Weekly national Influenza and COVID-19 surveillance report
Week 3 report (up to week 2 data)
20 January 2022
Contents

Executive summary ................................................................................................................... 4
Laboratory surveillance ............................................................................................................. 6
  Confirmed COVID-19 cases (England) ............................................................................... 6
  Possible SARS-CoV-2 reinfection in England ................................................................... 18
  Respiratory DataMart system (England) ............................................................................ 21
Community surveillance ............................................................................................................. 24
  Acute respiratory infection incidents ............................................................................... 24
  COVID-19 cases by type of residence .............................................................................. 32
  FluSurvey .......................................................................................................................... 33
  FluDetector ......................................................................................................................... 35
  Google search queries ...................................................................................................... 37
  NHS 111 ............................................................................................................................. 39
Primary care surveillance ......................................................................................................... 42
  RCGP (England) .................................................................................................................. 42
  UK ....................................................................................................................................... 44
  GP In Hours, Syndromic Surveillance .............................................................................. 45
  GP Out of Hours, Syndromic Surveillance ...................................................................... 47
  Sentinel swabbing scheme in the UK .............................................................................. 49
Secondary care surveillance ...................................................................................................... 51
  SARI Watch ........................................................................................................................ 51
  Hospitalisations, SARI Watch .......................................................................................... 52
  ICU or HDU admissions, SARI Watch ............................................................................ 56
  ECMO, SARI Watch ........................................................................................................... 60
  RSV admissions, SARI Watch .......................................................................................... 61
  Emergency Department attendances, Syndromic surveillance ...................................... 63
Mortality surveillance ................................................................................................................. 67
  COVID-19 deaths ............................................................................................................... 67
  Daily excess all-cause mortality (England) ...................................................................... 72
Microbiological surveillance ..................................................................................................... 76
For additional information including regional data on COVID-19 and other respiratory viruses, COVID-19 in educational settings, co- and secondary infections with COVID-19 and other data supplementary to this report, please refer to the accompanying graph pack.
Weekly National Influenza and COVID-19 Report: week 3 report (up to week 2 data)

Executive summary

This report summarises the information from the surveillance systems which are used to monitor coronavirus (COVID-19), influenza, and other seasonal respiratory viruses in England. References to COVID-19 represent the disease name and SARS-CoV-2 represent the virus name. The report is based on data from week 2 (between 10 January 2022 and 16 January 2022) and for some indicators daily data up to 18 January 2022.

Surveillance indicators suggest that at a national level COVID-19 activity decreased in most indicators in week 2 of 2022, remaining stable in others. Laboratory indicators suggest that influenza activity is very low.

Overall COVID-19 case rates decreased in week 2. Case rates decreased in all regions and ethnic groups and in most age groups, with increases observed in those under the age of 10. Overall Pillar 1 and Pillar 2 positivity decreased compared to the previous week.

From 11 January 2022 the requirement for confirmatory PCR testing in individuals who test positive using a lateral flow device was temporarily removed. This may affect case rates and positivity rates from week 2 2022.

The overall number of reported acute respiratory incidents decreased in the past week, with an increase in the number of incidents in educational settings observed. SARS-CoV-2 was identified in the majority of these.

COVID-19 hospitalisations decreased in week 2. Deaths with COVID-19 remained stable in the most recent week.

COVID-19 vaccine coverage for all ages was 68.9% for dose 1 and 63.6% for dose 2 at the end of week 1. COVID-19 vaccine coverage for all ages for dose 3 was at 48.4% at the end of week 1, reaching over 80% in all cohorts over the age of 60.

Through Respiratory Datamart, influenza positivity is very low at 0.5% in week 2. Other indicators for influenza such as hospital admissions and GP influenza-like illness consultation rates remain very low. Respiratory syncytial virus positivity remained low at 1.2% in week 2, while rhinovirus positivity increased slightly to 9.4% in week 2. Human metapneumovirus (hMPV) positivity decreased to 2.9%, while adenovirus and parainfluenza positivity remained low at 2.4% and 0.3% respectively in week 2.

Influenza vaccine uptake in people aged 65 years and over is the highest on record at 81.6%. Compared to the same week in the previous season, for those under 65 years and in a clinical risk group uptake is is comparable to last season and higher or comparable to the previous eight seasons before that. For pregnant women uptake is lower than the same week in the
previous eight seasons. Uptake in 2 and 3-year old children is lower than the same time last year but higher than the previous seven seasons before that. Weekly vaccine coverage data are provisional.
Laboratory surveillance

Confirmed COVID-19 cases (England)

As of 9am on 18 January 2022, a total of 13,064,494 first positive cases have been confirmed for COVID-19 in England under Pillars 1 and 2, since the beginning of the pandemic.

Overall COVID-19 case rates decreased in week 2. Case rates decreased in all regions and ethnic groups and in most age groups, with increases observed in those under the age of 10. Overall Pillar 1 and Pillar 2 positivity decreased compared to the previous week.

From the week 32 report onwards, case rates have been updated to use the latest ONS population estimates for mid-2020. Previously case rates were calculated using the mid-2019 population estimates. Rates by ethnicity and IMD quantile will continue to be presented using the mid-2019 estimates, until the mid-2020 estimates become available.

Please note that positivity is presented as positivity by Polymerase Chain Reaction (PCR) testing only, unless otherwise stated (for example figure 2).

Changes to testing policies over time may impact on positivity rates. From 11 January 2022 the requirement for confirmatory PCR testing in individuals who test positive using a lateral flow device was temporarily removed (GOV.UK).

Figure 1: Confirmed COVID-19 cases tested under Pillar 1 and Pillar 2, based on sample week with overall weekly PCR positivity for Pillars 1 and 2 (%)

* The data are shown by the week the specimen was taken from the person being tested. This gives the most accurate analysis of this time progression, however, for the most recent week results for more samples are expected therefore this should be interpreted with caution
* Positivity (excluding Figure 2) is calculated as the number of individuals testing positive during the week divided by the number of individuals tested during the week through Polymerase Chain Reaction (PCR) testing
* Data source: Second Generation Surveillance System (SGSS)

**Figure 2: Weekly positivity (%) of confirmed COVID-19 and number of individuals tested by type of test, under Pillar 1 and 2**

* For Figure 2 positivity is calculated as the number of individuals testing positive using a specific test type during the week, divided by the number of individuals tested using that specific test type during the week
* Please note that an individual may appear under both PCR and LFD tests if they have been tested using both test types in a given week
Age and sex

Figure 3: Age-sex pyramids for confirmed COVID-19 cases tested under Pillars 1 and 2 in weeks 1 and 2 (n=1,440,150)
Figure 4: Weekly confirmed COVID-19 case rates per 100,000, tested under Pillar 1 and Pillar 2, by sex

Figure 5: Weekly confirmed COVID-19 case rates per 100,000, tested under Pillar 1 and Pillar 2, by age group
Figure 6: Weekly PCR positivity (%) of confirmed COVID-19 cases tested overall and by sex under (a) Pillar 1 and (b) Pillar 2
Figure 7: Weekly PCR positivity (%) of confirmed COVID-19 cases tested under Pillar 1, (a) by male and age group and (b) by female and age group and; under Pillar 2, (c) by male and age group and (d) by female and age group

(a) Pillar 1 - Male

(b) Pillar 1 - Female
Weekly National Influenza and COVID-19 Report: week 3 report (up to week 2 data)

(c) Pillar 2 – Male

(d) Pillar 2 – Female
Geography

Figure 8: Weekly confirmed COVID-19 case rates per 100,000 population (Pillar 1 and Pillar 2), by UKHSA Centres and sample week

![Graph showing weekly confirmed COVID-19 case rates per 100,000 population for different regions in the UK.]
Figure 9: Weekly PCR positivity of confirmed COVID-19 cases tested under (a) Pillar 1 (%) and (b) Pillar 2 (%), by UKHSA Centres and sample week.
Figure 10: Weekly rate of COVID-19 cases per 100,000 population (Pillar 1 and 2), by upper-tier local authority, England (box shows enlarged map of London area)

From the week of 9th August 2021, incidence rate calculations by UTLA will use 2020 ONS mid-year population estimates.

Please note that the categories have changed since last week’s report.
**Ethnicity**

**Figure 11: Weekly incidence per 100,000 population by ethnicity, England**

*the incidence rates on Figure 11 have been calculated using the mid-2019 ONS population estimates*
Positivity by symptoms

**Figure 12: Weekly PCR positivity (%) of confirmed COVID-19 cases by symptoms reported on Pillar 2 test request**
Possible SARS-CoV-2 reinfection in England

The following figures present population data based on the first time that individuals tested positive for SARS-CoV-2 through PCR and/or lateral flow device testing in England together with those who have tested positive for SARS-CoV-2 through PCR and/or lateral flow testing with an interval of at least 90 days between two consecutive positive tests.

