloroethene (PCE)	0.31	0.70	1.60
ans 1,2 Dichloroethene	0.28	0.50	1.02
ichloroethene (TCE)	0.009	0.020	0.043
inyl Chloride (chloroethene)	0.006	0.010	0.017
emi-Volatile Organic Compounds Chloronaphthalene	5	13	31
cenaphthene	230	540	1,170
cenaphthylene	180	440	970
nthracene	2,400	5,500	10,900
enzo(a)anthracene enzo(a)pyrene	<u>7</u> 5	11 5	<u>13</u> 5
enzo(b)fluoranthene	2.6	3.3	3.7
enzo(g,h,i)perylene	310	340	350
enzo(k)fluoranthene	77	92	100
hrysene	15	22	27
ibenzo(a,h)anthracene uoranthene	0.24	0.28	0.30
uorantnene	290 170	560 410	900 880
exachloroethane	0.27	0.66	1.55
deno(1,2,3-cd)pyrene	13	30	71
aphthalene	13	30	71
nenanthrene	100	220	440
yrene	620	1,240	2,040
henol	120	210	390
ptal Petroleum Hydrocarbons	42	78	160
iphatic hydrocarbons >EC ₆ -EC ₈	100	230	530
iphatic hydrocarbons >EC ₈ -EC ₈	27	65	154
iphatic hydrocarbons >EC ₈ -EC ₁₀			154 760 (283)
iphatic hydrocarbons >EC ₁₀ -EC ₁₂	130 (48)	330 (118)	
	1,100 (24)	2,400 (59)	4,300 (142)
phatic hydrocarbons >EC ₁₆ -EC ₃₅	65,000 (8)	92,000 (21)	110,000
iphatic hydrocarbons >EC ₃₅ -EC ₄₄	65,000 (8)	92,000 (21)	110,000
omatic hydrocarbons >EC ₈ -EC ₁₀	30	80	190
romatic hydrocarbons >EC ₁₀ -EC ₁₂	80	180	390
romatic hydrocarbons >EC ₁₂ -EC ₁₆	140	330	670
omatic hydrocarbons >EC ₁₆ -EC ₂₁	260	540	930
omatic hydrocarbons >EC ₂₁ -EC ₃₅	1,100	1,500	1,700
romatic hydrocarbons >EC ₃₅ -EC ₄₄	1,100	1,500	1,700
linerals	Storo 1 toot No schoot - de	tootod with ID: Store 3 test0.0	101% dry woicht /aveas der
sbestos	Stage 1 test – No asbestos de either equates to an exceedan		u y weight (exceedan
Innerals sbestos otes: Generic assessment criteria not calculated owing to R - SAC for 1,3.5-trimethylbenzene is not recorded or	either equates to an exceedan	athway, or an absence of toxicological data	
C - equivalent carbon. SAC - soil assessment criteria .OD for weight of asbestos per unit weight of soil calc ne SAC for organic compounds are dependent on Soi	ulated on a dry weight basis using PLM, ha Organic Matter (SOM) (%) content. To ob	ndpicking and gravimetry. tain SOM from total organic carbon (TOC)	(%) divide by 0.58.
19/ SOM is 0 599/ TOC DL Rewall Sail Saianas: I	Methods and Applications, Longmans, 1994		

(VALUE IN BRACKETS) RSK has adopted an approach for petroleum hydrocarbons in accordance with LOM/CIEH whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the SAC with the corresponding solubility or vapour saturation limits given in brackets.

APPENDIX M GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS

GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS

Several compounds can inhibit plant growth; hence it is important to have generic assessment criteria (GAC) to promote healthy plant growth. In the absence of other published GAC, the GAC have been obtained from legislation (UK and European) and guidance related to the use of sewage sludge on agricultural fields.

The Council of European Communities Sewage Sludge Directive (86/278/EEC) dated 1986, has been transposed into UK law by Statutory Instrument No. 1263, The Sludge (use in Agriculture) Regulations 1989 (Public Health England, Wales and Scotland), as ammended in 1990 and The Sludge (use in Agriculture) Regulations (Northern Ireland) SR No, 245, 1990. In addition the Department of Environment (DoE) produced a Code of Practice (CoP) (Updated 2nd Edition) in 2006 which provided guidance on the application of sewage sludge on agricultural land (however the status of this document is unclear as it is on the archive section of the Defra website).

The directive seeks to encourage the use of sewage sludge in agriculture and to regulate its use in such a way as to "*prevent harmful effects on soil, vegetation, animals and man*". To this end, it prohibits the use of <u>untreated sludge</u> on agricultural land unless it is injected or incorporated into the soil. Treated sludge is defined as having undergone "biological, chemical or heat treatment, long-term storage or any other appropriate process so as significantly to reduce its fermentability and the health hazards resulting from its use". To provide protection against potential health risks from residual pathogens, sludge must not be applied to soil in which fruit and vegetable crops are growing, or less than ten months before fruit and vegetable crops are to be harvested. Grazing animals must not be allowed access to grassland or forage land less than three weeks after the application of sludge.

The specified limits of concentrations of selected elements in soil are presented in Table 4 of the updated 2nd Edition of the DoE Code of Practice and are designed to protect plant growth. It is noted that these values are more stringent than the values set in current UK regulations. However since they were ammended following recommendations from the Independent Scientific Committee in 1993. (MAFF/DOE 1993). The GAC are presented in Table 1.

Determinant	Generic assessment criteria (mg/kg)							
Determinant	рН 5.0 < 5.5	рН 5.5 < 6.0	рН 6.0 < 7.0	рН >7.0				
Zinc	200	200	200	300				
Copper	80	100	135	200				
Nickel	50	60	75	110				
Lead	300	300	300	300				
Cadmium	3	3	3	3				
Mercury	1	1	1	1				

Table 1: Generic assessment criteria

Note: Only compounds with assessment criteria documented within the Directive 86/278/EEC have been included, although criteria for 5 additional compounds have been presented within the 2006 CoP.

APPENDIX N GENERIC ASSESSMENT CRITERIA POTABLE WATER SUPPLY PIPES

A range of pipe materials is available and careful selection, design and installation is required to ensure that water supply pipes are satisfactorily installed and meet the requirements of the Water Supply (Water Fittings) Regulations 1999 in England and Wales, the Byelaws 2000 in Scotland and the Northern Ireland Water Regulations. The regulations include a requirement to use only suitable materials when laying water pipes and laying water pipes without protection is not permitted at contaminated sites. The water supply company has a statutory duty to enforce the regulations.

Contaminants in the ground can pose a risk to human health by permeating potable water supply pipes. To fulfil their statutory obligation, UK water supply companies require robust evidence from developers to demonstrate either that the ground in which new plastic supply pipes will be laid is free from specific contaminants, or that the proposed remedial strategy will mitigate any existing risk. If these requirements cannot be demonstrated to the satisfaction of the relevant water company, it becomes necessary to specify an alternative pipe material on the whole development or in specific zones.

In 2010, UK Water Industry Research (UKWIR) published *Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites* (Report Ref. No. 10/WM/03/21). This report reviewed previously published industry guidelines and threshold concentrations adopted by individual water supply companies.

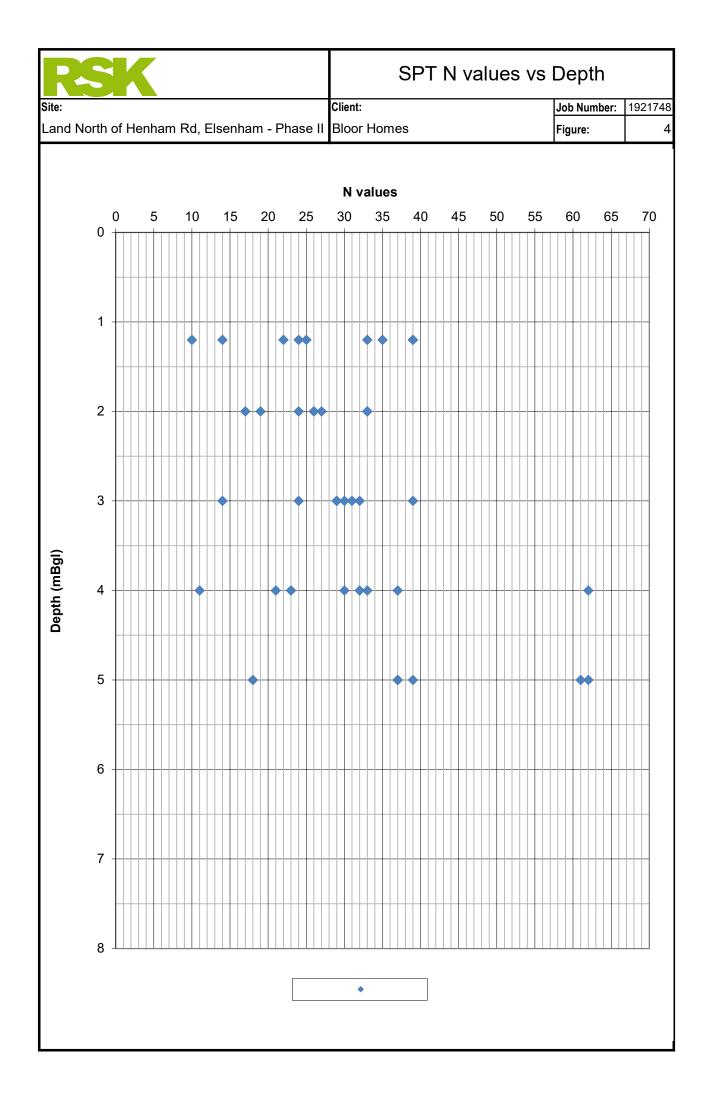
The focus of the UKWIR research project was to develop clear and concise procedures, which provide consistency in the pipe selection decision process. It was intended to provide guidance that can be used to ensure compliance with current regulations and to prevent water supply pipe failing prematurely due to the presence of contamination.

