

Sean Decommissioning

Comparative Assessment

DOCUMENT NUMBER:

A-400309-S00-REPT-002

Rev.	Date	Description
A04	16-09-2021	Issued for Formal Consultation

×

CONTENTS

<u>E)</u>	XECUTIVE SUMMARY	6
1	INTRODUCTION	8
	 1.1 Background 1.2 Purpose 1.3 Report Structure 1.4 Terms, Abbreviations and Acronyms 1.5 References 	8 8 9 9 10
<u>2</u>	COMPARATIVE ASSESSMENT METHODOLOGY	12
	 2.1 Overview 2.2 Scoping 2.2.1 CA Boundaries 2.2.2 Physical Attributes of Equipment 2.3 Decommissioning Groups 2.4 Decommissioning Options 2.3 Screening Phase 2.4 Preparation Phase 2.5 Evaluation Phase 2.6 Post-evaluation Clarifications 2.6.1 30" Line Rock Cover 2.6.2 Additional Stakeholder Engagement 2.6.3 Preservation for Re-use (PL311) 	12 13 14 14 14 15 18 18 20 20 20 20
<u>3</u>	SEAN AREA DECOMMISSIONING GROUPS	21
	3.1 Decommissioning Groups for Full CA	21
<u>4</u>	<u>GROUP 1 – 30" EXPORT PIPELINE SEAN PP TO BACTON TERMINAL</u>	22
	 4.1 Group 1 Characteristics 4.2 Group 1 Decommissioning Options & Screening Outcome 4.3 Group 1 Decommissioning Options for Evaluation 4.4 Group 1 Evaluation Summary 4.5 Group 1 Sensitivities 4.5.1 Legacy Risk 4.5.2 Legacy Environmental Impact 4.5.3 Technical Risk 	22 23 25 26 27 28 29 30
<u>5</u>	<u>GROUP 6 – 20" EXPORT PIPELINE SEAN RD TO SEAN PD</u>	31
	 5.1 Group 6 Characteristics 5.2 Group 6 Decommissioning Options & Screening Outcome 5.3 Group 6 Decommissioning Options for Evaluation 5.4 Group 6 Evaluation Summary 	31 31 32 33

<u>6</u>	<u>GROUP 7 – POWER CABLE SEAN RD TO SEAN PD</u>	34
	 6.1 Group 7 Characteristics 6.2 Group 7 Decommissioning Options & Screening Outcome 6.3 Group 7 Decommissioning Options for Evaluation 6.4 Group 7 Evaluation Summary 	34 34 36 37
7	WEIGHTING SENSITIVITIES	38
8	RECOMMENDATIONS	41
	 8.1 Group 1 Recommendations 8.1.1 Safety 8.1.2 Environment 8.1.3 Technical 8.1.4 Societal 8.1.5 Economic 8.2 Group 6 Recommendations 8.2.1 Safety 8.2.2 Environment 8.2.3 Technical 8.2.4 Societal 8.2.5 Economic 8.3 Group 7 Recommendations 8.3.1 Safety 8.3.2 Environment 8.3.3 Technical 8.3.4 Societal 8.3.5 Economic 	41 41 42 42 43 43 45 45 45 45 45 45 46 46 46 47 47 47 47 47
<u>A</u>	PPENDIX A EVALUATION METHODOLOGY	49
	 Appendix A.1 CA Evaluation Methodology Appendix A.2 Differentiating Criteria & Approach to Assessment Appendix A.3 Differentiator Weighting Appendix A.4 Option Attributes Appendix A.5 Option Pair-Wise Comparison Appendix A.6 Visual Output and Sensitivities 	49 49 54 54 54 56
<u>A</u>	PPENDIX B STAKEHOLDER CA WORKSHOP MINUTES	57
A	PPENDIX C GROUP 1 – DETAILED EVALUATION RESULTS	67
∆1	Appendix C.1Group 1 Attributes TableAppendix C.2Group 1 Pairwise Comparison Matrices - SafetyAppendix C.3Group 1 Pairwise Comparison Matrices - EnvironmentAppendix C.4Group 1 Pairwise Comparison Matrices - TechnicalAppendix C.5Group 1 Pairwise Comparison Matrices - SocietalAppendix C.6Group 1 Pairwise Comparison Matrices - SocietalAppendix C.7Group 1 Pairwise Comparison Matrices - EconomicAppendix C.7Group 1 Pairwise Comparison Matrices - EconomicAppendix C.7Group 1 Results Charts	67 72 73 74 74 74 75 76
/ 1		10

Appendix D.1 Appendix D.2 Appendix D.3 Appendix D.4 Appendix D.5 Appendix D.6 Appendix D.7	Group 6 Pairwise Comparison Matrices – Technical Group 6 Pairwise Comparison Matrices - Societal Group 6 Pairwise Comparison Matrices - Economic	76 80 81 82 82 82 83
APPENDIX E	GROUP 7 – DETAILED EVALUATION RESULTS	84
Appendix E.1 Appendix E.2 Appendix E.3 Appendix E.4 Appendix E.5 Appendix E.6 Appendix E.7	Group 7 Attributes Table Group 7 Pairwise Comparison Matrices - Safety Group 7 Pairwise Comparison Matrices - Environment Group 7 Pairwise Comparison Matrices - Technical Group 7 Pairwise Comparison Matrices - Societal Group 7 Pairwise Comparison Matrices - Economic Group 7 Results Charts	84 87 88 89 89 89 89
APPENDIX F	DECOMMISSIONING METHODOLGIES & DATASHEETS	91
Appendix F.1 Appendix F.2 Appendix F.3 Appendix F.4 Appendix F.5 Appendix F.6 Appendix F.7 Appendix F.8 Appendix F.9	Group 1 – Option 2a Group 1 – Option 4a Group 1 – Option 4c Group 1 – Option 5 Group 6 – Option 2a Group 6 – Option 5 Group 7 – Option 5 Estimate Basis	91 93 95 97 99 101 103 105 107

EXECUTIVE SUMMARY

ONE-Dyas have conducted a Comparative Assessment (CA) for the decommissioning of the subsea infrastructure associated with the Sean field. The following steps from the Oil and Gas UK CA Guidelines have been completed:

This CA report for the Sean field presents the methodology, decisions taken, the preparation works carried out, and the outcomes (recommendations) from the internal and external (with stakeholders) workshops.

The CA for the Sean field subsea infrastructure has focussed on three decommissioning groups - groups 1, 6 and 7, as described in the table below. All other decommissioning groups of the Sean Subsea Infrastructure were confirmed at the CA Scoping and Screening stage to be fully removed from the field.

Post-evaluation Note: The evaluation workshop that was conducted with stakeholders in August 2020 presented the description and as-built / burial status of PL311 (30" Export Pipeline) as understood and believed to be accurate at that time. After the Evaluation was completed, the as-built status of the line from KP 15.5 to KP 54 (surface laid and rock covered) and KP 54 to KP 106 (trenched and rock covered) was found to be incorrect. The as-built status of PL311 is surface laid with no rock cover (KP 15.5 to KP 54) and trenched with no rock cover (KP 54 to KP 106). Given this change in understanding of PL311 post-evaluation, consideration was given to the impact of this change on the options screened out during the screening phase of the CA and the Evaluation conducted. Notes have been added to the Screening Outcomes obtained against the originally understood status of PL311 (see Section 4.2). Those notes show that the Screening conducted and thus the options retained for Evaluation remain valid. Equally, the Evaluation conducted was reviewed in light of the change in understanding of PL311 is provided in Table 4.1 and detailed discussion of the impact of this change on the evaluation of the change in understanding of the as-built status to PL311 is provided in Section 8.1. In summary, this review has shown that the Evaluation conducted and the outcome obtained remains valid.

The outcome of the CA process has made the following recommendations:

Grp	Title	Decommissioning Approach	
1	PL311 30" Export Pipeline	Option 5 – Remove Ends and Remediate Snag Risk ¹	
	Sean PP to Bacton Terminal,	 Pipeline will be disconnected 	
	Partially Surface Laid & Partially Trenched with	 Removal and recovery of surface laid section out with existing trench / rock cover 	
	natural backfill	 Rock placement to remediate snag risk from cut end 	
		 Rock placement over areas of significant spans (approaching FishSafe specification) 	
		Note: The definition of surface laid section of the 30" Export Pipeline at the platform end changed due to the as-built status change. The surface laid section of this line at the platform end is now limited to the short section out with the trench and not currently rock covered.	
6	PL310 20" Export Pipeline	Option 5 – Remove Ends and Remediate Snag Risk	
	Sean RD to Sean PD, Trenched & Buried	 Line will be disconnected 	

¹ Offshore end of PL311 will be capped and the pipeline will be left flooded with inhibited seawater.

Grp	Title	Decommissioning Approach
7	Power Cable Sean RD to Sean PD, Trenched & Buried	 Removal and recovery of surface laid sections out with existing trench Rock placement to remediate snag risk from cut ends Option 2c - Reverse reel with de-burial Cable will be disconnected Line will be de-buried using MFE prior to removal Recover by reverse reel
		Note: De-burial was included for the Power Cable due to concerns regarding the integrity of the line for reverse reeling through existing cover. Efforts will be made to remove the line without prior de-burial. Where de- burial is required, alternative methods to MFE may be used. OPRED will be advised if there are any issues with the reverse reeling option and de- burial will be discussed prior to execution.
8	Spools	Full Removal
9	Risers	Full Removal
10	Jumpers / Umbilical	Full Removal
11	Structures (Installations)	Full Removal
12	Protection / Stabilisation	Full Removal ²

The decisions were reached on completion of an appropriate amount of preparatory study work, with clear decision outcomes.

² Any mattresses associated with third part infrastructure shall be decommissioned in situ

1 INTRODUCTION

1.1 Background

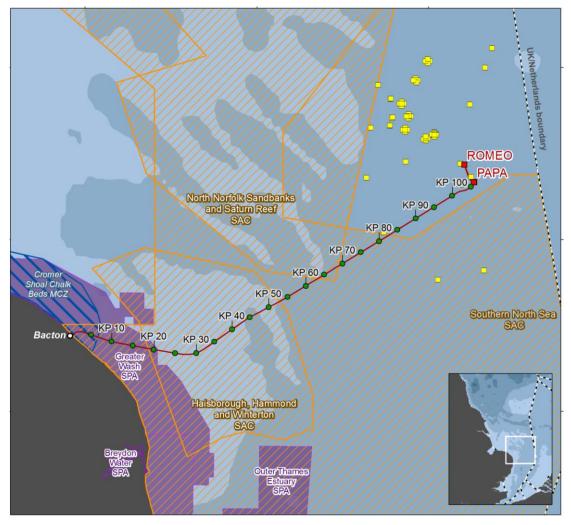


Figure 1.1: Sean Field Locations

The Sean field in the Southern North Sea consists of the Sean Papa, consisting of the bridge linked PP and PD platforms, and Sean Romeo, consisting of the RD platform. Sean Romeo, RD, exports via Sean Papa, PD, and an intra-field 20" Concrete Coated Rigid Export Pipeline (PL310). There is also an intra field Power Cable.

Field production is exported from Sean Papa, PP, to Bacton via a 30" Concrete Coated Rigid Export Pipeline (PL311). There is also a Subsea Safety Isolation Valve (SSIV) structure and a Mechanical Tee structure.

1.2 Purpose

The purpose of this document is to present a Comparative Assessment (CA) for the Subsea Infrastructure of the Sean Field in support of the Decommissioning Programme (DP). It is produced in satisfaction of the requirement to perform a CA for any potential derogation application for subsea equipment as detailed in the OGUK Decommissioning CA Guidelines ref. [1].

It describes the field infrastructure addressed, the decommissioning options considered, the CA methodology conducted and the recommendations made during the CA process.

1.3 Report Structure

This CA Report contains the following:

- > Section 1 An introduction to the document and project, including acronyms and references.
- > Section 2 An overview of the CA methodology and definition of the scoping and boundaries of the CA.
- > Section 3 The decommissioning groups identified and the initial decommissioning approach.
- > Section 4 The CA outcome obtained for Group 1 30" Export Pipeline Sean PP to Bacton Terminal.
- > Section 5 The CA outcome obtained for Group 6 20" Export Pipeline Sean RD to Sean PD.
- > Section 6 The CA outcome obtained for Group 7 Power Cable Sean RD to Sean PD.
- > Appendix A Evaluation Methodology.
- > Appendix B Stakeholder CA Workshop Minutes.
- > Appendix C Group 1 Detailed Evaluation Results.
- > Appendix D Group 6 Detailed Evaluation Results.
- > Appendix E Group 7 Detailed Evaluation Results
- > Appendix F Decommissioning Methodologies and Datasheets all groups

1.4 Terms, Abbreviations and Acronyms

AHP	Analytical Hierarchy Process
BAT	Best Available Technology
BEIS	Department for Business, Energy and Industrial Strategy
BEP	Best Environmental Practice
CA	Comparative Assessment
CO ₂	Carbon Dioxide
CP	Cathodic Protection
CSV	Construction Support Vessel
DoB	Depth of Burial
DP	Decommissioning Programme
ESDV	Emergency Shut-Down Valve
FLTC	Fishing Legacy Trust Company
HSE	Health and Safety Executive
JNCC	Joint Nature Conservation Committee
KP	Kilometre Point
MCDA	Multi-Criteria Decision Analysis
MCZ	Marine Conservation Zone
MEI	Major Environmental Incident
MFE	Mass Flow Excavator
MMO	Marine Management Organisation
MPA	Marine Protected Area

MS	Much Stronger
MW	Much Weaker
NE	Natural England
NFFO	National Federation of Fishermen's Organisations
NNDC	North Norfolk District Council
NORM	Naturally Occurring Radioactive Material
NOx	Nitrogen Oxide
OD	Outside Diameter
OGA	Oil & Gas Authority
OGUK	Oil & Gas UK
OIW	Oil in Water
OPRED	Offshore Petroleum Regulator for Environment & Decommissioning
PLL	Potential for Loss of Life
POB	Personnel on Board
S	Stronger
SAC	Special Area of Conservation
SNS	Southern North Sea
SOx	Sulphur Oxide
SPA	Special Protection Area
SRB	Sulphate Reducing Bacteria
SSIV	Subsea Safety Isolation Valve
SUTU	Subsea Umbilical Termination Unit
ТВА	To Be Advised
ToC	Top of Cable
ToP	Top of Pipe
τυτυ	Topside Umbilical Termination Unit
VMS	Very Much Stronger
VMW	Very Much Weaker
W	Weaker

1.5 References

1.	OGUK Decommissioning CA Guidelines	OGUK – Guidelines for Comparative Assessment in Decommissioning Programmes, Dated: October 2015, ISBN: 1 903 004 55 1, Issue: 1.
2.	BEIS Guidance Notes	BEIS, Guidance Notes: Decommissioning of Offshore Oil and Gas Installations and Pipelines, Nov 2018.
3.	Asset & Waste Inventory	Sean Field Decommissioning – Asset & Waste Inventory, A-400309- S00-REPT-005, Rev.: TBA, Dated: TBA
4.	CA Screening Report	Sean Field Decommissioning – Screening Report, Doc. No.: A-400309- S00-REPT-001, Rev.: A01, Dated 06/07/2020.

- 5. Risk Analysis of Decommissioning Activities
- 6. Analytical Hierarchy Process
- 7. OGUK North Sea Pipeline Decommissioning Guidelines
- 8. IP 2000

Safetec, Joint Industry Project Report "Risk Analysis of Decommissioning Activities (http://www.hse.gov.uk/research/misc/safetec.pdf), 2005

T.L. Saaty, The Analytical Hierarchy Process, 1980

Decommissioning of Pipelines in the North Sea Region – 2013, Issued by Oil & Gas UK

Guidelines for the Calculations of estimates of energy use and gaseous emissions in the decommissioning of offshore structures.

2 COMPARATIVE ASSESSMENT METHODOLOGY

2.1 Overview

Comparative Assessment is a process by which decisions are made on the most appropriate approach to decommissioning. As such it is a core part of the overall decommissioning planning process being undertaken by ONE-Dyas for the Sean Field Decommissioning Project (Subsea Infrastructure).

The OGUK Decommissioning CA Guidelines ref. [1] were prepared in 2015 by Oil and Gas UK, where seven steps to the CA process were recommended. Table 2.1 introduces each of these steps, along with a status and commentary to demonstrate the current position.

Title	Scope	Status	Commentary
Scoping	Decide on appropriate CA method, confirm criteria, identify boundaries of CA (physical and phase).	~	CA methodology and criteria established for screening to ensure appropriate evaluation phase. Detailed in Section 2.2 and Appendix A.
Screening	Consider alternative uses and deselect unfeasible options.	~	Screening workshops were held in Q2 2020 the screening workshops were attended by members of the ONE-Dyas project team. Screening outcomes are documented in CA Screening Report [4]
Preparation	Undertake technical, safety, environmental and other appropriate studies. Undertake stakeholder engagement.	~	Studies identified during screening phase undertaken to inform the evaluation of the remaining options. Detailed in Section 2.4.
Evaluation	Evaluate the options using the chosen evaluation methodology.	~	Internal workshops held Q2 2020 and Stakeholder Workshop on 26/08/2020. Evaluation methodology described in Section 2.5 and outcomes detailed in Section 4, 5 and 6. More detail can be found in Appendix A.
Recommendation	Document the recommendation in the form of narrative supported by charts explaining key trade- offs.	~	The emerging recommendations for the decommissioning options selected are as identified during the Stakeholder Workshop and as detailed in the CA Report (this document). Recommendations can be found in Section 8.
Review	Review the recommendation with internal and/or external stakeholders.	\checkmark	The Stakeholder CA Review Workshop was held on 26 th August 2020 and the minutes can be found in Appendix B.
Submit	Submit to OPRED as part of/alongside Decommissioning Programme.	~	Submitted Q4 2020.

Table 2.1: CA Process Overview and Status

×

2.2 Scoping

The scoping phase of the CA process addresses the following elements:

- > Boundaries for the CA;
- > Physical attributes of equipment;
- > Decommissioning options.

These are addressed in the following sub-sections.

2.2.1 CA Boundaries

The applicable boundaries for the CA are as follows:

- > The following will be complete prior to the Sean subsea infrastructure decommissioning scope commencing:
 - All wells will have been fully plugged and abandoned;
 - All pipelines will have been flushed and cleaned prior to disconnection;
 - The pipelines will be cut / disconnected at the platforms;
 - The cable will be cut / disconnected at the platforms;
- > Sean Field subsea infrastructure is as follows:
 - All subsea structures (installations) including their foundations;
 - All rigid subsea flowlines;
 - All rigid risers;
 - All control and chemical jumpers;
 - All spools;
 - All umbilicals / cables;
 - All mattresses and deposits.
- > The physical boundaries of the infrastructure are:
 - Export trunk line, PL311, from low water mark at KP 0.6 to the PP Platform ESDV;
 - The onshore section of the trunk line PL311 from the low water mark, KP 0.6 to the Bacton Terminal is out with the scope of this CA.
 - As the PL311 pipeline riser is integrated to the PP Platform jacket it shall be removed with the jacket and for practical purposes the pipeline boundary shall be at the riser seabed tie-in flange.
 - Export pipeline, PL310, from RD Platform ESDV to PD Platform ESDV;
 - As the PL310 pipeline risers are integrated to the RD and PD Platform jackets they shall be removed with the jackets and for practical purposes the pipeline boundary shall be at the riser seabed tie-in flanges.
 - Power cable from PP Platform junction box to RD Platform junction box
 - SSIV umbilical from PP Platform TUTU to SSIV SUTU

2.2.2 Physical Attributes of Equipment

All equipment within the scope of the Sean Field Decommissioning Project (subsea infrastructure) is listed along with the physical attributes that define the equipment. Attributes considered include the following:

- > Structures:
 - Type;
 - Weight / size / shape;
 - General arrangement;
 - Installation method / foundation type;
 - Integrity issues.
- > Pipelines / Flowlines / Spools:
 - Pipeline number;
 - Type (rigid / flexible);
 - Service (gas / oil / water);
 - Material / diameter / wall thickness / coatings / length;
 - Seabed configuration (trenched / buried / surface laid);
 - Details of crossings / mattresses;
 - As-left cleanliness / ability to clean lines;
 - Integrity issues.
- > Umbilicals / Cables / Jumpers:
 - Material / diameter / wall thickness / coatings / length;
 - Seabed configuration (trenched / buried / surface laid);
 - Details of crossings / mattresses;
 - As-left cleanliness / ability to clean lines / chemicals used;
 - Integrity issues.

All equipment associated with Sean Field Decommissioning Project (subsea infrastructure) along with their physical attributes are listed in full in the Asset & Waste Inventory ref. [3] with a summary of the equipment included in Table 3.1 herein.

2.2.3 Decommissioning Groups

Once the equipment to be decommissioned and their attributes are captured, it is desirable to group similar equipment together. This has the benefit that many items can be considered as a single group and can reduce the number of items for consideration from potentially hundreds, down to a few, thus streamlining the process. For the Sean Decommissioning Project (Subsea Infrastructure) the decommissioning groups, along with a list of each individual item that makes up the population of those groups, is detailed in full within the Asset & Waste Inventory ref. [3]. A brief summary of the decommissioning groups identified is included in Table 3.1 herein.

2.2.4 Decommissioning Options

With the decommissioning groups established, all potential decommissioning options for each of the groups are identified. The base case for all groups is full removal as per the BEIS Guidance Notes ref. [2] and it is only those decommissioning groups where default full removal is not considered to be the clear recommended solution, that alternative decommissioning options are considered.

Alongside full removal options, the following partial removal scenarios should be considered as specified in the BEIS Guidance Notes ref. [2] and OGUK North Sea Pipeline Decommissioning Guidelines ref. [7].

- > Re-Use.
- > Full Removal:
 - Cut and Lift Cut pipe into small sections and recover;
 - Reverse Installation without de-burial Recover pipe using reverse s-lay or reverse reeling;
 - Reverse Installation with de-burial Recover pipe using reverse s-lay or reverse reeling.
- > Leave In-Situ with Major Intervention:
 - Rock cover entire length including surface laid sections out with trench / cover;
 - Re-Trench and bury entire length including surface laid sections out with trench / cover.
- > Leave In-Situ with Minor Intervention:
 - Rock cover areas of spans, exposure and shallow burial. Remove surface laid sections out with trench / cover;
 - Trench and bury areas of spans, exposure and shallow burial. Remove surface laid sections out with trench / cover;
 - Cut and Lift areas of spans, exposure and shallow burial. Remove surface laid sections out with trench / cover;
 - Accelerated Decomposition of lines using reverse cathodic protection / chemicals / etc.
- > Leave In-Situ and Minimal Intervention:
 - Cut and Lift surface laid sections out with trench / cover only.
- > Leave In-Situ with on-going monitoring.

Table 3.1 lists the decommissioning groups and identifies those which were judged to be appropriate for decommissioning by full removal and those where full removal was not considered the clear recommended solution. Of those groups where full removal was not considered the clear recommended solution, the proposed decommissioning options for each of those groups are detailed as follows:

- > Section 4.2 for Group 1 PL311, 30" Export Pipeline Sean PP to Bacton Terminal;
- > Section 5.2 for Group 6 PL310, 20" Export Pipeline Sean RD to Sean PD;
- > Section 6.2 for Group 7 Power Cable Sean RD to Sean PD.

2.3 Screening Phase

The screening phase of the comparative assessment was carried out during a series of workshops held in Q2 2020. The methodology adopted, workshop attendance and outcomes obtained are detailed fully in the CA Screening Report ref. [4]. The methodology is briefly summarised below.

- > Identify decommissioning groups for full removal;
- > Review proposed decommissioning options for each remaining group;
- > Assess decommissioning options and record assessment and outcome in screening worksheets;
- > Record actions required to support retained decommissioning options;
- > Compile Screening Report.

The decommissioning options for the remaining groups were assessed against the primary assessment criteria suggested in the OGUK Decommissioning CA Guidelines ref. [1]. These are:

- > Safety;
- > Environmental;
- > Technical;
- > Societal;
- > Economic.

The assessment was performed using a coarse Red / Amber / Green method, as recommended in the OGUK Decommissioning CA Guidelines ref. [1]. An additional category of 'showstopper', coloured dark grey, was used. These categories are described Table 2.2.

Category	Description	
Attractive	The option is considered attractive i.e. it has positive attributes in terms of the criterion being assessed.	
Acceptable	The option is considered acceptable i.e. its attributes are not positive or negative in terms of the criterion being assessed.	
Unattractive	The option is considered unattractive i.e. it has negative attributes in terms of the criterion being assessed.	
Showstopper	The option is considered unacceptable. Should an option be assessed as unacceptable against any of the criteria, no further assessment is required.	

Table	22.	Screening	Assessment	Categories
1 0010	6	OCICOUNTY	Assessment	outegoines

The cumulative assessment for each decommissioning option was then captured based on some basic ground rules. These are:

- > Three or more criteria assessed as red resulted in the option being screened out (red).
- For similar full removal options, the likely least onerous option was retained (green) with any more onerous option considered as a sub-set of the less onerous option (light grey). Should the easiest full removal option be selected, the manner in which the removal would be conducted would be agreed with the removal contractor during execution to maintain flexibility.
- For similar leave in-situ options, the most onerous option was retained (green) with any less onerous options considered as a sub-set of the more onerous option (light grey). This approach promotes the principle of not unduly 'burdening' the retained full removal option.
- > This approach was considered appropriate to ensure that the best-case full removal options were compared to the most onerous leave in-situ options. This ensures, during the evaluation phase, that the assessment is not skewed such that leave in-situ options are selected over full removal options.

The outcomes for each group are summarised in Table 4.3, Table 5.2 and Table 6.2.

2.4 Preparation Phase

During the preparation phase, detailed studies / analyses are conducted to provide information to support the Evaluation phase of the Comparative Assessment. The detailed studies / analyses that may be required are often identified early in the CA process. These studies / analyses are then supplemented by additional studies / analyses identified during the screening phase of the CA.

The studies / analyses conducted during the preparation phase of the CA process are as follows:

 Integrity Assessment 	A high-level assessment of the residual integrity of the lines in order to screen the reverse reel options in or out.
 Concrete Coating Assessment 	A high-level assessment of the technical challenges associated with the uncertain integrity of the concrete coating of the 30" and 20" lines.
 Cable Strength Assessment 	A high-level assessment of whether the 1" Cable can be reverse reeled with or without deburial.
> Burial Status Review	Review of historical survey data to understand current and historical burial status of lines.
> Method Statements	Detailed method statements were developed for options carried forward to ascertain the activities and resources required to deliver the option.
 Emissions Assessment 	Fuel consumption and atmospheric emissions assessment performed for options carried forward based upon activities and resources identified in method statements.
> Environmental Impact Review	Environmental impact reviews were conducted for options carried forward in areas of planned discharges, unplanned discharges and seabed disturbance based on activities and resources identified in method statements. Underwater noise impact was based on a qualitative assessment of the vessels and activities employed as detailed in the method statements.

The findings of the studies / analyses are gathered in preparation for the evaluation phase of the CA. The key information obtained from these studies / analyses, used during the evaluation phase are provided in the attributes tables, included in Appendix C, Appendix D and Appendix E.

2.5 Evaluation Phase

The evaluation phase of the comparative assessment is where the remaining decommissioning options for each group are evaluated against each other. This evaluation process is conducted according to the OGUK Decommissioning CA Guidelines ref. [1] and employs the data obtained during the preparation phase as summarised in the attributes tables, included in Appendix C and Appendix D.

The evaluation phase was performed during several evaluation workshops where the decommissioning project team and field partners were represented. This enabled the supporting information for each of the decommissioning groups and associated decommissioning options to be interrogated and increased in maturity and definition.

Once the evaluation of the remaining decommissioning groups and options was ready, a CA Workshop was convened with external stakeholders; the CA process to date was described and the evaluation of the remaining options was reviewed. This CA Stakeholder Workshop enabled the invited stakeholders to gain familiarity with the evaluation methodology and the information the generated through the supporting studies and analyses. It also allowed the evaluation to be challenged in key areas and, at the culmination of the workshop, outcomes for each of the decommissioning groups were validated.

Sean Field Decom EA, CA and DP – Sean Decommissioning Comparative Assessment Assignment Number: A400309-S00 Document Number: A-400309-S00-REPT-002

The CA Stakeholder Workshop was held via VC / Teams Wednesday August 26^{th} , 2020. The attendees were as detailed in Table 2.3.

Name	Company	Role		
Jason Golder	Crown Estates	Senior Asset Manager		
Abdulgani Oseni	Crown Estates	Pipeline Inspector		
Bill Chilton	Health and Safety Executive (HSE)	Decommissioning		
Hannah Hood	Joint Nature Conservation Council (JNCC)	Offshore Industry Adviser		
Lindsey Mullan	Marine Management	Marine Licensing Case Manager		
Luella Williamson	Organisation (MMO)	Marine Licensing Case Officer		
Mark Johnston	Natural England (NE)	Senior Marine Specialist – Estuaries, Ports and Marine Industries		
Rob Goodliffe	North Norfolk District Council (NNDC)	Coastal Manager		
Jade Jones Offshore Petroleum		Assistant Decommissioning Manager		
Ruth Ledingham	Regulator for Environment	Senior Financial Governance Manager		
Dr Sarah Dacre	and Decommissioning (OPRED)	Senior Environmental Manager		
Sam Pattie		Administrative Operations		
Ceriel Haesen		Asset Manager		
Dirk Drijver		HSEQ Manager		
Jan Willem in't Anker		Construction / Engineering Manager		
Linda Murray	ONE-Dyas	Environmental Advisor		
Martijn Hoefsloot		Senior Production Superintendent		
Maurits Waaijenberg		Senior Facility Engineer		
Claire Weller ¹		Principal Environmental Consultant		
Gareth Jones		Decommissioning Manager		
Jeff McCleary	Xodus	Consultant Engineer - Subsea & Decommissioning		
John Foreman		CA Facilitator		
Phil Roberts ¹		Principal Consultant – Process & Facilities		

Table 2.3: Stakeholder Workshop Attendees & Roles

Note 1: Claire Weller and Phil Roberts attended as observers only and on a part-time basis.

2.6 Post-evaluation Clarifications

2.6.1 30" Line Rock Cover

The as-built status of the 30" Export Pipeline from Sean PP to Bacton Terminal (Group 1) used during the Evaluation phase was as follows:

- > KP 15.5 to KP 54 (surface laid and rock covered)
- > KP 54 to KP 106 (trenched and rock covered)

It was discovered, post-evaluation, that the as-built status of the 30" Export Pipeline was as follows:

- > KP 15.5 to KP 54 (surface laid no rock cover)
- > KP 54 to KP 106 (trenched no rock cover)

This CA Report provides a record of the evaluation conducted. As such, the definition and findings detailed in Section 4 are provided on the basis of the as-built status of the 30" Export Pipeline as understood at the time of the CA Stakeholder Workshop.

Post-evaluation, each of the judgements have been checked for validity given the altered as-built status where there is no rock cover from KP 15.5 to KP 106. Notes have been added in Section 8.1 discussing any adjustments in the judgements as appropriate.

It is noted that the change in as-built status of the 30" Export Pipeline has not resulted in a change to the emerging recommendation that the decommissioning option for the 30" Export Pipeline should be Option 5 - Remove Ends and Remediate Snag Risk.

2.6.2 Additional Stakeholder Engagement

The representative of the fishing industry (Ian Rowe, National Federation of Fisherman's Organisations (NFFO)) was unable to attend the CA Stakeholder Workshop due to a last minute, critical operational issue.

ONE-Dyas engaged with NFFO after the workshop, sharing the Emerging Recommendations and the minutes (included in Appendix B) of the workshop. The Emerging Recommendations were also shared with the North Norfolk Fisherman's Association.

Additionally, there was post-evaluation engagement with OPRED regarding the matter of rock cover removal under the full removal option for the 30" Export Pipeline. It was agreed at that engagement session that the current guidance on rock recovery has not changed and that the recovery of rock would only need to be considered if this is intrinsic to the pipeline removal methodology. Given the full removal case considers displacement of rock using remote Mass Flow Tooling the recovery of rock is not proposed under the full removal option.

2.6.3 Preservation for Re-use (PL311)

During the review of the selected decommissioning option for the 30" Export Pipeline from Sean PP to Bacton Terminal (Group 1 - PL311) the potential for re-use options prompted further discussion. While re-use options for this line were considered during the Screening phase, with no viable re-use options being identified, it is recognised that future re-use options may present themselves. As such, during the execution of the selected decommissioning option for Group 1, where the line end at the platform will be removed to the trench transition and the remaining line left in-situ, the remaining line shall be filled with inhibited seawater post flushing and cleaning operations to manage internal corrosion rates going forward. This will require the installation of a cap at the cut end of the pipeline.

This approach will ensure that the selected decommissioning option does not preclude the consideration of future re-use options. Post decommissioning monitoring will be focused on pipeline burial status in order to maintain safe seabed access by other seabed users.

3 SEAN AREA DECOMMISSIONING GROUPS

Table 3.1 lists all decommissioning groups identified for the Sean Subsea Infrastructure. Early CA scoping and screening activities, detailed in the CA Screening Report ref. [4], identified the decommissioning groups where full removal is the recommended decommissioning approach (highlighted in grey).

The remaining groups are subjected to the remainder of the CA process to identify the recommended decommissioning option. These outcomes are also captured in Table 3.1.

Post-screening update: during screening, five separate groups were identified for the 30" Export Pipeline, aligned with the varying burial statuses of the pipeline. Post-screening, it was agreed that these 5 groups should be consolidated into a single group for the 30" Export pipeline for the remainder of the CA process.

Grp	Title	Description	Decommissioning Approach
1	PL311 – 30" Export Pipeline Sean PP to Bacton Terminal	A single 30" concrete coated rigid export pipeline from Sean PP to Bacton Terminal. 106km in length.	Subject to full Comparative Assessment
6	PL310 – 20" Export Pipeline Sean RD to Sean PD	A single 20" concrete coated rigid pipeline from Sean RD to Sean PD. 4.77km in length.	Subject to full Comparative Assessment
7	Power Cable Sean RD to Sean PD	A single power cable from Sean RD to Sean PD. 4.77km in length.	Subject to full Comparative Assessment
8	Spools	All spools associated with the tie-in of pipelines to structures / risers.	Full Removal
9	Risers	Risers at platforms associated with pipelines.	Full Removal
10	Jumpers / Umbilical	All jumpers / umbilical associated with the power cable and the SSIV structure.	Full Removal
11	Structures (Installations)	All subsea structures (installations).	Full Removal
12	Protection / Stabilisation	All protection, support and stabilisation materials such as mattresses ³ and grout bags.	Full Removal

Table 3.1: Decommissioning Groups and Initial Decommissioning Recommendation

3.1 Decommissioning Groups for Full CA

In summary, the decommissioning groups for the Sean Area subsea Infrastructure where full removal was not considered to be the clear recommended solution and that are to be subjected to the full CA process are:

- > Group 1 30" Export Pipeline Sean PP to Bacton Terminal
- > Group 6 20" Export Pipeline Sean RD to Sean PD
- > Group 7 Power Cable Sean RD to Sean PD

³ Any mattresses associated with third part infrastructure shall be decommissioned in situ

4 GROUP 1 – 30" EXPORT PIPELINE SEAN PP TO BACTON TERMINAL

4.1 Group 1 Characteristics

There is a single item in Group 1. The key characteristics of this item are listed in Table 4.1. The understanding of the as-built status of PL311 changed, due to additional information becoming available after the evaluation phase was complete. The description of PL311 provided in Table 4.1 provides both the understanding of PL31 during the evaluation conducted and the revised understanding of PL311 post-evaluation.

ID	Description (Evaluation)	Description (Post-evaluation)	OD (inches)	Length (km)
PL311	 106km 30" Concrete Coated Rigid Pipeline, various burial statuses: KP0.6 to KP1.0, Near-shore and in tidal zone - within Cromar Shoal Chalk Beds MCZ, Greater Wash SPA, Southern North Sea SAC - surface laid and un-trenched, no free spans were recorded here during the 2020 survey. KP1.0 to KP8.0 - within Cromar Shoal Chalk Beds MCZ, Greater Wash SPA, Southern North Sea SAC - trenched and naturally backfilled, 72 separate exposures and no free spans were recorded here during the 2020 survey. KP8.0 to KP15.5 - within Greater Wash SPA, Southern North Sea SAC - surface laid and un-trenched. 15 free spans were recorded here during the 2020 survey. KP15.5 to KP54 - within Greater Wash SPA, Southern North Sea SAC, Haisborough, Hammond & Winterton SAC - surface laid and rock covered, 687 exposures and 56 free spans were identified here during the 2020 survey. KP54 to KP106 - within Southern North Sea SAC for initial section and a short section within the Northern Norfolk Sandbanks and Saturn Reef SAC – trenched and rock covered, 159 exposures and 1 free span were identified here during the 2020 survey. 	 106km 30" Concrete Coated Rigid Pipeline, various burial statuses: KP0.6 to KP1.0 – as per evaluation KP1.0 to KP8.0 – as per evaluation KP8.0 to KP15.5 – as per evaluation KP15.5 to KP54 - within Greater Wash SPA, Southern North Sea SAC, Haisborough, Harmond & Winterton SAC - surface laid, 687 exposures and 56 free spans were identified here during the 2020 survey. KP54 to KP106 - within Southern North Sea SAC for initial section and a short section within the Northern Norfolk Sandbanks and Saturn Reef SAC – trenched and naturally backfilled, 159 exposures and 1 free span were identified here during the 2020 survey. 	30"	106

Table 4.1: Group 1 Items

There are known six spans approaching or exceeding the FishSafe criteria (in excess of 0.8 m in height from the top of the pipeline and \geq 10 m in length which present a potential hazard to fishing activity. These are detailed in Table 4.2 and are all located between KP 14.0 and KP 17.0. These are intended to be addressed as part of the 2021 span remediation campaign.

Span	Span length (m)	Span height (m)	
1	37	0.9	
2	15	0.8	
3	19	1.3	
4	40	0.9	
5	21	0.9	
6	21	0.8	

Table 4.2: PL311 FishSafe Spans

4.2 Group 1 Decommissioning Options & Screening Outcome

During the Screening Phase, all potential decommissioning options were assessed against the Safety, Environmental, Technical, Societal and Economic criteria using a coarse, red / amber / green methodology. The assessment performed and the outcomes are detailed fully in the CA Screening Report ref. [4] and summarised in Table 4.3.

Post-screening update: during screening, five separate groups were identified for the 30" Export Pipeline, aligned with the varying burial statuses of the pipeline. Post-screening, it was agreed that these 5 groups should be consolidated into a single group for the 30" Export pipeline for the remainder of the CA process.

Post-evaluation update: after the Evaluation was completed, the as-built status of the line from KP 15.5 to KP 54 (surface laid and rock covered) and KP 54 to KP 106 (trenched and rock covered) was found to be incorrect. The as-built status is surface laid with no rock cover (KP 15.5 to KP 54) and trenched with no rock cover (KP 54 to KP 106). Given this change in status of the line post-evaluation, consideration was given to the options screened out. Notes have been added where appropriate to provide a revised narrative.