Data has been processed to week 1 (ending 9 January 2022), extracted 15 January 2022. Based on provisional figures to 9 January 2022, 425,890 possible reinfections have been identified in England since the beginning of the pandemic and 12.2 million first positives or primary infections are included in the figures. There were 109,936 possible reinfections identified in updated provisional figures for week 1 (ending 9 January 2022), accounting for 10.9% of all first or possible reinfection episodes with SARS-CoV-2 that week.

For a possible reinfection to be categorised as confirmed it requires sequencing of a specimen at each episode and for the later specimen to be genetically distinct from that sequenced from the earlier episode. Availability of such dual sequencing is currently very low for several reasons; sequencing was not widely undertaken early in the pandemic; LFD test results do not allow sequencing and some PCR samples have a low viral load where sequencing cannot be undertaken. To meet the definition of a probable reinfection requires sequencing at the later episode that identifies a variant that was not circulating at the time of the earlier episode. Further details on the methodology, with additional data on reinfections are available in the graph set published alongside this report. Information on Omicron reinfections is published in the weekly UKHSA SARS-CoV-2 variants of concern and variants under investigation in England technical briefings.

It is important to consider reinfections in the context of first infections and there is a 90-day delay before people with a first infection can become eligible for reinfection.

Figure 13a shows the weekly rates of possible reinfections per 1000 first infections based on a cumulative denominator derived from total individuals with a first SARS-CoV-2 positive test result at a point 13 weeks (91 days) before the next positive test result together with the cumulative total of first infections (secondary Y-axis) by week of onset.

Figure 13b shows weekly rates of possible reinfections per 1000 first infections based on a cumulative denominator derived from total individuals with a first SARS-CoV-2 positive test result at a point 13 weeks (91 days) broken down by age group into those under 30 years of age and those older than 30 years. The figure also shows weekly first infections in those under 30 years of age and those older than 30 years (secondary Y-axis). Both figures include provisional data to week 1 (9 January 2022) and numbers in the most recent two weeks are expected to increase further.
Weekly National Influenza and COVID-19 Report: week 3 report (up to week 2 data)

Figure 13 (a): The weekly rate of possible COVID-19 reinfections with cumulation of first infections becoming eligible for reinfection and weekly total of first infection* (England only to week 01 2022, provisional early data\(\Delta\))

*These data have been derived independently based on Pillar 1 and Pillar 2 datasets and may therefore differ to previously published data

\(\Delta\) Data in week 01 are early provisional data (represented by the dotted lines) and are expected to change
Weekly National Influenza and COVID-19 Report: week 3 report (up to week 2 data)

Figure 13 (b): First COVID-19 positive tests results* & weekly rate of possible COVID-19 reinfections in England to week 01 2022, provisional early data

* These data have been derived independently based on Pillar 1 and Pillar 2 datasets and may therefore differ to previously published data

Δ Data in week 01 are early provisional data (represented by the dotted lines) and are expected to change
Respiratory DataMart system (England)

The Respiratory Datamart system was initiated during the 2009 influenza pandemic to collate all laboratory testing information in England. It is now used as a sentinel laboratory surveillance tool, monitoring all major respiratory viruses in England. Seventeen laboratories in England will be reporting data for this season. As this is based on a sample of labs - SARS-CoV-2 positivity figures quoted here will differ from those quoted in the Confirmed COVID-19 cases section, however, they are included to facilitate comparison with data on other respiratory viruses.

In week 2 2022, out of the 123,070 respiratory specimens reported through the Respiratory DataMart System (based on data received from 16 out of 17 laboratories), 6,468 samples were positive for SARS-CoV-2 with an overall positivity of 5.3%, compared to 6.9% in the previous week. The highest positivity was noted in the 5 to 14-year olds at 13.6% in week 2.

The overall influenza positivity remained very low at 0.5% in week 2, with 29 of the 6,213 samples testing positive for influenza (including 3 influenza A(H3N2), 16 influenza A(not subtyped) and 10 influenza B).

Respiratory syncytial virus (RSV) positivity decreased from 2.3% in week 1 to 1.2% in week 2, with the highest positivity in the under 5-year olds at 3.7%. Rhinovirus positivity increased slightly from 8.9% in week 1 to 9.4% in week 2. Human metapneumovirus (hMPV) positivity decreased slightly from 3.8% in week 1 to 2.9% in week 2. Adenovirus and parainfluenza positivity remained low at 2.4% and 0.3% respectively in week 2 (Figure 16).

**Figure 14:** DataMart samples positive for influenza and weekly positivity (%) for influenza, England

![Graph showing weekly positivity for influenza in England](image-url)
Figure 15: DataMart weekly positivity (%) for SARS-CoV-2, England

![SARS-CoV-2 Positivity Graph](image1)

Figure 16: DataMart weekly positivity (%) for other respiratory viruses, England

![Other Respiratory Viruses Graph](image2)
Figure 17: DataMart weekly positivity (%) for rhinovirus by age, England

Figure 18: DataMart weekly positivity (%) for RSV by age, England
Community surveillance

Acute respiratory infection incidents

Here we present data on acute respiratory infection (ARI) incidents in different settings that are reported to UKHSA Health Protection Teams (HPTs) and entered onto an online web-based platform called HPZone. Incidents are suspected outbreaks of acute respiratory infections linked to a particular setting. All suspected outbreaks are further investigated by the HPT in liaison with local partners. A subset of these will meet the criteria of a confirmed outbreak, that is, where 2 or more laboratory confirmed cases (SARS-CoV-2, influenza or other respiratory pathogens) are linked to a particular setting. Incidents where suspected cases test negative for COVID-19 or other respiratory pathogens, or cases are subsequently found not to have direct links to the setting are discarded.

The number of ARI incidents in each setting with at least one laboratory confirmed case of COVID-19 (or other respiratory pathogen) are reported below. As outlined above, only a subset of these will go on to be confirmed as outbreaks.

Data for England, Scotland and Northern Ireland are included in the UK figures.

Data caveats:
1. The incidents captured on HPZone represent a subset of all ongoing ARI clusters and outbreaks in England rather than an exhaustive listing. A variety of arrangements are in place across UKHSA Centres, with local authorities and other stakeholders supporting HPTs in outbreak investigation in some areas without HPZone reporting. As a result, the number of outbreaks reported for some of the regions are underestimates.
2. For this academic year (2021 to 2022) the thresholds for reporting an outbreak in an educational setting have been revised. Clusters and outbreaks are now reported to the Health protection Team if any of the following criteria are met:
   • 5 cases or 10% test-confirmed cases of COVID-19 within 10 days (whichever is reached first), among students or staff
   • Evidence of severe illness e.g. students or staff members admitted to hospital or a death as a result of a COVID–19 infection
   • For special education needs schools, residential schools and settings that operate with 20 or fewer children, pupils, students and staff at any one time, clusters and outbreaks are reported if the following criteria is met:
     • 2 children, pupils, students and staff, who are likely to have mixed closely, test positive for COVID-19 within a 10-day period

For more information on managing COVID-19 in educational settings please refer to the framework. This should be taken into consideration when comparing 2021-2022 season data against 2020-2021 season data.
3. It should be noted that the denominator for the different settings will vary significantly. For example, there are fewer hospitals than workplaces. In addition, the propensity to report incidents to UKHSA also varies significantly by setting. This needs to be taken into account when interpreting the weekly number of reported incidents by setting and caution should be used when making comparisons between settings.