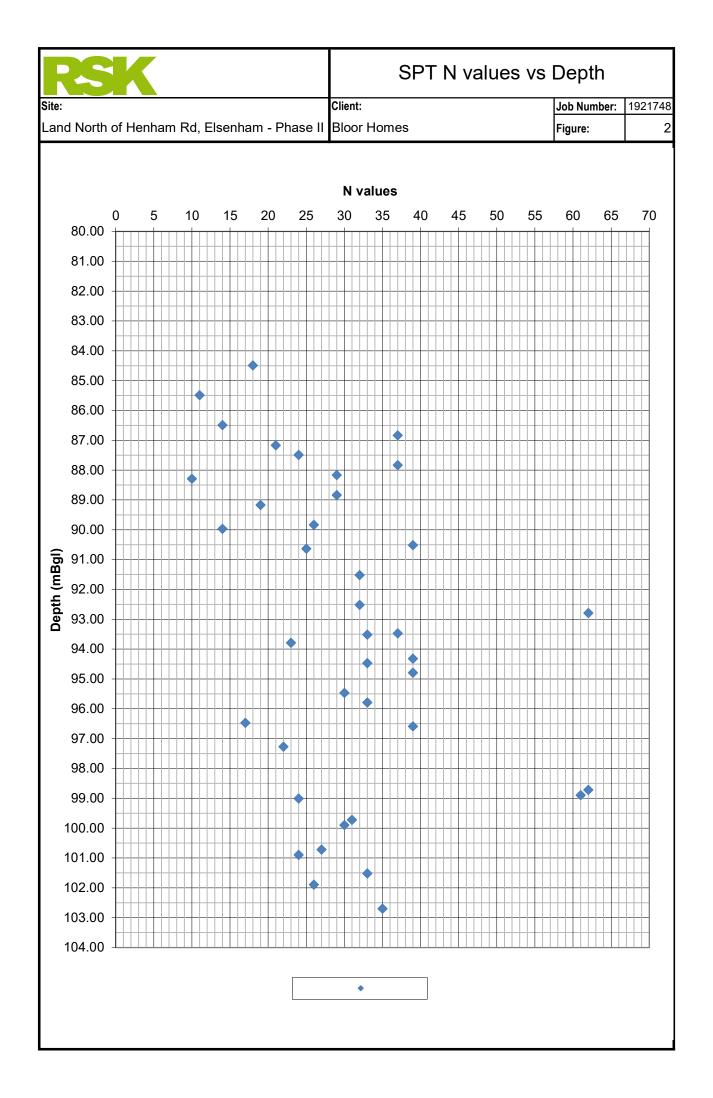
The report concluded that in most circumstances only organic contaminants pose a potential risk to plastic pipe materials and Table 3.1 of the report provides threshold concentrations for polyethylene (PE) and polyvinyl chloride (PVC) pipes for the organic contaminants of concern. The report also makes recommendations for the procedures to be adopted in the design of site investigations and sampling strategies, and the assessment of data, to ensure that the ground through which water supply pipes will be laid is adequately characterised.

Risks to water supply pipes have therefore been assessed against the threshold concentrations for PE and PVC pipe specified in Table 3.1 of Report 10/WM/03/21, which have been adopted as the GAC for this linkage and are reproduced in Table A3 below.

Since water supply pipes are typically laid at a minimum depth of 0.75 m below finished ground levels, sample results from depths between 0.5 m and 1.5 m below finished level are generally considered suitable for assessing risks to water supply. Samples outside these depths can be used, providing the stratum is the same as that in which water supply pipes are likely to be located. The report specifies that sampling should characterise the ground conditions to a minimum of 0.5 m below the proposed depth of the pipe.

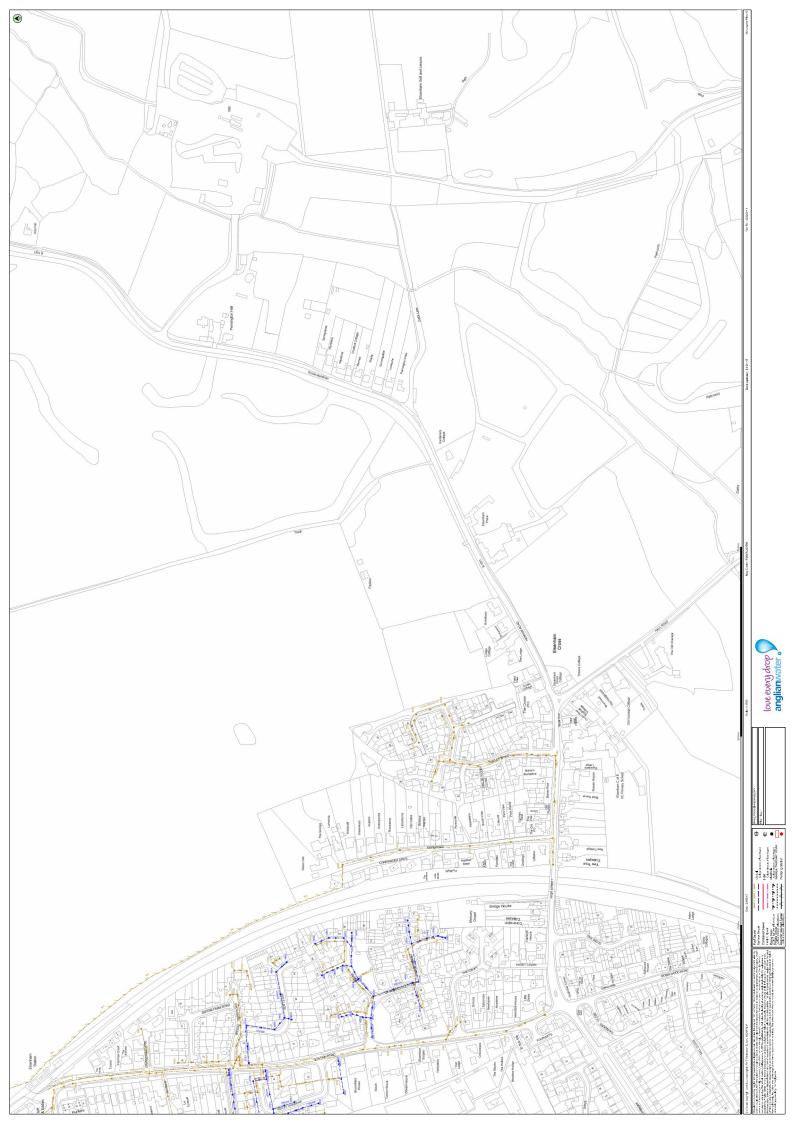
It should be noted that the assessment provided in this report is a guide and the method of assessment and recommendations should be checked with the relevant water supply company.

