

Land South of Henham Road, Elsenham

FLOOD RISK ASSESSMENT & DRAINAGE STRATEGY

REPORT REF NO. 2008170-05A PROJECT NO. 2008170 JUNE 2022

HEAD OFFICE: 3rd Floor, The Hallmark Building, 52-56 Leadenhall Street, London, EC3M 5JE T | 020 7680 4088 ESSEX: 1 - 2 Crescent Court, Billericay, Essex, CM12 9AQ T | 01277 657 677 KENT: Suite 10, Building 40, Churchill Business Centre, Kings Hill, Kent, ME19 4YU T | 01732 752 155 MIDLANDS: Office 3, The Garage Studios, 41-43 St Mary's Gate, Nottingham, NG1 1PU T | 0115 697 0940 SOUTH WEST: City Point, Temple Gate, Bristol, BS1 6PL T | 0117 456 4994 SUFFOLK: Suite 110, Suffolk Enterprise Centre, 44 Felaw Street, Ipswich, IP2 8SJ T | 01473 407 321

CONTENTS

		Page
1.	INTRODUCTION	1
Site	Location	1
Dev	elopment Proposals	2
2.	POLICY CONTEXT	4
Nati	ional Planning Policy Framework	4
Seq	uential Test Requirements	5
Exce	eption Test Requirements	5
3.	BASELINE CONDITIONS	7
Hyd	rology	7
Тор	ography	7
Gro	und Conditions	7
Exis	ting Sewer Infrastructure	8
4.	SOURCES OF FLOODING	10
Floo	d Zone Designation	10
Fluv	rial / Tidal Flooding	11
Pluv	vial Flooding	13
Gro	undwater Flooding	15
Sew	ver Flooding	16
Arti	ficial Sources	16
5.	FLOOD MITIGATION MEASURES	17
Finis	shed Floor Levels	17
Maiı	n river buffer	17
6.	SURFACE WATER DRAINAGE STRATEGY	18
Surf	face Water Drainage Options Consideration	18
Sus	tainable Drainage Systems (SuDS) Hierarchy	19
Sur	face Water Quality	22
Lon	g Term Storage and Urban Creep	22
Fut	ure Maintenance	23

(i)

Half Drain Time			
7.	PROPOSED FOUL WATER DRAINAGE STRATEGY	25	
8.	CONCLUSIONS	26	

APPENDICES

Appendix A	Proposed Development Layout
Appendix B	Topographical Survey
Appendix C	Thames Water Asset Plans and Sewer Survey
Appendix D	Proposed Drainage Strategy
Appendix E	Greenfield Calculations and Proposed Surface Water
	Drainage Calculations
Appendix F	Pollution Hazard Indices Tables
Appendix G	Long Term Storage Calculations
Appendix H	SuDS Maintenance Plan
Appendix I	Climate Change Flood Level Plan

DOCUMENT CONTROL SHEET

REV	ISSUE PURPOSE	AUTHOR	CHECKED	APPROVED	DATE
-	DRAFT	AW	BB	DRAFT	MARCH 2022
-	FOR PLANNING	AW	AW	BB	APRIL 2022
А	FOR PLANNING	AW	AW	BB	JUNE 2022

This report has been prepared for the exclusive use of by Countryside Partnerships PLC. It should not be reproduced in whole or in part, or relied upon by third parties, without the express written authority of Ardent Consulting Engineers.

1. INTRODUCTION

- 1.1. Ardent Consulting Engineers (hereafter referred to as "Ardent") has been commissioned by Countryside Partnerships PLC to undertake a Flood Risk Assessment (FRA) for the Land South of Henham Road, Elsenham (hereafter referred to as `the Site').
- 1.2. The Site is 5.34ha in area and the EA Flood Map shows that the majority of the Site is within Flood Zone 1. There is a small amount of the site, in the southeast corner along the boundary, that is within Flood Zone 2. However, as the development is over 1ha, shows some surface water flooding along the southern boundary and a small section of the development is within Flood Zone 2, a Flood Risk Assessment (FRA) is therefore required to support the planning application for this Site.
- 1.3. The contents of this FRA assess the implications of flood risk on the proposed development. This FRA has been prepared with specific reference to the requirements of National Planning Policy Framework (NPPF) released in July 2021 and the Planning Practice Guidance (PPG), which superseded the Technical Guidance to the NPPF, in March 2014. This report also takes into consideration the requirements within the Non-statutory technical standards for sustainable drainage systems (March 2015) and its Practice Guidance (July 2015).
- 1.4. This FRA has been prepared to support a planning application to be submitted to Uttlesford District Council (UDC).

Site Location

NEAREST POSTCODE	NGR	AREA(ha)	LLFA
CM22 6DG	TL539262	5.34	ECC

1.5. The application site is bound by Henham Road to the north, Hall Road to the west, the EA Main River Stansted Brook to the south and a ditch to the east. The site is located on the eastern edge of the town of Elsenham, as shown in Figure 1-1.

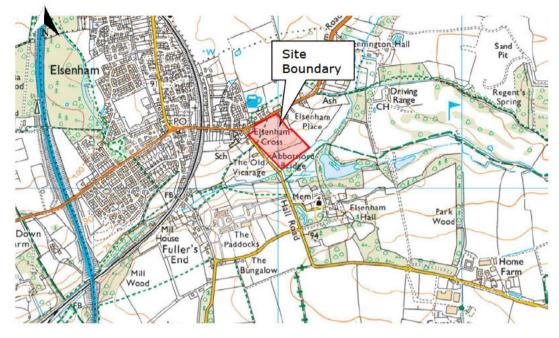


Figure 1-1: Site Location Plan

Development Proposals

- 1.7. The proposal includes the development of the greenfield site south of Henham Road, for 130 residential dwellings with associated parking, landscaping and infrastructure works.
- The proposed development is illustrated in Figure 1-2; refer to Appendix A for the full development proposals.

Figure 1-2: Proposed layout

2. POLICY CONTEXT

National Planning Policy Framework

- 2.1. The National Planning Policy Framework (NPPF) was introduced on 27 March 2012. It was then revised in July 2018, February 2019 and most recently in July 2021; where paragraphs 159 to 169 inclusive establish the Planning Policy relating to flood risk management. The Technical Guide to the NPPF has been superseded by the Planning Practice Guidance (PPG) in March 2014.
- 2.2. It states all plans should apply a sequential, risk-based approach to the location of development – considering all sources of flood risk and the current and future impacts of climate change – to avoid where possible, flood risk to people and property. They should do this and manage residual risk, by:
 - applying the sequential test and then, if necessary, the exception test as set out below;
 - safeguarding land from development that is required, or likely to be required, for current or future flood management;
 - using opportunities provided by new development and improvements in green and other infrastructure to reduce the causes and impacts of flooding, (making as much use as possible of natural flood management techniques as part of an integrated approach to flood risk management); and
 - where climate change is expected to increase flood risk so that some existing development may not be sustainable in the long-term, seeking opportunities to relocate development, including housing, to more sustainable locations.
- 2.7. The Planning Practice Guidance (PPG) provides the methodology required to undertake the Sequential and Exception Tests.

Sustainable Drainage Systems - Non-statutory technical standards for sustainable drainage systems (March 2015)

- 2.8. The Non-statutory technical standards for sustainable drainage systems were published in March 2015. They should be used in conjunction with the Planning Practice Guidance. In addition, the Best Practice Guidance for the Non-statutory technical standards was published in July 2015 by LASOO.
- 2.9. The Local Planning Authority (LPA) may set local requirements for planning permission that have the effect of more stringent requirements than these non-statutory technical standards.
- 2.10. In addition, SuDS should be designed in accordance with CIRIA 753 SuDS Manual, which represents current best practice.

Sequential Test Requirements

2.11. The aim of the sequential test is to steer new development to areas with the lowest risk of flooding from any source. Development should not be allocated or permitted if there are reasonably available sites appropriate for the proposed development in areas with a lower risk of flooding. The strategic flood risk assessment will provide the basis for applying this test. The sequential approach should be used in areas known to be at risk now or in the future from any form of flooding. As only a very small part of the site is located in Flood Zone 2, it is considered that the Sequential Test is not required. However, this should be confirmed with the Local Planning Authority.

Exception Test Requirements

2.1. Table 2 (Flood risk vulnerability classification) of the Planning Practice Guidance (PPG) classes the residential use as More Vulnerable. According to Table 3 (refer to **Table 2-1** below) of the PPG, the developable area of the Site, which is located in Flood Zone 1/2, is not required to undergo the Sequential and Exception Tests and is appropriate for the development.

vuli	od risk nerability ssification e table 2)	Essential infrastructure	Water compatible	Highly vulnerable	More vuinerable	Less vulnerable
	Zone 1	*	~	×	~	~
table 1)	Zone 2	×	~	Exception Test required	~	~
(see	Zone 3a	Exception Test required	~	×	Exception Test required	~
Flood zone	Zone 3b functional floodplain	Exception Test required	~	×	×	×

Table 2-1: Extract from the PPG - Table 3: Flood Risk Vulnerability

Key:

✓ Development is appropriate.

* Development should not be permitted.

3. BASELINE CONDITIONS

Hydrology

3.1. There is an existing Main River, as identified by the Environment Agency, along the southern boundary of the site. The EA Main River is identified as the Stansted Brook.

Topography

3.2. A topographical survey of the site was carried out in March 2021 and is included in **Appendix B**. Elevations across the Site are in the order of 94.42 – 80.95 mAOD. With a relatively steep slope generally falling from north to south, at a gradient of approximately 1 in 20.

Ground Conditions

- 3.3. A review of the British Geological Survey (BGS) mapping indicates that the bedrock geology of the site consists of Thanet Formation and Lambeth Group (clay, silt and sand) with superficial deposits of Kesgrave Catchment Subgroup (sand and gravel) in the northern part of the site and Head Clay in the southern area of the site. Refer to Figure 3-1 for an extract of the mapping.
- 3.4. Nearby borehole records indicate (approximately 35m northwest of the site) that that the site is underlain by Kesgrave Sands and Gravels, as suggested by the BGS mapping, up to a depth of 5.7m BGL, then by Red Grag to a depth of 6.7m BGL and then London Clay beyond this for the depth of the borehole at 8m deep. Water was struck at 92.1mAOD, 2.7m below ground levels.
- 3.5. At this stage a site investigation has not been undertaken, and therefore based upon the BGS mapping information and the underlying geology, it has been assumed that infiltration is not viable. At detail design stage a site investigation will be undertaken and if infiltration is deemed appropriate, the drainage strategy will be amended to suit.

JUNE 2022

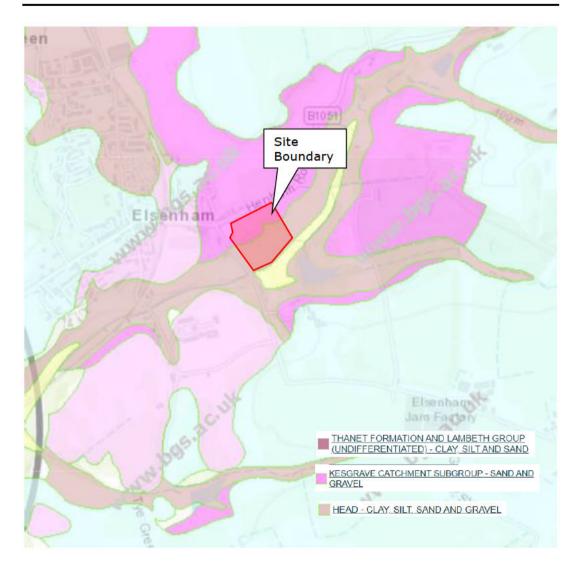


Figure 3-1: BGS Online Geology Mapping

Existing Sewer Infrastructure

3.6. Thames Water asset plans have confirmed that there is a 150mm dia. Foul sewer running east to west within the southern half of the site boundary. This sewer then connects into a 225mm dia. Foul sewer located within Hall Road. There is also a 150mm dia. Foul sewer north of the site within Henham Road. There is also a foul water rising main located along the western boundary of the site along the edge of Hall Road. The nearest surface water sewer is located to the northwest of the site, approximately 125m from the site boundary, within the junction of Hailes Wood. A survey of the drainage has also been undertaken to confirm the location of the sewers within the site. The full Thames Water asset plans and drainage surveys are provided in

Appendix C.

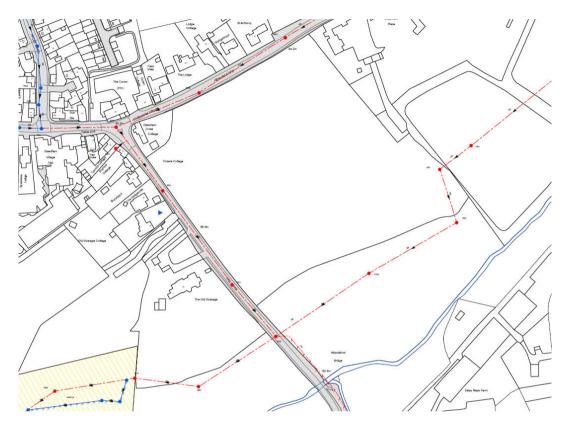


Figure 3-2: Thames Water Sewers

4. SOURCES OF FLOODING

- 4.1. The NPPF requires flood risk from the following sources to be assessed, each of which are assessed separately below:
 - Fluvial sources (river flooding);
 - Tidal sources (flooding from the sea);
 - Sewer Flooding;
 - Groundwater sources;
 - Pluvial sources (flooding resulting from overland flows);
 - Artificial sources, canals, reservoirs etc.; and,
 - It also requires the risk from increases in surface water discharge to be assessed (surface water management).

Flood Zone Designation

- 4.2. Flood Zones refer to the probability of river and sea flooding, ignoring the presence of defences. The NPPF Planning Practice Guidance defines Flood Zones as follows:
 - Flood Zone 1: Low Probability. Land having a less than 1 in 1,000 annual probability of river or sea flooding.
 - Flood Zone 2: Medium Probability. Land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or Land having between a 1 in 200 and 1 in 1,000 annual probability of sea flooding.
 - Flood Zone 3a: High Probability. Land having a 1 in 100 or greater annual probability of river flooding; or Land having a 1 in 200 or greater annual probability of sea flooding.
 - Flood Zone 3b: The Functional Floodplain. This zone comprises land where water has to flow or be stored in times of flood. Local planning authorities should identify in their Strategic Flood Risk Assessments areas of functional floodplain and its boundaries accordingly, in agreement with the Environment Agency

Fluvial / Tidal Flooding

- 4.3. Based on the Environment Agency's (EA) Flood map for planning, the vast majority of the Site is located in Flood Zone 1. A small part immediately adjacent to the Stansted Brook is located in Flood Zone 2.
- 4.4. In line with the NPPF, developments must consider the impact of climate change extents to inform flood mitigation measures and safe access and egress levels. Climate change allowances are based on peak river flow by management catchment and the latest climate change allowances were released in July 2021. The guidance states that the central estimate should be used for 'More Vulnerable' development and at the site this is 10%.
- 4.5. On review of correspondence undertaken with the EA on a nearby scheme (UTT/19/0462/FUL), it was identified that the EA does not have flood level datum or updated climate change outlines for this area.
- 4.6. In the absence of updated climate change outlines, it is proposed to assess the impact of climate change using the guidance in the EA's Thames Area Climate Change Allowances (TACCA) (2017). As per Table A in the TACCA, an 'Intermediate/Basic' approach for Large-Major 'more vulnerable' developments is appropriate.
- 4.7. As the Site sits broadly in Flood Zone 1, the 'Basic' approach of assessment is proposed. This approach was accepted on the nearby scheme (UTT/19/0462/FUL) which was for a full planning application of a residential development for 130 residential dwellings. The site rises steeply away from the watercourse, keeping any developable area higher than the flood levels. Acceptance of this approach from the EA is currently pending review.
- 4.8. The 'Basic' approach involves the addition of an allowance to the 'design flood' (i.e. 1% annual probability) peak levels to account for potential climate change impacts. As per Table B in the TACCA, an allowance of 500mm is applied to the Central event.

- 4.9. Flood water levels during the 1% annual probability have been estimated from comparing the flood extents with Lidar data. The increased depth has been added to these values to provide an approximate flood level for the 1% annual probability plus climate change event. A Climate Change Flood Level Plan identifying the climate change flood outline underlaid by the proposed development is included in **Appendix I**. As is shown by the plan, the proposed development, the maximum 1 in 100 year, including climate change, flood level at the site is 81.6m AOD.
- 4.10. To give further confidence that development can be situated above the climate change levels, further assessment of the flood plain was undertaken by reviewing Lidar cross-sections along the Stansted Brook. The cross sections identify that the land to the south of the Stansted Brook are considerably lower than the proposed development Site. This will result in flood water naturally flowing to the south of the site utilising the available flood plain and minimising the rise of water onto the Site. It is therefore considered that the development has a low risk of fluvial flooding due to the impacts of climate change.
- 4.11. The location of the cross-sections are shown on the Climate Change Flood Level Plan in **Appendix I** with the cross-sections shown below in **Figure 4-1** and **Figure 4-2**.

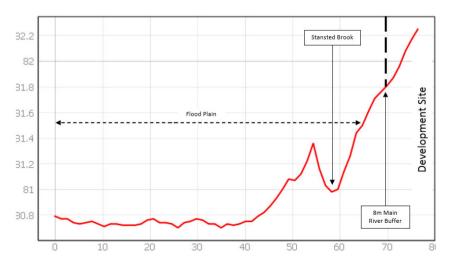


Figure 4-1: Cross-Section A-A

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

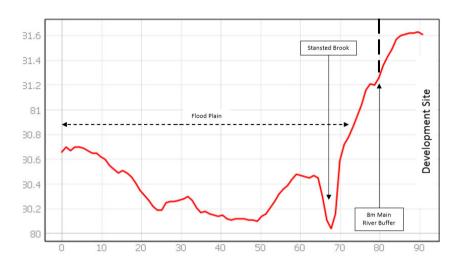


Figure 4-2: Cross-Section B-B

Pluvial Flooding

- 4.12. The Environment Agency surface water flood maps show that the majority of the development site is in an area that has a 'very low' risk of surface water flooding, meaning that there is less than a 0.1% chance of flooding from surface water flooding each year.
- 4.13. There are areas of 'low' to 'medium' risk of surface water flooding along the southern boundary of the site, which is assumed to be associated with the EA Main River. Refer to Figure 4-2 below.

JUNE 2022

Figure 4-1: Environment Agency Flood Map for Surface Water

Groundwater Flooding

4.14. Local boreholes located approximately 35m to the northwest of the site showed ground water at a depth of approximately 2.5m below ground levels. Reinforcing that ground water may only pose a risk to sub ground level development. Any risk of groundwater flooding can be quantified following the site investigation and groundwater monitoring proposed at detail design stage. However, the risk can be mitigated by providing suitable conveyance routes and lined above ground SuDS such as swales and basins which will capture and convey and localised run-off.

Sewer Flooding

- 4.15. There is no record of sewer flooding within the vicinity of the Site based on the Essex County Council Historic Sewer Flooding Records 2012.
- 4.16. The risk of sewer flooding is therefore assessed as low.

Artificial Sources

- 4.17. According to the Environment Agency's Flood risk from reservoir map, the Site is not in an area at risk of flooding from artificial sources.
- 4.18. The site is therefore considered to be at a 'very low' risk of flooding from artificial sources.

5. FLOOD MITIGATION MEASURES

Finished Floor Levels

- 5.1. The vast majority of the site is located within Flood Zone 1 and there is low/negligible risk of flooding from other sources discussed in this report.
- 5.2. Finished ground floor levels of the proposed properties will be set 300mm above the 1 in 100 year, including climate change, flood level. The maximum flood level is 81.6m AOD. Therefore, finished floor levels will be set at a minimum of 81.9m AOD.

Main river buffer

5.3. To allow access to the watercourse for maintenance, no development is proposed within 8m of the Stansted Brook.

6. SURFACE WATER DRAINAGE STRATEGY

- 6.1. DEFRA's Non-statutory technical guidance for Sustainable Drainage Systems and CIRIA Guidance C753 "The SuDS Manual" have been used to determine the appropriate SuDS Strategy, which considers the spatial and environmental constraints of the Site.
- 6.2. Under the NPPF an allowance of 40% for the effects of climate change will achieve the policy requirements for the proposed development.

Surface Water Drainage Options Consideration

- 6.3. In line with CIRIA guidance C753 (The SuDS manual), the drainage hierarchy needs to be considered and is listed below in order of preference:
 - Store rainwater for later use;
 - Use infiltration techniques, such as porous surfaces in non-clay areas;
 - Attenuate rainwater by storing in tanks or sealed water features for gradual release to a watercourse;
 - Discharge rainwater direct to a watercourse;
 - Discharge rainwater to a surface water drain; and
 - Discharge rainwater to the combined sewer.

Store rainwater for later use

6.4. There is potential to reuse a percentage of the rainwater within the site by installing water butts on houses. However, this only accounts for a small proportion of the runoff during a storm event and therefore other options need to be considered in parallel.

Use infiltration techniques, such as porous surfaces in non-clay areas

6.5. BGS mapping and nearby borehole records indicates the presence of Lambeth Group and Thanet Formation (clay, sand, silt), which is considered to have poor infiltration qualities. Therefore, infiltration potential is assumed negligible and has be discounted as an option. Attenuate rainwater by storing in tanks or sealed water features for gradual release to a watercourse

- 6.6. The surface water drainage strategy for the proposed development will mimic the existing greenfield drainage, with gradual release of surface water runoff to the Main River to the south of the Site. This is achieved through flow restrictions prior to discharging to the river.
- 6.7. Attenuation will be provided upstream of the flow control devices by a combination of swales and attenuation basins.
- 6.8. Discharge will be restricted to the greenfield rates, with surface water attenuation provided up to the 1 in 100 year climate change event.

Sustainable Drainage Systems (SuDS) Hierarchy

6.9. **Table 5-1** below appraises the constraints and opportunities for the use of SuDS techniques within the site and it adopts the management train approach outlined in CIRIA C753 'The SuDS Manual'.

Type: Constraints:	Infiltration Devices (Source Control) Underlying geology is assumed not compatible with infiltration
	systems.
Opportunities:	No opportunities due to ground conditions.
Type:	Lined Permeable Paving (Source Control)
Constraints:	It is not possible to provide infiltrating permeable paving/permavoid due to site characteristics (as per infiltration devices above). Can only be provided within private areas (e.g. private car parks or private drives) due to adoption issues.
Opportunities:	Permeable paving wrapped in geo-membrane could be used within private areas to provide surface water attenuation and a stage of treatment before discharging into the drainage system if required for treatment.
Type:	Rainwater Harvesting (Source Control)
Constraints:	The benefits of rainwater harvesting on a specific design storm event cannot be quantified, due to the seasonal availability of storage within the structure.
Opportunities:	Opportunities in amenity areas to provide harvesting features such as water butts exist. However, it is difficult to quantify contribution, and therefore not included within calculations as part of this surface water management strategy.
Туре:	Swales, etc. (Permeable Conveyance)
Constraints:	In order to provide practicable attenuation benefits 1:3 side- slope swales tend to require a significant land requirement. Due to potential slope stability issues gradients are required to be flatter than 1:3, requiring more land take.

Table 6-1: Existing and Proposed Areas

Opportunities:	There are some available landscaped areas around the edge of the development to provide small extents of swales.			
Type:	Attenuation Basins			
Constraints:	In order to provide practicable attenuation benefits, 1:3 side- slopes on the basin tend to require a significant land requirement. Due to potential slope stability issues gradients are required to be flatter than 1:3, requiring more land take.			
Opportunities:	inities: There are some available landscaped areas around the edge the development to provide basins for storage.			
Type:	GreenRoofs			
Constraints:	Subject to Architect's design.			
Opportunities:	None due to the proposed pitched roofs of the dwellings.			
Type:	Attenuation Tanks (end of pipe treatment)			
Constraints:	None			
Opportunities:	Should additional attenuation be required this could be achieved by use of oversized sewers or geo-cellular storage attenuation.			

6.10. After consideration of the CIRIA C753 SuDS Management Train approach, the most viable SuDS options for this site is a solution combining a series of cascading basins and under-drained swales for storage and treatment, along with some additional buried storage to provide all storage required. Refer to Drawing No. 2008170-030 in Appendix D for the proposed surface water drainage strategy.

Existing and Proposed Surface Water Discharge Rates

Existing development

- 6.11. The planning red line boundary area equates to 5.34 ha and comprises entirely of greenfield land. From the existing topography of the site, it is assumed that surface water runoff currently flows to the surrounding ditches on the site and the Stansted Brook to the south.
- 6.12. The existing greenfield runoff rates from the site were calculated using Microdrainage's ICP SuDS method and are presented in Table 6-2 below. Full calculations can be found in Appendix E.

Return Period Event	Existing Greenfield (l/s)	Proposed Discharge Rate (l/s)
1:1	6.3	6.3
1:30	16.8	13.1
1:100	23.7	18.3
1:100 +40% CC	-	23.6

Table 6-2: Existing and Proposed Discharge rates

Proposed development

- 6.13. After consideration of the CIRIA C753 management train approach, the most viable SuDS options for the Site are cascading attenuation basins and swales in order to provide appropriate water quality treatment prior to discharge into the Stansted Brook.
- 6.14. The site is not suitable for implementing any infiltration SuDS systems due to underlying geology.
- 6.15. In line with the ECC SuDS Design Guide, discharge rates from new developments should be restricted to greenfield rates or as close as practically possible. The proposed strategy is to flow match to the existing greenfield runoff rates, as shown in Table 6-2.
- 6.16. It is proposed for the site to discharge the surface water into the EA Main River, the Stansted Brook, to the south of the site to mimic the existing topography of the site.
- 6.17. In order to achieve the proposed discharge rates, the total storage volume has been provided within the proposed basins and buried storage, with freeboard provided within the basins. Table 6-3 below breaks down the storage for the 2 catchments and where the storage has been provided.

Catchment	Storage required for the 1:100 year + 40% CC Storm Event (m ³)	Total Storage provided (m ³)	Storage within Basin (m ³)	Storage within Buried Storage (m ³)
Α	905	1042	1042	N/A
B	531	676	415	261
Total	1436	1718	1457	261

Table 6-3: Storage Requirements

- 6.18. Within the multiple basins, flows will be restricted prior to discharging further downstream, to utilise the storage within the basins.
- 6.19. Additional storage will be available within the swales, although this has not been accounted for in the preliminary calculations.
- 6.20. MicroDrainage Source Control modelling results show there is no flooding on the Site for the 1 in 100 year including 40% climate change

rainfall event and a 300mm freeboard has been provided within the basin. MicroDrainage modelling results are included in **Appendix E**.