4. In light of the above, comparisons between Regions and settings are not advised as they may be misleading.
1553 new ARI incidents have been reported in week 2 in the UK (Figure 19):

- 764 incidents were from care homes where 586 had at least one linked case that tested positive for SARS-CoV-2 and 1 tested positive for rhinovirus
- 411 incidents were from educational settings where 186 had at least one linked case that tested positive for SARS-CoV-2
- 73 incidents were from hospitals, where 50 had at least one linked case that tested positive for SARS-CoV-2
- 40 incidents were from workplace settings where 34 had at least one linked case that tested positive for SARS-CoV-2
- 10 incidents were from prisons where 9 had at least one linked case testing positive for SARS-CoV-2
- 2 incidents were from food outlets or restaurants where 1 had at least one linked case testing positive for SARS-CoV-2
- 253 incidents were from other settings where 172 had at least one linked case that tested positive for SARS-CoV-2

Figure 19: Number of acute respiratory infection (ARI) incidents by setting, UK

*Excludes data from Wales
Figure 20: Number of acute respiratory infection (ARI) incidents by setting, England

![Graph showing number of ARI incidents by setting, England](image)

Figure 21: Number of acute respiratory infection (ARI) incidents in care homes by virus type, England

![Graph showing ARI incidents in care homes](image)

- Influenza A
- Influenza B
- SARS-CoV-2
- Rhinovirus
- RSV
- Other respiratory viruses
- No organism reported
Figure 22: Number of acute respiratory infection (ARI) incidents in hospitals by virus type, England

![Hospital chart]

Figure 23: Number of acute respiratory infection (ARI) incidents in educational settings by virus type, England

![Educational settings chart]
Weekly National Influenza and COVID-19 Report: week 3 report (up to week 2 data)

Figure 24: Number of acute respiratory infection (ARI) incidents in prisons by virus type, England

Prisons

![Prison ARI incidents by virus type](image)

- Influenza A
- Influenza B
- SARS-CoV-2
- Rhinovirus
- RSV
- Other respiratory viruses
- No organism reported

Date of report week

Figure 25: Number of acute respiratory infection (ARI) incidents in workplace settings by virus type, England

Workplace settings

![Workplace ARI incidents by virus type](image)

- Influenza A
- Influenza B
- SARS-CoV-2
- Rhinovirus
- RSV
- Other respiratory viruses
- No organism reported

Date of report week
Figure 26: Number of acute respiratory infection (ARI) incidents in food outlet or restaurant settings by virus type, England

Food outlet/restaurants

- Influenza A
- Influenza B
- SARS-CoV-2
- Rhinovirus
- RSV
- Other respiratory viruses
- No organism reported

Figure 27: Number of acute respiratory infection (ARI) incidents in other settings by virus type from, England

Other settings

- Influenza A
- Influenza B
- SARS-CoV-2
- Rhinovirus
- RSV
- Other respiratory viruses
- No organism reported
### Table 1: Total number of situations and incidents by institution and UKHSA Centres over the past 4 weeks with the total number in the last week in brackets

<table>
<thead>
<tr>
<th>UKHSA Centres</th>
<th>Care home</th>
<th>Hospital</th>
<th>Educational settings</th>
<th>Prisons</th>
<th>Workplace settings</th>
<th>Food outlet/ restaurant settings</th>
<th>Other settings</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>East of England</td>
<td>345(69)</td>
<td>16(3)</td>
<td>0(0)</td>
<td>2(0)</td>
<td>3(1)</td>
<td>0(0)</td>
<td>133(41)</td>
<td>499(114)</td>
</tr>
<tr>
<td>East Midlands</td>
<td>499(93)</td>
<td>29(3)</td>
<td>17(9)</td>
<td>5(2)</td>
<td>16(6)</td>
<td>1(1)</td>
<td>115(17)</td>
<td>682(131)</td>
</tr>
<tr>
<td>London</td>
<td>569(73)</td>
<td>166(35)</td>
<td>260(242)</td>
<td>4(0)</td>
<td>8(0)</td>
<td>1(1)</td>
<td>256(49)</td>
<td>1264(400)</td>
</tr>
<tr>
<td>North East</td>
<td>242(59)</td>
<td>4(0)</td>
<td>0(0)</td>
<td>3(0)</td>
<td>1(0)</td>
<td>0(0)</td>
<td>27(5)</td>
<td>277(64)</td>
</tr>
<tr>
<td>North West</td>
<td>508(138)</td>
<td>20(2)</td>
<td>37(27)</td>
<td>1(0)</td>
<td>154(29)</td>
<td>2(0)</td>
<td>200(54)</td>
<td>922(250)</td>
</tr>
<tr>
<td>South East</td>
<td>386(50)</td>
<td>17(3)</td>
<td>19(17)</td>
<td>9(3)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>79(7)</td>
<td>510(80)</td>
</tr>
<tr>
<td>South West</td>
<td>223(36)</td>
<td>2(1)</td>
<td>24(22)</td>
<td>2(2)</td>
<td>2(0)</td>
<td>0(0)</td>
<td>37(5)</td>
<td>290(66)</td>
</tr>
<tr>
<td>West Midlands</td>
<td>132(26)</td>
<td>23(2)</td>
<td>19(14)</td>
<td>8(1)</td>
<td>8(0)</td>
<td>0(0)</td>
<td>43(5)</td>
<td>233(48)</td>
</tr>
<tr>
<td>Yorkshire and Humber</td>
<td>724(144)</td>
<td>15(1)</td>
<td>13(9)</td>
<td>11(2)</td>
<td>3(2)</td>
<td>0(0)</td>
<td>129(27)</td>
<td>895(185)</td>
</tr>
<tr>
<td>Total</td>
<td>3628(688)</td>
<td>292(50)</td>
<td>389(340)</td>
<td>45(10)</td>
<td>195(38)</td>
<td>4(2)</td>
<td>1019(210)</td>
<td>5572(1338)</td>
</tr>
</tbody>
</table>
COVID-19 cases by type of residence

Table 2 shows the proportion of confirmed COVID-19 cases according to their type of residence. Property classifications are derived from Ordnance Survey AddressBase and are matched to address details within the laboratory data. Properties are identified by unique property reference number (UPRN) and basic land property unit (BLPU). Cases with poor or no address data which failed the address matching and are classed as ‘undetermined’. No fixed abode and overseas addresses identified by recording in the laboratory data.

In week 2, the highest percentage of confirmed COVID-19 cases by type of residence was seen in residential dwellings (Table 2).

Table 2: Type of residence of confirmed COVID-19 cases by percentage of total weekly cases

<table>
<thead>
<tr>
<th>Type of residence</th>
<th>Week 49</th>
<th>Week 50</th>
<th>Week 51</th>
<th>Week 52</th>
<th>Week 1</th>
<th>Week 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential dwelling (including houses, flats, sheltered accommodation)</td>
<td>94.9</td>
<td>93.0</td>
<td>94.8</td>
<td>94.8</td>
<td>94.4</td>
<td>94.5</td>
</tr>
<tr>
<td>Undetermined</td>
<td>2.7</td>
<td>4.1</td>
<td>2.3</td>
<td>2.0</td>
<td>2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Care/Nursing home</td>
<td>0.3</td>
<td>0.3</td>
<td>0.7</td>
<td>1.2</td>
<td>1.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Residential institution (including residential education)</td>
<td>0.4</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Other property classifications</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>House in multiple occupancy (HMO)</td>
<td>0.4</td>
<td>0.7</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Medical facilities (including hospitals and hospices, and mental health)</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Prisons, detention centres, secure units</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Overseas address</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>No fixed abode</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
FluSurvey

An internet-based surveillance system has been developed based on FluSurvey. FluSurvey is a web tool survey designed to monitor trends of influenza-like illness (ILI) in the community using self-reported respiratory symptoms from registered participants. The platform has been adapted to capture respiratory symptoms, exposure risk and healthcare seeking behaviours among registered participants to contribute to national surveillance of COVID-19 activity as well as influenza activity since week 44 2020.

Note: ILI is defined as sudden onset of symptoms with at least one of fever (chills); malaise; headache; muscle pain and at least one of cough; sore throat; shortness of breath.

A total of 2,742 participants completed the weekly surveillance survey in week 2, of which 144 (5.3%) reported fever or cough and 47 (1.7%) reported influenza-like illness (ILI). The most commonly used healthcare services reported by respondents remains telephoning a GP practice (Figure 28).
Figure 28: FluSurvey participants self-reporting fever or cough and ILI symptoms, and trends in healthcare seeking behaviour among these participants, England.
FluDetector

FluDetector is a web-based model which assesses internet-based search queries for influenza-like illness (ILI) in the general population.

Daily ILI rate estimates are based on uniformly averaged search query frequencies for a week-long period (including the current day and the six days before it).

For week 2, the daily ILI rate remained low and below the baseline threshold of 19.6 per 100,000 for the 2021 to 2022 season (Figure 29).
Figure 29: Daily estimated ILI Google search query rates per 100,000 population, England
Google search queries

This is a web-based syndromic surveillance system which uses daily search query frequency statistics obtained from the Google Health Trends API. This model focuses on search queries about COVID-19 symptoms as well as generic queries about ‘coronavirus’ (for example ‘COVID-19’). The search query frequency time series has been weighted based on symptom frequency as reported in other data sources. Frequency of searches for symptoms is compared with a baseline calculated from historical daily data. Further information on this model is available online.

During week 2, the overall and media-debiasing weighted Google search scores decreased (Figure 30).
Weekly National Influenza and COVID-19 Report: week 3 report (up to week 2 data)

Figure 30: Normalised Google search score for COVID-19 symptoms, with weighted score for media-debiasing and historical trend, England
NHS 111

Please note that different syndromic surveillance indictors (NHS 111, GP in hours, GP out of hours and emergency department attendances) are presented here than have been included in previous versions of this report. All indicators previously presented will continue to be published in the Syndromic Surveillance bulletins.