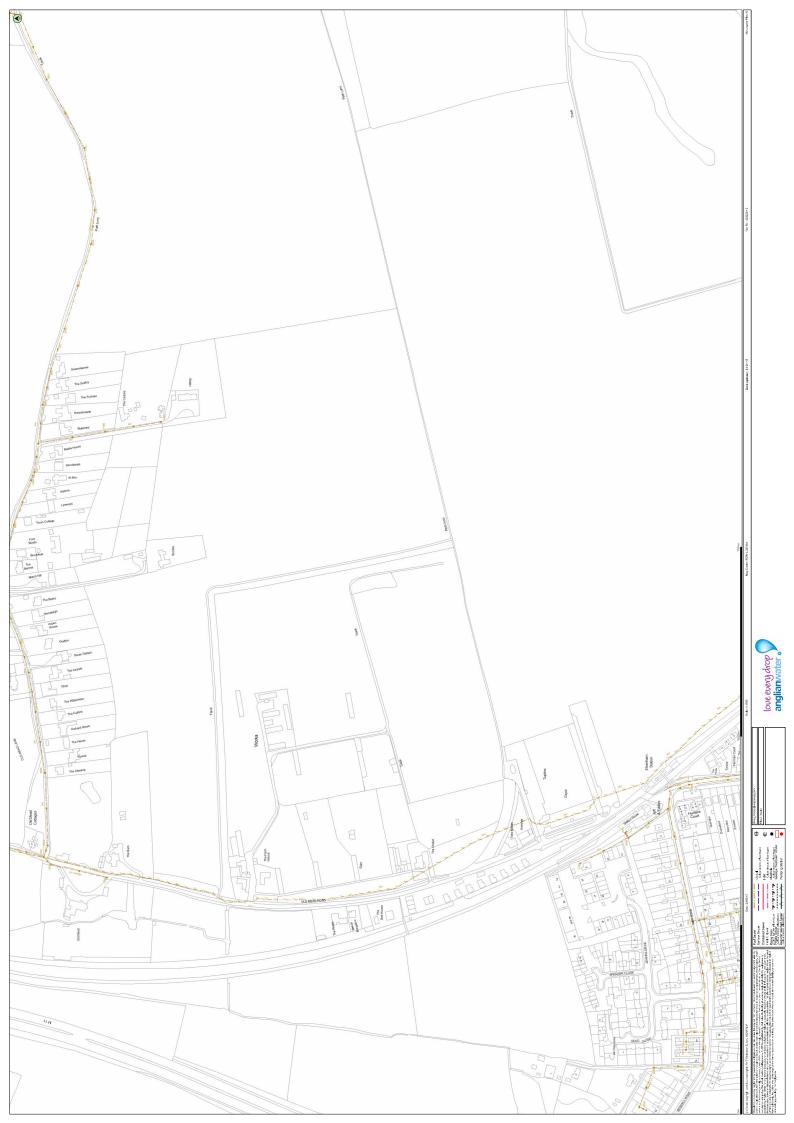

Table Q1: Generic assessment criteria for water supply pipes

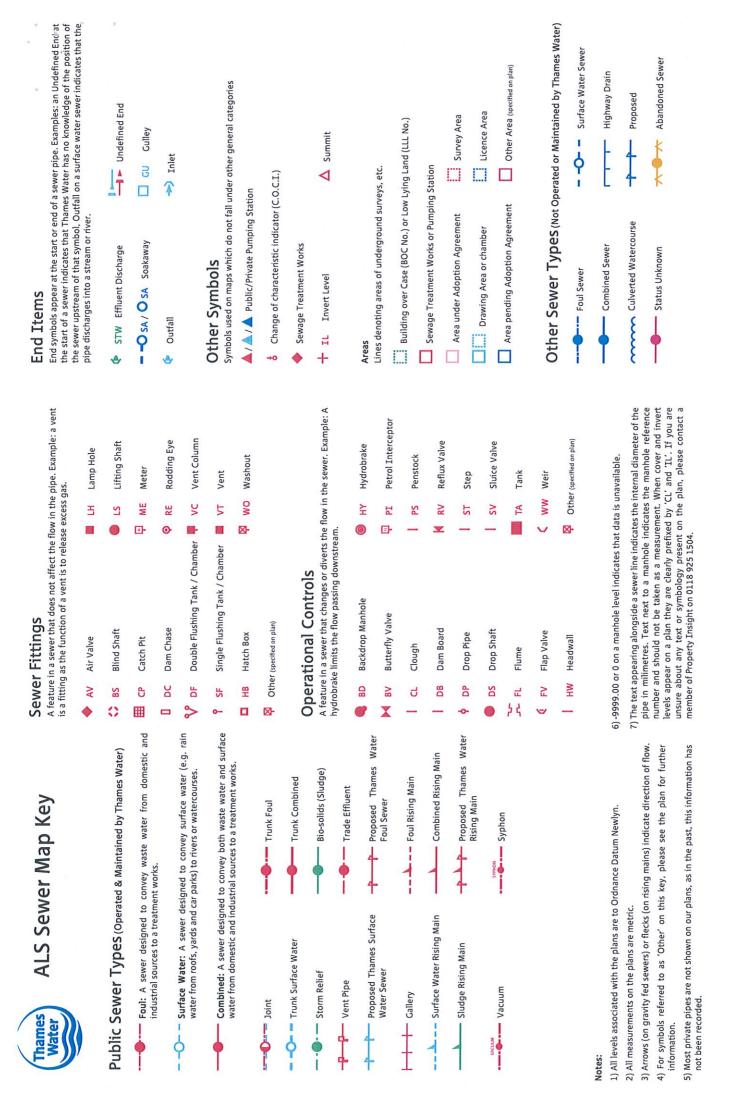

		Pipe materia	ıl
		GAC (mg/kg)
	Parameter group	PE	PVC
1	Extended VOC suite by purge and trap or head space and GC-MS with TIC (Not including compounds within group 1a)	0.5	0.125
1a	BTEX + MTBE	0.1	0.03
2	SVOCs TIC by purge and trap or head space and GC-MS with TIC (aliphatic and aromatic C_5 - C_{10}) (Not including compounds within group 2e and 2f)	2	1.4
2e	Phenols	2	0.4
2f	Cresols and chlorinated phenols	2	0.04
3	Mineral oil C ₁₁ –C ₂₀	10	Suitable
4	Mineral oil C ₂₁ –C ₄₀	500	Suitable
5	Corrosive (conductivity, redox and pH)	Suitable	Suitable
Spec	ific suite identified as relevant following site investigation		
2a	Ethers	0.5	1
2b	Nitrobenzene	0.5	0.4
2c	Ketones	0.5	0.02
2d	Aldehydes	0.5	0.02
6	Amines	Not suitable	Suitable

Notes: where indicated as 'suitable', the material is considered resistant to permeation or degradation a no threshold concentration has been specified by UKWIR.

APPENDIX O GEOTECHNICAL CHARTS

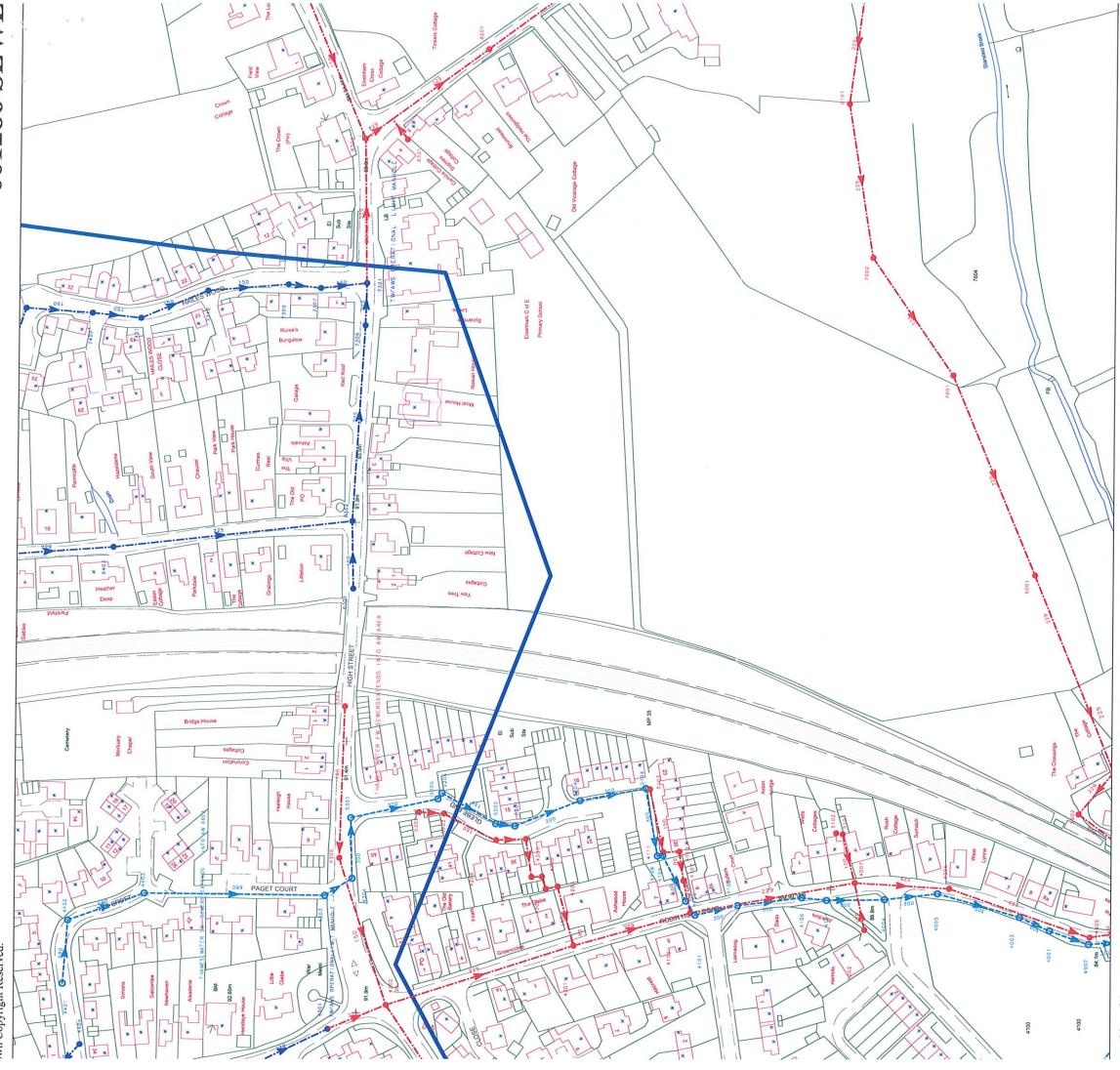





Appendix C

SEWER RECORDS

11


Page 7 of 9

position of apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and establish site before any works are undertaken.

. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no survey information is available.