	Group 1 – 30" Export Pipeline Sean PP to Bacton Terminal								
Category	Option	Description	Discussion						
Re-use	1 – Re-use	 Leave pipeline in-situ for use in any potential new developments 	Ruled out as a showstopper as no potential re-use in-situ options for the Sean Gas Export line.						
	2a – Cut and lift with de-burial	 Pipeline will be disconnected De-burial of pipeline using MFE Recover by cutting into sections and removal 	Retained as the least onerous and credible Full Removal option.						
Full removal	2b – Reverse Installation (S-lay) without de-burial	 Line will be disconnected No de-burial prior to removal Recover by reverse s-lay 	Considered a more onerous full removal option than 2a due to the technical challenges associated with the concrete coating.						
Full removal	2c – Reverse Installation (S-lay) with de-burial	 Line will be disconnected De-burial of line using MFE Recover by reverse s-lay 	Considered a more onerous full removal option than 2a due to the technical challenges associated with the concrete coating.						
Leave in-situ (major intervention)	3a – Rock placement over entire line ^{Note 1}	 Pipeline will be disconnected Rock placement over full length of pipeline to address areas of spans, exposure & shallow burial No recovery of pipeline. 	Ruled out as a technical showstopper as there are insufficient areas of spans, exposure or shallow burial to justify rock covering line already mostly buried.						
Leave in-situ 3b – Retrench and (major bury entire line ^{Not} intervention) ²		 Pipeline will be disconnected Re-trench and backfill full length of pipeline to remove areas of spans, exposure & shallow burial depth No recovery of pipeline No introduction of new material 	Ruled out as a technical showstopper as there are insufficient areas of spans, exposure or shallow burial to justify trenching line already mostly buried.						
Leave in-situ (minor intervention)	4a – Rock placement over exposures ^{Note 3}	 Pipeline will be disconnected Removal and recovery of surface laid sections out with existing trench / rock cover Note 7 Rock placement to remediate snag risk from cuts ends Rock placement at all areas of spans, exposure and shallow burial depth 	Retained as a viable leave in-situ option and should be evaluated.						

	Group	1 – 30" Export Pipeline Sean PP to Bacton T	erminal
Category	Option	Description	Discussion
	4b – Trench & bury exposures _{Note 4}	 Pipeline will be disconnected Removal and recovery of surface laid sections out with existing trench / rock cover Note 7 Rock placement to remediate snag risk from cut ends Trench / bury areas of spans, exposure and shallow burial depth Minimal introduction of new material 	Ruled out as a technical showstopper due to the technical challenges associated with trenching a line already trenched and rock covered. The alternative minor intervention options of 4a or 4c would be adopted.
	4c – Remove exposures ^{Note 5}	 Pipeline will be disconnected Removal and recovery of surface laid sections out with existing trench / rock cover Note 7 Rock placement to remediate snag risk from cut ends Removal of areas of spans, exposure and shallow burial depth using cut and lift techniques, including de-burial where required 	Retained as a viable leave in-situ option and should be evaluated.
Leave in-situ (minor intervention)	4d – Accelerated decomposition	 Pipeline will be disconnected Removal and recovery of surface laid sections out with existing trench / rock cover Note 7 Rock placement to remediate snag risk from cut ends Introduce material / techniques to accelerate the decomposition process Potential options include reverse polarity CP, Sulphate Reducing Bacteria (SRBs), chemicals, etc. 	Ruled out as a technical showstopper as accelerated decomposition not a viable solution for concrete coated lines as concrete would remain.
Leave in-situ (minimal intervention)	5 – Remove ends and remediate snag risk ^{Note 6}	 Pipeline will be disconnected Removal and recovery of surface laid section out with existing trench / rock cover Note 7 Rock placement to remediate snag risk from cut ends Rock placement over areas of significant spans (approaching FishSafe specification) Line left filled with inhibited seawater and capped (at cut location) to ensure that consideration of future re-use options are not precluded. 	Retained as a viable leave in-situ option as the limited areas of significant spans would be remediated along with removing end of the line out with the trench / rock cover presents a leave in-situ option that should be evaluated.
Leave in-situ (ongoing monitoring)	6 – Leave as-is	 There will be no planned subsea intervention Appropriate legislative considerations shall be addressed and any advisory zones implemented for remaining subsea infrastructure Monitoring will continue on a regular basis 	Ruled out as a safety showstopper due to the sections of line out with the trench / rock cover leaving an unacceptable potential snagging risk.

Table 4.3: Group 1 Decommissioning Options & Screening Summary

Note 1: Rock cover the entire line (Option 3a) would be a significant offshore work scope and would have significant Safety impact (due to risk exposure from significant offshore scope) and significant environmental impact (due to the introduction of significant rock cover). This long rock berm would also be unattractive from a fishing perspective.

Note 2: Trenching of the entire line (Option 3b) would be a significant offshore work scope and would have significant Safety impact (due to risk exposure from significant offshore scope) and significant technical challenges (due to geotechnical conditions dictating that 45% of line was not trenched when installed).

Note 3: Rock cover over areas of exposure (Option 4a) would have much greater scope as the majority of the line would need to be rock covered and thus effectively becomes Option 3a. As per Note 1, this would result in greater Safety, Environmental and Fishing impacts.

Note 4: Trenching areas of exposure (Option 4b) could have been screened in (originally eliminated as presence of rock made trenching technically challenging). The majority of the line would be trenched and thus effectively becomes Option 3b. As per Note 2, this would result in greater Safety and Technical impacts.

Note 5: Removing areas of exposure (Option 4c) would have much greater scope as the majority of the line would need to be removed and thus effectively becomes Option 2a.

Note 6: The change in as-built status means the line will be left surface laid without cover or trenched without cover along its length (typical for a concrete coated trunk line). This will result in potential for a greater legacy snag risk than originally anticipated, however the fact that trawl fishing operations are conducted over this line remains valid.

Note 7: The definition of surface laid section of the 30" Export Pipeline at the platform end changed due to the as-built status change. The surface laid section of this line at the platform end is now limited to the short section out with the trench and not currently rock covered.

4.3 Group 1 Decommissioning Options for Evaluation

The decommissioning options for Group 1 that remained after screening and which were taken forward to the evaluation phase are therefore:

- > Full Removal
 - 2a Cut and lift with de-burial
- > Leave in-situ (minor intervention)
 - 4a Rock placement over exposures
 - 4c Remove exposures
- > Leave in-situ (minimal intervention)
 - 5 Remove ends & remediate snag risk

4.4 Group 1 Evaluation Summary

		Group 1 – 30" Export Pipeline Sean PP to Bacton Terminal						
		Note: for full attributes tables and assessment see Appendix C						
	Safety	Option 5 is assessed as being the preferred option from a safety perspective. Option 5 is preferred from a risk exposure to Operations Personnel perspective. This is due to the shorter durations associated with the offshore scope to address the line end and areas of spanning compared to the other options. It is also preferred from an onshore risk exposure perspective as there is a minimal quantity of the line returned for processing. With respect to Other Users, Option 5 has a much lower number of vessel days and vessel transits to and from site that the other options. Option 5 is preferred (along with Option 4a) from a High-Consequence Events perspective as there is a much lower potential for dropped objects when compared to the potential associated with the high number (thousands) of lifts associated with partial or full recovery of the pipeline. Option 2a is preferred to the other options in the Legacy Risk criterion due to the line being fully removed. The difference in risk profile between Option 2a and the partial removal options is assessed as minimal as the remaining line is rock covered or trenched and rock covered along the majority of its length. The surface laid sections that would remain are at the near shore end of the pipeline where the water depth limits trawling activity and hence a low potential for snagging. Option 5 is the least preferred against this criterion.						
	Environment	Option 5 is assessed as being the preferred from an environmental perspective. Option 5 is preferred (along with Option 4a) from an Operational Marine Impact perspective as the other options require extended vessel operations, diamond wire cutting and MFE operations, increasing the noise impact and potential for planned (from the line when cutting) and unplanned discharges. Option 5 is also preferred (along with Option 4a) from an Atmospheric Emissions perspective as the fuel use and atmospheric emissions associated with the other options are much higher. Option 4a is least preferred (other options equal) from an Other Consumptions perspective due to the large quantity of rock associated with this option. Option 5 is preferred with respect to Seabed Disturbance as the other options impact large areas of seabed for de-burial / rock cover operations. Option 2a is preferred from a Legacy Marine Impacts perspective as there is no legacy marine impact as line is removed (although crossings will remain in-situ). There are varying areas of permanent habitat change caused by rock cover in the other options with Option 4a being the most significant.						
Evaluation	Technical	Option 5 is assessed as being the preferred option from a technical perspective. Whilst all options use largely proven technology and routine operations, the extensive cut & lift and de-burial operations along 106km of pipeline carry an increased risk of a technical failure from a cumulative effect of de-burial and cutting equipment failure. As such Option 5 (along with Option 4a) is preferred.						
Ev	Societal	Option 5 is assessed as being the preferred from a societal perspective. With respect to Societal impact on Fishing, Option 5 is preferred. While Option 2a may appear to be preferable as it involves full removal of the line, it also causes significant disruption to fishing operations from the de-burial and removal of the line, which may impact creel pot fishing activities conducted along this pipeline. Option 5 (along with Option 4a) is preferred from a Societal impact on Other Users perspective as, while these options return the least useful material, they also do not return the significant quantities (tens of thousands of tonnes) of difficult to process, salt water contaminated concrete that will use limited landill capacity in the other options.						
	Economic	Option 5 is assessed as the most preferred option. From a short-term cost perspective, Option 5 is preferred as it is more than 10 times lower cost that the next cheapest option, and 100 times lower cost than the full removal option. For long-term costs, there are none associated with the full removal option, whereas there are legacy costs associated with monitoring, surveying and managing potential snag hazards for all other options.						
	Summary	Option 5 was preferred against the Safety, Environment Technical and Societal criteria. Group 1: 30" Export Pipeline Sean PP to Bacton Terminal Societal criteria. Once the Economics criterion was considered, this strengthens the preference for Option 5. 40.0% 30.7% Option 5 - Remove Ends and Remediate Snag Risk will form the emerging recommendation for the decommissioning option for Group 1. 5.1% 9.0% 14.9% 15.0% 3.3% 4.8% 4.6% 5.7% 6.8% 00% 5.2% 6.8% 9.0% 14.9% 9.0% 15.1% 9.0% 14.9% 9.0% 10.0% 3.3% 4.8% 1.5% 7.7% 00% 3.3% 4.8% 7.7% 0.6% 10.0% 3.3% 4.8% 7.7% 0.6% 10.0% 3.3% 4.8% 7.7% 0.6% 10.0% 3.3% 6.1% 2.9% 7.8% 00% 3.2% 0.4% 0.4% 6.1% 2.9% 10.0% 3.3% 0.4% 0.4% 0.4% 7.8% 00% 3.3% 0.4% 0.4% 0.4% 7.8% 00% <td< th=""></td<>						

Table 4.4: Group 1 Evaluation Summary

4.5 Group 1 Sensitivities

Sensitivity analysis has been conducted on the outcome obtained during the evaluation phase of the CA for Group 1 (as detailed in Section 4.4). This analysis was conducted based on challenges made during the stakeholder workshop.

Three sensitivities have been investigated:

- 1. Legacy safety risk increased.
- 2. Legacy environmental impact increased.
- 3. Technical risk reduced.

The rationale behind performing the sensitivities and findings obtained are described in the following sections.

4.5.1 Legacy Risk

The base case assessment conducted during the stakeholder workshop was that Option 2a (Full Removal – Cut and lift with de-burial) was Stronger than Option 4a (Partial Removal – Rock placement over exposures) and Option 4c (Partial Removal – Remove exposures) and Much Stronger than Option 5 (Partial Removal – Remove ends & remediate snag risk). Further, Option 4a and Option 4c were assessed as Neutral to each other and both Stronger than Option 5.

This reflects the assertion that, given the as left condition of the partial removal options, i.e. rock cover over exposures, exposures removed or left as-is with areas of spans approaching the FishSafe criteria addressed are less preferred than the full removal option. The relative preference is influenced by the lack of trawl fishing operations in the near shore areas where the line is in shallow water but not rock covered and the commitment to a survey, monitoring and remediation programme, as required, to maintain the as left status and to manage legacy risk from snagging.

There was a challenge to this during the stakeholder workshop on the basis that the legacy risk should be increased to test the outcome under this sensitivity case. It was agreed to run a sensitivity where the relative preference for Option 2a was increased over all other options. The relative preference for Option 4a and Option 4c over Option 5 was also increased as follows:

- > O2a v O4a, was Stronger, moves to Much Stronger
- > O2a v O4c, was Stronger, moves to Much Stronger
- > O2a v O5, was Much Stronger, moves to Very Much Stronger
- > O4a v O4c, was Neutral, remains Neutral
- > O4a v O5, was Stronger, moves to Much Stronger
- > O4c v O5, was Stronger, moves to Much Stronger

The impact of the increased preferences on the overall outcome is shown in Figure 4.1 with the base case assessment represented by the column on the left and the sensitivity case represented by the column on the right .

0.45 —	Safety (b Environn Societal (nent (sensitivity)	Safety (se Technical Societal (s	(base)	 Environment (base) Technical (sensitivity) Economics (base) 	39.2%	38.8%
0.35 —		cs (sensitivity)	_ 50010 tal (1	sensitivity		7.9%	7.9%
			30.7%	30.5%			1.570
0.3 — 0.25 —			5.5%	5.5%		6.8%	6.8%
0.25 —			5.4%	5.4%		9.0%	0.0%
	15.1%	16.1%	0.0%		14.9% 14.7%	5.070	9.0%
0.15 —	3.8%	3.8%	9.0%	9.0%	2.8% 2.8%	7 70/	
0.1 —	3.3%	3.3% 0.9%	4.8%	4.8%	4.6% 4.6%	7.7%	7.7%
0.05 —	0.9% 	4.0%	_		1.1% 1.1% 3.5% 3.5%	7.0%	
0 —	3.2%	4.1%	6.1%	5.8%	2.9% 2.7%	7.8%	7.3%
	O2A - Full Re and)4A - Leave - lacement ov		Rock O4C - Leave - Minor - C ures Remove Areas of Exposure Ren	nove Ends	- Minimal - & Remediate ; Risk

Figure 4.1: Legacy Risk Impact Sensitivity Outcome

Figure 4.1 shows that performing the sensitivity where the preference for the full removal option from a legacy risk impact perspective over the other options is increased, has a small impact on the original assessment. It can be seen that this increased preference for the full removal option increases the safety contribution to the overall score for Option 2a and reduces for the other options. This does not change the overall outcome that Option 5 is preferred.

4.5.2 Legacy Environmental Impact

The base case assessment conducted during the stakeholder workshop was that Option 2a (Full Removal – Cut and lift with de-burial) was Much Stronger than Option 4a (Partial Removal – Rock placement over exposures) and Option 4c (Partial Removal – Remove exposures) and Stronger than Option 5 (Partial Removal – Remove ends & remediate snag risk). Further, Option 4a was assessed as Weaker than Option 4c and Much Weaker than Option 5. Finally, Option 4c was assessed as Much Weaker than Option 5.

This reflects the assertion that, removal of line is preferred to leaving the line in-situ, although the relative preference is small given the line will be flushed and cleaned prior to decommissioning and that any releases or degradation products will occur over a long time period and the environmental impact will be low. Further, this assessment reflects the environmental impact of the rock cover introduced under Option 4a and Option 4c.

There was a challenge to this during the stakeholder workshop on the basis that the impact of the rock cover should be increased, particularly where that rock cover is placed on the line when located in key Marine Protected Areas (MPA). It was agreed that the legacy environmental impact should be increased to test the outcome under this sensitivity case where the relative preference for Option 2a was increased over all other options. The relative preference for Option 4a and Option 4c over Option 5 was also increased as follows:

- > O2a v O4a, was Much Stronger, moves to Very Much Stronger
- > O2a v O4c, was Much Stronger, moves to Very Much Stronger
- > O2a v O5, was Stronger, moves to Much Stronger
- > O4a v O4c, was Weaker, moves to Much Weaker
- > O4a v O5, was Much Weaker, moves to Very Much Weaker
- > O4c v O5, was Much Weaker, moves to Very Much Weaker

The impact of the increased preferences for no rock cover on the overall outcome is shown in Figure 4.2 with the base case assessment represented by the column on the left and the sensitivity case represented by the column on the right .

0.45 0.4	Environment (sensitivity)	Safety (se Technical Societal (s	(base)	Environment (base) Technical (sensitivity) Economics (base)	39.2%	39.2%
0.35	Economics (sensitivity)	30.7%	30.4%		7.9%	7.9%
0.3 0.25		5.5%	5.5%		6.8%	6.8%
0.25		5.4%	5.4%		9.0%	9.0%
0.15	15.1% 15.8% 3.8% 3.8%	9.0%	9.0%	14.9% 14.6% 2.8% 2.8%	7 70/	7 70/
0.1	3.3% 3.3% 0.9% 0.9%	4.8%	4.4%	4.6% 4.6%	7.7%	7.7%
0.05	4.0% 4.6% 3.2% 3.2%	6.1%	6.1%	3.5% 3.2% 2.9% 2.9%	7.8%	7.8%
		A - Leave - cement ov		Rock O4C - Leave - Minor - C ures Remove Areas of Exposure Ren		11/1816 22

Figure 4.2: Legacy Environmental Impact Sensitivity Outcome

Figure 4.2 shows that performing the sensitivity where the legacy impact of any rock cover introduced was increased, has a small impact on the original assessment. It can be seen that this reduction in preference for options with rock cover (Option 4a and Option 4c) reduces the environmental contribution to the overall score for those options and increases the preference for Option 2a. This does not change the overall outcome that Option 5 is preferred.

4.5.3 Technical Risk

The base case assessment conducted during the stakeholder workshop was that Option 2a (Full Removal – Cut and lift with de-burial) was Very Much Weaker than Option 4a (Partial Removal – Rock placement over exposures) and Option 5 (Partial Removal – Remove ends & remediate snag risk) and Weaker than Option 4c (Partial Removal – Remove exposures). Further, Option 4a was assessed as Very Much Stronger than Option 4c and Neutral to Option 5. Finally, Option 4c was assessed as Very Much Weaker than Option 5.

This reflects the assertion that performing either full removal of the line or removal of exposures carries a much higher level of technical risk due to the length of the line and the scope of the removal operations, including the challenges of performing the de-burial operations and cutting operations at this scale and the associated potential for equipment failure.

There was a challenge to this during the stakeholder workshop on the basis that the difference between the full removal / exposure removal options should be reduced. It was agreed that the technical risk impact should be reduced to test the outcome under this sensitivity case where the relative preference for Option 2a versus Options 4a and 5 and for Option 4c versus Options 4a and 5 was reduced as follows:

- > O2a v O4a, was Very Much Weaker, moves to Much Weaker
- > O2a v O4c, was Weaker, remains as Weaker
- > O2a v O5, was Very Much Weaker, moves to Much Weaker
- > O4a v O4c, was Very Much Stronger, moves to Much Stronger
- > O4a v O5, was Neutral, remains as Neutral
- > O4c v O5, was Very Much Weaker, moves to Much Weaker

The impact of the increased preferences on the overall outcome is shown in Figure 4.3 with the base case assessment represented by the column on the left and the sensitivity case represented by the column on the right .

0.45 — 0.4 —	Societal	nent (sensitivity	■ Safety (se) ■ Technical ■ Societal (s	(base)	Environme Technical Economics	(sensitivity)	39.2%	37.7%
0.35 —	Economi		30.7%	29.2%			7.9%	7.9%
0.3 — 0.25 —			5.5%	5.5%			6.8%	6.8%
0.2 —		16.5%	5.4%	5.4%		16.6%	9.0%	7.5%
0.15 —	15.1% 3.8%	3.8%	9.0%	7.5%	14.9% 2.8%	2.8%		_
0.1 —	3.3% 0.9%	3.3% 2.3%	4.8%	4.8%	4.6%	4.6% 2.8%	7.7%	7.7%
0.05 —	4.0% 3.2%	4.0% 3.2%	6.1%	6.1%	3.5% 2.9%	3.5% 2.9%	7.8%	7.8%
°.	D2A - Full Re and		O4A - Leave - Placement ov		Rock O4C - Leav ures Remove Area	ve - Minor - as of Exposure	O5 - Leave Remove Ends Snag	& Remediate

Figure 4.3: Technical Risk Impact Sensitivity Outcome

Figure 4.3 shows that performing the sensitivity where the technical risk associated with the full removal / remove exposures was reduced, has a small impact on the original assessment. It can be seen that this adjustment reduces the technical contribution for Option 4a and Option 5 and increase the technical contribution for Option 2a and Option 4c. This does not change the overall outcome that Option 5 is preferred.

5 GROUP 6 – 20" EXPORT PIPELINE SEAN RD TO SEAN PD

5.1 Group 6 Characteristics

There is a single item in Group 6. The key characteristics of this item are listed in Table 5.1.

ID	Description	OD (inches)	Length (km)
PL310	20" Concrete Coated Rigid Pipeline Trenched & Buried (average 0.72 m ToP), between Sean RD and Sean PD Platforms. The pipeline transitions to surface and is tied in to surface spools at each end which, in turn, tie in to the respective platform risers.	20"	4.77

Table 5.1: Group 6 Items

5.2 Group 6 Decommissioning Options & Screening Outcome

During the Screening Phase, all potential decommissioning options were assessed against the Safety, Environmental, Technical, Societal and Economic criteria using a coarse, red / amber / green methodology. The assessment performed and the outcomes are detailed fully in the CA Screening Report ref. [4] and summarised in Table 5.2.

Group 6 – 20" Export Pipeline Sean RD to Sean PD				
Category Option		Description	Discussion	
Re-use	1 – Re-use	 Leave line in-situ for use in any potential new developments 	Ruled out as a showstopper as once platforms removed there were no potential re-use in-situ options for this short, in field line.	
	2a – Cut and lift with de- burial	 Line will be disconnected De-burial of line using MFE Recover by cutting into sections and removal 	Retained as the least onerous and credible Full Removal option.	
Full removal	2b – Reverse Installation (S- lay) without de-burial	 Line will be disconnected No de-burial prior to removal Recover by reverse s-lay 	Considered a more onerous full removal option than 2a due to the technical challenges associated with the concrete coating.	
	2c – Reverse Installation (S- lay) with de- burial	 Line will be disconnected De-burial of line using MFE Recover by reverse s-lay 	Considered a more onerous full removal option than 2a due to the technical challenges associated with the concrete coating.	
Leave in-situ	 Line will be disconnected 3a – Rock Rock placement over full length of line to address areas of spans, exposure & shallow burial No recovery of line 	Ruled out as a technical showstopper as there are insufficient areas of spans, exposure or shallow burial to justify fully rock covering line already fully buried.		
(major intervention))	3b – Retrench and bury entire line	 Line will be disconnected Re-trench and backfill full length of line to remove areas of spans, exposure & shallow burial depth No recovery of line No introduction of new material 	Ruled out as a technical showstopper as there insufficient areas of spans, exposure or shallow burial to justify trenching line already fully buried.	

Group 6 – 20" Export Pipeline Sean RD to Sean PD				
Category Option		Description	Discussion	
	4a – Rock placement over exposures	 Line will be disconnected Removal and recovery of surface laid sections out with existing trench Rock placement to remediate snag risk from cuts ends Rock placement at all areas of spans, exposure and shallow burial depth 	Ruled out as a technical showstopper as there are no areas of spans, exposure or shallow burial. As there are no areas to address, this option becomes the same as Option 5.	
	4b – Trench & bury exposures	 Line will be disconnected Removal and recovery of surface laid sections out with existing trench Rock placement to remediate snag risk from cut ends Trench / bury areas of spans, exposure and shallow burial depth Minimal introduction of new material 	Ruled out as a technical showstopper as there are no areas of spans, exposure or shallow burial. As there are no areas to address, this option becomes the same as Option 5.	
Leave in-situ (minor intervention)	4c – Remove exposures	 Line will be disconnected Removal and recovery of surface laid sections out with existing trench Rock placement to remediate snag risk from cut ends Removal of areas of spans, exposure and shallow burial depth using cut and lift techniques, including de-burial where required 	Ruled out as a technical showstopper as there are no areas of spans, exposure or shallow burial. As there are no areas to address, this option becomes the same as Option 5.	
	4d – Accelerated decomposition	 Line will be disconnected Removal and recovery of surface laid sections out with existing trench Rock placement to remediate snag risk from cut ends Introduce material / techniques to accelerate the decomposition process Potential options include reverse polarity CP, Sulphate Reducing Bacteria (SRBs), chemicals, etc. 	Ruled out as a technical showstopper as accelerated decomposition not a viable solution for concrete coated lines as concrete would remain.	
Leave in-situ (minimal intervention)	5 – Remove ends and remediate snag risk	 Line will be disconnected Removal and recovery of surface laid sections out with existing trench Rock placement to remediate snag risk from cut ends 	As there are no areas of spans, exposure or shallow burial, removing the ends of the line out with the trench presents a leave in-situ option that should be evaluated.	
Leave in-situ (ongoing monitoring)	6 – Leave as- is	 There will be no planned subsea intervention Appropriate legislative considerations shall be addressed and any advisory zones implemented for remaining subsea infrastructure 	Ruled out as a safety showstopper due to the sections of line out with the trench leaving an unacceptable potential snagging risk.	

Table 5.2: Group 6 Decommissioning Options and Screening Summary

5.3 Group 6 Decommissioning Options for Evaluation

The decommissioning options for Group 6 remaining after screening and taken forward to evaluation are:

- > Full Removal
 - 2a Cut and lift with de-burial
- > Leave in-situ (minimal intervention)
 - 5 Remove ends & remediate snag risk

5.4 Group 6 Evaluation Summary

Group 6 – 20" Export Pipeline Sean RD to Sean PD					
	Note: for full attributes ta	ables and assessment see Appendix D			
Safety	durations associated with the offshore scope to c 2a versus removal of the line ends in Option 5. line under Option 2a. There was also a small preference for Option 5 will and fewer transits associated with Option 5. Opt there is greater potential for dropped objects in 0 water column due to a much higher number of lift Option 2a is preferred to Option 5 in the Legacy	exposure to Operations Personnel perspective. This is due to the long- de-bury the line and to cut it into short sections and their recovery in Optic There is also an increased risk exposure associated with returning the fu- ith respect to Safety risk to Other Users, due to the shorter offshore duration tion 5 was also preferred from a High-Consequence Events perspective a Option 2a from the recovery of the cut sections of the pipeline through th			
Environment	Option 5 is assessed as being the preferred from an environmental perspective. Option 5 is preferred from an Operational Marine Impact perspective as, while the impacts are expected to be low, the cumulative nature of noise impact from longer durations of onsite working (vessels) and cutting operations (DWC) and discharges from the line when cutting was sufficient to express a preference. Both options are considered equally preferred from an Atmospheric Emissions perspective as the fuel use and atmospheric emissions are similar. They are also equally preferred from an Other Consumptions perspective as, again, the impacts are similar. Option 5 is preferred with respect to Seabed Disturbance as Option 2a disturbs the seabed along the entire length of the line during the de-burial operations required to allow access to cut the line. Option 2a is preferred from a Legacy Marine Impacts perspective as there is no legacy marine impact with this full removal option. There is legacy impact from leaving the line in-situ although the impact is expected to be low due to the lie being flushed and cleaned prior to decommissioning. There is also a small area of permanent habitat change caused by rock cover over the line ends in Option 5.				
Technical	Note: the environmental impact of all decommissioning options is low and the differences between the options are minor. Option 5 is assessed as the being the preferred option from a technical perspective. While both options use largely proven technology and routine operations, there is a preference for Option 5 due to the technical challenges associated with the de-burial of the line and the cumulative nature of potential technical failures performing DWC operations along almost 5km of line.				
Societal	Option 2a and Option 5 are assessed as being equally preferred from a societal perspective. With respect to Societal impact on Fishing, there is no preference between the two options. Whilst Option 2a may appear to be preferable as it involves full removal of the lines, it also causes greater disruption to fishing operations during the removal. It is noted that fishing operations are conducted over this line currently. Option 2a and Option 5 are equally preferred from a Societal impact on Other Users perspective as while there is more useful material (duplex steel) returned in Option 2a, there is also more material destined for landfill (concrete) which cancels this out.				
Economic	Option 5 is assessed as being the preferred option from an economic pespective. From a short-term cost perspective, Option 2a is around 5 times the cost of Option 5 making Option 5 preferred. For long-term costs, there are none associated with Option 2a as it is full removal but for Option 5 there are legacy costs associated with, surveying and managing the left in-situ line making Option 2a preferred.				
Summary	Option 5 was preferred against the Safety, Environmental and Technical criteria and equally preferred against the Societal criterion. Without including economics, there is a strong preference for Option 5. Once the Economics criterion is included, this preference is further strengthened. Option 5 – Remove Ends and Remediate Snag Risk will form the emerging recommendation for the decommissioning option for Group 6.	Group 6: 20" Export Pipeline Sean RD to Sean PD ■1. Safety ■2. Environmental ■3. Technical ■4. Societal 5. Economic 70.0% 58.7% 11.5% 10.0% 60.0% 41.4% 10.0% 15.0% 30.0% 10.0% 15.0% 10.4% 30.0% 50.0% 10.4% 10.4% 0.0% 8.3% 11.8% 05 - Leave - Minimal - Remove Ends & Remediate Snag Risk			

Table 5.3: Group 6 Evaluation Summary

6 GROUP 7 – POWER CABLE SEAN RD TO SEAN PD

6.1 Group 7 Characteristics

There is a single item in Group7. The key characteristics of this item are listed in Table 6.1.

ID	Description	OD (inches)	Length (km)
S0803	3.5" Power Cable, Trenched and Buried (average 0.87 m ToC), between Sean RD and Sean PD Platforms.	3.5"	4.9

Table 6.1: Group 7 Items

6.2 Group 7 Decommissioning Options & Screening Outcome

During the Screening Phase, all potential decommissioning options were assessed against the Safety, Environmental, Technical, Societal and Economic criteria using a coarse, red / amber / green methodology. The assessment performed and the outcomes are detailed fully in the CA Screening Report ref. [4] and summarised in Table 5.2.

Post-screening update: during screening, there was uncertainty regarding the strength in the power cable to support reverse reeling either through existing cover (no de-burial) or if de-buried first. As such, the CA Screening Report indicated that Option 2a - Full Removal by Cut and Lift was the preferred full removal option, pending a strength assessment. The findings of that strength assessment showed that the power cable has sufficient strength to be reverse reeled if de-buried first. Concerns remain about the strength to reverse reel through existing cover. As such, Option 2c - Reverse reel with de-burial is retained as the most credible and least onerous full removal option, as shown in Table 5.2.

Group 7 – Power Cable Sean RD to Sean PD				
Category Option		Description	Discussion	
Re-use	1 – Re-use	 Leave line in-situ for use in any potential new developments 	Ruled out as a showstopper as there were no potential re-use in-situ options for this short, in field power cable.	
	2a – Cut and lift with de- burial	 Line will be disconnected De-burial of line using MFE Recover by cutting into sections and removal 	Considered a more onerous full removal option than 2c as reeling with de-burial considered viable.	
	2b – Reverse reel without de-burial	 Line will be disconnected No de-burial prior to removal Recover by reverse reel 	Not considered viable due to concerns about the integrity of the cable being reverse reeled through existing cover.	
Full removal	2c – Reverse reel with de- burial	 Line will be disconnected De-burial of line using MFE Recover by reverse reel Note: De-burial was included for the Power Cable due to concerns regarding the integrity of the line for reverse reeling through existing cover. Efforts will be made to remove the line without prior de-burial. Where de-burial is required, alternative methods to MFE may be used. OPRED will be advised if there are any issues with the reverse reeling option and de-burial will be discussed prior to execution. 	Retained as the least onerous and credible Full Removal option.	

Group 7 – Power Cable Sean RD to Sean PD				
Category Option		Description	Discussion	
Leave in-situ	3a – Rock placement over entire line	 Line will be disconnected Rock placement over full length of line to address areas of spans, exposure & shallow burial No recovery of line 	Ruled out as a technical showstopper as there are insufficient areas of spans, exposure or shallow burial to justify fully rock covering line already fully buried.	
(major intervention))	3b – Retrench and bury entire line	 Line will be disconnected Re-trench and backfill full length of line to remove areas of spans, exposure & shallow burial depth No recovery of line No introduction of new material 	Ruled out as a technical showstopper as there insufficient areas of spans, exposure or shallow burial to justify trenching line already fully buried.	
	4a – Rock placement over exposures	 Line will be disconnected Removal and recovery of surface laid sections out with existing trench Rock placement to remediate snag risk from cuts ends Rock placement at all areas of spans, exposure and shallow burial depth 	Ruled out as a technical showstopper as there are no areas of spans, exposure or shallow burial. As there are no areas to address, this option becomes the same as Option 5.	
	4b – Trench & bury exposures	 Line will be disconnected Removal and recovery of surface laid sections out with existing trench Rock placement to remediate snag risk from cut ends Trench / bury areas of spans, exposure and shallow burial depth Minimal introduction of new material 	Ruled out as a technical showstopper as there are no areas of spans, exposure or shallow burial. As there are no areas to address, this option becomes the same as Option 5.	
Leave in-situ (minor intervention)	4c – Remove exposures	 Line will be disconnected Removal and recovery of surface laid sections out with existing trench Rock placement to remediate snag risk from cut ends Removal of areas of spans, exposure and shallow burial depth using cut and lift techniques, including de-burial where required 	Ruled out as a technical showstopper as there are no areas of spans, exposure or shallow burial. As there are no areas to address, this option becomes the same as Option 5.	
	4d – Accelerated decomposition	 Line will be disconnected Removal and recovery of surface laid sections out with existing trench Rock placement to remediate snag risk from cut ends Introduce material / techniques to accelerate the decomposition process Potential options include reverse polarity CP, Sulphate Reducing Bacteria (SRBs), chemicals, etc. 	Ruled out as a technical showstopper as accelerated decomposition not a viable solution for power cables due to their construction.	
Leave in-situ (minimal intervention)	5 – Remove ends and remediate snag risk	 Line will be disconnected Removal and recovery of surface laid sections out with existing trench Rock placement to remediate snag risk from cut ends 	As there are no areas of spans, exposure or shallow burial, removing the ends of the line out with the trench presents a leave in-situ option that should be evaluated.	

Group 7 – Power Cable Sean RD to Sean PD				
Category Option		Description	Discussion	
Leave in-situ (ongoing monitoring)	6 – Leave as- is	 There will be no planned subsea intervention Appropriate legislative considerations shall be addressed and any advisory zones implemented for remaining subsea infrastructure 	Ruled out as a safety showstopper due to the sections of line out with the trench leaving an unacceptable potential snagging risk.	

Table 6.2: Group 7 Decommissioning Options and Screening Summary

6.3 Group 7 Decommissioning Options for Evaluation

The decommissioning options for Group 7 remaining after screening and taken forward to evaluation are:

- > Full Removal
 - 2c Reverse reel with de-burial

Note: De-burial was included for the Power Cable due to concerns regarding the integrity of the line for reverse reeling through existing cover. Efforts will be made to remove the line without prior de-burial. Where de-burial is required, alternative methods to MFE may be used. OPRED will be advised if there are any issues with the reverse reeling option and de-burial will be discussed prior to execution.

- > Leave in-situ (minimal intervention)
 - 5 Remove ends & remediate snag risk

6.4 Group 7 Evaluation Summary

		Group 7 – Power	r Cable Sean RD to Sean PD		
		Note: for full attributes tak	bles and assessment see Appendix E		
	 Option 2c and Option 5 are assessed as being equally preferred from a safety perspective. Option 5 is preferred to Option 2c from a risk exposure to Operations Personnel perspective. This is due to the lod durations associated with the offshore scope to reverse reel the line and return to shore for processing in Option 2c we the smaller offshore scope associated with recovering the line ends out with the trench and smaller onshore handling less material being returned in Option 5. With respect to Safety risk to Other Users, Option 2c and Option 5 are both equally preferred due to a largely similar num of vessel days and transits. They are also equally preferred from a High-Consequence Events perspective as the poter for dropped objects is similar due to the similar number of lifts. Option 2c is preferred to Option 5 in the Legacy Risk criterion due to it being a full removal option. The difference in lerisk profile between Option 2c and Option 5 is assessed as minimal as the remaining line is fully trenched and burit Option 5. Option 2c and Option 5 are equally preferred from an Operational Marine Impact perspective as the noise impacts potential for unplanned discharges is similar for both options. There are no operational discharges associated with removal as it is a power cable. Both options are considered equally preferred from an Atmospheric Emissions perspective as, while there is more fue and atmospheric emissions for Option 5, this differential was considered insufficient to express a preference. They are equally preferred from an Other Consumptions perspective as option 2c disturbs a greater area of seabed from the de-livith MFE prior to reverse reling the line. Option 5 is preferred with respect to Seabed Disturbance as Option 2c disturbs a greater area of seabed from the de-livith MFE prior to reverse reling the line. Option 2c is preferred from a Legacy Marine Impacts perspective as there is no legacy marine i				
	Technical	Option 5 is assessed as the being the preferred option from a technical perspective. Both options use largely proven technology and routine operations. However, there is potential for the reverse reeling option to fail due to concerns regarding the de-burial operations and the potential for the cable failing requiring the decommissioning solution to be revisited. As such Option 5 is preferred.			
	Societal	Option 2c is assessed as being the preferred option from a societal perspective. With respect to Societal impact on Fishing, there is no preference between the two options. Whilst Option 2c may appear to be preferable as it involves full removal of the lines, it also causes more disruption to fishing operations than Option 5. Option 2c is preferred from a Societal impact on Other Users perspective due to the copper associated with the power cable being returned for recycling.			
	Economic	Option 2c and Option 5 are assessed as being equally preferred from an economic perspective. From a short-term cost perspective, Option 2c is around 20% higher cost than Option 5 which is preferred. For long-term costs, Option 2c is prefered as there are no costs associated with Option 2c as it is full removal, but for Optio 5 there are legacy costs associated with, surveying and managing potential snag hazards.			
	Option 5 was preferred against the Technical and Societal criteria. The options were equally preferred against the Safety and Environmental criteria. Without including economics, there is a small preference for Option 5. Once the Economics criterion is included, this small preference is maintained. Given the small margin of preference for the leave in-situ option, ONE-Dyas have elected to remove the power cable and, as such, Option 2c - Reverse reeling with de-burial will form the emerging recommendation for the decommissioning option for Group 7.			Technical 4. Societal 5. Economic 51.0% 10.0% 9.0% 12.0% 12.0% 10.0% 10.0% 10.0% 10.0% 05 - Leave - Minimal - Remove Ends & Remediate Snag 05	

Table 6.3: Group 7 Evaluation Summary

7 WEIGHTING SENSITIVITIES

As part of the Stakeholder Workshop the base case of an equally weighting primary criteria was discussed. It was agreed to conduct two sensitivities as follows:

- Base case of equally weighted primary criteria where Safety, Environment, Technical, Societal and Economic each have a weight of 20% adjusted to Safety – 25%, Environment – 25%, Technical – 15%, Societal – 20% and Economic – 15%. This was done to increase the influence of the Safety and Environmental criteria and test the outcomes obtain for robustness.
- Base case of equally weighted primary criteria adjusted to Safety 25%, Environment 30%, Technical – 15%, Societal – 15% and Economic – 15%. This reflected a further increase in the influence of the Environmental criterion, reflecting the status of the 30" line being located in various MPZs.

The outcomes from this sensitivity analysis are shown in Figure 7.1 for Group 1, Figure 7.2 for Group 6 and Figure 7.3 for Group 7 below. In these charts the first column for each option shows the base case outcome, the second column the first weighting sensitivity and the final column the second weighting sensitivity.