The NHS 111 service monitors daily trends in phone calls made to the service in England, to capture trends in infectious diseases such as influenza and norovirus.

Up to 16 January, calls for cold or flu and cough have decreased (Figure 31 and 32).

Please note that NHS 111 callers (from 11 May 2020) who are assessed as having probable COVID-19 symptoms are now triaged using symptom specific pathways such as cold or flu, which are included in routine syndromic indicators.

Further information about these caveats is available from the Remote Health Advice Syndromic Surveillance bulletin.
Figure 31: NHS 111 telephony indicators (and 7-day moving average) for number of daily cold/flu calls, England (a) nationally and (b) by age group

(a)

Cold or flu 17/01/2021 - 16/01/2022

Black line is 7 day moving average adjusted for bank holidays. Black dotted line is baseline. Grey columns show weekends and bank holidays.

(b)

Cold or flu by age group (years) 17/01/2021 - 16/01/2022

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON. Black line is 7 day moving average adjusted for bank holidays.
Figure 32: NHS 111 telephony indicators (and 7-day moving average) for number of daily cough calls, England (a) nationally and (b) by age group

(a)

Cough 17/01/2021 - 16/01/2022

(b)

Cough by age group (years) 17/01/2021 - 16/01/2022

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON. Black line is 7 day moving average adjusted for bank holidays.
Primary care surveillance

RCGP (England)

The weekly ILI consultation rate through the RCGP surveillance was 1.4 per 100,000 registered population in participating GP practices in week 2 compared to 1.3 per 100,000 in the previous week. This is below the baseline threshold (12.2 per 100,000) (Figure 33). By age group, the highest rates were seen in the 45 to 64-year olds (2.0 per 100,000). The Lower Respiratory Tract Infections (LRTI) consultation rate was at 41.4 per 100,000 in week 2, compared to the rate of 47.9 per 100,000 in the previous week. The COVID-19 indicator rate was at 859.8 per 100,000 in week 2 compared to a rate of 1253.6 per 100,000 in the previous week (Figure 34).

Figure 33: RCGP ILI consultation rates, all ages, England
Figure 34: RCGP ILI, LRTI and COVID-19 indicator rates, England
UK

Overall, weekly ILI consultations rates were below baseline levels in all UK schemes (Table 3).

By age group, the highest rates were seen in the 75-year olds and over in Scotland (1.2 per 100,000) and in the 65 to 74-year olds in Northern Ireland (1.9 per 100,000).

Table 3: GP ILI consultations in the UK for all ages with MEM thresholds applied

<table>
<thead>
<tr>
<th>GP ILI consultation rates (all ages)</th>
<th>Week number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>England (RCGP)</td>
<td>3.3</td>
</tr>
<tr>
<td>Wales</td>
<td>3.3</td>
</tr>
<tr>
<td>Scotland</td>
<td>0.8</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>1.5</td>
</tr>
</tbody>
</table>

The Moving Epidemic Method (MEM) has been adopted by the European Centre for Disease Prevention and Control to calculate thresholds for GP ILI consultations for the start of influenza activity (based on 10 seasons excluding 2009 to 2010), in a standardised approach across Europe. For MEM threshold values for each country, please visit the webpage Sources of UK flu data: influenza surveillance in the UK.
GP In Hours, Syndromic Surveillance

The GP In Hours (GPIH) syndromic surveillance system monitors the number of GP visits during regular hours of known clinical indicators.

Up to 16 January, GP in-hours consultations for influenza-like illness (ILI) remained stable (Figure 35).

Further indicators and information about caveats are available from the GP In Hours Syndromic Surveillance bulletin.

Figure 35: GPIH clinical indicators for influenza-like illness GP consultations, England (a) nationally, (b) by age group and (c) by UKHSA Centre
GPIH Baselines are modelled from historical data to give current seasonally expected levels. GP consultations rates decreased during 2020 due to changes in guidance on accessing health care, therefore separate modelled estimates are provided to show seasonally expected levels pre-covid-19.
GP Out of Hours, Syndromic Surveillance

The GP Out of Hours (GPOOH) syndromic surveillance system monitors the numbers of daily unscheduled visits and calls to GPs during evenings, overnight, on weekends and on public holidays. This system covers around 55% of England’s out of hour activity.

Up to 16 January, GP out-of-hours and unscheduled care consultations for ARI decreased nationally. ILI consultations are stable and below expected levels for the time of year (Figure 36 and 37).

**Figure 36: GPOOH number of daily contacts for all ages for influenza-like illness, England**
Figure 37: GPOOH number of daily contacts for acute respiratory infections, England (a) nationally and (b) by age group

(a)

Acute respiratory infection 17/01/2021 - 16/01/2022

(daily contacts)

Black line is 7 day moving average adjusted for bank holidays. Black dotted line is baseline. Grey columns show weekends and bank holidays.

(b)

Acute respiratory infection by age group (years) 17/01/2021 - 16/01/2022

(daily contacts)

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON. Black line is 7 day moving average adjusted for bank holidays.
Sentinel swabbing scheme in the UK

In week 2 2022, 29 samples tested positive for SARS-CoV-2 with an overall positivity of 31.9% (29 out of 91) through the UK GP sentinel swabbing schemes (Figure 38).

In week 2, no samples tested positive for influenza in England through the GP sentinel swabbing scheme with an overall positivity of 0.0% (0 out of 66), while 1 sample tested positive for RSV in England, with an overall positivity of 1.5% (1 out of 66).

Figure 38: Number of positive samples and weekly positivity (%) for (a) COVID-19 and (b) Influenza and (c) RSV, GP sentinel swabbing scheme
*For the most recent week, more samples are expected to be tested therefore the graphs in Figure 38 should be interpreted with caution

*Positivity (%) is not calculated when the total number tested is less than 10
Secondary care surveillance

SARI Watch

The Severe Acute Respiratory Infection (SARI) Watch surveillance system was established in 2020 to report the number of laboratory-confirmed influenza and COVID-19 cases admitted to hospital and critical care units (ICU and HDU) in NHS acute trusts across England. This has replaced the USISS Mandatory and Sentinel data collections for influenza surveillance used in previous seasons, and the COVID-19 hospitalisations in England surveillance system (CHESS) collections for COVID-19 surveillance.

The weekly rate of new admissions of COVID-19, influenza and RSV cases is based on the trust catchment population of those NHS Trusts who made a new return. This may differ from other published figures such as the total number of people currently in hospital with COVID-19.

The Moving Epidemic Method (MEM) thresholds for influenza hospital and ICU or HDU admissions are calculated based on the 2014 to 2015 to the 2018 to 2019 seasons (data from 2019 to 2020 was excluded due to the COVID-19 pandemic). These thresholds have been applied to data from the 2019-20 season onwards.

Trends in hospital and critical care admission rates need to be interpreted in the context of testing recommendations.
Hospitalisations, SARI Watch

In week 2, the overall weekly hospital admission rate for COVID-19 decreased. There were 5 new hospital admissions to sentinel Trusts for influenza (2 influenza A(H3N2), 2 influenza A(not subtyped) and 1 influenza B) in week 2.

The hospitalisation rate for COVID-19 was at 17.62 per 100,000 in week 2 compared to 19.92 per 100,000 in the previous week. The hospitalisation rate for influenza was at 0.05 per 100,000 in week 2 compared to 0.06 per 100,000 in the previous week.

By UKHSA centre, the highest hospital admission rate for COVID-19 was observed in the North East. By age groups, the highest hospital admission rate for confirmed COVID-19 was in the 85-year olds and over.

Figure 39: Weekly overall hospital admission rates of new COVID-19 and influenza positive cases per 100,000 population reported through SARI Watch, England

* influenza hospital admission rate is reported from week 3 2021 onwards
* influenza hospital admission rate based on 26 sentinel NHS trusts for week 2
* COVID-19 hospital admission rate based on 107 NHS trusts for week 2
* SARI Watch data are provisional
Figure 40: Weekly overall influenza hospital admission rates per 100,000 trust catchment population with MEM thresholds, SARI Watch, England

* MEM thresholds are based on data the 2014 to 2015 to the 2018 to 2019 seasons (data from 2019 to 2020 was excluded due to the COVID-19 pandemic).

Figure 41: Weekly influenza hospital admissions by influenza type, SARI Watch, England
Figure 42: Weekly hospital admission rate by UKHSA Centre for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch
Figure 43: Weekly hospital admission rate by age group for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch
ICU or HDU admissions, SARI Watch

In week 2, the overall weekly ICU or HDU admission rates for COVID-19 decreased. There were 3 new case reports of ICU or HDU admissions for influenza (2 influenza A (not subtyped) and 1 influenza B) in week 2.