					001100	0000 00		-9999.00
(553391,226380)	there is a	MANHOLE	with SHORT	NUMBER=3303	COVER=	-9999.00		
(553456,226008)	there is a	MANHOLE	with SHORT	NUMBER=4001	COVER=		INVERT=	83.36
(553456,226094)	there is a	MANHOLE	with SHORT	NUMBER=4002	COVER=	88.82	INVERT=	87.73
(553462,226022)					COVER=	85.82	INVERT=	84.25
(553463, 226172)					COVER=	90.31	INVERT=	88.54
(553464,226174)	thore is a	MANHOLE	with SHORT	NUMBER=4102	COVER=	90,41	INVERT=	87.35
(553491,226187)	there is a	MANUOLE	with SHOPT	NUMBER-4100	COVER=		INVERT=	89.47
(553491,226187)	there is a	MANHOLE	WICH SHORE	NUMBER-4105			INVERT=	87.65
(553492,226180)	there is a	MANHOLE	WITH SHORT	NUMBER=4110	COVER=			
(553492,226187)	there is a	MANHOLE	with SHORT	NUMBER=4111	COVER=		INVERT=	89.02
(553449, 226228)	there is a	MANHOLE	with SHORT	NUMBER=4201	COVER=	91.81	INVERT=	87.56
(553498, 226264)	there is a	MANHOLE	with SHORT	NUMBER=4206	COVER=	91.50	INVERT=	89.23
(553498, 226250)	there is a	MANHOLE	with SHORT	NUMBER=4207	COVER=	91.41	INVERT=	89.15
(553410,226341)	thoro is a	MANHOLE	with SHORT	NUMBER=4301	COVER=	91.98	INVERT=	88.07
(553421, 226314)	there is a	MANUOLE	with phone	MUMPER-4302	COVER=		INVERT=	87.94
(553421,226314)	there is a	MANHOLE	WILL SHORT	NUMBER=4302			INVERT=	90.48
(553431,226464)	there is a	MANHOLE	with SHORT	NUMBER=4401	COVER=			
(553460,226461)	there is a	MANHOLE	with SHORT	NUMBER=4402	COVER=		INVERT=	90.22
(553403,226455)	there is a	MANHOLE	with SHORT	NUMBER=4404	COVER=	-9999.00		-9999.00
(553500,226104)	there is a	MANHOLE	with SHORT	NUMBER=5101	COVER=	88.47	INVERT=	79.59
(553501,226107)	there is a	MANHOLE	with SHORT	NUMBER=5102	COVER=	88.68	INVERT=	79.59
(553521,226193)	there is a	MANHOLE	with SHORT	NUMBER=5103	COVER=	91.01	INVERT=	89.32
(553522,226195)	there is a	MANUOLE	with SHORT	NUMBER -5104	COVER=		INVERT=	89.65
(553522,226195)	there is a	MANHOLE	WICH SHORT	NUNDER-5104	COVER=		INVERT=	89.81
(553504,226255)	there is a	MANHULE	WITH SHORT	NUMBER=5201				89.87
(553505,226264)	there is a	MANHOLE	with SHORT	NUMBER=5202	COVER=		INVERT=	
(553510,226288)	there is a	MANHOLE	with SHORT	NUMBER=5203	COVER=		INVERT=	89.39
(553516,226226)	there is a	MANHOLE	with SHORT	NUMBER=5204	COVER=	91.07	INVERT=	89.75
(553517,226291)	there is a	MANHOLE	with SHORT	NUMBER=5205	COVER=	91.53	INVERT=	90.03
(553519,226289)	there is a	MANHOLE	with SHORT	NUMBER=5206	COVER=	91.72	INVERT=	90.02
(553508, 226331)	there is a	MANUOLE	with SHOPT	NUMBER=5301	COVER=		INVERT=	90.12
(553508,226351)	there is a	MANHOLE	WILL SHORT	NUMBER-5301			INVERT=	89.54
(553510,226300)	there is a	MANHULE	WITH SHORT	NUMBER=5502	COVER=			89.94
(553559,226334)	there is a	MANHOLE	with SHORT	NUMBER=5303	COVER=		INVERT=	
(553620,226016)	there is a	MANHOLE	with SHORT	NUMBER=6001	COVER=		INVERT=	79.59
(553614,226331)	there is a	MANHOLE	with SHORT	NUMBER=6301	COVER=	-9999.00	INVERT=	-9999.00
(553645, 226332)	there is a	MANHOLE	with SHORT	NUMBER=6302	COVER=	-9999.00	INVERT=	-9999.00
(553633,226442)	there is a	MANHOLE	with SHORT	NUMBER=6403	COVER=	-9999.00	INVERT=	-9999.00
(553713,226055)	there is a	MANHOLE	with SHORT	NUMBER=7001	COVER=	81,55	INVERT=	80.07
(553767,226092)	there is a	MANUOLE	with SHORT	NUMBER=7002	COVER=		INVERT=	80.30
(553767,226092)	there is a	MANHOLE	with SHORT	NUMPER-7301	COVER=		INVERT=	89.72
(553755,226326)	there is a	MANHULE	WICH SHORT	NUMBER-7301		-9999.00		-9999.00
(553736,226326)	there is a	MANHOLE	WITH SHORT	NUMBER=1306	COVER=			
(553753,226347)	there is a	MANHOLE	with SHORT	NUMBER= $/30/$	COVER=	-9999.00		-9999.00
(553754,226362)	there is a	MANHOLE	with SHORT	NUMBER=7309	COVER=	-9999.00		-9999.00
(553751,226399)	there is a	MANHOLE	with SHORT	NUMBER=7310	COVER=	-9999.00	INVERT=	-9999.00
(553739,226430)	there is a	MANHOLE	with SHORT	NUMBER=7401	COVER=	-9999.00	INVERT=	-9999.00
(553741,226452)	there is a	MANHOLE	with SHORT	NUMBER=7402	COVER=	-9999.00	INVERT=	-9999.00
(553743,226483)	there is a	MANUOLE	with SUOPT	NUMBER=7403	COVER=	-9999.00		-9999.00
(553743,226483)	there is a	MANHOLE	WICH SHORT	NUMDER-7403	COVER=		INVERT=	80.82
(553895,226096)	there is a	MANHOLE	WICH SHORT	NUMBER=6001				80.59
(553838,226103)	there is a	MANHOLE	with SHORT	NUMBER=8101	COVER=		INVERT=	
(553863, 226271)	there is a	MANHOLE	with SHORT	NUMBER=8201	COVER=		INVERT=	89.10
(553821,226308)	there is a	MANHOLE	with SHORT	NUMBER=8301	COVER=	92,89	INVERT=	91.80
(553822,226327)	there is a	MANHOLE	with SHORT	NUMBER=8302	COVER=	93.40	INVERT=	89.44
(553896, 226358)	there is a	MANHOLE	with SHORT	NUMBER=8303	COVER=	93.73	INVERT=	90.19
(553470,226084)	there is a	MANHOLE	with SHORT	NUMBER=4004	COVER=	88.99	INVERT=	86.44
(553473,226060)	thore is a	MANUOTE	with CUODT	NUMBER=4005	COVER=		INVERT=	85.75
(333473,226060)	chere 15 d	MANUCIE	WICH BROKI	NUMBER-4000			INVERT=	85.20
(553475,226055)	cnere is a	MANHOLE	with SHORT	NUMBER-4000	COVER=			87.01
(553478,226098)	there is a	MANHOLE	with SHORT	NUMBER=4007	COVER=		INVERT=	
(553467,226152)	there is a	MANHOLE	with SHORT	NUMBER=4103	COVER=		INVERT=	88.06
(553470,226111)	there is a	MANHOLE	with SHORT	NUMBER=4104	COVER=	88,97	INVERT=	87.00
(553470,226176)	there is a	MANHOLE	with SHORT	NUMBER=4105	COVER=	-9999.00	INVERT=	-9999.00
(553471,226123)	there is a	MANHOLE	with SHORT	NUMBER=4106	COVER=	89.20	INVERT=	87.35
(553479,226123)	there is a	MANUOLE	with SHORT	NUMBER=4107	COVER=	-9999.00		-9999.00
(553479,226178)	there is a	MANHOLE	with Short	NUMPER-4109			INVERT=	89.51
(553490,226190)	cnere is a	MANHOLE	WILD SHORT	NUMBER-4100	COVER=		INVERT=	88.93
(553475,226241)	there is a	MANHOLE	WITH SHORT	NUMBER=4202	COVER=			
(553476,226236)	there is a	MANHOLE	with SHORT	NUMBER=4203	COVER=	-9999.00		-9999.00
(553481,226248)	there is a	MANHOLE	with SHORT	NUMBER=4204	COVER=		INVERT=	89.01
(553481,226243)	there is a	MANHOLE	with SHORT	NUMBER=4205	COVER=	91.58	INVERT=	89.00
(553472,226343)	there is a	MANHOLE	with SHORT	NUMBER=4303	COVER=	91.57	INVERT=	90.26
(553480,226330)	thore is a	MANHOTE	with SHOPT	NUMBER=4304	COVER=		INVERT=	90.21
(333400,220330)	there is d	MANUOLE	WITH SHOKI	NUMBED=4305	COVER=		INVERT=	89.04
(553489, 226336)	LHERE 1S A	MANHOLE	with SHOKT	NUMBER-4000				90.27
(553473,226426)	there is a	MANHOLE	with SHORT	NUMBER=4403	COVER=		INVERT=	
(553449,225990)	there is a	MANHOLE	with SHORT	NUMBER=4902	COVER=		INVERT=	82.41
(553452,225990)	there is a	MANHOLE	with SHORT	NUMBER=4905	COVER=		INVERT=	82.32
(553510,225995)	there is a	MANHOLE	with SHORT	NUMBER=5902	COVER=	-9999.00	INVERT=	-9999.00
(553529, 225979)	there is a	MANHOLE	with SHORT	NUMBER=5903	COVER=	-9999.00	INVERT=	-9999.00
·,,,-,		_						

•

position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind atsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken. numents: VOM THE NORTH OF THE DARK BLUE LINE SEWER IS SUPPLIED BY ANGLIAN WATER COMPANY VGLE hardcopy facility - Normal Map. 1c plot is centred on (553642 , 226233), which is in TL5326SE. Printed on 2 March 2007 at 16:24:22 by EAZGIN.) metre intervals

Appendix D

EA CORRESPONDANCE

11

Mattia Fagnano WSP Our ref Your ref

EAn/2022/275132 70084697 Elsenham Ph2

Date

31 August 2022

Dear Mattia

Enquiry regarding development near Elsenham, Essex

Thank you for your enquiry of 29 July 2022.

