UKHSA publishes a weekly national influenza and COVID-19 surveillance report which summaries the information from the surveillance systems which are used to monitor influenza, COVID-19 and other seasonal respiratory viruses in England.

Additional figures based on these surveillance systems are included in this slide set.

The figures presented in this slide set are based on data from week 33 (between 15 August and 21 August 2022).
Contents

1) COVID-19 Pandemic Overview
2) Confirmed COVID-19 episodes in England
3) Respiratory Datamart system (England)
4) Second generation surveillance system (SGSS)
5) Community surveillance
6) Surveillance in ‘educational-age’ cohorts
7) Secondary Care surveillance
8) Mortality surveillance
9) Possible reinfections in England
10) Co/secondary infections with COVID-19
COVID-19 Pandemic Overview
Confirmed COVID-19 episodes tested under Pillar 1, by sample week, since week 5 2020

Sample Week

Number of cases

Pillar 1 cases
Confirmed COVID-19 episodes tested under Pillar 2, by sample week, since week 5 2020

Number of cases

Sample Week
Weekly overall hospital and ICU/HDU admission rates per 100,000 of new COVID-19 cases reported through SARI Watch, England since week 12 2020
Since 1 April 2022, free universal symptomatic and asymptomatic testing for the general public in England is no longer available, as outlined in the plan for living with COVID-19. Data should be interpreted in the context of this change to testing.
Confirmed COVID-19 episodes in England
Confirmed COVID-19 episodes in England

Data Information

• From the week 32 report onwards, case rates have been updated to use the latest ONS population estimates for mid-2020. Previously case rates were calculated using the mid-2019 population estimates.

• From 11 January 2022 the requirement for confirmatory PCR testing in individuals who test positive using a lateral flow device was temporarily removed.

• Rates by ethnicity and IMD quantile will continue to be presented using the mid-2019 estimates, until the mid-2020 estimates become available.

• From 31 January 2022, UKHSA moved all COVID-19 case reporting in England to use a new episode-based definition which includes possible reinfections. Each infection episode is counted separately if there are at least 91 days between positive test results (PCR or LFD). Each infection episode begins with the earliest positive specimen date. Further information can be found on the UK COVID-19 dashboard.

• Since 1 April 2022, free universal symptomatic and asymptomatic testing for the general public in England is no longer available, as outlined in the plan for living with COVID-19. As such, there will be a reduction in the reporting of data obtained through Pillar 2 from April 2022 onwards. Data in this report should be interpreted in the context of this change to testing. Public health guidance remains in place for cases and their close contacts.
Confirmed COVID-19 episodes tested under Pillar 2, based on sample week with overall weekly PCR positivity for Pillar 2 (%)
Weekly confirmed COVID-19 case rates per 100,000, by episode, tested under Pillar 2, by sex

Week number

Case rate per 100,000

Male

Female
Weekly confirmed COVID-19 case rates per 100,000, by episode, tested under Pillar 2, by age group
Weekly PCR positivity (%) of confirmed COVID-19 cases tested overall and by sex under Pillar 2
Weekly PCR positivity (%) of confirmed COVID-19 cases tested under Pillar 2, by male and age group
Weekly PCR positivity (%) of confirmed COVID-19 cases tested under Pillar 2, by female and age group
Weekly confirmed COVID-19 case rates by episode, per 100,000 population (Pillar 2), by UKHSA centres and sample week
Weekly PCR positivity of confirmed COVID-19 cases tested under Pillar 2 (%) by UKHSA centres and sample week.
Weekly incidence per 100,000 population by ethnicity (Pillar 2), England

- White
- Black / African / Caribbean / Black British
- Other Asian / Asian British
- Indian (Asian or Asian British)
- Pakistani (Asian or Asian British)
- Mixed / Multiple ethnic groups
- Other ethnic group

The graph shows the weekly incidence rate per 100,000 population for different ethnic groups in England from week 34 to week 32.
Weekly COVID-19 episodes tested under Pillar 1, per 100,000 population by age group and region, weeks 24 to 33
Weekly COVID-19 episodes tested under Pillar 2, per 100,000 population by age group and region, weeks 24 to 33
Weekly COVID-19 episodes tested under Pillar 1, per 100,000 population by ethnicity and region, weeks 24 to 33
Weekly COVID-19 episodes tested under Pillar 2 per 100,000 population by ethnicity and region, weeks 24 to 33