The ICU or HDU rate for COVID-19 was at 0.56 per 100,000 in week 2 compared to 0.70 per 100,000 in the previous week. The ICU or HDU rate for influenza was at 0.01 per 100,000 in week 2 compared to 0.01 per 100,000 in the previous week.

By UKHSA Centre, the highest ICU or HDU admission rates for COVID-19 were observed in London. By age groups, the highest ICU or HDU admission rates for COVID-19 were observed in the 65 to 74-year olds.

Figure 44: Weekly overall ICU or HDU admission rates of new COVID-19 and influenza positive cases per 100,000 population reported through SARI Watch, England

* influenza ICU or HDU admission rate is reported from week 3 2021 onwards
* influenza ICU or HDU admission rate based on 91 NHS trusts for week 2
* COVID-19 ICU or HDU admission rate based on 95 NHS trusts for week 2
* SARI Watch data are provisional
Figure 45: Weekly overall influenza ICU or HDU admission rates per 100,000 trust catchment population with MEM thresholds, SARI Watch, England

![Graph showing weekly overall influenza ICU or HDU admission rates per 100,000 trust catchment population with MEM thresholds, SARI Watch, England.](image)

Figure 46: Weekly influenza ICU or HDU admissions by influenza type, SARI Watch, England

![Graph showing weekly influenza ICU or HDU admissions by influenza type, SARI Watch, England.](image)
Figure 47: Weekly ICU or HDU admission rate by UKHSA Centre for new (a) COVID-19 positive cases and (b) influenza, reported through SARI Watch

(a)

(b)
Figure 48: Weekly ICU or HDU admission rate by age group for new (a) COVID-19 positive cases and (b) influenza, reported through SARI Watch

(a)

(b)
ECMO, SARI Watch

From week 3 2021, a total of 265 laboratory confirmed COVID-19 admissions have been reported from the 6 Severe Respiratory Failure (SRF) centres in the UK. There was 1 new laboratory confirmed COVID-19 admission reported in week 2 (Figure 49).

Figure 49: Laboratory confirmed ECMO admissions (COVID-19, influenza and non-COVID-19 confirmed) to Severe Respiratory Failure centres in the UK

* SARI Watch data are provisional
RSV admissions, SARI Watch

Data on hospitalisations, including ICU/HDU admissions, with Respiratory Syncytial Virus (RSV) are shown below. RSV SARI Watch surveillance is sentinel.

Figure 50: Weekly overall hospital admission rates (including ICU/HDU) of RSV positive cases per 100,000 population reported through SARI Watch, England

* Please note that in previous seasons, RSV SARI Watch surveillance has run from week 40 to week 20. In the 2020 to 2021 season this was extended to run throughout the year, to allow for surveillance of out-of-season trends
Figure 51: Weekly hospitalisation (including ICU/HDU) admission rates by age group for new RSV cases reported through SARI Watch in 2020 to 2021, England

* Please note that rates are based on the number of hospitalised cases divided by the Trust catchment population, multiplied by 100,000
* SARI Watch data are provisional
Emergency Department attendances, Syndromic surveillance

The Emergency Department Syndromic Surveillance System (EDSSS) monitors the daily visits in a network of emergency departments across England.

Up to 16 January, the daily number of ED attendances as reported by 128 EDs for acute respiratory infection decreased and were below baseline. COVID-19-like attendances decreased nationally (Figure 52).

Please note: the COVID-19-like ED indicator is an underestimation of the number of COVID-19 attendances as it only includes attendances with a COVID-19-like diagnosis as their primary diagnosis. The EDSSS COVID-19-like indicator should therefore be used to monitor trends in ED attendances and not to estimate actual numbers of COVID-19 ED attendances. Further information about these caveats is available from the Emergency Department Syndromic Surveillance bulletin.

Figure 52: Daily ED attendances for COVID-19-like infections, England (a) nationally, (b) by age group and (c) by UKHSA Centre

(a)

Black line is 7 day moving average adjusted for bank holidays. Grey columns show weekends and bank holidays.
Weekly National Influenza and COVID-19 Report: week 3 report (up to week 2 data)

(b) COVID-19-like by age group (years) 17/01/2021 - 16/01/2022

COVID-19-like by age group (years) 17/01/2021 - 16/01/2022

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON.
Black line is 7 day moving average adjusted for bank holidays.

(c) COVID-19-like by region 17/01/2021 - 16/01/2022

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON.
Black line is 7 day moving average adjusted for bank holidays.
Figure 53: Daily ED attendances for acute respiratory infections, England (a) nationally, (b) by age group and (c) by UKHSA Centre

(a)

Acute respiratory infection 17/01/2021 - 16/01/2022

Black line is 7 day moving average adjusted for bank holidays.
Black dotted line is baseline. Grey columns show weekends and bank holidays.

(b)

Acute respiratory infection by age group (years) 17/01/2021 - 16/01/2022

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON.
Black line is 7 day moving average adjusted for bank holidays.
Acute respiratory infection by region 17/01/2021 - 16/01/2022

North East
North West
Yorkshire and Humber
East Midlands
West Midlands
East of England
London
South East
South West

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON.
Black line is 7 day moving average adjusted for bank holidays.
Black dotted line is baseline.
Mortality surveillance

COVID-19 deaths

Changes to the definitions of COVID-19 related deaths in England are described in more detail in an accompanying technical summary.

The current definitions used for mortality surveillance of COVID-19 in England are:

(a) 28 day definition: A death in a person with a laboratory-confirmed positive COVID-19 test and died within (equal to or less than) 28 days of the first positive specimen date

(b) 60 day definition: A death in a person with a laboratory-confirmed positive COVID-19 test and either: died within 60 days of the first specimen date OR died more than 60 days after the first specimen date only if COVID-19 is mentioned on the death certificate

The introduction of these definitions will affect the numbers which have been presented in past reports and therefore Figure 54 represents these differences by definition.

Figure 54: Number of deaths by week of death and time since laboratory confirmation of COVID-19, England

*The data are shown by the week of death. This gives the most accurate analysis of this time progression, however, for the most recent weeks’ numbers more deaths are expected to be registered therefore this should be interpreted with caution*
Figure 5: Age-sex pyramid of laboratory confirmed COVID-19 deaths, for the past year

Table 4: Ethnic group (%) of COVID-19 deaths and time since laboratory confirmation of COVID-19, England, for the past year

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>28 day definition</th>
<th>60 day definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>88.2</td>
<td>88.1</td>
</tr>
<tr>
<td>Asian / Asian British</td>
<td>7.1</td>
<td>7.2</td>
</tr>
<tr>
<td>Black / African / Caribbean / Black British</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Mixed / Multiple ethnic groups</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Other ethnic group</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Table 5: Cumulative number of COVID-19 deaths since and time since laboratory confirmation of COVID-19 by UKHSA Centres, for the past year

<table>
<thead>
<tr>
<th>UKHSA Centres</th>
<th>28 day definition</th>
<th>60 day definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>North East</td>
<td>2,601</td>
<td>3,299</td>
</tr>
<tr>
<td>North West</td>
<td>7,829</td>
<td>9,796</td>
</tr>
<tr>
<td>Yorkshire and Humber</td>
<td>4,795</td>
<td>6,064</td>
</tr>
<tr>
<td>West Midlands</td>
<td>6,090</td>
<td>7,786</td>
</tr>
<tr>
<td>East Midlands</td>
<td>4,779</td>
<td>6,054</td>
</tr>
<tr>
<td>East of England</td>
<td>6,306</td>
<td>8,115</td>
</tr>
<tr>
<td>London</td>
<td>6,147</td>
<td>8,094</td>
</tr>
<tr>
<td>South East</td>
<td>7,287</td>
<td>9,494</td>
</tr>
<tr>
<td>South West</td>
<td>4,127</td>
<td>5,116</td>
</tr>
</tbody>
</table>
Figure 56: Cumulative mortality rate of COVID-19 cases per 100,000 population tested under Pillars 1 and 2 for the past 4 weeks by (a) 28 day definition and (b) 60 day definition

(a)
Weekly National Influenza and COVID-19 Report: week 3 report (up to week 2 data)

(b)

COVID-19 mortality rate by UTLA (50 days cut off)
21 December 2021 - 18 January 2022

From the week of 9th August 2021, incidence rate calculations by UTLA will use 2020 ONS mid-year population estimates.

Please note that the categories have changes since last week’s report.
Daily excess all-cause mortality (England)

Deaths occurring from 1 January 2020 to 12 January 2022 were assessed to calculate the daily excess above a baseline using age-group and region specific all cause deaths as provided daily by the General Register Office (GRO). The deaths were corrected to allow for delay to registration based on past data on these delays and the baseline was from the same day of the year in the previous 5 years plus or minus 7 days with an extrapolated time trend, and with 2 and 3 standard deviation (SD) limits shown (Figure 57).