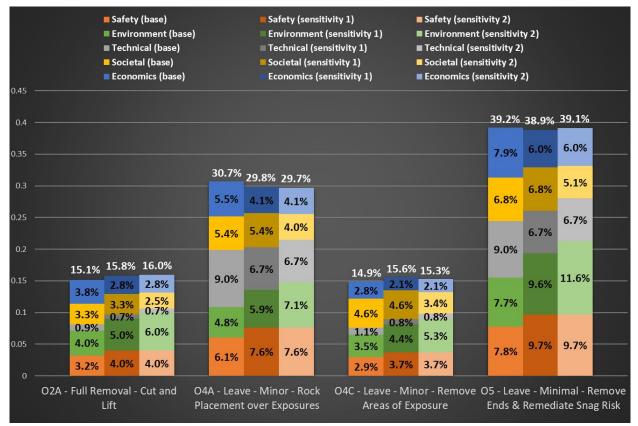


Figure 7.1:Weighting Sensitivity – Group 1

As can be seen from the above chart, the adjusted weighting sensitivity has a small impact on the relative preference for the options with Option 5 remaining as the clear preferred option for Group 1.

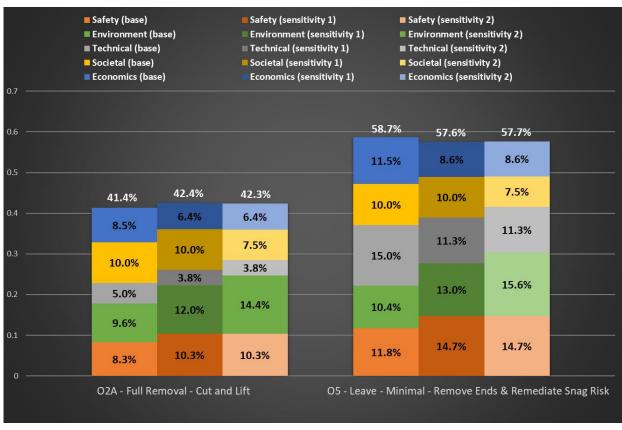


Figure 7.2: Weighting Sensitivity – Group 6

Similarly to Group 1, the adjusted weighting sensitivity has a small impact on the relative preference for the options with Option 5 remaining as the clear preferred option for Group 6.

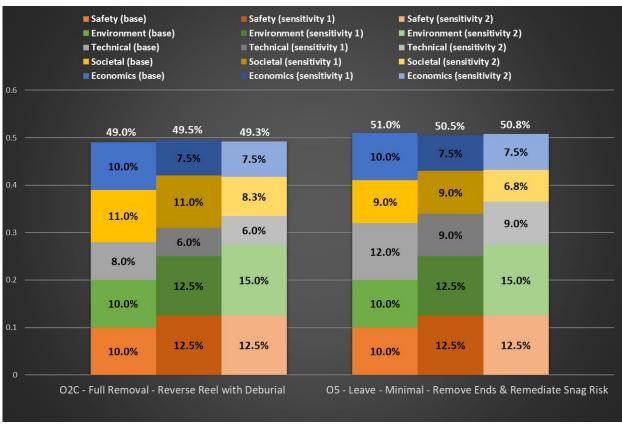


Figure 7.3: Weighting Sensitivity – Group 7

Given how close the assessment for the options for Group 7 were, the small impact from the weighting sensitivities conducted reduces the relative preference for Option 5 over Option 2c. This reinforces ONE-Dyas decision to proceed with the full removal of the power cable in Group 7.

8 **RECOMMENDATIONS**

The outcomes obtained from performing the comparative assessment of the decommissioning groups and decommissioning options for the Sean area subsea infrastructure are summarised here.

There were several groups where full removal was the recommended decommissioning approach without any further comparative assessment. These are:

- > Group 8 Spools
- > Group 9 Risers
- > Group 10 Jumpers / Umbilical
- > Group 11 Structures (Installations)
- > Group 12 Protection / Stabilisation

The full comparative assessment process was applied to the remaining decommissioning groups (1, 6 and 7). The recommended decommissioning options for these groups follow below.

8.1 Group 1 Recommendations

The recommended decommissioning option for Group 1 – 30" Export Pipeline Sean PP to Bacton Terminal is:

- > Option 5 Remove Ends and Remediate Snag Risk
 - Pipeline will be disconnected
 - Removal and recovery of surface laid section out with existing trench / rock cover
 - Rock placement to remediate snag risk from cut end
 - Rock placement over areas of significant spans (approaching FishSafe specification)
 - Line left, filled with inhibited seawater and capped (at cut location) to ensure that consideration of future re-use options are not precluded.

Note: The definition of surface laid section of the 30" Export Pipeline at the platform end changed due to the as-built status change. The surface laid section of this line at the platform end is now limited to the short section out with the trench and not currently rock covered.

The following sections provide a summary of the evaluation of the Group 1 decommissioning options against the five criteria and why this recommendation has been made.

8.1.1 Safety

Option 5 has the lowest risk exposure of all options for operations personnel. This is due to the short offshore durations associated with the scope to remove the line end out with the existing trench / rock cover and to remediate snag risk from this cut end and existing spans approaching the FishSafe criteria when compared to any of the other options. It also has the lowest onshore risk exposure due to the minimal quantity of material returned for processing compared to the full removal option.

Option 5 also has the lowest safety impact on other users of the sea due to the minimal offshore durations and vessel transits. It also has the lowest potential for high consequence events due to the minimal lifting involved with this option versus potentially thousands of lifts associated with the full removal option.

The full removal option was preferred from a legacy risk perspective, however while Option 5 leaves the line in-situ, it is trenched and rock covered, or surface laid and rock covered over the vast majority of its length, from KP 15 to KP 106. The 15 km of the line that is surface laid without cover or in an open trench is located at the landfall end of the pipeline and is in shallow water where trawl fishing operations are not carried out. It is noted that the pipeline is currently fished over in the areas where it is rock covered. Additionally, a commitment to survey and monitor the line to ensure any future snag risk is managed, along with remediation as required, is made.

Overall, there is a preference for Option 5 from a Safety perspective.

Post-evaluation note: the as-built status of the line being surface laid or trenched without rock cover (rather than having rock cover as evaluated) results in an adjustment to the relative preference for the options evaluated.

Option 2a – Full Removal by Cut & Lift would reduce in scope as de-burial of the line to allow cut and lift operations would no longer be required. The associated safety impact would reduce accordingly but would not be sufficient to alter the assessment significantly.

Option 4a – Rock placement over exposures and Option 4c – Remove exposures would reduce in preference as there would be a greater Safety impact from the increase in offshore scope from introducing rock cover over or removing the majority of the line.

Option 5 – Remove ends & remediate snag risk would also reduce in preference as the potential for legacy snag risk would be greater (than if, as evaluated, the line was rock covered along the majority of its length). This is typical for concrete coated trunk lines and the fact the trawl fishing operations are currently conducted over the line remains.

Overall preference for Option 5 from a Safety perspective remains valid.

8.1.2 Environment

Option 5 has the lowest Operational Marine Impact of all options due to the shortest offshore durations and therefore the lowest noise profile and lowest potential for planned discharges from the pipeline. It also has the lowest atmospheric emissions and fuel use for similar reasons.

There is also negligible seabed disturbance associated with Option 5 when compared to the de-burial operations using MFE for the full removal option and rock cover introduced in Option 4a.

It is recognised that the full removal option is preferred from a legacy environmental impact perspective, however, the legacy impact from the line remaining in-situ in Option 5 is expected to be low due to the line being flushed and cleaned prior to decommissioning and any residual contents or degradation products being released over a long time period.

Overall, there is a preference for Option 5 from an Environmental perspective.

Post-evaluation note: the as-built status of the line being surface laid or trenched without rock cover (rather than having rock cover as evaluated) results in an adjustment to the relative preference for the options evaluated.

Option 2a – Full Removal by Cut & Lift would remain as per evaluation.

Option 4a – Rock placement over exposures would reduce in preference as there would be a greater Environmental impact from introducing rock cover over the majority of the line.

Option 4c – Remove exposures would remain as per evaluation.

Option 5 – Remove ends & remediate snag risk would remain as per evaluation.

Overall, the preference for Option 5 from an Environmental perspective remains valid.

8.1.3 Technical

All options considered use largely routine activities and methods, however, there is significant technical risk associated with de-burial and DWC of 106 km of pipeline in the full removal option. This relates to the cumulative nature of potential operational challenges and equipment failures along this length of line. Option 5 was preferred (along with Option 4a) as the shorter durations result in a smaller scope for technical risk. As such, Option 5 is preferred (with Option 4a) from a Technical perspective.

Post-evaluation note: the as-built status of the line being surface laid or trenched without rock cover (rather than having rock cover as evaluated) results in an adjustment to the relative preference for the options evaluated.

Sean Field Decom EA, CA and DP – Sean Decommissioning Comparative Assessment Assignment Number: A400309-S00 Document Number: A-400309-S00-REPT-002

Option 2a – Full Removal by Cut & Lift would become marginally more attractive as there would be less technical risk with the removal of the de-burial operations. The significant technical risks associated with extensive cutting and removal operations would remain and, as such, the assessment during evaluation remains valid.

Option 4a – Rock placement over exposures would remain as per the evaluation despite the increased scope.

Option 4c – Remove exposures reduce in preference as the scope of the cutting and removal operations would be increased significantly.

Option 5 – Remove ends & remediate snag risk would remain as per evaluation.

Overall, the preference for Option 5 (with Option 4a) from a Technical perspective remains valid.

8.1.4 Societal

While the line remains in-situ in Option 5, the impact on fishing operations is expected to be negligible due to fishing operations being conducted over this line currently and the commitment to survey, monitor and remediate as required to mitigate any future snag risk to fishing operations. It was recognised that the full removal option would result in long duration disruption to fishing operations, particularly relevant in the near shore area where creel pot fishing is prevalent.

Option 5 was also preferred as the full removal option (and Option 4c) would return tens of thousands of tonnes of difficult to process concrete contaminated with salt water, likely to be destined for landfill.

Overall Option 5 is preferred from a Societal perspective.

Post-evaluation note: the as-built status of the line being surface laid or trenched without rock cover (rather than having rock cover as evaluated) results in an adjustment to the relative preference for the options evaluated.

Option 2a – Full Removal by Cut & Lift would remain as per evaluation.

Option 4a – Rock placement over exposures would reduce in preference due to the lack of rock cover over the line. The fact the trawl fishing operations are currently conducted over the line remains.

Option 4c – Remove exposures would reduce in preference as the scope of the cutting and removal operations would be increased significantly, returning more contaminated concrete to landfill.

Option 5 – Remove ends & remediate snag risk would reduce in preference due to the lack of rock cover over the line. The fact the trawl fishing operations are currently conducted over the line remains.

Overall, the preference for Option 5 from a Societal perspective remains valid.

8.1.5 Economic

The short-term costs associated with executing Option 5 is 10 times lower than the next least expensive option and around 100 times lower than the full removal option. Option 5 does however, have long-term costs associated with monitoring and surveying required to manage potential snag risks in the future.

Overall, Option 5 is preferred from an Economic perspective.

Post-evaluation note: the as-built status of the line being surface laid or trenched without rock cover (rather than having rock cover as evaluated) results in an adjustment to the relative preference for the options evaluated.

Option 2a – Full Removal by Cut & Lift would reduce in cost but would still be significantly more expensive than other options.

Option 4a – Rock placement over exposures would increase in cost and reduce in preference due to the additional scope.

Option 4c – Remove exposures would also increase in cost and reduce in preference due to the additional scope.

Option 5 – Remove ends & remediate snag risk would remain as per evaluation. Overall, the preference for Option 5 from an Economics perspective remains valid.

8.2 Group 6 Recommendations

The recommended decommissioning option for Group 6 - 20" Export Pipeline Sean RD to Sean PD is:

- > Option 5 Remove Ends and Remediate Snag Risk
 - Line will be disconnected
 - Removal and recovery of surface laid sections out with existing trench
 - Rock placement to remediate snag risk from cut ends

The following sections provide a summary of the evaluation of the two most viable Group 6 decommissioning options (Option 2a and Option 5) against the five criteria and why this recommendation has been made.

8.2.1 Safety

Option 2a has around 7 times higher risk exposure than Option 5 due to the shorter offshore durations associated with the scope to remove the line ends out with the existing trench and to remediate snag risk from these cut ends versus the much longer durations to de-bury the line, cut it into sections and recover. It also has higher onshore risk exposure due to the greater quantity of material returned for processing.

Option 5 is assessed as being preferred to Option 2a in terms of safety impact on other users of the sea due to the greater number of vessel transits associated with Option 2a. Option 5 is also preferred from a potential for high consequence events as there is minimal lifting associated with Option 5 whereas Option 2a requires hundreds of lifts of the pipeline through the water column.

The full removal option was preferred from a legacy risk perspective, however while Option 5 leaves the line in-situ, it is trenched and buried along its full length. It is noted that the pipeline is currently fished over in the areas out with the existing 500m exclusion zones. Additionally, a commitment to survey and monitor the line to ensure any future snag risk is managed, along with remediation as required, is made.

Overall, there is a preference for Option 5 from a Safety perspective.

8.2.2 Environment

There is a small preference for Option 5 from an Operational Marine Impact perspective. This is due to the greater noise profile from vessels on site and DWC operations and the planned releases from line from cutting it into sections (although releases will have minimal impact as line will be flushed and cleaned prior to decommissioning).

Both options are considered to have similar Environmental impact in terms of Atmospheric Emissions and Fuel Use and Other Consumptions.

Option 5 is preferred from a seabed disturbance perspective as there is less impact on the seabed than in the full removal option where the line has to be de-buried using MFE prior to reverse reeling operations.

Option 2a is preferred from a Legacy Marine Impact perspective as the line is fully removed. However, the legacy impact from the line remaining in-situ in Option 5 is expected to be low due to the line being flushed and cleaned prior to decommissioning and any residual contents or degradation products being released over a long time period.

Overall, there is a preference for Option 5 from an Environmental perspective.

8.2.3 Technical

Both options employ largely routine operations although Option 2a carries a higher risk of technical failure due to the cumulative effect of the de-burial and DWC operations of almost 5 km pipeline and the likely recovery of debris (spalled concrete) from the cutting operations. As such, Option 5 is preferred from a Technical perspective.

8.2.4 Societal

Both Options 2a and Option 5 have a similar impact on fishing as, although the line is fully removed in Option 2a, there will be disturbance caused to fishing activities from the de-burial and cut and lift operations. Option 5 will cause less disruption, but the line will be left in-situ, albeit fully trenched and buried.

Option 2a returns more useful material for recycling (duplex steel) than Option 5, but also returns thousands of tonnes of difficult to process concrete contaminated with salt water, likely to be destined for landfill. On balance, the options were considered similar.

Overall, both options are equally preferred from a Societal perspective.

8.2.5 Economic

The short-term costs associated with executing Option 2a where the line is fully removed is almost 6 times higher than for the partial removal in Option 5, which is preferred. There are no legacy costs associated with the full removal option versus around £1.25 million associated with surveying and monitoring (six surveys assumed) and FLTC fees required for the partial removal in Option 5.

Overall, there is a preference for Option 5 from an Economic perspective.

8.3 Group 7 Recommendations

The recommended decommissioning option for Group 7 - Power Cable Sean RD to Sean PD is:

- > Option 2c Reverse reel with de-burial
 - Cable will be disconnected
 - Line will be de-buried using MFE prior to removal
 - Recover by reverse reel

Note: De-burial was included for the Power Cable due to concerns regarding the integrity of the line for reverse reeling through existing cover. Efforts will be made to remove the line without prior de-burial. Where de-burial is required, alternative methods to MFE may be used. OPRED will be advised if there are any issues with the reverse reeling option and de-burial will be discussed prior to execution.

The following sections provide a summary of the evaluation of the two most viable Group 7 decommissioning options (Option 2c and Option 5) against the five criteria and why this recommendation has been made. It is noted that the outcome from the CA process summarised in Section 6.4 and detailed in Appendix E indicated a small preference for the leave in-situ option (Option 5). As the outcome was marginal, ONE-Dyas have elected to propose full removal of this line using reverse reel (with de-burial).

8.3.1 Safety

Option 5 has around half the exposure to risk of Option 2c due to the shorter offshore durations associated with the scope to remove the line ends out with the existing trench and to remediate snag risk from these cut ends. It also has the lowest onshore risk exposure due to the minimal quantity of material returned for processing compared to the full removal option.

Both options are assessed as similar in terms of safety impact on other users of the sea due to them both having a limited number of vessel transits. They are also considered similar from a potential for high consequence events as there is minimal lifting associated with both options.

The full removal option was preferred from a legacy risk perspective, however while Option 5 leaves the line in-situ, it is trenched and buried along its full length. It is noted that the line is currently fished over in the areas out with the existing 500m exclusion zones. Additionally, a commitment to survey and monitor the line to ensure any future snag risk is managed, along with remediation as required, is made.

Overall, both options are equally preferred from a Safety perspective.

8.3.2 Environment

Both options are considered to have similar Environmental impact in terms of Operational Marine Impact, Atmospheric Emissions and Fuel Use and Other Consumptions.

Option 5 is preferred from a seabed disturbance perspective as there is less impact on the seabed than in the full removal option where the line has to be de-buried using MFE prior to reverse reeling operations.

Option 2c is preferred from a Legacy Marine Impact perspective as the line is fully removed. However, the legacy impact from the line remaining in-situ in Option 5 is expected to be low as this is a power cable which is fully trenched and buried so any degradation products will be isolated from the water column and therefore will be released over a long time period.

Overall, both options are equally preferred from an Environmental perspective.

8.3.3 Technical

Both options employ largely routine operations although Option 2c carries a higher risk of technical failure due to uncertainty around the integrity of the cable for reverse reeling operations. As such, Option 5 is preferred from a Technical perspective.

8.3.4 Societal

Both Options 2c and Option 5 have a similar impact on fishing as, although the line is fully removed in Option 2c, there will be disturbance caused to fishing activities from the reverse reeling operations. Option 5 will cause less disruption, but the line will be left in-situ, albeit fully trenched and buried.

Option 2c returns more useful material (copper) for recycling than Option 5, but also returns material (polymer) that is likely to end up in landfill. On balance, the quantity of useful material returned in Option 2c was considered to provide a small societal benefit.

Overall, there is a small preference for Option 2c from a Societal perspective.

8.3.5 Economic

The short-term costs associated with executing Option 2c where the line is fully removed by reverse reeling is around 25% higher than for the partial removal in Option 5, which is preferred. There are no legacy costs associated with the full removal option versus around £1.25 million associated with surveying and monitoring required for the partial removal in Option 5.

Overall, both options are equally preferred from an Economic perspective.

APPENDIX A EVALUATION METHODOLOGY

Appendix A.1 CA Evaluation Methodology

ONE-Dyas has selected a Multi Criteria Decision Analysis (MCDA) methodology for the evaluation phase of the CA. This methodology uses a pairwise comparison system based on the methodologies of the Analytical Hierarchy Process (AHP) by T.L. Saaty, described in various publications, such as Analytical Hierarchy Process ref. [6]. This allows the relative importance of each differentiating criteria to be judged against each other in a qualitative way, supported by quantification where appropriate. The key steps for the evaluation phase of the CA are as follows:

- > Define Differentiating Criteria this was completed in Q2 2020 and listed in Appendix A.2
- > Define Options completed as part of CA Screening;
- Pre-populate worksheets for internal CA workshops based on all the studies undertaken the worksheets were pre-populated in advance of the internal CA workshops;
- > Perform internal CA workshop;
- Discuss attributes of each option against each differentiating criteria the discussion was recorded 'live' during the workshop in order that informed opinion and experience was factored into the decisionmaking process;
- > Perform scoring (see Section Appendix A.5);
- > Perform sensitivity analyses to test the decision outcomes;
- > Export worksheets as a formal record of the workshop attendees' combined opinion on the current preferred options, the 'Emerging Recommendations';
- > Evaluate whether the CA needs to 'recycle' to the Preparation phase to obtain any further information to help inform decision making;
- > Discuss Emerging Recommendations with stakeholders (October 2020); and
- Recycle process as required prior to decision on the selected options which will be presented in the Decommissioning Programme and assessed in the Environmental Impact Assessment.

The sections below describe how the MCDA methodology has been applied.

Appendix A.2 Differentiating Criteria & Approach to Assessment

A key step in setting up the CA was agreeing and defining the appropriate criteria that differentiates between each of the tabled options. As a starting point, the criteria considered for this CA were taken from the BEIS Guidelines for Decommissioning of Offshore Oil and Gas Installations and Pipelines which are as follows:

- > Safety
- > Environmental

- > Technical
- > Societal

> Economic

These differentiating criteria were found to be appropriate for the decommissioning options tabled and were taken forward as the primary differentiating criteria for the CA. Additional sub-criteria and definitions were added for clarity and are shown in

Criteria	Sub-Criteria	Description	Approach to Assessment
	1.1 Operations Personnel	This sub-criterion considers elements that impact risk to operations personnel and includes, project team, project vessel crew, diving teams, supply boat crew, and survey vessel crew. It should be noted that crew changes are performed via port calls. Any requirement for handling HazMat / NORM shall also be addressed here.	Potential for Loss of Life (PLL) metrics were
	1.2 Other Users	This sub-criterion covers the impact associated with the risk to other users. Considers elements such as collision impact whilst performing activities. Users such as fishing vessels, commercial transport vessels and military vessels are considered.	calculated for each option. This allows a quantified direct comparison between options.
1. Safety	1.3 High Consequence Events	This sub-criterion relates to any inherent potential for high consequence events i.e. major accident hazard. It applies to all onshore and offshore personnel involved in the project. Considerations such as dropped object concerns, support vessel risks, are considered.	Informed by expert judgment upon the understanding of the operations associated with the decommissioning options.
	1.4 Legacy Risk	This sub-criterion addresses residual safety risk to other sea users i.e. fishermen, military vessel crews, commercial vessel crews and passengers, other sea users, that is provided by the option. Issues such as residual snag risk, collision risk, etc. may be considered.	Legacy risk informed by an assessment of the fishing operations conducted in the area of interest and the knowledge of the burial status of the lines being assessed.

Criteria	Sub-Criteria	Description	Approach to Assessment
	2.1 Operational Marine Impact	This sub-criterion addresses the marine environmental impact caused by performing the decommissioning option. Covers both planned impacts (inherent to the option being assessed) and potential unplanned impacts (accidental releases, both large and small in scale and encompassing Major Environmental Incidents (MEIs)). Impacts may be from Project Vessels, Supply Boats, Survey vessels, etc. Examples include; Noise generated by vessels, cutting operations, any explosives, etc., discharges from vessels and from removing infrastructure such as residual pipeline contents.	Planned and unplanned marine impacts are narrative judgement informed by estimates of volumes / composition of any releases. Impacts from vessels are qualitative in nature. Marine noise impact is a qualitative judgement informed by the vessel durations, subsea cutting operations and other operations that generate marine noise.
2. Environmental	2.2 Atmospheric Emissions & Fuel Consumption	This sub-criterion addresses the atmospheric emissions, fuel consumption and energy consumption from performing the decommissioning option. This may be from Project Vessels, Survey vessels, etc. Impacts may be greenhouse gas emissions such as CO ₂ , NO _x , SO ₂ , etc. Fuel and energy consumption is included and is tightly correlated to atmospheric emissions. Not considered: Energy / emissions / resource consumption required to replace materials not recovered for re-use or recycling which is covered in 2.3 Other Consumptions.	Fuel use, emissions and energy consumption are calculated from vessel operations using IP 2000 ref. [8] factors for vessel fuel use and emissions. Fuel use, and emissions provided in metric tonnes. Energy provided in joules.
	2.3 Other Consumptions	This sub-criterion addresses the environmental impact caused by the amount of resource consumption associated with the option. It covers elements such as environmental impact from processing returned materials, the use of quarried rock or other new material and any production of replacement materials for equipment left in-situ.	Consumptions such as rock / steel / other fabrications are quoted in metric tonnes. Impact of recycling / processing returned material and replacing leave-in-situ material is quoted in metric tonnes of CO ₂ . The CO ₂ figures allow a direct, quantitative comparison between options.

Criteria	Sub-Criteria	Description	Approach to Assessment
	2.4 Seabed Disturbance	This sub-criterion addresses the direct and indirect seabed disturbance caused by performing the decommissioning option. Impacts that are both permanent and temporary in nature are considered. The level of impact caused and any specific seabed concerns, such as protected areas or habitat changes may be covered.	Assessment based on quantifying the area of disturbance and by type of disturbance (dredging, rock dump, trenching, backfilling, mass flow excavation) in combination with an understanding of the baseline environment in the area as shown by the outputs from the environmental surveys.
2. Environmental	2.5 Legacy Marine Impacts	This sub-criterion addresses the marine environmental impact caused after the decommissioning option has been performed. Covers the long-term impact of any infrastructure left in-situ such as release of materials into the marine environment, environmental impact from legacy monitoring and remediation i.e. planned and unplanned releases from vessels, vessel noise, etc.	Planned and unplanned marine impacts are narrative judgement informed by estimates of volumes / composition of any releases and the duration these may occur over. Impacts from vessels are qualitative in nature. Marine noise impact is a qualitative judgement informed by the vessel durations, subsea cutting operations and other operations that generate marine noise.

Criteria	Sub-Criteria	Description	Approach to Assessment
3. Technical	3.1 Technical Risk	This sub-criterion relates to the various technical risks that could result in a major project failure i.e. failure to deliver the decommissioning option broadly within the timescale / budget / endorsed decommissioning programme. Consideration is given to: Technical Novelty / Track Record, where the novelty of the technical solution is considered. Technical Challenges / Consequence of Failure to deliver the such as amendment to decommissioning approach and Potential for Showstoppers can be captured along with impact on the schedule due to overruns from technical issues such as operations being interrupted by the weather. Technical Feasibility and Technical Maturity is also considered.	Scored 1 – 3 with 1 being least technically feasible and 3 most technically feasible.
	4.1 Fishing	This sub-criterion addresses the impact of the option on commercial fishing operations. It includes consideration of impacts from both the decommissioning activities any residual impacts post decommissioning such as reinstatement of access to area.	Scored 1 – 3 with 1 being a proportionally large area lost for fishing and 3 being a minimal area
4. Societal	4.2 Other Users	This sub-criterion addresses any positive or negative socio-economic impacts on other users, where the impact may be from dismantling, transporting, treating, recycling and land filling activities relating to the decommissioning option. Additionally, Issues such as impact on the health, well-being, standard of living, structure or coherence of communities or amenities are considered here e.g. business or jobs creation, increase in noise, dust or odour pollution during the decommissioning option which has a negative impact on communities, increased traffic disruption due to extra-large transport loads, etc.	Scored 1 -3 with 1 being significant long-term impact to communities and 3 being minimal.
5. Economic	5.1 Short-term Costs	This sub-criterion addresses the cost of delivering the option as described. No long-term cost element is considered here.	Cost data (£ k)
	5.2 Long-term Costs	This sub-criterion addresses the costs associated with any long-term liabilities such as on-going monitoring and any potential future remediation costs.	Cost data (£ k)

Table 8.1: Sub-criteria Definition

Appendix A.3 Differentiator Weighting

The 5 differentiating criteria all carry a 20% weighting. That is, all criteria are neutral to each other. Figure 8.1 shows the pairwise comparison matrix. ONE-Dyas decided that equal weightings offer the most transparency and a balanced view from all perspectives.

Criteria	1. Safety	2. Environmental	3. Technical	4. Societal	5. Economic	Weighting
1. Safety	N	N	N	N	N	20%
2. Environmental	N	N	N	N	N	20%
3. Technical	N	N	N	N	N	20%
4. Societal	N	N	N	N	N	20%
5. Economic	N	N	N	N	N	20%

Figure 8.1: Example Pairwise Comparison Matrix (N = Neutral)

Appendix A.4 Option Attributes

The next step in the CA process was to describe and discuss the attributes of each option with respect to each of the differentiating criteria. In preparation, all relevant data and information developed during the preparation phase were pre-populated into the attributes table for each option. Appendix C, Appendix D and Appendix E contain the completed Attributes Tables for Groups 1, 6 and 7 respectively.

Any additional discussion around the relative merits of the options was also recorded in the attributes matrix. A summary discussion of why options are considered more or less attractive with respect to each of the differentiating criteria was also recorded. An easy-to-read version of this matrix was supplied to stakeholders as part of the recommendation review process.

Appendix A.5 Option Pair-Wise Comparison

Once the option attributes were compiled and discussed, a pair-wise comparison was performed for each of the differentiating criteria where the proposed options were compared against each other. The pairwise comparison adopted in this case used phrases such as stronger, much stronger, weaker, much weaker, etc. to make qualitative judgements (often based on quantitative data) of the options against each other. Adopting these phrases rather than the more common numerical 'importance scale' from the Analytical Hierarchy Process (AHP) is often more intuitive and representative of the sentiment of a workshop.

One of the challenges of applying the numerical importance scale historically, is that often when scoring a pair of options against each other as a score of 3, delegates implied the comparison was 3 times better, etc. rather than 'slightly better' as the importance scale suggests.

To manage this, ONE-Dyas chose to apply the principles of the AHP by replacing numbers in the pairwise comparison matrix with a narrative or descriptive approach. This is already programmed into the AHP in the

importance scale explanations (see Table 8.2). It was agreed that three positions from equal (and their reciprocals) would be sufficient for this CA. These positions were:

Title	Scope	Relative Preference Ratio
Neutral	Equal Importance, equivalent to 1 in the AHP importance scale.	50 / 50
Stronger (S) / Weaker (W)	Moderate importance of one criteria / option over the other, equivalent to 1.5 in the AHP importance scale.	60 / 40
Much Stronger (MS) / Much Weaker (MW)	Essential / strong importance of one criteria / option over the other equivalent to 5 or 6 in the AHP importance scale.	75 / 25
Very Much Stronger (VMS) / Very Much Weaker (VMW)	Extreme importance of one criteria / option over the other equivalent to 8 or 9 in the AHP importance scale.	90 / 10

Table 8.2: Explanation of Phrasing Adopted for Pairwise Comparison

Using this transposed scoring system made it simpler and, more importantly, more effective at capturing the mind-set and feeling of the attendees at the workshops. Phrases such as 'what are the relative merits of pipeline removal on a project versus rock dumping from a safety perspective? Are these Neutral to each other? Are they stronger? If so, how much stronger? If you had to prioritise one over the other, which would it be?' This promoted a collaborative dynamic in the workshop and enabled the collective mind-set of the attendees to be captured. Where there was quantitative data to provide back-up and evidence to support the collective assertions, so much the better.

A summary example of the completed pair-wise comparisons for differentiating criteria versus options are shown in Figure 8.2.

		3. Technie	cal	ve - End Removal - d Rock Placement	ve - End removal - lete Rock Placement	ve - End Removal	rench Removal - Cut and		Weighting		
1. Safety		ave - End Ren ed Rock Place		5.	Economi		1. Leave - End Removal - Limited Rock Placement	2. Leave - End removal - Complete Rock Placement	3. Leave - End Removal and Trench	4. Full Removal - Cut and lift	Weighting
1. Leave - End Removal -		ave - End rem plete Rock Pla					1. Leave Limited I	2. Leave Complet	3. Leave and Tren	4. Full R lift	
Limited Rock Placement		ave - End Ren French	noval		- End Remo Rock Placem		N	s	MS	VMS	50.50%
2. Leave - End Removal	4. Fu lift	ll Removal - C	ut and		- End remov e Rock Place		w	N	s	MS	26.35%
and Trench				3. Leave and Tree	- End Remo nch	val	MW	w	N	s	15.21%
4. Full Removal - Cut and lift	VMW	VMW	MW		emoval - Cut	and	VMW	MW	w	N	7.94%

Figure 8.2: Example Option Pair-Wise Comparison

Appendix A.6 Visual Output and Sensitivities

The decision-making tool used the above pairwise comparisons to automatically generate a visual output indicating the highest scoring option i.e. the option which represents the most 'successful' solution in terms of its overall contribution to the set of differentiating criteria. At this stage, opportunity was provided to fine tune the judgements provided, to ensure that all attendees were happy to endorse the outcome. The visual outputs from each decision point are included in Appendix C, Appendix D and Appendix E. An example of the visual output obtained is shown in Figure 8.3.

Figure 8.3: CA Visual Output Example

The CA output can then easily be stress tested by the workshop attendees by undertaking a sensitivity analysis:

- > By applying a modification to the weighting of the criteria bearing in mind that the base case for this assessment is to have all criteria equally weighted, and / or
- > Modifying the pair-wise comparison of the options against each other within the criteria where appropriate.

These sensitivities will help inform workshop attendees as to whether a particular aspect is driving a preferred option, or indeed if the preferred option remains the same when the sensitivities are applied.

APPENDIX B STAKEHOLDER CA WORKSHOP MINUTES

Subject:Sean Field Decommissioning – Stakeholders CA WorkshopLocation:Video Conference (UK, Netherlands)

Date: 26/08/2020

Minuted by: Jeff McCleary

Issued on: 21/09/2020

Attending:

Organisation	Attendee
Marine Management Organisation (MMO)	Lindsey Mullan - Marine Licensing Case Manager Luella Williamson - Marine Licensing Case Officer
Joint Nature Conservation Council (JNCC)	Hannah Hood - Offshore Industry Adviser Becky Hitchin - Offshore Industry Advice Manager (sandbank specialist)
Natural England (NE)	Mark Johnston - Senior Marine Specialist – Estuaries, Ports and Marine Industries
Offshore Petroleum Regulator for Environment and Decommissioning (OPRED)	Ruth Ledingham - Senior Financial Governance Manager Dr Sarah Dacre - Senior Environmental Manager Jade Jones - Assistant Decommissioning Manager Sam Pattie – Administrative Operations
North Norfolk District Council (NNDC)	Rob Goodliffe- Coastal Manager
Crown Estates	Jason Golder - Senior Asset Manager
Health and Safety Executive (HSE)	Bill Chilton – Decommissioning Abdulgani Oseni – Pipeline Inspector
ONE-Dyas	Jan Willem in't Anker – Construction / Engineering Manager Ceriel Haesen - Asset Manager Maurits Waaijenberg - Senior Facility Engineer Martijn Hoefsloot - Senior Production Superintendent Dirk Drijver - HSEQ Manager Linda Murray - Environmental Advisor
Xodus	John Foreman - Consultant Engineer - TSR Gareth Jones – Decommissioning Manager Jeff McCleary - Consultant Engineer - Subsea & Decommissioning Phil Roberts – Principal Consultant – Process & Facilities Claire Weller – Principal Environmental Consultant

Distribution: Attendees plus;

Organisation	
National Federation of Fishermen's Organisations (NFFO)	Ian Rowe - General Manager
Environment Agency (EA)	ТВА

Item	Comment	Action
1.0	Pre-Workshop Crown Estates Discussion	
1.1	Prior to the main stakeholder workshop separate discussions were held with Crown Estate representative Jason Golder.	Info

ltem	Comment	Action
1.2	Discussions around how the fundamental approach to decommissioning has changed over the lifetime of the asset. Original Lease agreement (1988) was quite binary with respect to remove/leave, in 2008 the regulatory regime was introduced, whilst now the fundamental principal of leave <i>in situ</i> can be accepted provided the regulations are followed and provided there is an evidence based argument to environmental and societal benefit for doing so.	Info
1.3	Jason remarked that ONE-Dyas should remain in contact with regards the outcome of the CA process and timeline for decommissioning and follow up discussions are required to investigate the mechanism for termination of the lease agreement subject to findings of CA and the decommissioning approach selected.	ONE- Dyas
2.0	Introductions & Background	
2.1	The workshop was introduced by ONE-Dyas followed by a brief overview of the fields and relevant infrastructure under consideration.	Info
2.1.1	ONE-Dyas were asked to clarify the anticipated date for decommissioning to take place and indicated that at present decommissioning is forecast for 2024 but was dependent on many factors including oil price hence may be subject to change.	Info
2.2	A summary of the methodology and outcomes from the Screening phase of the CA Process was provided.	
2.2	Further detail of the subsea infrastructure which had been identified for review as part of the comparative assessment was presented by Xodus Group. This included:	Info
	30" Export Pipeline, Sean PP to Bacton Terminal	
	20" Export Pipeline, Sean RD to Sean PD	
	1" Electrical Cable, Sean RD Sean PD	
	Key points of interest with regards these assets are described later within these minutes.	
3.0	Environmental Baseline	
3.1	An environmental summary including; details of the benthic environment, threatened and/or declining habitats and species as well as relevant conservation sites was described by Xodus Group.	Info
3.2	Although the onshore section of the 30" Export Pipeline is out with CA scope and with reference to pre-workshop discussions (See 1.0) Xodus Group presented the current base case to decommission <i>in situ</i> this section of the pipeline.	Info
	It was highlighted that if onshore sections become exposed in the future these sections will be remediated/removed to reduce any potential risk following discussion with the appropriate regulatory authority	

ltem	Comment	Action
4.0	Comparative Assessment	
4.1	The background to the comparative assessment (CA) process conducted to date was provided by Xodus Group, as well as details of the evaluation methodology that would be re-visited during this review workshop.	Info
4.2	Handouts provided for the workshop included:	Info
	 A set of presentation slides (appended to these minutes) including; 	
	 A set of the criteria and sub-criteria definitions used; 	
	 Preliminary Emerging Recommendation developed for each option to be re-appraised for this review workshop. 	
5.0	Group 1: 30" Export Pipeline, Sean PP to Bacton Terminal	
5.1	As part of the introduction a summary of the infrastructure and key features within this group was provided:	Info
	• 30" Gas Export Pipeline (PL311)	
	 Sean PP to Bacton Terminal 	
	 Min Water Depth 9.3m (Smiths Knoll at KP51.45 approx) 	
	o 105.4km	
	 Carbon Steel 	
	 Concrete Weight Coating 	
	 Asphalt Enamel Corrosion Coating 	
	 Partially Trenched, Partially Buried 	
	 Sections with Rock Placement 	
	Crosses 5 designated sites	
5.2	Four options were evaluated for this group:	Info
	 Option 2a – Full removal cut and lift with de-burial. 	
	 Option 4a – Leave in situ, minor, rock placement over exposures 	
	 Option 4c – Leave <i>in situ</i>, minor, remove exposures 	
	 Option 5 – Leave <i>in situ</i>, minimal intervention, remove ends and remediate snag risk. 	
5.3	Safety	
5.3.1	Operational Personnel – The assessment presented with no challenges raised.	Info
5.3.2	Other Users – The assessment presented with no challenges raised.	Info
5.3.3	High Consequence Events – The assessment presented with no challenges raised.	Info
5.3.4	Legacy Risk – The assessment was presented and debated. The existing assessment was to remain as the base case with a sensitivity conducted to increase the preference for the full removal option over the other options.	Xodus
	Sensitivity case to be presented within CA Report.	