6.21. For the Proposed Drainage Strategy, refer to **Appendix D**.

Surface Water Quality

- 6.22. An assessment of the water quality of surface water runoff has been carried out in line with CIRIA C753 requirements, refer to AppendixF.
- 6.23. In determining the necessary SuDS treatment methods, reference is made to Table 26.2, Table 26.3 and Table 26.4 of the SuDS Manual (CIRIA C753), which have been duplicated in **Appendix F**. The tables outline the 'Simple Index Approach' which sets out the water treatment criteria in relation to land use and SuDS performance evidence. To ensure sufficient treatment is proposed for surface waters, the total pollution mitigation index of the selected SuDS methods must equal or exceed the pollution hazard index for the site.
- 6.24. Based upon the proposed estate road layout within the development, it is anticipated that the majority of the roads within the development parcels will accommodate less than 300 traffic movements per day, apart from the initial access to the site. The majority of the estate roads are therefore considered Low Risk, with the site access deemed Medium Risk.
- 6.25. As the calculations demonstrate, a series of cascading basins provide sufficient treatment for the Low and Medium Risk development. It has therefore been demonstrated that adequate treatment is provided within the proposed SuDS network prior to discharge of run-off into the existing watercourses. In addition to the basins considered within the pollution assessment, additional road side swales will be incorporated to provide additional source control.

Long Term Storage and Urban Creep

6.26. As the site is not being restricted to the 1 in 1 year greenfield rate, an allowance for Long Term Storage (LTS) is required. The LTS volume for the total development site has been estimated as 344m³ (calculations are included within **Appendix G**). Long term storage will be provided for within the freeboard of Basin A. Flow restrictions will be installed to limit the discharge at 1l/s, under the maximum of 2l/s/Ha required for long term storage.

6.27. In accordance with the LASOO Best Practice Guidance for the Non statutory technical standards, urban creep will be applied to the site. A 10% increase of impermeable area has been applied to house and garage roof areas.

Future Maintenance

- 6.28. A management company will be appointed to maintain communal areas, landscaping and shared SuDS throughout the development.
- 6.29. All maintenance will be in accord with the best practices and the CIRIA Manual C753. Please refer to **Appendix H** for an overview of the maintenance tasks required.

Half Drain Time

6.30. The half drain time for the development, after a 1 in 30 year event, can be seen within **Table 6-4**. The half drain time requirements set out within the ECC Sustainable Drainage Systems Design Guide (February 2020), is to half drain within 24 hours for a 1 in 30 year storm event.

Basin	Half Drain Time (hours)	Does it meet the 24 hour half drain time?	Freeboard after 1:30 year storm (mm)	Freeboard after a 1:10 year storm and 1 in 30 year (mm)
Α	64.7	No	561	216
В	4.2	Yes	N/A	N/A

Table	6-4:	Half	Drain	Times

6.31. Basin B can be seen to half drain within 4.4 hours, greatly under the 24 hour requirement.

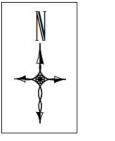
6.32. Basin A, does not meet the half drain time requirement, half draining within 64.7 hours at a rate of 1l/s. As per the ECC SuDS Design Guide, if the half drain time of 24 hours cannot be achieved, then a 1 in 10

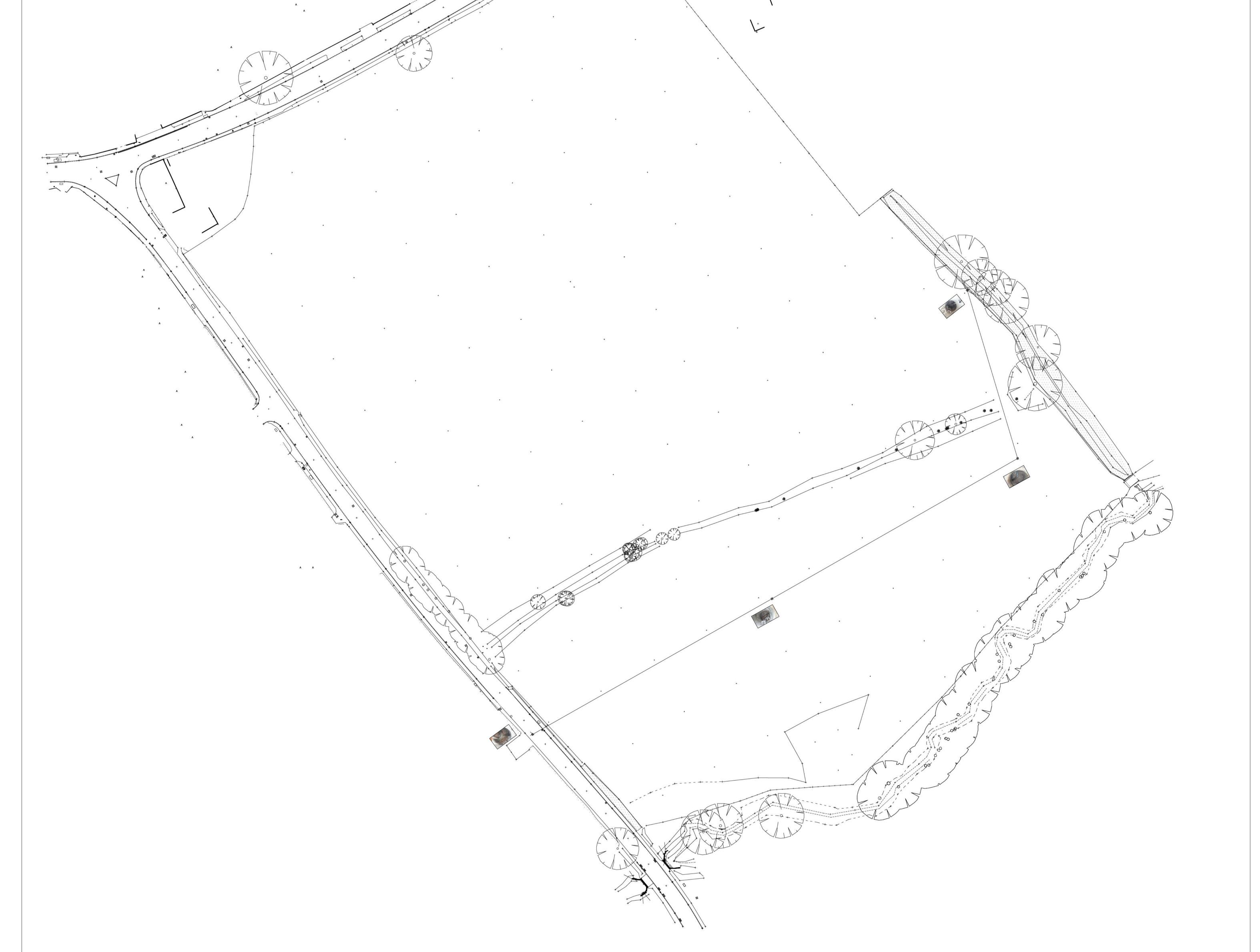
year storm event must be accommodate directly after a 1 in 10 year storm event. The freeboard within Basin after a 1:30 year storm event will be 561mm. A 1 in 10 year storm has been run after the 30 year storm and shows that a freeboard of 216mm is still provided. For further calculations on the storm events, refer to **Appendix E**.

7. PROPOSED FOUL WATER DRAINAGE STRATEGY

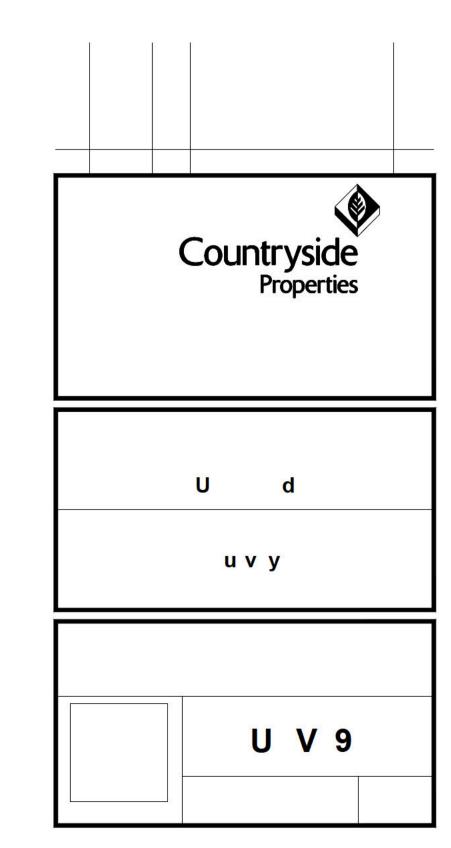
- 7.1. The existing site is currently greenfield land, and thus has no foul water flows associated with the site.
- 7.2. Based on the Sewerage Sector Guidance Appendix C of 0.05 l/s per dwelling, the peak foul flow rate for the proposed development is calculated to be 6.5l/s.
- 7.3. There is currently a 150mm dia. foul sewer running through the southern half of the development. It is proposed that this existing sewer will be diverted through the development.
- 7.4. It is proposed that foul flows from the development will discharge into the diverted Thames Water foul sewers within the development boundary.
- 7.5. Under the Ofwat Charging agreement, from April 2020, existing sewer networks are obliged to accommodate flows from new developments.
- 7.6. For the foul drainage strategy, refer to **Appendix D**.

8. CONCLUSIONS


- 8.1. This FRA has been produced to support the outline planning application for the proposed residential development at the land south of Henham Road, Elsenham.
 - 8.2.The proposal includes the development of the greenfield site south of Henham Road, for 130 residential dwellings with associated parking, landscaping and infrastructure works.
- 8.3. The majority of the Site is located in Flood Zone 1, with a small portion of the site located in Flood Zone 2 along the southern boundary. The Environment Agency's surface water flood maps show that the development site is in an area that has a 'Low' risk of surface water flooding, with a small section of 'medium' risk along the southern boundary of the site, and no other means of flooding identified as posing a risk to the site.
- 8.4. Finished flood levels will be raised to a minimum of 300mm above the 1 in 100 year, including climate change, flood level (81.6m AOD + 300mm) above a level of 81.9m AOD. All development will be set a minimum of 8m back from the adjacent Stansted Brook main river.
- 8.5. The drainage strategy set out in this report is suitable to protect the site and surrounding areas from surface water flooding for all events up to and including the 1 in 100-year storm event including climate change.
- 8.6. The peak foul flow rate for the proposed development is calculated to be 6.5 l/s. It is proposed that foul flows from the development will discharge into Thames Water foul sewer running through the site, which is proposed to be diverted through the developments highways. Under the current Ofwat charging scheme, Thames Water must provide capacity within their network to accommodate the proposed development.
- 8.7. In conclusion, this FRA demonstrates that the proposals are consistent with the aims of NPPF, PPG and ECC SuDS Guidance. The site would


not be at risk of flooding or increase the flood risk to others as a result of the proposed flood mitigation works.

Appendix A Proposed Development Layout



Appendix B Topographical Survey

Appendix C Thames Water Asses Plans and Sewer Survey

Asset location search

Ardent Consulting Engineers 52-56 Leadenhall Street LONDON EC3M 5JE

Search address supplied

St. Anthonys Henham Road Elsenham Bishop'S Stortford CM22 6DH

Your reference

2008170

Our reference

ALS/ALS Standard/2020_4318959

Search date

8 December 2020

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk

0845 070 9148

Asset location search

Search address supplied: St. Anthonys, Henham Road, Elsenham, Bishop'S Stortford, CM22 6DH

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web:

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

With regard to the fresh water supply, this site falls within the boundary of another water company. For more information, please redirect your enquiry to the following address:

Affinity Water Ltd Tamblin Way Hatfield

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk

AL10 9EZ Tel: 0345 3572401

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

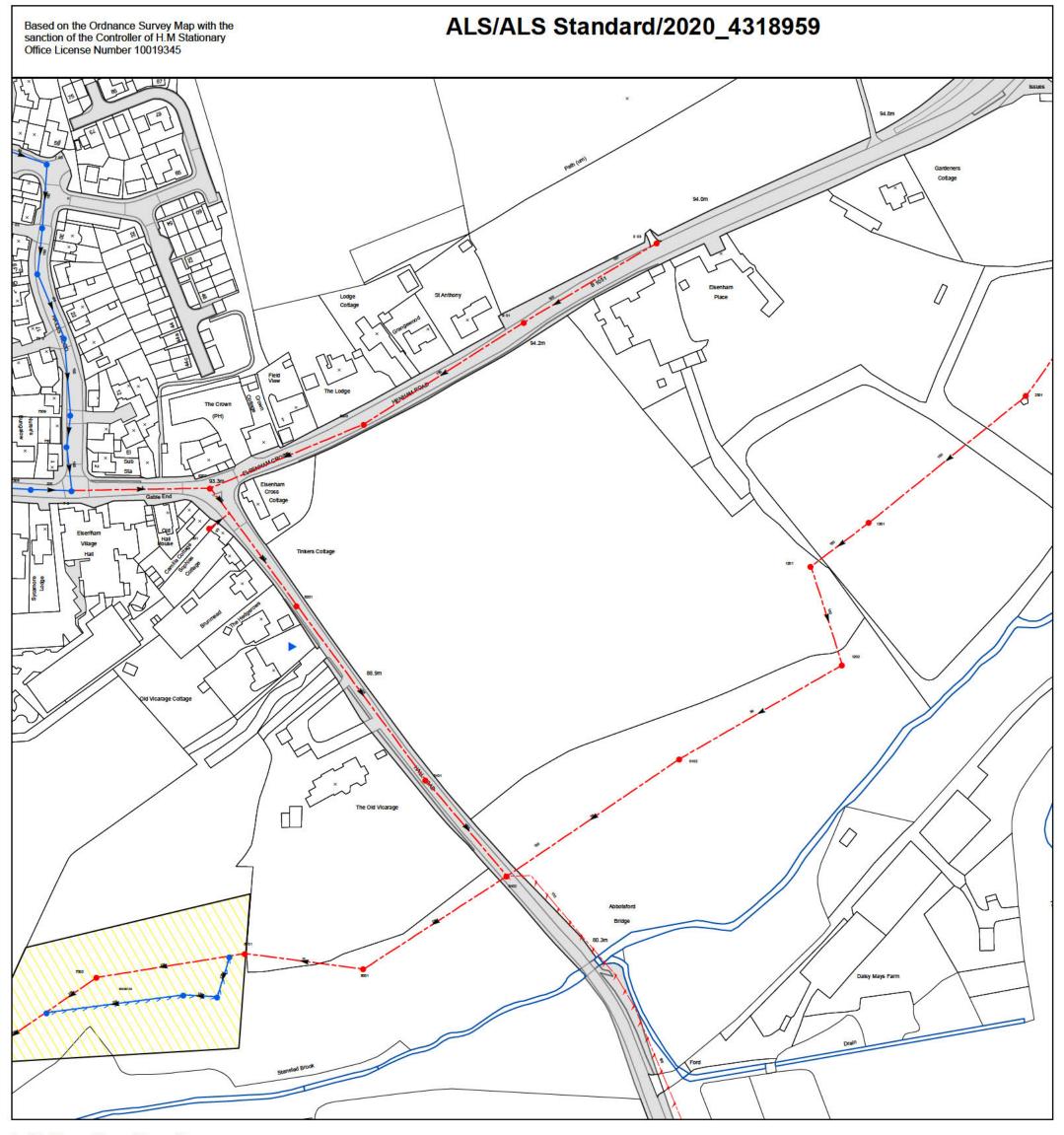
Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB


Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

Scale:	1:1792	Comments:
Width:	500m	
Printed By:	G1KANAGA	
Print Date:	10/12/2020	
Map Centre:	553976,226274	
Grid Reference:	TL5326SE	

ALS/ALS Standard/2020_4318959

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL
9401	93.93	90.82
0102	83.78	81.69
1202	83.37	82.23
2301	87.51	84.99
8303	93.73	90.19
8301	92.89	91.8
7401		
7301	93.13	89.72
7307		
7403		
9102	82.52	81.29
8302	93.38	89.47

REFERENCE	COVER LEVEL	INVERT LEVEL
0403	94.01	91.52
1201	85.49	82.5
1301	86.47	84.49
8001	81.41	80.82
7002	81.68	80.3
8101	81.37	80.59
7306		
7309		
7310		
7402		
9101	85.38	83.65
8201	90.72	89.13

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

hames Water

ALS Sewer Map Key

1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plans are metric.

3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.

4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole level indicates that data is unavailable.

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

	Air Valve
	Dam Chase
l I	Fitting
	Meter

Vent Column

Operational Controls

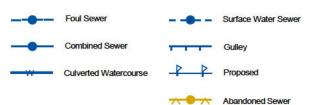
A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

Control Valve

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

Other Symbols

Symbols used on maps which do not fall under other general categories Public/Private Pumping Station * Change of characteristic indicator (C.O.C.I.)


- ø Invert Level
- < Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement **Operational Site** /// Chamber :::::: Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

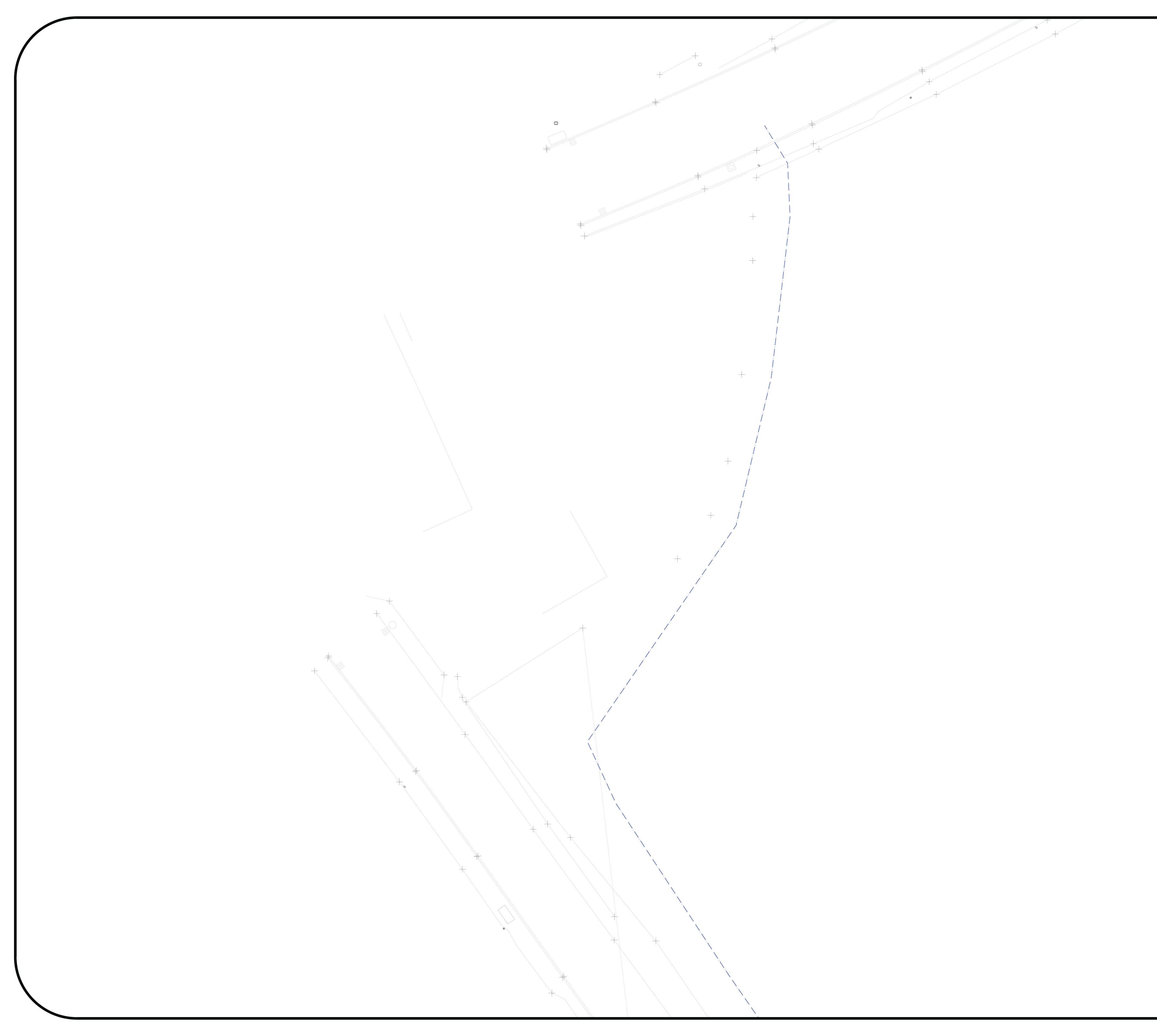
Terms and Conditions

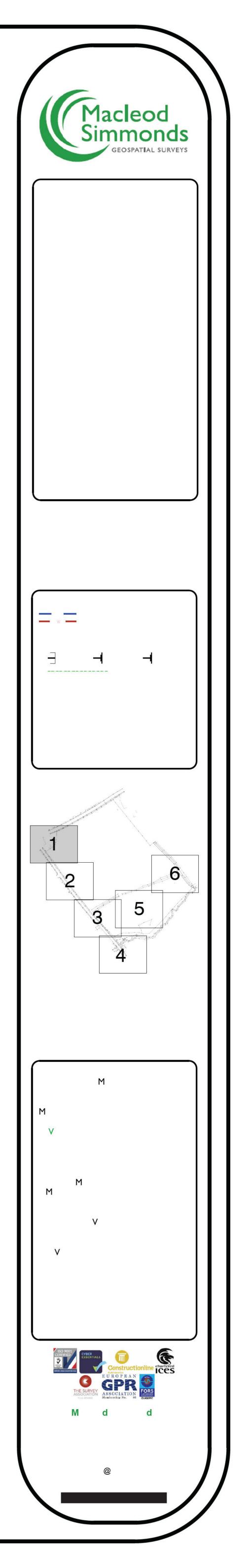
All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

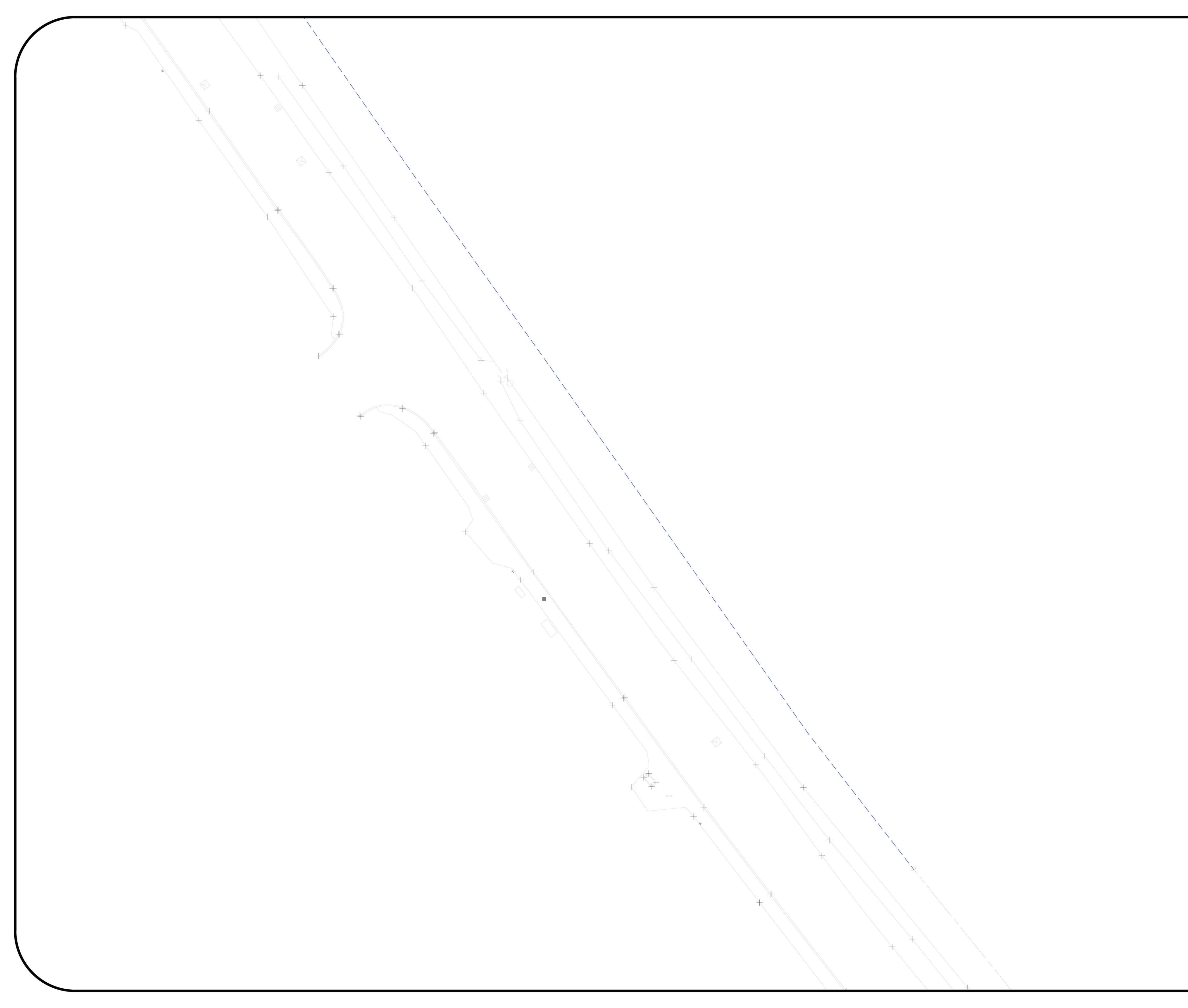
- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

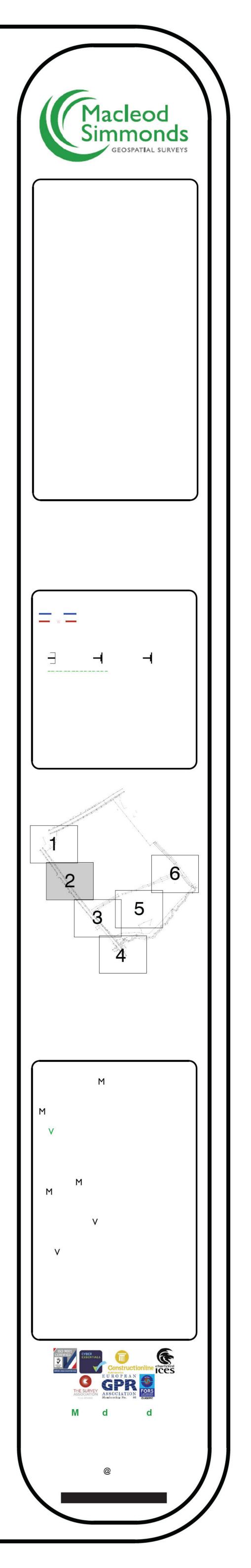
A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