- East Midlands
- East of England
- London
- North East
- North West
- South East
- South West
- West Midlands
- Yorkshire and Humber

Legend:
- Black/African/Caribbean/Black British
- Indian (Asian or British)
- Mixed/Multiple Ethnic Groups
- Other Asian/Asian British
- Other ethnic group
- Pakistani (Asian or British)
- White
Weekly COVID-19 rate tested under Pillar 1, per 100,000 population by IMD quintile (1 being the most deprived and 5 being the least deprived)

*incidence rates have been calculated using the mid-2019 ONS population estimates
Weekly COVID-19 rate tested under Pillar 2, per 100,000 population by IMD quintile (1 being the most deprived and 5 being the least deprived)
Weekly rate of COVID-19 episodes per 100,000 population (Pillar 2), by upper-tier local authority, England (box shows enlarged map of London area)
Cumulative rate of COVID-19 episodes per 100,000 population tested under Pillar 1, by upper-tier local authority, England (box shows enlarged map of London area)
Cumulative rate of COVID-19 episodes per 100,000 population tested under Pillar 2, by upper-tier local authority, England (box shows enlarged map of London area)
Respiratory Datamart system (England)
Respiratory DataMart – Influenza subtypes

Influenza A(H1N1)pdm09

- Positive samples
- % 2018/19
- % 2019/20
- % 2020/21
- % 2021/22
- % 2022/23

Week number:
27 31 35 39 43 47 51 3 7 11 15 19 23

Number of positive samples
0 10 20 30

Proportion positive (%)
0 5 10 15 20 25 30

Influenza A(H3N2)

- Positive samples
- % 2018/19
- % 2019/20
- % 2020/21
- % 2021/22
- % 2022/23

Week number:
27 31 35 39 43 47 51 3 7 11 15 19 23

Number of positive samples
0 50 100 150 200 250

Proportion positive (%)
0 5 10 15 20 25 30

Influenza A(not subtyped)

- Positive samples
- % 2018/19
- % 2019/20
- % 2020/21
- % 2021/22
- % 2022/23

Week number:
27 31 35 39 43 47 51 3 7 11 15 19 23

Number of positive samples
0 50 100 150 200 250

Proportion positive (%)
0 5 10 15 20 25 30

Influenza B

- Positive samples
- % 2018/19
- % 2019/20
- % 2020/21
- % 2021/22
- % 2022/23

Week number:
27 31 35 39 43 47 51 3 7 11 15 19 23

Number of positive samples
0 50 100 150 200 250

Proportion positive (%)
0 5 10 15 20 25 30

25 August 2022
Respiratory DataMart – Respiratory syncytial virus (RSV)
Respiratory DataMart – Respiratory syncytial virus (RSV) weekly positivity by UKHSA region

North of England
South of England
London
Midlands and East of England
Second generation surveillance system (SGSS)
The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution. Previously, this data was presented by report date however is now presented by specimen date.
The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution. Previously, this data was presented by report date however is now presented by specimen date.
The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution. Previously, this data was presented by report date however is now presented by specimen date.
The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution.
SGSS reported Parainfluenza cases by region (all ages)

The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution.
SGSS reported Rhinovirus cases by region (all ages)

The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution.
SGSS reported hMPV cases by region (all ages)

The presented figures are based on laboratory reports through SGSS. Testing and reporting procedures vary by virus, UKHSA centre and over time, including short-term trends in testing. Therefore comparisons should be done with caution.
Community surveillance
Acute respiratory infection (ARI) outbreaks linked to educational settings

Data Information

We report on new acute respiratory infection (ARI) incidents reported to Health Protection Teams (HPTs) and entered on HPZone in the previous reporting week in educational settings by locality. The incidents captured on HPZone represent a subset of all ongoing clusters and outbreaks in England. A variety of arrangements are in place with local authorities and other stakeholders supporting HPTs, however data may not routinely be documented on HPZone. As a result, the number of outbreaks reported for some of the regions are underestimates.
Number of acute respiratory infection outbreaks reported to UKHSA by type of educational setting, England
Number of acute respiratory infection outbreaks by type of educational setting, England