Item	Comment	Action
5.4	Environmental	
5.4.1	Operational Marine Impacts – The assessment presented with no challenges raised.	Info
5.4.2	Atmospheric Emissions & Fuel Consumption – The assessment presented with no challenges raised.	Info
5.4.3	Other Consumptions – The assessment presented with no challenges raised.	Info
5.4.4	Seabed Disturbance – The assessment presented with no challenges raised.	Info
5.4.5	Legacy Marine Impacts – The assessment was presented and debated. The existing assessment was to remain as the base case with a sensitivity conducted to increase the preference for the full removal option over the other options. Sensitivity case to be presented within CA Report.	Xodus
5.4.6	Ruth Ledingham also stated that Option 5 – Leave <i>in situ</i> , minimal intervention, remove ends and remediate snag risk would be need to be monitored more frequently if spanning remained on the line.	Info
	Current provision for legacy monitoring covers 6 surveys at 5 yearly frequency considered adequate no action.	
5.5	Technical	
5.5.1	Technical Risk – The assessment presented and debated. The existing assessment was to remain as the base case with a sensitivity conducted to reduce the preference for the full removal option over the other options.	Xodus
	Sensitivity case to be presented within CA Report.	
5.6	Societal	
5.6.1	Fishing – The assessment presented with no challenges raised.	Info
5.6.2	Other Users – The assessment presented with no challenges raised.	Info
	Rob Goodcliffe (NNDC) highlighted that in the near shore areas consideration of aspects such as noise, other sea users and beach access must be accounted for and the narrative was adjusted to make note of this under the full removal option.	
5.6.3	There was discussion relating the waste path for the steel and concreted associated with the line. It was asserted that whilst the aim would be for steel to be recycled that the concrete which was considered to be salt contaminated, for the most part, would likely go to landfill. Given the unavailability of the Environment Agency, this was followed up by ONE-Dyas post-meeting.	Info
	Post meeting Note: ONE-Dyas contacted the Environment Agency to clarify the waste path for the steel and concrete associated with the line. It was clarified that concrete would need to be assessed (in accordance with the WM3 Waste classification technical guidance) and potentially treated accordingly. Salt contamination wouldn't necessarily mean all concrete would have to be landfilled. It was also stated that landfilling of concrete should be avoided and should only be considered as the last option (Email from Dominic Murphy, EA National Customer Contact Centre to Linda Murray 09/09/20).	

ltem	Comment				Action					
5.7	Economic									
5.7.1	Short-Term Costs – T	he assessment pre	esented with no cha	llenges raised.	Info					
5.7.2	Long-Term Costs – The assessment presented and debated.									
	Ruth Ledingham (OPRED) commented in regard to legacy survey allowance that the requirement to survey in perpetuity should not assume that survey frequency can be reduced on an evidence-based approach. She also highlighted that in the Southern North Sea it is not uncommon for operators to have to perform regular remediation works and sufficient provision for this level of remediation should be allowed for.									
5.8	Results									
	The base case outcome of the assessment is shown in the chart below. The emerging recommendation for Group 1: 30" Export Pipeline, Sean PP to Bacton Terminal is Option 5 – Remove Ends & Remediate Snag Risk. Group 1: 30" Export Pipeline Sean PP to Bacton Terminal 1. Safety 2. Environmental 3. Technical 4. Societal 5. Economic									
	45.0% 40.0% 39.2%									
	35.0%			7.9%						
	30.0%	30.7%		6.8%						
	25.0%	5.4%								
	20.0% 15.1% 15.0%	9.0%	14.9%	9.0%						
	10.0% 3.3% 0.9%	4.8%	4.6%	7.7%						
	5.0% 4.0%	6.1%	1.1% 3.5% 2.9%	7.8%						
	0.0%	nd O4A - Leave - Minor - Rock								

Item	Comment	Action
6.0	Group 6: 20" Export Pipeline, Sean RD to Sean PD	
6.1	As part of the introduction a summary of the infrastructure and key features within this group was provided:	Info
	• 20" Interfield Gas Pipeline (PL310)	
	 Sean RD to Sean PD 	
	 Circa 30m Water Depth 	
	○ 4.8km	
	 Duplex Stainless Steel 	
	 Concrete Weight Coated 	
	 Neoprene Corrosion Coating 	
	 Trenched and 3" Gravel Backfill 	
	 Trench Depth 0.45 -1.4m (Target 0.6m) 	
	 7" Rock cover over Trench Transitions 	
	 No spans, & only pipeline ends exposed (40m & 72m) 	
	Does not lie in any designated sites	
6.2	 Two options were evaluated for this group: Option 2a – Full removal cut and lift with de-burial. Option 5 – Leave <i>in situ</i>, minimal intervention, remove ends and remediate snag risk. 	Info
6.3	Safety	
6.3.1	Operational Personnel – The assessment presented with no challenges raised.	Info
6.3.2	Other Users – The assessment presented with no challenges raised.	Info
6.3.3	High Consequence Events – The assessment presented with no challenges raised.	Info
6.3.4	Legacy Risk – The assessment presented with no challenges raised.	Info
6.4	Environmental	
6.4.1	Operational Marine Impacts – The assessment presented with no challenges raised.	Info
6.4.2	Atmospheric Emissions & Fuel Consumption – The assessment presented with no challenges raised.	Info
6.4.3	Other Consumptions – The assessment presented with no challenges raised.	Info
6.4.4	Seabed Disturbance – The assessment presented with no challenges raised.	Info
6.4.5	Legacy Marine Impacts – The assessment presented with no challenges raised.	Info
6.5	Technical	
6.5.1	Technical Risk – The assessment presented with no challenges raised.	Info
6.6	Societal	
6.6.1	Fishing – The assessment presented with no challenges raised.	Info

Item	Comment	Action							
6.6.2	Other Users – The assessment presented with no challenges raised.								
6.7	Economic								
6.7.1	Short-Term Costs – The assessment presented with no challenges raised.								
6.7.2	Long-Term Costs – The assessment presented with no challenges raised.								
6.8	Results								
6.8.1	3.1 The base case outcome of the assessment is shown in the chart below. The emerging recommendation for Group 6: 20" Export Pipeline, Sean RD to Sean PD is Option 5 – Remove Ends & Remediate Snag Risk.								
	Group 6: 20" Export Pipeline Sean RD to Sean PD 1. Safety 2. Environmental 3. Technical 4. Societal 5. Economic 70.0%								
	60.0% 58.7%								
	50.0%								
	41.4% 10.0%								
	30.0% 10.0% 15.0%								
	20.0% 5.0% 10.4%								
	10.0% 11.8%								
	0.0%								
	O2A - Full Removal - Cut & Lift with Deburial O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk								

ltem	Comment	Action
7.0	Group 7: 1" Electrical Cable, Sean RD Sean PD	
7.1	As part of the introduction a summary of the infrastructure and key features within this group was provided:	Info
	• 1" Power Cable (S0803)	
	 Sean RD to Sean PD 	
	 Circa 30m Water Depth 	
	o 4.9km	
	 Trenched and Buried 	
	 Burial average 0.54m, max 1.22m 	
	 No Spans or Exposures 	
	Does not lie in any designated sites	
7.2	Two options were evaluated for this group:	Info
	 Option 2c – full removal using reverse reel with de-burial. 	
	 Option 5 – leave <i>in situ</i>, minimal intervention, remove ends and remediate snag risk. 	
7.3	Safety	
7.3.1	Operational Personnel – The assessment presented with no challenges raised.	Info
7.3.2	Other Users – The assessment presented with no challenges raised.	Info
7.3.3	High Consequence Events – The assessment presented with no challenges raised.	Info
7.3.4	Legacy Risk – The assessment presented with no challenges raised.	Info
7.4	Environmental	
7.4.1	Operational Marine Impacts – The assessment presented with no challenges raised.	Info
7.4.2	Atmospheric Emissions & Fuel Consumption – The assessment presented with no challenges raised.	Info
7.4.3	Other Consumptions – The assessment presented with no challenges raised.	Info
7.4.4	Seabed Disturbance – The assessment presented with no challenges raised.	Info
7.4.5	Legacy Marine Impacts – The assessment presented with no challenges raised.	Info
7.5	Technical	
7.5.1	Technical Risk – The assessment presented with no challenges raised.	Info
7.6	Societal	
7.6.1	Fishing – The assessment presented with no challenges raised.	Info
7.6.2	Other Users – The assessment presented with no challenges raised.	Info
7.7	Economic	
7.7.1	Short-Term Costs – The assessment presented with no challenges raised.	Info
7.7.2	Long-Term Costs – The assessment presented with no challenges raised.	Info

ltem	Comment	Action				
7.8	Results					
7.8.1	The base case outcome of the assessment is shown as Option 5, leave in-situ in the chart below. Given the narrow difference in assessment between the full removal and leave in-situ options, the emerging recommendation for Group 7: 1" Electrical Cable Sean RD Sean PD is Option 2C – Full Removal by Reverse Reeling with Deburial.	1				
	49.0%					
	50.0% 10.0% 10.0%					
	40.0% 11.0% 9.0%					
	8.0%					
	20.0% 10.0% 10.0%					
	10.0% 10.0% 10.0%					
	0.0% O2C - Full Removal - Reverse Reel with Deburial O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk					
8.0	Additional Points					
8.1	Mark Johnston (NE) Queried whether the full removal methodology accounted for recovery of rock protection. He informed the room that the Hornsea 3 windfarm development have elected to recover all rock from their cables and shared their subcontractor methodology post meeting.	1				
	Post Meeting Note: In discussions with OPRED 09.09.20 it was clarified that current guidance on rock recovery has not changed and that the recovery of rock would only need to be considered if this is intrinsic to the pipeline removal methodology. Given the full removal case considers displacement of rock using remote Mass Flow Tooling the recovery of rock is not proposed and shall not be considered further.	/ Ə				
	Post Meeting Note: Following the workshop rock quantities were reviewed alongside recently acquired 2020 pipeline survey results. It has been confirmed that rock is placed at the platform end of the pipeline end, and in short sections intermittently along its length only. The extensive lengths of rock berms established from legacy pipeline schematics as presented during the workshop have since been discounted.					
8.2	Hannah Hood (JNCC) suggested that a sensitivity case where full rock removal is considered should be included.	s Info				

ltem	Comment	Action
8.3	Hannah Hood (JNCC) queried the use of equal weighting across the 5 criteria (Safety, Environment, Technical, Societal and Economic) and their associated attributes. Discussions led to a number of sensitivities being tabled for consideration.	Info
	Hannah also raised the point that Technical only uses one sub-criterion and is therefore quite dominant in the assessment.	
	Post Meeting Note: Alternative weighting for primary criteria discussed and agreed with ONE-Dyas and will be presented in the CA Report.	
8.4	Ruth Ledingham (OPRED) stated that the use of rock placement in certain areas is likely to be opposed therefore it may prudent to take a closer look at the proposed remediation in specific areas.	Info
	Indicative locations of proposed remediation shall be established from recently acquired 2020 pipeline survey data. These locations shall be considered and presented in the EA Report.	
8.5	Becky Hitchin (JNCC) enquired as to whether the review could consider the specific impact of each option on site specific locations i.e. per Marine Protected Area (MPA).	Info
	It is confirmed that impacts on all Marine Conservation zones shall be considered and captured as part of the EA Report.	
8.6	Luella Williamson (MMO) requested that the features of each MPA are considered for each line and options under consideration.	
	See minute 8.5.	
8.7	Ruth Ledingham (OPRED) enquired as to what re-use options have been considered for the 30" Export Pipeline and informed the room that the trunkline had been identified by BEIS as a potential candidate for the development of carbon capture, usage and storage (CCUS).	
	ONE-Dyas outlined the re-use options explored and discounted.	
	It was agreed that this discussion would be continued between OPRED and ONE-Dyas.	
	Post Meeting Note: Further discussions regarding re-use options and potential CCUS usage were held between ONE-Dyas and OPRED on 08/09/20. A summary of this shall be included within the DP and discussed further with the OGA as part of COP document development.	

GROUP 1 – DETAILED EVALUATION RESULTS APPENDIX C

Appendix C.1 **Group 1 Attributes Table**

		O2A - Full Remo	oval - Cut and Lift		O4A - Leave - N	linor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - M
	 Pipeline will be cut at platform and near shore ends. Line will be deburied where required using MFE to access for cutting. Line cut into 20m sections using trident dual DWC tooling. Pipeline is 30" diameter, concrete coated, rigid. Note: No recovery of existing rock cover. 				 Rock placement to rem Rock placement at all a 	latform and near shore ends. ediate snag risk from cut ends areas of spans and exposure r, concrete coated, rigid.	 Pipeline will be cut at platform and near shore ends. Removal of areas of spans and exposure using cut and lift techniques (including deburial with MFE where required) with trident dual DWC too Rock placement to remediate snag risk from cut ends Pipeline is 30" diameter, concrete coated, rigid. 	
	Vessel Type: Pot	3 / Days / Hours / P	LL		Vessel Type: PoB / Days	s / Hours / PLL	Vessel Type: PoB / Days / Hours / PLL	Vessel Type: PoB /
		732,746 / 5.50E-02			Rockdump Vessel: 20 / 5		CSV: 76 / 548.4 / 500,168 / 3.75E-02	CSV: 76 / 6.0 / 5,44
nel	Total offshore hou Total offshore PLL	,			Total offshore hours: 13,7 Total offshore PLL: 1.03E		Total offshore hours: 500,168 hrs Total offshore PLL: 3.75E-02	Total offshore hours Total offshore PLL:
Operations Personnel	Engineering & Ma Project Managem	Resource Type: Days / Hours / PLL Engineering & Management: 11,700.0 / 374,400 / 1.50E-03 Project Management: 10,672.0 / 170,752 / 6.83E-04 Onshore Operations (includes Cleaning & Disposal): 1,108.0 / 70,912 / 8.72E-03			Project Management: 1,0 Total onshore hours: 56,0	ent: 1,204.4 / 38,541 / 1.54E-04 093.0 / 17,488 / 7.00E-05 029 hrs	Resource Type: Days / Hours / PLL Engineering & Management: 9,425.0 / 301,600 / 1.21E-03 Project Management: 9,558.0 / 152,928 / 6.12E-04 Onshore Operations (includes Cleaning & Disposal): 290.0 / 18,560 / 2 03	
1.1 Op	Total onshore hours: 616,064 hrs Total onshore PLL: 1.09E-02				Total onshore PLL: 2.24E Total operational hours: 6	69,784 hrs	Total onshore hours: 473,088 hrs Total onshore PLL: 4.10E-03	Total onshore hours Total onshore PLL:
	Total operational I Total operational	hours: 1,348,810 hrs PLL: 6.59E-02	5		Total operational PLL: 1.2	26E-03	Total operational hours: 973,256 hrs Total operational PLL: 4.16E-02	Total operational ho Total operational PL
	MW	W	VMW		MS	W	VMW	
		of the Operations Possed as being Muc		tion 4A as the risk e	1	es higher due to the much longer durations ;	associated with the cut and lift of the entire line and the processing of the mater	
mmar	with no material ru the long durations Option 4A is asse higher than the m Option 4C is asse	eturned for processi for full removal vers essed as being Muc inimal operations as essed as being Very	sus limited offshore h Stronger than Op ssociated with Opt v Much Weaker that	scope to address the otion 4C as the risk on 5. an Option 5 as the risk	e line end only. exposure to remove areas	of the line versus rock cover areas of the lin	than removing areas of the line only. Option 2A is assessed as being Weaker than Op ne is around 30 times higher. Option 4A is assessed as being Weaker than Op operations in Option 5 is around 130 times higher.	h Weaker than Option 5 a
Users	with no material ru the long durations Option 4A is asse higher than the m Option 4C is asse	eturned for processi for full removal vers essed as being Muc inimal operations as essed as being Very	sus limited offshore h Stronger than Op ssociated with Opt v Much Weaker that	scope to address the otion 4C as the risk on 5. an Option 5 as the risk	e line end only. exposure to remove areas sk exposure from removing	of the line versus rock cover areas of the lin	than removing areas of the line only. Option 2A is assessed as being Very Muc ne is around 30 times higher. Option 4A is assessed as being Weaker than Op	h Weaker than Option 5 a
1.2 Other Users	with no material m the long durations Option 4A is asse higher than the m Option 4C is asse Overall, Option	eturned for processi for full removal vers assed as being Muc inimal operations as assed as being Very 5 is the preferred of	sus limited offshore h Stronger than Op ssociated with Opt v Much Weaker that	scope to address the otion 4C as the risk on 5. an Option 5 as the risk	e line end only. exposure to remove areas sk exposure from removing sonnel perspective. Vessel Days:	of the line versus rock cover areas of the lin g areas of the pipeline versus the minimal of	than removing areas of the line only. Option 2A is assessed as being Very Muc ne is around 30 times higher. Option 4A is assessed as being Weaker than Op operations in Option 5 is around 130 times higher.	tion 5 as the risk exposure Vessel Days:

Summary impact on other users with the short duration of offshore operations and a single transit to / from the area. Option 4A is assessed as being Stronger than Option 4C as there are fewer vessel days and transits associated with Option 4A. Option 4A is assessed as being Weaker than Option 5 as there are fewer vessel days and transits associated with Option 5. Option 4C is assessed as being Weaker than Option 5 as there are fewer vessel days and transits associated with Option 5. Overall, Option 5 is the preferred option from a risk to Other Users perspective.

Minimal - Remove Ends & Remediate Snag Risk cut at platform and near shore ends. t to remediate snag risk from cut ends t to remediate spans approaching fishsafe criteria diameter, concrete coated, rigid. 3 / Days / Hours / PLL ,445 / 4.08E-04 urs: 5,445 hrs L: 4.08E-04 Days / Hours / PLL anagement: 75.0 / 2,400 / 9.60E-06 nent: 94.0 / 1,504 / 6.02E-06 ons (includes Cleaning & Disposal): 1.0 / 64 / 7.87E-06 urs: 3,968 hrs L: 2.35E-05 hours: 9,413 hrs PLL: 4.32E-04 shorter offshore durations to rock cover areas of the line 5 as the risk exposure is more than 200 times higher for sure for rock covering areas of the line is around 4 times 6.0 days

sers than the shorter duration of operations and fewer ng Much Weaker than Option 5 as there is limited safety

			O2A - Full Rem	oval - Cut and Lift		O4A - Leave - I	Minor - Rock Placeme	ent over Exposures	O4C - Leave - Minor	- Remove Areas of Exposure	O5 - Leave
1. Safety	1.3 High Consequence Events	through water colu	ımn (8617 lifts). Ir	al for dropped object to addition there is the line to quayside.		Routine operations - no l	lifting of pipeline.		Largely routine operations. Pote through water column (2290 lifts)	ntial for dropped object from multiple lifts	Routine operation
		VMW	W	VMW		VMS	N	r	VMW	r	7
s		Option 2A is asse Weaker than Optio Option 4A is asse associated with th Option 4C is asse	ssed as being Ver on 4C as while bot ssed as being Ver ese options. ssed as being Ver	th options have signif ry Much Stronger that ry Much Weaker that	n both Option 4A an ficant lifting operation on Option 4C as the n Option 5, again do	nd Option 5 due to the ver ons for pipeline recovery, t ere is no lifting associated ue to the high number of I	there is around 4 time r with this option versus	more lifting in Option 2A. a high number of lifts with C	-	o lifting operations with Option 4A and mir as being Neutral to Option 5 as the potent	
1. Safety	1.4 Legacy Risk	1.4 Legacy Risk				The line would remain in length would be fully bur covered to mitigate poter The survey & monitoring potential snag hazard fro managed & mitigated as Vessel Type: PoB / Day Survey Vessel (Legacy):	ied. Areas of spans or ntial snag hazard. programme is commit om left in-situ infrastruc appropriate. s / Hours / PLL	ted to ensuring that the ture continues to be	length would be fully buried. Are with small areas of rock cover to ends. The survey & monitoring program	s / PLL	The line would rei length would be fi to mitigate poteni fishsafe crietria. The survey & moi potential snag ha managed & mitig Vessel Type: Pol Survey Vessel (L
		S	S	MS		Ν	S	ľ	S		
S	ummary	Option 4A is asse considered similar	ssed as being Ner for the line with a preferred optio	utral to Option 4C as reas of spans and ex n from a Residual	the potential for sn posure either rock	• •	ilar for the line with are is the line remaining in	as of spans and exposure ei situ as is.	g in situ as is but subject to a surve ther rock covered or removed. Bot Vessel Noise (days on-site): CS ¹	h Option 4A and Option 4C are assessed	as being Stronger t
		MFE: 86 days DWC: 180 days				Rock Dump: 11 days Operation Discharges:			DWC: 191 days Operation Discharges:		DWC 0.02 days
ronmental	Marine Impact	(BEP) and the Best possible both resid	flushing operation st Available Techn dual hydrocarbon a	s will use Best Envir iques (BAT) to minin and other chemical le environment during flu	nise as far as evels in line post	Line cleaning and flushing operations will use Best Environmental Practice (BEP) and the Best Available Techniques (BAT) to minimise as far as possible both residual hydrocarbon and other chemical levels in line post flush and discharges to the marine environment during flushing activities. Cutting of line ends would lead to an elevated discharge of fluids from within					Line cleaning and (BEP) and the Be possible both res flush and dischar
2. Environ	Operational N	fluids from within t concentration and	he line. However, quantity of discha	s would lead to an ele given the prior cleani arge should still be lo anticipated to be low	ng of the line, the w overall.						the line. However quantity of discha impact is also an
	2.1				This includes Ballast, Gr vessel operations and th	Vessel Discharges: This includes Ballast, Grey and Black Water, this is driven by duration of vessel operations and therefore at 18 days it is 2nd lowest of the options being evaluated and considered negligible.			Black Water, this is driven by duration of tt 406 days it is the 2nd highest of the	Vessel Discharge This includes Bal vessel operations options being eva	
		MW	N	MW		MS	N		MW		·
s	ummary	Option 2A is asse cuts. Option 2A is Option 4A is asse 4A is assessed be Option 4C is asse	ssed as being Mu s assessed as bei ssed as being Mu eing Neutral to Op ssed as being Mu	ing Neutral to Option ch Stronger than Op tion 5 as the environr ch Weaker than Opt	A Option 4A and Op 4C as the impacts tion 4C due to the h mental impact from ion 5, again due to	tion 5 as the noise, opera are expected to relatively higher noise impact, opera conducting these options	v similar. ational discharges and s is similar. operational discharges	vessel discharges for Option	4C due to the extended durations	d durations of vessels on-site, extensive d of vessels on-site, extensive diamond wire ions of vessels on-site, extensive diamond	e cutting operations

- Minimal - Remove Ends & Remediate Snag Risk
ns - Minimal lifting of line and rock bags.
ons with Option 5. Option 2A is assessed as being
quence Events is similar as there is no / minimal lifting
emain in-situ with this option although the majority of its fully buried. The line ends will be removed with rock cover tital snag hazard from cut ends and spans approaching
pnitoring programme is committed to ensuring that the azard from left in-situ infrastructure continues to be gated as appropriate.
B / Days / Hours / PLL .egacy): 44 / 41.6 / 21,949 / 1.65E-03
red / removed and the remaining pipeline being subject to
red / removed and the remaining pipeline being subject to than Option 5, again as the potential for snag risk is
than Option 5, again as the potential for snag risk is
than Option 5, again as the potential for snag risk is
than Option 5, again as the potential for snag risk is ays on-site): CSV 2 days arges: d flushing operations will use Best Environmental Practice est Available Techniques (BAT) to minimise as far as sidual hydrocarbon and other chemical levels in line post
than Option 5, again as the potential for snag risk is ays on-site): CSV 2 days arges: d flushing operations will use Best Environmental Practice est Available Techniques (BAT) to minimise as far as sidual hydrocarbon and other chemical levels in line post rges to the marine environment during flushing activities. Inds would lead to an elevated discharge of fluids from within r, given the prior cleaning of the line, the concentration and arge should still be low overall. Therefore, the related
than Option 5, again as the potential for snag risk is ays on-site): CSV 2 days arges: d flushing operations will use Best Environmental Practice est Available Techniques (BAT) to minimise as far as sidual hydrocarbon and other chemical levels in line post rges to the marine environment during flushing activities. ads would lead to an elevated discharge of fluids from within r, given the prior cleaning of the line, the concentration and arge should still be low overall. Therefore, the related thicipated to be low. es: Illast, Grey and Black Water, this is driven by duration of s and therefore at less than a day is the lowest of the

g operations and discharges from the numerous mid-line

and discharges from the numerous mid-line cuts. Option

tions and discharges from the numerous mid-line cuts.

			004 E.II D			044	In an Deale Diagona				05 1		
_		-	O2A - Full Rem	oval - Cut and Lift		O4A - Leave - M	linor - Rock Placeme	ent over Exposures	O4C - Leave - Minor - R	emove Areas of Exposure	O5 - Leave		
	Emissions mption	Vessel Emissions	(in tonnes):			Vessel Emissions (in tonr	nes):		Vessel Emissions (in tonnes):		Vessel Emissio		
	on ŝŝi	Fuel: 22,455				Fuel: 2,205			Fuel: 16,567		Fuel: 1,378		
ental	pti bti	CO2: 71,181				CO2: 6,991			CO2: 52,516		CO2: 4,368		
	ic Emissi sumption	NOx: 1,333.80			NOx: 130.99			NOx: 984.06		NOx: 81.84			
Environn	Atmospheric I & Fuel Consur	SO2: 89.82			SO2: 8.82			SO2: 66.27		SO2: 5.51			
ΪĻ	ų Š												
Б	osl	Vessel Energy Use: 965,548 GJ			Vessel Energy Use: 94,82	25 GJ		Vessel Energy Use: 712,367 GJ		Vessel Energy			
N	Ê L												
	8 P												
	2.2												
		MW	W	MW	ľ	MS	N	·	MW				
					umptions sub-criter								
		The assessment of the Atmospheric Emissions & Consumptions sub-criterion is as follows: Option 2A is assessed as being Much Weaker than both Option 4A and Option 5 as the atmospheric emissions and fuel use is significantly higher for the full removal option due to extended offshore durations. Option 2A is assessed as being											
S	ummarv		emissions and fuel use associated with the full removal option. Option 4A is assessed as being Much Stronger than Option 4C due to the atmospheric emissions and fuel use being significantly lower for the rock cover option. Option 4A is assessed being Neutral to Option 5 as while there are differences in										
	,		•	press a preference				,	······································				
						nospheric emissions and fu	uel use beina sianifica	ntly higher for the remove sp	ans / exposures option.				
			•			spheric Emissions & Cons		, , , ,					
a		Material Emissions	()			Material Emissions (CO2	in tonnes):		Material Emissions (CO2 in tonnes):		Material Emissi		
ant	. ű	Recovered Materia	1: 137,807			Recovered Material:			Recovered Material: 36,081		Recovered Mate		
onmental	ptic	Remaining Materia	l: 2,911			Remaining Material: 153,4	413		Remaining Material: 114,009		Remaining Mate		
ē	2.3 Other Isumption	Total: 140,718				Total: 153,413			Total: 150,089		Total: 153,411		
2. Envir	2.3 nst												
ш	Con 2	Rock: 500 tonnes				Rock: 270,720 tonnes			Rock: 18,320 tonnes		Rock: 452 tonne		
N,	-												
		S	Ν	N		W	W		N				
							**		N				
				mptions sub-criteric									
SI	ummary		•					ue to the significant quantity	of rock consumed in delivering Optio	n 4A. The other environmental impacts	s in terms of other		
		Overall, Option 2	A, Option 4A and	Option 5 are equ	ally preferred from	m an Other Consumption	s perspective.						
77	· · · · ·	Seabed disturbance	e (MFE): 391640	m2		Short Term Disturbance (F	Rock Cover): 270.720	m2	Short Term Disturbance (Rock Cover	r): 114.500 m2	Short Term Dist		
2. Environmental	8		o (<u>_</u>). oo lo lo							,			
Ĕ	2.4 Seabed Disturbance												
Б.	jea Irbi												
iş.	stu stu												
ш	<u>D</u> 7												
2													
		W	MW	VMW		W	MW		MW				
		The assessment o	f the Seabed Dist	urbance sub-criterio	n is as follows:								
		Option 2A is asses			as there is a great	er area of seabed disturbar							
		40	ssed as being We	aker than Option 4A	t do thoro io a grout		nce which applies both	in the areas of existing rocl	c cover (KP 15.5 to KP 106) but also i	n the Cromar Shoal Chalk Beds MCZ	KP 1 to KP 7). C		
6.	ummarv	4C as there is a m	•		•					n the Cromar Shoal Chalk Beds MCZ (seabed disturbance than addressing th	· /		
31			uch greater area o	f seabed disturband	ce in Option 2A. Op	otion 2A is assessed as bei	eing Very Much Weake	er than Option 5 as MFE det	ourial along the line has much greater		ne line end and sp		
	unnary	Option 4A is asses	uch greater area o ssed as being We	f seabed disturband aker than Option 40	ce in Option 2A. Op C as there is a great	otion 2A is assessed as bei	eing Very Much Weake nce in Option 4A, altho	er than Option 5 as MFE det	ourial along the line has much greater	seabed disturbance than addressing th	ne line end and sp		
	unnary	Option 4A is asses disturbance assoc	uch greater area o ssed as being We iated with the rock	f seabed disturband aker than Option 40 cover versus addre	ce in Option 2A. Op C as there is a great essing the line end a	otion 2A is assessed as be ter area of seabed disturban and spans approaching fishe	eing Very Much Weake nce in Option 4A, altho Isafe criteria only.	er than Option 5 as MFE det ough the majority of this dist	urial along the line has much greater urbance is in areas of the line already	seabed disturbance than addressing th	he line end and sp as being Much W		
	unnary	Option 4A is asses disturbance assoc Option 4C is asses	uch greater area o ssed as being We iated with the rock ssed as being Mu	f seabed disturband aker than Option 40 cover versus addre ch Weaker than Option	ce in Option 2A. Op C as there is a great essing the line end a	btion 2A is assessed as bein er area of seabed disturban and spans approaching fishe uch greater seabed disturba	eing Very Much Weake nce in Option 4A, altho Isafe criteria only.	er than Option 5 as MFE det ough the majority of this dist	urial along the line has much greater urbance is in areas of the line already	seabed disturbance than addressing th rock covered. Option 4A is assessed	he line end and sp as being Much W		
	unnary	Option 4A is asses disturbance assoc Option 4C is asses	uch greater area o ssed as being We iated with the rock ssed as being Mu	f seabed disturband aker than Option 40 cover versus addre ch Weaker than Option	ce in Option 2A. Op C as there is a great essing the line end a tion 5 as there is mu	btion 2A is assessed as bein er area of seabed disturban and spans approaching fishe uch greater seabed disturba	eing Very Much Weake nce in Option 4A, altho Isafe criteria only.	er than Option 5 as MFE det ough the majority of this dist	urial along the line has much greater urbance is in areas of the line already	seabed disturbance than addressing th rock covered. Option 4A is assessed	he line end and sp as being Much W		
	unnary	Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5	uch greater area o ssed as being We iated with the rock ssed as being Muu is the preferred	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option from a Sea	ce in Option 2A. Op C as there is a great essing the line end a tion 5 as there is mu	btion 2A is assessed as being ter area of seabed disturbar and spans approaching fishe uch greater seabed disturba perspective.	eing Very Much Weake nce in Option 4A, altho isafe criteria only. ance associated with t	er than Option 5 as MFE deb ough the majority of this dist the removing the areas of sp	urial along the line has much greater urbance is in areas of the line already ans and exposure versus addressing	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis	he line end and sp as being Much W hsafe criteria only		
		Option 4A is asses disturbance assoc Option 4C is asses	uch greater area o ssed as being We iated with the rock ssed as being Muu is the preferred	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option from a Sea	ce in Option 2A. Op C as there is a great essing the line end a tion 5 as there is mu	btion 2A is assessed as being there area of seabed disturban and spans approaching fishe uch greater seabed disturban perspective.	eing Very Much Weake nce in Option 4A, altho isafe criteria only. ance associated with t	er than Option 5 as MFE deb ough the majority of this dist the removing the areas of sp est Environmental Practice	urial along the line has much greater urbance is in areas of the line already ans and exposure versus addressing Line cleaning and flushing operations	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis will use Best Environmental Practice	he line end and sp as being Much W hsafe criteria only Line cleaning ar		
-		Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5 No legacy marine i	uch greater area of ssed as being We iated with the rock ssed as being Mu is the preferred mpact from this fu	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option from a Sea	ce in Option 2A. Op C as there is a great essing the line end a tion 5 as there is mu	btion 2A is assessed as being there area of seabed disturbant and spans approaching fishs uch greater seabed disturban perspective.	eing Very Much Weake nce in Option 4A, altho isafe criteria only. ance associated with t g operations will use B able Techniques (BAT)	er than Option 5 as MFE det ough the majority of this dist the removing the areas of sp est Environmental Practice) to minimise as far as	urial along the line has much greater urbance is in areas of the line already ans and exposure versus addressing Line cleaning and flushing operations (BEP) and the Best Available Techni	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis swill use Best Environmental Practice ques (BAT) to minimise as far as	he line end and sp as being Much W hsafe criteria only Line cleaning ar (BEP) and the E		
intal		Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5	uch greater area of ssed as being We iated with the rock ssed as being Mu is the preferred mpact from this fu	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option from a Sea	ce in Option 2A. Op C as there is a great essing the line end a tion 5 as there is mu	bition 2A is assessed as being there area of seabed disturbant and spans approaching fishs uch greater seabed disturbant perspective.	eing Very Much Weake nce in Option 4A, altho isafe criteria only. ance associated with t g operations will use B able Techniques (BAT)	er than Option 5 as MFE det ough the majority of this dist the removing the areas of sp est Environmental Practice) to minimise as far as	Line cleaning and flushing operations (BEP) and the Best Available Technic possible both residual hydrocarbon a	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis swill use Best Environmental Practice ques (BAT) to minimise as far as	he line end and sp as being Much W hsafe criteria only Line cleaning ar (BEP) and the E possible both re		
mental		Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5 No legacy marine i Habitat Loss (Rock	uch greater area of seed as being We iated with the rock seed as being Muo is the preferred mpact from this function (s Bags): 500 m2	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option option from a Sea Il removal option.	ce in Option 2A. Op C as there is a great essing the line end a tion 5 as there is mu	btion 2A is assessed as being there area of seabed disturbant and spans approaching fishs uch greater seabed disturban perspective.	eing Very Much Weake nce in Option 4A, altho isafe criteria only. ance associated with t g operations will use B able Techniques (BAT)	er than Option 5 as MFE det ough the majority of this dist the removing the areas of sp est Environmental Practice) to minimise as far as	urial along the line has much greater urbance is in areas of the line already ans and exposure versus addressing Line cleaning and flushing operations (BEP) and the Best Available Techni	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis swill use Best Environmental Practice ques (BAT) to minimise as far as	he line end and sp as being Much W hsafe criteria only Line cleaning ar (BEP) and the E		
onmental		Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5 No legacy marine i	uch greater area of seed as being We iated with the rock seed as being Muo is the preferred mpact from this function (s Bags): 500 m2	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option option from a Sea Il removal option.	ce in Option 2A. Op C as there is a great essing the line end a tion 5 as there is mu	btion 2A is assessed as being and spans approaching fishs uch greater seabed disturbang and spans approaching fishs uch greater seabed disturbang perspective.	eing Very Much Weake nce in Option 4A, altho isafe criteria only. ance associated with t g operations will use B able Techniques (BAT) drocarbon and other ch	er than Option 5 as MFE det ough the majority of this dist the removing the areas of sp est Environmental Practice to minimise as far as nemical levels in line post	Line cleaning and flushing operations (BEP) and the Best Available Techni possible both residual hydrocarbon a flush.	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post	line end and sp as being Much W hsafe criteria only Line cleaning ar (BEP) and the E possible both re flush.		
ivironmental		Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5 No legacy marine i Habitat Loss (Rock	uch greater area of seed as being We iated with the rock seed as being Muo is the preferred mpact from this function (s Bags): 500 m2	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option option from a Sea Il removal option.	ce in Option 2A. Op C as there is a great essing the line end a tion 5 as there is mu	bition 2A is assessed as being the area of seabed disturbant and spans approaching fishs uch greater seabed disturbant perspective. Line cleaning and flushing (BEP) and the Best Availat possible both residual hypo flush. The legacy marine impact	sing Very Much Weake nce in Option 4A, althous afe criteria only. ance associated with t g operations will use B able Techniques (BAT) drocarbon and other ch t from the slow release	er than Option 5 as MFE det bugh the majority of this dist the removing the areas of sp est Environmental Practice to minimise as far as nemical levels in line post e of these low concentration	urial along the line has much greater urbance is in areas of the line already ans and exposure versus addressing (BEP) and the Best Available Techni possible both residual hydrocarbon a flush. The legacy marine impact from the s	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post	Line cleaning ar (BEP) and the E possible both re flush.		
Environmental	Legacy Marine Impacts	Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5 No legacy marine i Habitat Loss (Rock	uch greater area of seed as being We iated with the rock seed as being Muo is the preferred mpact from this function (s Bags): 500 m2	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option option from a Sea Il removal option.	ce in Option 2A. Op C as there is a great essing the line end a tion 5 as there is mu	btion 2A is assessed as being and spans approaching fishs uch greater seabed disturbang and spans approaching fishs uch greater seabed disturbang perspective.	sing Very Much Weake nce in Option 4A, althous afe criteria only. ance associated with t g operations will use B able Techniques (BAT) drocarbon and other ch t from the slow release	er than Option 5 as MFE det bugh the majority of this dist the removing the areas of sp est Environmental Practice to minimise as far as nemical levels in line post e of these low concentration	Line cleaning and flushing operations (BEP) and the Best Available Techni possible both residual hydrocarbon a flush.	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post	Line cleaning ard (BEP) and the E possible both re flush.		
2. Environmental		Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5 No legacy marine i Habitat Loss (Rock	uch greater area of seed as being We iated with the rock seed as being Muo is the preferred mpact from this function (s Bags): 500 m2	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option option from a Sea Il removal option.	ce in Option 2A. Op C as there is a great essing the line end a tion 5 as there is mu	bition 2A is assessed as being there area of seabed disturband and spans approaching fishs uch greater seabed disturband perspective. Line cleaning and flushing (BEP) and the Best Availand possible both residual hypological flush. The legacy marine impact / quantity discharges is the	sing Very Much Weake nce in Option 4A, althous afe criteria only. ance associated with t g operations will use B able Techniques (BAT) drocarbon and other ch t from the slow release herefore expected to be	er than Option 5 as MFE det bugh the majority of this dist the removing the areas of sp est Environmental Practice to minimise as far as nemical levels in line post e of these low concentration	urial along the line has much greater urbance is in areas of the line already ans and exposure versus addressing (BEP) and the Best Available Techni possible both residual hydrocarbon a flush. The legacy marine impact from the s / quantity discharges is therefore exp	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post show release of these low concentration bected to be low overall.	Line cleaning ar (BEP) and the E possible both re flush. The legacy mari / quantity discha		
2. Environmental	Legacy Marine Impacts	Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5 No legacy marine i Habitat Loss (Rock	uch greater area of seed as being We iated with the rock seed as being Muo is the preferred mpact from this function (s Bags): 500 m2	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option option from a Sea Il removal option.	ce in Option 2A. Op C as there is a great essing the line end a tion 5 as there is mu	bition 2A is assessed as being the area of seabed disturband and spans approaching fishs uch greater seabed disturband perspective.	sing Very Much Weake nce in Option 4A, althous afe criteria only. ance associated with t g operations will use B able Techniques (BAT) drocarbon and other ch t from the slow release herefore expected to be	er than Option 5 as MFE det bugh the majority of this dist the removing the areas of sp est Environmental Practice to minimise as far as nemical levels in line post e of these low concentration	urial along the line has much greater urbance is in areas of the line already ans and exposure versus addressing (BEP) and the Best Available Techni possible both residual hydrocarbon a flush. The legacy marine impact from the s	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post show release of these low concentration bected to be low overall.	Line cleaning ar (BEP) and the E possible both re flush. The legacy mari / quantity discha		
2. Environmental	Legacy Marine Impacts	Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5 No legacy marine i Habitat Loss (Rocl Rock cover existin	uch greater area of ssed as being We iated with the rock ssed as being Mu is the preferred mpact from this fu & Bags): 500 m2 g over line will rem	f seabed disturband aker than Option 40 cover versus addre th Weaker than Opt option from a Sea II removal option.	ce in Option 2A. Op C as there is a great essing the line end a tion 5 as there is mu	bion 2A is assessed as being and spans approaching fisher uch greater seabed disturbang and spans approaching fisher uch greater seabed disturbang perspective. Line cleaning and flushing (BEP) and the Best Availad possible both residual hypostible both residual hypostib	sing Very Much Weake nce in Option 4A, althous afe criteria only. ance associated with t able Techniques (BAT) drocarbon and other ch t from the slow release herefore expected to be therefore associated to be	er than Option 5 as MFE det bugh the majority of this dist the removing the areas of sp est Environmental Practice to minimise as far as nemical levels in line post e of these low concentration	urial along the line has much greater urbance is in areas of the line already ans and exposure versus addressing (BEP) and the Best Available Techni possible both residual hydrocarbon a flush. The legacy marine impact from the s / quantity discharges is therefore exp Habitat Loss (Rock Bags): 114,500 f	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post show release of these low concentration bected to be low overall.	Line cleaning ar (BEP) and the E possible both re flush. The legacy mari / quantity discha		
2. Environmental	Legacy Marine Impacts	Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5 No legacy marine i Habitat Loss (Rock Rock cover existin	uch greater area of seed as being We iated with the rock seed as being Muo is the preferred mpact from this fu (a Bags): 500 m2 g over line will rem	f seabed disturband aker than Option 40 cover versus addres th Weaker than Option option from a Sea Il removal option. ain in-situ.	ce in Option 2A. Op C as there is a great assing the line end a tion 5 as there is mu abed Disturbance	bition 2A is assessed as being there area of seabed disturband and spans approaching fishs uch greater seabed disturband perspective. Line cleaning and flushing (BEP) and the Best Availand possible both residual hypological flush. The legacy marine impact / quantity discharges is the	sing Very Much Weake nce in Option 4A, althous afe criteria only. ance associated with t g operations will use B able Techniques (BAT) drocarbon and other ch t from the slow release herefore expected to be	er than Option 5 as MFE det bugh the majority of this dist the removing the areas of sp est Environmental Practice to minimise as far as nemical levels in line post e of these low concentration	urial along the line has much greater urbance is in areas of the line already ans and exposure versus addressing (BEP) and the Best Available Techni possible both residual hydrocarbon a flush. The legacy marine impact from the s / quantity discharges is therefore exp	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post show release of these low concentration bected to be low overall.	Line cleaning ar (BEP) and the E possible both re flush. The legacy mari / quantity discha		
2. Environmental	Legacy Marine Impacts	Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5 No legacy marine i Habitat Loss (Rock Rock cover existin MS The assessment o	uch greater area of ssed as being We iated with the rock ssed as being Muo is the preferred mpact from this fu (a Bags): 500 m2 g over line will rem MS f the Legacy Marin	f seabed disturband aker than Option 40 cover versus addres th Weaker than Option option from a Sea II removal option. ain in-situ.	ce in Option 2A. Op C as there is a great essing the line end a tion 5 as there is m abed Disturbance abed Disturbance	bition 2A is assessed as being and spans approaching fishs uch greater seabed disturbang perspective. Line cleaning and flushing (BEP) and the Best Availar possible both residual hydro flush. The legacy marine impact / quantity discharges is the Habitat Loss (Rock Cover)	eing Very Much Weake nce in Option 4A, althous afe criteria only. ance associated with the able Techniques (BAT) drocarbon and other ch therefore expected to be herefore expected to be r): 270,720 m2	er than Option 5 as MFE det bugh the majority of this dist the removing the areas of sp est Environmental Practice) to minimise as far as hemical levels in line post e of these low concentration e low overall.	urial along the line has much greater urbance is in areas of the line already ans and exposure versus addressing in (BEP) and the Best Available Techni possible both residual hydrocarbon a flush. The legacy marine impact from the s / quantity discharges is therefore exp Habitat Loss (Rock Bags): 114,500 the MW	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis a will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post show release of these low concentration bected to be low overall.	he line end and sp as being Much W hsafe criteria only Line cleaning ar (BEP) and the E possible both re flush. The legacy mari / quantity discha Habitat Loss (Re		
2. Environmental	Legacy Marine Impacts	Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5 No legacy marine i Habitat Loss (Rock Rock cover existin MS The assessment o Option 2A is asset	uch greater area of ssed as being We iated with the rock ssed as being Mur is the preferred mpact from this function (a Bags): 500 m2 g over line will rem MS f the Legacy Marin ssed as being Mur	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option option from a Sea II removal option. ain in-situ.	ce in Option 2A. Op C as there is a great assing the line end a tion 5 as there is m abed Disturbance Disturbance	bion 2A is assessed as being and spans approaching fisher uch greater seabed disturbang and spans approaching fisher uch greater seabed disturbang perspective. Line cleaning and flushing (BEP) and the Best Availar possible both residual hypostible both residual hypostib	eing Very Much Weake nce in Option 4A, althous isafe criteria only. ance associated with the able Techniques (BAT) drocarbon and other charter therefore expected to be rp: 270,720 m2 MW removed and there is	er than Option 5 as MFE det bugh the majority of this dist the removing the areas of sp est Environmental Practice) to minimise as far as hemical levels in line post e of these low concentration e low overall.	Line cleaning and flushing operations (BEP) and the Best Available Techni possible both residual hydrocarbon a flush. The legacy marine impact from the s / quantity discharges is therefore ex Habitat Loss (Rock Bags): 114,500 the MW hange from the rock cover introduced	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post show release of these low concentration bected to be low overall.	e line end and sp as being Much W hsafe criteria only. Line cleaning ar (BEP) and the E possible both re flush. The legacy mari / quantity discha Habitat Loss (Re		
2	2.5 Legacy Marine Impacts	Option 4A is asset disturbance assoc Option 4C is asses Overall, Option 5 No legacy marine i Habitat Loss (Rocl Rock cover existin MS The assessment o Option 2A is asset already rock cover	uch greater area of ssed as being We iated with the rock ssed as being Mur is the preferred mpact from this function a Bags): 500 m2 g over line will rem MS f the Legacy Marin ssed as being Mur ed although there	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option option from a Sea II removal option. ain in-situ.	ce in Option 2A. Op C as there is a great assing the line end a tion 5 as there is m abed Disturbance prion is as follows: th Option 4A and O ge from cover introd	bition 2A is assessed as being and spans approaching fishs uch greater seabed disturbang and spans approaching fishs uch greater seabed disturbang perspective. Line cleaning and flushing (BEP) and the Best Availa possible both residual hyd flush. The legacy marine impact / quantity discharges is the Habitat Loss (Rock Cover) W ption 4C as the line is fully duced in the KP 8 to KP 15.	eing Very Much Weake nee in Option 4A, althous isafe criteria only. ance associated with the goperations will use B able Techniques (BAT) drocarbon and other ch therefore expected to be r): 270,720 m2 MW removed and there is 5.5 area of the line which	er than Option 5 as MFE det bugh the majority of this dist the removing the areas of sp est Environmental Practice) to minimise as far as nemical levels in line post e of these low concentration e low overall.	Line cleaning and flushing operations (BEP) and the Best Available Techni possible both residual hydrocarbon a flush. The legacy marine impact from the s / quantity discharges is therefore exp Habitat Loss (Rock Bags): 114,500 f MW hange from the rock cover introduced as not rock covered originally. Option	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis a will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post show release of these low concentration bected to be low overall.	e line end and sp as being Much W hsafe criteria only. Line cleaning ar (BEP) and the E possible both re flush. The legacy mari / quantity discha Habitat Loss (Re		
2	2.5 Legacy Marine Impacts	Option 4A is asset disturbance assoc Option 4C is asses Overall, Option 5 No legacy marine i Habitat Loss (Rocl Rock cover existin MS The assessment o Option 2A is asset already rock cover with small area of	uch greater area of ssed as being We iated with the rock ssed as being Mur is the preferred mpact from this function (a Bags): 500 m2 g over line will rem (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option option from a Sea Il removal option. ain in-situ.	ce in Option 2A. Op C as there is a great assing the line end a tion 5 as there is m abed Disturbance erion is as follows: th Option 4A and O ge from cover introd cts and slow releas	bition 2A is assessed as being and spans approaching fishs uch greater seabed disturbang and spans approaching fishs uch greater seabed disturbang perspective. Line cleaning and flushing (BEP) and the Best Availat possible both residual hypo flush. The legacy marine impact / quantity discharges is the Habitat Loss (Rock Cover) W ption 4C as the line is fully duced in the KP 8 to KP 15. e of residual line contents a	eing Very Much Weake nee in Option 4A, althous isafe criteria only. ance associated with the goperations will use B able Techniques (BAT) drocarbon and other ch therefore expected to be refere expected to be r): 270,720 m2 MW removed and there is a for a for the line which although the impact of	er than Option 5 as MFE det bugh the majority of this dist the removing the areas of sp est Environmental Practice) to minimise as far as nemical levels in line post e of these low concentration e low overall.	Line cleaning and flushing operations (BEP) and the Best Available Techni possible both residual hydrocarbon a flush. The legacy marine impact from the s / quantity discharges is therefore exp Habitat Loss (Rock Bags): 114,500 f MW hange from the rock cover introduced as not rock covered originally. Option	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post and other chemical levels in line post and other chemical levels in line post and other be low overall.	e line end and sp as being Much W hsafe criteria only. Line cleaning ar (BEP) and the E possible both re flush. The legacy mari / quantity discha Habitat Loss (Re ed that the majorin n Option 5 as the		
2	2.5 Legacy Marine Impacts	Option 4A is asset disturbance assoc Option 4C is asses Overall, Option 5 No legacy marine i Habitat Loss (Rock Rock cover existin Cock cover existin The assessment of Option 2A is asset already rock cover with small area of Option 4A is asset	uch greater area of ssed as being We iated with the rock ssed as being Mur is the preferred mpact from this for a Bags): 500 m2 g over line will rem MS f the Legacy Marin ssed as being Mur ed although there rock cover and has ssed as being We	f seabed disturband aker than Option 40 cover versus addre th Weaker than Option option from a Sea Il removal option. ain in-situ. Sea Impacts sub-crite th Stronger than bo is also habitat chan degradation produ aker than Option 40	ce in Option 2A. Op C as there is a great assing the line end a tion 5 as there is me abed Disturbance erion is as follows: th Option 4A and O ge from cover introd cts and slow releas C as there is more re	bition 2A is assessed as being and spans approaching fishs uch greater seabed disturbang and spans approaching fishs uch greater seabed disturbang aperspective. Line cleaning and flushing (BEP) and the Best Availat possible both residual hydr flush. The legacy marine impact / quantity discharges is the Habitat Loss (Rock Cover) W ption 4C as the line is fully fuced in the KP 8 to KP 15. e of residual line contents a pock introduced and therefor	eing Very Much Weake nee in Option 4A, althous isafe criteria only. ance associated with the goperations will use B able Techniques (BAT) drocarbon and other ch therefore expected to be therefore expected to be therefore expected to be therefore appected to be therefore	er than Option 5 as MFE det bugh the majority of this dist the removing the areas of sp est Environmental Practice) to minimise as far as nemical levels in line post e of these low concentration e low overall.	Line cleaning and flushing operations (BEP) and the Best Available Techni possible both residual hydrocarbon a flush. The legacy marine impact from the s / quantity discharges is therefore exp Habitat Loss (Rock Bags): 114,500 f MW hange from the rock cover introduced as not rock covered originally. Option	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post show release of these low concentration bected to be low overall.	e line end and sp as being Much W hsafe criteria only. Line cleaning ar (BEP) and the E possible both re flush. The legacy mari / quantity discha Habitat Loss (Re ed that the majorin n Option 5 as the		
2	2.5 Legacy Marine Impacts	Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5 No legacy marine i Habitat Loss (Rocl Rock cover existin MS The assessment o Option 2A is asset already rock cover with small area of Option 4A is asset Option 4C is asset	uch greater area of ssed as being We iated with the rock ssed as being Mut is the preferred mpact from this for a Bags): 500 m2 g over line will rem MS f the Legacy Marin ssed as being Mut ased although there rock cover and has ssed as being We ssed as being Mut	f seabed disturband aker than Option 40 cover versus addre the Weaker than Option option from a Sea Il removal option. ain in-situ. Sea Impacts sub-crite the Stronger than bo s also habitat chan degradation produ aker than Option 40 the Weaker than Option 40	ce in Option 2A. Op C as there is a great assing the line end a tion 5 as there is mo abed Disturbance abed Disturbance th Option 4A and O ge from cover introd cts and slow releas C as there is more re tion 5, again due to	bition 2A is assessed as being and spans approaching fishs uch greater seabed disturbang and spans approaching fishs uch greater seabed disturbang aperspective. Line cleaning and flushing (BEP) and the Best Availat possible both residual hydr flush. The legacy marine impact / quantity discharges is the Habitat Loss (Rock Cover) W ption 4C as the line is fully duced in the KP 8 to KP 15. e of residual line contents a ock introduced and therefor the significant areas of rock	eing Very Much Weake nee in Option 4A, althous isafe criteria only. ance associated with the goperations will use B able Techniques (BAT) drocarbon and other ch therefore expected to be therefore expected to be therefore expected to be therefore appected to be therefore	er than Option 5 as MFE det bugh the majority of this dist the removing the areas of sp est Environmental Practice) to minimise as far as nemical levels in line post e of these low concentration e low overall.	Line cleaning and flushing operations (BEP) and the Best Available Techni possible both residual hydrocarbon a flush. The legacy marine impact from the s / quantity discharges is therefore exp Habitat Loss (Rock Bags): 114,500 f MW hange from the rock cover introduced as not rock covered originally. Option	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post and other chemical levels in line post and other chemical levels in line post and other be low overall.	e line end and sp as being Much W hsafe criteria only. Line cleaning ar (BEP) and the E possible both re flush. The legacy mari / quantity discha Habitat Loss (Re ed that the majorin n Option 5 as the		
5	2.5 Legacy Marine Impacts	Option 4A is asset disturbance assoc Option 4C is asset Overall, Option 5 No legacy marine i Habitat Loss (Rocl Rock cover existin MS The assessment o Option 2A is asset already rock cover with small area of Option 4A is asset Option 4C is asset	uch greater area of ssed as being We iated with the rock ssed as being Mut is the preferred mpact from this for a Bags): 500 m2 g over line will rem MS f the Legacy Marin ssed as being Mut ased although there rock cover and has ssed as being We ssed as being Mut	f seabed disturband aker than Option 40 cover versus addre the Weaker than Option option from a Sea Il removal option. ain in-situ. Sea Impacts sub-crite the Stronger than bo s also habitat chan degradation produ aker than Option 40 the Weaker than Option 40	ce in Option 2A. Op C as there is a great assing the line end a tion 5 as there is me abed Disturbance erion is as follows: th Option 4A and O ge from cover introd cts and slow releas C as there is more re	bition 2A is assessed as being and spans approaching fishs uch greater seabed disturbang and spans approaching fishs uch greater seabed disturbang aperspective. Line cleaning and flushing (BEP) and the Best Availat possible both residual hydr flush. The legacy marine impact / quantity discharges is the Habitat Loss (Rock Cover) W ption 4C as the line is fully duced in the KP 8 to KP 15. e of residual line contents a ock introduced and therefor the significant areas of rock	eing Very Much Weake nee in Option 4A, althous isafe criteria only. ance associated with the goperations will use B able Techniques (BAT) drocarbon and other ch therefore expected to be therefore expected to be therefore expected to be therefore appected to be therefore	er than Option 5 as MFE det bugh the majority of this dist the removing the areas of sp est Environmental Practice) to minimise as far as nemical levels in line post e of these low concentration e low overall.	Line cleaning and flushing operations (BEP) and the Best Available Techni possible both residual hydrocarbon a flush. The legacy marine impact from the s / quantity discharges is therefore exp Habitat Loss (Rock Bags): 114,500 f MW hange from the rock cover introduced as not rock covered originally. Option	seabed disturbance than addressing the rock covered. Option 4A is assessed the line end and spans approaching fis is will use Best Environmental Practice ques (BAT) to minimise as far as and other chemical levels in line post and other chemical levels in line post and other chemical levels in line post and other be low overall.	he line end and sp as being Much W hsafe criteria only Line cleaning ar (BEP) and the E possible both re flush. The legacy mari / quantity discha Habitat Loss (Re ed that the majori n Option 5 as the		

