Epidemiology Modelling Review Group: consensus statement on COVID-19

Date: 15 December 2021
Introduction

The UK Health Security Agency (UKHSA) Epidemiology Modelling Review Group (EMRG) shares this consensus statement on coronavirus (COVID-19) with acknowledgment to SPI-M-O, who have developed and shared modelling methodologies and contribute model outputs to these combined estimates.

All probability statements are in line with the framework given in Annexe A.

Summary

1. UKHSA’s best estimate for R in England is between 1.0 and 1.2. R is estimated to be between 0.9 and 1.1 for Wales, 0.9 and 1.1 for Scotland, and 0.9 and 1.1 for Northern Ireland (Figure 1). These estimates are based on models¹ fit to data available up to 13 December 2021, including hospitalisations, deaths, testing, wastewater samples and longitudinal studies.

2. R lags changes in transmission by 2 to 3 weeks, due to the time required to see changes in data streams. It is an average over time, geographies, viral variants, and communities. These estimates would not be expected to fully reflect the recent rapid growth of Omicron.

3. Combined estimates² show that the incidence³ is between 59,000 and 86,000 new infections per day in England.

Incidence and prevalence

4. During its most recent week (ending 11 December), the ONS COVID-19 Infection Survey estimates⁴ that an average of 936,000 people had COVID-19 in the community in England (95% credible interval 883,900 to 989,100). The survey does not include people in care homes, hospitals or prisons. Estimates from across the 4 nations of the UK are:

- England 936,000 (95% credible interval 883,900 to 989,100)
- Scotland 67,100 (95% credible interval 54,300 to 81,600)
- Wales 56,200 (95% credible interval 44,900 to 68,800)
- Northern Ireland 37,100 (95% credible interval 28,700 to 46,800)

¹ Model estimates are required as quantities such as the Reproduction Number (R) are not directly observable. Instead, a variety of independently produced models are used to interpret the data and estimate R. The combination of models able to be included can change between weeks and therefore care should be taken when drawing week-on-week comparisons.

² Different nations and regions may use different sets of models for these estimates; hence caution should be applied in drawing direct comparisons. For example, fewer models produce estimates for Wales and Northern Ireland.

³ The number of new infections per day.

⁴ These estimates can be subject to revision as further information is available and modelled.
Growth rate and reproduction number

For small daily changes, the growth rate is approximately the proportion by which the number of infections increases or decreases per day, that is, the speed at which an epidemic is growing or shrinking. However, at very high growth rates, this relationship does not hold.\(^5\)

5. The EMRG's consensus estimates for the growth rates in the 4 nations are (90% credible interval):
 - England is between 0% to +2% per day
 - Wales is between -3% to 0% per day
 - Scotland is between -2% to +2% per day
 - Northern Ireland is between -1% to +1% per day

National estimates of growth rates are summarised in Figure 2.

6. The reproduction number (R) is the average number of secondary infections produced by a single infected individual; it is an average over time, geographies, viral variants, and communities.

7. UKHSA's best estimate for R in England is between 1.0 and 1.2. R is estimated to be between 0.9 and 1.1 for Wales, 0.9 and 1.1 for Scotland, and 0.9 and 1.1 for Northern Ireland. UKHSA's agreed national and regional R estimates are summarised in Table 1, Table 2, Figure 1, and Figure 3.

8. R is an indicator that lags changes in transmission by 2 to 3 weeks\(^6\), due to the time required for changes to be seen in data streams. Therefore, while epidemic estimates for R and other metrics such as growth rate, use the latest data available up to 13 December 2021\(^7\), the estimates reported here represent the epidemic situation as at 30 November 2021.

9. Estimates of R and growth rate would not be expected to fully reflect the recent rapid growth of Omicron VOC-21NOV-01 (B.1.1.529), due to the time required to see changes in the datastreams, and averaging across the epidemic. For Omicron specifically, UKHSA modelling is consistent with SPI-M-O groups, who estimate, in this early stage, a doubling time of around 2 days. As Omicron increases, its growth will increasingly be represented in the consensus estimates.