We respond to requests under the Freedom of Information Act 2000 and Environmental Information Regulations 2004.

The model which has been used to produce the Flood Map for Planning (Rivers and Sea) only has 1% and 0.1% AEP undefended outlines. Therefore, this is the best available information. The flood zones are the result of 2D modelling from the Environment Agency's Cam Rural-Non main Rivers model.

There are no Environment Agency defences within 500m of this location, as such we hold no information for Standard of Protection.

The 3rd Party Defences are maintained by the Lead Local Flood Authority, Essex County Council, who may be contacted for further information; ______ see attached map.

This site is not in a flood warning area.

Lead local flood authorities (LLFAs) have responsibilities for local flood risk (including groundwater) under the Flood and Water Management Act 2010. This Act gives LLFAs duties to prepare local flood risk management strategies and to co-operate with other risk management authorities, and powers to carry out local flood risk management. If you want to find out if your property could be at risk of flooding from groundwater or may have flooded in the past you should contact your Lead Local Flood Authority. The LLFA is either the unitary authority or the county council for the area.

Please refer to the Local Government Association leaflet linked below. If you are still unsure whether your home could be affected by flooding from groundwater, then you may wish to carry out a flood risk assessment. To do this, you will need to contact a professional consultant/engineer or chartered surveyor.

EA/Local Government Association groundwater flooding guidance document:

Please see attached spreadsheet of groundwater levels. You may also find groundwater level information by following this link:

_alternatively a public database is available

from

We have no historic flood event information for this area. It is possible that other flooding may have occurred that we do not have records for, and other organisations such as local authorities or IDBs may have records.

According to our records, we have no apparatus within 4km of the site.

If the surface water is from the site once construction is complete, then no treatment is required provided it is just surface water that is being discharged.

If the surface water is from the site **during** construction, then the customer is advised to refer to our Regulatory Position Statement (RPS) 'Temporary dewatering from excavations to surface water' available at:

Temporary dewatering from excavations to surface water - GOV.UK (www.gov.uk).

This RPS only covers a period of three months. If the project will carry on for longer, or the conditions cannot be met, then an Environmental Permit (Water Discharge Permit) will be required. This RPS makes no provision for the dewatering and discharge (to surface waters) of **groundwater**: separate exemptions apply which are referred to within the RPS document. If the groundwater exemptions cannot be complied with, or the project will take longer than the time period specified, then an Abstraction Licence will be required; an associated Water Discharge Permit may also be needed, particularly where abstracted groundwater is to be discharged to surface waters.

Stand-alone water discharge or groundwater activity - Read the guidance on <u>permits for</u> <u>discharges to surface water and groundwater</u> to check whether you need a permit for your activity. Permits are managed by the Environment Agency.

Please refer to the Open Government Licence available here

which explains

the permitted use of this information.

The groundwater level information is not available with the Open Government Licence but we may be able to license to you under the <u>Environment Agency Conditional Licence</u>:

 Groundwater Level Measurements (AfA075), – This dataset comprises groundwater level time series data taken at approximately 6000 borehole monitoring stations located across England and Wales. Discrete station information is stored for each site including identifier, spatial reference, parameter type and time series type. This dataset contains sites for operational and closed monitoring stations. Data is collected from Environment Agency borehole monitoring stations that are collated by Area staff normally by either downloading the station 'Logger Data' or manually 'Dipping' to determine borehole water level. This is a large dataset with high extraction costs, and we do not normally expect to supply it as a whole. Larger requests will be assessed against our normal procedures for charging for, and refusing access to information. If we receive a request for the entire dataset we would consider refusal, or a full cost of extraction charge. • **Conditions** The location of observation boreholes must not be published to a resolution more detailed than 1km2.

However, you MUST first check the supporting information available online to determine if the conditions on use are suitable for your purposes. If they aren't, this information is not provided with a licence for use, and the data is provided for read right only.

Please using the following which contains the raw modelled output data from this mode, which may be of use to you:

Product 6:

You may also find the Cam Rural report of use, please use the following link:

Product 5:

A copy of the Flood Risk Assessment (FRA) advisory note is attached to my email.

Name	Products 5, 6 and 7
Description	Report and Model output data for Cam Rural Model, January 2014, JBA
Licence	 The following information is not available under the Open Government Licence but we may be able to license it to you under the Environment Agency Conditional Licence <u>Environment Agency</u> <u>Conditional Licence</u>: However, you MUST first check the supporting information and the above link to determine if the conditions on use are suitable for your purposes. If they aren't, this information is not provided with a licence for use, and the data is provided for read right only.
Conditions	 1.0 You may use the Information for your internal or personal purposes and may only sublicense others to use it if you do so under a written licence which includes the terms of these conditions and the agreement and in particular may not allow any period of use longer than the period licensed to you. 2.0 Notwithstanding the fact that the standard wording of the Environment Agency Conditional Licence indicates that it is perpetual, this Licence has a limited duration of 5 years at the end of which it will terminate automatically without notice. 3.0 We have restricted use of the Information as a result of legal restrictions placed upon us to protect the rights or confidentialities of others. In this instance it is because of third party data. If you contact us in writing (this includes email) we will, as far as confidentiality rules allow, provide you with details including, if available, how you might seek permission from a third party to extend your use rights. 4.1 The Information may contain some data that we believe is within the definition of "personal data" under the Data Protection Act 1998 but we consider that we will not be in breach of the Act if we disclose it to you with conditions set out in this condition and the conditions above. This personal data comprises names of individuals or commentary relating to property that may be owned by an individual

East Anglia Area

Ipswich Office, Iceni House, Cobham Road, Ipswich, Suffolk, IP3 9JD Brampton Office, Bromholme Lane, Brampton, Huntingdon, PE28 4NE General Enquiries: 03708 506506 Email: <u>enquiries@environment-agency.gov.uk</u> Website:

	or commentary relating to the activities of an individual. 4.2 Under the Act a person who holds and uses or passes to others personal data is responsible for any compliance with the Act and so we have no option but to warn you that this means you have responsibility to check that you are compliant with the Act in respect of this personal data. 5.0 The location of public water supply abstraction sources must not be published to a resolution more detailed than 1km2. Information about the operation of flood assets should not be published. 6.1 Where we have supplied model data which may include model inputs or outputs you agree to supply to the Environment Agency copies of any assessments/studies and related outputs, modifications or derivatives created pursuant to the supply to you of the Information, all of which are hereinafter referred to as "the Data". 6.2 You agree, in the public interest to grant to the Environment Agency a perpetual royalty free non-exclusive licence to use the Data or any part thereof for its internal purposes or to use it in any way as part of Environment Agency derivative products which it supplies free of charge to others such as incorporation into the Environment Agency's Open Data mapping products.
Information Warnings	Please be aware that model data is not raw, factual or measured but comprises of estimations or modelled results based on the data available to us.
Attribution	Contains Environment Agency information © Environment Agency and/or database rights. May contain Ordnance Survey data © Crown copyright 2022 Ordnance Survey 100024198.

Unfortunately the site is not located within the hazard mapping area. Therefore, we do not hold any breach data for it.

We have considered your request under the provisions of the Freedom of Information Act 2000 / Environmental Information Regulations 2004 (EIR). The Act requires that we respond to requests by advising you whether or not information is held, and if so by providing you with that information.

EIR Regulation 3(2) states that information is held if it is in our possession and has been produced or received by us, or it is held by another person on our behalf at the time the request is received.

Information not held

In this case, the Product 8 Breach hazard mapping information you have requested is not held by us. Therefore we are refusing this part of your request on the grounds that there is no information we can provide.

Where a request is for environmental information, the Regulations allow us to refuse to disclose it if the exception at EIR Regulation 12(4)(a) applies. The regulation states that a public authority may refuse to disclose environmental information to the extent that it does not hold that information when an applicant's request is received.

It is not possible for us to conduct a public interest balancing test because the reason for non-disclosure is that the information is not held.

Rights of appeal

If you are not satisfied you can contact us within 2 calendar months to ask for our decision to be reviewed. We shall review our response to your request and give you our decision in writing within 40 working days.

If you are still not satisfied following this, you can raise a concern with the Information Commissioner, who is the statutory regulator for Freedom of Information and the Environmental Information Regulations. The contact details are:

Information Commissioner's Office Wycliffe House Water Lane Wilmslow Cheshire SK9 5AF Tel: 0303 123 1113 Website: http://ico.org.uk

Data Available Online

Many of our flood datasets are available online:

- Flood Map For Planning (<u>Flood Zone 2</u>, <u>Flood Zone 3</u>, <u>Flood Storage Areas</u>, <u>Flood Defences</u>, <u>Areas Benefiting from Defences</u>,)
- Risk of Flooding from Rivers and Sea
- Historic Flood Map
- <u>Current Flood Warnings</u>

What's In Your BackYard (WIYBY) is no longer available.