- Minimal - Remove Ends & Remediate Snag Risk ons (in tonnes): Use: 59,245 GJ eaker than Option 4C as there are more atmospheric he atmospheric emissions and fuel use for these options, ions (CO2 in tonnes): erial: 27 erial: 153,384 es r consumptions are similar for all options. urbance (Rock Cover): 2,825 m2 Option 2A is assessed as being Much Weaker than Option pans approaching fishsafe criteria only. Veaker than Option 5 as there is much greater seabed nd flushing operations will use Best Environmental Practice Best Available Techniques (BAT) to minimise as far as esidual hydrocarbon and other chemical levels in line post ine impact from the slow release of these low concentration arges is therefore expected to be low overall. ock Bags): 2,825 m2 ty of the rock introduced is in areas where the line is line is fully removed whereas the line remains in Option 5 introduced.

			O2A - Full Pom	oval - Cut and Lift		044 - Loovo - N	linor - Rock Placement over	Exposuros	04C - Loovo - Minor - P	emove Areas of Exposure	O5 - Leave -
3. Technical	3.1 Technical Risk	Concept Maturity: Well proven techniques. Subsea tools and vessel requirements are broadly supported across the market. (Score 3) Technical Risks: The scale of this scope would result in significant technical risks, >100km of partly buried line is feasible to remove by cut and lift with 100s of trips to offload recovered materials. (Score 1)			Concept Maturity: Rock placement is a well proven technique for the southern sector. (Score 3) Technical Risks: Limited technical risks associated with option (Score 3)			Concept Maturity: Well proven techniques. Subsea tools and vessel requirements are broadly supported across the market. (Score 3) Technical Risks: The scale of this scope would result in significant technical risks, ~27km of exposed line is feasible to remove by cut and lift with 10s of trips to offload recovered materials. (Score 2)		Concept Maturity: requirements are Technical Risks: remove by cut and (Score 3)	
		VMW	W	VMW		VMS	N		VMW		F
Su	mmary	Option 2A is asset challenges and eq Option 4A is asset the routine operation Option 4C is asset	ssed as being Ver uipment failure. O ssed as being Ver ons have similar lir ssed as being Ver	ption 2A is assess y Much Stronger th mited scope for tecl y Much Weaker that	an Option 4A and Op ed as being Weake an Option 4C as the hnical failure.	r than Option 4C is while d e short duration, routine roo he scope for technical failu	eburial and cut and lift operation ck cover operations have much	hs are required in b less scope for tech	nded durations associated with the del oth options, the extended scope assoc nical failure than the deburial and cut a erations over extended durations in Opt	iated with the full removal option gives nd lift operations over extended duration	greater scope for te
4. Societal	4.1 Fishing	, ,	operation, large a icinity of the pipeli	rea of disturbance, ne. (Score 1)	Fishing operations	Large area of disturbance the pipeline. (Score 1)	e, Fishing operations are condu	cted in vicinity of	Long duration operation, large area o conducted in vicinity of the pipeline.	U	Short operation, s conducted in vicin
		W	W	MW		N	W		W		
Su	mmary	Option 2A is asset considered less pr Option 4A is asset Option 4C is also	ssed as being We eferable. Option 2 ssed as being Neu assessed as being	aker than Option 4/ 2A is assessed as I itral to Option 4C as 9 Weaker than Opti	being Much Weaker s the line is left in a on 5 as there is mo	, while the line is removed, than Option 5 as there is	minimal disruption associated wing perspective and the disruption	vith Option 5.	e currently conducted in the vicinity of t tions is largely similar. Option 4A is a		
		Returned steel car (Score 2)	be recycled. Cor	ncrete coating likely	/ will go to landfill.	Minimal societal benefits	/ impacts with this option. (Sco	ore 1)	Returned steel can be recycled. Cor (Score 2)	crete coating likely will go to landfill.	Minimal returned a landfill. (Score 3)
4. Societal	Other Users	Materials Returned Steel: 33,224 tonn Concrete: 99,708 t	es (recyclable)			Materials Returned: None.			Materials Returned: Steel: 8,699 tonnes (recyclable) Concrete: 26,106 tonnes (landfill)		Materials Returne Steel: 7 tonnes (r Concrete: 20 tonr
4.	4.2 0	for recreational use	re would also be a negative societal impact in terms of beach access recreational uses during the decommissioning operations and ociated impacts on local caravan park.								
		W	W	W		S	N		W		
Su	mmary	Option 2A is asse Option 4A is asse Option 4C is asse	ssed as being We ssed as being Stro ssed as being We	aker than all other o onger than Option 4 aker than Option 5,	C as there is signific again due to the signific	does return significant quar cant quantity of concrete r	eturned in Option 4C which wou ate returned in Option 4C which	ld take up landfill c	by the large quantity of concrete that w apacity. Option 4A is assessed as be fill capacity.		

- Minimal - Remove Ends & Remediate Snag Risk
y: Well proven techniques. Subsea tools and vessel e broadly supported across the market. (Score 3) : Limited technical risks, Pipeline end only is feasible to nd lift with a single trip to offload recovered materials.
a greater technical risk of deburial challenges, cutting technical failures. Option 4A is assessed as being Neutral to Option 5 as
small area of disturbance, Fishing operations are
inity of the pipeline. (Score 3)
e fishing operations to fully remove the line in Option 2A is re disruption associated with Option 4A.
steel can be recycled. Concrete coating likely will go to
)
ied: (recyclable) nnes (landfill)

fits and detriments with both options.

			O2A - Full Remo	oval - Cut and Lift		O4A - Leave - I	linor - Rock Placemer	t over Exposures	O4C - Leave - Minor - Re	emove Areas of Exposure	O5 - Leave
5. Economic	5.1 Short-term Costs	£104.179 Million				£10.851 Million			£92.932 Million		£1.18 Million
		VMW	W	VMW		VMS	MW	r	VMW		•
S	ummary	Option 2A is asses Option 4A is asses Option 4C is asses	ssed as being Very ssed as being Very	Much Weaker that Much Stronger the Much Weaker that	in both Option 4A ar an Option 4C as the	e costs are around 80 milli osts are around 90 millior	on lower for Option 4A.		a 2A is assessed as being Weaker than being Much Weaker than Option 5 as	•	•
	_	Surveys: N/A				Surveys: £2.078 Million			Surveys: £2.078 Million		Surveys: £2.078
т й	ern	FLTC: N/A				FLTC: N/A			FLTC: N/A	FLTC: £0.081 Mil	
5. Economic	5.2 Long-term Costs	Total Legacy Cost	: £0 Million			Total Legacy Cost: £2.0	78 Million		Total Legacy Cost: £2.078 Million		Total Legacy Cos
		S	S	S		N	N	ľ	Ν		•
S	ummary	Option 2A is asses All other options a	re assess as being	nger than all other Neutral to each of	options as there are	,		al option. removal options is the sam	ne.		

e - Minimal - Remove Ends & Remediate Snag Risk or Option 2A. 3 Million fillion post: £2.159 Million

1.1 Operations Personnel	O2A - Full Removal - Cut and Lift	O4A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut and Lift	N	MW	w	vмw	6.9%
O4A - Leave - Minor - Rock Placement over Exposures	MS	N	MS	w	27.1%
O4C - Leave - Minor - Remove Areas of Exposure	S	мw	N	vмw	8.4%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	VMS	s	VMS	N	57.6%

Appendix C.2 Group 1 Pairwise Comparison Matrices - Safety

1.3 High Consequence Events	O2A - Full Removal - Cut and Lift	04A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut and Lift	N	vмw	w	vмw	4.5%
O4A - Leave - Minor - Rock Placement over Exposures	VMS	N	VMS	N	45.0%
O4C - Leave - Minor - Remove Areas of Exposure	s	VMW	N	vмw	5.5%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	VMS	N	VMS	N	45.0%

1.2 Other Users	O2A - Full Removal - Cut and Lift	O4A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut and Lift	N	w	w	MW	14.6%
O4A - Leave - Minor - Rock Placement over Exposures	s	N	S	w	26.1%
O4C - Leave - Minor - Remove Areas of Exposure	S	w	N	w	21.3%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	MS	S	S	N	38.0%

1.4 Legacy Risk	O2A - Full Removal - Cut and Lift	04A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut and Lift	N	s	s	MS	38.1%
O4A - Leave - Minor - Rock Placement over Exposures	w	N	N	s	23.6%
O4C - Leave - Minor - Remove Areas of Exposure	w	N	N	s	23.6%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	MW	w	w	N	14.7%

2.1 Operational Marine Impact	O2A - Full Removal - Cut and Lift	O4A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut and Lift	N	MW	N	MW	12.5%
O4A - Leave - Minor - Rock Placement over Exposures	MS	N	MS	N	37.5%
O4C - Leave - Minor - Remove Areas of Exposure	N	MW	N	мw	12.5%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	MS	N	MS	N	37.5%

Appendix C.3 Group 1 Pairwise Comparison Matrices - Environment

2.3 Other Consumptions	O2A - Full Removal - Cut and Lift	04A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut and Lift	N	s	N	N	27.3%
O4A - Leave - Minor - Rock Placement over Exposures	w	N	w	w	18.2%
O4C - Leave - Minor - Remove Areas of Exposure	N	s	N	N	27.3%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	N	S	N	N	27.3%

2.2 Atmospheric Emissions & Fuel Consumption	O2A - Full Removal - Cut and Lift	04A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut and Lift	N	мw	w	мw	11.3%
O4A - Leave - Minor - Rock Placement over Exposures	MS	N	MS	N	37.5%
O4C - Leave - Minor - Remove Areas of Exposure	S	MW	N	MW	13.8%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	MS	N	MS	N	37.5%

2.4 Seabed Disturbance	O2A - Full Removal - Cut and Lift	O4A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut and Lift	N	w	MW	VMW	7.5%
O4A - Leave - Minor - Rock Placement over Exposures	s	N	w	MW	14.4%
O4C - Leave - Minor - Remove Areas of Exposure	MS	S	N	MW	21.0%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	VMS	MS	MS	N	57.0%

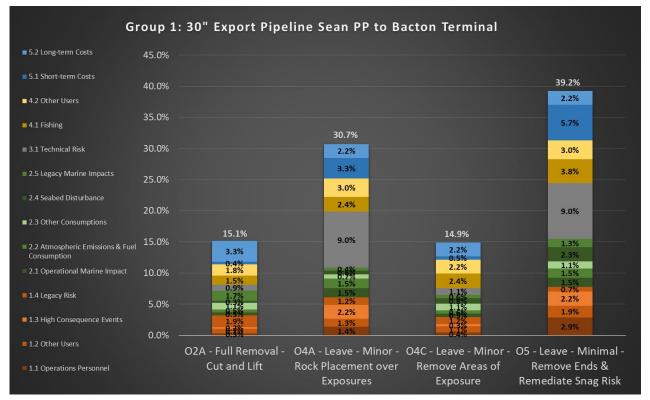
2.5 Legacy Marine Impacts	O2A - Full Removal - Cut and Lift	O4A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut and Lift	N	MS	MS	s	41.3%
O4A - Leave - Minor - Rock Placement over Exposures	мw	N	w	MW	11.2%
O4C - Leave - Minor - Remove Areas of Exposure	MW	s	N	MW	13.8%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	w	MS	MS	N	33.7%

Sean Field Decom EA, CA and DP – Sean Decommissioning Comparative Assessment Assignment Number: A400309-S00 Document Number: A-400309-S00-REPT-002

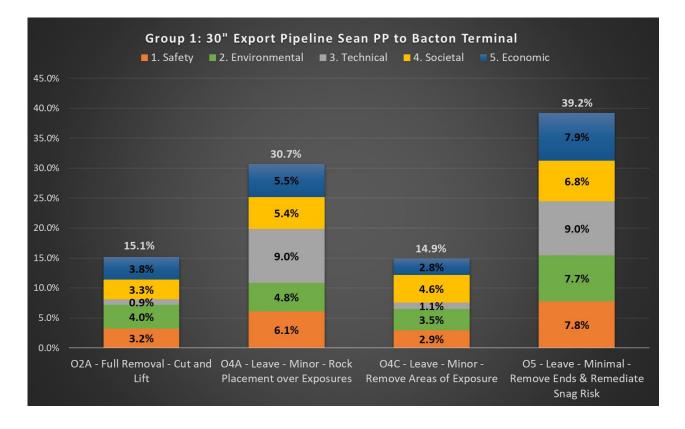
3.1 Technical Risk	O2A - Full Removal - Cut and Lift	04A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut and Lift	N	vмw	w	vмw	4.5%
O4A - Leave - Minor - Rock Placement over Exposures	VMS	N	VMS	N	45.0%
O4C - Leave - Minor - Remove Areas of Exposure	S	VMW	N	vмw	5.5%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	VMS	N	VMS	N	45.0%

Appendix C.4 Group 1 Pairwise Comparison Matrices – Technical

Appendix C.5 Group 1 Pairwise Comparison Matrices – Societal


4.1 Fishing	O2A - Full Removal - Cut and Lift	04A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut and Lift	N	w	w	MW	14.7%
O4A - Leave - Minor - Rock Placement over Exposures	S	N	N	w	23.6%
O4C - Leave - Minor - Remove Areas of Exposure	S	N	N	w	23.6%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	MS	S	S	N	38.1%

4.2 Other Users	O2A - Full Removal - Cut and Lift	O4A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut and Lift	N	w	w	w	18.0%
O4A - Leave - Minor - Rock Placement over Exposures	S	N	S	N	29.9%
O4C - Leave - Minor - Remove Areas of Exposure	s	w	N	w	22.1%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	s	N	S	N	29.9%


Appendix C.6 Group 1 Pairwise Comparison Matrices - Economic

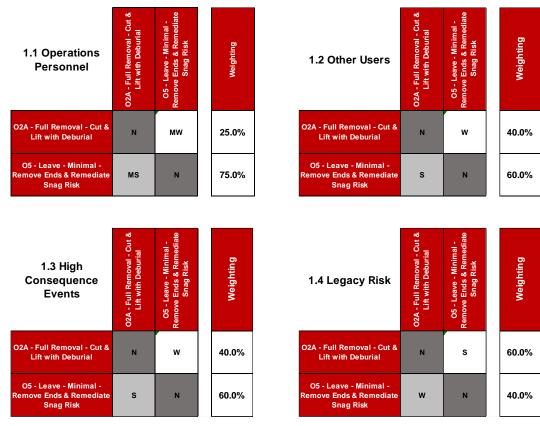
5.1 Short-term Costs	O2A - Full Removal - Cut and Lift	04A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting	5.2 Long-term Costs	O2A - Full Removal - Cut and Lift	O4A - Leave - Minor - Rock Placement over Exposures	O4C - Leave - Minor - Remove Areas of Exposure	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut and Lift	N	vмw	w	vмw	4.4%	O2A - Full Removal - Cut and Lift	N	s	s	s	33.3%
O4A - Leave - Minor - Rock Placement over Exposures	VMS	N	VMS	MW	33.0%	O4A - Leave - Minor - Rock Placement over Exposures	w	N	N	N	22.2%
O4C - Leave - Minor - Remove Areas of Exposure	S	VMW	N	vмw	5.3%	O4C - Leave - Minor - Remove Areas of Exposure	w	N	N	N	22.2%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	VMS	MS	VMS	N	57.2%	05 - Leave - Minimal - Remove Ends & Remediate Snag Risk	w	N	N	N	22.2%

Appendix C.7 Group 1 Results Charts

APPENDIX D GROUP 6 – DETAILED EVALUATION RESULTS

Appendix D.1 Group 6 Attributes Table

		O2A - Full Removal - Cut & Lift with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk
		 Pipeline will be disconnected at platform ends. Line will be deburied where required using MFE to access for cutting. Line cut into 20m sections using trident dual DWC tooling. Pipeline is 20" diameter, concrete coated, rigid. 	 Pipeline will be disconnected at platform ends. Pipeline will be cut at rock transition with cut ends recovered. Rock placement to remediate snag risk from cut ends Pipeline is 20" diameter, concrete coated, rigid.
1. Safety	su	Vessel Type: PoB / Days / Hours / PLL CSV: 76 / 32.8 / 29,904 / 2.24E-03 Total offshore hours: 29,904 hrs Total offshore PLL: 2.24E-03 Resource Type: Days / Hours / PLL Engineering & Management: 504.4 / 16,141 / 6.46E-05 Project Management: 473.0 / 7,568 / 3.03E-05 Onshore Operations (includes Cleaning & Disposal): 28.0 / 1,792 / 2.20E- 04 Total onshore hours: 25,501 hrs Total onshore PLL: 3.15E-04 Total operational hours: 55,406 hrs Total operational PLL: 2.56E-03	Vessel Type: PoB / Days / Hours / PLL CSV: 76 / 4.9 / 4,460 / 3.34E-04 Total offshore hours: 4,460 hrs Total offshore PLL: 3.34E-04 Resource Type: Days / Hours / PLL Engineering & Management: 58.8 / 1,882 / 7.53E-06 Project Management: 65.0 / 1,040 / 4.16E-06 Total onshore hours: 2,922 hrs Total onshore PLL: 1.17E-05 Total operational hours: 7,382 hrs Total operational PLL: 3.46E-04
S	ummary	MW The assessment of the Operations Personnel sub-criterion is as follows: Option 2A is assessed as being Much Weaker than Option 5 as personnel greater offshore scope for cut & lift and the much greater onshore scope fo Overall, Option 5 is the preferred option from a risk to Operations Pe	r processing the returned material with the full removal option.
1. Safety	1.2 Other Users	Vessel Days: CSV: 32.8 Total vessel days: 32.8 days Transits: 12	Vessel Days: CSV: 4.9 Total vessel days: 4.9 days Transits: 2
	1.2		Transits: 2
S	ummary	W The assessment of the Other Users sub-criterion is as follows: Option 2A is assessed as being Weaker than Option 5 as there is slightly operations and, more significantly, the increased transits associated with t Overall, Option 5 is the preferred option from a risk to Other Users p	he full removal option.
1. Safety	1.3 High Consequence Events	Routine operations however this involves a high volume of lifting operations (241 lifts).	Routine operations with minimal lifting (6 lifts).
		W	
S	ummary	The assessment of the High Consequence Events sub-criterion is as follow Option 2A is assessed as being Weaker than Option 5 as there are a high under the full removal option versus minimal lifting in Option 5. Overall, Option 5 is the preferred option from a High Consequence E	number of lifting operations to recover the cut sections of the pipeline


1. Safety		O2A - Full Removal - Cut & Lift with Deburial No legacy risk from this full removal option.	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk
1. Safety			The line would remain in-situ with this option with its full length fully
	1.4 Legacy Risk		buried. The survey & monitoring programme is committed to ensuring that the potential snag hazard from left in-situ infrastructure continues to be managed & mitigated as appropriate.
	1.41		Vessel Type: PoB / Days / Hours / PLL Survey Vessel (Legacy): 44 / 24.8 / 13,084 / 9.81E-04
		S	
Su	ımmary	The assessment of the Legacy Risk sub-criterion is as follows: Option 2A is assessed as being Stronger than Option 5 as there is no lega leave in-situ option is considered small and managed by the remaining line the survey and monitoring programme. Overall, Option 2A is the preferred option from a Legacy Risk perspe	being fully buried along its length and future snag risk being managed by
		Vessel Noise (days on-site): CSV 28.8 days MFE: 2.0 days Diamond Wire Cutting: 5 days	Vessel Noise (days on-site): CSV 0.9 days Tooling negligible.
mental		Operation Discharges: Line cleaning and flushing operations will use Best Environmental Practice (BEP) and the Best Available Techniques (BAT) to minimise as far as possible both residual hydrocarbon and other chemical levels in line post flush and discharges to the marine environment during flushing activities.	Operation Discharges: Line cleaning and flushing operations will use Best Environmental Practice (BEP) and the Best Available Techniques (BAT) to minimise as far as possible both residual hydrocarbon and other chemical levels in line post flush and discharges to the marine environment during flushing activities.
2. Environmental	Operational N	activities. Cutting of line ends and midline cuts would lead to an elevated discharge of fluids from within the lines. However, given the prior cleaning of the lines, the concentration and quantity of discharge should still be low overall. Therefore, the related impact is also anticipated to be low.	Cutting of line ends would lead to an elevated discharge of fluids from within the lines. However, given the prior cleaning of the lines, the concentration and quantity of discharge should still be low overall. Therefore, the related impact is also anticipated to be low.
		Vessel Discharges: This includes Ballast, Grey and Black Water, this is driven by duration of vessel operations and therefore at 29 days it is the highest of the options being evaluated but still negligible.	Vessel Discharges: This includes Ballast, Grey and Black Water, this is driven by duration of vessel operations and therefore at 1 day it is the lowest of the options being evaluated and negligible.
		W	
Su	ımmary	The assessment of the Operational Marine Impact sub-criterion is as follow Option 2A is assessed as being Weaker than Option 5 as a combination of of a greater quantity of residual pipeline contents from the cut and lift operat operations, all lead to a small preference for Option 5. Overall, Option 5 is the preferred option from an Operational Marine	of the higher noise profile (due to extended vessel operations), the release ations and the greater vessel discharges from the extended vessel
		Vessel Emissions (in tonnes):	Vessel Emissions (in tonnes):
		Fuel: 876	Fuel: 806
_	sior n	CO2: 2,777	CO2: 2,555
enta	mis Iptic	NOx: 52.04 SO2: 3.50	NOX: 47.88 SO2: 3.22
ivironmental	neric E onsun	Vessel Energy Use: 37,673 GJ	Vessel Energy Use: 34,661 GJ
2. Er	2.2 Atmospf Fuel C		Note: the emissions and fuel consumption data for this option includes those associated with the survey and monitoring programme. This is considered lower impact as it is spread over a long time period of around 30 years.
		Ν	
Su	ummary	The assessment of the Atmospheric Emissions & Consumptions sub-crite Option 2A is assessed as being Neutral to Option 5 as the emissions and portion of the emissions and fuel use associated with Option 5 are associa around 30 years. Overall, both options are equally preferred from an Atmospheric Em	fuel use is largely similar for both options. It is noted that a significant ated with the survey and monitoring programme which is spread over
ntal	su	Material Emissions (CO2 in tonnes): Recovered Material: 3,030	Material Emissions (CO2 in tonnes): Recovered Material: 72
mer	her ptio	Remaining Material:	Remaining Material: 3,330
ш	2.3 Other Consumptions	Total: 3,030 Rock: N/A tonnes	Total: 3,402 Rock: 32 tonnes
°,		Ν	
		The assessment of the Other Consumptions sub-criterion is as follows:	
Su	ımmary	Option 2A is assessed as being Neutral to Option 5 as the impact from pro- material left in situ in Option 5 are largely similar. Overall, both options are equally preferred from an Other Consumpt	

		O2A - Full Removal - Cut & Lift with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk				
2. Environmental	2.4 Seabed Disturbance	Short Term Disturbance (MFE): 23850 m2	Short Term Disturbance: N/A				
s	ummary	W The assessment of the Seabed Disturbance sub-criterion is as follows: Option 2A is assessed as being Weaker than Option 5 due to the greater a MFE prior to cut and lift. It is noted that this line between the platforms do perspective. Overall, Option 5 is the preferred option from a Seabed Disturbance	es not lie in any areas of special interest from an environmental				
2. Environmental	2.5 Legacy Marine Impacts	No legacy marine impact from this full removal option. Habitat Loss (Rock Cover): N/A	Line cleaning and flushing operations will use Best Environmental Practice (BEP) and the Best Available Techniques (BAT) to minimise as far as possible both residual Oil in Water (OIW) and other chemical levels in lines post flush. The legacy marine impact from the slow release of these low concentration / quantity discharges and any line degradation products is therefore expected to be low overall. Habitat Loss (Rock Bags): 50 m2				
s	ummary	S The assessment of the Legacy Marine Impacts sub-criterion is as follows: Option 2A is assessed as being Stronger than Option 5 as there are no leg associated with Option 5 will be limited as the line is buried and the small particularly in the area between the two platforms where there is already si Overall, Option 2A is the preferred option from a Legacy Marine Imp	area of habitat change from the rock placement is considered negligible, gnificant rock cover.				
3. Technical	3.1 Technical Risk	Concept Maturity: Well proven techniques. Subsea tools and vessel requirements are broadly supported across the market. (Score 3) Technical Risks: Potential for technical risks from deburial and cut & lift of line although <5km of buried line is feasible to remove by cut and lift with several trips to offload recovered materials. (Score 2)	Concept Maturity: Well proven techniques. Subsea tools and vessel requirements are broadly supported across the market. (Score 3) Technical Risks: Limited technical risks, Pipeline ends only are feasible to remove by cut and lift with a single trip to offload recovered materials. (Score 3)				
		MW					
s	ummary	The assessment of the Technical Risk sub-criterion is as follows: Option 2A is assessed as being Much Weaker than Option 5 as, while bot equipment failure and additional debris recovery associated with Option 2A Overall, Option 5 is the preferred option from a Technical Risk persp					
4. Societal	4.1 Fishing	Short operation, small area of disturbance, Fishing operations are conducted in vicinity of the pipeline. (Score 3)	Short operation, small area of disturbance, Fishing operations are conducted in vicinity of the pipeline. (Score 3)				
		Ν					
s	ummary	The assessment of the Societal impact on Fishing sub-criterion is as follow Option 2A is assessed as being Neutral to Option 5 as the impact on the f Overall, both options are equally preferred from a Societal impact of	ishing industry is limited and similar for both options.				
4. Societal	4.2 Other Users	Returned steel can be recycled. Concrete coating likely will go to landfill. (Score 3) Materials Returned: Steel: 829 tonnes (recyclable) Concrete: 2,097 tonnes (landfill)	Minimal returned steel can be recycled. Concrete coating likely will go to landfill. (Score 3) Materials Returned: Steel: 20 tonnes (recyclable) Concrete: 50 tonnes (landfill)				
		Ν					
s	Summary The assessment of the Societal impact on Other Users sub-criterion is as follows: Option 2A is assessed as being Neutral to Option 5 as, while there are societal benefits associated with returning the recyclable duplex steel in Option 2A, this is offset by the significant quantity of concrete that would take up landfill capacity. Overall, both options are equally preferred from a Societal impact on Other Users perspective.						