Weeks in which at least 2 days exceeded the 3SD threshold are shown in Table 6 and the daily difference from the baseline by age and region is given in Figure 56.

Note that as these data are by date of death with delay corrections, numbers are subject to change each week, particularly for more recent days.

The current week’s model supersedes models presented in previous week.

No excess all-cause mortality was observed in week 1 overall, by age or sub-nationally. Week 36 2021 included a heatwave period of three days with high temperatures (mean Central England Temperature >20c) which may have contributed to the excess seen in this week. The excess mortality noted in week 33 2020 and week 29 2021 coincide with heat waves (Figure 57, 58 and Table 6).
Figure 57: Daily excess all-cause deaths in all ages, England, 1 January 2020 to 12 January 2022

^Baseline calculation:
January to November 2020: same day in previous 5 years plus or minus 1 week with a linear trend.
December 2020 to February 2021: past 3 low flu years plus or minus 2 weeks, no trend.
March 2021 onwards: same baseline as 2020
* corrected for delay to registration from death
Other measures of excess mortality published by UKHSA are the [Fingertips excess mortality in England report](#), which uses ONS death registration data; and the [all-cause mortality surveillance report](#), which uses the EuroMOMO model to measure excess deaths.

**Table 6: Excess all-cause deaths by (a) age group and (b) UKHSA centres, England**

(a)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Excess detected in week 1 2022?</th>
<th>Weeks in excess from week 10 to 53 2020</th>
<th>Weeks in excess from week 1 to 52 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>x</td>
<td>13 to 21, 33, 43, 45, 50, 52 to 53</td>
<td>01 to 07, 31 to 32, 35 to 36, 40 to 43</td>
</tr>
<tr>
<td>under 25</td>
<td>x</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>25 to 44</td>
<td>x</td>
<td>14 to 16</td>
<td>37</td>
</tr>
<tr>
<td>45 to 64</td>
<td>x</td>
<td>12 to 19, 49 to 50, 52 to 53</td>
<td>01 to 08, 29, 36, 38, 40 to 44, 48</td>
</tr>
<tr>
<td>65 to 74</td>
<td>x</td>
<td>13 to 19, 46, 48, 52 to 53</td>
<td>01 to 07, 36, 43, 48</td>
</tr>
<tr>
<td>75 to 84</td>
<td>x</td>
<td>13 to 21, 33, 45, 49, 52 to 53</td>
<td>01 to 07, 32, 36, 40</td>
</tr>
<tr>
<td>85+</td>
<td>x</td>
<td>13 to 21, 33, 53</td>
<td>01 to 07, 36</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>UKHSA Centres</th>
<th>Excess detected in week 1 2022?</th>
<th>Weeks in excess from week 10 to 53 2020</th>
<th>Weeks in excess from week 1 to 52 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>East of England</td>
<td>x</td>
<td>14 to 19, 52 to 53</td>
<td>01 to 07</td>
</tr>
<tr>
<td>East Midlands</td>
<td>x</td>
<td>13 to 19, 48</td>
<td>01 to 07</td>
</tr>
<tr>
<td>London</td>
<td>x</td>
<td>12 to 19, 33, 52 to 53</td>
<td>01 to 06, 36</td>
</tr>
<tr>
<td>North East</td>
<td>x</td>
<td>14 to 21</td>
<td>02 to 04</td>
</tr>
<tr>
<td>North West</td>
<td>x</td>
<td>13 to 19, 33, 42 to 47</td>
<td>01 to 07, 31 to 32, 35 to 36, 43</td>
</tr>
<tr>
<td>South East</td>
<td>x</td>
<td>13 to 21, 33, 50 to 53</td>
<td>01 to 07, 36</td>
</tr>
<tr>
<td>South West</td>
<td>x</td>
<td>13 to 19, 33</td>
<td>02 to 07, 29, 36</td>
</tr>
<tr>
<td>West Midlands</td>
<td>x</td>
<td>13 to 20, 45, 48</td>
<td>01 to 07, 29, 36, 40, 44, 48</td>
</tr>
<tr>
<td>Yorkshire and Humber</td>
<td>x</td>
<td>14 to 21, 23, 43 to 50</td>
<td>02 to 04, 35 to 36</td>
</tr>
</tbody>
</table>
Figure 58: Daily excess all-cause deaths by (a) age group and (b) UKHSA centres, England, 1 March 2020 to 12 January 2022
**Microbiological surveillance**

**Virus characterisation**

UKHSA characterises the properties of influenza viruses through one or more tests, including genome sequencing (genetic analysis) and haemagglutination inhibition (HI) assays (antigenic analysis). These data are used to compare how similar the currently circulating influenza viruses are to the strains included in seasonal influenza vaccines, and to monitor for changes in circulating influenza viruses. The interpretation of genetic and antigenic data sources is complex due to a number of factors, for example, not all viruses can be cultivated in sufficient quantity for antigenic characterisation, so that viruses with sequence information may not be able to be antigenically characterised as well. Occasionally, this can lead to a biased view of the properties of circulating viruses, as the viruses which can be recovered and analysed antigenically, may not be fully representative of majority variants, and genetic characterisation data does not always predict the antigenic characterisation.

Since week 40 2021, the UKHSA Respiratory Virus Unit has genetically characterised 178 influenza A(H3N2) viruses, of which 13 were detected in weeks 34 to 39, after the lifting of legal restrictions on social contact in England on July 19 2021 and prior to the official start of the influenza season in week 40, and 160 were known to be collected in weeks 40 to 52. Of the characterised influenza A(H3N2) viruses where the age of the individual sampled is known, 63%, are from individuals in age groups that would not normally be eligible for influenza vaccination.

Sequencing of the haemagglutinin (HA) gene shows that these A(H3N2) viruses belong in genetic subclade 3C.2a1b; 171 within a cluster designated 3C.2a1b.2a.2. The Northern Hemisphere 2021/22 influenza A(H3N2) vaccine strain (an A/Cambodia/e0826360/2020-like virus) also belongs in genetic subclade 3C.2a1b, within the 2a.1 genetic group. Seven A(H3N2) viruses collected in weeks 50 to 51, fall within a cluster designated 3C.2a1b.1a. Viruses within this genetic cluster have been detected in recent months in West and South Africa.

Seven influenza B viruses, collected since week 37 2021, have been genetically characterised to date and belong in genetic clade 1A.3 of the B/Victoria lineage, characterised by deletion of three amino acids in the haemagglutinin (HA), in a subgroup designated 1A.3a.2. The N. Hemisphere 2021/22 B/Victoria-lineage quadrivalent and trivalent vaccine component virus (a B/Washington/02/2019-like virus) belongs in genetic clade 1A.3.

Two influenza A(H1N1)pdm09 influenza virus have been characterised to date this season, one collected in week 40 from a returning traveller from West Africa and belonging in genetic subgroup 6B.1A.5a, within a cluster designated 6B.1A.5a.1, and the other in week 45 and also belonging in genetic subgroup 6B.1A.5a, within a cluster designated 6B.1A.5a.2. The Northern Hemisphere 2021/22 influenza A(H1N1)pdm09 vaccine strain (an A/Victoria/2570/2019-like virus) also belongs in genetic subclade 6B.1A.5a, within the 6B.1A.5a.2 cluster.
The detection of circulating A(H3N2) and influenza B viruses is in accordance with predominant detections internationally over the period of August and September 2021, and from week 40 to date.

The Respiratory Virus Unit has confirmed by genome sequencing the detection of live attenuated influenza vaccine (LAIV) viruses in 34 influenza A and/or influenza B positive samples collected since week 37, from children aged 2 to ≤16 years of age.

**Antiviral susceptibility**

Influenza positive samples are screened for mutations in the virus neuraminidase (NA) and the cap-dependent endonuclease (PA) genes known to confer neuraminidase inhibitor or baloxavir resistance, respectively. The samples tested are routinely obtained for surveillance purposes, but diagnostic testing of patients suspected to be infected with antiviral-resistant virus is also performed.

Influenza virus sequences from samples collected between weeks 34 and 49 have been analysed. No viruses with known markers of resistance to neuraminidase inhibitors were detected in 122 A(H3N2), 2 A(H1N1)pdm09 and 6 B/Victoria-lineage neuraminidase gene sequences. No viruses with known markers of resistance to baloxavir marboxil were detected in 112 A(H3N2), 2 A(H1N1)pdm09 and 5 B/Victoria-lineage PA gene sequences (cap-dependent endonuclease).