End of academic year total
Week 36 2020-34 2021

<table>
<thead>
<tr>
<th>PHE Centres</th>
<th>Nursery</th>
<th>Primary School</th>
<th>Secondary School</th>
<th>Combined</th>
<th>Special Educational Needs (SEN) schools</th>
<th>College University</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>846</td>
<td>2125</td>
<td>2122</td>
<td>40</td>
<td>666</td>
<td>268</td>
<td>6067</td>
</tr>
</tbody>
</table>

Week 33 2022
Main table

<table>
<thead>
<tr>
<th>PHE Centres</th>
<th>Nursery</th>
<th>Primary School</th>
<th>Secondary School</th>
<th>Combined</th>
<th>Special Educational Needs (SEN) schools</th>
<th>College University</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Midlands Centre</td>
<td>72 (0)</td>
<td>59 (0)</td>
<td>30 (0)</td>
<td>14 (0)</td>
<td>170 (0)</td>
<td>6 (0)</td>
<td>351 (0)</td>
</tr>
<tr>
<td>East of England Centre</td>
<td>0 (0)</td>
<td>12 (0)</td>
<td>8 (0)</td>
<td>3 (0)</td>
<td>11 (0)</td>
<td>2 (0)</td>
<td>36 (0)</td>
</tr>
<tr>
<td>London Centre</td>
<td>370 (0)</td>
<td>1093 (0)</td>
<td>260 (0)</td>
<td>59 (0)</td>
<td>226 (1)</td>
<td>30 (0)</td>
<td>2038 (1)</td>
</tr>
<tr>
<td>North East Centre</td>
<td>0 (0)</td>
<td>2 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (0)</td>
<td>0 (0)</td>
<td>5 (0)</td>
</tr>
<tr>
<td>North West Center</td>
<td>13 (0)</td>
<td>31 (0)</td>
<td>13 (0)</td>
<td>4 (0)</td>
<td>127 (0)</td>
<td>7 (0)</td>
<td>195 (0)</td>
</tr>
<tr>
<td>East South Centre</td>
<td>43 (0)</td>
<td>389 (0)</td>
<td>127 (0)</td>
<td>34 (0)</td>
<td>291 (0)</td>
<td>7 (0)</td>
<td>891 (0)</td>
</tr>
<tr>
<td>South West Centre</td>
<td>5 (0)</td>
<td>65 (0)</td>
<td>79 (0)</td>
<td>37 (0)</td>
<td>256 (0)</td>
<td>1 (0)</td>
<td>441 (0)</td>
</tr>
<tr>
<td>West Midlands Centre</td>
<td>19 (0)</td>
<td>74 (0)</td>
<td>52 (0)</td>
<td>7 (0)</td>
<td>142 (0)</td>
<td>6 (0)</td>
<td>300 (0)</td>
</tr>
<tr>
<td>Yorkshire & the Humber</td>
<td>17 (0)</td>
<td>36 (0)</td>
<td>27 (0)</td>
<td>5 (0)</td>
<td>84 (0)</td>
<td>0 (0)</td>
<td>169 (0)</td>
</tr>
<tr>
<td>Total</td>
<td>539 (0)</td>
<td>1761 (0)</td>
<td>596 (0)</td>
<td>161 (0)</td>
<td>1306 (0)</td>
<td>59 (0)</td>
<td>4422 (0)</td>
</tr>
</tbody>
</table>

* Number of acute respiratory infection for the most recent week in brackets
Secondary Care surveillance
Weekly admission rates for hospital and ICU/HDU laboratory confirmed COVID-19 cases reported through SARI Watch, week 33

Source: UKHSA SARI-Watch (Severe Acute Respiratory Infection Watch, formerly CHESS).