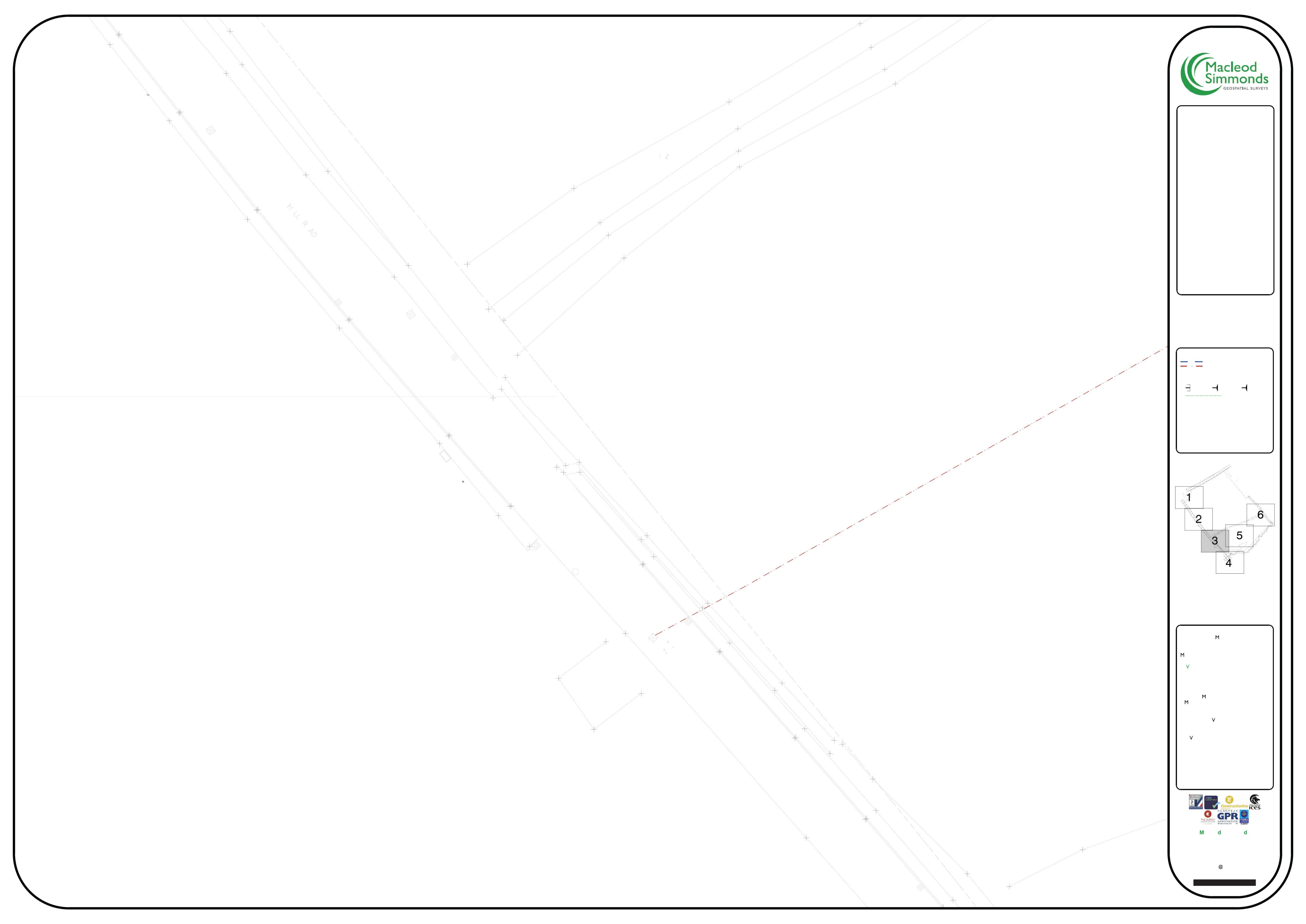
We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

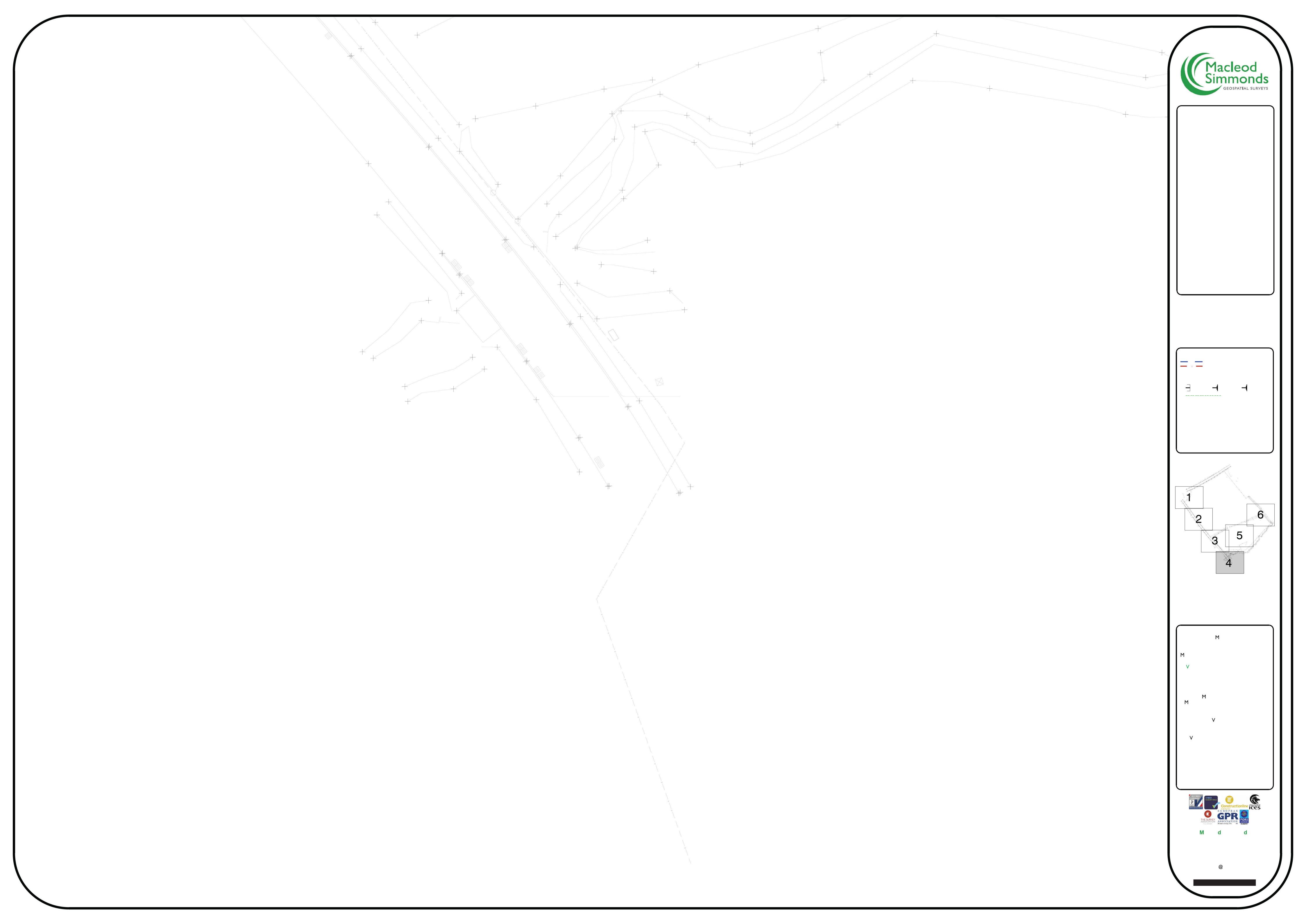

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

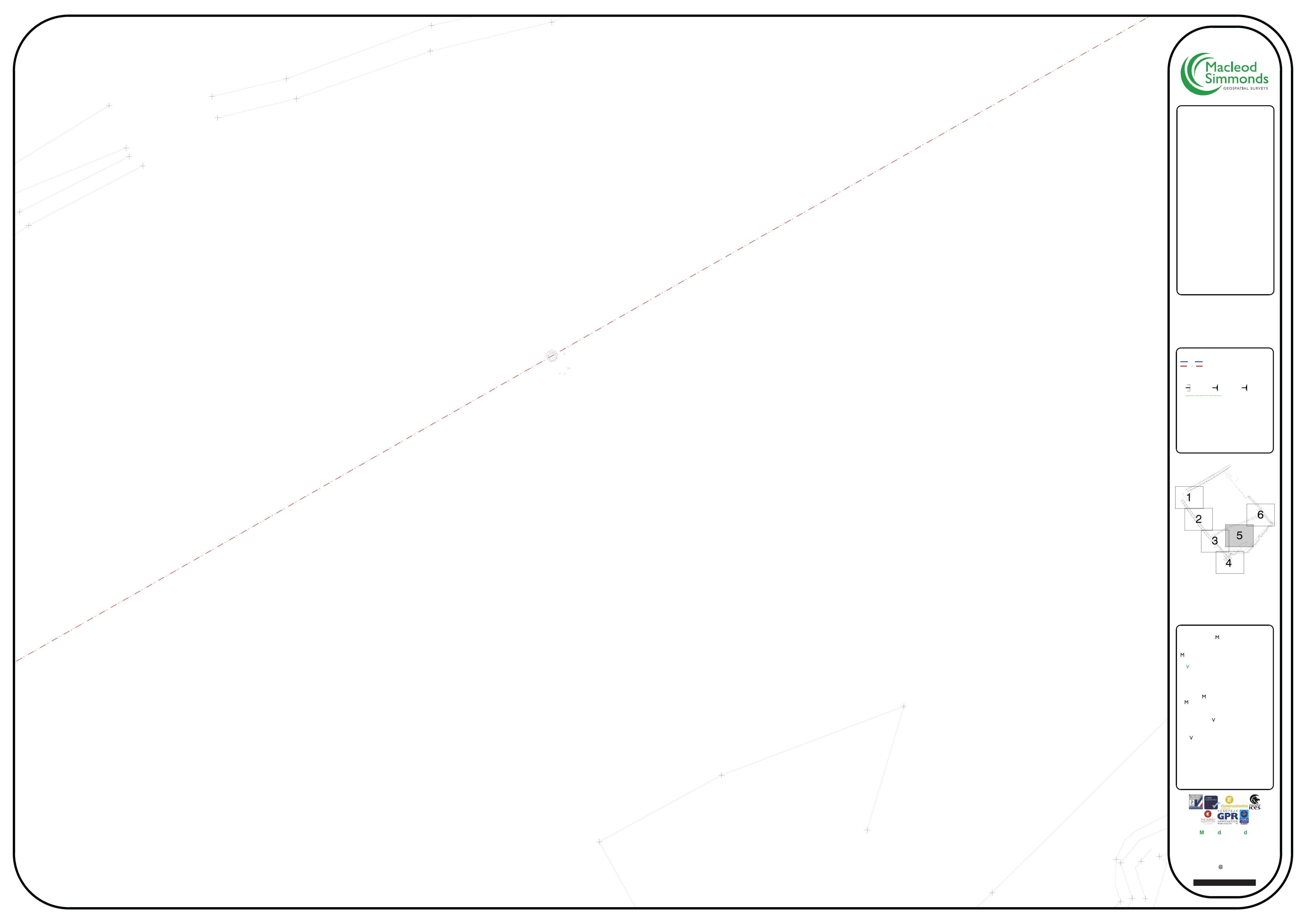

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

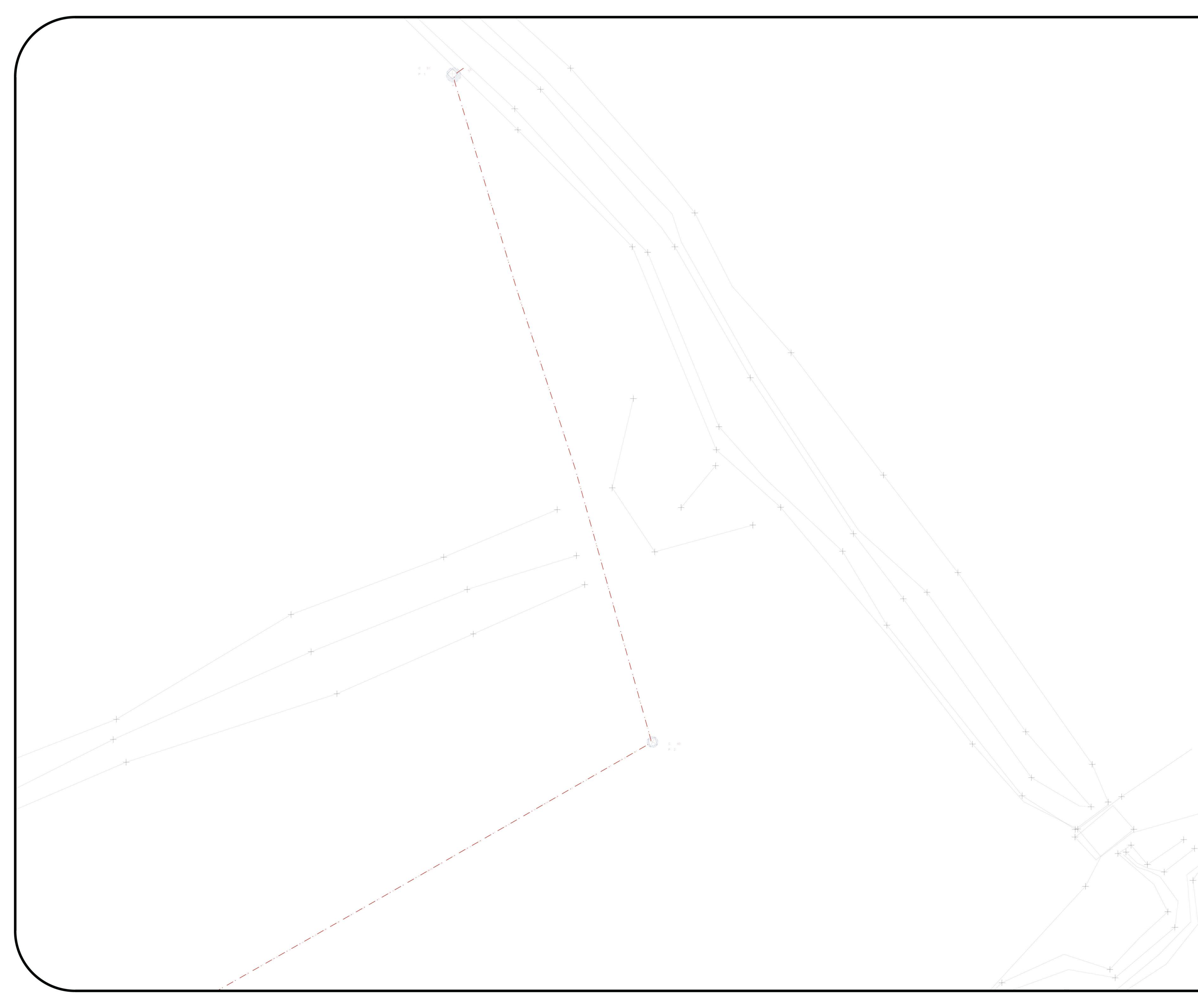

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd ' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

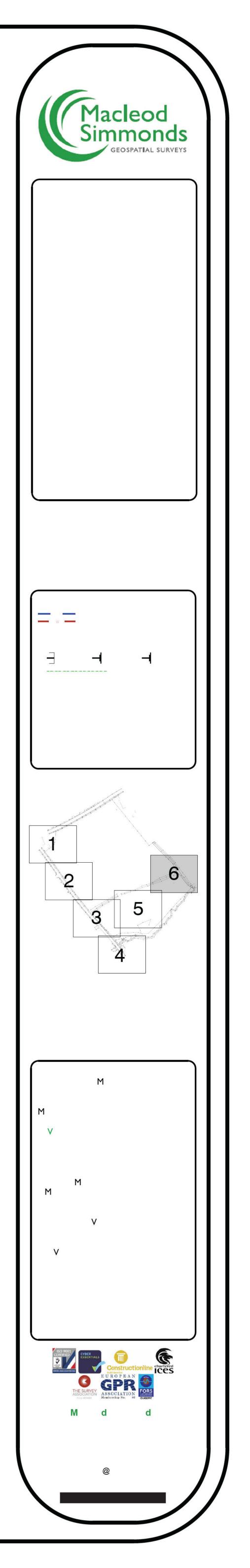

Ways to pay your bill

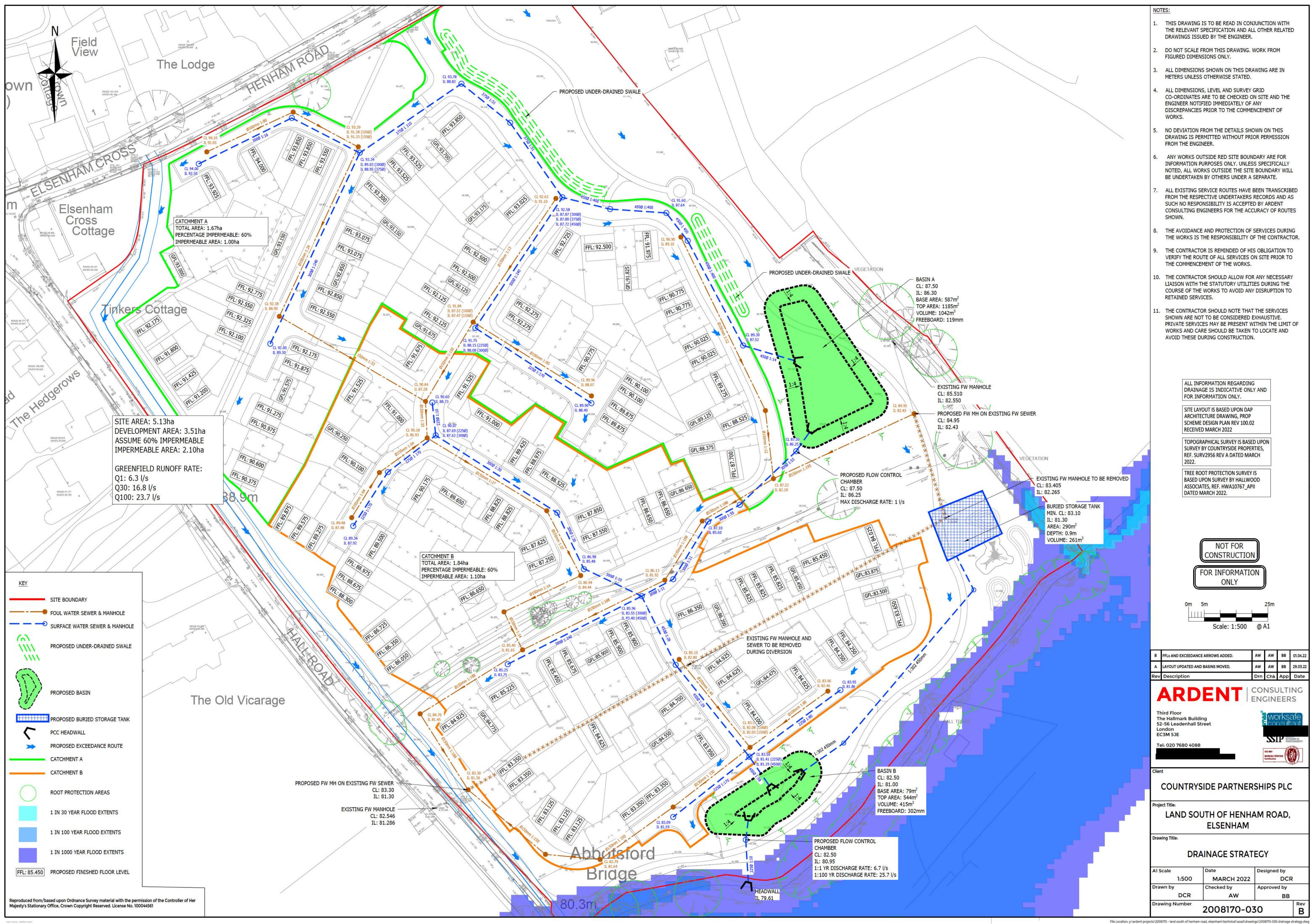

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.











Appendix D Proposed Drainage Strategy

Appendix E Greenfield Calculations and Proposed Surface Water Drainage Calculations

Ardent		Page 1
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micro
Date 01/04/2022 11:55	Designed by awren	– Micro Drainage
File 2008170 - ATTENUATION BA	Checked by	Diamaye
Innovyze	Source Control 2020.1	
ICP SU	DS Mean Annual Flood	
	Input	
Return Period (years) Area (ha) 2.5	1 SAAR (mm) 621 Urban 0.00 10 Soil 0.400 Region Number Region	
	Results 1/s	
	QBAR Rural 7.4	
	QBAR Urban 7.4	
	Q1 year 6.3	
	Q1 year 6.3	
	Q30 years 16.8	
	Q100 years 23.7	

©1982-2020 Innovyze

dent				9999				
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The Hallmar		g Lan	d Sout	h of H	enham	Road	
2-56 Leader	nHall Stree	et	Bas	in A				
ondon, EC3N	M 5JE							
ate 01/04/2	2022		Des	igned 1	by AW			
le Cascade	e Basins.CA	SX	Che	cked b	у ВВ			
novyze			Sou	rce Co	ntrol :	2020.1		
					1990 - Albert M. Martine C. M. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19		0	
Cascade	Summary of	Results	for 20	08170 ·	- Atte	nuatio	n Basin i	A Ca
	Upstream Structures		Out	flow To:			Overflow	и То
	(None)	2008170 - 4	Attenuat	ion Bas	in B Ca	lcs.SRC	X (No	one)
		Storm	Max	Max	Max	Max	Status	
		Event		Depth (
			(m)	(m)	(l/s)	(m ³)		
	15	min Summer	86.394	0.094		57.3		
		min Summer				73.5		
		min Summer				91.0		
		min Summer min Summer					ок ок	
		min Summer					OK	
		min Summer					O K	
		min Summer					ок	
	600	min Summer	86.537	0.237	0.7	150.8	0 К	
		min Summer					ΟK	
		min Summer					O K	
		min Summer min Summer					ОК	
	2880	min Summer	86.538	0.245	0.7		O K	
	4320	min Summer	86.526	0.226	0.7		ОК	
	5760	min Summer	86.514	0.214	0.7	135.6	ОК	
		Storm	Rain	Floode	d Disch	arge Ti	ime-Peak	
		Event		Volume		_		
			- order 100 ⁻¹ 0 ¹ 0-1000 ⁴ 0	(m³)	(m ²		27-201377.1171.13037 ⁻⁵	
	15	min Summer	31.107	0.	0	57.5	27	
		min Summer	20.041			61.1	41	
		min Summer	12.513			93.5	70	
		min Summer	7.646		0 1	14.4	130	
		min Summer	5.702			22.8	190	
		min Summer	4.625			24.5	250	
		min Summer min Summer	3.436 2.768			25.5 25.6	368 488	
		min Summer	2.768			25.8	488 606	
		min Summer	2.340			24.8	726	
		min Summer	1.643			23.7	964	
	1440	min Summer	1.211	0.	0 1	21.2	1442	
		min Summer	0.893			39.3	1880	
		min Summer	0.719			38.6	2252	
		min Summer min Summer	0.530			26.8 07.1	3028 3864	
	5760	min summer	0.42/	υ.	0 3	07.1	3004	

Ardent			50 SEC.				Page 2
3rd Floor, The Hallmark Bu	ilding	g Land	l South	h of H€	enham	Road	
2-56 LeadenHall Street		Basi	n A				
London, EC3M 5JE							Micco
Date 01/04/2022		Desi	gned b	WA Vd			Micro
File Cascade Basins.CASX		0.0000000000000000000000000000000000000					Drain
			ked by	S			
Innovyze		Sour	ce Coi	ntrol 2	2020.1	5	
					0.0755	an 15	
Cascade Summary of Res	ults f	or 200	8170 -	- Atter	nuatio	n Basin	A Calcs.SRC
127				122		21.72	
Stor		Max	Max	Max	Max		
Event	5			Control			
		(m)	(m)	(l/s)	(m ³)		
7200 min	Summer	86.503	0.203	0.7	127.8	ОК	
8640 min					120.2		
10080 min	Summer	86.480	0.180	0.7	112.7	ОК	
15 min	Winter	86.406	0.106	0.7	64.3	ок	
30 min	Winter	86.434	0.134	0.7	82.6	ОК	
		86.465		0.7	102.3	ОК	
120 min					123.3		
180 min					136.1		
240 min		이 것 같아. 것 것 같아? 이 것			145.4		
360 min					158.5	1 100 NOV	
480 min					166.5		
600 min					172.4		
720 min 960 min					176.7 182.5		
1440 min			A State of the second sec		187.4		
2160 min					186.5		
2880 min					180.9		
4320 min					168.7		
5760 min					156.1		
Storm	2	Rain	Floode	d Disch	arge T	ime-Peak	
Event		(mm/hr)			-	(mins)	
			(m ³)	(m ³	3)	•	
			2000 V.			1200	
7200 min \$		0.361			24.7	4680	
8640 min 1 10080 min 1		0.315			39.7 53.1	5456 6256	
10080 min 3 15 min V		31.107			53.1 59.4	6256 26	
30 min V		20.041			62.2	20 41	
50 min 1 60 min 1		12.513			04.8	70	
120 min 1		7.646			23.0	128	
180 min 1		5.702			25.2	186	
240 min 1		4.625			25.9	246	
360 min 1	Winter	3.436			25.9	362	
480 min V		2.768	0.		25.4	480	
600 min 1		2.340			24.7	596	
720 min 1		2.040			23.9	714	
960 min 1		1.643			22.4	944	
1440 min V		1.211			19.6	1402	
2160 min V 2000 min V		0.893			42.5	2060	
2880 min 1 4320 min 1		0.719			39.3 29.4	2656 3292	
		0.000	υ.	. v Z	47.4	3636	
4320 min 1 5760 min 1		0.427			44.1	4208	

Ardent		1-		F			Page 3
3rd Floor, The Hallman			a South	oi He	enham	Road	
52-56 LeadenHall Stree	et	Basi	n A				
London, EC3M 5JE		_					Micro
Date 01/04/2022			gned by				Drainago
File Cascade Basins.CA	ASX		ked by				Dian iage
Innovyze		Sour	ce Cont	rol 2	2020.1	2	
Cascade Summary of	E Results f Storm Event	Max		Max	Max	Status	Calcs.SRCX
		(m)		(1/s)	(m ³)	-	
0.54	0 min Winter 0 min Winter				143.	8 OK 5 OK	
10080) min Winter) min Winter	86.490	0.190	0.7		4 OK	
			9494.55 1949				
	Storm	Rain	Flooded	Disch	arge 1	'ime-Peak	
	Event	(mm/hr)	Volume	Volu	ume	(mins)	
			(m³)	(m ³	3)		
7200	min Winter	0.361	0.0	3	63.7	5112	
8640	min Winter	0 315	0 0	3	80.6	5968	
10080	min Winter	0.280	0.0		95.6	6768	
	©1	982-20	20 Innc	vyze			