5 Further Technical Information on the growth rate can be found in Plus Magazine: [The growth rate of COVID-19](https://plus.maths.org/).

6 Different data-streams and different models are expected to be lagged in their estimates by different amounts when compared with the true underlying epidemiological situation. This is due to multiple lags such as reporting and delays in the infection processes.

7 Different models fit to different windows of time using different methodologies, hence not all models will fit up to this precise date.
10. Estimates of R and the growth rates per day become less useful in determining the state of the epidemic when there is a high degree of immunity to the circulating variant in the population. Particular care should be taken when interpreting these estimates.

11. In addition, changes in population immunity can impact datastreams, with alterations to the relationship between cases and health outcomes, such as hospital admissions. In some settings we currently observe cases to be rising, but hospital admissions are not. The EMRG is monitoring the data patterns, and notes here the increased uncertainty of this context.

12. It is also noted that these relationships could change again, should immune protection to any new variant in circulation differ.

13. R and growth rate estimates indicate the magnitude of growth or decay of the epidemic. However, these indicators should be considered alongside other measures of the epidemic, such as incidence\(^8\), and prevalence\(^9\). When prevalence is high, as it has been in recent weeks, when R is around or below 1, the absolute number of new cases will be high.

\(^8\) The number of individuals who develop the disease within a specified time period

\(^9\) The proportion of the population with the disease at a given point in time
Table 1. Combined estimates of R values growth rates and doubling times in the 4 nations of the UK (90% credible interval)

<table>
<thead>
<tr>
<th>Nation</th>
<th>R</th>
<th>Daily growth rate</th>
<th>Doubling time(^{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>England</td>
<td>1.0 to 1.2</td>
<td>0% to +2%</td>
<td>Flat</td>
</tr>
<tr>
<td>Wales</td>
<td>0.9 to 1.1</td>
<td>-3% to 0%</td>
<td>-27 days to flat</td>
</tr>
<tr>
<td>Scotland</td>
<td>0.9 to 1.1</td>
<td>-2% to +2%</td>
<td>Flat</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>0.9 to 1.1</td>
<td>-1% to +1%</td>
<td>Flat</td>
</tr>
</tbody>
</table>

Table 2. Combined estimates of R values growth rates and doubling times in the NHS England regions (90% credible interval)

<table>
<thead>
<tr>
<th>NHS England region</th>
<th>R</th>
<th>Daily growth rate</th>
<th>Doubling time(^{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>England</td>
<td>1.0 to 1.2</td>
<td>0% to +2%</td>
<td>Flat</td>
</tr>
<tr>
<td>London</td>
<td>1.1 to 1.3</td>
<td>+2% to +4%</td>
<td>18 to 31 days</td>
</tr>
<tr>
<td>East of England</td>
<td>1.0 to 1.2</td>
<td>0% to +2%</td>
<td>39 days to flat</td>
</tr>
<tr>
<td>Midlands</td>
<td>0.9 to 1.1</td>
<td>-1% to +1%</td>
<td>Flat</td>
</tr>
<tr>
<td>North East & Yorkshire</td>
<td>0.9 to 1.1</td>
<td>-2% to 0%</td>
<td>Flat</td>
</tr>
<tr>
<td>North West</td>
<td>0.9 to 1.1</td>
<td>-1% to +1%</td>
<td>Flat</td>
</tr>
<tr>
<td>South East</td>
<td>1.0 to 1.2</td>
<td>0% to +2%</td>
<td>Flat</td>
</tr>
<tr>
<td>South West</td>
<td>0.9 to 1.1</td>
<td>-1% to +1%</td>
<td>Flat</td>
</tr>
</tbody>
</table>

\(^{10}\) Any estimates with a halving or doubling time of more than 40 days have been described as flat. Negative values of doubling time indicate a halving time (the time expected for cases to fall by 50%). Doubling time here is calculated using the growth rate.
Annexe A. PHIA framework of language for discussing probabilities