Most of the data is still available via other sharing services such as <u>DATA.GOV.UK</u>, <u>MAGIC</u> <u>map</u> and new <u>GOV.UK</u> <u>digital services</u>. Where the datasets are no longer available as maps, you will be able to download and use within specialist applications.

To find out all the services the Environment Agency have available, please click here.

For any other enquiries please send your request to us at: Enquiries EastAnglia@environment-agency.gov.uk.

Additional information

Please be aware that we now charge for planning advice provided to developers, agents and landowners. If you would like advice to inform a future planning application for this site then please complete our

and email it to our Sustainable Places team.

planning.brampton@environment-agency.gov.uk They will initially provide you with a free response identifying the following:

- the environmental constraints affecting the proposal;
- the environmental issues raised by the proposal;

East Anglia Area Ipswich Office, Iceni House, Cobham Road, Ipswich, Suffolk, IP3 9JD Brampton Office, Bromholme Lane, Brampton, Huntingdon, PE28 4NE General Enquiries: 03708 506506 Email: <u>enquiries@environment-agency.gov.uk</u> Website

- the information we need for the subsequent planning application to address the issues identified and demonstrate an acceptable development;
- any required environmental permits.

If you require any further information from them (for example, a meeting or the detailed review of a technical document) they will need to set up a charging agreement. Further information can be found on our

Climate Change Allowances

For information on the use climate change allowances in Flood Risk Assessments, please see the attached document - East_Anglian_External Climate Change Allowances Guidance_March2022.pdf.

The guidance provides climate change allowances for peak river flow, peak rainfall, sea level rise, wind speed and wave height. The guidance provides a range of allowances to assess fluvial flooding, which varies depending on which management catchment a site lies within. It advises on which allowances to use for assessing the impact of climate change on fluvial flood risk based on vulnerability classification, flood zone and development lifetime.

If you want to discuss this please call our Sustainable Places team on 020 8474 5242.

TEAM2100: delivering the first 10 years of investment in tidal flood defences for the Thames Estuary 2100 Plan. For more information, visit <u>the TEAM2100 website</u> or email <u>thamesestuary2100@environment-agency.gov.uk</u>

Please get in touch if you have any further queries or contact us within two months if you'd like us to review the information we have sent.

Yours sincerely

Teresa Chapman Customers and Engagement Officer

Direct dial: 02030 255472

Use of Environment Agency Information for Flood Risk Assessments

Important

The Environment Agency are keen to work with partners to enable development which is resilient to flooding for its lifetime and provides wider benefits to communities. If you have requested this information to help inform a development proposal, then we recommend engaging with us as early as possible by using the pre-application form available from our website:

We recognise the value of early engagement in development planning decisions. This allows complex issues to be discussed, innovative solutions to be developed that both enables new development and protects existing communities. Such engagement can often avoid delays in the planning process following planning application submission, by reaching agreements upfront. We offer a charged pre-application advice service for applicants who wish to discuss a development proposal.

We can also provide a preliminary opinion for free which will identify environmental constraints related to our responsibilities including flooding, waste, land contamination, water quality, biodiversity, navigation, pollution, water resources, foul drainage or Environmental Impact Assessment.

In preparing your planning application submission, you should refer to the Environment Agency's Flood Risk Standing Advice and the Planning Practice Guidance for information about what flood risk assessment is needed for new development in the different Flood Zones. This information can be accessed via:

You should also consult the Strategic Flood Risk Assessment or other relevant materials produced by your local planning authority.

You should note that:

- 1. Information supplied by the Environment Agency may be used to assist in producing a Flood Risk Assessment (FRA) where one is required, but does not constitute such an assessment on its own.
- 2. This information covers flood risk from main rivers and the sea, and you will need to consider other potential sources of flooding, such as groundwater or surface water runoff. Information produced by the local planning authority referred to above may assist here.
- 3. Where a planning application requires an FRA and this is not submitted or is deficient, the Environment Agency may raise an objection.

275132 Product 4 Map - (3rd Party Defences)

Flood risk assessments: Climate change allowances

Application of the allowances and local considerations

East Anglia; Essex, Norfolk, Suffolk, Cambridgeshire and Bedfordshire

1) The climate change allowances

The <u>National Planning Practice Guidance</u> refers planners, developers and advisors to the Environment Agency guidance on considering climate change in Flood Risk Assessments (FRAs). This guidance was updated in October 2021 and is available on <u>Gov.uk</u>. The guidance can be used for planning applications, local plans, neighbourhood plans and other projects. It provides climate change allowances for peak river flow, peak rainfall, sea level rise, wind speed and wave height. The guidance provides a range of allowances to assess fluvial flooding, rather than a single national allowance. It advises on what allowances to use for assessment based on vulnerability classification, flood zone and development lifetime.

2) Assessment of climate change impacts on fluvial flooding

Where existing EA flood risk datasets and models do not provide the required climate change allowances, it is up to developers to undertake any work needed to appropriately assess the impacts of climate change on flood risk. They can do this by using the approaches in **Table A** below:

Table A below <u>indicates</u> the level of technical assessment of climate change impacts on fluvial flooding appropriate for new developments depending on their scale and location. This should be used as a guide only. Ultimately, the agreed approach should be based on expert local knowledge of flood risk conditions, local sensitivities and other influences. For these reasons, we recommend that applicants and / or their consultants should contact the Environment Agency at the preplanning application stage to confirm the assessment approach, on a case by case basis. The email addresses for our Sustainable Places teams at our respective offices can be found in Section 8 below.

Table A defines three possible approaches to account for flood risk impacts due to climate change, in new development proposals:

- Basic: Developer can add an allowance to the 'design flood' (i.e. 1% annual probability) peak levels to account for potential climate change impacts. The allowance should be derived and agreed locally by Environment Agency teams.
- Intermediate: Developer can use existing modelled flood and flow data to construct a stagedischarge rating curve, which can be used to interpolate a flood level based on the required peak flow allowance being applied to the 'design flood' flow.
- **Detailed:** Perform detailed hydraulic modelling, either through re-running Environment Agency hydraulic models (if available) or construction of a new model by the developer.

VULNERABILITY	FLOOD	DEVELOPMENT TYPE					
CLASSIFICATION	ZONE	NON-MAJOR	SMALL-MAJOR	LARGE-MAJOR			
FOOFNITIAL	Zone 2	Detailed					
ESSENTIAL INFRASTRUCTURE	Zone 3a	Detailed					
INTRASTRUCTURE	Zone 3b	Detailed					
	Zone 2	Intermediate/ Basic	Intermediate/ Basic	Detailed			
HIGHLY VULNERABLE	Zone 3a	Not appropriate development					
VULNERABLE	Zone 3b	Not appropriate development					
MODE	Zone 2	Basic	Basic	Intermediate/ Basic			
MORE VULNERABLE	Zone 3a	Intermediate/ Basic	Detailed	Detailed			
VULNERABLE	Zone 3b	Not appropriate development					
LESS	Zone 2	Basic	Basic	Intermediate/ Basic			
VULNERABLE	Zone 3a	Basic	Basic	Detailed			
VOLNERABLE	Zone 3b	Not appropriate developm	nent				
	Zone 2	None					
	Zone 3a	Intermediate/ Basic					
COMPATIBLE	Zone 3b	Detailed					

Table A – Indicative guide to assessment approach

Note: Where the table states 'not appropriate development', this is in line with national planning policy. If in exceptional circumstances such development types are proposed in these locations, we would expect a detailed modelling approach to be used.

NOTES:

- Non-Major: 1-9 dwellings/ less than 0.5 ha | Office / light industrial under 1 ha | General industrial under 1 ha | Retail under 1 ha | Gypsy/traveller site between 0 and 9 pitches
- Small-Major: 10 to 30 dwellings | Office / light industrial 1ha to 5ha | General industrial 1ha to 5ha | Retail over 1ha to 5ha | Gypsy/traveller site over 10 to 30 pitches
- Large-Major: 30+ dwellings | Office / light industrial 5ha+ | General industrial 5ha+ | Retail 5ha+ | Gypsy/traveler site over 30+ pitches | any other development that creates a non-residential building or development over 1000 sq m.

The assessment approach should be agreed with the Environment Agency as part of preplanning application discussions to avoid abortive work.

3) Specific local considerations

Where the Environment Agency and the applicant and / or their consultant has agreed that a '**basic**' level of assessment is appropriate, the figures in Table B below can be used as a precautionary allowance for potential climate change impacts on peak 'design' (i.e. 1% annual probability) fluvial flood level rather than undertaking detailed modelling.