Ardent	Page 4
	Land South of Henham Road
	Basin A
London, EC3M 5JE	Micro
Date 01/04/2022	Designed by AW
File Cascade Basins.CASX	Checked by BB Drainage
Innovyze	Source Control 2020.1
Cascade Rainfall Details for 2	2008170 - Attenuation Basin A Calcs.SRCX
Rainfall Model Return Period (years) Region Englar M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Yes 1 Cv (Summer) 0.750 nd and Wales Cv (Winter) 0.840 19.600 Shortest Storm (mins) 15 0.431 Longest Storm (mins) 10080 Yes Climate Change % +0
Time	e Area Diagram
	l Area (ha) 1.000
Time (mins) Area Tim From: To: (ha) From	me (mins) Area Time (mins) Area m: To: (ha) From: To: (ha)
0 4 0.333	4 8 0.333 8 12 0.333
©1982	2-2020 Innovyze

Ardent	Page 5	
3rd Floor, The Hallmark Building	Land South of Henham Road	
52-56 LeadenHall Street	Basin A	
London, EC3M 5JE	Micro	
Date 01/04/2022	Doglanod by AW	
File Cascade Basins.CASX	Checked by BB	JE
Innovyze	Source Control 2020.1	
	008170 - Attenuation Basin A Calcs.SRCX	
-	lline Cover Level (m) 87.500	
	or Pond Structure	
	rt Level (m) 86.300	
0.000	Ea (m ²) Depth (m) Area (m ²) 587.0 1.200 1185.0	
	Optimum Outflow Control	
	Reference MD-SHE-0045-1000-1200-1000 m Head (m) 1.200	
	Flow (1/s) 1.0	
2	Flush-Flo ^m Calculated	
	Objective Minimise upstream storage	
	pplication Surface Available Yes	
	meter (mm) 45	
	Level (m) 86.250	
Minimum Outlet Pipe Dia Suggested Manhole Dia		
	-9 10.2026-2920 Arriverty Description	
Control Points Head (m) Flor	w (1/s) Control Points Head (m) Flow (1/	s)
Design Point (Calculated) 1.200 Flush-Flo ^m 0.196		0.6
F1USD-F10 ¹¹⁴ 0.196	0.7 Mean Flow over Head Range - 0).8
	en based on the Head/Discharge relationship for the	
	nould another type of control device other than a these storage routing calculations will be invalidated and the storage routing calculations will be invalidated as the storage routing calculation as the storage routing calcul	ate
	w (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s)	
0.100 0.7 1.200 0.200 0.7 1.400	1.0 3.000 1.5 7.000 2.2 1.1 3.500 1.6 7.500 2.3	
0.300 0.7 1.600	1.1 3.500 1.0 7.500 2.3 1.1 4.000 1.7 8.000 2.4	
0.400 0.6 1.800	1.2 4.500 1.8 8.500 2.4	
0.500 0.7 2.000	1.3 5.000 1.9 9.000 2.5	
0.600 0.7 2.200	1.3 5.500 2.0 9.500 2.6	
0.800 0.8 2.400 1.000 0.9 2.600	1.4 6.000 2.1 1.4 6.500 2.2	
	, , , , , , , , , , , , , , , , , , ,	
©198	32-2020 Innovyze	

Ardent		le Duildin		- Cout	h		Deed	Page 1
3rd Floor, The				Land South of Henham Road				
52-56 LeadenH		εt	Bas	Basin A				
London, EC3M				0 68 8				_ Micro
Date 01/04/20	22		Des	igned	by AW			Draina
File Cascade 1	Basins.CA	ASX	Chee	cked b	у вв			Didirio
Innovyze			Sou	rce Co	ntrol	2020.	1	
Cacaada Ci	immanu of		for 200	0170	7++0	nusti	on Basin A C	alac CDCN
<u>Cascade st</u>	uuuary or	NESULUS	101 200	50170	- ALLE	nuati	UII BASIII A C	alcs.shu
2	Upstream Structures		Out	flow To	5		Overflow To	b
	(None)	2008170 - 2	Attenuat	ion Bas	sin B Ca	lcs.SF	RCX (None)	
		Storm	Max	Max	Max	Max	Status	
		Event	Level	Depth	Control	Volum	e	
			(m)	(m)	(l/s)	(m³)		
	15	min Summer	86.524	0.224	0.7	142.	0 ок	
		min Summer				182.		
	60	min Summer	86.639	0.339	0.7	223.	б ОК	
	120	min Summer	86.695	0.395	0.7	265.		
		min Summer				289.		
	240	min Summer	86.748	0.448	0.7	306.		
	360	min Summer min Summer	86.///	0.4//	0.7	329.		
		min Summer				345. 357.		
		min Summer				367.		
		min Summer				380.		
		min Summer				396.		
	2160	min Summer	86.868	0.568	0.7	403.	9 ОК	
	2880	min Summer	86.866	0.566	0.7	402.		
		min Summer				388.		
	5760	min Summer	80.829	0.529	0.7	372.	1 ОК	
		Storm	Rain	Floode	ed Disch	arge 1	Fime-Peak	
		Event	(mm/hr)	Volum	e Volu	ume	(mins)	
				(m³)	(m	3)		
	15	min Summer	76.325	0.	. 0	63.8	27	
	30	min Summer	49.096			62.4	42	
		min Summer	30.183			.22.0	72	
		min Summer	18.023			14.8	132	
		min Summer	13.199			12.5	192	
		min Summer	10.542			12.1	250	
		min Summer min Summer	7.645 6.087			.13.7 .16.0	370 490	
		min Summer	5.098			17.6	610	
		min Summer	4.409			18.8	730	
		min Summer	3.505			20.4	968	
		min Summer	2.533			21.8	1446	
		min Summer	1.829			39.3	2164	
		min Summer	1.451	0.		40.7	2884	
		min Summer	1.046			38.1	4192	
	5760	min Summer	0.829	0.	.0 4	64.9	4832	

d Floor, The Hallmar	k Building	Land	1 South	n of He	nham I	Road
2-56 LeadenHall Stree	10010 - 00011 KI-10110 - 0011-0011-	Basi	nΑ			
ondon, EC3M 5JE						
ate 01/04/2022		Desi	gned 1	W AV		
le Cascade Basins.CA	cv		ked by			
	.5A			ntrol 2	000 1	
novyze		Sour	rce con	itroi 2	.020.1	
Cascade Summary of	Doculto f	on 200	0170	Atton	untio	Bacin
Cascade Summary Of	Results 1	01 200	0170 -	- Allen	luation	I DADIN
	Storm	Мах	Max	Max	Max	Status
	Event			Control		
		(m)	(m)	(1/s)	(m ³)	
	min Summer				357.4	
	min Summer				344.5	
	min Summer		승규는 감독을 가지 않는 것이 없다.		332.9	
	min Winter min Winter				159.2 204.6	
7.7	min Winter			0.7	- 10 A A A A A A A A A A A A A A A A A A	1273
	min Winter				297.7	
	min Winter				325.1	
	min Winter				344.2	
360	min Winter	86.827	0.527	0.7	370.4	ОК
480	min Winter	86.850	0.550	0.7	389.2	ок
600	min Winter	86.867	0.567	0.7	403.4	ОК
720	min Winter	86.880	0.580	0.8	414.6	ОК
960	min Winter	86.900	0.600	0.8	431.1	ОК
	min Winter			0.8	450.7	O K
	min Winter				463.3	
	min Winter					ОК
	min Winter					OK
5760	min Winter	86.909	0.609	0.8	438.9	ОК
	Storm	Rain	Floods	d Disch	argo Mi	ma-Poak
	Event	(mm/hr)			_	(mins)
	Lvent	((m ³)	(m ³	119-11-11-1	(
7200	min Summer	0.692			52.6	5552
			-		38.7	6312
8640	min Summer	0.597				
8640 10080	min Summer min Summer	0.527	0.	0 4	25.2	7152
8640 10080 15	min Summer min Summer min Winter	0.527 76.325	0. 0.	0 4 0	25.2 63.4	27
8640 10080 15 30	min Summer min Summer min Winter min Winter	0.527 76.325 49.096	0. 0. 0.	0 4 0 0	25.2 63.4 60.9	27 41
8640 10080 15 30 60	min Summer min Summer min Winter min Winter min Winter	0.527 76.325 49.096 30.183	0. 0. 0.	0 4 0 0 0 1	25.2 63.4 60.9 17.1	27 41 72
8640 10080 15 30 60 120	min Summer min Summer min Winter min Winter	0.527 76.325 49.096 30.183 18.023	0. 0. 0. 0.	0 4 0 0 0 1 0 1	25.2 63.4 60.9 17.1 12.3	27 41 72 130
8640 10080 15 30 60 120 180	min Summer min Summer min Winter min Winter min Winter min Winter	0.527 76.325 49.096 30.183	0. 0. 0. 0. 0.	0 4 0 0 0 1 0 1 0 1 0 1	25.2 63.4 60.9 17.1 12.3 12.8	27 41 72
8640 10080 15 30 60 120 180 240	min Summer min Summer min Winter min Winter min Winter min Winter min Winter	0.527 76.325 49.096 30.183 18.023 13.199	0. 0. 0. 0. 0. 0.	0 4 0 0 0 1 0 1 0 1 0 1 0 1	25.2 63.4 60.9 17.1 12.3	27 41 72 130 188
8640 10080 15 30 60 120 180 240 360	min Summer min Summer min Winter min Winter min Winter min Winter min Winter	0.527 76.325 49.096 30.183 18.023 13.199 10.542	0. 0. 0. 0. 0. 0.	0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1	25.2 63.4 60.9 17.1 12.3 12.8 15.1	27 41 72 130 188 248
8640 10080 15 30 60 120 180 240 360 480	min Summer min Summer min Winter min Winter min Winter min Winter min Winter min Winter min Winter	0.527 76.325 49.096 30.183 18.023 13.199 10.542 7.645	0. 0. 0. 0. 0. 0. 0. 0. 0.	0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	25.2 63.4 60.9 17.1 12.3 12.8 15.1 18.4	27 41 72 130 188 248 366
8640 10080 15 30 60 120 180 240 360 480 600 720	min Summer min Summer min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter	0.527 76.325 49.096 30.183 18.023 13.199 10.542 7.645 6.087 5.098 4.409	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	25.2 63.4 60.9 17.1 12.3 12.8 15.1 18.4 20.5 22.1 23.2	27 41 72 130 188 248 366 484 602 720
8640 10080 15 30 60 120 180 240 360 480 600 720 960	min Summer min Summer min Winter min Winter	0.527 76.325 49.096 30.183 18.023 13.199 10.542 7.645 6.087 5.098 4.409 3.505		0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	25.2 63.4 60.9 17.1 12.3 12.8 15.1 18.4 20.5 22.1 23.2 24.6	27 41 72 130 188 248 366 484 602 720 954
8640 10080 15 30 60 120 180 240 360 480 600 720 960 1440	min Summer min Summer min Winter min Winter	0.527 76.325 49.096 30.183 18.023 13.199 10.542 7.645 6.087 5.098 4.409 3.505 2.533		0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	25.2 63.4 60.9 17.1 12.3 12.8 15.1 18.4 20.5 22.1 23.2 24.6 25.4	27 41 72 130 188 248 366 484 602 720 954 1424
8640 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160	min Summer min Summer min Winter min Winter	0.527 76.325 49.096 30.183 18.023 13.199 10.542 7.645 6.087 5.098 4.409 3.505 2.533 1.829		0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2	25.2 63.4 60.9 17.1 12.3 12.8 15.1 18.4 20.5 22.1 23.2 24.6 25.4 48.4	27 41 72 130 188 248 366 484 602 720 954 1424 2120
8640 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	min Summer min Summer min Winter min Winter	0.527 76.325 49.096 30.183 18.023 13.199 10.542 7.645 6.087 5.098 4.409 3.505 2.533 1.829 1.451		0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2	25.2 63.4 60.9 17.1 12.3 12.8 15.1 18.4 20.5 22.1 23.2 24.6 25.4 48.4 49.0	27 41 72 130 188 248 366 484 602 720 954 1424 2120 2800
8640 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min Summer min Summer min Winter min Winter	0.527 76.325 49.096 30.183 18.023 13.199 10.542 7.645 6.087 5.098 4.409 3.505 2.533 1.829		0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2	25.2 63.4 60.9 17.1 12.3 12.8 15.1 18.4 20.5 22.1 23.2 24.6 25.4 48.4	27 41 72 130 188 248 366 484 602 720 954 1424 2120

Ardent	alt Duilding	T	Conth	of 17-	nhar	Dead	Page 3
3rd Floor, The Hallma:		· · · · · · · · · · · · · · · · · · ·	i South	OT HE	ennam	коад	
52-56 LeadenHall Stree	eu	Basi	n A				
London, EC3M 5JE							Micro
Date 01/04/2022			gned by				Drainage
File Cascade Basins.C	ASX		ked by				brainage
Innovyze		Sour	ce Cont	rol 2	2020.1	<i>a</i> b	
Cascade Summary of	Results f Storm Event	Мах		Max	Max	Status	A Calcs.SRCX
	Lveno	(m)		(1/s)	(m ³)	-	
						-	
) min Winter) min Winter				419. 403.		
1008) min Winter) min Winter	86.848	0.548	0.7		5 OK 6 OK	
1000	HINDE				557.		
	Storm	Rain	Flooded	Disch	arge I	'ime-Peak	
	Event	(mm/hr)	Volume	Volu	ume	(mins)	
			(m³)	(m	3)		
7200	min Winter	0.692	0.0	4	67.5	5840	
8640	min Winter	0 597	0 0	4	60.2	6736	
10080	min Winter	0.527	0.0	4	49.2	7664	
	©1	982-20	20 Inno	vyze			

Ardent	Page 4
3rd Floor, The Hallmark Buildir	Market Market State and State Stat
52-56 LeadenHall Street	Basin A
London, EC3M 5JE	Micro
Date 01/04/2022	Designed by AW
File Cascade Basins.CASX	Checked by BB Drainage
Innovyze	Source Control 2020.1
<u>Cascade Rainfall Details f</u>	or 2008170 - Attenuation Basin A Calcs.SRCX
Rainfall Model Return Period (years) Region E M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Yes 30 Cv (Summer) 0.750 ngland and Wales Cv (Winter) 0.840 19.600 Shortest Storm (mins) 15 0.431 Longest Storm (mins) 10080 Yes Climate Change % +0
	<u>Time Area Diagram</u>
	Total Area (ha) 1.000
	Time (mins) Area From: To: (ha) From: To: (ha)
0 4 0.333	4 8 0.333 8 12 0.333
R	01982-2020 Innovyze
ن ا	1302-2020 INNOVYZE

Ardent	Page	: 5
3rd Floor, The Hallmark Building	Land South of Henham Road	
52-56 LeadenHall Street	Basin A	
London, EC3M 5JE	Mic	10
Date 01/04/2022		
File Cascade Basins.CASX	Checked by BB	iinage
Innovyze	Source Control 2020.1	
	08170 - Attenuation Basin A Calcs.SRC	<u>x</u>
-	n Dond Structure	
	r Pond Structure	
	Level (m) 86.300	
0.000	a (m ²) Depth (m) Area (m ²) 587.0 1.200 1185.0	
	Optimum Outflow Control	
	Reference MD-SHE-0045-1000-1200-1000 Head (m) 1.200	
	low (1/s) 1.0	
2	lush-Flom Calculated	
	Objective Minimise upstream storage	
	plication Surface Available Yes	
	eter (mm) 45	
	Level (m) 86.250	
Minimum Outlet Pipe Dia Suggested Manhole Dia		
	-2 2020/2020	
Control Points Head (m) Flor	(1/s) Control Points Head (m) Flo	ow (l/s)
Design Point (Calculated) 1.200 Flush-Flo ^m 0.196	1.0 Kick-Flo® 0.398	0.6
F1USD-F10 ¹¹⁴ 0.196	0.7 Mean Flow over Head Range -	0.8
	h based on the Head/Discharge relationship fo	
	ould another type of control device other tha these storage routing calculations will be in	
	(1/s) Depth (m) Flow (1/s) Depth (m) Flow (
0.100 0.7 1.200 0.200 0.7 1.400	1.0 3.000 1.5 7.000 1.1 3.500 1.6 7.500	2.2
0.300 0.7 1.400	1.1 4.000 1.7 8.000	2.3
0.400 0.6 1.800	1.2 4.500 1.8 8.500	2.4
0.500 0.7 2.000	1.3 5.000 1.9 9.000	2.5
0.600 0.7 2.200	1.3 5.500 2.0 9.500	2.6
0.800 0.8 2.400 1.000 0.9 2.600	1.4 6.000 2.1 1.4 6.500 2.2	
1.000 0.9 2.000	1.4 6.500 2.2	
	2-2020 Innovyze	

Ardent	The Hellmen	Ir Duildin	a Tan	d Cout	b of U	onhom	Dood	Page 1
3rd Floor,					h of H	ennam	ROAD	
52-56 Leader		τ	Bas	in A				
London, EC3				0 18 1				_ Micro
Date 01/04/	2022		Des	igned	by AW			Drain
File Cascad	e Basins.CA	SX	Chee	cked b	у вв			Didiri
Innovyze			Sou	rce Co	ntrol	2020.	1	
	-							
Cascade	Summary of	Results	tor 200	18110	- Atte	nuati	on Basin A C	alcs.SRC2
	Upstream Structures		Out	flow To	5		Overflow To	b
	(None)	2008170 - 1	Attenuat	ion Bas	sin B Ca	lcs.SF	RCX (None)	
		Storm	Max	Max	Max	Max	Status	
		Event	Level	Depth	Control	Volum	e	
			(m)	(m)	(l/s)	(m³)		
	15	min Summer	86.585	0.285	0.7	184.	7 ок	
		min Summer				239.		
	60	min Summer	86.733	0.433	0.7	294.		
	120	min Summer	86.803	0.503	0.7	350.		
		min Summer				381.		
	240	min Summer min Summer	86.867	0.567	0.7	403. 431.		
	480	min Summer	86.924	0.624	0.8	452.		
		min Summer				468.		
	720	min Summer	86.956	0.656	0.8	480.	2 ОК	
		min Summer				498.		
		min Summer				518.		
		min Summer min Summer				531. 533.		
	4320	min Summer	87.000	0.700	0.8	520.		
	5760	min Summer	86.977	0.677	0.8	498.	8 O K	
		Storm	Rain	Floode	d Disch	arge "	Fime-Peak	
		Event			e Vol			
				(m³)	(m			
	15	min Summer	99.071	0.	. 0	62.3	27	
		min Summer	64.248			56.7	42	
		min Summer	39.674			12.6	72	
		min Summer	23.696			15.5	132	
		min Summer min Summer	17.315 13.789			.19.4 .21.9	192 252	
		min Summer	9.941			.25.1	370	
		min Summer	7.888			27.1	490	
		min Summer	6.588			28.6	610	
	720	min Summer	5.684	0.	.0 1	29.6	730	
		min Summer	4.500			.30.8	968	
		min Summer	3.234			.31.3	1448	
		min Summer min Summer	2.320 1.832			261.0 261.2	2164 2884	
		min Summer	1.311			256.5	4320	
		min Summer	1.034			95.7	5136	

Ardent		1 5					Page 2
Brd Floor, The Hallmark	Building	g Land	Sout	h of He	enham l	Road	
2-56 LeadenHall Street		Basi	n A				
London, EC3M 5JE							Micco
Date 01/04/2022		Desi	gned]	bv AW			
File Cascade Basins.CAS	,						Drain
e destant deur contra destant en deur en deur contra deur deur deur deur deur deur deur deur	2		ked b	S			
Innovyze		Sour	ce Co	ntrol 2	2020.1		
Cascade Summary of R	esults f	or 200	8170 -	- Atten	uation	n Basin i	A Calcs.SRC
	orm	Max	Max	Max	Max		
Ex	vent			Control			
		(m)	(m)	(1/s)	(m ³)		
7200 m	in Summer	96 955	0 655	0.8	479.7	ОК	
	in Summer				479.7		
	in Summer				402.4		
	in Winter				207.0		
	in Winter				268.2		
	in Winter				330.4		
	in Winter				392.8		
	in Winter				428.5		
	in Winter				452.9		
	in Winter				485.5		
480 m	in Winter	86.988	0.688		509.3	100 B 100	
600 m	in Winter	87.008	0.708		527.3		
720 m	in Winter	87.024	0.724	0.8	541.6	ОК	
960 m	in Winter	87.046	0.746	0.8	562.9	ОК	
1440 m	in Winter	87.074	0.774	0.8	588.7	O K	
	in Winter				606.8		
	in Winter				612.4		
	in Winter				605.9		
5760 m	in Winter	87.073	0.773	0.8	587.8	O K	
5+	orm	Rain	Floode	ed Disch	arge Ti	me-Peak	
	ent	(mm/hr)				(mins)	
	1996 - Total (,,	(m ³)	2014 - 2015년 7월	11111111111111111111111111111111111111		
			510 E	8	25		
	In Summer	0.859			90.9	5848	
	n Summer	0.738			81.7	6656	
	n Summer	0.649			68.3	7368	
	ln Winter	99.071			60.8	27	
	In Winter	64.248			54.8	42	
	In Winter	39.674			13.1	72	
	In Winter	23.696			20.5	130	
	In Winter	17.315			24.4	190	
	ln Winter In Winter	13.789			27.0	248	
		9.941			30.0	366	
	ln Winter In Winter	7.888			32.0	484	
	in Winter	6.588 5.684			33.3 34.2	602 720	
/ / / / / /		4.500			34.2 35.1	956	
	n Winton		υ.		35.1 34.9	1428	
960 mi	n Winter		0	0 T			
960 mi 1440 mi	ln Winter	3.234					
960 mi 1440 mi 2160 mi	in Winter In Winter	3.234 2.320	0.	.0 2	70.4	2124	
960 mi 1440 mi 2160 mi 2880 mi	ln Winter	3.234	0 . <mark>0</mark> .	.0 2 .0 2			

						1
Ardent				- 5	- D- 1	Page 3
3rd Floor, The Hallm		**************************************		of Henha	m Road	
52-56 LeadenHall Str	eet	Basi	n A			
London, EC3M 5JE		_	<u> </u>			Micro
Date 01/04/2022			gned by			Drainage
File Cascade Basins.	CASX		ked by			brainage
Innovyze		Sour	ce Cont	rol 2020	.1	
Cascade Summary (of Results f Storm Event	Max	Max	Attenuat Max Ma ontrol Vol:	x Status	A Calcs.SRCX
		(m)	(m) (1/s) (m	3)	
72	00 min Winter	87.049	0.749	0.8 56	4.8 ОК	
100	40 min Winter 80 min Winter	87.004	0.704	0.8 52	4.0 OK	
	Storm	Rain			Time-Peak	
			Volume		(mins)	
			(m³)	(m³)		
72	00 min Winter	0 950	0.0	511.5	6640	
86	10 min Winter	0 738	0 0	502.2		
100	BO min Winter	0.649	0.0	489.3		
	@1	982-20	20 Inno	<u>VV76</u>		
	01					

Ardent	Page 4
3rd Floor, The Hallmark Building Land South of Henham Road	
52-56 LeadenHall Street Basin A	
London, EC3M 5JE	Micco
Date 01/04/2022 Designed by AW	Micro
File Cascade Basins.CASX Checked by BB	Drainage
Innovyze Source Control 2020.1	
<u> Cascade Rainfall Details for 2008170 - Attenuation Basin A Ca</u>	cs.SRCX
Rainfall ModelFSRWinter StormsYeReturn Period (years)100Cv (Summer)0.75Region England and WalesCv (Winter)0.84M5-60 (mm)19.600 Shortest Storm (mins)10Ratio R0.431 Longest Storm (mins)1008Summer StormsYesClimate Change %	50 10 15 30
<u>Time Area Diagram</u>	
Total Area (ha) 1.000	
Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)	
0 4 0.333 4 8 0.333 8 12 0.333	

Ardent	Page	: 5
3rd Floor, The Hallmark Building	Land South of Henham Road	
52-56 LeadenHall Street	Basin A	
London, EC3M 5JE	Mic	10
Date 01/04/2022		
File Cascade Basins.CASX	Checked by BB	iinage
Innovyze	Source Control 2020.1	
	08170 - Attenuation Basin A Calcs.SRC	<u>x</u>
-	n Dond Structure	
	r Pond Structure	
	Level (m) 86.300	
0.000	a (m ²) Depth (m) Area (m ²) 587.0 1.200 1185.0	
	Optimum Outflow Control	
	Reference MD-SHE-0045-1000-1200-1000 Head (m) 1.200	
	low (1/s) 1.0	
2	lush-Flom Calculated	
	Objective Minimise upstream storage	
	plication Surface Available Yes	
	eter (mm) 45	
	Level (m) 86.250	
Minimum Outlet Pipe Dia Suggested Manhole Dia		
	-2 2020/2020	
Control Points Head (m) Flor	(1/s) Control Points Head (m) Flo	ow (l/s)
Design Point (Calculated) 1.200 Flush-Flo ^m 0.196	1.0 Kick-Flo® 0.398	0.6
F1USD-F10 ¹¹⁴ 0.196	0.7 Mean Flow over Head Range -	0.8
	h based on the Head/Discharge relationship fo	
	ould another type of control device other tha these storage routing calculations will be in	
	(1/s) Depth (m) Flow (1/s) Depth (m) Flow (
0.100 0.7 1.200 0.200 0.7 1.400	1.0 3.000 1.5 7.000 1.1 3.500 1.6 7.500	2.2
0.300 0.7 1.400	1.1 4.000 1.7 8.000	2.3
0.400 0.6 1.800	1.2 4.500 1.8 8.500	2.4
0.500 0.7 2.000	1.3 5.000 1.9 9.000	2.5
0.600 0.7 2.200	1.3 5.500 2.0 9.500	2.6
0.800 0.8 2.400 1.000 0.9 2.600	1.4 6.000 2.1 1.4 6.500 2.2	
1.000 0.9 2.000	1.4 6.500 2.2	
	2-2020 Innovyze	