*Only NHS Acute trusts that have reported ≥1 day in the past week; excludes Specialist trusts. Acute NHS trusts (including Specialist trusts) reporting into SARI-Watch COVID-19 hospitalisation surveillance are typically around 100 per week. This was 87 for the hospitalisation (all levels of care) indicator in week 15 August 2022 to 21 August inclusive and 77 trusts for the ICU/HDU indicator. For the maps, as Specialist trusts are excluded, the number of trusts providing data on COVID-19 hospitalisations in week ending 21 August 2022 was 79 and 71 for ICU/HDU admissions for COVID-19.
Age/sex pyramid of hospitalisations (all levels of care) for COVID-19, data from sentinel acute NHS trusts, England

(a) Peak of 2nd wave (week 53 2020 to week 3 2021) n= 6,359

(b) Most recent 4 weeks (week 30 2022 to 33 2022) n= 1,079

Reporting trusts=22

Reporting trusts=12
Age/sex pyramid for admissions to ICU/HDU for COVID-19, mandatory case level data, acute NHS trusts, England Security Agency

(a) Peak of 2nd wave (week 53 2020 to week 3 2021) n= 3,349

(b) Most recent 4 weeks (week 30 2022 to 33 2022) n=142

Reporting trusts=70

Reporting trusts=30
Laboratory confirmed admissions for COVID-19, to acute NHS trusts, by level of care and ethnicity

(a) Peak of 2nd wave (week 53 2020 to week 3 2021)

Reporting trusts
Lower level of care=21
ICU/HDU=68

(b) Most recent 4 weeks (week 30 2022 to 33 2022)

Reporting trusts
Lower level of care=12
ICU/HDU=30
Weekly COVID-19 hospitalisation rate per 100,000 trust catchment population by age group and region, weeks 24 to 33
Caveat: From week 24 (2021) the ethnicity analysis is based on a new method for assigning ethnicity, developed by UKHSA. The previous method used the most recent ethnicity recorded through linkage to Hospital Episode Statistics. However, this method led to unfeasibly high rates in the ‘Other’ ethnic group when applied to COVID-19 cases, hospitalisation or mortality. The new method uses the most frequent ethnicity recorded through linkage to Hospital Episode Statistics, unless the most frequent was ‘Other’ when the second most frequent was chosen.
Caveat: From week (24 2021) the ethnicity analysis is based on a new method for assigning ethnicity, developed by UKHSA. The previous method used the most recent ethnicity recorded through linkage to Hospital Episode Statistics. However, this method led to unfeasibly high rates in the ‘Other’ ethnic group when applied to COVID-19 cases, hospitalisation or mortality. The new method uses the most frequent ethnicity recorded through linkage to Hospital Episode Statistics, unless the most frequent was ‘Other’ when the second most frequent was chosen.
COVID-19 as primary reason for admission among SARS-CoV-2 positive patient by week of admission

Notes
1) Case-level sentinel data from SARI-Watch, form week 35 2021 (commencing 30 August 2021) to week 33 2022 (ending 21 August 2022) inclusive
2) Total 27104 records in period of analysis, of which 35% (n=9498) had COVID-19 as primary reason for admission ('Yes').
3) SARS-CoV-2 patients with evidence of COVID-19 treatment but have 'No' or 'Unknown' for COVID-19 as primary reason for admission (n=924) are reassigned to COVID-19 as primary reason of admission ('Yes').
4) Reassignment increases COVID-19 as primary reason for admission ('Yes') from 9498 to 10422
5) 23% (6327/27104) of total records in this period have missing data on the ‘Admission due to COVID-19’ indicator – these are excluded from analysis
6) Caveats: London trusts under-represented and most recent weeks are subject to retrospective updates

Last updated
25 August 2022
Mortality surveillance
Cumulative mortality rate of COVID-19 cases per 100,000 population tested under Pillar 1 and 2 since the beginning of the pandemic by 28 day definition
Co/secondary infections with COVID-19
Caveat - undertesting for other pathogens may result in an underestimate of co/secondary infection cases.

Preceding/co-/secondary infections refers to when a patient has a COVID-19 infection with one or more other pathogen (Please see Appendix 1 – Pre-/co-/secondary infection with COVID-19 definitions.)

- Preceding infection: COVID-19 acquired after another pathogen
- Co-infection: COVID-19 and other pathogen acquired at the same time
- Secondary infection: COVID-19 acquired before another pathogen

Numbers of pre-/co-/secondary infection remain low across UKHSA surveillance systems.