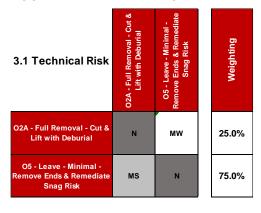
		O2A - Full Removal - Cut & Lift with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk				
5. Economic	5.1 Short-term Costs	£4.794 Million	£0.838 Million				
		MW					
S	ummary	The assessment of the Short-term Costs sub-criterion is as follows: Option 2A is assessed as being Much Weaker than Option 5 as the costs Overall, Option 5 is the preferred option from a Short-term Cost per					
5	ε	Surveys: N/A	Surveys: £1.239 Million				
Economic	Long-term Costs	FLTC: N/A	FLTC: £0.012 Million				
con	Cos	Total Legacy Cost: £0 Million	Total Legacy Cost: £1.251 Million				
5. E	5.2 L						
		S					
		The assessment of the Long-term Costs sub-criterion is as follows:					
Summary Option 2A is assessed as being Stronger than Option 5 as there are no legacy costs associated with the full removal option. Overall, Option 5 is the preferred option from a Long-term Cost perspective.							

Appendix D.2 Group 6 Pairwise Comparison Matrices - Safety

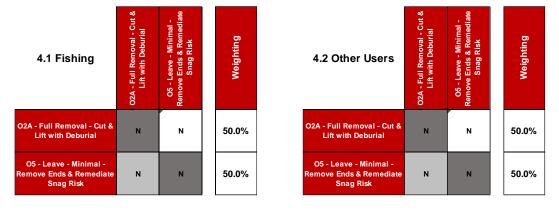
2.1 Operational Marine Impact	O2A - Full Removal - Cut & Lift with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut & Lift with Deburial	N	w	40.0%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	s	N	60.0%

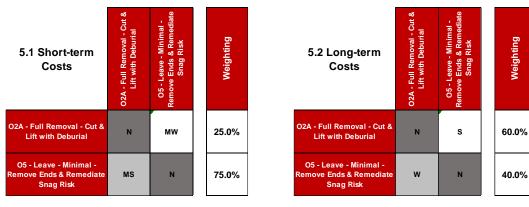
Appendix D.3 Group 6 Pairwise Comparison Matrices - Environment

2.2 Atmospheric Emissions & Fuel Consumption	O2A - Full Removal - Cut & Lift with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut & Lift with Deburial	N	N	50.0%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	N	N	50.0%

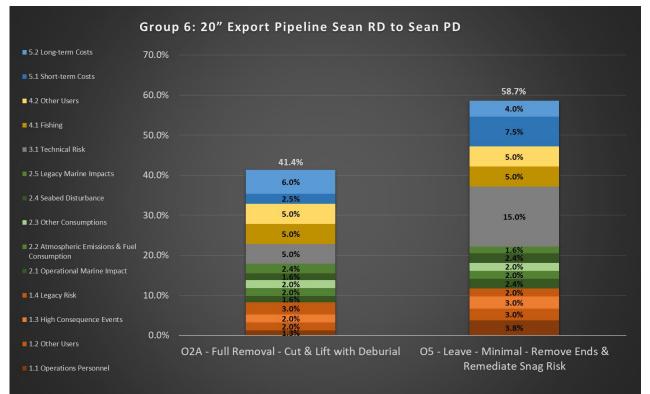

2.3 Other Consumptions	O2A - Full Removal - Cut & Lift with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut & Lift with Deburial	N	N	50.0%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	N	N	50.0%

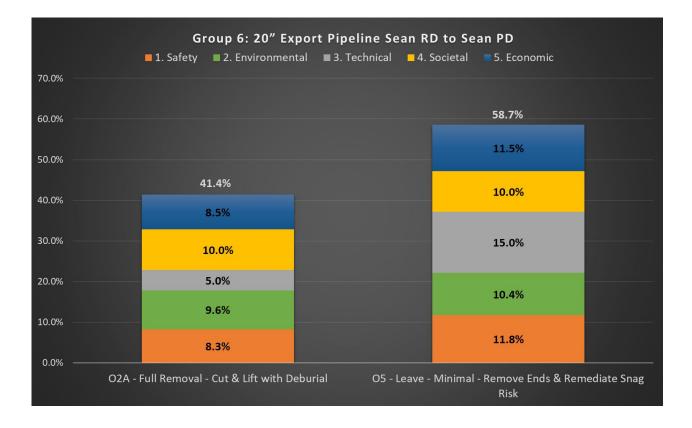
2.4 Seabed Disturbance	O2A - Full Removal - Cut & Lift with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut & Lift with Deburial	N	w	40.0%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	S	N	60.0%


2.5 Legacy Marine Impacts	O2A - Full Removal - Cut & Lift with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2A - Full Removal - Cut & Lift with Deburial	N	s	60.0%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	w	N	40.0%


Appendix D.4 Group 6 Pairwise Comparison Matrices – Technical

Appendix D.5 Group 6 Pairwise Comparison Matrices - Societal

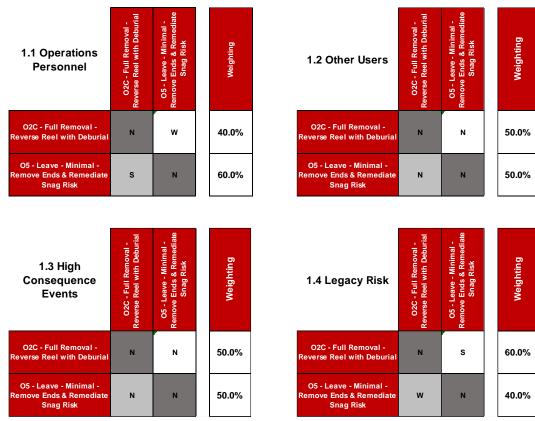



Appendix D.6 Group 6 Pairwise Comparison Matrices - Economic

Appendix D.7 Group 6 Results Charts

APPENDIX E GROUP 7 – DETAILED EVALUATION RESULTS

Appendix E.1 Group 7 Attributes Table


		O2C - Full Removal - Reverse Reel with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk
		 Cable will be disconnected at platform ends. Cable will be deburied to allow reverse reeling. Cable reverse reeled to vessel. Cable is 3.5" diameter. 	 Cable will be disconnected at platform ends. Cable will be cut at trench transition with cut ends recovered. Rock placement to remediate snag risk from cut ends Cable is 3.5" diameter.
		Vessel Type: PoB / Days / Hours / PLL CSV: 76 / 11.9 / 10,862 / 8.15E-04	Vessel Type: PoB / Days / Hours / PLL CSV: 76 / 5.2 / 4,715 / 3.54E-04
	nnel	Total offshore hours: 10,862 hrs Total offshore PLL: 8.15E-04	Total offshore hours: 4,715 hrs Total offshore PLL: 3.54E-04
1. Safety	1.1 Operations Personnel	Resource Type: Days / Hours / PLL Engineering & Management: 69.1 / 2,212 / 8.85E-06 Project Management: 93.0 / 1,488 / 5.95E-06 Onshore Operations (includes Cleaning & Disposal): 3.0 / 192 / 2.36E-05	Resource Type: Days / Hours / PLL Engineering & Management: 61.8 / 1,976 / 7.91E-06 Project Management: 68.0 / 1,088 / 4.35E-06 Onshore Operations (includes Cleaning & Disposal): 1.0 / 64 / 7.87E-06
	1.1 Ope	Total onshore hours: 3,892 hrs Total onshore PLL: 3.84E-05	Total onshore hours: 3,128 hrs Total onshore PLL: 2.01E-05
		Total operational hours: 14,754 hrs Total operational PLL: 8.53E-04	Total operational hours: 7,844 hrs Total operational PLL: 3.74E-04
		W	
		The assessment of the Operations Personnel sub-criterion is as follows: Option 2C is assessed as being Weaker than Option 5 as personnel expo	sure is around double that of Option 5 due to the grapter offeners and
S	ummary	onshore scopes for the full removal option. Overall, Option 5 is the preferred option from a risk to Operations Pe	
	ers	Vessel Days:	Vessel Days:
fety	Usi	CSV: 11.9	CSV: 5.2
1. Safety	1.2 Other Users	Total vessel days: 11.9 days Transits: 2	Total vessel days: 5.2 days Transits: 2
		N	
s	ummarv	The assessment of the Other Users sub-criterion is as follows: Option 2C is assessed as being Neutral to Option 5 as the safety impact t	o other users of the is similar for both options
		Overall, both options are equally preferred from a risk to Other User	
1. Safety	1.3 High Consequence Events	Routine operations. Lifting of reel to / from vessel.	Routine operations with minimal lifting (2 lifts).
		N	
s		The assessment of the High Consequence Events sub-criterion is as follow Option 2C is assessed as being Neutral to Option 5 as the potential for Hig Overall, both options are equally preferred from a High Consequence	gh Consequence Events is limited and similar for both options.
		No legacy risk from this full removal option.	The line would remain in-situ with this option with it's full length fully
. Safety	1.4 Legacy Risk		buried. The survey & monitoring programme is committed to ensuring that the potential snag hazard from left in-situ infrastructure continues to be managed & mitigated as appropriate.
-	1.4 L		Vessel Type: PoB / Days / Hours / PLL Survey Vessel (Legacy): 44 / 24.8 / 13,100 / 9.82E-04
		S	
s	ummary	The assessment of the Legacy Risk sub-criterion is as follows: Option 2C is assessed as being Stronger than Option 5 as there is no lega leave in-situ option is considered small and managed by the remaining line the survey and monitoring programme.	
		Overall, Option 2C is the preferred option from a Legacy Risk persp	ective.

		O2C - Full Removal - Reverse Reel with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk			
	_	Vessel Noise (days on-site): CSV 7.9 days	Vessel Noise (days on-site): CSV 1.2 days			
ıtal	rine	MFE: 6.1 days	Tooling negligible.			
2. Environmental	2.1 Operational Marine Impact	Operation Discharges: No operation impacts.	Operation Discharges: No operation impacts.			
iron	ational Impact					
2 N	lr Ir	Vessel Discharges:	Vessel Discharges:			
2. 1	ö	This includes Ballast, Grey and Black Water, this is driven by duration of vessel operations and therefore at 7.9 days is the highest of the options	This includes Ballast, Grey and Black Water, this is driven by duration of vessel operations and therefore at 1.2 days is the lowest of the options			
	2.1	being evaluated but still negligible.	being evaluated and negligible.			
		N				
		The assessment of the Operational Marine Impact sub-criterion is as follow Option 2C is assessed as being Neutral to Option 5 as the environmental i				
S	ummary	generated from the deburial of the line using MFE being considered insuffic				
		Overall, both options are equally preferred from an Operational Ma	rine Impact perspective.			
	ళ	Vessel Emissions (in tonnes):	Vessel Emissions (in tonnes):			
	suc	Fuel: 291 CO2: 924	Fuel: 815 CO2: 2,583			
tal	ssic	NOX: 17.31	NOX: 48.40			
nent	mpti	SO2: 1.17	SO2: 3.26			
2. Environmental	Atmospheric Emissions & Fuel Consumption	Vessel Energy Use: 12,534 GJ	Vessel Energy Use: 35,040 GJ			
En	ospl lel C		Note: the emissions and fuel consumption data for this option includes			
2.	Atm F		those associated with the survey and monitoring programme. This is			
	2.2		considered lower impact as it is spread over a long time period of around 30 years.			
		•	30 years.			
		N The assessment of the Atmospheric Emissions & Consumptions sub-crite	rion is as follows:			
	ummary		re emissions and fuel use associated with Option 5, a significant portion of			
3	unnary	this is associated with the survey and monitoring programme which is spread over around 30 years and therefor has lower impact. Overall, both options are equally preferred from an Atmospheric Emissions & Consumptions perspective.				
Ital	SL	Material Emissions (CO2 in tonnes): Recovered Material: 8	Material Emissions (CO2 in tonnes): Recovered Material: 1			
mer	otio	Remaining Material:	Remaining Material: 158			
Environmental	2.3 Other Insumptio	Total: 8	Total: 159			
	2.3 Other Consumptions	Rock: N/A tonnes	Rock: 32 tonnes			
5	-					
		N The assessment of the Other Consumptions sub-criterion is as follows:				
s	ummary	Option 2C is assessed as being Neutral to Option 5 as the environmental i				
		Overall, both options are equally preferred from an Other Consump				
ental	- 0	Short Term Disturbance (MFE): 24460 m2	Short Term Disturbance: N/A			
18	abed ance					
Environ	2.4 Seab Disturbaı					
2. En	2:4 Dis					
3		W				
		The assessment of the Seabed Disturbance sub-criterion is as follows:				
s	ummarv	Option 2C is assessed as being Weaker than Option 5 due to the greater MEE prior to reverse reeling. It is noted that this line between the platform				
	unnury	MFE prior to reverse reeling. It is noted that this line between the platforms does not lie in any areas of special interest from an environmental perspective.				
		Overall, Option 5 is the preferred option from a Seabed Disturbance	perspective.			
Ital	y icts	No legacy marine impact from this full removal option.	Degradation products remain in-situ (polymer / copper)			
mer	gac	Habitat Loss (Rock Cover): N/A	The legacy marine impact from the slow release of these degradation products is expected to be low overall, especially as fully buried.			
2. Environmental	2.5 Legacy Marine Impacts					
Env	2. Mari		Habitat Loss (Rock Bags): 50 m2			
		S				
		The assessment of the Legacy Marine Impacts sub-criterion is as follows: Option 2C is assessed as being Stronger than Option 5 as there are no leg				
s	ummary	associated with Option 5 will be limited as the line is buried and the small	area of habitat change from the rock placement is considered negligible,			
		particularly in the area between the two platforms where there is already si	•			
		Overall, Option 2C is the preferred option from a Legacy Marine Imp	שמנום אבו שאברוו אבי			

		O2C - Full Removal - Reverse Reel with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk		
3. Technical	Concept Maturity: Well proven techniques. Subsea tools, vessel equipment and vessel requirements are broadly supported across the market. (Score 3) Technical Risks: Limited technical risks, small diameter cable feasible t remove by reverse reel but will require deburial. (Score 3)		Concept Maturity: Well proven techniques. Subsea tools and vessel requirements are broadly supported across the market. (Score 3) Technical Risks: Limited technical risks, Cable ends only are feasible to remove by cut and lift. (Score 3)		
		W			
s	Summary	The assessment of the Technical Risk sub-criterion is as follows: Option 2C is assessed as being Weaker than Option 5 as while both optio the cable for reverse reeling and the deburial required. Overall, both options are equally preferred option from a Technical	ns employ routine operations, there are concerns regarding the integrity of Risk perspective.		
4. Societal	4.1 Fishing	Short operation, small area of disturbance, Fishing operations are conducted in vicinity of the cable. (Score 3)	Short operation, small area of disturbance, Fishing operations are conducted in vicinity of the cable. (Score 3)		
		Ν			
s	ummary	The assessment of the Societal impact on Fishing sub-criterion is as follow Option 2C is assessed as being Neutral to Option 5 as the impact on the f Overall, both options are equally preferred option from a Societal in	ishing industry is limited and similar for both options.		
	ers	Copper will be recyclable, coating will likely go to landfill. (Score 3)	Copper will be recyclable, coating will likely go to landfill. (Score 3)		
4. Societal	4.2 Other Users	Materials Returned: Copper: 23 tonnes (recyclable) Polymer: 5 tonnes (landfill)	Materials Returned: Copper: 1 tonnes (recyclable)		
		S			
		The assessment of the Societal impact on Other Users sub-criterion is as	follows:		
S	ummary	Option 2C is assessed as being Stronger than Option 5 due to the benefit Overall, Option 2C is the preferred option from a Societal impact on			
5. Economic	5.1 Short-term Costs	£1.085 Million	£0.854 Million		
		W			
s	ummary	The assessment of the Short-term Costs sub-criterion is as follows: Option 2C is assessed as being Weaker than Option 5 as the costs are an Overall, Option 5 is the preferred option from a Short-term Cost pers			
<u>.0</u>	Ę	Surveys: N/A	Surveys: £1.24 Million		
5. Economi	5.2 Long-ter Costs	FLTC: N/A Total Legacy Cost: £0 Million	FLTC: N/A Total Legacy Cost: £1.24 Million		
		S			
s	Summary	The assessment of the Long-term Costs sub-criterion is as follows: Option 2C is assessed as being Stronger than Option 5 as there are no leg Overall, Option 2C is the preferred option from a Long-term Cost per			

Appendix E.2 Group 7 Pairwise Comparison Matrices - Safety

Appendix E.3	3 Group 7 Pairwise Comparison Matrices - Environmen					
2.1 Operational Marine Impact	O2C - Full Removal - Reverse Reel with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk		Weighting	OSC - Full Removal - Reverse Reel with Deburial OS - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2C - Full Removal - Reverse Reel with Deburial	N	N		50.0%	O2C - Full Removal - Reverse Reel with Deburial N N	50.0%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	N	N		50.0%	O5 - Leave - Minimal - Remove Ends & Remediate N N Snag Risk	50.0%
2.3 Other Consumptions	O2C - Full Removal - Reverse Reel with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk		Weighting	CSC - Full Removal - Reverse Reel with Deburial OS - Leave - Minimal - Remove Ends & Remediate Snag Risk	Weighting
O2C - Full Removal - Reverse Reel with Deburial	N	N		50.0%	O2C - Full Removal - Reverse Reel with Deburial N W	40.0%
O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk	N	N		50.0%	O5 - Leave - Minimal - Remove Ends & Remediate S N Snag Risk	60.0%
2.5 Legacy Marine Impacts	O2C - Full Removal - Reverse Reel with Deburial	O5 - Leave - Minimal - Remove Ends & Remediate Snag Risk		Weighting		

Appendix E.3 Group 7 Pairwise Comparison Matrices - Environment

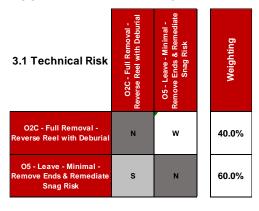
s

Ν

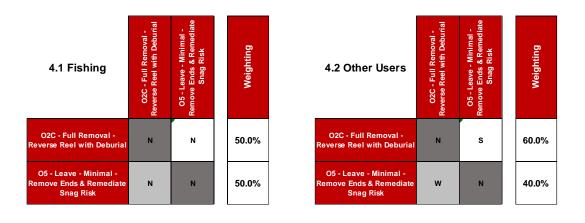
60.0%

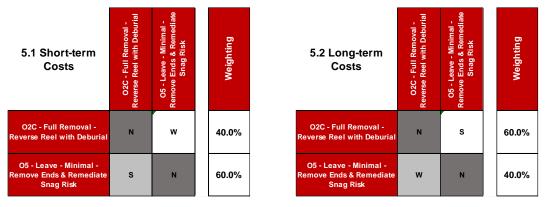
40.0%

Ν

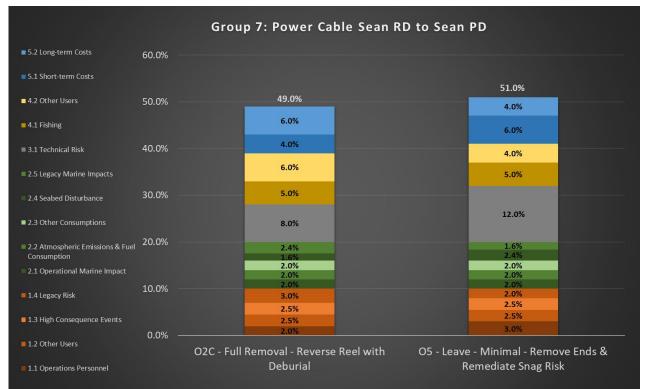

w

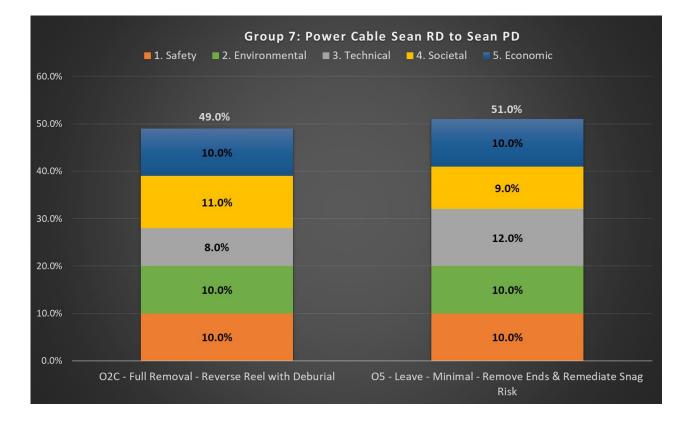
O2C - Full Removal -Reverse Reel with Deburial


O5 - Leave - Minimal emove Ends & Remediate Snag Risk


Appendix E.4 Group 7 Pairwise Comparison Matrices – Technical

Appendix E.5 Group 7 Pairwise Comparison Matrices - Societal




Appendix E.6 Group 7 Pairwise Comparison Matrices - Economic

Appendix E.7 Group 7 Results Charts

APPENDIX F DECOMMISSIONING METHODOLGIES & DATASHEETS

Appendix F.1

Group 1 – Option 2a

	CT MENT NUMBER LATION NUMBER	A400309-S00 A-400309-S00-CA A02	ng Method Stateme			
	GRAND TOTAL				£104	l,178,635
	SUB-TOTALS Offshore Operations Onshore Operations & Equipment Hire Project Services Long Term Liability				£1,	,514,572 416,595 ,247,469 £0
ITEM	Offshore Operations	Unit	QTY	Vessel	Rate £k	Total £k
	Cut and Lift Pipelines Mob / Demob (dlload) Transit to Field DP trais As-found survey (1500 m/hr) Debury pipeline to provide access for cut and recovery - (3 passes) De-bury pipeline to provide access for cut and recovery - (3 passes) De-bury pipeline to provide access for cut and recovery - (2 passes) De-bury pipeline to provide access for cut and recovery - (2 passes) De-bury pipeline to provide access for cut and recovery - (2 passes) De-bury pipeline to provide access for cut and recovery - (2 passes) De-bury pipeline to provide access for cut and recovery - (2 passes) De-bury pipelines into 12m sections (4309 dual cuts at 1 hour per dual cut) Recover pipeline sections to deck coral (8617 sections at 0.5 hours per section) Interim trips to ofload pipe sections (3 day round trip, 76 trips) Piace rock bags to remediate cut end sna grisks (20 locations, 1 x 8 Te bag per location) Rock ages to remediate stard (20 partice) at £1000 per bag) Relocate between crossing locations (average distance 2.5 km at 2.7 knots) As-left survey (1500 m/hr)	£k / Day £k / Day	2.00 1.00 0.17 2.33 0.04 62.50 22.61 0.04 0.01 179.54 44.89 74.81 179.52 228.00 0.28 20.00 0.19 2.93 1.00	CSV CSV CSV CSV CSV CSV CSV CSV CSV CSV	75 75 75 75 75 75 75 75 75 75 75 75 75 7	150 75 13 220 3 4,688 1,771 3 1 13,466 3,366 5,611 13,464 17,100 20 14 220 75
110	Offshore weather allowance Offshore weather allowance Offshore tidal allowance	£k (LS) £k (LS)	15% 30%		-	60,278 6,427 12,854 19,281
120	Decommissioning Contractors Engineering and Management Based on 10% of total cost	£k (LS)	10%		-	7,956
						87,515
	OTAL Offshore Operations					
	Onshore Operations & Equipment Hire	Unit	QTY	Vessel	Rate £k	Total £k
1TEM 201	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline	Unit £k / Te	QTY 33,223.30	Vessel -	Rate £k	
201 202	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Lift Tool Mass Flow Excavator (MFE)			Vessel - - -		Total £k -664
201 202	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Litt Tool	£k / Te £k / Day	33,223.30 825.44	Vessel - - - -	-0.02	-664 -664 1,238 743
201 202 203	Onshore Operations & Equipment Hire Recycling & Diaposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Lift Tool Mass Flow Excavator (MFE) Miscellaneous	£k / Te £k / Day £k / Day	33,223.30 825.44 825.44	Vessel - - - -	-0.02 1.50 0.90	Total Ek -664 -664 1,238 7,43 1,981 100
201 202 203 SUB-TC	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Lift Tool Mass Flow Excavator (MFE) Miscellaneous Misc. Onshore Costs (Port charges, storage etc.)	£k / Te £k / Day £k / Day	33,223.30 825.44 825.44	Vessel	-0.02 1.50 0.90	Total £k -664 664 1.238 743 1.981 100 100
1TEM 201 202 203 SUB-TC ITEM 301	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Litt Tool Mass Flow Excavator (MFE) Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) TAL Onshore Operations & Equipment Hire Project Services Owner Project Management Costs Project Management Costs Project Management Costs	£k / Te £k / Day £k / Day LS	33,223.30 825.44 825.44 1	-	-0.02 1.50 0.90 100.00	Total £k -664 1,238 743 1,981 100 100 1,417
ITEM 201 202 203 SUB-TC ITEM 301 302	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Uit Tool Mass Flow Excavator (MFE) Miscellaneous Misc. Onshore Operations & Equipment Hire Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification	£k / Te £k / Day £k / Day LS Unit	33,223.30 825.44 825.44 1 QTY	-	-0.02 1.50 0.90 100.00	Total £k -864 -864 1,238 743 1,281 100 100 100 1,417 Total £k 10,672
ITEM 201 202 203 SUB-TC ITEM 301 302 303	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Uff Tool Mass Flow Excavator (MFE) Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) TAL Onshore Operations & Equipment Hire Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance	£k / Te £k / Day £k / Day LS Unit LS	33,223.30 825.44 825.44 1 QTY 12%	-	-0.02 1.50 0.90 100.00 Rate Ek	Total £k -664 -664 1,238 743 1,981 100 100 100 1,417 Total £k 10,672 200
ITEM 201 202 203 SUB-TC ITEM 301 302 303	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Uift Tool Mass Flow Excavator (MFE) Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) TAL Onshore Operations & Equipment Hire Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance	Ek / Te Ek / Day Ek / Day LS LS LS LS	33,223.30 825.44 825.44 1 0 12% 12%	-	-0.02 1.50 0.90 100.00 Rate Ek	Total Ek -664 -664 1,238 743 1,981 100 100 100 100 10,672 10,672 200 200 4,376
ITEM 201 202 203 SUB-TC 301 302 303 304	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Lift Tool Mass Flow Excavator (MFE) Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) TAL Onshore Operations & Equipment Hire Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance FLTC Legacy Cost	£k / Te £k / Day £k / Day LS LS LS LS LS LS	33,223.30 825.44 825.44 1 1 12% 1 2%	-	-0.02 1.50 0.90 100.00 Rate Ek - 200.00 -	Total £k -664 -664 1,238 743 1,981 100 100 100 1,417 Total £k 10,672 200 200 4,376 0 0
ITEM 201 202 203 GUB-TC 301 302 303 304	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Lift Tool Mass Flow Excavator (MFE) Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) TAL Onshore Operations & Equipment Hire Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC)	£k / Te £k / Day £k / Day LS LS LS LS LS LS	33,223.30 825.44 825.44 1 1 12% 1 2%	-	-0.02 1.50 0.90 100.00 Rate Ek - 200.00 -	Total Ek -664 -664 1,238 743 1,981 100 100 100 101 1,417 Total Ek 10,672 10,672 200 200 4,376 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ITEM 201 202 203 JUB-TC 301 302 303 304 SUB-TC ITEM 401	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Litt Tool Mass Flow Excavator (MFE) Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) TAL Onshore Operations & Equipment Hire Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance FLIC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) TAL Project Services Long Term Liability Long Term Liability Surveys Mob / Demob Transit to Field Survey Operations (500 m/hr) Transit to Shore	£k / Te £k / Day £k / Day LS LS LS LS LS LS LS K / km	33,223.30 825.44 825.44 1 1 12% 1 5% 0		-0.02 1.50 0.90 100.00 Rate Ek - 200.00 - 3.00	Total £k -664 -864 1,238 743 1,981 100 100 100 100 100 10,672 10,672 200 4,376 0 0 15,247 Total £k 0
ITEM 201 202 203 GUB-TC 301 302 303 304 GUB-TC TITEM 401	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Lift Tool Mass Flow Excatator (MFE) Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) TAL Onshore Operations & Equipment Hire Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) TAL Project Services Long Term Liability Long Term LiabilitySurveys Mob/ Demob Transit to Field Survey Operations (500 m/m)	Ek / Te Ek / Day Ek / Day LS LS LS LS LS LS Ek / km Unit No. Off Ek / Day Ek / Day	33,223.30 825.44 825.44 1 12% 1 2% 0 0 0 0 0 0,0 0,0 0,0		-0.02 1.50 0.90 100.00 Rate Ek - 200.00 - 3.00 Rate Ek 50 50	Total £k -664 -864 1,238 743 1,981 100 100 100 100 100 100 10,672 10,672 10,672 200 4,376 0 0 15,247 Total £k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ITEM 201 202 203 JUB-TC 301 302 303 304 SUB-TC ITEM 401	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Litt Tool Mass Flow Excavator (MFE) Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) TAL Onshore Operations & Equipment Hire Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance FLIC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) TAL Project Services Long Term Liability Long Term Liability Surveys Mob / Demob Transit to Field Survey Operations (500 m/hr) Transit to Shore	Ek / Te Ek / Day Ek / Day LS LS LS LS LS LS Ek / km Unit No. Off Ek / Day Ek / Day	33,223.30 825.44 825.44 1 12% 1 2% 0 0 0 0 0 0,0 0,0 0,0		-0.02 1.50 0.90 100.00 Rate Ek - 200.00 - 3.00 Rate Ek 50 50	Total Ek -664 -664 1,238 743 1,981 100 100 101 100 100 100 10,672 10,672 200 4,376 0 0 15,247 Total Ek 0
ITEM 201 202 203 SUB-TC 301 302 303 304 SUB-TC ITEM SUB-TC	Onshore Operations & Equipment Hire Recycling & Disposal Rigid Steel Pipeline Equipment Procurement, Hire & Fabrication Trident Cut and Litt Tool Mass Flow Excavator (MFE) Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) TAL Onshore Operations & Equipment Hire Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance FLIC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) TAL Project Services Long Term Liability Long Term Liability Surveys Mob / Demob Transit to Field Survey Operations (500 m/hr) Transit to Shore	Ek / Te Ek / Day Ek / Day LS LS LS LS LS LS LS LS K / km	33,223.30 825.44 825.44 1 12% 1 2% 0 0 0 0 0 0,0 0,0 0,0		-0.02 1.50 0.90 100.00 Rate Ek - 200.00 - 3.00 Rate Ek 50 50	Total Ek -664 -664 1,238 743 1,981 100 100 101 1,417 Total Ek 10,672 10,672 200 4,376 0 0 15,247 Total Ek 0

Option Datasheet: Group 1: 30" Export Pipeline Sean PP to Bacton Terminal, Option 2A - Full Removal (Cut and Lift)

SAFETY					
Offshore Personnel	Number of	76	Man Hours	732,746	
Diver Requirement	Number of	0	Man Hours	0	
Onshore Personnel	Number of	14	Man Hours	616,064	
Legacy Risk	Number of	0	Man Hours	0	
Impact to Other Users of the Sea (operational)	Number of	1	Duration of Operations (Days)	803.5	
Impact to Other Users of the Sea (Legacy)	Number of	0	Duration of Operations (Days)	0	
Operational Risk Offshore	PLL	5.50E-02			
Operational Risk Diver	PLL	0.00E+00			
Operational Risk Onshore	PLL	1.09E-02			
Legacy Risk	PLL	0.00E+00			
Fishing Risk	PLL	HOLD			
Overall Risk	ΣΡLL	6.59E-02			

ENVIRONMENTAL						
	Vessel Type	Number off	Duration (Days)	Activity		
	Survey Vessel	0	0.0	N/A		
	Trenching Vessel	0	0.0	N/A		
Marine Impact (Vessels)	Rockdump Vessel	0	0.0	N/A		
warine impact (vessers)	DSV	0	0.0	N/A		
	CSV	1	803.5	Unburial / Destruct		
	Reel Vessel	0	0.0	N/A		
	Trawler	0	0.0	N/A		
	Vessel Type	Number off	Duration (Days)	Activity		
Marine Impact (Vessel Legacy)	Survey Vessel (Legacy)	0	0	N/A		
	Rockdump Vessel (Legacy)	0	0	N/A		
Energy Use	Fuel (Te)	CO2 (Te)	Nox (Te)	SO2 (Te)		
al = Ops + Legacy)	22,455	71,181	1,334	90		
Life Cycle Emissions	CO2 - Disposal Ops (Te)	CO2 - Replacement Ops (Te)				
(Disposal / Replacement of Material)	137,807	2,911				
	Activity	Area (m²)	Resources			
	Habitat Loss (Rock Cover)	N/A	N/A			
Marine Impact (Seabed)	Habitat Loss (Rock Bags)	500	160			
	Short Term Disturbance (Trench and Bury)	N/A	N/A			
	Short Term Disturbance (Reverse Installation w/o Deburial)	N/A	N/A			
	Short Term Disturbance (MFE)	391,640	N/A			
	Material	Recovered Weight (Te)	Remaining Weight (Te)			
	Steel	33,223	643			
	Aluminium Alloy	0	0			
Materials	Copper	0	0			
	Concrete	99,708	1,929			
	Polymer	0	0			
	Mattress/Grout Bag	0	0			

TECHNICAL			
	Sub-Criterion	Scoring	Comments
Technical Considerations	Concept Maturity	3	Well proven techniques. Subsea tools and vessel requirements are broadly supported across the market.
	Technical Risks		The scale of this scope would result in significant technical risks, >100km of partly buried line is feasible to remove by cut and lift with 100s of trips to offload recovered materials.

SOCIETAL					
		Sub-Criterion	Scoring	Comments	
	Societal Factors	Fishing		Very long duration operation, large area of disturbance, Fishing operations are conducted in vicinity of the pipeline.	
		Other Users	2	Returned steel can be recycled. Concrete coating likely will go to landfill.	

ECONOMIC				
	Comparative Cost Operational	£104.18	м	
Economic Considerations	Comparative Cost Legacy	£0.00	м	
	Comparative Cost Total	£104.18	м	

Appendix F.2 Group 1 – Option 4a

PROJECT CLIENT SUBJECT ASSIGNMENT NUMBER CALCULATION NUMBER REVISION Group 1: 30" Export Pipeline Sean PP to Bacton Termin		A400309-S00 A-400309-S00-CA A02	g Method Stateme LC-001			
	GRAND TOTAL				£12,	929,776
	SUB-TOTALS					
200 300	Offshore Operations Onshore Operations & Equipment Hire Project Services Long Term Liability				£10 £1,7	08,071 00,000 (43,372 178,333
ITEM	Offshore Operations	Unit	QTY	Vessel	Rate £k	Total £k
101	Remedial Rock Placement Over Exposures Mob / Demob (offload) Transit to Field DP trials As-found survey (1500 m/hr) Rock placement over exposed sections Interim trips to re-load rock (3 day round trip, 12 trips) Rockdump span sections (10 Te/m) (QTY @ £16.75 /Te) As-let survey (1500 m/hr) Transit to Shore	£k / Day £k / Day £k / Day £k / Day £k / Day £k / Te £k / Day £k / Day	2.00 1.00 0.17 2.93 11.28 36.00 270,720 2.93 1.00	Rockdump Vessel Rockdump Vessel Rockdump Vessel Rockdump Vessel Rockdump Vessel Rockdump (£k/Te dumped) Rockdump Vessel	45 45 45 45 45 45 0.02 45 45	90 45 8 132 508 1.620 4.535 132 45
	Offshore weather allowance Offshore weather allowance Offshore tidal allowance Decommissioning Contractors Engineering and Management Based on 10% of total cost	£k (LS) £k (LS) £k (LS)	15% 30% 10%	-	-	7,113 359 717 1,076 819 819
SUB-T	OTAL Offshore Operations					9,008
ITEM	Onshore Operations & Equipment Hire	Unit	QTY	Vessel	Rate £k	Total £k
201	Recycling & Disposal					0
202	Equipment Procurement, Hire & Fabrication					
203	Miscellaneous Misc. Onshore Costs (Port charges, storage etc.)	LS	1	-	100.00	0 100 100
SUB-T	OTAL Onshore Operations & Equipment Hire	1		1		100
ITEM	Project Services	Unit	QTY	Vessel	Rate £k	Total £k
301	Owner Project Management Costs Project Management / Supervision / Owner Costs	LS	12%	-	-	1,093 1,093
302	3rd Party Verification 3rd Party Verification	LS	1	-	200.00	200 200
303	Insurance	LS	5%	-	-	450 450
304	FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC)	£k / km	0	-	3.00	0 0
SUB-T	OTAL Project Services					1,743
ITEM	Long Term Liability	Unit	QTY	Vessel	Rate £k	Total £k
401	Long Term Liability Surveys Mob / Demob Transit to Field Survey Operations (1500 m/hr) Transit to Shore	No. Off £k / Day £k / Day £k / Day £k / Day	6 12.0 6.0 17.6 6.0	Survey Vessel (Legacy) Survey Vessel (Legacy) Survey Vessel (Legacy) Survey Vessel (Legacy)	50 50 50 50	600 300 878 300 2,078
SUB-TO	OTAL Long Term Liability	1				2,078
Series	Activity	SCHEDULE			Unit	Duration
101	Remedial Rock Placement Over Exposures				Days	57.30
401	Long Term Liability Surveys				Days	41.6

Option Datasheet: Group 1: 30" Export Pipeline Sean PP to Bacton Terminal, Option 4A - Leave In Situ Rock Cover Exposures

SAFETY				
Offshore Personnel	Number of	20	Man Hours	13,754
Diver Requirement	Number of	0	Man Hours	0
Onshore Personnel	Number of	14	Man Hours	56,029
Legacy Risk	Number of	44	Man Hours	21,949
Impact to Other Users of the Sea (operational)	Number of	1	Duration of Operations (Days)	57.3
Impact to Other Users of the Sea (Legacy)	Number of	1	Duration of Operations (Days)	41.57
Operational Risk Offshore	PLL	1.03E-03		
Operational Risk Diver	PLL	0.00E+00		
Operational Risk Onshore	PLL	2.24E-04		
Legacy Risk	PLL	1.65E-03		
Fishing Risk	PLL	HOLD		
Overall Risk	ΣΡLL	2.90E-03		

ENVIRONMENTAL				
	Vessel Type	Number off	Duration (Days)	Activity
	Survey Vessel	0	0.0	N/A
	Trenching Vessel	0	0.0	N/A
Marine Impact (In sector)	Rockdump Vessel	1	57.3	Rockdump
Marine Impact (Vessels)	DSV	0	0.0	N/A
	CSV	0	0.0	N/A
	Reel Vessel	0	0.0	N/A
	Trawler	0	0.0	N/A
	Vessel Type	Number off	Duration (Days)	Activity
Marine Impact (Vessel Legacy)	Survey Vessel (Legacy)	1	41.57	Survey
	Rockdump Vessel (Legacy)	0	0	N/A
Energy Use	Fuel (Te)	CO2 (Te)	Nox (Te)	SO2 (Te)
(Total = Ops + Legacy)	2,205	6,991	131	9
Life Cycle Emissions	CO2 - Disposal Ops (Te)	CO2 - Replacement Ops (Te)		
(Disposal / Replacement of Material)	0	153,413		
	Activity	Area (m²)	Resources	
	Habitat Loss (Rock Cover)	270,720	270720 Te of Rock	
Marine Impact (Seabed)	Habitat Loss (Rock Bags)	N/A	N/A	
manne inipaci (Seabed)	Short Term Disturbance (Trench and Bury)	N/A	N/A	
	Short Term Disturbance (Reverse Installation w/o Deburial)	N/A	N/A	
	Short Term Disturbance (MFE)	N/A	N/A	
	Material	Recovered Weight (Te)	Remaining Weight (Te)	
	Steel	0	33,866	
	Aluminium Alloy	0	0	
Materials	Copper	0	0	
	Concrete	0	101,637	
	Polymer	0	0	
	Mattress/Grout Bag	0	0	

TECHNICAL			
	Sub-Criterion	Scoring	Comments
Technical Considerations	Concept Maturity	3	Rock placement is a well proven technique for the southern sector.
	Technical Risks	3	Limited technical risks associated with option

SOCIETAL			
	Sub-Criterion	Scoring	Comments
Societal Factors	Fishing	1	Large area of disturbance, Fishing operations are conducted in vicinity of the pipeline.
	Other Users	1	Minimal societal benefits / impacts with this option.