Ardent						-	Page
	The Hallmark Buil	ding La	nd So	outh of	Henhar	n Road	
2-56 Leader	nHall Street	Ba	sin A	Ŧ			
ondon, EC31	M 5JE						Micr
ate 01/04/2	2022	De	signe	ed by A	Ŵ		
	e Basins.CASX			d by BB			Drai
Innovyze	5 Dubino Onbh			Contro:		1	10 <u>.</u>
movyze		50	urce	CONCLO.	1 2020	• ±	
Cascade	Summary of Result	ts for 2	00817	70 - Att	tenuati	ion Basin A C	alcs.SI
	Upstream	0	utflow	т То		Overflow To)
	Structures						
	(None) 2008170	- Attenu	ation	Basin B	Calcs.S	RCX (None)	
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth	Control	Volume		
		(m)	(m)	(l/s)	(m³)		
	15 min Summe	n 06 607	0 207	0.7	250.0	<u> </u>	
	30 min Summe	r 86 785	0.485	0.7	259.0 335.7		
	60 min Summe				413.6		
	120 min Summe	r 86.969	0.669	0.8	492.0		
	180 min Summe				537.1	ОК	
	240 min Summe	r 87.052	0.752	0.8	568.0	ОК	
	360 min Summe				609.6	ОК	
	480 min Summe				640.3		
	600 min Summe				663.8		
	720 min Summe 960 min Summe 1440 min Summe	r 87.1/0	0.870	0.9	682.5 711.0		
	960 min Summe 1440 min Summe	r 87 222	0.033	0.9		O K Flood Risk	
	2160 min Summe	r 87.260	0.960	0.9		Flood Risk	
	2880 min Summe						
	4320 min Summe	r 87.271	0.971	0.9		Flood Risk	
	5760 min Summe	r 87.255	0.955	0.9	769.2	Flood Risk	
	Storm	Rair				Time-Peak	
	Event	(mm/h	r) Vo		olume (m³)	(mins)	
			(1	m-)	(m-)		
	15 min Summ	ner 138.7	00	0.0	55.0	27	
	30 min Summ			0.0	58.6	42	
	60 min Summ			0.0	122.8	72	
	120 min Summ			0.0	130.9	132	
	180 min Summ			0.0	135.1	192	
	240 min Summ			0.0	137.7	252	
	360 min Summ 480 min Summ			0.0	140.9 142.9	370 490	
	600 min Sum			0.0	142.9	490 610	
	720 min Summ			0.0	144.1	730	
	960 min Summ			0.0	145.7	970	
	1440 min Summ			0.0	145.2	1448	
	2160 min Summ			0.0	293.4	2168	
	2880 min Summ			0.0	292.0	2884	
	4320 min Summ			0.0	284.2	4324	
	5760 min Summ	ner 1.4	47	0.0	568.8	5760	
	5700 MIII Dull						

		1000				Page 2
3rd Floor, The Hallmark Buil	ding	Land So	uth of	Henham	Road	
52-56 LeadenHall Street	į.	Basin A	l			
London, EC3M 5JE						Micco
Date 01/04/2022	1	Designe	d by AW	1		— Micro
File Cascade Basins.CASX		Checked				Drainag
n en en en la companya en la companya en la companya de la companya de la companya de la companya en la company N			Control	2020	1	
Innovyze		source	CONTLOI	2020.	1	
Generale Gummenus of Decul	ta fan	200017	0 3++	+-	an Danin B	dalas grav
Cascade Summary of Resul	ts ior	200817	0 - Att	enuati	ON BASIN A	Calcs.SRCX
Storm	Max	. Мах	Max	Max	Status	
Event			Control		Status	
	(m)	0733	(1/s)	(m ³)		
7200 min Summ					Flood Risk	
8640 min Summ					Flood Risk	
10080 min Summ				705.3	OK	
15 min Wint				290.2		
30 min Wint 60 min Wint				376.1		
60 min Wint 120 min Wint				463.6 551.6		
120 min Wint 180 min Wint				602.5	OK	
240 min Wint				637.5	OK	
360 min Wint				684.8	O K	
480 min Wint					Flood Risk	
600 min Wint			1000		Flood Risk	
720 min Wint					Flood Risk	
960 min Wint					Flood Risk	
1440 min Wint	er 87.3	26 1.026	1.0	844.5	Flood Risk	
2160 min Wint	er 87.3	58 1.058	1.0	879.6	Flood Risk	
2880 min Wint				897.0	Flood Risk	
4320 min Wint	er 87.3	81 1.081	1.0		Flood Risk	
5760 min Wint	er 87.3	72 1.072	1.0	895.8	Flood Risk	
Storm	R	ain Flo	oded Dis	charge	Time-Peak	
Storm Event		ain Flo A/hr) Vo		charge olume	Time-Peak (mins)	
		a/hr) Vo	lume Vo	_		
Event	(111	a/hr) Vo (:	lume Vo m³)	olume (m³)	(mins)	
	(mm nmer 1	a/hr) Vo	lume Vo m ³) 0.0	olume		
Event 7200 min Su	(mm nmer 1 nmer 1	a/hr) Vo (1 (1)	lume Vo m³)	olume (m³) 562.0	(mins) 6560	
Event 7200 min Su 8640 min Su	(mm nmer 1 nmer 1 nmer (a/hr) Vo (1 1.203 1.034).909	lume Vo m³) 0.0 0.0	562.0 551.5	(mins) 6560 7184	
Event 7200 min Su 8640 min Su 10080 min Su 15 min Wir 30 min Wir	(mm nmer 1 nmer 0 nter 138 nter 89	a/hr) Vo (1 1.203 1.034).909	lume Vo m ³) 0.0 0.0 0.0	562.0 551.5 537.5	(mins) 6560 7184 7968	
Event 7200 min Sun 8640 min Sun 10080 min Sun 15 min Win 30 min Win 60 min Win	nmer 1 nmer 1 nmer 0 nter 138 nter 89 nter 55	a/hr) Vo (1 1.203 1.034 0.909 3.700 9.947 5.544	lume Vo m ³) 0.0 0.0 0.0 0.0	562.0 551.5 537.5 55.6	(mins) 6560 7184 7968 27	
Event 7200 min Sun 8640 min Sun 10080 min Sun 15 min Win 30 min Win 60 min Win 120 min Win	nmer 1 nmer 1 nmer 0 nter 138 nter 89 nter 55 nter 33	A/hr) Vo (1 1.203 1.034 0.909 3.700 0.947 5.544 3.174	lume Va m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	562.0 551.5 537.5 55.6 61.0 128.1 136.4	(mins) 6560 7184 7968 27 42 72 130	
Event 7200 min Sur 8640 min Sur 10080 min Sur 15 min Wir 30 min Wir 60 min Wir 120 min Wir 180 min Wir	nmer 1 nmer 1 nmer 0 nter 138 nter 89 nter 55 nter 33 nter 24	A/hr) Vo (3 1.203 1.034 0.909 3.700 0.947 5.544 3.174 1.241	lume Va 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	562.0 551.5 537.5 55.6 61.0 128.1 136.4 140.6	(mins) 6560 7184 7968 27 42 72 130 190	
Event 7200 min Su 8640 min Su 10080 min Su 15 min Wi 30 min Wi 60 min Wi 120 min Wi 180 min Wi	(mm nmer 1 nmer 1 nter 138 nter 55 nter 33 nter 24 nter 19	A/hr) Vo (3 1.203 1.034 0.909 3.700 0.947 5.544 3.174 1.241 0.305	lume Va m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	562.0 551.5 537.5 55.6 61.0 128.1 136.4 140.6 143.2	(mins) 6560 7184 7968 27 42 72 130 190 248	
Event 7200 min Sur 8640 min Sur 10080 min Sur 15 min Wir 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir	(mm nmer 1 nmer 1 nter 138 nter 89 nter 55 nter 33 nter 24 nter 19 nter 13	A/hr) Vo (3 1.203 1.034 0.909 3.700 0.947 5.544 3.174 1.241 0.305 3.918	lume Va m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	562.0 551.5 537.5 55.6 61.0 128.1 136.4 140.6 143.2 146.3	(mins) 6560 7184 7968 27 42 72 130 190 248 366	
Event 7200 min Sur 8640 min Sur 10080 min Sur 15 min Wir 30 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir 480 min Wir	(mm nmer 1 nmer 1 nter 138 nter 138 nter 55 nter 33 nter 24 nter 19 nter 13 nter 11	A/hr) Vo (3 1.203 1.034 0.909 3.700 0.947 5.544 3.174 1.241 0.305 3.918 1.043	lume Va 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	562.0 551.5 537.5 55.6 61.0 128.1 136.4 140.6 143.2 146.3 148.2	(mins) 6560 7184 7968 27 42 72 130 190 248 366 486	
Event 7200 min Su 8640 min Su 10080 min Su 15 min Wi 30 min Wi 120 min Wi 180 min Wi 360 min Wi 360 min Wi 480 min Wi	(mm nmer 1 nmer 1 nter 138 nter 138 nter 33 nter 24 nter 19 nter 13 nter 11 nter 11	A/hr) Vo (3 1.203 1.034 0.909 3.700 0.947 5.544 3.174 1.241 0.305 3.918 1.043 0.223	lume Va 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	562.0 551.5 537.5 55.6 61.0 128.1 136.4 140.6 143.2 146.3 148.2 149.3	(mins) 6560 7184 7968 27 42 72 130 190 248 366 486 604	
Event 7200 min Sur 8640 min Sur 10080 min Sur 15 min Wir 30 min Wir 120 min Wir 180 min Wir 360 min Wir 360 min Wir 480 min Wir 600 min Wir 720 min Wir	(mm nmer 1 nmer 1 nter 138 nter 138 nter 33 nter 24 nter 13 nter 13 nter 13 nter 13 nter 13 nter 13 nter 13 nter 13	A/hr) Vo (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	lume Va 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	562.0 551.5 537.5 55.6 61.0 128.1 136.4 140.6 143.2 146.3 148.2 149.3 150.0	(mins) 6560 7184 7968 27 42 72 130 190 248 366 486 604 722	
Event 7200 min Su 8640 min Su 10080 min Su 15 min Wi 30 min Wi 120 min Wi 120 min Wi 180 min Wi 360 min Wi 480 min Wi 500 min Wi 960 min Wi	(mm nmer 1 nmer 1 nter 138 nter 138 nter 33 nter 24 nter 12 nter 13 nter 13 nter 13 nter 24 nter 13 nter 13 nter 24 nter 14 nter 14 nter 14 nter 24 nter 14 nter 24 nter 24 nter 24 nter 24 nter 35 nter 35 nt	A/hr) Vo (1) (1) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	lume Va 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	562.0 551.5 537.5 55.6 61.0 128.1 136.4 140.6 143.2 146.3 148.2 149.3 150.0 150.4	(mins) 6560 7184 7968 27 42 72 130 190 248 366 486 604 722 958	
Event 7200 min Su 8640 min Su 10080 min Su 15 min Wi 30 min Wi 120 min Wi 120 min Wi 180 min Wi 360 min Wi 480 min Wi 500 min Wi 140 min Wi	(mm nmer 1 nmer 1 nter 138 nter 138 nter 33 nter 24 nter 12 nter 13 nter 13 nter 13 nter 24 nter 14 nter 24 nter 24 nt	A/hr) Vo (1) (2) (2) (2) (2) (2) (2) (2) (3) (3) (3) (3) (4) (4) (4) (4) (5) (4) (5) (5) (4) (5) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	lume Va 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	562.0 551.5 537.5 55.6 61.0 128.1 136.4 140.6 143.2 146.3 148.2 149.3 150.0 150.4 149.2	(mins) 6560 7184 7968 27 42 72 130 190 248 366 486 604 722 958 1430	
Event 7200 min Su 8640 min Su 10080 min Su 15 min Wi 30 min Wi 120 min Wi 120 min Wi 180 min Wi 360 min Wi 480 min Wi 500 min Wi 960 min Wi	(mm nmer 1 nmer 1 nter 138 nter 138 nter 33 nter 24 nter 13 nter 13 nter 13 nter 13 nter 13 nter 24 nter 13 nter 33 nter 24 nter 13 nter 33 nter 33 nter 34 nter 35 nter 33 nter 34 nter 35 nter 33 nter 34 nter 35 nter 33 nter 34 nter 35 nter 33 nter 35 nter 33 nter 35 nter 35 nt	A/hr) Vo (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	lume Va 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	562.0 551.5 537.5 55.6 61.0 128.1 136.4 140.6 143.2 146.3 148.2 149.3 150.0 150.4	(mins) 6560 7184 7968 27 42 72 130 190 248 366 486 604 722 958	
Event 7200 min Su 8640 min Su 10080 min Su 15 min Wi 30 min Wi 120 min Wi 120 min Wi 120 min Wi 360 min Wi 360 min Wi 480 min Wi 500 min Wi 1400 min Wi 1440 min Wi	(mm nmer 1 nmer 1 nter 138 nter 138 nter 33 nter 24 nter 13 nter 13 nter 13 nter 13 nter 13 nter 24 nter 24 nt	A/hr) Vo (1) (2) (2) (2) (2) (2) (2) (2) (3) (3) (3) (3) (4) (4) (4) (4) (5) (4) (5) (5) (4) (5) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	lume Va 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	562.0 551.5 537.5 55.6 61.0 128.1 136.4 140.6 143.2 146.3 148.2 149.3 150.0 150.4 149.2 303.5	(mins) 6560 7184 7968 27 42 72 130 190 248 366 486 604 722 958 1430 2136	

Ardent							Page 3
	Hallmark Buildir	ng Lan	d Sou	ith o	f Henham	Road	
2-56 LeadenHall			in A				
ondon, EC3M 5J							Micco
ate 01/04/2022	- 36	Des	ignec	a by i	AW		Micro
ile Cascade Ba	sins.CASX			by BI			Draina
nnovyze				2473	ol 2020.	1	
<u>Cascade Summ</u>	nary of Results Storm	1000	08170 Max) – Ai Max	3020	on Basin A Status	Calcs.SRCX
	Event				ol Volume		
		(m)	(m)	(l/s)	(m ³)		
	7200 min Winter	87.355 1	.055	1.	.0 877.0	Flood Risk	
	8640 min Winter	87.334 1	.034	1.		Flood Risk	
	10080 min Winter	87.310 1	.010	0.	.9 827.3	Flood Risk	
	Storm	Rain	Floo	oded D	ischarge	Time-Peak	
	Event	(mm/hr			Volume	(mins)	
			(m	3)	(m³)		
	7200 min Winter	1 20	3	0.0	581.2	6848	
	8640 min Winter	1.03	4	0.0	569.0		
	10080 min Winter			0.0		8472	
	ſ	01982-2	020 1	nnovy	WZe.		

Ardent	Page 4
3rd Floor, The Hallmark Building Land South of Henham Road	
52-56 LeadenHall Street Basin A	
London, EC3M 5JE	Micco
Date 01/04/2022 Designed by AW	Micro
File Cascade Basins.CASX Checked by BB	Drainage
Innovyze Source Control 2020.1	
<u>Cascade Rainfall Details for 2008170 - Attenuation Basin A Cal</u>	cs.SRCX
Rainfall Model FSR Winter Storms Ye Return Period (years) 100 Cv (Summer) 0.75 Region England and Wales Cv (Winter) 0.84 M5-60 (mm) 19.600 Shortest Storm (mins) 1 Ratio R 0.431 Longest Storm (mins) 1008 Summer Storms Yes Climate Change % +4	50 10 15 30
<u>Time Area Diagram</u>	
Total Area (ha) 1.000	
Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)	
0 4 0.333 4 8 0.333 8 12 0.333	

Ardent	Page 5	
3rd Floor, The Hallmark Building	Land South of Henham Road	
52-56 LeadenHall Street	Basin A	
London, EC3M 5JE	Micro	
Date 01/04/2022	Doglanod by AW	
File Cascade Basins.CASX	Checked by BB	JE
Innovyze	Source Control 2020.1	
	008170 - Attenuation Basin A Calcs.SRCX	
-	lline Cover Level (m) 87.500	
	or Pond Structure	
	rt Level (m) 86.300	
0.000	Ea (m ²) Depth (m) Area (m ²) 587.0 1.200 1185.0	
	Optimum Outflow Control	
	m Head (m) 1.200	
	Flow (1/s) 1.0	
2	Flush-Flo ^m Calculated	
	Objective Minimise upstream storage	
	pplication Surface Available Yes	
	meter (mm) 45	
	Level (m) 86.250	
Minimum Outlet Pipe Dia Suggested Manhole Dia		
	-9 10.2026-2920 Arriverty Description	
Control Points Head (m) Flor	w (1/s) Control Points Head (m) Flow (1/	s)
Design Point (Calculated) 1.200 Flush-Flo ^m 0.196		0.6
F1USD-F10 ¹¹⁴ 0.196	0.7 Mean Flow over Head Range - 0).8
	en based on the Head/Discharge relationship for the	
	nould another type of control device other than a these storage routing calculations will be invalida	ate
	w (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s)	
0.100 0.7 1.200 0.200 0.7 1.400	1.0 3.000 1.5 7.000 2.2 1.1 3.500 1.6 7.500 2.3	
0.300 0.7 1.600	1.1 3.500 1.0 7.500 2.3 1.1 4.000 1.7 8.000 2.4	
0.400 0.6 1.800	1.2 4.500 1.8 8.500 2.4	
0.500 0.7 2.000	1.3 5.000 1.9 9.000 2.5	
0.600 0.7 2.200	1.3 5.500 2.0 9.500 2.6	
0.800 0.8 2.400 1.000 0.9 2.600	1.4 6.000 2.1 1.4 6.500 2.2	
	, , , , , , , , , , , , , , , , , , ,	
©198	32-2020 Innovyze	

3rd Floor, T	he E	Iallman	rk Bı	uildin	g Land	Land South of Henham Road				
52-56 Leaden	Hall	Stree	et		Basi	n B				
London, EC3M	5JE	3								Micco
Date 01/04/2	022				Desi	gned b	y AW			— Micri
File Cascade	Bas	sins.CA	ASX			ked by				Drair
Innovyze						2.623	trol 202	20.1		1
-	CAD B		a	420175947					55 550	an main
Cascade	Summ	ary of	Res	ults	for 200	8170 -	Attenua	ation Ba	sin B	Calcs.SRC
				Upstre Structu			Outfl	Low To Ove	erflow '	Го
	2008	B170 - 2	Atten	uation	Basin A	Calcs.S	RCX	(None)	(None	e)
				Half	Drain Ti	.me : 155	5 minutes			
	Storm Max Max					lax	Max	Max	Max	Status
	Even	it	Leve (m)			tration /s)	Control M (1/s)	E Outflow (1/s)	Volume (m ³)	
			(m)	(11)	(1	/8/	(1/5)	(1/8)	(ш.)	
		Summer				0.0	6.3	6.3		
		Summer				0.0	6.3	6.3		
		Summer Summer				0.0	6.3 6.3	6.3 6.3		
	1000	Summer	-27-51	7.7 - 27 - 7.7	575	0.0	6.3	6.3		
		Summer				0.0	6.3	6.3		
		Summer				0.0	6.3	6.3		
		Summer				0.0	6.3	6.3		
600	min	Summer	81.4	02 0.40	2	0.0	6.3	6.3	77.2	ОК
720	min	Summer	81.3	92 0.39	2	0.0	6.3	6.3	72.7	о к
		Summer				0.0	6.3	6.3		
		Summer				0.0	6.3	6.3		
		Summer				0.0	6.3	6.3		
		Summer Summer				0.0	6.3 5.5	6.3 5.5		
4320	IIIII	Summer	01.00	09 0.00	19	0.0	5.5	5.5	5.9	U K
			Stor	m	Rain	Flooded	Discharg	ge Time-Pe	eak	
			Even	t	(mm/hr)	Volume	Volume	(mins)	
						(m³)	(m ³)			
		15	min :	Summer	31.107	0.0	121.	.5	25	
				Summer	20.041	0.0			38	
				Summer	12.513	0.0	196.	.7	66	
				Summer	7.646	0.0			122	
				Summer	5.702	0.0			158	
				Summer	4.625	0.0			190	
				Summer	3.436	0.0			258	
				Summer	2.768	0.0			326	
				Summer Summer	2.340 2.040	0.0			396 464	
				Summer	1.643	0.0			404 598	
				Summer	1.211	0.0			358	
				Summer	0.893	0.0			192	
				Summer	0.719	0.0			508	
		4320	min :	Summer	0.530	0.0	541	.7 22	204	

rdent			-					Page 2	
rd Floor, The Hallman		ding	Land	Land South of Henham Road					
2-56 LeadenHall Stree	et		Basi						
ondon, EC3M 5JE								Micro	
ate 01/04/2022			Decigned by AW						
Tile Cascade Basins.CA	ASX		Chec	ked by	BB			Drainag	
Innovyze			Sour	ce Cont	rol 202	0.1			
Cascade Summary of	Resul	ts fo	r 2008	8170 -	Attenua	tion Bas	in B	Calcs.SRCX	
Storm	Max	Max	Max Max Max				2024 55695 16		
Event		1.				Outflow	100000000000000000000000000000000000000		
	(m)	(m)		/s)	(1/s)	(1/s)	(m ³)		
5760 min Summer	81 052	0 052		0.0	4.6	4.6	4.4	ок	
7200 min Summer				0.0	4.0	4.0	3.5		
8640 min Summer				0.0	3.6	3.6	3.0		
10080 min Summer	그 것 같은 것 같은 것 같은 것 같아.			0.0	3.3	3.3	2.5		
15 min Winter				0.0	6.3	6.3			
30 min Winter				0.0	6.3	6.3			
60 min Winter				0.0	6.3	6.3			
120 min Winter				0.0	6.3		106.3		
120 min Winter 180 min Winter				0.0	6.3				
							106.8		
240 min Winter				0.0	6.3	100000	104.7		
360 min Winter				0.0	6.3	6.3			
480 min Winter				0.0	6.3		93.0		
600 min Winter				0.0	6.3	6.3			
720 min Winter				0.0	6.3	6.3			
960 min Winter				0.0	6.3		64.5		
1440 min Winter				0.0	6.3	6.3			
2160 min Winter				0.0	6.2	6.2	9.1		
2880 min Winter				0.0	5.4	5.4			
4320 min Winter	81.046	0.046		0.0	4.2	4.2	3.8	O K	
	Storm	,	Rain	Flooded	Discharg	e Time-Pe	ak		
	Storm		Rain m/hr)		-	e Time-Pe (mins			
	Storm Event			Flooded Volume (m³)	Discharg Volume (m³)				
5760		(1		Volume	Volume	(mins			
	Event	(n nmer	m/hr)	Volume (m³)	Volume (m³)	(mins))		
7200	Event min Sur	(m nmer nmer	m/hr) 0.427	Volume (m ³) 0.0	Volume (m³) 645.	(mins) 3 29 1 36) 936		
7200 8640	Event min Sur min Sur	(m nmer nmer nmer	m/hr) 0.427 0.361	Volume (m ³) 0.0 0.0	Volume (m ³) 645. 682.	(mins) 3 29 1 36 7 43) 936 540		
7200 8640 10080	Event min Sur min Sur min Sur	(m nmer nmer nmer	0.427 0.361 0.315 0.280	Volume (m ³) 0.0 0.0 0.0 0.0	Volume (m ³) 645. 682. 713. 741.	(mins) 3 29 1 36 7 43 8 51) 936 540 936		
7200 8640 10080 15	Event min Sur min Sur min Sur min Sur min Wir	(m nmer nmer nmer nter 3	0.427 0.361 0.315 0.280 31.107	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 645. 682. 713. 741. 131.	(mins) 3 29 1 36 7 43 8 51 2) 336 336 .04 25		
7200 8640 10080 15 30	Event min Sur min Sur min Sur min Sur min Wir min Wir	nmer nmer nmer nmer nter 3 nter 2	0.427 0.361 0.315 0.280 31.107 20.041	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 645. 682. 713. 741. 131. 154.	(mins) 3 29 1 36 7 43 8 51 2 7) 336 336 .04 25 38		
7200 8640 10080 15 30 60	Event min Sur min Sur min Sur min Sur min Wir min Wir min Wir	(m nmer nmer nmer nter 3 nter 2 nter 1	0.427 0.361 0.315 0.280 31.107 20.041 2.513	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 645. 682. 713. 741. 131. 154. 220.	(mins) 3 29 1 36 7 43 8 51 2 7 4) 336 336 .04 25 38 66		
7200 8640 10080 15 30 60 120	Event min Sur min Sur min Sur min Sur min Wir min Wir min Wir min Wir	(m nmer nmer nmer nter 3 nter 2 nter 1 nter	0.427 0.361 0.315 0.280 31.107 20.041 2.513 7.646	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 645. 682. 713. 741. 131. 154. 220. 264.	(mins) 3 29 1 36 7 43 8 51 2 7 4 3 1) 336 336 .04 25 38 66 .20		
7200 8640 10080 15 30 60 120 180	Event min Sur min Sur min Sur min Sur min Win min Win min Win min Win min Win	nmer nmer nmer nter 3 nter 2 nter 1 nter nter	m/hr) 0.427 0.361 0.315 0.280 31.107 20.041 1.2.513 7.646 5.702	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 645. 682. 713. 741. 131. 154. 220. 264. 283.	(mins) 3 29 1 36 7 43 8 51 2 7 4 3 1 2 3 1 2) 336 336 .04 25 38 66 .20 .74		
7200 8640 10080 15 30 60 120 180 240	Event min Sur min Sur min Sur min Sur min Win min Win min Win min Win min Win	(m nmer nmer nter 3 nter 2 nter 1 nter nter	m/hr) 0.427 0.361 0.315 0.280 81.107 20.041 2.513 7.646 5.702 4.625	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 645. 682. 713. 741. 131. 154. 220. 264. 283. 296.	(mins) 3 29 1 36 7 43 8 51 2 7 4 3 3 11 2 1 7 2) 336 340 336 .04 25 38 66 20 74 202		
7200 8640 10080 15 30 60 120 180 240 360	Event min Sur min Sur min Sur min Sur min Win min Win min Win min Win min Win min Win	(m nmer nmer nter 3 nter 2 nter 1 nter nter nter nter	m/hr) 0.427 0.361 0.315 0.280 81.107 20.041 2.513 7.646 5.702 4.625 3.436	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 645. 682. 713. 741. 131. 154. 220. 264. 283. 296. 316.	(mins) 3 29 1 36 7 43 8 51 2 7 4 3 3 1 2 1 7 2 4 2) 336 340 336 .04 25 38 66 .20 .74 .02 276		
7200 8640 10080 15 30 60 120 180 240 360 480	Event min Sur min Sur min Sur min Sur min Win min Win min Win min Win min Win min Win	(m nmer nmer nter 3 nter 2 nter 1 nter nter nter nter nter	m/hr) 0.427 0.361 0.315 0.280 81.107 20.041 2.513 7.646 5.702 4.625 3.436 2.768	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 645. 682. 713. 741. 131. 154. 220. 264. 283. 296. 316. 330.	(mins) 3 29 1 36 7 43 8 51 2 7 4 3 1 2 1 7 2 4 2 0 3) 336 340 336 .04 25 38 66 .20 .74 :02 :76 :54		
7200 8640 10080 15 30 60 120 180 240 360 480 600	Event min Sur min Sur min Sur min Sur min Win min Win min Win min Win min Win min Win min Win	(m nmer nmer nter 3 nter 2 nter 1 nter nter nter nter nter nter nter	m/hr) 0.427 0.361 0.315 0.280 81.107 20.041 2.513 7.646 5.702 4.625 3.436 2.768 2.340	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 645. 682. 713. 741. 131. 154. 220. 264. 283. 296. 316. 330. 340.	(mins) 3 29 1 36 7 43 8 51 2 7 4 3 1 2 1 7 2 4 2 0 3 9 4	936 940 936 940 936 940 936 940 936 940 936 940 936 940 936 940 950 940 950 951 952 954 930		
7200 8640 10080 15 30 60 120 180 240 360 480 600 720	Event min Sur min Sur min Sur min Sur min Win min Win min Win min Win min Win min Win min Win min Win	(m nmer nmer nter nter nter nter nter nter nter nt	m/hr) 0.427 0.361 0.315 0.280 81.107 20.041 2.513 7.646 5.702 4.625 3.436 2.768 2.340 2.040	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 645. 682. 713. 741. 131. 154. 220. 264. 283. 296. 316. 330. 340. 350.	(mins) 3 29 1 36 7 43 8 51 2 7 4 3 1 2 1 7 2 4 2 0 3 9 4 1 5	036 04 25 38 66 .20 .74 .02 .76 .54 .30 .602		
7200 8640 10080 15 30 60 120 180 240 360 480 600 720 960	Event min Sur min Sur min Sur min Sur min Win min Win min Win min Win min Win min Win min Win min Win min Win	(m nmer nmer nter nter nter nter nter nter nter nt	m/hr) 0.427 0.361 0.315 0.280 81.107 20.041 2.513 7.646 5.702 4.625 3.436 2.768 2.340 2.040 1.643	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 645. 682. 713. 741. 131. 154. 220. 264. 283. 296. 316. 330. 340. 350. 365.	(mins) 3 29 1 36 7 43 8 51 2 7 4 3 1 1 7 2 4 2 0 3 9 4 1 5 2 6	936 940 936 940 936 940 936 940 936 940 936 940 936 940 954 902 946		
7200 8640 10080 15 30 60 120 180 240 360 480 600 720 960 1440	Event min Sur min Sur min Sur min Sur min Win min Win min Win min Win min Win min Win min Win min Win min Win min Win	(m nmer nmer nter nter nter nter nter nter nter nt	m/hr) 0.427 0.361 0.315 0.280 81.107 20.041 2.513 7.646 5.702 4.625 3.436 2.768 2.340 2.040 1.643 1.211	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 645. 682. 713. 741. 131. 154. 220. 264. 283. 296. 316. 330. 340. 350. 365. 388.	(mins) 3 29 1 36 7 43 8 51 2 7 4 3 1 1 7 2 4 2 0 3 9 4 1 5 2 6 1 8	036 04 25 38 66 20 74 02 276 54 30 602 54 30 602 54 30 696		
7200 8640 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160	Event min Sur min Sur min Sur min Sur min Win min Win	(m nmer nmer nter nter nter nter nter nter nter nt	m/hr) 0.427 0.361 0.315 0.280 81.107 20.041 2.513 7.646 5.702 4.625 3.436 2.768 2.340 2.040 1.643 1.211 0.893	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 645. 682. 713. 741. 131. 154. 220. 264. 283. 296. 316. 330. 340. 350. 365. 388. 539.	(mins) 3 29 1 36 7 43 8 51 2 7 4 3 1 1 7 2 4 2 0 3 9 4 1 5 2 6 1 8 5 11	036 540 336 .04 25 38 66 .20 .74 .02 .76 .54 .30 .62 .54 .56		
7200 8640 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	Event min Sur min Sur min Sur min Sur min Win min Win min Win min Win min Win min Win min Win min Win min Win min Win	(m nmer nmer nter nter nter nter nter nter nter nt	m/hr) 0.427 0.361 0.315 0.280 81.107 20.041 2.513 7.646 5.702 4.625 3.436 2.768 2.340 2.040 1.643 1.211	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 645. 682. 713. 741. 131. 154. 220. 264. 283. 296. 316. 330. 340. 350. 365. 388.	(mins) 3 29 1 36 7 43 8 51 2 7 4 3 1 2 7 4 3 11 7 2 4 2 0 3 9 4 1 5 2 6 1 8 5 11 4 14	036 04 25 38 66 20 74 02 276 54 30 602 54 30 602 54 30 696		