For patients with severe respiratory failure requiring Extra Corporeal Membrane Oxygenation (ECMO), analysis of data from five adult ECMO centres in England indicates that among patients with severe respiratory failure due to COVID-19, almost a third of these have co/secondary infections.

Published data analysis from pandemic wave 1 (W-1) indicates increased mortality associated with COVID-19 and influenza, key bacterial and fungal infections and invasive pneumococcal disease (IPD) in comparison to patients without co/secondary infection.

Data analysis from W-1 indicates that Aspergillus and candidemia cases have increased risk of mortality in comparison to patients without co/secondary infection.
Co/secondary infections among patients with severe respiratory failure requiring Extra Corporeal Membrane Oxygenation (ECMO)

Analysis is based on cumulative data from five adult ECMO centres in England. Data for the current and previous seasons are presented. Each season commences around October (ISO week 40) ending in September in the following year (ISO week 39).

Data for the current season (2021-22) is from 4 October 2021 to 15 May 2022 inclusive (week 40 2021 to week 19 2022). This period includes effects from the Delta and Omicron waves of the pandemic. The 2020-21 season is from 28 September 2020 to 3 October 2021 inclusive and includes effects from the Alpha and Delta waves. The 2019-20 season is from 30 September 2019 to 27 September 2020 inclusive and includes effects from the original Wuhan strain.

In the 2021-22 season, 41% (31/76) of ECMO patients admitted for severe respiratory failure due to laboratory confirmed COVID-19 had clinically significant co/secondary infections. In the previous season (2020-21) this proportion was 30% (134/402). In the 2019-20 season this proportion was 33% (79/236).

In all three seasons the majority of clinically significant co/secondary infections among respiratory failure COVID-19 cases comprised Gram-negative bacilli from the order Enterobacterales:

- 45% (14/31) in the current season 2021-22
- 32% (43/134) in 2020-21 and 46% (36/79) in 2019-20. The decrease in 2020-21 compared to 2019-20 reached borderline significance (p=0.057). (In the last data assessment, the decrease over this period was statistically significant but since then there were further updates to the data from ECMO centres). No change was detected in other key pathogens between these two time periods.

HCAI, Fungal, AMR, AMU & Sepsis Division
Updates

From 31 January 2022, UKHSA has changed the COVID-19 case definition to include multiple infection episodes. Reported co-/secondary/preceding infections in England now use the new definition, revising all cases back to the beginning of the pandemic.

The Unified Infection Dataset (UID) project has been extended to incorporate the Co- and Secondary infections with COVID-19 datasets.

The following outputs included in this section have been produced via the UID, combining previously separate data pipelines:

- Key HCAI bacterial and fungal specimens reported to SGSS and HCAI data capture system
- Respiratory viral specimens reported to SGSS and Respiratory Datamart
- Fungal specimens reported to mycology reference lab (MRL)

The Co- and secondary infections team have undertaken an extensive data validation exercise which has identified additional respiratory viral specimens from Respiratory Datamart and allowed us to make improvements to the methodologies. Preceding infections for all pipelines (other pathogen infections occurring before COVID-19 specimen) are now included. Please note, all cases since January 2020 have been revised in line with this validation.

Data are provisional and subject to change due to possible delayed reporting of microbiological samples.
Number of COVID-19 patient-episodes with bacterial, fungal or viral infections in COVID-19 patients diagnosed in England during wave 3*, by infection type and timing of diagnosis