<table>
<thead>
<tr>
<th>(Sub)type</th>
<th>Neuraminidase Inhibitors</th>
<th>Baloxavir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Susceptible</td>
<td>Resistant</td>
</tr>
<tr>
<td>A(H3N2)</td>
<td>122</td>
<td>0</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>B/Victoria-lineage</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

**SARS-CoV-2 variants**

UKHSA conducts surveillance of SARS-CoV-2 variants. Further information including an overview of variants, information on new variants and detailed surveillance of particular variants of concern can be found on GOV.UK and in the latest technical briefing.
Antimicrobial susceptibility

Table 8 shows in the 12 weeks up to week 2 2022, the proportion of all lower respiratory tract isolates of Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, MRSA and MSSA tested and susceptible to antibiotics. These organisms are the key causes of community-acquired pneumonia (CAP) and the choice of antibiotics reflects the British Thoracic Society empirical guidelines for management of CAP in adults.

Table 8: Antimicrobial susceptibility surveillance in lower respiratory tract

<table>
<thead>
<tr>
<th>Organism</th>
<th>Antibiotic</th>
<th>Specimens tested (N)</th>
<th>Specimens susceptible (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>S. pneumoniae</em></td>
<td>Penicillin</td>
<td>1,653</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Macrolides</td>
<td>1,869</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Tetracycline</td>
<td>1,851</td>
<td>83</td>
</tr>
<tr>
<td><em>H. influenzae</em></td>
<td>Amoxicillin/ampicillin</td>
<td>9,654</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Co-amoxiclav</td>
<td>10,904</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Macrolides</td>
<td>2,923</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Tetracycline</td>
<td>11,125</td>
<td>98</td>
</tr>
<tr>
<td><em>S. aureus</em></td>
<td>Methicillin</td>
<td>4,575</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Macrolides</td>
<td>5,179</td>
<td>70</td>
</tr>
<tr>
<td>MRSA</td>
<td>Clindamycin</td>
<td>255</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Tetracycline</td>
<td>300</td>
<td>71</td>
</tr>
<tr>
<td>MSSA</td>
<td>Clindamycin</td>
<td>3,306</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Tetracycline</td>
<td>3,988</td>
<td>93</td>
</tr>
</tbody>
</table>

* Macrolides = erythromycin, azithromycin and clarithromycin

Data source: UKHSA’s SGSS AMR module, please note that this is different to the data source used in the reports published between weeks 41 2020 to 05 2021 inclusive of the 2020 to 2021 influenza season when the SGSS CDR module was used instead due to a UKHSA SGSS AMR data infrastructure issue which has now been resolved. Therefore, the above results are not directly comparable to the results reported between weeks 41 2020 and 05 2021. The AMR module of SGSS was used during the 2019 to 2020 influenza season. There has been a reduction in the total number of bacterial positive lower respiratory tract clinical samples reported to UKHSA since mid-March 2020.
COVID-19 sero-prevalence surveillance

Since week 42 2021, updates on COVID-19 sero-prevalence estimates have been published in the weekly COVID-19 vaccine surveillance report.
Influenza vaccination

Influenza vaccine uptake in GP patients

Up to week 2 2022 in 94.1% of GP practices reporting weekly to ImmForm for the main collection, the provisional proportion of people in England who had received the 2021 to 2022 influenza vaccine in targeted groups was as follows:

- 51.6% in under 65 years in a clinical risk group
- 37.7% in all pregnant women
- 81.6% in all 65-year olds and over
- 84.6% in 65-year olds and over and in a clinical risk group
- 44.9% in those aged 50 to 64 who are NOT in a clinical risk group

Weekly vaccine coverage data are provisional. The sample of GP practices included in the data may change from week to week, resulting in changes to reported cumulative uptake.

Figure 59: Cumulative weekly influenza vaccine uptake by target group in England

2021/22 season indicated by solid lines, 2020/21 season indicated by fainter dashed lines
In 2021 to 2022, all 2 and 3-year olds continue to be eligible for influenza vaccination through their GPs. Up to week 2 2022, in 95.5% of GP practices reporting weekly to ImmForm for the childhood collection, the provisional proportion of children in England who had received the 2021 to 2022 influenza vaccine in targeted groups was as follows:

- 47.4% in all 2-year olds
- 50.0% in all 3-year olds

**Figure 60: Cumulative weekly influenza vaccine uptake in 2 and 3 year olds, in England**
COVID-19 vaccination

COVID-19 vaccine uptake in England

COVID-19 vaccinations began in England on 8 December 2020 during week 50 2020 (week ending 13 December 2020). Cumulative data up to week 2 2022 (week ending 16 January 2022) was extracted from the National Immunisation Management Service (NIMS). The data presented this week is the provisional proportion of living people in England who had received at least one dose, two doses and three doses of a COVID-19 vaccination by age group. The overall vaccine uptake in the population for those with at least dose 1 was 68.9%, 63.6% for dose 2 and 48.4% for dose 3. The breakdown by sex showed vaccine uptake in males was 66.5% and 71.2% in females for dose 1. For dose 2 vaccine uptake by sex was 61.2% in males and 66.2% in females. For dose 3 vaccine uptake by sex was 45.9% in males and 51.2% in females. The vaccine uptake rate in adults aged 18 and over was 81.4% (40,834,584/50,141,317) for dose 1; 78.0% (39,122,667/50,141,317) for dose 2 and 60.6% (30,383,259/ 50,141,317) for dose 3.

Table 9: Provisional cumulative COVID-19 vaccine uptake by age in England

<table>
<thead>
<tr>
<th>NATIONAL</th>
<th>People in NIMS cohort</th>
<th>Vaccinated with at least 1 dose</th>
<th>Vaccinated with at least 2 doses</th>
<th>Vaccinated with at least 3 doses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number vaccinated</td>
<td>% vaccine uptake</td>
<td>Number vaccinated</td>
<td>% vaccine uptake</td>
</tr>
<tr>
<td>Over 80</td>
<td>2,782,176</td>
<td>95.6</td>
<td>2,641,287</td>
<td>94.9</td>
</tr>
<tr>
<td>75 to under 80</td>
<td>2,146,252</td>
<td>95.8</td>
<td>2,040,996</td>
<td>95.1</td>
</tr>
<tr>
<td>70 to under 75</td>
<td>2,855,115</td>
<td>94.7</td>
<td>2,681,080</td>
<td>93.9</td>
</tr>
<tr>
<td>65 to under 70</td>
<td>2,917,388</td>
<td>92.7</td>
<td>2,671,122</td>
<td>91.6</td>
</tr>
<tr>
<td>60 to under 65</td>
<td>3,507,415</td>
<td>91.0</td>
<td>3,142,307</td>
<td>89.6</td>
</tr>
<tr>
<td>55 to under 60</td>
<td>4,121,081</td>
<td>89.3</td>
<td>3,611,486</td>
<td>87.6</td>
</tr>
<tr>
<td>50 to under 55</td>
<td>4,248,299</td>
<td>87.0</td>
<td>3,609,456</td>
<td>85.0</td>
</tr>
<tr>
<td>45 to under 50</td>
<td>3,997,490</td>
<td>82.7</td>
<td>3,199,663</td>
<td>80.0</td>
</tr>
<tr>
<td>40 to under 45</td>
<td>4,213,533</td>
<td>77.6</td>
<td>3,130,509</td>
<td>74.3</td>
</tr>
<tr>
<td>35 to under 40</td>
<td>4,592,738</td>
<td>72.9</td>
<td>3,154,920</td>
<td>68.7</td>
</tr>
<tr>
<td>30 to under 35</td>
<td>4,839,953</td>
<td>69.4</td>
<td>3,106,639</td>
<td>64.2</td>
</tr>
<tr>
<td>25 to under 30</td>
<td>4,537,928</td>
<td>67.6</td>
<td>2,786,208</td>
<td>61.4</td>
</tr>
<tr>
<td>20 to under 25</td>
<td>4,000,757</td>
<td>69.7</td>
<td>2,467,196</td>
<td>61.7</td>
</tr>
<tr>
<td>18 to under 20</td>
<td>1,381,192</td>
<td>72.5</td>
<td>879,798</td>
<td>63.7</td>
</tr>
<tr>
<td>16 to under 18</td>
<td>1,373,575</td>
<td>65.7</td>
<td>614,416</td>
<td>44.7</td>
</tr>
<tr>
<td>12 to under 16</td>
<td>2,884,526</td>
<td>51.9</td>
<td>254,320</td>
<td>8.8</td>
</tr>
<tr>
<td>Under 12</td>
<td>8,462,840</td>
<td>1.0</td>
<td>3,772</td>
<td>0.0</td>
</tr>
<tr>
<td>Total*</td>
<td>62,862,258</td>
<td>68.9</td>
<td>39,995,505</td>
<td>63.6</td>
</tr>
</tbody>
</table>
*Caution should be exercised when summing the regional or age figures as the sum of the regions will not equal the England total. This is due to individuals vaccinated in England who have a registered address in Scotland or Wales or where their address is unknown. There were also vaccinations where the individual had an unknown region and age group.