Table B – Local precautionary allowances for potential climate change impacts

Essex, Norfolk and Suffolk

Hydraulic Model (Watercourse)	Precautionary allowance (basic approach)
Blackwater & Brain - Blackwater between TL7520925623 and TL7820324314 Brain between TL7373323312 and TL7683821321	500mm
Other main rivers, tributaries and ordinary watercourses	 For other main rivers, tributaries and ordinary watercourses that are not stated above, basic allowances have not been calculated. In this instance you can either: If flow data is available you can request this data from us and can conduct an intermediate assessment yourself Or alternatively, you can choose to undertake a Detailed Assessment and "perform detailed hydraulic modelling, through either re-running our hydraulic models (if available) or constructing a new model

Cambridgeshire and Bedfordshire

Watercourse / Model	Precautionary allowance (basic approach)
Alconbury Brook	600mm
River Kym	
Lower Ouse (Model Extent)	700mm
Mid Ouse (Cold Brayfield to Bromham –	700mm
between SP9156852223 and TL0132950919)	
Mid Ouse (East of Bedford to Roxton –	700mm
between TL0791848903 and TL1618854543)	
River Hiz and River Purwell	400mm
River Ivel	500mm
Pix Brook	450mm
Potton Brook	500mm
River Cam and tributaries (excluding the Cam	450mm
Lodes and the Slade System)	
Great Barford (ordinary watercourses)	500mm
Bromham (ordinary watercourse)	550mm

NOTES:

Urban areas excluded from the 'basic' approach: St Ives, Holywell, Godmanchester, Swavesey, Over, Bedford, Newport Pagnell, Buckingham and Leighton Buzzard. More detailed assessment of climate change allowances will need to be undertaken in these locations.

Use of these allowances will only be accepted after discussion with the Environment Agency.

4) Fluvial flood risk mitigation

For planning consultations where we are a statutory consultee and our <u>Flood risk standing</u> advice does not apply we use the following benchmarks to inform flood risk mitigation for different <u>vulnerability classifications</u>. <u>These are a guide only</u>. We strongly recommend you contact us at the pre-planning application stage to confirm this on a case by case basis. For planning consultations where we are not a statutory consultee or our <u>Flood risk Standing advice</u> applies, we recommend that local planning authorities and developers use these benchmarks but we do not expect to be consulted.

- For development classed as 'essential infrastructure' our benchmark for flood risk mitigation is for it to be designed to the 'higher central' climate change allowance for the epoch that most closely represents the lifetime of the development, including decommissioning. Please note that nationally significant infrastructure projects (NSIPs) may also need to assess a credible maximum climate change scenario by applying the 'upper end' allowance for peak river flow as a sensitivity test. This will help to determine how sensitive the development is to changes in the climate and to ensure that it can be adapted to large-scale climate change over its lifetime.
- For highly vulnerable, more vulnerable, less vulnerable and water compatible developments in flood zones 2 and 3a, the 'central' climate change allowance is our minimum benchmark for flood risk mitigation. For large urban settlement extensions or developments that form new communities, the credible maximum climate change scenario must be assessed; in these circumstances, you should use the 'upper end' allowance.
- For water compatible development in flood zone 3b, the 'central' climate change allowance for the epoch that most closely represents the lifetime of the development is our minimum benchmark for flood risk mitigation.

Table 1 peak river flow allowances by Management Catchment (use 1961 to 1990 baseline)						
Management	Allowance	Total potential	Total potential	Total potential		
Catchment	category	change	change	change		
		anticipated for	anticipated for	anticipated for		
		'2020s'	'2050s'	'2080s'		
		(2015 to 39)	(2040 to 2069)	(2070 to 2125)		
Upper and	Upper end	24%	30%	58%		
Bedford	Higher central	10%	11%	30%		
Ouse	Central	5%	4%	19%		
Cam and Ely	Upper End	21%	22%	45%		
Ouse	Higher Central	7%	5%	19%		
	Central	2%	-2%	9%		
Old Bedford	Upper End	23%	22%	39%		
and Middle	Higher central	9%	4%	15%		
Level	Central	3%	-3%	6%		
North West	Upper End	30%	34%	57%		
Norfolk	Higher central	18%	18%	33%		
	Central	13%	11%	23%		
North	Upper End	26%	27%	48%		
Norfolk	Higher central	13%	11%	24%		
Rivers	Central	7%	4%	14%		
Broadland	Upper End	27%	27%	44%		
Rivers	Higher central	14%	10%	20%		
	Central	8%	3%	11%		
East Suffolk	Upper End	25%	29%	54%		
	Higher central	13%	13%	29%		
	Central	8%	7%	19%		
Combined	Upper End	27%	37%	72%		
Essex	Higher central	13%	16%	38%		
	Central	7%	8%	25%		

For peak river flow allowances and a visual representation of the above, please see Tables 1 and 2 below.

South Essex	Upper End	22%	27%	48%
	Higher central	11%	11%	26%
	Central	6%	5%	17%

If you are not sure which management catchment your site falls within, please use the guidance and link to the peak river flow map, which can be found at:

Table 2: Using peak river flow allowances for flood risk assessments						
Flood Zone	Essential Infrastructure	Highly Vulnerable	More Vulnerable	Less Vulnerable	Water Compatible	
2	higher central ¹	central ²	central ²	central	central	
3a	higher central ¹	X	central ²	central	central	
3b	higher central ¹	X	X	X	central	

X – Development should not be permitted

If (exceptionally) development is considered appropriate when not in accordance with flood zone vulnerability categories, then it would be appropriate to use the higher central allowance.

¹ For NSIPs, the 'upper end' allowance should be used to assess a credible maximum climate change scenario.

² For large urban settlement extensions or developments that form new communities, the credible maximum climate change scenario must be assessed. In these circumstances, you should use the 'upper end' allowance.

There may be circumstances where local evidence supports the use of other data or allowances. Where you think this is the case we may want to check this data and how you propose to use it.

Assessing off-site impacts and calculating floodplain compensation

The appropriate allowance to assess off-site impacts and calculation floodplain compensation requirements depends on the land uses in affected areas.

The '**central**' allowance should be used in most cases. However, the '**higher central**' allowance should be used when the affected area contains essential infrastructure.

5) Development in tidal flood risk areas

For flood risk assessments and strategic flood risk assessments, assess both the **higher central** and **upper end** allowances for all development vulnerability classes (see table 3 below).

For NSIPs and large urban settlement extensions or developments that form new communities, the **credible maximum climate change scenario** should be assessed (sea level rise and sensitivity test allowances for offshore wind speed and extreme wave height and storm surge uplift). To assess the flood risk from a high impact climate change scenario, you should use the H⁺⁺ allowance of 1.9m for the total sea level rise to 2100.

Table 3: sea level allowances for each epoch in mm for each year (based on a 1981 to 2000 baseline) – the total sea level risk for each epoch is in brackets

Area of England	Allowance	2000 to 2035 (mm)	2036 to 2065 (mm)	2066 to 2095 (mm)	2096 to 2125 (mm)	Cumulative rise 2000 to 2125 (metres)
Anglian	Higher	5.8	8.7	11.6	13	1.20
	central	(203)	(261)	(348)	(390)	
Anglian	Upper end	7	11.3	15.8	18.1	1.60
		(245)	(339)	(474)	(543)	
South east	Higher	5.7	8.7	11.6	13.1	1.20
	central	(200)	(261)	(348)	(393)	
South east	Upper end	6.9	11.3	15.8	18.2	1.60
		(242)	(339)	(474)	(546)	

6) Tidal flood risk mitigation

For planning consultations where we are a statutory consultee and our flood risk standing advice does not apply, we use the following benchmarks to inform flood risk mitigation for different <u>vulnerability</u> <u>classifications</u>. These are a guide only. We strongly recommend you contact us at the preplanning application stage to confirm this on a case by case basis. Please note you may be charged for this advice. For planning consultations where we are not a statutory consultee or our flood risk standing advice applies, we recommend that local planning authorities and developers use these benchmarks but we do not expect to be consulted.

- For development classed as essential Infrastructure, highly vulnerable development and more vulnerable development, our minimum benchmark for flood risk mitigation is the '**upper end**' climate change allowance for the development lifetime (including decommissioning where relevant).
- For water compatible or less vulnerable development (e.g. commercial), our minimum benchmark for flood risk mitigation is the 'higher central' climate change allowance for the development lifetime. In sensitive locations it may be necessary to use the 'upper end' allowance to inform built in resilience.

If you are using our 2018 Coastal Flood Modelling Data outputs:

The **upper end** allowance become progressively higher each year than the climate change flood level outputs used in our current 2018 coastal flood model. So as an approximation we recommend that the following uplift values are added on to the on-site climate change flood levels provided in the Product 4:

- For development lifetimes extending to 2122, add 0.34m
- For development lifetimes extending to 2123, add 0.36m
- For development lifetimes extending to 2124, add 0.38m
- For development lifetimes extending to 2125, add 0.40m

If the proposed development is greater than 30 houses and the flood zone is in an open-coast location, we recommend that a more accurate impact of the increased upper end flood levels on the overtopping on-site flood levels is modelled by rerunning our coastal overtopping model with the new flood levels; you can obtain the model from us with a Product 6 and 7 request. If the site is located within a small or constrained tidal or coastal floodplain then regardless of the size of the development, you may also need to undertake remodelling of the flood levels to obtain an accurate assessment of the impacts of climate change; please contact us for advice (contact details in Section 8 below).

If you are using our Broads 2008 Flood Modelling Data outputs:

For the **upper end** allowance, please add the following uplift values onto the climate change flood levels provided in the Product 4:

- For development lifetimes extending to 2122, add 0.34m
- For development lifetimes extending to 2123, add 0.36m
- For development lifetimes extending to 2124, add 0.38m
- For development lifetimes extending to 2125, add 0.40m

If you are using our 2008 Thames Flood Modelling Data outputs:

Please add the appropriate climate change allowances for the South East River Basin District onto the present day flood levels obtained in the Product 4, starting from a base year of 2005. The allowances should be applied to the year appropriate to the respective development lifetime for residential or commercial developments.