<table>
<thead>
<tr>
<th>Bacterial/ fungal/ viral infection by specimen type</th>
<th>COVID-19 patient-episodes with bacterial/ fungal/ viral infection</th>
<th>Timing of bacterial/fungal/viral diagnosis in relation to COVID-19 diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preceding infection</td>
<td>Coinfection</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>% of COVID cases</td>
</tr>
<tr>
<td>Bacterial/fungal bloodstream & lower respiratory infection</td>
<td>255</td>
<td><0.01</td>
</tr>
<tr>
<td>Bacterial/fungal bloodstream infection</td>
<td>8,189</td>
<td>0.06</td>
</tr>
<tr>
<td>Bacterial/fungal lower respiratory infection</td>
<td>2,646</td>
<td>0.02</td>
</tr>
<tr>
<td>Clostridioides difficile infection</td>
<td>1,040</td>
<td>0.01</td>
</tr>
<tr>
<td>Fungal respiratory/bloodstream infection (MRL)‡</td>
<td>198</td>
<td><0.01</td>
</tr>
<tr>
<td>Other respiratory virus infection</td>
<td>2,980</td>
<td>0.02</td>
</tr>
<tr>
<td>Any site†</td>
<td>15,345</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Please see appendix 1 for pre-/co-/secondary infection definitions with SARS-CoV-2
Please note patients can have multiple COVID-19 infection-episodes, numbers here do not reflect the number of patients.

* SARS-CoV2 specimen dates from 27 Apr 2021 to 22 May 2022 (N=14,778,196). Last updated 22 Jun 2022.
‡ Definition for secondary infection differs for MRL specimens - detection within 60 days
† includes the combination Bacterial/fungal bloodstream & *Clostridioides difficile* infection (12 preceding, 1 coinfection & 20 secondary), Bacterial/fungal bloodstream, lower respiratory & *Clostridioides difficile* infection (1 secondary), & Bacterial/fungal lower respiratory & *Clostridioides difficile* infection (3 secondary)

Key findings:
- 0.1% of COVID-19 patient-episodes had a bacterial, fungal or other respiratory viral infection detected in either the 28 days prior or following (60 days following for MRL) their COVID-19 diagnosis
- Prevalence in W3 lower than W2 and W1; however, patient-episodes of COVID-19 and another key infection are still higher in W3 than W1 (15,345 vs 4,636, respectively)
- Most infections with key organisms were categorised as secondary infections (42.78%).

25 August 2022
Most frequent bacterial/fungal species in blood or lower respiratory tract specimens, by timing of diagnosis, in COVID-19 patients diagnosed in England during wave 3.

Key findings:

In wave 3, the most frequent bacterial/fungal organisms identified from blood specimens were *Escherichia coli*, *Staphylococcus aureus* and *Klebsiella pneumoniae* and from respiratory specimens were *Staphylococcus aureus*, *Pseudomonas aeruginosa* and *Klebsiella pneumoniae.*
Key findings:
In wave 3, the most frequent viral organisms identified from respiratory specimens were RSV, rhinovirus and influenza A.
Most frequent fungal species (MRL), by timing of diagnosis, in COVID-19 patients diagnosed in England during wave 3

Key findings:
In wave 3, the most frequent fungal organisms identified were *Aspergillus fumigatus* complex and *Candida albicans*.
COVID-19 co/secondary infection with fungi and vaccine preventable bacteria

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus fumigatus isolates (azole resistant)</td>
<td>46 (4)</td>
<td>120 (2)</td>
<td>137 (12)</td>
<td>303 (18)</td>
</tr>
<tr>
<td>Probable/Proven cases of CAPA*</td>
<td>15</td>
<td>38</td>
<td>44</td>
<td>97</td>
</tr>
<tr>
<td>Candida spp.: Candidemia</td>
<td>63</td>
<td>133</td>
<td>17</td>
<td>213</td>
</tr>
<tr>
<td>Bordetella pertussis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Neisseria meningitidis</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>40</td>
<td>45</td>
<td>14</td>
<td>99</td>
</tr>
</tbody>
</table>

*COVID-19-associated pulmonary aspergillosis

Please note fungal data refers to secondary infections only. Mycology data contains results from Mycology reference laboratory data, Candidaemia is representative of deep infection. One case of osteomyelitis, one case of ventriculitis and one case of endocarditis was documented in wave two. Fungal data are also included in the overall numbers in slides 6-8 but have been stratified here with additional details. *Bordetella pertussis* co-infection is defined as +/- 28 d Culture/PCR (based on pertussis sample date), +/- 28 Serology/Oral fluid (anti-pertussis toxin Ig) (based on pertussis symptom onset date, excluding cases without onset date). *Haemophilus influenzae*, *Neisseria meningitidis* and *Streptococcus pneumoniae* co-infection is defined as +/- 2d. *Legionella*, *Mycoplasma* and gastrointestinal infection data not included. Please note, testing in W1 was not open to the community and therefore W1 cases are predominantly hospitalised patients vs. W2 and W3.
Appendix 1: Pre-/co-/secondary infection definitions with COVID-19