The yardstick splits the probability scale into 7 ranges from remote chance (0 to 5% probability) to almost certain (95% to 100% probability).
Acknowledgements

UKHSA takes responsibility for this consensus statement and its contents. However, UKHSA would like to acknowledge the work of SPI-M-O and academic partners in developing methodologies and sharing these, as well as continuing to contribute model outputs to the combined estimates. These estimates include contribution from LSHTM (1, 2), Imperial College London (3, 8), University of Warwick (4, 5), University of Exeter and University of Bristol (6), Lancaster University (7), University of Manchester and University of Cambridge (9). UKHSA would also like to thank the European Bioinformatics Institute (10), University of Oxford (11, 12), University of Liverpool (13), and the Institute of Disease Modeling (14) for contributing model outputs. UKHSA also acknowledges the work developing combination estimates from Defence and Science Technology Laboratory (15). UKHSA also thanks and acknowledges the support and collaboration of the SPI-M-O Secretariat and co-Chairs, as well as colleagues across the 4 nations.
References

1. Abbott, Hellewell and others ‘Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts’. Wellcome Open Research, 8 December 2020
2. Sherratt and others. ‘National and Subnational estimates for the United Kingdom’
15. Maishman and others. ‘Statistical methods used to combine the effective reproduction number, R(t), and other related measures of COVID-19 in the UK.’ arXiv preprint, 3 March 2021
Figure 1a. Estimates of R in the 4 UK nations (90% credible intervals) as at 30 November 2021

Bars represent different independent estimates. The grey shaded areas represent the combined numerical range and the black bars are the combined range after rounding outwards to one decimal place.

England

Wales
Figure 1b. Estimates of R in the 4 UK nations (90% credible intervals) as at 30 November 2021
Bars represent different independent estimates. The grey shaded areas represent the combined numerical range and the black bars are the combined range after rounding outwards to one decimal place.

Scotland

Northern Ireland

Figure 2a. Estimates of the growth rate in the 4 UK nations, including 90% credible intervals as at 30 November 2021
Bars represent different independent estimates. The grey shaded areas represent the combined numerical range and the black bars are the combined range after rounding outwards to the nearest per cent.

England

![Graph showing growth rate estimates for England]

Wales

![Graph showing growth rate estimates for Wales]
Figure 2b. Estimates of the growth rate in the 4 UK nations, including 90% credible intervals as at 30 November 2021

Bars represent different independent estimates. The grey shaded areas represent the combined numerical range and the black bars are the combined range after rounding outwards to the nearest per cent.

Scotland

Northern Ireland
Figure 3a. Estimates of R in the NHS England regions, including 90% credible intervals as at 30 November 2021

Bars represent different independent estimates. The grey shaded areas represent the combined numerical range and the black bars are the combined range after rounding outwards to one decimal place.

London

East of England
Figure 3b. Estimates of R in the NHS England regions, including 90% credible intervals as at 30 November 2021
Bars represent different independent estimates. The grey shaded areas represent the combined numerical range and the black bars are the combined range after rounding outwards to one decimal place.

Midlands

North East and Yorkshire
Figure 3c. Estimates of R in the NHS England regions, including 90% credible intervals as at 30 November 2021
Bars represent different independent estimates. The grey shaded areas represent the combined numerical range and the black bars are the combined range after rounding outwards to one decimal place.

North West

![Graph showing R estimates for North West](image)

South East

![Graph showing R estimates for South East](image)
Figure 3d. Estimates of R in the NHS England regions, including 90% credible intervals as at 30 November 2021
Bars represent different independent estimates. The grey shaded areas represent the combined numerical range and the black bars are the combined range after rounding outwards to one decimal place.

South West
About the UK Health Security Agency

The UK Health Security Agency is an executive agency, sponsored by the Department of Health and Social Care.

© Crown copyright 2021

Published: December 2021
Gateway number: GOV-10934

You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.