** **note****: We anticipate that there will be updated flood modelling outputs available for the Thames Estuary in mid-2022. Developers preparing Flood Risk Assessments for developments in this area should check for availability of new data with the East Anglia (East) PSO team (contact details in Section 8 below).

There may be circumstances where local evidence supports the use of other data or allowances. Where you think this is the case, we may want to check this data and how you propose to use it.

7) Assessment of climate change impacts for Surface Water Management

Please see the latest advice on the use of Peak Rainfall Intensity climate change allowances, which can be found here:

The Environment Agency is not a statutory consultee to the land use planning system for the consideration of surface water flood risk and management. We therefore recommend that you contact the relevant Lead Local Flood Authority (contact details listed below) to discuss Flood Risk Assessment requirements to support your development's surface water management proposals.

Cambridgeshire County Council - <u>fr.planning@cambridgeshire.gov.uk</u> Central Bedfordshire Council – <u>floodrisk@centralbedfordshire.gov.uk</u> Bedford Borough Council – <u>floodrisk@bedford.gov.uk</u> Milton Keynes Council – <u>llfa@milton-keynes.gov.uk</u> Buckinghamshire County Council - <u>floodmanagement@buckscc.gov.uk</u> Herts County Council - <u>floodandwatermanagement@hertscc.gov.uk</u> Northamptonshire County Council - <u>floodandwater@northamptonshire.gov.uk</u> Northamptonshire County Council - <u>floodandwater@northamptonshire.gov.uk</u> Suffolk County Council – <u>llfa@norfolk.gov.uk</u> Suffolk County Council – <u>suds@essex.gov.uk</u> Thurrock Council – <u>TransportDevelopment@thurrock.gov.uk</u> Southend-on-Sea Council – <u>llfa@southend.gov.uk</u>

8) Our Service

Non-chargeable service

We will give a free opinion on:

- What climate change allowance to apply to a particular development type
- Which technical approach is suitable in the FRA

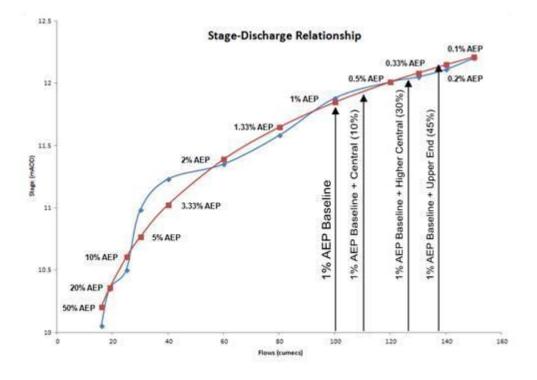
Chargeable service:

• Review of climate change impacts using intermediate and detailed technical approaches (i.e. modelling review)

• Assessment and review of proposals for managed adaptation.

Contact Details

For East Anglia (Great Ouse Catchment): planning.brampton@environment-agency.gov.uk


For East Anglia (East): planning.ipswich@environment-agency.gov.uk

Appendix 1 – Further information on the Intermediate approach.

1) The methodology the chart is based on does not produce an accurate stage-discharge rating and is a simplified methodology for producing flood levels that can be applied in low risk small-scale development situations.

2) The method should not be applied where there is existing detailed modelled climate change outputs that use the new allowances. In such circumstances, the 'with climate change' modelled scenarios should be applied.

An example stage-discharge relationship is shown below.

Appendix E

THAMES WATER CORRESPONDENCE 11.

Fagnano, Mattia

To: Subject: Giddings, Jason RE: PPLA DS6096990 Land North Of Henham Road, Elsenham, Bishop's Stortford, CM22 6DH

From: <u>DEVELOPER.SERVICES@THAMESWATER.CO.U</u> <<u>DEVELOPER.SERVICES@THAMESWATER.CO.UK</u>> Sent: 12 July 2022 12:38

To: Harrison Cockrill

Cc: Andrew Bond

Subject: PPLA DS6096990 Land North Of Henham Road, Elsenham, Bishop's Stortford, CM22 6DH

Dear Harrison,

Thank you for the pre-planning enquiry for the proposed development at the above location.

In order to assess your application, please provide the following information:

Foul water

- 1. What is the propose pump rate and frequency of pumping?
- 2. Which existing public sewer do you intend to connect your drains to? If there are multiple sewers you intend to connect to, please confirm the split of development per connection point.

Surface water

- 1. Please provide your surface water drainage strategy detailing your approach to the disposal hierarchy.
- 2. Are the connections via gravity or pumped? (please provide pump rate and frequency of pumping if applicable)
- 3. What is the proposed flow rate?
- 4. What is the impermeable area of the site?
- 5. Where are the proposed connection points? If there are multiple connections, please provide the split of impermeable area per connection point.

Kind regards, Leigh

Leigh Khan Developer Services – Adoptions Engineer Office: 0800 009 3921 Mobile: developer.services@thameswater.co.uk

Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at <u>developers.thameswater.co.uk</u>

Get advice on making your sewer connection correctly at connectright.org.uk

Original Text

From: Harrison Cockrill

To: developer.services@thameswater.co.u <developer.services@thameswater.co.uk>

CC: Andrew Bond <

Sent: 08.07.22 11:08:22

Subject: Elsenham 2 - Pre-Planning Enquiry

Dear Sir/Madam,

Please see attached Pre-Planning enquiry for our site in Elsenham.

In the Zip Folder I Have attached a site location plan. We are currently waiting for an additional topographical survey to cover the whole site boundary. When this information becomes available I shall forward it on.

Should you require anything further please get in touch.

Kind Regards,

Harrison Cockrill Trainee Engineer

Bloor Homes Eastern

Marauder House, Skyliner Way, Bury St Edmunds, Suffolk, IP32 7YA

Tel: 01284 752295 Email:

Disclaimer

Any opinions expressed in the email are those of the individual and not necessarily any Bloor Group company. This email and any files transmitted with it are confidential and solely for the use of the intended recipient. If you are not the intended recipient or the person responsible for delivering it to the intended recipient, be advised that you have received this email in error and that any dissemination, distribution, copying or use is strictly prohibited. All correspondence sent subject to contract and without prejudice.

If you have received this email in error, or if you are concerned with the content of this email please email to: postmaster@bloorhomes.com

The contents of an attachment to this email may contain software viruses which could damage your own computer system. While the sender has taken every reasonable precaution to minimise this risk, we cannot accept liability for any damage which you sustain as a result of software viruses. You should carry out your own virus checks before opening any attachments to this email.

Bloor Homes Ltd, Registered in England & Wales No: 2164993, Registered Office: Ashby Road, Measham DE12 7JP

For more information about Bloor Homes visit

Visit us online <u>www.thameswater.co.uk</u>, follow us on twitter <u>www.twitter.com/thameswater</u> or find us on <u>www.facebook.com/thameswater</u>. We're happy to help you 24/7.

Thames Water Limited (company number 2366623) and Thames Water Utilities Limited (company number 2366661) are companies registered in England and Wales, both are registered at Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB. This email is confidential and is intended only for the use of the person it was sent to. Any views

or opinions in this email are those of the author and don't necessarily represent those of Thames Water Limited or its subsidiaries. If you aren't the intended recipient of this email, please don't copy, use, forward or disclose its contents to any other person – please destroy and delete the message and any attachments from your system.

Appendix F

GREENFIELD RUNOFF

11.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Mattia	Fagnan	0			Site Details			
Site name:						Latitude:	51.92015° N		
Site name:	Elsenr	nam Ph 2	2			Longitude:	0.22961° E		
Site location:	Elsenł	nam				Longitude.	0.22901 E		
in line with Environme	ent Agency he SuDS N formation	y guidance ⁄Ianual C7 on greenfie	e "Rainfall ru 53 (Ciria, 20 eld runoff ra	unoff managem 015) and the ne	nent for dev on-statutor	y standards for SuDS	721598945 Jul 28 2022 14:30		
Runoff estimati	ion app	. [IH124						
Site characteris	stics					Notes			
Total site area (ha): 5.46					(1) Is Q _{BAR} < 2.0 I/s/ha?			
Methodology									
Q _{BAR} estimation r				SPR and SA	d SAAR When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates				
SPR estimation n				SOIL type		at 2.0 l/s/ha.			
Soil characteris	stics	Defau	lt	Edited					
SOIL type:		3	3			(2) Are flow rates < 5.0 I/s?			
HOST class:		N/A	Ν	J/A					
SPR/SPRHOST:		0.37	0	0.37		Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other			
Hydrological cł	naracte	ristics	Defa	Edited 604		materials is possible. Lower cons	•		
SAAR (mm):		[604			where the blockage risk is addressed by using appropriate drainage elements.			
-lydrological regio	Hydrological region:		6	6		(3) Is SPR/SPRHOST ≤ 0.3?			
Growth curve factor 1 year:		0.85	35 0.85						
Growth curve factor 30 years:		2.3	2.3	3	Where groundwater levels are low enough the use of				
Growth curve factor 100 years:		3.19		19	soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.				
Growth curve factor 200 years:		3.74 3.74		74					

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	13.2	13.2
1 in 1 year (l/s):	11.22	11.22
1 in 30 years (l/s):	30.36	30.36
1 in 100 year (l/s):	42.1	42.1
1 in 200 years (l/s):	49.36	49.36

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix G

DRAINAGE STRATEGY

11