The day pertains to the date of the sample collection that yielded a positive result. These definitions do not apply to persistent COVID-19 patients. Patients with persistent COVID-19 require independent clinical assessment.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Definition co-infection with SARS-CoV-2 †</th>
<th>Definition of infection pre-SARS-CoV-2 infection (other pathogen is primary infection)</th>
<th>Definition of post SARS-CoV-2 secondary infection (SARS-CoV-2 is primary infection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza A</td>
<td>+/- 1d</td>
<td>2.28d*</td>
<td></td>
</tr>
<tr>
<td>Influenza B</td>
<td>+/- 1d</td>
<td>2.28d*</td>
<td></td>
</tr>
<tr>
<td>RSV</td>
<td>+/- 1d</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>Adenovirus</td>
<td>+/- 1d</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>Enterovirus</td>
<td>+/- 1d</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>Human metapneumovirus</td>
<td>+/- 1d</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>Parainfluenza (any subtype)</td>
<td>+/- 1d</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>Seasonal coronavirus</td>
<td>+/- 1d *</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>+/- 1d</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>Co-infections in ECMO patient</td>
<td>Individual case review</td>
<td>Individual case review</td>
<td></td>
</tr>
<tr>
<td>(patients with most severe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clinical respiratory signs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECMO patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood stream and respiratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>infections (bacterial and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fungal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achromobacter xylosidans</td>
<td>+/- 1d</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>Acinetobacter spp.,</td>
<td>+/- 1d</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>+/- 1d</td>
<td>2.28d (pre) 2-60d (post, continually hospitalised patients only)</td>
<td></td>
</tr>
<tr>
<td>Bordetella pertussis</td>
<td>+/- 28 d Culture/PCR (based on pertussis sample date)</td>
<td>2.28d (pre) 2-60d (post, continually hospitalised patients only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+/- 28 Serology/Oral fluid (anti-pertussis toxin lg) (based on pertussis symptom onset date, excluding cases without onset date)</td>
<td>N/A (Pertussis presentation is often delayed)</td>
<td></td>
</tr>
<tr>
<td>Burkholderia cepacia</td>
<td>+/- 1d</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>Candida spp</td>
<td>+/- 1d</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>Chlamydia pneumoniae</td>
<td>0-7d PCR</td>
<td>PCR within 14-28 d (8-13d PCR*)</td>
<td></td>
</tr>
<tr>
<td>Enterobacter spp.,</td>
<td>+/- 1d</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>Enterococcus spp.</td>
<td>+/- 1d</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>+/- 1d</td>
<td>2.28d</td>
<td></td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>+/- 2d</td>
<td>3.28d</td>
<td></td>
</tr>
</tbody>
</table>

Continued overleaf
Appendix 1 continued: Pre-/co-/secondary infection definitions with COVID-19

The day pertains to the date of the sample collection that yielded a positive result. These definitions do not apply to persistent COVID-19 patients. Patients with persistent COVID-19 require independent clinical assessment.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Definition co-infection with SARS-CoV-2 †</th>
<th>Definition of infection pre-SARS-CoV-2 infection (other pathogen is primary infection) or Definition of post SARS-CoV-2 secondary infection (SARS-CoV-2 is primary infection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood stream and respiratory infections (bacterial and fungal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Legionella pneumophila/species</td>
<td>Individual case review</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Mycoplasma pneumoniae</td>
<td>0-7d PCR, IgM serology 0-21d <16y</td>
<td>PCR within 14-28 d (0-13d PCR*)</td>
</tr>
<tr>
<td>Neisseria meningitidis</td>
<td>+/- 2d</td>
<td>3-28d</td>
</tr>
<tr>
<td>Pseudomonas spp.,</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Serratia spp.,</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Coag-neg Staphylococcus (S. haemolyticus)</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Stenotrophomonas spp., (S. malophilia)</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Streptococcus spp. ‡</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>+/- 2d</td>
<td>3-28d</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Individual case review</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>Individual case review</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Pathogens of the immunocompromised (eg HIV)</td>
<td>Individual case review</td>
<td>Individual case review</td>
</tr>
<tr>
<td>HIV</td>
<td>Individual case review</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Gastrointestinal infections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listeria</td>
<td>0-5d *</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>0-5d *</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Shiga toxin-producing E. coli (STEC)</td>
<td>0-5d *</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Norovirus</td>
<td>0-5d *</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Salmonella</td>
<td>0-5d *</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Shigella</td>
<td>0-5d *</td>
<td>Individual case review</td>
</tr>
<tr>
<td>Anaerobes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. difficile</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
<tr>
<td>Bacteroides sp. (B. fragilis and non-fragilis Bacteroides)</td>
<td>+/- 1d</td>
<td>2-28d</td>
</tr>
</tbody>
</table>