ECONOMIC			
	Comparative Cost Operational	£10.85	Μ
Economic Considerations	Comparative Cost Legacy	£2.08	Μ
	Comparative Cost Total	£12.93	м

Appendix F.3 Group 1 – Option 4c

PROJECT CLIENT SUBJECT ASSIGNMENT NUMBER CALCULATION NUMBER REVISION

Sean Field Decommissioning ONE Dyas Decommissioning Method Statements A400309-S00-CALC-001 A02

Group 1: 30" Export Pipeline Sean PP to Bacton Terminal, Option 4C - Leave in-situ - Minor Intervention (Remove Areas of Exposures)

	GRAND TOTAL				£95,	010,050
	SUB-TOTALS					
100	Offshore Operations				£70,	488,570
200	Onshore Operations & Equipment Hire Project Services					160,794
300 400	Long Term Liability					282,352 078,333
ITEM	Offshore Operations	Unit	QTY	Vessel	Rate £k	Total £k
101	Cut and Lift Pipelines Mob / Demob (offload)	£k / Day	2.00	CSV	75	150
	Transit to Field DP trials	£k / Day £k / Day	1.00 0.17	CSV CSV	75 75	75 13
	As-found survey (1500 m/hr)	£k / Day	2.93	CSV	75	220
	Deploy diamond wire cutting machine (67 times) Cut areas of exposure (4580 cuts)	£k / Day £k / Day	2.79 190.83	CSV CSV	75 75	209 14,313
	Reposition diamond wire cutting machine (4579 repositions)	£k / Day	95.40	CSV	75	7,155
	Retrieve diamond wire cutting machine (67 times) Deploy and attach pipe grab tool and lift cut sections (2290 sections at 0.5 hours per section)	£k / Day £k / Day	0.70 47.71	CSV CSV	75 75	52 3,578
	Place rock bags to remediate cut end snag risks (4580 locations, 1 x 8 Te bag per location) Rock bags to remediate snag risks (4580 bags at £1000 per bag)	£k / Day £k / unit	62.98 4,580	CSV Rock Bags (8Te)	75 1	4,723 4,580
	Interim trips to re-load rock bags (3 day round trip, 45.8 trips)	£k / Day	138	CSV	75	10,350
	As-left survey (1500 m/hr) Transit to Shore	£k / Day £k / Day	2.93 1.00	CSV CSV	75 75	220 75
						45,712
110	Offshore weather allowance Offshore weather allowance	£k (LS)	15%	-		6,123
	Offshore tidal allowance	£k (LS)	30%			12,246 18,369
120	Decommissioning Contractors Engineering and Management					10,309
	Based on 10% of total cost	£k (LS)	10%	-	-	6,408
						6,408
SUB-T	TAL Offshore Operations	1				70,489
ITEM	Onshore Operations & Equipment Hire	Unit	QTY	Vessel	Rate £k	Total £k
TIEN	onsione operations & Equipment nine	Unit		V 6 3361	Kale Zk	TOTALER
201	Recycling & Disposal					
	Rigid Steel Pipeline	£k / Te	8,698	-	-0.02	-174
202	Equipment Procurement, Hire & Fabrication					
	Diamond Wire Cutter	£k / Day	5130	-	0.95	4,874
	Suction Dredger	£k / Day	5130	-	0.85	4,361 9,235
203	Miscellaneous					
	Misc. Onshore Costs (Port charges, storage etc.)	LS	1	-	100.00	100
						100
SUB-T	OTAL Onshore Operations & Equipment Hire					9,161
ITEM	Project Services	Unit	QTY	Vessel	Rate £k	Total £k
301	Owner Project Management Costs Project Management / Supervision / Owner Costs	LS	12%			9,558
		20	1270	_	-	9,558
302	3rd Party Verification					
	3rd Party Verification	LS	1	-	200.00	200
303	Insurance					200
	Insurance	LS	5%	-		3,524
304	FLTC Legacy Cost					3,524
	UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC)	£k / km	0	-	3.00	0
						0
SUB-TO	TAL Project Services	1			l	13,282
ITEM	Long Term Liability	Unit	QTY	Vessel	Rate £k	Total £k
401	Long Term Liability Surveys Mob / Demob	No. Off £k / Day	6 12.0	Survey Vessel (Legacy)	50	600
	Transit to Field	£k / Day	6.0	Survey Vessel (Legacy)	50	300
	Survey Operations (1500 m/hr) Transit to Shore	£k / Day £k / Day	17.6 6.0	Survey Vessel (Legacy) Survey Vessel (Legacy)	50 50	878 300
		Lit / Day	5.0	Sandy Costal (Logacy)	50	2,078
SUB-TO	TAL Long Term Liability	1		1	l	2,078
		SCHEDULE				
	Activity				Unit Days	Duration 548.42
101 401	Cut and Lift Pipelines Long Term Liability Surveys				Days	41.6
						590

Sean Field Decom EA, CA and DP – Sean Decommissioning Comparative Assessment Assignment Number: A400309-S00 Document Number: A-400309-S00-REPT-002

Option Datasheet: Group 1: 30" Export Pipeline Sean PP to Bacton Terminal, Option 4C - Leave in-situ - Minor Intervention (Remove Areas of Exposures)

SAFETY				
Offshore Personnel	Number of	76	Man Hours	500,168
Diver Requirement	Number of	0	Man Hours	0
Onshore Personnel	Number of	14	Man Hours	473,088
Legacy Risk	Number of	44	Man Hours	21,949
Impact to Other Users of the Sea (operational)	Number of	1	Duration of Operations (Days)	548.4
Impact to Other Users of the Sea (Legacy)	Number of	1	Duration of Operations (Days)	41.57
Operational Risk Offshore	PLL	3.75E-02		
Operational Risk Diver	PLL	0.00E+00		
Operational Risk Onshore	PLL	4.10E-03		
Legacy Risk	PLL	1.65E-03		
Fishing Risk	PLL	HOLD		
Overall Risk	ΣΡLL	4.33E-02		

ENVIRONMENTAL				
	Vessel Type	Number off	Duration (Days)	Activity
	Survey Vessel	0	0.0	N/A
	Trenching Vessel	0	0.0	N/A
	Rockdump Vessel	0	0.0	N/A
Marine Impact (Vessels)	DSV	0	0.0	N/A
	CSV	1	548.4	Unburial / Destruct
	Reel Vessel	0	0.0	N/A
	Trawler	0	0.0	N/A
	Vessel Type	Number off	Duration (Days)	Activity
Marine Impact (Vessel Legacy)	Survey Vessel (Legacy)	1	41.57	Survey
	Rockdump Vessel (Legacy)	0	0	N/A
Energy Use	Fuel (Te)	CO2 (Te)	Nox (Te)	SO2 (Te)
(Total = Ops + Legacy)	16,567	52,516	984	66
Life Cycle Emissions	CO2 - Disposal Ops (Te)	CO2 - Replacement Ops (Te)		
(Disposal / Replacement of Material)	36,081	114,009		
	Activity	Area (m²)	Resources	
	Habitat Loss (Rock Cover)	N/A	N/A	
Marine Impact (Seabed)	Habitat Loss (Rock Bags)	114,500	4580 x 4te rock bags	
marine impact (Seabed)	Short Term Disturbance (Trench and Bury)	N/A	N/A	
	Short Term Disturbance (Reverse Installation w/o Deburial)	N/A	N/A	
	Short Term Disturbance (MFE)	N/A	N/A	
	Material	Recovered Weight (Te)	Remaining Weight (Te)	
	Steel	8,699	25,168	
	Aluminium Alloy	0	0	
Materials	Copper	0	0	
	Concrete	26,105	75,531	
	Polymer	0	0	
	Mattress/Grout Bag	0	0	

TECHNICAL			
	Sub-Criterion	Scoring	Comments
Technical Considerations	Concept Maturity		Well proven techniques. Subsea tools and vessel requirements are broadly supported across the market.
	Technical Risks		The scale of this scope would result in significant technical risks, ~27km of exposed line is feasible to remove by cut and lift with 10s of trips to offload recovered materials.

SOCIETAL			
	Sub-Criterion	Scoring	Comments
Societal Factors	Fishing	1	Long duration operation, large area of disturbance, Fishing operations are conducted in vicinity of the pipeline.
	Other Users	2	Returned steel can be recycled. Concrete coating likely will go to landfill.

ECONOMIC			
	Comparative Cost Operational	£92.93	м
Economic Considerations	Comparative Cost Legacy	£2.08	м
	Comparative Cost Total	£95.01	м

Appendix F.4 Group 1 – Option 5

ROJE LIENT UBJE SSIG ALCU EVISI	T ICT MIRNT NUMBER JLATION NUMBER	A400309-S00 A-400309-S00-CA A02	g Method Stateme		isk)	
	GRAND TOTAL				£3,	322,340
100 200 300 400	SUB-TOTALS Offshore Operations Onshore Operations Project Services Long Term Liability				£1 £4	12,143 15,849 16,182 078,167
	Offshore Operations	Unit	QTY	Vessel	Rate £k	Total £k
	Pipeline Ends Removal & Rockdump Mob / Demob Transit to field DP rials As-found survey (0.5 hours per end) Deploy diamond wire cutting equipment and install at cut location (1 hr) (1 location) Cut pipeline end into approximately 20m sections (1 cuts, 0.5 hr per cut) Recover hydradine is bate (0.25 hr) Recover hydradine is bate (0.25 hr) Attach Litting Gear & Litt Cut Sactions (1 sections, 0.5 hr per section) Place 4 Te rockbags to remediate sng risk (4 bags required) As-left survey operations (0.5 hr per end) Transit to shore	Ek / Day Ek / Day	2.00 1.00 0.17 0.02 0.04 0.02 0.02 0.02 0.02 0.06 0.13 1.00	CSV CSV CSV CSV CSV CSV CSV CSV CSV CSV	75 75 75 75 75 75 75 75 75 75	150 75 13 2 3 2 2 2 4 9 75
102	Nick Jine Free Span Rectification Mid-J Demob Tarasti to field DP trials As-found survey, 6 locations Deploy rock at 6 locations Deploy rock at 6 locations Rockdump span sections (10 Te/m) (QTY @ £16.75 /Te) As left survey Tarast	Ek / Day Ek / Day Ek / Day Ek / Day Ek / Day Ek / Ta Ek / Ta Ek / Day	2.00 1.00 0.13 0.13 0.23 5,630 0.13 1.00	Rockdump Vessel Rockdump Vessel Rockdump Vessel Rockdump Vessel Rockdum (ZVF dumped) Rockdump Vessel Rockdump Vessel	45 45 45 45 45 0.02 45 45 45	90 45 6 11 94 6 45 302
	Offdore weather allowance Offshore weather allowance Offshore tidal allowance Decommissioning Contractors Engineering and Management Based on 10% of total cost	£k (LS) £k (LS) £k (LS)	15% 30% 10%		-	3 7 10 65 65
						712
JB-TO	OTAL Offshore Operations					
	OTAL Offshore Operations	Unit	OTY		Rate fk	
TEM	Onshore Operations Onshore Operations Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Clearing Concrete Disposal Concrete Disposal	Unit £k / Te £k / m £k / Te	QTY 25.71 20.00 19.29		Rate £k 0.05 0.25 0.02	1.29 5 0.4
<u>7EM</u>	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Clearing	£k / Te £k / m	25.71 20.00		0.05 0.25	Total £k 1.29 5 0.4 7 5 0 4
201 202 203	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Popline Pipe Cleaning Concrete Disposal Equipment Procurement, Hire & Fabrication Hydraulic Shars Pipe Grab Rock Bags Miscellaneous Misc. Onshore Costs (Port charges, storage etc.)	£k / Te £k / m £k / Te £k / Day £k / Day	25.71 20.00 19.29 6.47 6.47	- - -	0.05 0.25 0.02 0.75 0.05	Total Ek 1.29 5 0.4 7 5 0 4 9 100 100
201 202 203	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coater Opeline Pipe Cleaning Concrete Disposal Equipment Procurement, Hire & Fabrication Hydraulic Shears Pipe Grab Rock Bags Miscellaneous	£k / Te £k / m £k / Day £k / Day £k / Day £k each	25.71 20.00 19.29 6.47 6.47 4	- - -	0.05 0.25 0.02 0.75 0.05 1.00	Total Ek
201 202 203 UB-T	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Popline Pipe Cleaning Concrete Disposal Equipment Procurement, Hire & Fabrication Hydraulic Shars Pipe Grab Rock Bags Miscellaneous Misc. Onshore Costs (Port charges, storage etc.)	£k / Te £k / m £k / Day £k / Day £k / Day £k each	25.71 20.00 19.29 6.47 6.47 4	- - -	0.05 0.25 0.02 0.75 0.05 1.00	Total Ek 1.29 5 0.4 7 5 0 4 9 100 100
TEM 201 202 203 JB-TC	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Costed Pipeline Pipe Cleaning Concrete Disposal Equipment Procurement, Hire & Fabrication Hydraulic Shears Pipe Grab Rock Bags Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) OTAL Onshore Operations	Ek / Te Ek / m Ek / Te Ek / Day Ek / Day Ek each LS	25.71 20.00 19.29 6.47 6.47 4	- - - - -	0.05 0.25 0.02 0.75 0.05 1.00	Total £k 1.29 5 0.4 7 5 4 9 100 100 100
201 202 202 203 <u>JB-TC</u> TEM	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Cleaning Concrete Disposal Equipment Procurement, Hire & Fabrication Hydraulic Shears Pipe Grab Rock Bags Miscolinaeous Misc. Onshore Costs (Port charges, storage etc.) OTAL Onshore Operations Project Services Owner Project Management Costs	Ek / Te Ek / m Ek / Te Ek / Day Ek / Day Ek each LS Unit	25.71 20.00 19.29 6.47 6.47 4 1	- - - -	0.05 0.25 0.02 0.75 0.05 1.00	Total Ek 1.29 5 0.4 7 5 0 4 9 100 100 100 116 Total Ek 99
TEM 201 202 203 JB-TC TEM 301 302	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Clearning Concrete Disposal Equipment Procurement, Hire & Fabrication Hydraulic Sharas Pipe Grab Rock Bags Miscellaneous Misc. Onshore Operations Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification	Ek / Te Ek / Te Ek / Day Ek / Day Ek each LS Unit LS	25.71 20.00 19.29 6.47 6.47 4 1 1 200 12%	- - - - -	0.05 0.25 0.02 0.75 0.05 1.00 100 Rate Ek	Total Ek 1.29 5 0.4 7 5 0 4 9 100 100 100 105 Total Ek 99 99 200
TEM 201 202 203 JB-TC 301 302 303 304	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Clearning Concrete Disposal Equipment Procurement, Hire & Fabrication Hydraulic Shars Pipe Grab Rock Bags Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) OTAL Onshore Operations Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC)	Ek / Te Ek / Te Ek / Te Bk / Day Ek each LS Unit LS LS	25.71 20.00 19.29 6.47 4 1 1 12%	- - - - -	0.05 0.25 0.02 0.75 0.05 1.00 100 Rate Ek	Total Ek 1.29 5 0.4 7 5 0 4 9 100 100 100 200 200 36 81 81
TEM 201 202 203 JB-TC 301 302 303 304 JB-TC	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Cleaning Concrete Operations Equipment Procurement, Hire & Fabrication Hydraulic Sharas Pipe Grab Rock Bags Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) OTAL Onshore Operations Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification Insurance Insurance Insurance Insurance Kuranes FLT Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) OTAL Project Services	Ek / Te Ek / Te Ek / Te Ek / Day Ek each LS LS LS LS LS LS LS	25.71 20.00 19.29 6.47 6.47 4 1 1 2% 1 2% 27		0.05 0.25 0.02 0.75 0.05 1.00 100 Rate £k 200.00 - 3.00	Total Ek 1.29 5 0.4 7 5 0 4 9 100 100 100 100 100 100 0 100 0 0 0 0
TEM 201 202 203 301 301 302 303 304 JB-TC	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Clearning Concrete Disposal Equipment Procurement, Hire & Fabrication Hydraulic Shars Pipe Grab Rock Bags Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) OTAL Onshore Operations Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC)	Ek / Te Ek / Te Ek / Te Ek / Day Ek each LS LS LS LS LS LS LS LS LS LS LS LS LS	25.71 20.00 19.29 6.47 4 1 1 12% 1 27% 27 27 6	- - - - -	0.05 0.25 0.02 0.75 0.05 1.00 100 Rate £k - 200.00 -	Total Ek 1.29 5 0.4 7 5 0 4 9 100 100 100 200 200 36 81 81
TEM 201 202 203 UB-TC TEM 301 302 303 304 UB-TC TEM 401	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Cleaning Concrete Operations Equipment Procurement, Hire & Fabrication Hydraulic Sharas Pipe Grab Rock Bags Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) OTAL Onshore Operations Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance Insurance Insurance Descrete Services UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) OTAL Project Services Long Term Liability Long Term Liability Surveys Mob / Demo Tarasit to Field Sturey Operations (1500 m/m) Tarasit to Shore	Ek / Te Ek / Te Ek / Te Ek / Day Ek each LS LS LS LS LS LS LS LS LS LS	25.71 20.00 19.29 6.47 4 1 1 12% 1 2% 27 27		0.05 0.25 0.02 0.75 0.05 1.00 100 Rate £k 200.00 - 3.00	Total Ek 1.29 5 0.4 7 5 0 4 9 100 100 100 100 101 100 102 200 200 200 36 36 81 116 Total Ek 600 300 878 300 2,076
TEM 201 202 203 UB-TC TEM 301 302 303 304 UB-TC TEM 401	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Cleaning Concrete Operations Equipment Procurement, Hire & Fabrication Hydraulic Sharas Pipe Grab Rock Bags Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) OTAL Onshore Operations Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance Insurance Insurance Droject Services UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) OTAL Project Services Long Term Liability Surveys Mob / Demob Tarnati to Field	£k / Te £k / Te £k / Te £k / Day £k / Day £k each LS LS LS LS LS LS LS LS K / Day £k / km Unit No. Off \$k / Day \$k / Day \$k / Day	25.71 20.00 19.29 6.47 6.47 4 1 1 2% 1 2% 27 27 QTY 6 12.0 6.0 12.0 6.0 17.6	Survey Vessel (Legacy) Survey Vessel (Legacy)	0.05 0.25 0.02 0.75 0.05 1.00 100 Rate Ek 200.00 - 3.00 Rate Ek 50 50	Total Ek 1.29 5 0.4 7 5 0 4 9 100 100 100 100 101 118 Total Ek 99 200 36 36 31 81 111 416 Total Ek 600 300 878 300
TEM 201 202 203 UB-TG 301 302 303 304 UB-TG 401 UB-TG	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Cleaning Concrete Coated Pipeline Pipe Cleaning Concrete Objectsal Equipment Procurement, Hire & Fabrication Hydraulic Shara Pipe Grab Rock Bags Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) OTAL Onshore Operations Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Brounce FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) OTAL Project Services Long Term Liability Long Term Liability Surveys Mob / Demob Tarasit to Field Struey Operations (1500 m/hr) Tarasit to Shore	£k / Te £k / Te £k / Te £k / Day £k / Day £k each LS LS LS LS LS LS LS LS K / Day £k / km Unit No. Off \$k / Day \$k / Day \$k / Day	25.71 20.00 19.29 6.47 6.47 4 1 1 2% 1 2% 27 27 QTY 6 12.0 6.0 12.0 6.0 17.6	Survey Vessel (Legacy) Survey Vessel (Legacy)	0.05 0.25 0.02 0.75 0.05 1.00 100 Rate £k 200.00 - 3.00 Rate £k 50 50 50 50	Total Ek 1.29 5 0.4 7 5 0 4 9 100 100 100 100 100 200 36 36 81 81 000 300 300 200
TEM 201 202 203 UB-T0 301 302 303 304 UB-T0 TEM 401 UB-T0 iories 101	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Cleaning Concrete Torcurement, Hire & Fabrication Hydraulic Shears Pipe Grab Rock Bags Miscellaneous Misc. Onshore Costs (Port charges, storage etc.) OTAL Onshore Operations Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification 3rd Party Verification May draw Verification Insurance Insurance Insurance Icong Term Liability Long Term Liability Surveys Mori Dir Dir Glid Survey Operations (500 m/hr) Traist to Shore OTAL Long Term Liability Verificient Cong Term Liability	Bk / Te Bk / Te Bk / Te Bk / Day Bk / Km	25.71 20.00 19.29 6.47 6.47 4 1 1 2% 1 2% 27 27 QTY 6 12.0 6.0 12.0 6.0 17.6	Survey Vessel (Legacy) Survey Vessel (Legacy)	0.05 0.25 0.02 0.75 0.05 1.00 100 Rate Ek 200.00 - 3.00 Rate Ek 50 50 50 50	Total Ek 1.29 5 0.4 7 5 0 4 9 100 100 100 100 100 200 36 36 31 81 416 600 300 2007 200 200 36 36 81 81 000 2007 200 200 36 36 81 81 000 300 2007 2007 200 200 36 36 9 99 200 200 36 300 300 300 2007 2007 9 99 9 99 9 90 90 90 90 90 900 900 9
TEM 201 202 203 TEM 301 302 303 304 UB-TC 401 UB-TC UB-TC 101 102	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Clearning Concrete Objected Project Services Misc. Onshore Costs (Port charges, storage etc.) OTAL Onshore Operations Project Services Owner Project Management Costs Project Management / SuperVision / Owner Costs 3rd Party Verification sitsurance Insurance Insurance Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) OTAL Project Services Long Term Liability Surveys Moh / Demoh Transit to Finid Survey Operations (1500 m/hr) Transit to Shore OtAL Long Term Liability Pipeline Ends Removal & Rockdump Mid-Line Free Span Rectification	Bk / Te Bk / Te Bk / Te Bk / Day Bk / Km	25.71 20.00 19.29 6.47 6.47 4 1 1 2% 1 2% 27 27 QTY 6 12.0 6.0 12.0 6.0 17.6	Survey Vessel (Legacy) Survey Vessel (Legacy)	0.05 0.25 0.02 0.05 1.00 100 Rate £k 200.00	Total Ek 1.29 5 0.4 7 5 0 4 9 100 100 100 200 200 200 36 36 81 600 300 2,078 2,078 2,078
TEM 201 202 203 UB-TO TEM 301 302 303 304 UB-TO UB-TO UB-TO 001 101 102 103	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Cleaning Concrete Operations Equipment Procurement, Hire & Fabrication Hydraulic Sharas Pipe Grab Rock Bags Miscelianeous Misc. Onshore Costs (Port charges, storage etc.) OTAL Onshore Operations Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Bustrance Insurance Fusurace Survey Operations (1500 m/m) Transit to Field Survey Operations (1500 m/m) Transit to Field OtAL Long Term Liability Idex To Field Stemoral & Rockdump Mid-Line Free Span Rectification Project Reproved & Rockdump Mid-Line Free Span Rectification Post Decommissioning Survey Trans Yeep	Bk / Te Bk / Te Bk / Te Bk / Day Bk / Km	25.71 20.00 19.29 6.47 4 1 1 12% 1 2% 27 27 QTY 6 12.0 6.0 12.0 6.0 17.6	Survey Vessel (Legacy) Survey Vessel (Legacy)	0.05 0.25 0.02 0.75 0.05 1.00 100 Rate Ek 200.00 - 200.00 - 3.00 Rate Ek 50 50 50 50 50 50 50 50 50 50 50 50 50	Total Ek 1.29 5 0.4 7 5 0.4 9 100 100 100 100 100 100 200 36 36 36 36 36 36 31 81 000 200 36 36 37 300 200 200 36 36 81 1 416 100 200 200 300 2,078 0.00 0.00 0.00 0.00
TEM 201 202 203 UB-TG 301 302 303 304 UB-TG 401 UB-TG 00105 0005 0	Onshore Operations & Equipment Hire Recycling & Disposal Concrete Coated Pipeline Pipe Clearing Concrete Operations Equipment Procurement, Hire & Fabrication Hydraulic Shears Pipe Grab Rock Bags Miscellancous Misc. Onshore Costs (Port charges, storage etc.) OrAL Onshore Operations Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification 3rd Party Verification 3rd Party Verification Insurance Insurance Insurance Insurance Cong Term Liability Long Term Liability Surveys Mohr, Demoh Tarasit to Field Survey Operations (1500 m/hr) Tarasit to Shore OTAL Long Term Liability Insurance Survey Operations (1500 m/hr) Tarasit to Field Survey Operations (1500 m/hr) Tarasit to Shore OTAL Long Term Liability <td< td=""><td>Bk / Te Bk / Te Bk / Te Bk / Day Bk / Km</td><td>25.71 20.00 19.29 6.47 4 1 1 12% 1 2% 27 27 QTY 6 12.0 6.0 12.0 6.0 17.6</td><td>Survey Vessel (Legacy) Survey Vessel (Legacy)</td><td>0.05 0.25 0.02 0.75 0.05 1.00 100 Rate Ek - 200.00 - 3.00 Rate Ek 50 50 50 50 50 50 50 50</td><td>Total Ek 1.29 5 0.4 7 5 0 4 9 100 100 100 100 101 116 Total Ek 99 99 99 200 36 36 81 81 416 Cold Ek 900 300 878 3000 2,078 2,078 2,078</td></td<>	Bk / Te Bk / Te Bk / Te Bk / Day Bk / Km	25.71 20.00 19.29 6.47 4 1 1 12% 1 2% 27 27 QTY 6 12.0 6.0 12.0 6.0 17.6	Survey Vessel (Legacy) Survey Vessel (Legacy)	0.05 0.25 0.02 0.75 0.05 1.00 100 Rate Ek - 200.00 - 3.00 Rate Ek 50 50 50 50 50 50 50 50	Total Ek 1.29 5 0.4 7 5 0 4 9 100 100 100 100 101 116 Total Ek 99 99 99 200 36 36 81 81 416 Cold Ek 900 300 878 3000 2,078 2,078 2,078

Option Datasheet: Group 1: 30" Export Pipeline Sean PP to Bacton Terminal, Option 5 - Leave in-situ - Minimal Intervention (Remove Ends & Remediate Snag Risk)

SAFETY						
Offshore Personnel	Number of	76	Man Hours	5,445		
Diver Requirement	Number of	0	Man Hours	0		
Onshore Personnel	Number of	14	Man Hours	3,968		
Legacy Risk	Number of	44	Man Hours	21,949		
Impact to Other Users of the Sea (operational)	Number of	1	Duration of Operations (Days)	6.0		
Impact to Other Users of the Sea (Legacy)	Number of	1	Duration of Operations (Days)	41.57		
Operational Risk Offshore	PLL	4.08E-04				
Operational Risk Diver	PLL	0.00E+00				
Operational Risk Onshore	PLL	2.35E-05				
Legacy Risk	PLL	1.65E-03				
Fishing Risk	PLL	HOLD				
Overall Risk	ΣΡLL	2.08E-03				

ENVIRONMENTAL						
	Vessel Type	Number off	Duration (Days)	Activity		
	Survey Vessel	0	0.0	N/A		
	Trenching Vessel	0	0.0	N/A		
	Rockdump Vessel	0	0.0	N/A		
Marine Impact (Vessels)	DSV	0	0.0	N/A		
	CSV	1	6.0	Unburial / Destruct		
	Reel Vessel	0	0.0	N/A		
	Trawler	0	0.0	N/A		
	Vessel Type	Number off	Duration (Days)	Activity		
Marine Impact (Vessel Legacy)	Survey Vessel (Legacy)	1	41.57	Survey		
	Rockdump Vessel (Legacy)	0	0	N/A		
ergy Use	Fuel (Te)	CO2 (Te)	Nox (Te)	SO2 (Te)		
(Total = Ops + Legacy)	1,378	4,368	82	6		
e Cycle Emissions	CO2 - Disposal Ops (Te)	CO2 - Replacement Ops (Te)				
(Disposal / Replacement of Material)	27	153,384				
	Activity	Area (m²)	Resources			
	Habitat Loss (Rock Cover)	N/A	N/A			
Marine Impact (Seabed)	Habitat Loss (Rock Bags)	2,825	113 x 4te rock bags			
	Short Term Disturbance (Trench and Bury)	N/A	N/A			
	Short Term Disturbance (Reverse Installation w/o Deburial)	N/A	N/A			
	Short Term Disturbance (MFE)	N/A	N/A			
	Material	Recovered Weight (Te)	Remaining Weight (Te)			
	Steel	6	33,860			
	Aluminium Alloy	0	0			
Materials	Copper	0	0			
	Concrete	19	101,617			
	Polymer	0	0			
	Mattress/Grout Bag	0	0			

TECHNICAL					
	Sub-Criterion	Scoring	Comments		
Technical Considerations	Concept Maturity		Well proven techniques. Subsea tools and vessel requirements are broadly supported across the market.		
	Technical Risks		Limited technical risks, Pipeline end only is feasible to remove by cut and lift with a single trip to offload recovered materials.		

SOCIETAL					
	Sub-Criterion	Scoring	Comments		
Societal Factors	Fishing		Short operation, small area of disturbance, Fishing operations are conducted in vicinity of the pipeline.		
	Other Users	3	Minimal returned steel can be recycled. Concrete coating likely will go to landfill.		

ECONOMIC		
	Comparative Cost Operational	£1.18 M
	Comparative Cost Legacy	£2.08 M
	Comparative Cost Total	£3.26 M

Appendix F.5 Group 6 – Option 2a

LIENT SUBJE	CT NMENT NUMBER LATION NUMBER	A400309-S00 A-400309-S00-CA A02	g Method Stateme LC-001			
	GRAND TOTAL				£4,	794,404
	SUB-TOTALS					
100 200 300 400	Offshore Operations Onshore Operations & Equipment Hire Project Services Long Term Liability				£1	767,069 66,905 60,430 £0
ITEM	Offshore Operations	Unit	QTY	Vessel	Rate £k	Total £k
101	Cut and Lift Pipelines Mob / Demob (offload) Transit to Field DP trials As-found survey (1500 m/hr) Deploy MFE De-bury pipeline to provide access for cut and recovery - (3 passes) Recover MFE Deploy Trident cut and lift tool (0.25 hour) Cut pipelines into 12m sections (120 dual cuts at 1 hour per dual cut) Relcovate Trident to next cut locition Recover pipeline sections to deck coral (241 sections at 0.5 hours per section) Interim trips to offload pipe sections (3 day round trip, 5 trips) As-left survey (1500 m/hr)	£k / Day £k / Day	2.00 1.00 0.17 0.13 0.04 1.99 0.04 0.01 5.00 1.25 5.02 15.00 0.13	CSV CSV CSV CSV CSV CSV CSV CSV CSV CSV	75 75 75 75 75 75 75 75 75 75 75 75	150 75 13 10 3 149 3 1 375 94 377 1,125 10
110	Transit to Shore Offshore weather allowance Offshore weather allowance Offshore tidal allowance Offshore tidal allowance	£k / Day £k (LS) £k (LS)	1.00 15% 30%	- CSV	-	75 2,459 322 644
120	Decommissioning Contractors Engineering and Management Based on 10% of total cost	£k (LS)	10%	-	-	966 342 342
UB-TO	OTAL Offshore Operations					3,767
ITEM	Onshore Operations & Equipment Hire	Unit	QTY	Vessel	Rate £k	Total £k
201	Recycling & Disposal Rigid Steel Pipeline	£k / Te	828.80	-	-0.02	-17 -17
202	Equipment Procurement, Hire & Fabrication Trident Cut and Lift Tool Mass Flow Excavator (MFE)	£k / Day £k / Day	34.78 34.78	-	1.50 0.90	52 31 83
203	Miscellaneous Misc. Onshore Costs (Port charges, storage etc.)	LS	1	-	100.00	100 100
UB-TO	DTAL Onshore Operations & Equipment Hire					167
						107
TEM	Project Services	Unit	QTY	Vessel	Rate £k	Total £k
	Project Services Owner Project Management Costs Project Management / Supervision / Owner Costs	Unit	QTY 12%	Vessel	Rate £k	
301 302	Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification			Vessel - -	Rate £k - 200.00	Total £k 472
301 302 303	Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance Insurance FLTC Legacy Cost	LS LS LS	12% 1 5%	Vessel - -	- 200.00	Total £k 472 200 200 188 188
301 302 303 304	Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance Insurance	LS LS	12% 1	Vessel - - -	-	Total £k 472 472 200 200 188
301 302 303 304 UB-TC	Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC)	LS LS LS	12% 1 5%	Vessel	- 200.00 - 3.00	Total £k 472 472 200 200 188 188 0 0 0 860
301 302 303 304 UB-TC	Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) OTAL Project Services Long Term Liability Long Term Liability Long Term Liability Survey Operations (1500 m/hr) Transit to Field Survey Operations (1500 m/hr) Transit to Shore	LS LS LS £k / km	12% 1 5% 0	-	- 200.00	Total £k 472 472 200 200 188 188 0 0 0 0 Total £k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
301 302 303 304 UB-TC	Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) OTAL Project Services Long Term Liability Long Term Liability Surveys Mob / Demob Transit to Field Survey Operations (1500 m/hr)	LS LS LS £k / km Unit No. Off £k / Day £k / Day	12% 1 5% 0 QTY 0 0.0 0.0 0.0		- 200.00 - 3.00 Rate £k 50 50	Total £k 472 472 200 200 188 188 0 0 0 5660 Total £k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
301 302 303 304 UB-TC	Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) OTAL Project Services Long Term Liability Long Term Liability Long Term Liability Survey Operations (1500 m/hr) Transit to Field Survey Operations (1500 m/hr) Transit to Shore	LS LS LS £k / km Unit No. Off £k / Day £k / Day	12% 1 5% 0 QTY 0 0.0 0.0 0.0		- 200.00 - 3.00 Rate Ek 50 50 50 50 50	Total £k 472 472 200 200 188 188 0 0 0 0 Total £k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
301 302 303 304 5UB-TC	Owner Project Management Costs Project Management / Supervision / Owner Costs 3rd Party Verification 3rd Party Verification Insurance Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) OTAL Project Services Long Term Liability Long Term Liability Long Term Liability Survey Operations (1500 m/hr) Transit to Field Survey Operations (1500 m/hr) Transit to Shore	LS LS LS £k / km Unit No. Off £k / Day £k / Day £k / Day £k / Day	12% 1 5% 0 QTY 0 0.0 0.0 0.0		- 200.00 - 3.00 Rate £k 50 50	Total £k 472 472 200 200 188 188 0 0 0 0 Total £k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Option Datasheet: Group 6: 20" Export Pipeline Sean RD to Sean PD, Option 2A - Full Removal (Cut and Lift)

SAFETY						
Offshore Personnel	Number of	76	Man Hours	29,904		
Diver Requirement	Number of	0	Man Hours	0		
Onshore Personnel	Number of	14	Man Hours	25,501		
Legacy Risk	Number of	0	Man Hours	0		
Impact to Other Users of the Sea (operational)	Number of	1	Duration of Operations (Days)	32.8		
Impact to Other Users of the Sea (Legacy)	Number of	0	Duration of Operations (Days)	0		
Operational Risk Offshore	PLL	2.24E-03				
Operational Risk Diver	PLL	0.00E+00				
Operational Risk Onshore	PLL	3.15E-04				
Legacy Risk	PLL	0.00E+00				
Fishing Risk	PLL	HOLD				
Overall Risk	ΣΡLL	2.56E-03				

ENVIRONMENTAL				
	Vessel Type	Number off	Duration (Days)	Activity
	Survey Vessel	0	0.0	N/A
	Trenching Vessel	0	0.0	N/A
Marina Internet (Variatio)	Rockdump Vessel	0	0.0	N/A
Marine Impact (Vessels)	DSV	0	0.0	N/A
	CSV	1	32.8	Unburial / Destruct
	Reel Vessel	0	0.0	N/A
	Trawler	0	0.0	N/A
	Vessel Type	Number off	Duration (Days)	Activity
Marine Impact (Vessel Legacy)	Survey Vessel (Legacy)	0	0	N/A
	Rockdump Vessel (Legacy)	0	0	N/A
inergy Use Total = Ops + Legacy)	Fuel (Te)	CO2 (Te)	Nox (Te)	SO2 (Te)
	876	2,777	52	4
Life Cycle Emissions	CO2 - Disposal Ops (Te)	CO2 - Replacement Ops (Te)		
(Disposal / Replacement of Material)	3,030	0		
	Activity	Area (m²)	Resources	
	Habitat Loss (Rock Cover)	N/A	N/A	
Marine Impact (Seabed)	Habitat Loss (Rock Bags)	N/A	N/A	
manne inipaci (Seabed)	Short Term Disturbance (Trench and Bury) Short Term Disturbance (Reverse	N/A	N/A	
	Short Term Disturbance (Reverse Installation w/o Deburial)	N/A	N/A	
	Short Term Disturbance (MFE)	23,850	N/A	
	Material	Recovered Weight (Te)	Remaining Weight (Te)	
	Steel	829	0	
	Aluminium Alloy	0	0	
Materials	Copper	0	0	
	Concrete	2,097	0	
	Polymer	0	0	
	Mattress/Grout Bag	0	0	

TECHNICAL			
	Sub-Criterion	Scoring	Comments
Technical Considerations	Concept Maturity		Well proven techniques. Subsea tools and vessel requirements are broadly supported across the market.
	Technical Risks		Limited technical risks, <5km of buried line is feasible to remove by cut and lift with several trips to offload recovered materials.

