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1. Introduction 
The case studies included in this report have been developed from the videos of 
mathematics teaching in England that were collected during the Teaching and Learning 
International Survey (TALIS) Video Study. The TALIS Video Study of mathematics 
teaching practices is an international study run by the Organisation for Economic Co-
operation and Development (OECD), involving eight countries and economies: Biobío, 
Metropolitana and Valparaíso (Chile), Colombia, England (UK), Germany,1 Kumagaya, 
Shizuoka and Toda (Japan), Madrid (Spain), Mexico, and Shanghai (China). It adds to 
the data provided by the 2018 OECD Teaching and Learning International Survey 
(TALIS), which asked teachers and headteachers about the teaching and learning 
conditions in their schools. The TALIS Video Study goes further by going into classrooms 
and observing teaching and seeking to address questions such as: 

• Which aspects of mathematics teaching are related to student learning and non-
cognitive outcomes, such as students’ self-efficacy in mathematics and their 
interest in mathematics? And how? 

• How do teachers teach in different contexts? 

• How are various teaching practices inter-related? 

The Department for Education (DfE) commissioned Education Development Trust and 
the University of Oxford to conduct the TALIS Video Study in England. Data collection 
took place between October 2017 and October 2018. In the study, researchers gathered 
videos of two separate lessons from a sample of 85 secondary mathematics teachers in 
England. These lessons focused on the unit of teaching and learning that includes 
quadratic equations. The majority of lessons were on solving quadratic equations by 
using factorisation, by using the quadratic formula, by completing the square, or by 
finding roots from graphing quadratic functions. In addition, artefacts such as lesson 
plans, presentations, classroom tasks and homework assignments were collected from 
these lessons and two other lessons in the unit. The majority of students participating in 
England were in Year 10, with an average age of 15 years, though the study also 
included students in Years 8, 9, 10 and 11, depending on which year group was studying 
the topic of quadratic equations during the period of data collection. 

All teachers can benefit from observing other teachers’ practice in the classroom and by 
having their own teaching observed.2 Many teachers have used peer and/or self-

 
 

1 Germany refers to a convenience sample of volunteer schools 
2 DfE (2014b) 
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observation as part of their continuing professional development activities,3 and there are 
several frameworks available to support such collaborative observations that are 
specifically focused on mathematics teaching.4 The TALIS Video Study, together with the 
case studies highlighted in this report (which are taken from extracts of the videoed 
lessons), provides a further window for teachers to observe the practice of others. The 
case studies come from a range of classrooms in a variety of school contexts, and 
include examples from the full range of class-average prior attainment and 
socioeconomic background. Each case study was selected because it received the 
highest possible rating for the teaching practice that it illustrates. 

The intention is that the case studies can be used to support excellent mathematics 
teaching. Excellent – and effective – mathematics teaching includes teachers 
encouraging reasoning, using rich collaborative tasks, and creating connections between 
topics both within and beyond mathematics.5 Students should be encouraged to create, 
conjecture and experiment, and be given the tools to understand mathematics. This idea 
is not new,6 and it has been known for some time that excellent mathematics teachers 
make purposeful and appropriate use of representations7 and support students in making 
connections between mathematical facts, procedures and concepts. The case studies 
will enable mathematics teachers to see examples of what these practices can look like 
in the teaching of quadratic equations. 

The TALIS Video Study analysed the videos of mathematics teaching against a specially 
developed framework. This framework focused on six domains or areas of teaching that 
other research has shown to support students’ learning. Four of these domains focus 
specifically on mathematics teaching, and it is these four that the case studies that follow 
focus on. These include quality of subject matter, student cognitive engagement, 
assessment of and responses to student understanding, and discourse. Within each 
domain, several aspects of mathematics teaching practice, referred to as ‘components’ in 
the study, were analysed. In Table 1 (below), the components or aspects of mathematics 
teaching that were measured within each of the domains are noted in italics, followed by 
a list of the aspects of each component that the case studies focus on. The table also 
includes the domains that these components were included within for the study. 

The case studies presented in this document focus on illustrations of some of the 
components or aspects of teaching practices that were deemed valuable in the TALIS 
Video Study, and which will be of interest to mathematics teachers. Some of these 

 
 

3 Jerrim and Sims (2019) 
4 Ingram, Sammons and Lindorff (2018) 
5 NCETM (2008) 
6 Cuoco et al. (1996) 
7 Nunes, Bryant and Watson (2009) 
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teaching practices are rare in the countries and economies participating in the TALIS 
Video Study, including England, but are nevertheless highly valued. 