Data are provisional and subject to change following further validation checks. Any changes to historic figures will be reflected in the most recent publication. Please note that numbers published by UKHSA are for public health surveillance purposes only.

**Figure 61: Cumulative weekly COVID-19 vaccine uptake by age in England for (a) Dose 1, (b) Dose 2 and (c) Dose 3** (please note the data for this graph is shown from week 35 (week ending 05/09/2021))

(a)
Figure 62: Age-Sex pyramid for COVID-19 vaccine uptake by age in England for Dose 1

Figure 63: Age-Sex pyramid for COVID-19 vaccine uptake by age in England for Dose 2
Figure 6: Cumulative weekly COVID-19 vaccine uptake by ethnicity in those living and resident in England, aged 18 and over.

For a regional breakdown of the ethnicity data, please see the backing tables that accompany this report.

From the 6 January 2021 (week 1 2021), the JCVI advises initially prioritising delivery of the first vaccine dose to maximise the public health impact in the short term and reduce the number of preventable deaths from COVID-19. See statement.

From week 46, UKHSA have started to report on those in the population with at least three doses of COVID-19 vaccine. These figures count the number of doses a person has had in chronological order and include vaccinations given before the start of the programme where data is available to provide a more complete record of the population coverage estimates.

For UK COVID-19 daily counts of vaccinations, please see the Vaccinations’ section of the UK COVID-19 dashboard.

For COVID-19 management information on the number of COVID-19 vaccinations provided by the NHS in England, please see the COVID-19 vaccinations webpage.
International update

Global COVID-19 update

Globally, up to 18 January 2022, a total of 328,530,068 cases of COVID-19 infection have been reported worldwide, including 5,544,908 COVID-19 related deaths.

For further information on the global COVID-19 situation please see the WHO COVID-19 situation reports.

Figure 65: Global map of cumulative COVID-19 cases
Figure 66: Global map of percentage change in weekly COVID-19 case incidence rate per 100,000 population compared to the previous week
Global influenza update

Updated on 10 January 2022 (based on data up to 26 December 2021) (WHO website).

In the temperate zones of the northern hemisphere, influenza activity although still low appeared to increase in some countries with detections of mainly influenza A(H3N2) viruses and in China B-Victoria lineage viruses. In the temperate zones of the southern hemisphere, influenza activity remained low overall, although increased detections of influenza A(H3N2) were reported in temperate South America.

In North America, influenza virus detections of predominately A(H3N2) among the subtyped increased and hospitalizations are increasing but remain low overall.

In Europe, influenza activity continued to increase. Influenza A(H3N2) predominated.

In East Asia, influenza activity continued on an increasing trend in China, while influenza illness indicators and activity remained low in the rest of the subregion. Influenza B-Victoria lineage viruses predominated.

In the Caribbean and Central American countries, influenza A(H3N2) and B virus detections increased in some countries.

In tropical South America, influenza A(H3N2) detections increased overall. Severe acute respiratory infection (SARI) levels were reported at extraordinary levels in Bolivia (Plurinational State).

In tropical Africa, overall influenza activity continued on a decreasing trend with both influenza A and B detected.

In Southern Asia, influenza virus detections of predominately influenza A(H3N2) increased overall, although decreased in a few countries.

In South-East Asia, sporadic influenza detections were reported in the Philippines.

The WHO GISRS laboratories tested more than 522595 specimens during the period 6 December 2021 to 26 December 2021. A total of 27153 were positive for influenza viruses, of which 19980 (73.6%) were typed as influenza A and 7173 (26.4%) as influenza B. Of the sub-typed influenza A viruses, 352 (4.4%) were influenza A(H1N1)pdm09 and 7625 (95.6%) were influenza A(H3N2). Of the characterized B viruses, 3 (~0%) belonged to the B-Yamagata lineage and 6819 (~100%) to the B-Victoria lineage.
Influenza in Europe

Updated on 12 January 2022 (Joint ECDC-WHO Europe Influenza weekly update)

Up to week 1 of 2022, influenza activity has continued to increase since week 49, with different levels of activity across Europe and a dominant circulation of mostly influenza A(H3) viruses, although some countries have also reported influenza A(H1)pdm09 viruses.

For week 1 2022, of 37 countries and areas reporting on intensity of influenza activity, 19 reported baseline-intensity, 14 reported low-intensity and 4 reported medium-intensity (Belarus, Israel, Luxembourg and North Macedonia).

Of 37 countries and areas reporting on geographic spread of influenza viruses, 10 reported no activity, 12 reported sporadic spread, 2 reported local spread (Germany and Estonia), 5 reported regional spread (France, Kyrgyzstan, North Macedonia, Serbia and Ukraine) and 8 reported widespread activity (Albania, Belarus, Georgia, Israel, Norway, Republic of Moldova, Russian Federation and Sweden).

For week 1 2022, of 2,576 sentinel specimens tested for influenza viruses, 121 were positive. So far in the 2021 to 2022 influenza season, of 33,345 sentinel specimens tested for influenza viruses, 1,430 were positive.

Influenza in North America

For further information on influenza in the United States of America please see the Centre for Disease Control weekly influenza surveillance report.

For further information on influenza in Canada please see the Public Health Agency weekly influenza report.
Other respiratory viruses

Avian influenza

**UK update on 6 January**

The UK Health Security Agency has confirmed a case of avian influenza in a person in the South West of England.

Bird-to-human transmission of avian flu is very rare and has previously only occurred a small number of times in the UK.

The person acquired the infection from very close, regular contact with a large number of infected birds, which they kept in and around their home over a prolonged period of time.

All contacts of the individual, including those who visited the premises, have been traced and there is no evidence of onward spread of the infection to anyone else. The individual is currently well and self-isolating.

The risk to the wider public from avian flu continues to be very low.

**Latest WHO update on 13 December**

Since the previous WHO update on 1 October 2021, nine human cases of infection with avian influenza A(H5N6) viruses, four human cases of infection with avian influenza A(H9N2) viruses and one human case of infection with an influenza A(H1N2) variant virus were reported officially. Three human cases of infection with influenza A(H1N1) variant viruses, one human case of infection with an influenza A(H1N2) variant virus, one human case with influenza A(H1Nx) variant virus and one human case of infection with an influenza A(H3N2) variant virus were also detected.
Middle East respiratory syndrome coronavirus (MERS-CoV)

Latest update on 17 November 2021 (WHO website).

Up to 17 August 2021, a total of 5 cases of Middle East respiratory syndrome coronavirus, MERS-CoV, (three imported and 2 linked cases) have been confirmed in the UK through the on-going surveillance since September 2012.

On 2 February 2021, the National IHR Focal Point of the United Arab Emirates (UAE) notified WHO of one laboratory-confirmed case of MERS-CoV (WHO website).

Between 12 March and 31 July 2021, the National IHR Focal Point of Saudi Arabia reported four additional cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection, including one associated death. (WHO website).

On 17 November 2021, the National IHR Focal Point of the United Arab Emirates (UAE) notified WHO of one laboratory-confirmed case of Middle East respiratory syndrome coronavirus (MERS-CoV) in UAE (WHO website).

From September 2012 until 18 November 2021, a total of 2,583 laboratory-confirmed cases of MERS-CoV and 888 associated deaths were reported globally to WHO under the International Health Regulations (IHR 2005).

Further information on management and guidance of possible cases is available online. The latest ECDC MERS-CoV risk assessment highlights that risk of widespread transmission of MERS-CoV remains very low.
Related links

Previous national COVID-19 reports
Previous weekly influenza reports
Annual influenza reports
COVID-19 vaccine surveillance reports
Previous COVID-19 vaccine surveillance reports
PHE monitoring of the effectiveness of COVID-19 vaccination
Investigation of SARS-CoV-2 variants of concern: technical briefings

UKHSA has delegated authority, on behalf of the Secretary of State, to process Patient Confidential Data under Regulation 3 The Health Service (Control of Patient Information) Regulations 2002

Regulation 3 makes provision for the processing of patient information for the recognition, control and prevention of communicable disease and other risks to public health.
About the UK Health Security Agency

The UK Health Security Agency is an executive agency, sponsored by the Department of Health and Social Care.

© Crown copyright 2021

Prepared by: Immunisation and Vaccine Preventable Diseases Division
For queries relating to this document, please contact: Enquiries@ukhsa.gov.uk

Published: 20 January 2022

OGL

You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.