SOCIETAL			
	Sub-Criterion	Scoring	Comments
Societal Factors	Fishing		Short operation, small area of disturbance, Fishing operations are conducted in vicinity of the pipeline.
	Other Users	3	Returned steel can be recycled. Concrete coating likely will go to landfill.

ECONOMIC				
Economic Considerations	Comparative Cost Operational	£4.79	м	
	Comparative Cost Legacy	£0.00	м	
	Comparative Cost Total	£4.79	м	

Appendix F.6 Group 6 – Option 5

	r CT WIRENT NUMBER LATION NUMBER	A400309-S00 A-400309-S00-CA A02	g Method Stateme		sk)	
	GRAND TOTAL				£2,0	076,706
	SUB-TOTALS					
200 300	Offshore Operations Onshore Operations Project Services Long Term Liability				£1 £2	34,067 05,510 98,321 238,808
ITEM	Offshore Operations	Unit	QTY	Vessel	Rate £k	Total £k
	Pipeline Ends Removal & Rockdump Mob / Demob Transit to field DP trials As-found survey (1500 m/hr) Deploy hydraulic shear cutting equipment and install at cut location (1 hr) (2 locations) Cut pipeline ends into approximately 20m sections (6 cuts, 0.5 hr per cut) Reposition hydraulic shear (6 cuts, 0.5 hr per cut) Attach Lifting Gear & Lift Cut Sections (6 sections, 0.5 hr per section) Place 4 Te rockbags to remediate snag risk (2 locations, 4 bags per location, 0.33 hr to install) As-left survey operations (0.5 hr per end) Transit to shore (km from field at knots)	£k / Day £k / Day	2.00 1.00 0.17 0.13 0.08 0.12 0.12 0.12 0.12 0.11 0.04 1.00	CSV CSV CSV CSV CSV CSV CSV CSV CSV CSV	75 75 75 75 75 75 75 75 75 75 75	150 75 13 10 9 9 9 9 9 8 3 75 369
110	Offshore weather allowance Offshore weather allowance Offshore tidal allowance	£k (LS) £k (LS)	15% 30%		-	8 17 25
120	Decommissioning Contractors Engineering and Management Based on 10% of total cost	£k (LS)	10%			39 39
SUB-TO	OTAL Offshore Operations				÷	434
ITEM	Onshore Operations & Equipment Hire	Unit	QTY		Rate £k	Total £k
201	Recycling & Disposal Rigid Steel Pipeline	£k / Te	0.00		-0.02	0
202	Equipment Procurement, Hire & Fabrication Hydraulic Shears Pipe Grab	£k / Day £k / Day	6.89 6.89		0.75 0.05	5 0 6
203	Miscellaneous Misc. Onshore Costs (Port charges, storage etc.)	LS	1		100	100 100
SUB-TO	TAL Onshore Operations					106
ITEM	Project Services	Unit	QTY		Rate £k	Total £k
	Owner Project Management Costs Project Management / Supervision / Owner Costs	LS	12%		-	65 65
	3rd Party Verification 3rd Party Verification	LS	1		200.00	200 200
	Insurance Insurance FLTC Legacy Cost	LS	5%		-	22 22
	UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC)	£k / km	4	-	3.00	12 12
SUB-TO	OTAL Project Services					298
ITEM	Long Term Liability	Unit	QTY		Rate £k	Total £k
401	Long Term Liability Surveys Mob / Demob Transit to Field Survey Operations (1500 m/hr) Transit to Shore DTAL Long Term Liability	No. Off £k / Day £k / Day £k / Day £k / Day	6 12.0 6.0 0.8 6.0	Suney Vessel (Legacy) Suney Vessel (Legacy) Suney Vessel (Legacy) Suney Vessel (Legacy)	50 50 50 50	600 300 39 300 1,239 1,239
Guit	Antivity	SCHEDULE			11-14	Duration
101	Activity Pipeline Ends Removal & Rockdump Offshore weather allowance Post Decommissioning Survey Trawl Sweep Offshore weather allowance Offshore weather allowance Long Term Liability Surveys				Unit Days Days Days Days Days Days Days Days	Duration 4.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.8

Sean Field Decom EA, CA and DP – Sean Decommissioning Comparative Assessment Assignment Number: A400309-S00 Document Number: A-400309-S00-REPT-002 30

Option Datasheet: Group 6: 20" Export Pipeline Sean RD to Sean PD, Option 5 - Leave in-situ - Minimal Intervention (Remove Ends & Remediate Snag Risk)

SAFETY				
Offshore Personnel	Number of	76	Man Hours	4,460
Diver Requirement	Number of	0	Man Hours	0
Onshore Personnel	Number of	14	Man Hours	2,922
Legacy Risk	Number of	44	Man Hours	13,084
Impact to Other Users of the Sea (operational)	Number of	1	Duration of Operations (Days)	4.9
Impact to Other Users of the Sea (Legacy)	Number of	1	Duration of Operations (Days)	24.78
Operational Risk Offshore	PLL	3.34E-04		
Operational Risk Diver	PLL	0.00E+00		
Operational Risk Onshore	PLL	1.17E-05		
Legacy Risk	PLL	9.81E-04		
Fishing Risk	PLL	HOLD		
Overall Risk	ΣΡLL	1.33E-03		

ENVIRONMENTAL				
	Vessel Type	Number off	Duration (Days)	Activity
	Survey Vessel	0	0.0	N/A
	Trenching Vessel	0	0.0	N/A
	Rockdump Vessel	0	0.0	N/A
Marine Impact (Vessels)	DSV	0	0.0	N/A
	CSV	1	4.9	Unburial / Destruct
	Reel Vessel	0	0.0	N/A
	Trawler	0	0.0	N/A
	Vessel Type	Number off	Duration (Days)	Activity
Marine Impact (Vessel Legacy)	Survey Vessel (Legacy)	1	24.78	Survey
	Rockdump Vessel (Legacy)	0	0	N/A
Energy Use	Fuel (Te)	CO2 (Te)	Nox (Te)	SO2 (Te)
(Total = Ops + Legacy)	806	2,555	48	3
Life Cycle Emissions	CO2 - Disposal Ops (Te)	CO2 - Replacement Ops (Te)		
(Disposal / Replacement of Material)	72	3,330		
	Activity	Area (m²)	Resources	
	Habitat Loss (Rock Cover)	N/A	N/A	
Marine Impact (Seabed)	Habitat Loss (Rock Bags)	50	8 x Rock Bags 4te	
	Short Term Disturbance (Trench and Bury)	N/A	N/A	
	Short Term Disturbance (Reverse Installation w/o Deburial)	N/A	N/A	
	Short Term Disturbance (MFE)	N/A	N/A	
	Material	Recovered Weight (Te)	Remaining Weight (Te)	
	Steel	20	809	
	Aluminium Alloy	0	0	
Materials	Copper	0	0	
	Concrete	50	2,047	
	Polymer	0	0	
	Mattress/Grout Bag	0	0	

TECHNICAL			
	Sub-Criterion	Scoring	Comments
	Concept Maturity		Well proven techniques. Subsea tools and vessel requirements are broadly supported across the market.
Technical Considerations	Technical Risks		Limited technical risks, Pipeline ends only are feasible to remove by cut and lift with a single trip to offload recovered materials.

SOCIETAL			
	Sub-Criterion	Scoring	Comments
Societal Factors	Fishing		Short operation, small area of disturbance, Fishing operations are conducted in vicinity of the pipeline.
	Other Users	3	Minimal returned steel can be recycled. Concrete coating likely will go to landfill.

ECONOMIC			
Economic Considerations	Comparative Cost Operational	£0.84 M	
	Comparative Cost Legacy	£1.24 M	
	Comparative Cost Total	£2.08 M	

Appendix F.7 Group 7 – Option 2c

	CT MENT NUMBER LATION NUMBER	A400309-S00 A-400309-S00-CA A02	g Method Statemer			
	GRAND TOTAL				£1,0	085,198
	SUB-TOTALS					
300	Offshore Operations Onshore Operations Project Services Long Term Liability				£25 £31	13,877 53,538 17,784 £0
ITEM	Offshore Operations	Unit	QTY	Vessel	Rate £k	Total £k
	Reverse Reeling Preparation Mob / Demob Transit to field DP trials As-found survey (1500 m/hr) Deploy MFE De-bury cable to provide access for cut and recovery - (2 passes)	£k / Day £k / Day £k / Day £k / Day £k / Day £k / Day	2.00 1.00 0.17 0.14 0.04 6.12	CSV CSV CSV CSV CSV CSV	75 75 75 75 75 75	150 75 13 10 3 124
	Recover MFE Deploy hydraulic shears Cut umbilical at recovery point Recover hydraulic shears Relocate to opposite end of cable Deploy hydraulic shears Cut umbilical at recovery point Recover hydraulic shears	£k / Day £k / Day	0.04 0.02 0.01 0.08 0.04 0.04 0.04 0.02 0.08	CSV CSV CSV CSV CSV CSV CSV CSV CSV	75 75 75 75 75 75 75 75 75	3 2 1 6 3 2 6
	Deploy cable recovery grab and connect to cable Recover cable and initiate reverse reel Recover cable and initiate reverse reel As-left survey operations (1500 m/hr) Transit to shore Offeore weather allowance	£k / Day £k / Day £k / Day £k / Day £k / Day	0.25 0.68 0.14 1.00	CSV CSV CSV CSV CSV	75 75 75 75 75	19 51 10 75 155
120	Offshore weather allowance Offshore tidal allowance Decommissioning Contractors Engineering and Management Based on 10% of total cost	£k (LS) £k (LS) £k (LS)	15% 30% 10%			37 74 111 47 47 47
SUB-TO	TAL Offshore Operations					514
ITEM	Onshore Operations & Equipment Hire	Unit	QTY		Rate £k	Total £k
	Recycling & Disposal Flexibles / Umbilicals / Cables	£k / Te	73.38	-	0.00	0
	Equipment Procurement, Hire & Fabrication Deck Real / Real Drive System / Tensioner Mass Flow Excavator (MFE) Hydraduic Shears	£k / Day £k / Day £k / Day	13.91 4.45 13.91	-	10.00 0.90 0.75	0 139 4 10
203	Miscellaneous Misc. Onshore Costs (Port charges, storage etc.)	LS	1	-	100.00	154 100 100
SUB-TO	TAL Onshore Operations					254
ITEM	Project Services	Unit	QTY		Rate £k	Total £k
	Owner Project Management Costs Project Management / Supervision / Owner Costs	LS	12%	-	-	92 92
	3rd Party Verification 3rd Party Verification Insurance	LS	1		200	200 200
304	Insurance FLTC Legacy Cost UK Fisheries Offshore Oli & Gas Legacy Trust Fund (FLTC)	LS £k / km	5%		- 3	26 26 0
SUB-TO	TAL Project Services	EK / KIII	0.00	-	5	0
	Long Term Liability	Unit	QTY		Rate £k	Total £k
	Long Term Liability Surveys Moż / Demob Transit to Field Survey Operations (1500 m/hr)	No. Off £k / Day £k / Day £k / Day	0 0.0 0.0 0.0	Survey Vessel (Legacy) Survey Vessel (Legacy) Survey Vessel (Legacy)	50 50 50 50	0 0 0
SUB-TO	Transit to Shore TAL Long Term Liability	£k / Day	0.0	Survey Vessel (Legacy)	50	0 0 0
		SCHEDULE				
Series 101	Activity Reverse Reeling Preparation				Unit Days	Duration 9.84
102 103 104 105 106	Reverse Reeling Préparation Reverse Reeling Otfshore weather allowance				Days Days Days Days Days	0.00 0.00 0.00 0.00 0.00
401	Long Term Liability Surveys				Days	0.0

Option Datasheet: Group 7: 1" Electrical Cable, Sean RD to Sean PD, Option 2C - Full Removal - Reverse Installation (Reel) with Deburial

SAFETY				
Offshore Personnel	Number of	76	Man Hours	10,862
Diver Requirement	Number of	0	Man Hours	0
Onshore Personnel	Number of	14	Man Hours	3,892
Legacy Risk	Number of	0	Man Hours	0
Impact to Other Users of the Sea (operational)	Number of	1	Duration of Operations (Days)	11.9
Impact to Other Users of the Sea (Legacy)	Number of	0	Duration of Operations (Days)	0
Operational Risk Offshore	PLL	8.15E-04		
Operational Risk Diver	PLL	0.00E+00		
Operational Risk Onshore	PLL	3.84E-05		
Legacy Risk	PLL	0.00E+00		
Fishing Risk	PLL	HOLD		
Overall Risk	ΣPLL	8.53E-04		

ENVIRONMENTAL				
	Vessel Type	Number off	Duration (Days)	Activity
	Survey Vessel	0	0.0	N/A
	Trenching Vessel	0	0.0	N/A
Marine Impact (Vessels)	Rockdump Vessel	0	0.0	N/A
na mpass (ressers)	DSV	0	0.0	N/A
	CSV	1	11.9	Unburial / Destruct
	Reel Vessel	0	0.0	N/A
	Trawler	0	0.0	N/A
	Vessel Type	Number off	Duration (Days)	Activity
Marine Impact (Vessel Legacy)	Survey Vessel (Legacy)	0	0	N/A
	Rockdump Vessel (Legacy)	0	0	N/A
Energy Use	Fuel (Te)	CO2 (Te)	Nox (Te)	SO2 (Te)
(Total = Ops + Legacy)	292	924	17	1
Life Cycle Emissions	CO2 - Disposal Ops (Te)	CO2 - Replacement Ops (Te)		
(Disposal / Replacement of Material)	8	0		
	Activity	Area (m²)	Resources	
	Habitat Loss (Rock Cover)	N/A	N/A	
Marine Impact (Seabed)	Habitat Loss (Rock Bags)	N/A	N/A	
	Short Term Disturbance (Trench and Bury)	N/A	N/A	
	Short Term Disturbance (Reverse			
	Installation w/o Deburial)	24,460	N/A	
	Installation w/o Deburial) Short Term Disturbance (MFE)	24,460 N/A	N/A N/A	
	Short Term Disturbance (MFE)	N/A	N/A	
	Short Term Disturbance (MFE) Material	N/A Recovered Weight (Te)	N/A Remaining Weight (Te)	
	Short Term Disturbance (MFE) Material Steel	N/A Recovered Weight (Te) 0	N/A Remaining Weight (Te) 0	
Hendels	Short Term Disturbance (MFE) Material Steel Aluminium Alloy	N/A Recovered Weight (Te) 0 0	N/A Remaining Weight (Te) 0 0	-
Materials	Short Term Disturbance (MFE) Material Steel Aluminium Alloy Copper	NA Recovered Weight (Te) 0 0 22	NA Remaining Weight (Te) 0 0 0	
Materials	Short Term Disturbance (MFE) Material Steel Aluminium Alloy Copper Concrete	N/A Recovered Weight (Te) 0 0 22 0	NA Remaining Weight (Te) 0 0 0 0	
Materials	Short Term Disturbance (MFE) Material Steel Aluminium Alloy Copper Concrete Polymer	N/A Recovered Weight (Te) 0 22 0 5	NA Remaining Weight (Te) 0 0 0 0 0	
Materials	Short Term Disturbance (MFE) Material Steel Aluminium Alloy Copper Concrete Polymer Mattress/Grout Bag	N/A Recovered Weight (Te) 0 22 0 5 0 0	NA Remaining Weight (Te) 0 0 0 0 0	

TECHNICAL			
	Sub-Criterion	Scoring	Comments
Technical Considerations	Concept Maturity		Well proven techniques. Subsea tools, vessel equipment and vessel requirements are broadly supported across the market.
	Technical Risks	3	Limited technical risks, small diameter cable feasible to remove by reverse reel.

SOCIETAL			
	Sub-Criterion	Scoring	Comments
Societal Factors	Fishing		Short operation, small area of disturbance, Fishing operations are conducted in vicinity of the cable.
	Other Users	3	Copper will be recyclable, coating will likely go to landfill.

Comparative Cost Operational	£1.09 M	
Comparative Cost Legacy	£0.00 M	
Comparative Cost Total	£1.09 M	
	Comparative Cost Operational Comparative Cost Legacy Comparative Cost Total	Comparative Cost Legacy £0.00 M

Appendix F.8

Group 7 – Option 5

PROJECT
CLIENT
SUBJECT
ASSIGNMENT NUMBER
CALCULATION NUMBER
REVISION

Sean Field Decommissioning ONE Dyas Decommissioning Method Statements A400309-S00 A-400309-S00-CALC-001 A02

Group 7: 1* Electrical Cable, Sean RD to Sean PD, Option 5 - Leave in-situ - Minimal Intervention (Remove Ends & Remediate Snag Risk)

_	GRAND TOTAL					094,192
	SUB-TOTALS					
	Offshore Operations				£4	57,899
200	Onshore Operations				£1	05,372
300	Project Services				£2	90,487
	Long Term Liability					240,433
TEM	Offshore Operations	Unit	QTY	Vessel	Rate £k	Total £k
101	Pipeline Ends Removal & Rockdump Mob / Demob	£k / Day	2.00	CSV	75	150
	Transit to field	£k / Day	1.00	CSV	75	75
	DP trials	£k / Day	0.17	CSV	75	13
	As-found survey (1500 m/hr)	£k / Day	0.14	CSV	75	10
	Dredge cable ends to base of trench	£k / Day	0.50 0.08	CSV CSV	75	38
	Deploy hydraulic shear cutting equipment and install at cut location (1 hr) (2 locations) Cut cable ends into approximately 20m sections (2 cuts, 0.5 hr per cut)	£k / Day £k / Day	0.08	CSV	75 75	3
	Reposition hydraulic shear (2 cuts, 0.5 hr per cut)	£k / Day	0.04	CSV	75	3
	Attach Lifting Gear & Lift Cut Sections (2 sections, 0.5 hr per section)	£k / Day	0.04	CSV	75	3
	Place 4 Te rockbags to remediate snag risk (2 locations, 4 bags per location, 0.33 hr to install)	£k / Day	0.11	CSV	75	8
	As-left survey operations (0.5 hr per end)	£k / Day	0.04	CSV	75	3
ľ	Transit to shore (km from field at knots)	£k / Day	1.00	CSV	75	75
110	Offshore weather allowance					384
	Offshore weather allowance	£k (LS)	15%			11
	Offshore tidal allowance	£k (LS)	30%			21
		/				32
120	Decommissioning Contractors Engineering and Management					
	Based on 10% of total cost	£k (LS)	10%			42
						42
UB-TO	TAL Offshore Operations					458
ТЕМ	Onshore Operations & Equipment Hire	Unit	QTY		Rate £k	Total £k
	Recycling & Disposal					
	Flexibles / Umbilicals / Cables	£k / Te	0.60	-	0.00	0
						0
202	Equipment Procurement, Hire & Fabrication					
	Hydraulic Shears	£k / Day	7.16		0.75	5
						5
203	Miscellaneous					
	Misc. Onshore Costs (Port charges, storage etc.)	LS	1	-	100	100
		-				100
UB-TO	TAL Onshore Operations					105
TEM	Project Services	Unit	QTY		Rate £k	Total £k
		onit	<u> </u>		NUIO EN	rotur Ex
301	Owner Project Management Costs					
	Project Management / Supervision / Owner Costs	LS	12%	-	-	68
						68
302	3rd Party Verification					
	3rd Party Verification	LS	1		200.00	200
1						200
		1		1		
303	Insurance					23
	Insurance	LS	5%			
		LS	5%		-	23
l	Insurance	LS	5%	-	-	
304	Insurance FLTC Legacy Cost	LS £k / km	5%	-	- 3.00	
304	Insurance			-	- 3.00	23
304	Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC)			-	3.00	23 0
304	Insurance FLTC Legacy Cost			-	3.00	23 0
304 JB-TO	Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) ITAL Project Services					23 0 0 290
304 UB-TO TEM	Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) TAL Project Services Long Term Liability	£k / km Unit	0 TY		- 3.00 Rate £k	23 0 0
304 UB-TO TEM 401	Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) TAL Project Services Long Term Liability Long Term Liability Surveys	£k / km Unit No. Off	0 ⁻		Rate £k	23 0 0 290 Total Ek
304 UB-TO TEM 401	Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) TAL Project Services Long Term Liability Long Term Liability Surveys Mob / Demob	£k / km Unit No. Off £k / Day	0 •		Rate £k	23 0 0 290 Total Ek
304 UB-TO TEM 401	Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) TAL Project Services Long Term Liability Long Term Liability Surveys Mob / Demob Transit to Field	£k / km Unit No. Off £k / Day £k / Day	0 ⁻	Survey Vessel (Legacy)	Rate £k	23 0 0 290 Total £k 600 300
304 UB-TO TEM 401	Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) TAL Project Services Long Term Liability Long Term Liability Surveys Mob / Demob	£k / km Unit No. Off £k / Day	0 QTY 6 12.0 6.0		50 Rate £k 50 50	23 0 0 290 Total Ek 600 300 40 300
304 JB-TO TEM 401	Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) TAL Project Services Long Term Liability Long Term Liability Surveys Mcb / Demob Transit to Field Survey Operations (1500 m/hr) Transit to Shore	£k / km Unit No. Off £k / Day £k / Day £k / Day	0 ••• •• 12.0 6.0 0.8	Survey Vessel (Legacy) Survey Vessel (Legacy)	Rate £k 50 50 50	23 0 0 290 Total Ek 600 300 40 300 1,240
304 JB-TO EM 401	Insurance FLTC Legacy Cost UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) TAL Project Services Long Term Liability Long Term Liability Surveys Mod / Demot Transit to Field Survey Operations (1500 m/hr)	£k / km Unit No. Off £k / Day £k / Day £k / Day	0 ••• •• 12.0 6.0 0.8	Survey Vessel (Legacy) Survey Vessel (Legacy)	Rate £k 50 50 50	23 0 0 290 Total Ek 600 300 40 300

		OCHEDOLE			
Series	Activity			Unit	Duration
101	Pipeline Ends Removal & Rockdump			Days	5.16
102	Offshore weather allowance			Days	0.00
103	Post Decommissioning Survey			Days	0.00
104	Trawl Sweep			Days	0.00
105	Offshore weather allowance			Days	0.00
106	Offshore weather allowance			Days	0.00
401	Long Term Liability Surveys			Days	24.8
					30

Option Datasheet: Group 7: 1" Electrical Cable, Sean RD to Sean PD, Option 5 - Leave in-situ - Minimal Intervention (Remove Ends & Remediate Snag Risk)

SAFETY				
Offshore Personnel	Number of	76	Man Hours	4,715
Diver Requirement	Number of	0	Man Hours	0
Onshore Personnel	Number of	14	Man Hours	3,128
Legacy Risk	Number of	44	Man Hours	13,100
Impact to Other Users of the Sea (operational)	Number of	1	Duration of Operations (Days)	5.2
Impact to Other Users of the Sea (Legacy)	Number of	1	Duration of Operations (Days)	24.81
Operational Risk Offshore	PLL	3.54E-04		
Operational Risk Diver	PLL	0.00E+00		
Operational Risk Onshore	PLL	2.01E-05		
Legacy Risk	PLL	9.82E-04		
Fishing Risk	PLL	HOLD		
Overall Risk	ΣPLL	1.36E-03		

ENVIRONMENTAL				
	Vessel Type	Number off	Duration (Days)	Activity
	Survey Vessel	0	0.0	N/A
	Trenching Vessel	0	0.0	N/A
Marine Impact (Vessels)	Rockdump Vessel	0	0.0	N/A
warne impact (vessels)	DSV	0	0.0	N/A
	CSV	1	5.2	Unburial / Destruct
	Reel Vessel	0	0.0	N/A
	Trawler	0	0.0	N/A
	Vessel Type	Number off	Duration (Days)	Activity
Marine Impact (Vessel Legacy)	Survey Vessel (Legacy)	1	24.81	Survey
	Rockdump Vessel (Legacy)	0	0	N/A
Energy Use	Fuel (Te)	CO2 (Te)	Nox (Te)	SO2 (Te)
(Total = Ops + Legacy)	815	2,583	48	3
Life Cycle Emissions	CO2 - Disposal Ops (Te)	CO2 - Replacement Ops (Te)		
(Disposal / Replacement of Material)	1	158		
	Activity	Area (m²)	Resources	
	Habitat Loss (Rock Cover)	N/A	N/A	
Marine Impact (Seabed)	Habitat Loss (Rock Bags)	50	8 x 4te rock bags	
marine inpact (Seabed)	Short Term Disturbance (Trench and Bury)	N/A	N/A	
	Short Term Disturbance (Reverse Installation w/o Deburial)	N/A	N/A	
	Short Term Disturbance (MFE)	N/A	N/A	
	Material	Recovered Weight (Te)	Remaining Weight (Te)	
	Steel	0	0	
	Aluminium Alloy	0	0	
	Copper	0.2	22	
Materials	Concrete	0	0	
mdwildis	Polymer	0.0	4.9]
	Mattress/Grout Bag	0	0	
	Life Cycle	Value		
	Disposal Time	2 days		
	Persistence	Hundreds of years		

TECHNICAL			
	Sub-Criterion	Scoring	Comments
Technical Considerations	Concept Maturity	3	Well proven techniques. Subsea tools and vessel requirements are broadly supported across the market.
	Technical Risks	3	Limited technical risks, Cable ends only are feasible to remove by cut and lift.

SOCIETAL			
	Sub-Criterion	Scoring	Comments
Societal Factors	Fishing	2	Short operation, small area of disturbance, Fishing operations are conducted in vicinity of the cable.
	Other Users	3	Copper will be recyclable, coating will likely go to landfill.

ECONOMIC			
	Comparative Cost Operational	£0.85	м
Economic Considerations	Comparative Cost Legacy	£1.24	м
	Comparative Cost Total	£2.09	М
	Comparative Cost Total	£2.09	M

Appendix F.9

PROJECT CLIENT SUBJECT ASSIGNMENT NUMBER CALCULATION NUMBER REVISION

Estimate Basis

Sean Field Decommissioning ONE Dyas Decommissioning Method Statements A400309-S00 A-400309-S00-CALC-00X A01

Estimate Basis

Vessel Rates	Unit	Rate £k
Survey Vessel	£k/day	50
Trenching Vessel	£k/day	150
Rockdump Vessel	£k/day	45
Rockdump (£k/Te dumped)	£k/Te	0.02
Rock Bags (8Te)	Each	1.00
DSV	£k/day	140
CSV	£k/day	75
Reel Vessel	£k/day	140
Trawler	£k/day	5
Survey Vessel (Legacy)	£k/day	50
Cargo Barge/Pipehaul	£k/day	90
Tug	£k/day	15
	2.1, 64.9	10
Equipment Rates	Unit	Rate £k
Suction Dredger	£k/day	0.85
Mass Flow Excavator (MFE)	£k/day	0.90
Mechanical / Jet Trencher	£k/day	0.90
Hydraulic Shears	£k/day	0.75
Diamond Wire Cutter	£k/day	0.95
Trident Cut and Lift Tool	£k/day	1.50
Speed Loaders Hire	£k/day	0.04
Speed Loader Rigging	Each	0.24
Pipe Grab	£k/day	0.05
Subsea Basket	£k/day	0.12
Deck Reel / Reel Drive System / Tensioner	£k/day	10.00
Note: Equipment costs do not account for qualified technicians required to operate the equipment.		
Offshore Operations	Unit	Value
All Operations		
Mob / Demob	day	2
Transit to Field	day	1
DP trials	hour	4
Transit to Shore	day	1
Interim trips (inc. transits and mob / demob)	day	3
Trip duration	day	28
Interfield transits	hour	4
Suction Dredger Operations		
Allowance for deburial of pipeline section required to be cut	hour	1
Mass Flow Excavating Operations		
Deburial of trenched and buried line using MFE (whole length)	m / hour	100
Allowance for deburial of pipeline section required to be cut	hour	2
Time required to deploy / retrieve MFE equipment	hour	1
Number of passes required for fully buried / rock covered sections	QTY	3
Number of passes required for partially buried / rock covered sections		3
	QTY	2

PROJECT CLIENT SUBJECT ASSIGNMENT NUMBER CALCULATION NUMBER REVISION Sean Field Decommissioning ONE Dyas Decommissioning Method Statements A400309-S00 A-400309-S00-CALC-00X A01

Estimate Basis

Offshore Operations	Unit	Value
Remedial Trenching Operation		
Time required for jet trenching and burying exposure (only applies to trenching and		
burying exposure spots)	hour	1
Time required to deploy / retrieve and set up jet trenching equipment	hour	2
Time required to reposition jet trenching equipment	hour	1
Time required for jet trenching surface laid lines	m / hour	200
Time required for backfilling surface laid lines	m / hour	225
Length of trench transitions	m	50
Length of trench run in / out	m	30
Cutting and Lifting Operations		
Section length to be cut - Hydraulic Shears	m	20
Section length to be cut - Diamond Wire Saw	m	10
Section length to be cut - Trident Cut and Lift Tool	m	12
No. of hours required to perform one cut - hydraulic shears	hour	0.50
Hydraulic Shear Deployment Time	hour	1
Hydraulic Shears Repositioning Time	hour	0.50
Hydraulic shears retrieval time	hour	0.25
No. of hours required to perform one cut - Diamond Wire Cutter	hour	1
Diamond Wire Saw deployment time	hour	1
Diamond Wire Cutter Repositioning Time	hour	0.50
Diamond Wire Cutter Recovery Time	hour	0.25
Subsea basket deployment time	hour	0.50
Subsea basket retrieval time	hour	0.50
Time required to lift cut section of Pipeline / Spool / Flexible / Umbilical back to vessel - Pipe Grab	hour	0.50
Time required to lift cut section into subsea basket	hour	0.50
Time for combined cut pipe and lift (12m sections / 2 cuts) - Trident	hour	1.50
Time for a dual cut - Trident	hour	1
Time for a single pipe lift - Trident	hour	0.50
Trident deployment time	hour	0.25
Trident relocation time	hour	0.25
Allowance for concrete spalling	%	25%
Time required to recover concrete at each location	hour	0.5
Change out diamond wires every	cuts	6.0
Change out diamond wires	hour	2.0
Survey Operations		
As-found / post-decommissioning pipeline survey	m / hour	1500
As-found / as-left cut end survey - rock cover	hour / end	0.5
Rock Placement		
Rock quantity for pipelines / umbilical	Te / m	10
Time required to rock cover line	Te / hour	1000
Rock quantity for cut ends	Te / end	25
Time required to rock cover section	hour / section	2
No. of rock bag placement per end	QTY	4
No. hours to place rock bags per location	hour	0.33

PROJECT CLIENT SUBJECT ASSIGNMENT NUMBER CALCULATION NUMBER REVISION Sean Field Decommissioning ONE Dyas Decommissioning Method Statements A400309-S00 A-400309-S00-CALC-00X A01

Estimate Basis

Offshore Operations	Unit	Value
Reverse Installation Operation		
Time required to lift and attach recovery head and rigging	hour	4
Time required to initiate reverse reel	hour	6
Time required to carry out reverse reeling of flexible / umbilical	m / hour	300
Time required to carry out reverse reeling of rigid pipeline	m / hour	400
Time required to carry out reverse s-lay of rigid pipeline	m / hour	400
Allowance for diver intervention	day	2
	uay	Z
Offshore weather allowance	%	15%
Offshore tidal allowance	%	30%
Decommissioning Contractors Engineering and Management	%	10%
Onshore Rates	Unit	Rate £k
Recycling / Disposal Rates		
Concrete Coated Pipeline	£/Te	0.02
Rigid Steel Pipe	£/Te	-0.03
Flexibles / Umbilicals / Cables	£ / Te	0.00
Personnel Rates & Misc. Costs	Unit	Rate £k
Ops Support Personnel	£k/day	0.68
Assumptions	Unit	Value
Disturbance		
Rock placement disturbance - length of pipeline	m (width)	10
Rock placement disturbance - pipeline ends	m ²	100
Rock bags (4Te) ~2.4m dia in-place	m ²	25
Trench and bury disturbance	m (width)	10
Mass flow excavation disturbance	m (width)	5
Reverse install without deburial disturbance	m (width)	2
Note: Any seabed dredging is considered to be localised and to have a negligible impact on the seabed in comparison to rockdumping, MFE etc and therefore is not included in the estimate for seabed disturbance/impact.		

PROJECT CLIENT SUBJECT ASSIGNMENT NUMBER CALCULATION NUMBER REVISION Sean Field Decommissioning ONE Dyas Decommissioning Method Statements A400309-S00 A-400309-S00-CALC-00X A01

Estimate Basis

Vessel Information		Unit	Value
Vessel Deck Area			
		m²	1 200
Olympic Ares (CSV) Seven Atlantic (DSV)		m²	1,300
		m m ²	1,200
Seven Arctic (CSV)		m m²	2,600
Seven Pegasus (DSV)			1,200
Vessel Deck Area Utilisation		%	50%
Maximum Pipe Storage Height		m	1.5
Vessel Deck Weight Capacity			
Olympic Ares (CSV)		Те	7,150
Seven Atalantic (DSV)		Те	12,000
Seven Arctic (CSV)		Те	7,000
Seven Pegasus (DSV)		Те	7,800
			1,000
Vessel Rock Capacity			
Nordnes (Flexible Fallpipe Vessel)		Те	24,000
Project Services		Unit	Value
Project Management / Supervision / Owner Costs		%	12%
Insurance		%	5%
Misc. Onshore Costs (Port charges, storage etc.)		£k LS	100
3rd Party Verification		£k LS	200
		ZK LS	200
-			
Fees		Unit	Value
-			
Fees	РоВ	Unit	Value
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR)	-	Unit £k / km Hours Exposure	Value 3.00 FAR
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV	120	Unit £k / km Hours Exposure 12	Value 3.00 FAR 5.5
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV	120 110	Unit £k / km Hours Exposure 12 12	Value 3.00 FAR 5.5 7.5
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul	120 110 20	Unit £k / km Hours Exposure 12 12 12 12	Value 3.00 FAR 5.5 7.5 5.5
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug	120 110 20 7	Unit £k / km Hours Exposure 12 12 12 12 12 12	Value 3.00 FAR 5.5 7.5 5.5 5.5 13.2
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug	120 110 20 7 18	Unit £k / km Hours Exposure 12 12 12 12 12 12 24	Value 3.00 FAR 5.5 7.5 5.5 13.2 97
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug	120 110 20 7	Unit £k / km Hours Exposure 12 12 12 12 12 12	Value 3.00 FAR 5.5 7.5 5.5 13.2 97 7.5
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug Divers	120 110 20 7 18	Unit £k / km Hours Exposure 12 12 12 12 12 12 24	Value 3.00 FAR 5.5 7.5 5.5 13.2 97
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug Divers Trawler	120 110 20 7 18 5	Unit £k / km Hours Exposure 12 12 12 12 12 12 24 12	Value 3.00 FAR 5.5 7.5 5.5 13.2 97 7.5
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug Divers Trawler Survey Vessel CSV	120 110 20 7 18 5 44	Unit £k / km Hours Exposure 12 12 12 12 12 24 12 24 12 12 12	Value 3.00 FAR 5.5 7.5 5.5 13.2 97 7.5 7.5 7.5
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug Divers Trawler Survey Vessel	120 110 20 7 18 5 44 76	Unit £k / km Hours Exposure 12 12 12 12 12 12 24 12 12 12 12 12 12	Value 3.00 FAR 5.5 7.5 5.5 13.2 97 7.5 7.5 7.5 7.5 7.5 7.5 7.5
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug Divers Trawler Survey Vessel CSV Light CSV SLV	120 110 20 7 18 5 44 76 76 76	Unit £k / km Hours Exposure 12 12 12 12 12 12 24 12 12 12 12 12 12 12	Value 3.00 FAR 5.5 7.5 5.5 13.2 97 7.5 7.5 7.5 7.5 7.5 5.5 7.5 7.
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug Divers Trawler Survey Vessel CSV Light CSV	120 110 20 7 18 5 44 76 76 200	Unit £k / km Hours Exposure 12 12 12 12 12 12 24 12 12 12 12 12 12 12 12 12 12	Value 3.00 FAR 5.5 7.5 5.5 13.2 97 7.5 7.5 7.5 7.5 5.5 5.5 5.5 5.
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug Divers Trawler Survey Vessel CSV Light CSV SLV Rockdump Vessel Trenching Vessel	120 110 20 7 18 5 44 76 76 200 20	Unit £k / km Hours Exposure 12 12 12 12 12 12 12 12 12 12 12 12 12	Value 3.00 FAR 5.5 7.5 5.5 13.2 97 7.5 7.5 5.5 7.5 7.5 5.5 7.5 <
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug Divers Trawler Survey Vessel CSV Light CSV SLV Rockdump Vessel	120 110 20 7 18 5 44 76 76 200 20 20 55	Unit £k / km Hours Exposure 12 12 12 12 12 12 12 12 12 12 12 12 12	Value 3.00 FAR 5.5 7.5 5.5 13.2 97 7.5 7.5 7.5 7.5 5.5 5.5 5.5 7.5 5.5 7.5 5.5 7.5 5.5 7.5 5.5 7.5 7
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug Divers Trawler Survey Vessel CSV Light CSV SLV Rockdump Vessel Trenching Vessel Large Deck CSV Reel Vessel	120 110 20 7 18 5 44 76 76 200 20 55 76 76 76	Unit £k / km Hours Exposure 12 12 12 12 12 12 12 12 12 12 12 12 12	Value 3.00 FAR 5.5 7.5 5.5 13.2 97 7.5 7.5 5.5 7.5 7.5 5.5 7.5 5.5 7.5 5.5 7.5 5.5 7.5 7.5 5.5 7.5 5.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 <
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug Divers Trawler Survey Vessel CSV Light CSV SLV Rockdump Vessel Trenching Vessel Large Deck CSV Reel Vessel Supply Vessel	120 110 20 7 18 5 44 76 76 200 20 55 76 76 76 76 76 76	Unit £k / km Hours Exposure 12 12 12 12 12 12 12 12 12 12 12 12 12	Value 3.00 FAR 5.5 7.5 5.5 13.2 97 7.5 7.5 5.5 7.5 7.5 5.5 7.5 5.5 7.5 5.5 7.5 7.5 5.5 7.5
Fees UK Fisheries Offshore Oil & Gas Legacy Trust Fund (FLTC) Personnel on Board (PoB) & Fatal Accident Rate (FAR) HLV DSV Barge / Pipehaul Tug Divers Trawler Survey Vessel CSV Light CSV SLV Rockdump Vessel Trenching Vessel Large Deck CSV Reel Vessel	120 110 20 7 18 5 44 76 76 200 20 55 76 76 76	Unit £k / km Hours Exposure 12 12 12 12 12 12 12 12 12 12 12 12 12	Value 3.00 FAR 5.5 7.5 5.5 13.2 97 7.5 7.5 5.5 7.5 7.5 5.5 7.5 5.5 7.5 5.5 7.5 5.5 7.5 7.5 5.5 7.5 5.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 <