Ardent							Page 3
rd Floor, The Hallm	nark Buildir	ng Land	South	of Henha	m Road		
2-56 LeadenHall Sti	reet	Basi	n B				
ondon, EC3M 5JE							Micro
ate 01/04/2022		Desi	gned by	V AW			
ile Cascade Basins	CASX		ked by				Drainad
nnovyze		Sour	ce Cont	rol 2020	.1		·
Cascade Summary	of Results	for 200	8170 -	Attenuat	ion Bas:	in B (Calcs.SRCX
Storm Event	Max Ma Level Dep (m) (m	th Infil	Max tration L/s)	Max Control Σ (1/s)	Max Outflow V (l/s)		Status
	er 81.035 0.0 er 81.029 0.0		0.0	3.5 3.1	3.5 3.1		
	er 81.029 0.0 er 81.024 0.0		0.0		2.8		
10080 min Wint		2000 C C C C C C C C C C C C C C C C C C	0.0		2.6		
	Storm	Rain		Discharge			
	Event	(mm/hr)	Volume (m³)	Volume (m ³)	(mins)		
			(m-)	(m-)			
	60 min Winter						
72	200 min Winter 540 min Winter	0.361	0.0	764.0 799.4			
	940 min Winter 980 min Winter						
Charles -	1997-1997 - CONTRACTOR - C		(50 B)	0.1976/787177	n <u>ka</u> 2044	0.4563	

Ardent	Page 4
3rd Floor, The Hallmark Building L	Land South of Henham Road
	Basin B
London, EC3M 5JE	Micro
Date 01/04/2022 D	Designed by AW
File Cascade Basins.CASX C	Checked by BB Drainage
Innovyze S	Source Control 2020.1
Cascade Rainfall Details for 2	2008170 - Attenuation Basin B Calcs.SRCX
Rainfall Model Return Period (years) Region Englan M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Yes 1 Cv (Summer) 0.750 nd and Wales Cv (Winter) 0.840 19.600 Shortest Storm (mins) 15 0.431 Longest Storm (mins) 10080 Yes Climate Change % +0
Time	e Area Diagram
	L Area (ha) 1.100
Time (mins) Area Tim From: To: (ha) From	me (mins) Area Time (mins) Area m: To: (ha) From: To: (ha)
0 4 0.367	4 8 0.367 8 12 0.367
©1982	2-2020 Innovyze

Ardent		<u>194900 - 1000</u>	ng Tanan			P	age 5)
3rd Floor, The Hallmark Building			Henham	Road				
52-56 LeadenHall Street	Basin	В					Li	
London, EC3M 5JE		Aug. 1979-19					Micr	
Date 01/04/2022		ned by AW	7				Drair	
File Cascade Basins.CASX	oncexed by bb							iugu
Innovyze	Source	e Control	2020.	1				
<u>Cascade Model Details for 2</u> Storage is Or	1947 (Sec.		641 X21		3 Cal	cs.S	SRCX	
Con	<u>mplex S</u>	Structure	2					
	<u>Tank o</u>	r Pond						
Inve	rt Level	. (m) 81.00	00					
Depth (m) Ar	ea (m²)	Depth (m)	Area (1	1²)				
0.000	79.0	1.500	544	1.0				
	<u>Tank o</u>	<u>r Pond</u>						
Inve	rt Level	(m) 81.3	00					
Depth (m) Area (m²) De	pth (m)	Area (m²)	Depth	(m) Area	(m ²)			
0.000 290.0	0.900	290.0	0.9	001	0.0			
Comple	<u>ex Outf</u>	low Cont	rol					
Hydr	o-Brak	e® Optimu	um					
		nce MD-SHE	5-0124-6					
6.24	yn Head Flow (l.			1	0.520 6.3			
	Flush-F.			Calcu				
	Object:		nise upst	tream st	orage			
	Applicat			Su	face			
) Availa Ameter (1				Yes 124			
	Level	2 S.		80).950			
Minimum Outlet Pipe Dia					150			
Suggested Manhole Dia	umeter ()	mm)			1200			
Control Points Head (m) Flo	w (l/s)	Cont	rol Poir	nts	Head	(m)	Flow	(1/s)
Design Point (Calculated) 0.520 Flush-Flo™ 0.195	6.3 6.3	Mean Flow		ick-Flo® ad Range		.391		5.5 5.2
The hydrological calculations have be Hydro-Brake® Optimum as specified. S Hydro-Brake Optimum® be utilised then	en based hould an	l on the He other type	ead/Disc e of con	harge re trol dev	lation ice ot	her	than	a

Ardent		Page 6
3rd Floor, The Hallmark Building	Land South of Henham Road	
52-56 LeadenHall Street	Basin B	
London, EC3M 5JE		Micro
Date 01/04/2022	Designed by AW	Drainage
File Cascade Basins.CASX	Checked by BB	Diamaye
Innovyze	Source Control 2020.1	
Sector: 00	11111 NR 4111 DI 111111	
Hydi	ro-Brake® Optimum	

Depth (m) Flow (l/s)	Depth (m) Flow	(l/s) Depth (m)	Flow (1/s)	Depth (m)	Flow (l/s)
0.100 4.4	1.200	9.3 3.000	14.4	7.000	21.6
0.200 6.3		10.0 3.500	14.4	7.500	22.4
0.300 6.1		10.7 4.000	16.5	8.000	23.1
0.400 5.6		11.3 4.500	10.5	8.500	23.1
0.400 5.0		11.9 5.000	18.4	9.000	24.5
0.600 6.7		12.4 5.500	19.1	9.500	24.5
0.800 7.7		12.9 6.000	20.0	5.500	23.2
1.000 8.5		13.4 6.500	20.8		

<u>Orifice</u>

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 81.690

3rd Floor, T	he H	Hallman	rk Bi	uildin	g Land	l South	of Hen	ham Road		
52-56 Leaden	Hall	L Stree	et		Basi	Basin B				
London, EC3M	5JE	C								Micro
Date 01/04/2	022				Desi	gned b	y AW			
File Cascade	Bas	sins.CA	ASX		Chec	ked by	BB			Drain
Innovyze						2023	trol 20	20.1		195
Cascade	Summ	arv of	Res	sults	for 200	08170 -	Attenu	ation Ba	sin B	Calcs.SRCX
oubouuo	o unun	ur, or		Juitob	101 200	0170				
				Upstre Structa			Outfl	Low To Ove	erflow '	Го
	2008	8170 - 1	Atten	uation	Basin A	Calcs.S	RCX	(None)	(None	e)
				Half	Drain Ti	.me : 253	l minutes			
	Storm Max Max					lax	Max	Max	Max	Status
	Even	nt	Leve (m)			tration /s)	Control 3 (1/s)	E Outflow (1/s)	Volume (m ³)	
15	min	Summer	5.0.5 			0.0	6.8		149.8	ок
		Summer				0.0	7.2		189.9	
60	min	Summer	81.7	04 0.70)4	0.0	7.6	7.6	226.0	ОК
		Summer				0.0	9.4		250.9	
		Summer				0.0	9.8		255.7	
		Summer Summer				0.0	9.7 9.1		254.0 248.0	
		Summer				0.0	9.1		248.0	
		Summer				0.0	8.0		234.7	
		Summer				0.0	7.7		228.1	
960	min	Summer	81.6	83 0.68	3	0.0	7.4	7.4	214.9	ОК
		Summer				0.0	7.2		190.0	
		Summer Summer				0.0	6.8		156.5	
		Summer				0.0	6.5 6.3		127.3 80.0	
			Stor					ge Time-Pe		
			Even	t	(mm/hr)	Volume (m³)	Volume (m³)	(mins	•)	
		15	min	Summer	76.325	0.0	221	.2	26	
				Summer	49.096	0.0			40	
				Summer	30.183	0.0			68	
				Summer	18.023	0.0			124	
				Summer Summer	13.199 10.542	0.0			182 220	
				Summer	7.645	0.0			220	
				Summer	6.087	0.0			360	
				Summer	5.098	0.0			432	
				Summer	4.409	0.0			504	
				Summer	3.505	0.0			646	
				Summer	2.533	0.0			918	
				Summer Summer	1.829 1.451	0.0			320 708	
				Summer	1.046	0.0			468	

Ardent	eo				V902 - 20			Page 2
rd Floor, The Hallmar	k Buil	ding	Land					
2-56 LeadenHall Stree	t		Basi					
ondon, EC3M 5JE								Micco
ate 01/04/2022			Desid	ned b	V AW			Micro
ile Cascade Basins.CA	SX		Designed by AW Checked by BB					
	IJЛ				trol 202	0 1		
Innovyze			Sour	ce Con	trol 202	20.1		
Cascade Summary of	Resul	ts fo	r 2008	3170 -	Attenua	ation Ba:	sin B (Calcs.SRCX
Storm	Max	Max	м	ax	Max	Max	Max	Status
Event	Level	Depth	Infilt	ration	Control	Σ Outflow	Volume	
	(m)	(m)	(1	/s)	(l/s)	(l/s)	(m³)	
5760 min Summer	81.315	0.315		0.0	6.3	6.3	38.9	ок
7200 min Summer				0.0	6.3	6.3		
8640 min Summer				0.0	6.1			
10080 min Summer	81.069	0.069		0.0	5.4	5.4		
15 min Winter				0.0	7.0	7.0	168.5	ОК
30 min Winter	81.682	0.682		0.0	7.4	7.4	214.1	ОК
60 min Winter				0.0	9.7		254.4	
120 min Winter	81.804	0.804		0.0	12.5	12.5	281.2	ОК
180 min Winter	81.813	0.813		0.0	13.1	13.1	286.2	O K
240 min Winter				0.0	12.9	200000000000000000000000000000000000000	284.4	574355
360 min Winter				0.0	12.4		279.6	
480 min Winter				0.0	11.6		272.6	
600 min Winter				0.0	10.7		264.7	
720 min Winter				0.0	9.9		257.1	
960 min Winter				0.0	8.6		243.1	
1440 min Winter				0.0	7.3		209.6	
2160 min Winter				0.0	6.9		160.3	
2880 min Winter				0.0	6.4		118.7	
4320 min Winter	81.329	0.329		0.0	6.3	6.3	44.6	O K
	Storm	;	Rain	Flooded	Dischar	ge Time-Pe	eak	
	Event	(1		Volume				
				(m³)	(m³)			
5760	min Sum	mer	0.829	0.0	1121	.5 31	168	
	min Sum		0.692	0.0			744	
8640	min Sum	mer	0.597	0.0			360	
10080	min Sum	mer	0.527	0.0	1155	.0 50	072	
15	min Win	ter 7	6.325	0.0	239	.7	26	
30	min Win	ter 4	9.096	0.0			40	
	min Win		80.183	0.0			66	
	min Win		8.023	0.0			122	
	min Win		3.199	0.0			174	
240	min Win	iter 1	0.542	0.0	504	.7 2	206	
	min Win		7.645	0.0			280	
	min Win		6.087	0.0			360	
		tor	5.098	0.0			440	
	min Win	ILEI			610	0 '	520	
600 720	min Win	ter	4.409	0.0				
600 720 960	min Win min Win	ter ter	4.409 3.505	0.0 0.0			684	
600 720 960 1440	min Win min Win min Win	iter iter iter	3.505 2.533	0.0 0.0	642 687	.6 .1	684 996	
600 720 960 1440 2160	min Win min Win min Win min Win	iter iter iter iter	3.505 2.533 1.829	0.0 0.0 0.0	642 687 856	.6 .1 .9 14	684 996 416	
600 720 960 1440 2160 2880	min Win min Win min Win	iter iter iter iter iter	3.505 2.533	0.0 0.0	642 687 856 892	.6 0 .1 9 .9 14 .5 18	684 996	

dent			<u></u>				Page 3
d Floor, The Hallma		g Land	South	of Henhar	n Road		
-56 LeadenHall Stre	et	Basi	n B				
ndon, EC3M 5JE							_ Micro
te 01/04/2022		Desi	gned by	AW			
le Cascade Basins.C	ASX	Chec	ked by	BB			Drainad
novyze		Sour	ce Cont	rol 2020	.1		
Cascade Summary of	Results f	or 200	8170 -	Attenuati	Lon Basi	LN B (Calcs.SRCX
Storm	Max Max		lax	Max	Max		Status
Event	Level Dept						
	(m) (m)	(1	/s)	(1/s)	(l/s)	(m³)	
5760 min Winter			0.0	6.0	6.0		
7200 min Winter			0.0		5.1		
8640 min Winter 10080 min Winter			0.0		4.6 4.1		
10000 MITH WINCEL	01.045 0.04	5	0.0	4.1	4.1	5.7	0 K
	6 b a a m			D ² b			
	Storm Event	Rain (mm/hr)	Volume	Discharge Volume	Time-Pea (mins)	LK	
	Evenc	(1111)	(m ³)	(m ³)	(mins)		
	min Winter min Winter			1208.9 1234.6			
8640	min Winter	0.592	0.0	1254.0			
	min Winter						

3rd Floor, The Hallmark BuildingLand South of Henham Road52-56 LeadenHall StreetBasin BLondon, EC3M 5JELondon (1000)	age 4						
52-56 LeadenHall StreetBasin BLondon, EC3M 5JEDesigned by AWDate 01/04/2022Designed by AWFile Cascade Basins.CASXChecked by BB							
Date 01/04/2022Designed by AWFile Cascade Basins.CASXChecked by BB							
Date 01/04/2022Designed by AWFile Cascade Basins.CASXChecked by BB	Airco						
	Micro						
Innovyze Source Control 2020.1)rainage						
Innovyze Source Control 2020.1							
<u>Cascade Rainfall Details for 2008170 - Attenuation Basin B Calcs</u>	.SRCX						
Rainfall ModelFSRWinter StormsYesReturn Period (years)30Cv (Summer)0.750Region England and WalesCv (Winter)0.840M5-60 (mm)19.600Shortest Storm (mins)15Ratio R0.431Longest Storm (mins)10080Summer StormsYesClimate Change %+0							
<u>Time Area Diagram</u>							
Total Area (ha) 1.100							
Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)							
0 4 0.367 4 8 0.367 8 12 0.367							
©1982-2020 Innovyze							

Ardent		<u>194900 - 1000</u>	ng Tanan			P	age 5)
3rd Floor, The Hallmark Building			Henham	Road				
52-56 LeadenHall Street	Basin	В					Li	
London, EC3M 5JE		Aug. 1979-19					Micr	
Date 01/04/2022	Designed by AW						Drair	
File Cascade Basins.CASX		ed by BB					JUUI	iugu
Innovyze	Source	e Control	2020.	1				
<u>Cascade Model Details for 2</u> Storage is Or	1947 (Sec.		641 322		3 Cal	cs.S	SRCX	
Con	<u>mplex S</u>	Structure	2					
	<u>Tank o</u>	r Pond						
Inve	rt Level	. (m) 81.00	00					
Depth (m) Ar	ea (m²)	Depth (m)	Area (1	1²)				
0.000	79.0	1.500	544	1.0				
	<u>Tank o</u>	<u>r Pond</u>						
Inve	rt Level	(m) 81.30	00					
Depth (m) Area (m²) De	pth (m)	Area (m²)	Depth	(m) Area	(m ²)			
0.000 290.0	0.900	290.0	0.9	001	0.0			
Comple	<u>ex Outf</u>	low Cont	rol					
Hydr	o-Brak	e® Optimu	um					
		nce MD-SHE	5-0124-6					
6.24	yn Head Flow (l.			1	0.520 6.3			
	Flush-F.			Calcu				
	Object:		nise upst	tream st	orage			
	Applicat			Su	face			
) Availa Ameter (1				Yes 124			
	Level	2 S.		80).950			
Minimum Outlet Pipe Dia					150			
Suggested Manhole Dia	umeter ()	mm)			1200			
Control Points Head (m) Flo	w (l/s)	Cont	rol Poir	nts	Head	(m)	Flow	(1/s)
Design Point (Calculated) 0.520 Flush-Flo™ 0.195	6.3 6.3	Mean Flow		ick-Flo® ad Range		.391		5.5 5.2
The hydrological calculations have be Hydro-Brake® Optimum as specified. S Hydro-Brake Optimum® be utilised then	en based hould an	l on the He other type	ead/Disc e of con	harge re trol dev	lation ice ot	her	than	a

Ardent		Page 6
3rd Floor, The Hallmark Building	Land South of Henham Road	
52-56 LeadenHall Street	Basin B	
London, EC3M 5JE		Micro
Date 01/04/2022	Designed by AW	Drainage
File Cascade Basins.CASX	Checked by BB	Diamaye
Innovyze	Source Control 2020.1	
Sector: 00	11111 NR 4111 DI 111111	
Hydi	ro-Brake® Optimum	

Depth (m) Flow (l/s)	Depth (m) Flow	(l/s) Depth (m)	Flow (1/s)	Depth (m)	Flow (l/s)
0.100 4.4	1.200	9.3 3.000	14.4	7.000	21.6
0.200 6.3		10.0 3.500	14.4	7.500	22.4
0.300 6.1		10.7 4.000	16.5	8.000	23.1
0.400 5.6		11.3 4.500	10.5	8.500	23.1
0.400 5.0		11.9 5.000	18.4	9.000	24.5
0.600 6.7		12.4 5.500	19.1	9.500	24.5
0.800 7.7		12.9 6.000	20.0	5.500	23.2
1.000 8.5		13.4 6.500	20.8		

<u>Orifice</u>

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 81.690

3rd Floor, T	he H	Iallman	rk Bi	uildin	g Land	l South	of Hen	ham Road		
52-56 Leaden	Hall	Stree	et		Basi	n B				
London, EC3M	5JE	1								Micro
Date 01/04/2	022				Desi	gned b	y AW			
File Cascade	Bas	ins.CA	ASX		Chec	ked by	BB			Drain
Innovyze						2.623	trol 20	20.1		
	993		2 622	678			tenn.			en 1 - 111-111
Cascade	Summ	ary of	Res	sults	for 200	08170 -	Attenua	ation Ba	sin B	Calcs.SRC
				Upstre			Outfl	Low To Ove	erflow !	Го
	2008	B170 - 2	Atten	uation	Basin A	Calcs.S	RCX	(None)	(None	=)
				Half	Drain Ti	me : 25	9 minutes			
	Stor	m	Max			ax	Max	Max	Max	Status
	Even	it						E Outflow		
			(m)	(m)	(1	/s)	(1/s)	(l/s)	(m³)	
15	min	Summer	81.6	48 0.64	8	0.0	7.2	7.2	196.2	ОК
		Summer				0.0	9.4		250.7	
		Summer				0.0	14.2		295.8	
		Summer				0.0	16.0	0.7.17.17.1	323.7	
		Summer				0.0	16.2		327.2	
		Summer Summer				0.0	16.1 15.8		326.3 319.5	
		Summer				0.0	15.3		311.2	
		Summer				0.0	14.8		302.5	
		Summer				0.0	14.1		294.8	
		Summer				0.0	12.6		282.1	
		Summer				0.0	10.3		261.5	
		Summer				0.0	7.9	7.9	233.4	O K
		Summer				0.0			200.0	
4320	min	Summer	81.5	40 0.54	10	0.0	6.7	6.7	142.3	ОК
			Stor	m	Rain	Flooded	Dischar	ge Time-Po	eak	
			Even	t		Volume	Volume			
						(m³)	(m³)			
		15	min	Summer	99.071	0.0	266	. 6	26	
				Summer	64.248	0.0			40	
		60	min	Summer	39.674	0.0	439	. 8	66	
				Summer	23.696	0.0			122	
				Summer	17.315	0.0			162	
				Summer	13.789	0.0			192	
				Summer	9.941	0.0			258	
				Summer	7.888	0.0			328	
				Summer	6.588	0.0			398	
				Summer Summer	5.684	0.0			468 612	
				Summer	4.500 3.234	0.0			612 900	
				Summer	2.320	0.0			340	
				Summer	1.832	0.0			740	
				Summer	1.311	0.0			512	

Ardent 3rd Floor, Th	o Uallmar	k Buil	Iding	Land	South	of Henha	m Road		Page 2
			Laring			or nemia	ani Kuau		
52-56 LeadenH	all Stree	et		Basi	n B				
London, EC3M	5JE								Micro
Date 01/04/20	2.2			Desi	gned by	VAW			
		0.17							Drain
File Cascade	Basins.CA	ISX			ked by				
Innovyze				Sour	ce Cont	trol 2020	0.1		
Cascade Si	ummary of	Resul	ts fo	or 200	8170 -	Attenuat	tion Bas	sin B (Calcs.SRC
	torm	Max	Max	м	ax	Max	Max	Max	Status
	vent					Control E			Status
-	veno	(m)	(m)		/s)	(1/s)	(1/s)	(m ³)	
	19							100000	
	min Summer				0.0	6.3	6.3		
	min Summer				0.0	6.3	6.3		
	min Summer				0.0	6.3	6.3		
	min Summer				0.0	6.3	6.3		
	min Winter				0.0	7.4		220.6	
	min Winter				0.0	12.5	12.5	280.6	O K
	min Winter				0.0	16.4	16.4	331.9	ОК
	min Winter				0.0	18.1	18.1	366.5	ОК
180 1	min Winter	81.958	0.958		0.0	18.3	18.3	372.2	ОК
240 1	min Winter	81.955	0.955		0.0	18.2	18.2	370.3	ОК
360 1	min Winter	81.941	0.941		0.0	17.9	17.9	361.9	ОК
480 1	min Winter	81.923	0.923		0.0	17.4	17.4	350.6	ОК
600 1	min Winter	81.902	0.902		0.0	16.7		338.0	о к
720 1	min Winter	81.881	0.881		0.0	16.1		325.7	ОК
960 1	min Winter	81.845	0.845		0.0	14.9	14.9	304.8	ок
	min Winter				0.0	12.1		277.5	
	min Winter				0.0	8.8		245.1	
	min Winter				0.0	7.3		202.3	
	min Winter				0.0	6.5		123.0	
		Storm		Rain	Flooded	l Discharge	e Time-Pe	eak	
		Event	(mm/hr)	Volume		(mins)	
					(m³)	(m³)			
	5760	min Su	mmer	1.034	0.0	1314.3	3 32	240	
	7200	min Su	mmer	0.859	0.0			976	
	8640	min Su	mmer	0.738	0.0			576	
	10080	min Su	mmer	0.649	0.0			L44	
		min Wi		99.071	0.0			26	
	30	min Wi	nter	64.248	0.0			39	
		min Wi		39.674	0.0			66	
		min Wi		23.696	0.0			L20	
		min Wi		17.315	0.0			172	
		min Wi		13.789	0.0			196	
		min Wi		9.941	0.0			272	
		min Wi		7.888	0.0			348	
		min Wi		6.588	0.0			124	
		min Wi		5.684	0.0			198	
		min Wi		4.500	0.0			198 542	
		min Wi							
		min Wi min Wi		3.234 2.320	0.0			938	
		min Wi		1.8320	0.0			112 372	
					0.0				
	1220	min Wi	ntor	1.311	0.0	1135.3	2	548	