See next slides for notes
Appendix 1 continued: Pre-/co-/secondary infection definitions with COVID-19

Notes
† From SARS-CoV-2 first detection date. Not including multiple episodes of SARS-CoV-2 per patient.
* Additional data check required. (Resistance is not detailed, data for MERS is not currently available).
^ Definition post- SARS-CoV-2 secondary infection (SARS-CoV-2 is primary infection). This has been extended from prior 14d secondary infection definition for influenza used by PHE to account for disparities in testing throughout the 28d period after SARS-CoV-2 detection.
‡ Streptococcus species includes the following groups and species:

<table>
<thead>
<tr>
<th>Group</th>
<th>Species/other names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anginosus Group</td>
<td>Streptococcus anginosus; Streptococcus constellatus (Streptococcus constellatus subspecies constellatus; Streptococcus constellatus subspecies pharynges); Streptococcus Group F; Streptococcus intermedius; Streptococcus milleri group; Streptococcus sinensis</td>
</tr>
<tr>
<td>Bovis Group</td>
<td>Streptococcus alactolyticus; Streptococcus bovis untyped; Streptococcus equinus; Streptococcus galolyticus subspecies galolyticus (Streptococcus bovis biotype I); Streptococcus infantarius (Streptococcus infantarius sp infantarius; Streptococcus bovis biotype II); Streptococcus lutifaciens; Streptococcus infantarius subspecies coli (Streptococcus bovis biotype II); Streptococcus pasteurianus (Streptococcus bovis biotype II)</td>
</tr>
<tr>
<td>Mitis Group</td>
<td>Streptococcus cristatus; Streptococcus mitior; Streptococcus mitis; Streptococcus oralis; Streptococcus pseudopneumoniae; Streptococcus infantis; Streptococcus perons</td>
</tr>
<tr>
<td>Mutans Group</td>
<td>Streptococcus mutans; Streptococcus sobrinus</td>
</tr>
<tr>
<td>Other streptococci (including but not limited to)</td>
<td>Anaerobic streptococcus; Streptococcus acidominimus; Streptococcus spp., other named/not fully identified; Streptococcus suis; Streptococcus uberis</td>
</tr>
<tr>
<td>Salivarius Group</td>
<td>Streptococcus vestibularis; Streptococcus thermophilus</td>
</tr>
<tr>
<td>Sanguinis Group</td>
<td>Streptococcus gordonii; Streptococcus massiliensis; Streptococcus parasanguinis; Streptococcus sanguinis</td>
</tr>
<tr>
<td>Streptococcus Group A</td>
<td>Group A; Streptococcus pyogenes; Streptococcus dysgalactiae subspecies equisimilis</td>
</tr>
<tr>
<td>Streptococcus Group B</td>
<td>Group B; Streptococcus agalactiae</td>
</tr>
<tr>
<td>Streptococcus Group C</td>
<td>Group C; Streptococcus dysgalactiae subspecies equisimilis; Streptococcus equi subspecies zooepidemicus</td>
</tr>
<tr>
<td>Streptococcus Group G</td>
<td>Group G; Streptococcus canis; Streptococcus dysgalactiae subspecies equisimilis</td>
</tr>
</tbody>
</table>