				<u></u>				Page 3	
rd Floor, The Hallmar	k Build	ding	Land	South	of Henha	m Road			
2-56 LeadenHall Stree	t		Basi	n B					
ondon, EC3M 5JE								Micro	-
ate 01/04/2022		;	Desi	gned by	AW				
ile Cascade Basins.CA	SX		Chec	ked by	BB			Drain	ay
nnovyze			Sour	ce Cont	rol 2020	.1			
Cascade Summary of	Result	s fo	r 200	8170 -	Attenuat	ion Bas	in B (Calcs.SRC	X
Storm	Max	Max		lax	Max	Max		Status	
Event	Level I (m)	Depth (m)		tration (./s)	Control E (1/s)	Outflow (1/s)	Volume (m³)		
5760 min Winter	81.360 (0.360		0.0	6.3	6.3	58.4	ОК	
7200 min Winter	81.092 (0.092		0.0	6.2	6.2	8.0	о к	
8640 min Winter				0.0	5.5	5.5			
10080 min Winter	81.058 (0.058		0.0	4.9	4.9	4.8	O K	
	Storm				Discharge				
	Event	(п	am/hr)	Volume (m ³)		(mins)		
				(m³)	(m³)				
	min Wint				1434.1		64		
	min Wint						44		
	min Wint				1484.4		00		
10080	min Wint	ler	0.649	0.0	1497.3	51	.36		

3rd Floor, The Hallmark Building Land South of Henham Road	
	Page 4
52-56 LeadenHall Street Basin B	
London, EC3M 5JE	Micco
Date 01/04/2022 Designed by AW	Micro
File Cascade Basins.CASX Checked by BB	Drainage
Innovyze Source Control 2020.1	
<u>Cascade Rainfall Details for 2008170 - Attenuation Basin B Cal</u>	.cs.SRCX
Rainfall ModelFSRWinter StormsYeReturn Period (years)100Cv (Summer)0.75Region England and WalesCv (Winter)0.84M5-60 (mm)19.600Shortest Storm (mins)1Ratio R0.431Longest Storm (mins)1008Summer StormsYesClimate Change %4	50 10 .5 30
<u>Time Area Diagram</u>	
Total Area (ha) 1.100	
Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)	
0 4 0.367 4 8 0.367 8 12 0.367	

Ardent		<u>194900 - 1000</u>	ng Tanan			P	age 5)
3rd Floor, The Hallmark Building			Henham	Road				
52-56 LeadenHall Street	Basin	В					Li	
London, EC3M 5JE		Aug. 1979-19					Micr	
Date 01/04/2022	Designed by AW						Drair	
File Cascade Basins.CASX		ed by BB					JUUI	iugu
Innovyze	Source	e Control	2020.	1				
<u>Cascade Model Details for 2</u> Storage is Or	1947 (Sec.)		en 12: - 22: - 22: - 22:		3 Cal	cs.S	SRCX	
Con	<u>mplex S</u>	Structure	2					
	<u>Tank o</u>	r Pond						
Inve	rt Level	. (m) 81.00	00					
Depth (m) Ar	ea (m²)	Depth (m)	Area (1	1²)				
0.000	79.0	1.500	544	1.0				
	<u>Tank o</u>	<u>r Pond</u>						
Inve	rt Level	(m) 81.30	00					
Depth (m) Area (m²) De	pth (m)	Area (m²)	Depth	(m) Area	(m ²)			
0.000 290.0	0.900	290.0	0.9	001	0.0			
Comple	<u>ex Outf</u>	low Cont	rol					
Hydr	o-Brak	e® Optimu	um					
		nce MD-SHE	5-0124-6					
6.24	yn Head Flow (l.			1	0.520 6.3			
	Flush-F.			Calcu				
	Object:		nise upst	tream st	orage			
	Applicat			Su	face			
) Availa Ameter (1				Yes 124			
	Level	2 S.		80).950			
Minimum Outlet Pipe Dia					150			
Suggested Manhole Dia	umeter ()	mm)			1200			
Control Points Head (m) Flo	w (l/s)	Cont	rol Poir	nts	Head	(m)	Flow	(1/s)
Design Point (Calculated) 0.520 Flush-Flo™ 0.195	6.3 6.3	Mean Flow		ick-Flo® ad Range		.391		5.5 5.2
The hydrological calculations have be Hydro-Brake® Optimum as specified. S Hydro-Brake Optimum® be utilised then	en based hould an	l on the He other type	ead/Disc e of con	harge re trol dev	lation ice ot	her	than	a

Ardent		Page 6
3rd Floor, The Hallmark Building	Land South of Henham Road	
52-56 LeadenHall Street	Basin B	
London, EC3M 5JE		Micro
Date 01/04/2022	Designed by AW	Drainage
File Cascade Basins.CASX	Checked by BB	Diamaye
Innovyze	Source Control 2020.1	
Sector: 00	11111 NR 4111 DI 111111	
Hydi	ro-Brake® Optimum	

Depth (m) Flow (l/s)	Depth (m) Flow	(l/s) Depth (m)	Flow (1/s)	Depth (m)	Flow (l/s)
0.100 4.4	1.200	9.3 3.000	14.4	7.000	21.6
0.200 6.3		10.0 3.500	14.4	7.500	22.4
0.300 6.1		10.7 4.000	16.5	8.000	23.1
0.400 5.6		11.3 4.500	10.5	8.500	23.1
0.400 5.0		11.9 5.000	18.4	9.000	24.5
0.600 6.7		12.4 5.500	19.1	9.500	24.5
0.800 7.7		12.9 6.000	20.0	5.500	23.2
1.000 8.5		13.4 6.500	20.8		

<u>Orifice</u>

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 81.690

3rd Floor, T	he H	Hallman	rk B	uildir	ng Lano	d South	of Hen	ham Road	1	L
52-56 Leaden	Hall	L Stree	et		Bas	in B				
London, EC3M 5JE										Micro
Date 01/04/2022 Designed by AW										
File Cascade	cade Basins.CASX Checked by BB							Drain		
Innovyze								10		
Cascado	Cumm	ary of	F Ro	sulte	for 200	18170 -	Attonu	ation Ba	sin P	Calcs.SRCX
Cascade	Sum	lary UI	LINC	JULUD	101 200	0110	Accentu	ación ba		Cares.sho
				Upstr Struct			Outf	low To Ov	erflow '	Го
	200	8170 - 2	Atter	nuation	Basin A	Calcs.S	RCX	(None)	(None	e)
				Half	Drain T:	ime : 27	7 minutes	5.		
	Stor		Ma			lax	Max	Max	Max	Status
	Even	nt	Lev (m	1997 - 199 7 1		tration L/s)	Control (1/s)	Σ Outflow (1/s)	Volume (m ³)	
98 T.T. 19		12.17			5				1998) 54 1 - 1998) 54	s og same
		Summer				0.0	11.9		275.7	
		Summer Summer				0.0	17.3 20.0		349.1 413.8	
		Summer				0.0	21.5		457.5	
		Summer				0.0	60 (S. 1988)		465.4	
		Summer				0.0	21.7		465.7	
360	min	Summer	82.0	93 1.0	93	0.0	21.5	21.5	458.8	ОК
480	min	Summer	82.0	78 1.0	78	0.0	21.2	21.2	449.0	ОК
		Summer				0.0	20.8		436.8	
		Summer				0.0	20.3		423.7	
		Summer				0.0	19.4		398.1	
		Summer				0.0			358.2	
		Summer Summer				0.0 0.0			317.5 291.6	
		Summer				0.0			257.6	
			Stor					ge Time-P		
			Even	it	(mm/hr)	Volume (m³)	Volume (m ³)	e (mins	3)	
		15	min	Summer	138.700			0	26	
				Summer					39	
				Summer	55.544				66	
		120	min	Summer	33.174				122	
		180	min	Summer	24.241	0.0) 735	.1	166	
				Summer	19.305				196	
				Summer	13.918				260	
				Summer	11.043				328	
				Summer	9.223				396	
				Summer	7.957				466	
				Summer	6.300				602 868	
				Summer Summer	4.527 3.248				868 260	
				Summer	2.565				260 648	
				Summer	1.836				468	

								Page 2
3rd Floor, The Hall	nark Bui	lding	Land	South	of Henh	am Road		
52-56 LeadenHall St:	reet		Basi	nВ				
London, EC3M 5JE								
Date 01/04/2022			Dogi	anod by	7 7 17			Micro
							Drainac	
File Cascade Basins	CASX			202				
Innovyze			Sour	ce Cont	trol 202	:0.1		
Cascade Summary	Summary of Results for 2008170 - Attenuation Basin B Ca						Calcs.SRCX	
Storm	Max	Max	0.02	ax	Max	Max	Max	
Event	Level	. Depth				E Outflow	Volume	
	(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)	
5760 min Summ	er 81 69	6 0 696		0.0	7.5	75	221.5	ок
7200 min Summ				0.0	7.0		173.4	
8640 min Summ				0.0	6.6		133.9	
10080 min Summ	1	78 HERE 777 7		0.0	6.3		101.2	
10080 min Summ 15 min Wint				0.0	15.1		308.4	
30 min Wint				0.0	19.1		308.4	
30 min Wint 60 min Wint				0.0	21.8			
							466.6	
120 min Wint				0.0	23.3		519.3	
180 min Wint				0.0	23.6		531.2	
240 min Wint				0.0	23.5		528.7	
360 min Wint				0.0	23.3		519.0	
480 min Wint				0.0	22.9		504.3	
600 min Wint				0.0	22.4		486.9	
720 min Wint				0.0	21.8		468.8	
960 min Wint				0.0	20.7		433.5	
1440 min Wint				0.0	18.5		375.9	
2160 min Wint	er 81.87	5 0.875		0.0	15.9		322.0	
2880 min Wint				0.0	13.7		291.0	
4320 min Wint	er 81.75	4 0.754		0.0	9.6	9.6	252.9	ОК
	Charm		Paia	F loodod	Dischar	no mino De	- 1-	
	Storm		Rain			ge Time-Pe		
	Storm Event	(Volume	Volume			
	Event		mm/hr)	Volume (m³)	Volume (m³)	(mins)	
	Event	ummer	mm/hr) 1.447	Volume (m ³)	Volume (m³) 1715.	(mins) 344	
72	Event 760 min s 200 min s	ummer ummer	mm/hr) 1.447 1.203	Volume (m ³) 0.0 0.0	Volume (m ³) 1715 1752	(mins .0 33 .6 41) 344 104	
72	Event 760 min S 200 min S 540 min S	ummer ummer ummer	mm/hr) 1.447 1.203 1.034	Volume (m ³) 0.0 0.0 0.0	Volume (m ³) 1715. 1752. 1779.	(mins .0 33 .6 41 .2 48) 344 104 340	
72	Event 760 min S 200 min S 540 min S 080 min S	ummer ummer ummer ummer	mm/hr) 1.447 1.203 1.034 0.909	Volume (m ³) 0.0 0.0 0.0 0.0	Volume (m ³) 1715 1752 1779 1797	(mins .0 33 .6 41 .2 48 .5 55) 344 104 340 552	
72	Event 200 min S 200 min S 540 min S 080 min S 15 min W	ummer ummer ummer ummer inter 1	mm/hr) 1.447 1.203 1.034 0.909 38.700	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 1715 1752 1779 1797 376	(mins .0 33 .6 41 .2 48 .5 55 .0) 844 104 840 552 25	
72	Event 260 min S 200 min S 540 min S 080 min S 15 min W 30 min W	ummer ummer ummer ummer inter 1 inter	1.447 1.203 1.034 0.909 38.700 89.947	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 1715 1752 1779 1797 376 476	(mins .0 33 .6 41 .2 48 .5 55 .0 .5) 844 840 552 25 39	
72 80 100	Event 260 min S 200 min S 540 min S 15 min W 30 min W 60 min W	ummer ummer ummer inter 1 inter inter	mm/hr) 1.447 1.203 1.034 0.909 38.700 89.947 55.544	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 1715 1752 1779 1797 376 476 641	(mins .0 33 .6 41 .2 48 .5 55 .0 .5 .3) 844 840 852 25 39 66	
72 80 100	Event 260 min S 200 min S 540 min S 15 min W 30 min W 60 min W 20 min W	ummer ummer ummer inter 1 inter inter inter	mm/hr) 1.447 1.203 1.034 0.909 38.700 89.947 55.544 33.174	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 1715 1752 1779 1797 376 476 641 749	(mins .0 33 .6 41 .2 48 .5 55 .0 .5 .3 .4 1) 844 104 840 552 25 39 66 120	
72 80 100	Event 200 min S 200 min S 540 min S 15 min W 30 min W 60 min W 20 min W 80 min W	ummer ummer ummer inter 1 inter inter inter inter inter	<pre>mm/hr) 1.447 1.203 1.034 0.909 38.700 89.947 55.544 33.174 24.241</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1715 1752 1779 1797 376 476 641 749 812	(mins .0 33 .6 41 .2 48 .5 55 .0 .5 .3 .4 1 .5 1	344 104 340 552 25 39 66 120 174	
72 8(10)	Event 200 min S 200 min S 200 min S 200 min S 15 min W 30 min W 60 min W 20 min W 80 min W 20 min W	ummer ummer ummer inter 1 inter inter inter inter inter inter	<pre>mm/hr) 1.447 1.203 1.034 0.909 38.700 89.947 55.544 33.174 24.241 19.305</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1715 1752 1779 1797 376 476 641 749 812 856	(mins .0 33 .6 41 .2 48 .5 55 .0 .5 .3 .4 1 .5 1 .7 2	344 104 340 552 25 39 66 120 174 204	
72 84 10(Event 200 min S 200 min S 200 min S 200 min S 15 min W 30 min W 60 min W 20 min W 20 min W 20 min W 20 min W 20 min W 20 min W	ummer ummer ummer inter 1 inter inter inter inter inter inter inter	<pre>mm/hr) 1.447 1.203 1.034 0.909 38.700 89.947 55.544 33.174 24.241 19.305 13.918</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1715 1752 1779 1797 376 476 641 749 812 856 917	(mins .0 33 .6 41 .2 48 .5 55 .0 .5 .3 .4 1 .7 2 .9 2	344 104 340 552 25 39 66 120 174 204 276	
72 84 10(Event 60 min S 00 min S 640 min S 15 min W 30 min W 60 min W 20 min W 80 min W 80 min W 840 min W	ummer ummer ummer inter 1 inter inter inter inter inter inter inter inter	<pre>mm/hr) 1.447 1.203 1.034 0.909 38.700 89.947 55.544 33.174 24.241 19.305 13.918 11.043</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1715 1752 1779 1797 376 476 641 749 812 856 917 964	(mins .0 33 .6 41 .2 48 .5 55 .0 .5 .3 .4 1 .7 2 .9 2 .5 3	344 104 340 552 25 39 66 120 174 204 276 352	
72 84 10(Event 200 min S 200 min S 200 min S 200 min S 15 min W 30 min W 60 min W 20 min W 20 min W 20 min W 20 min W 20 min W 20 min W	ummer ummer ummer inter 1 inter inter inter inter inter inter inter inter	<pre>mm/hr) 1.447 1.203 1.034 0.909 38.700 89.947 55.544 33.174 24.241 19.305 13.918 11.043 9.223</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1715 1752 1779 1797 376 476 641 749 812 856 917 964 1001	(mins .0 33 .6 41 .2 48 .5 55 .0 .5 .3 .4 1 .7 2 .9 2 .5 3 .5 4	344 104 340 552 25 39 66 120 174 204 276	
72 84 10(Event 60 min S 00 min S 640 min S 15 min W 30 min W 60 min W 20 min W 80 min W 80 min W 840 min W	ummer ummer ummer inter 1 inter inter inter inter inter inter inter inter inter	<pre>mm/hr) 1.447 1.203 1.034 0.909 38.700 89.947 55.544 33.174 24.241 19.305 13.918 11.043</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1715 1752 1779 1797 376 476 641 749 812 856 917 964 1001	(mins .0 33 .6 41 .2 48 .5 55 .0 .5 .3 .4 1 .7 2 .9 2 .5 3 .5 4	344 104 340 552 25 39 66 120 174 204 276 352	
72 84 10(Event 60 min S 00 min S 640 min S 15 min W 30 min W 60 min W 20 min W 80 min W 80 min W 840 min W 840 min W 840 min W	ummer ummer ummer inter inter inter inter inter inter inter inter inter inter	<pre>mm/hr) 1.447 1.203 1.034 0.909 38.700 89.947 55.544 33.174 24.241 19.305 13.918 11.043 9.223</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1715 1752 1779 1797 376 476 641 749 812 856 917 964 1001	(mins .0 33 .6 41 .2 48 .5 55 .0 .5 .3 .4 1 .7 2 .9 2 .5 4 .3 5	344 104 340 552 25 39 66 120 174 204 276 352 126	
72 84 10(Event 60 min S 00 min S 640 min S 15 min W 30 min W 60 min W 20 min W 80 min W 840 min W 840 min W 840 min W 840 min W 840 min W 840 min W	ummer ummer ummer inter inter inter inter inter inter inter inter inter inter inter inter	<pre>mm/hr) 1.447 1.203 1.034 0.909 38.700 89.947 55.544 33.174 24.241 19.305 13.918 11.043 9.223 7.957</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1715 1752 1779 1797 376 476 641 749 812 856 917 964 1001 1032 1081	(mins .0 33 .6 41 .2 48 .5 55 .0 .5 .3 .4 1 .7 2 .9 2 .5 4 .3 5 .5 4 .3 5 .8 6	344 104 340 552 25 39 66 120 174 204 276 352 126 500	
72 84 10(2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Event 60 min S 00 min S 640 min S 080 min S 15 min W 30 min W 60 min W 20 min W 80 min W	ummer ummer ummer inter inter inter inter inter inter inter inter inter inter inter inter inter	<pre>1.447 1.203 1.034 0.909 38.700 89.947 55.544 33.174 24.241 19.305 13.918 11.043 9.223 7.957 6.300</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1715 1752 1779 1797 376 476 641 749 812 856 917 964 1001 1032 1081 1153	(mins .0 33 .6 41 .2 48 .5 55 .0 .5 .3 .4 11 .7 22 .9 22 .5 .5 .3 .5 .3 .5 .3 .5 .5 .5 .5 .3 .5 .5 .3 .5	344 104 340 552 25 39 66 120 174 204 276 352 126 500 542	
	Event 60 min S 00 min S 00 min S 00 min S 00 min S 15 min W 00 min W	ummer ummer ummer inter inter inter inter inter inter inter inter inter inter inter inter inter inter	<pre>1.447 1.203 1.034 0.909 38.700 89.947 55.544 33.174 24.241 19.305 13.918 11.043 9.223 7.957 6.300 4.527</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1715 1752 1779 1797 376 476 641 749 812 856 917 964 1001 1032 1081 1153 1383	(mins .0 33 .6 41 .2 48 .5 55 .0 .5 .4 11 .5 11 .7 22 .9 22 .5 .3 .5 .3 .5 .5 .3 .5	344 104 340 552 25 39 66 120 174 204 276 352 126 500 542 316	

rd Floor, The Hallma									3		
ITTOOL, THE HAITING	rk Bull	Lding	Land	South	of Henha	m Road					
2-56 LeadenHall Stre	et		Basi	n B							
ondon, EC3M 5JE								Micc			
ate 01/04/2022			Desi	Designed by AW Designed							
ile Cascade Basins.C	ASX			Checked by BB Drainage							
nnovyze				2073	rol 2020	.1		1			
Cascade Summary o	f Resul	ts fo	or 200	8170 -	Attenuat	ion Bas	in B (Calcs.SRG	CX		
Storm Event	Max Level	Max Depth		lax tration (Max Control Σ	Max Outflow		Status			
	(m)	(m)	(1	./s)	(1/s)	(l/s)	(m³)				
5760 min Winter	81.653	0.653		0.0	7.2	7.2	199.0	ОК			
7200 min Winter				0.0			137.8				
8640 min Winter				0.0		6.3	87.5				
10080 min Winter	81.213	0.213		0.0	6.3	6.3	21.0	ОК			
	Storm		Rain	Flooded	Discharge	Time-Pe	ak				
	Event	6		Volume		(mins)					
				(m³)	(m ³)	(1111)					
) min Wi				1873.7		20				
) min Wi						20				
) min Wi:) min Wi:				1944.2 1965.1		.04 44				

Ardent	Page 4					
3rd Floor, The Hallmark Building Land South of Henham Road						
52-56 LeadenHall Street Basin B						
London, EC3M 5JE	Micco					
Date 01/04/2022 Designed by AW	Micro					
File Cascade Basins.CASX Checked by BB	Drainage					
Innovyze Source Control 2020.1						
<u>Cascade Rainfall Details for 2008170 - Attenuation Basin B Cal</u>	CS.SRCX					
Rainfall ModelFSRWinter StormsYeReturn Period (years)100Cv (Summer)0.75Region England and WalesCv (Winter)0.84M5-60 (mm)19.600Shortest Storm (mins)1Ratio R0.431Longest Storm (mins)1008Summer StormsYesClimate Change %44	50 10 .5 80					
<u>Time Area Diagram</u>						
Total Area (ha) 1.100						
Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)						
0 4 0.367 4 8 0.367 8 12 0.367						

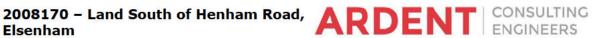
Ardent		<u>194900 - 1000</u>	ng Tanan			P	age 5)
3rd Floor, The Hallmark Building			Henham	Road				
52-56 LeadenHall Street	Basin	В					Li	
London, EC3M 5JE		Aug. 1979-19					Micr	
Date 01/04/2022		ned by AW	7				Drair	
File Cascade Basins.CASX		ed by BB					JUUI	iugu
Innovyze	Source	e Control	2020.	1				
<u>Cascade Model Details for 2</u> Storage is Or	1947 (Sec.)		en 12: - 22: - 22: - 22:		3 Cal	cs.S	SRCX	
Con	<u>mplex S</u>	Structure	2					
	<u>Tank o</u>	r Pond						
Invert Level (m) 81.000								
Depth (m) Area (m ²) Depth (m) Area (m ²)								
0.000	79.0	1.500	544	1.0				
	<u>Tank o</u>	<u>r Pond</u>						
Inve	rt Level	(m) 81.30	00					
Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)								
0.000 290.0	0.900	290.0	0.9	001	0.0			
Comple	<u>ex Outf</u>	low Cont	rol					
Hydr	o-Brak	e® Optimu	um					
		nce MD-SHE	5-0124-6					
6.24	yn Head Flow (1,			1	0.520 6.3			
	Flush-F.			Calcu				
	Object:		nise upst	tream st	orage			
	Applicat			Su	face			
) Availa Ameter (1				Yes 124			
	Level	2 S.		80).950			
Minimum Outlet Pipe Dia					150			
Suggested Manhole Dia	umeter ()	mm)			1200			
Control Points Head (m) Flo	w (l/s)	Cont	rol Poir	nts	Head	(m)	Flow	(1/s)
Design Point (Calculated) 0.520 Flush-Flo™ 0.195	6.3 6.3	Mean Flow		ick-Flo® ad Range		.391		5.5 5.2
The hydrological calculations have be Hydro-Brake® Optimum as specified. S Hydro-Brake Optimum® be utilised then	en based hould an	l on the He other type	ead/Disc e of con	harge re trol dev	lation ice ot	her	than	a

Ardent		Page 6
3rd Floor, The Hallmark Building	Land South of Henham Road	
52-56 LeadenHall Street	Basin B	
London, EC3M 5JE		Micro
Date 01/04/2022	Designed by AW	Drainage
File Cascade Basins.CASX	Checked by BB	Diamaye
Innovyze	Source Control 2020.1	
Sector: 00	11111 NR 4111 DI 111111	
Hydi	ro-Brake® Optimum	

Depth (m) Flow (l/s)	Depth (m) Flow	(l/s) Depth (m)	Flow (1/s)	Depth (m)	Flow (l/s)
0.100 4.4	1.200	9.3 3.000	14.4	7.000	21.6
0.200 6.3		10.0 3.500	14.4	7.500	22.4
0.300 6.1		10.7 4.000	16.5	8.000	23.1
0.400 5.6		11.3 4.500	10.5	8.500	23.1
0.400 5.0		11.9 5.000	18.4	9.000	24.5
0.600 6.7		12.4 5.500	19.1	9.500	24.5
0.800 7.7		12.9 6.000	20.0	5.500	23.2
1.000 8.5		13.4 6.500	20.8		

<u>Orifice</u>

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 81.690


3rd Floor, The	Hallmark Build	ng La	and So	outh d	of Her	nham	Road	
52-56 LeadenHa			asin A		8-07.5 - 7-08-75 G	000 /040/0540		
				-		2		
London, EC3M 5JE			-162 (1993) - 1623		방법을 알 때 같이 있다.	for	half drain	Micro
Date 01/04/202	2	De	esigne	ed by	AW			10.112 H 10.
File 2008170 -	ATTENUATION BA	Cł	necked	l by H	3B			Drainage
Innovyze		S	ource	Conti	col 20	020.	1	10
1								
	Summary of R	esults	for	10 ve	ar Re	turi	Period	
	Dummer y OF It	obur ob	101	10 /0	ur no	GULI	101104	
	Storm	Max	Max	Max	c M	fax	Status	
	Event	Level	Depth	Contr	ol Vo	lume		
		(m)	(m)	(1/s		m³)		
				•••				
	15 min Summer					11.5	ОК	
	30 min Summer					42.0	ОК	
	60 min Summer			2 95	12.23	72.9		
	120 min Summer					04.1	ОК	
	180 min Summer					22.3	OK	
	240 min Summer 360 min Summer					34.9	O K Flood Risk	
	480 min Summer						Flood Risk	
	600 min Summer			8 8			Flood Risk	
	720 min Summer						Flood Risk	
	960 min Summer			6 - 33			Flood Risk	
	1440 min Summer	87.241	0.941	C	.9 2	91.0	Flood Risk	
	2160 min Summer	87.237	0.937	C	.9 2	87.1	Flood Risk	
	2880 min Summer	87.227	0.927	0	.9 2	76.7	Flood Risk	
	4320 min Summer				.9 2	59.5	Flood Risk	
	5760 min Summer					46.3		
	7200 min Summer					34.5		
	8640 min Summer					23.1		
	10080 min Summer	87.103	0.803	, c	.9 23	12.0	O K	
	Storm	Rai	n Fl	ooded	Discha	rge	Time-Peak	
	Event	(mm/)	hr) Vo	lume	Volu	ne	(mins)	
				m ³)	(m ³))		
			150		01 2 19 <u>44</u>		25	
	15 min Summe			0.0		1.0	27	
	30 min Summe 60 min Summe			0.0		2.3	42 72	
	120 min Summe			0.0		6.7	130	
	180 min Summe			0.0		8.1	190	
	240 min Summe		251	0.0		9.0	250	
	360 min Summe		015	0.0		0.3	370	
				0.0		1.0	488	
	480 min Summe	er 4.	802	0.0	10	1.0	400	
			805 035	0.0		1.5	608	
	480 min Summe 600 min Summe 720 min Summe	er 4.0 er 3.0	035 497	0.0	15 15	1.5 1.8		
	480 min Summe 600 min Summe 720 min Summe 960 min Summe	er 4. er 3. er 2.	035 497 790	0.0 0.0 0.0	15 15 15	1.5 1.8 2.0	608 728 966	
	480 min Summe 600 min Summe 720 min Summe 960 min Summe 1440 min Summe	er 4.0 er 3.0 er 2.0 er 2.0	035 497 790 027	0.0 0.0 0.0 0.0	15 15 15 15	1.5 1.8 2.0	608 728 966 1444	
	480 min Summe 600 min Summe 720 min Summe 960 min Summe 1440 min Summe 2160 min Summe	er 4. er 3. er 2. er 2. er 2.	035 497 790 027 472	0.0 0.0 0.0 0.0 0.0	15 15 15 15 29	1.5 1.8 2.0 1.4 9.4	608 728 966 1444 2160	
	480 min Summe 600 min Summe 720 min Summe 960 min Summe 1440 min Summe 2160 min Summe 2880 min Summe	er 4.0 er 3.0 er 2.0 er 2.0 er 1.0 er 1.0	035 497 790 027 472 173	0.0 0.0 0.0 0.0 0.0	15 15 15 29 29	1.5 1.8 2.0 1.4 9.4 8.5	608 728 966 1444 2160 2572	
	480 min Summe 600 min Summe 720 min Summe 960 min Summe 1440 min Summe 2160 min Summe 2880 min Summe	er 4.0 er 3.0 er 2.0 er 2.0 er 1.0 er 1.0 er 0.0	035 497 790 027 472 173 851	0.0 0.0 0.0 0.0 0.0 0.0 0.0	15 15 15 29 29 28	1.5 1.8 2.0 1.4 9.4 8.5 6.7	608 728 966 1444 2160 2572 3296	
	480 min Summe 600 min Summe 720 min Summe 960 min Summe 1440 min Summe 2160 min Summe 2880 min Summe 4320 min Summe	er 4. er 3. er 2. er 2. er 1. er 1. er 0. er 0.	035 497 790 027 472 173 851 678	0.0 0.0 0.0 0.0 0.0 0.0 0.0	15 15 15 29 29 28 48	1.5 1.8 2.0 1.4 9.4 8.5 6.7 6.0	608 728 966 1444 2160 2572 3296 4088	
	480 min Summe 600 min Summe 720 min Summe 960 min Summe 1440 min Summe 2160 min Summe 2880 min Summe	er 4. er 3. er 2. er 2. er 1. er 0. er 0. er 0.	035 497 790 027 472 173 851	0.0 0.0 0.0 0.0 0.0 0.0 0.0	15 15 15 29 29 28 48 50	1.5 1.8 2.0 1.4 9.4 8.5 6.7	608 728 966 1444 2160 2572 3296	

Ardent	- Usllmank Duildi		nd Co	th of	Uonhom	Deed	Page 2
	e Hallmark Buildi				Henham	Road	
52-56 LeadenH	all Street	Ba	sin A				
London, EC3M	5JE	1:	10 af	ter 1:	30 for	half drain	Micro
Date 01/04/20	22	De	signe	d by A	W		
	- ATTENUATION BA.		_	by BB			Draina
	ATTENDATION BA.			102		1	12
Innovyze		SO	urce	contro.	1 2020.	T	
	<u>Summary of Re</u>	sults	for 1	0 year	Return	n Period	
	Storm	Max	Max	Max	Max	Status	
	Event				Volume	bubub	
	210110	(m)	(m)	(1/s)	(m ³)		
	15 min Winter	87 074	0 774	0.9	125.0	ОК	
	30 min Winter				9 159.3		
	60 min Winter				9 194.0	O K	
	120 min Winter				229.4	O K	
	180 min Winter					Flood Risk	
	240 min Winter					Flood Risk	
	360 min Winter					Flood Risk	
	480 min Winter					Flood Risk	
	600 min Winter	87.257	0.957	0.9	308.3	Flood Risk	
	720 min Winter	87.265	0.965	0.9	315.9	Flood Risk	
	960 min Winter				326.2	Flood Risk	
	1440 min Winter	87.283	0.983	0.9	335.9	Flood Risk	
	2160 min Winter					Flood Risk	
	2880 min Winter					Flood Risk	
	4320 min Winter					Flood Risk	
	5760 min Winter					Flood Risk	
	7200 min Winter					Flood Risk	
	8640 min Winter 10080 min Winter				238.9	Flood Risk O K	
	Storm	Rain	1 Flo	oded Di	scharge	Time-Peak	
	Event	(mm/h:	r) Vol		7olume	(mins)	
			(1	a ³)	(m³)		
	15 min Winter	r 60.1	59	0.0	71.6	27	
	30 min Winter			0.0	73.0	41	
	60 min Winter			0.0	145.8	70	
	120 min Winter			0.0	148.5	130	
	180 min Winter			0.0	150.0	188	
	240 min Winter			0.0	151.1	246	
	360 min Winter 480 min Winter			0.0 0.0	152.3 153.1	364 482	
	600 min Winter			0.0	153.1	482 598	
	720 min Winter			0.0	153.5	716	
	960 min Winter			0.0	153.8	950	
				0.0	152.9	1412	
	1440 min Winter			0.0	303.5	2088	
	1440 min Winter 2160 min Winter	r 1.4	14		Contraction of the second second		
				0.0	301.7	2744	
	2160 min Winter	r 1.1	73	0.0	301.7 294.3	2744 3504	
	2160 min Winter 2880 min Winter	r 1.1 r 0.8	73 51				
	2160 min Winter 2880 min Winter 4320 min Winter	r 1.1 [°] r 0.8 [°] r 0.6 [°] r 0.5 [°]	73 51 78 68	0.0	294.3	3504 4384 5328	
	2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	r 1.1 r 0.8 r 0.6 r 0.5 r 0.4	73 51 78 68 91	0.0	294.3 545.1	3504 4384	

rd Flor, The Hallmark Building 2-56 LeadenHall Street bate 01/04/2022 bate 01/04/202 bate 01/04/2020 bate 01/04/202 bate 01/04/202	Ardent	Page 3						
12-56 LeadenHall Street Basin A 1:10 after 1:30 for half drain Designed by AW Checked by BB Designed by AW 112 2008170 - ATTENUATION BA Checked by BB Designed by AW innovyze Source Control 2020.1 Basin A Ninter Storms Yes Reinfall Model FSR Winter Storms Yes Return For (years) 10 cv (Summer) 0.750 Region England and Wales cv (Summer) 0.750 Summer Storms Yes Clinate Change % 10 O 4 0.333 4 8 0.333 8 12 0.333	Brd Floor, The Hallmark Building							
hate 01/04/2022 The 2008170 - ATTENUATION BA Innovyze Source Control 2020.1 Cainfall Details Rainfall Model Rainfall Model Rainfall Details Ration Period (years) No. 60 (m) 10.000 Summer Storms Yes Climate Change % HO Time Area Diagram Total Area (ha) 1.000 Time (mins) Area Frem: 70: (ha) 0 4 0.333 4 8 0.333 8 12 0.333	52-56 LeadenHall Street							
hate 01/04/2022 The 2008170 - ATTENUATION BA Innovyze Source Control 2020.1 Cainfall Details Rainfall Model Rainfall Model Rainfall Details Ration Period (years) No. 60 (m) 10.000 Summer Storms Yes Climate Change % HO Time Area Diagram Total Area (ha) 1.000 Time (mins) Area Frem: 70: (ha) 0 4 0.333 4 8 0.333 8 12 0.333	London, EC3M 5JE	1:10 after 1:30 for half drain Micro						
Innovyze Source Control 2020.1 Eainfall Model FSR Winter Storms Yes Return Period (years) 10 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.860 Source Storm (mins) 15 Ratio R 0.431 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % 40 Time (mins) Area From: To: (ha) 1.000 0 4 0.333 4 8 0.333 8 12 0.333	Date 01/04/2022	Designed by AW						
Final Production Final Production Final Production Final Production Final Production 0.750 Return Period (years) 10 CV (Summer) 0.750 Region England and Wales CV (Winter) 0.750 No 6-0 (mm) 10.600 Shortest Storm (mins) 10 10 Summer Storms Yes Climate Change % +0 Immer Storms Yes CV (Winter) 0.750 Summer Storms Yes Climate Change % +0 Immer Storms Time Area Diagram Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha) 0 4 0.333 4 8 0.333 8 12 0.333	File 2008170 - ATTENUATION BA	Checked by BB DIdilidy						
Rainfall ModelFSRWinter Storms Yes CY (Winter) 0.750 Region England and Wales CY (Winter) 0.800 StationStoreStoreStoreStation0.331 YesClimate Change % +00Immer Storms Yes Climate Change % +00Immer Mining Yes Climate Cha	Innovyze Source Control 2020.1							
Return Period (years) 10 CV (Summer) 0.840 M5-60 (mn) 19.600 Shortest Storm (mins) 15 Ratio R 0.431 Longest Storm (mins) 1000 Summer Storms Yes Climate Change % +0 Inter Area Diagram Total Area (ha) 1.000 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) 0 40.333 4 80.333 8 120.333	Ra	infall Details						
Total Area (ha) 1.000Time (mins) Area From: To:Time (mins) Area From: To:Time (ha) From: To:Area (ha)040.333480.3338120.333040.333480.3338120.333	Return Period (years) Region Engl M5-60 (mm) Ratio R	10Cv (Summer)0.750and and WalesCv (Winter)0.84019.600Shortest Storm (mins)150.431Longest Storm (mins)10080						
Time (mins)Area From:Time (mins)Area From:Time (mins)Area From:040.333480.3338120.333040.333480.3338120.333	Tir	ne Area Diagram						
From: To: (ha) From: To: (ha) 0 4 0.333 4 8 0.333 8 12 0.333	Tot	al Area (ha) 1.000						
	0 4 0.333	4 8 0.333 8 12 0.333						
@1982_2020 TRACITIZA	@1 ቢ	32-2020 Innovyze						

52-56 LeadenHall Street E London, EC3M 5JE 1 Date 01/04/2022 E File 2008170 - ATTENUATION BA C Innovyze S <u>Mo</u> Storage is Onl: <u>Tank o</u>	asin A :10 af besigne becked ource del De ine Cove r Pond Level (m ²) D 0.0	Eter 1:3 ed by AW by BB Control etails er Level (m) 86.3 (m) 86.3 (m) 0.639 m Outflo	30 fo 7 202 (m) 8 <u>ure</u> 00 Area	r hal 0.1 7.500 (m²) 1 887.0	f dra: Depth 1.2		Area		o 1age
London, EC3M 5JE 1 Date 01/04/2022 E File 2008170 - ATTENUATION BA C Innovyze S <u>Mo</u> Storage is On1: <u>Tank o</u> Invert Depth (m) Area (m ²) Depth (m) Area	:10 af besigne checked cource del De ine Cove r Pond Level (m²) D 0.0	Eter 1:3 ed by AW by BB Control etails er Level (m) 86.3 (m) 86.3 (m) 0.639 m Outflo	(m) 8 ure 00 Area	0.1 7.500 (m²) 1 887.0	Depth 1.2	(m)	Area	(m ²)	
Date 01/04/2022 File 2008170 - ATTENUATION BA C Innovyze S <u>Mo</u> Storage is Onl: <u>Tank o:</u> Invert Depth (m) Area (m ²) Depth (m) Area	esigne hecked ource <u>del De</u> ine Cove <u>r Pond</u> Level (m ²) D 0.0	ed by AW l by BB Control etails er Level Structu (m) 86.30 epth (m) 0.639 m Outflo	(m) 8 ure 00 Area	0.1 7.500 (m²) 1 887.0	Depth 1.2	(m)	Area	(m ²)	
File 2008170 - ATTENUATION BA C Innovyze S <u>Mo</u> Storage is Onl: <u>Tank o</u> Invert Depth (m) Area (m ²) Depth (m) Area	hecked ource del De ine Cove r Pond Level (m ²) D 0.0	t by BB Control etails er Level (m) 86.3((m) 86.3(0.639 m Outflo ce MD-SHE	(m) 8 ure 00 Area	(m²)	1.2		Area	(m ²)	
Innovyze S <u>Mo</u> Storage is Onl: <u>Tank o</u> Invert Depth (m) Area (m ²) Depth (m) Area	del De del De ine Cove r Pond Level (m ²) D 0.0	Control etails er Level (m) 86.30 (m) 86.30 0.639 m Outflo	(m) 8 ure 00 Area ; ;	(m²)	1.2		Area	(m²)	
<u>Mo</u> Storage is Onl: <u>Tank o:</u> Invert Depth (m) Area (m ²) Depth (m) Area	del De ine Cove <u>r Pond</u> Level (m ²) D 0.0	etails er Level Structu (m) 86.30 eepth (m) 0.639 m Outflo	(m) 8 ure 00 Area ; ;	(m²)	1.2				
Storage is Onl: <u>Tank o</u> Invert Depth (m) Area (m ²) Depth (m) Area	ine Cove <u>r Pond</u> Level (m ²) D 0.0	er Level <u>Structu</u> (m) 86.30 eepth (m) 0.639 <u>m Outflo</u> ce MD-SHE	ure 00 Area	(m²) 1 887.0	1.2				
Invert Depth (m) Area (m²) Depth (m) Area	Level (m ²) D 0.0	(m) 86.30 Pepth (m) 0.639 <u>m Outflo</u> ce MD-SHE	OO Area	887.0	1.2				
Depth (m) Area (m²) Depth (m) Area	(m ²) D 0.0 Optimum	oepth (m) 0.639 m Outflo ce MD-SHE	Area	887.0	1.2				
	0.0 Optimum Referenc	0.639 m Outflo ce MD-SHE	ow Co	887.0	1.2				
0.000 0.0 0.638	Dptimum Referenc	m Outflo	OW CO	1		200	11	84.0	
	Referenc	ce MD-SHE		ontrol	_				
<u>Hydro-Brake®</u>									
Design F F App Sump A	low (1/s Lush-Flo Dbjectiv Dlicatio Availabl eter (mm Eevel (mm eter (mm	s) J ²⁹⁴ Dn Le n) n)	uise u		alculat m stora Surfa 86.2	age ace Yes 45			
Control Points Head (m) Flow	(l/s)	Cont	rol P	oints	F	lead	(m)	Flow	(l/s)
Design Point (Calculated) 1.200	1.0			Kick-	-Flo®	0.	.398		0.6
Flush-Flom 0.196	0.7 M	lean Flow	over	Head F	Range		-		0.8
The hydrological calculations have been Hydro-Brake® Optimum as specified. Sho Hydro-Brake Optimum® be utilised then t Depth (m) Flow (1/s) Depth (m) Flow	uld anot hese sto	ther type orage rou	e of c uting	calcul	devic ations	e ot wil	her t l be	han a inva	a lidate
0.100 0.7 1.200	1.0	3.000		1.5		.000			.2
0.200 0.7 1.400	1.1	3.500		1.6		.500			.3
0.300 0.7 1.600	1.1	4.000		1.7		.000			. 4
0.400 0.6 1.800	1.2	4.500		1.8	0.525	.500			. 4
0.500 0.7 2.000 0.600 0.7 2.200	1.3	5.000		1.9	2000	.000			.5
0.600 0.7 2.200 0.800 0.8 2.400	1.3	5.500 6.000		2.0	9	. 500		Ζ.	.6
1.000 0.9 2.600	1.4	6.500		2.2					
		Innovyz	Theater						

Appendix F Pollution Hazard Indices Tables

Pollution hazard indices for different land use classifications (land use shaded arev applicable for the development)

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydrocarbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, home zones and general access roads) and non-residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non- residential car parking with frequent change (e.g. hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	0.7	0.6	0.7
Sites with heavy pollution (e.g. haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways	High	0.8	0.8	0.9

<u>Indicative SuDS mitigation indices for discharges to surface waters</u> (SuDS components shaded grey applicable to this development)

	Mitigation indices		
Type of SuDS component	TSS	Metals	Hydrocarbons
Filter strip	0.4	0.4	0.5
Filter drain	0.4	0.4	0.4
Swale	0.5	0.6	0.6
Bio retention system	0.8	0.8	0.8
Permeable pavement	0.7	0.6	0.7
Detention basin	0.5	0.5	0.6
Pond	0.7	0.7	0.5
Wetland	0.8	0.8	0.8
Proprietary treatment systems	These must demonstrate that they can address each of the contaminant types to acceptable levels for frequent events up to approximately the 1 in 1 year return period event, for inflow concentrations relevant to the contributing drainage area.		

Indicative SuDS mitigation indices for discharges to surface waters

For surface water discharge from Residential Parking Areas and Low Traffic Roads <300 traffic movements/day			
	Required mitigation indices		
Source	TSS	Metals	Hydrocarbons
Medium – Catchment A	0.7	0.6	0.7
Low – Catchment B	0.5	0.4	0.5
Catchment A - Drainage Network			
Basin A	0.5	0.5	0.6
Basin B	0.5 x 0.5	0.5 x 0.5	0.6 x 0.5
Check	+0.05	+0.15	+0.2
Catchment B - Drainage Network			
Basin B	0.5	0.5	0.6
Check	+0.0	+0.1	+0.1

Total SuDS mitigation index = mitigation index₁ + $(0.5 \times mitigation + mitigation)$

Appendix G Long Term Storage Calculations

4.3 Initial sizing of long term storage volume

Long term storage is to be provided to cater for the additional runoff caused by the development compared to the volume that would be contributed from the site in its greenfield state. This volume must be catered for as either infiltration storage or in storage with the ability to be discharged at a rate of less than 2 l/s/ha. Designing the drainage system with Long Term storage will result in less total storage being required than not providing LTS.

Discussion on the equation and practical provision of Long Term storage is provided in Chapter 7.

1.	Development area	(A)	ha	Excluding public open space which is not modified by the development
2.	Estimate of PIMP (percentage impermeable area)	PIMP)	%	
3.	Impermeable area (A · PIMP/100)	(AP)	ha	All hard surfaces in the development
4.	Long Term storage factor	(LTF)		Storage volume per unit area per mm of rainfall (see Figure A10.1 or A10.2) see note 3.
5.	Rainfall depth	(RD)	mm	Rainfall depth for 100 year 6 hour event (Appendix 1 Figure A3.1).
6.	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	00yr 6hr)	M ³	See note 2

- **Note 1** Where Long Term storage is being discharged directly to the receiving water at 2 l/s/ha, the values for Q_{30} and Q_{100} for attenuation storage discharge rate should be reduced accordingly. If this is the case, the calculation for Attenuation storage should be based on ($Q_{BAR}/A 0.5$) l/s/ha unless this reduces below a value of 1.0 l/s/ha, in which case 1.0 l/s/ha should be used.
 - 2 LTF is defined such that the equation of item 6 uses rainfall depth in millimetres and area in hectares.
 - **3** There is a choice of LTF factor based on the assumption as to whether the pervious area contributes to the 100 year runoff based on its SPR value. The conservative assumption would be to assume it does (Figure A10.1) unless the site is designed to minimise the runoff from green areas (Figure A10.2). 80% runoff is assumed to occur from pervious surfaces. Other options can be assumed working from first principles using the formulae in Chapter 7.

Appendix H SuDS Maintenance Plan

Maintenance and Management

The attenuation basins and swale would be maintained by a management company set up by the developer. As construction has not yet commenced, the process of finalising the management company contract has not yet commenced. The developer will ensure that the measures as outlined below form part of the management company contract details, for the ongoing maintenance of all SuDS features on site.

The indicative maintenance requirements for each proposed SuDS component is given below. Taken from CIRIA report C753 "The SuDS Manual".

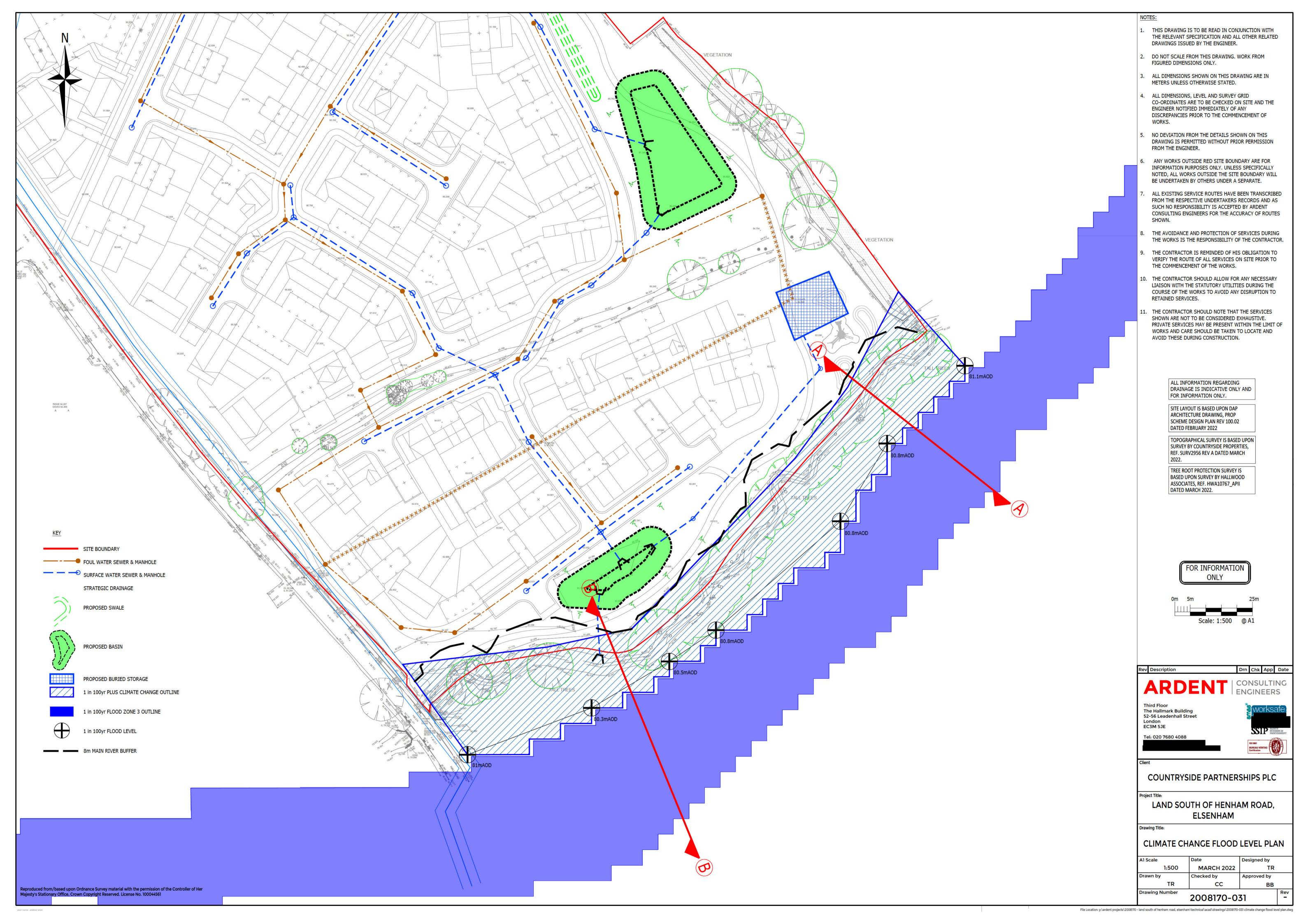
Maintenance schedule	Required action	Typical frequency
Regular	Remove sediment and debris from inspection chambers and hydrobrake chambers	Annually
Maintenance	Cleaning of gutters and any filters on downpipes	Annually
	Remove any root ingress	As required
Occasional Maintenance	CCTV survey of drains to check alignment, cracking and joint displacement	10 year intervals

Drainage Pipes

Detention Basins

MAINTENANCE	REQUIRED ACTION	FREQUENCY
	Litter and debris removal	Monthly (or as required)
	Cut the grass - for spillways and	Monthly (during growing
1.00	access routes	season, or as required)
Regular		And and and
Maintenance	Cut the meadow grass in and	Half yearly (spring, before
	around the basin	nesting season, and autumn)
	Manage other vegetation and remove nuisance plants	Monthly (at start, then as required)

	Inspect inlets, outlets and overflows for evidence of blockage and clear if required	Monthly
	Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly
	Inspect inlets and facility structure for all silt accumulation. Establish appropriate silt removal frequencies	Monthly (for first year) then annually or as required
	Check any mechanical devices e.g. penstocks	Half yearly
	Tidy all dead growth before start of growing season	Annually
	Remove sediment from inlet, outlet and forebay	Annually or as required
	Manage wetland plants in outlet pool – where provided	Annually
	Re-seed areas of poor vegetation growth	As required
Occasional	Prune and trim any trees and remove cuttings	Every 2 years, or as required
Maintenance	Remove sediment from inlets, outlets, forebay and main basin where required	Every 5 years, or as required (likely to be minimal requirements where effective upstream source control is provided)
	Repair erosion or other damage by re-turfing or reseeding	As required
Remedial Actions	Relevel uneven surfaces and reinstate design levels	As required
	Realign rip-rap	As required
	Repair / rehabilitate inlets, outlets and overflows	As required


Swale

Maintenance Period	Maintenance Task	Frequency
Feriou		
	Remove litter and debris	Monthly, or as required
	Cut the grass – to retain grass height within specified design range	Monthly (during growing season) or as required
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required
	Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly
Regular Maintenance	Inspect infiltration surfaces for ponding, compaction, silt accumulation, record areas where water is ponding for > 48 hours	Monthly, or when required
	Inspect vegetation coverage	Monthly for 6 months, quarterly for 2 years, then half yearly
	Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies	Half yearly
Occasional Maintenance	Reseed areas of poor vegetation growth; alter plant types to better suit conditions, if required	As required or if bare soil is exposed over > 10% of the filter strip area
	Repair erosion or other damage by re-turfing or reseeding	As required
Remedial Actions	Relevel uneven surfaces and reinstate design levels	As required
	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface	As required

Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip	As required
Remove and dispose of oils or petrol residues using safe standard practices	As required

Appendix I Climate Change Flood Level Plan