Table 1: Components and domains included in the case studies 

Domain Case Study Component  
(i.e. aspect of teaching practice) 

Quality of subject matter Explicit connections 

• Connections between equations and graphs 

• Connections between areas of rectangles and 
factorising 

• Connections within contexts 

• Connections with prior or future knowledge 

• Connections between methods for solving 
quadratic equations 

Explicit patterns and generalisations 

• Looking for and identifying patterns through the 
sequencing of tasks 

• Looking for and identifying patterns through the 
questioning around tasks 

• Using digital technology to generalise from the 
mathematics under consideration 

Student cognitive engagement Engagement in cognitively demanding subject matter 

• Using cognitively demanding tasks 

• Tasks involving multiple approaches 
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Domain Case Study Component  
(i.e. aspect of teaching practice) 

Student cognitive engagement 
(cont.) 

Multiple approaches to and perspectives on 
reasoning 

• Using two methods for one question – and 
bringing them together 

All students working with multiple methods – and 
bringing them together 

Understanding of subject matter procedures and 
processes 

• Identifying errors 

• Visually designating the elements or steps in a 
process or procedure 

• Students asking questions 

Discourse Explanations 

• Teacher explanations 

• Students explaining reasoning 

Questioning* 

Assessment of and responses 
to student understanding 

Teacher feedback 

• Working with individual students 

Note: Components from the TALIS Video Study are identified in this table using italics. 
* Questioning is included within the other case studies, rather than having a specific case study that focuses on questioning. 

The DfE provides support for teachers to enhance their pedagogy through it’s Maths 
Hubs programme. In 2017/18 academic year, following a successful pilot, Maths Hubs 
started to roll out Teaching for Mastery programme in secondary schools. Teaching for 
Mastery focusses on depth of understanding, and encompasses a number of teaching 
approaches that are aligned with the above domains. For example, it encourages 
development of procedural fluency and conceptual understanding in tandem, and seeks 
to provide challenge and the opportunity to deepen understanding for all. At the time of 
the TALIS video study only a small minority of schools in the sample would have 
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completed their mastery training, however the programme aims to reach 1700 secondary 
schools by 2023.  

Each section of this report includes a summary of some of the wider findings of the 
TALIS Video Study in relation to the mathematics teaching practices in England. Further 
details of these findings can be found in the TALIS Video Study National Report8 and the 
Policy Report published by OECD9 entitled Global Teaching Insights: A Video Study of 
Teaching,10  alongside consideration of the other domains and data collected as part of 
the study. Pseudonyms are used throughout the report to ensure the anonymity of 
individual teachers or students that participated in the study. 

It should be noted that the case studies are not intended to provide a comprehensive 
picture of mathematics teaching in England. There are many other valued and highly 
respected aspects of mathematics teaching which are not captured or included, and 
many aspects that are difficult to measure in a reliable and valid way. 

The TALIS Video Study is an OECD project. The development of the study’s 
instrumentation and data analyses and drafting of international reports were contracted 
by the OECD to RAND, ETS11 and DIPF.12 The authors of this work are solely 
responsible for its content. The opinions expressed and arguments employed in this work 
do not necessarily represent the official views of the OECD or its member countries. 

 
 

8 Ingram and Lindorff (2020) 
9 OECD (2020) 
10 Also referred to as the TALIS Video Study 
11 Educational Testing Service 
12 Leibniz Institute for Research and Information in Education 

http://www.oecd.org/education/school/global-teaching-insights.htm
http://www.oecd.org/education/school/global-teaching-insights.htm
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2. Making explicit connections within the mathematics 
Making connections between mathematical representations, procedures and concepts 
can help students to develop a rich network of mathematical knowledge. It is not 
sufficient for teachers to simply include a range of representations, procedures or 
concepts in their teaching: appropriate connections between them need to be made and 
used.13 Mathematics is rich with connections between mathematical concepts, processes 
and representations. 

As explained above, the TALIS Video Study focused on the teaching and learning of 
quadratic equations. In teaching this topic, teachers will introduce different methods for 
solving quadratic equations, such as factorisation, using the quadratic formula, and 
completing the square. Quadratic equations also link to quadratic functions and, in 
particular, the graphing of quadratic curves. The topic is rich in potential connections that 
can be made both within and between different representations, as well as between the 
different methods for solving quadratic equations. 

There are a range of mathematical representations (such as equations, graphs and 
diagrams) between which making connections can support students in developing their 
knowledge of quadratic equations. There are also connections between the different 
solution methods commonly taught in England that can support students in deciding 
which solution method is most effective for different types of quadratic equation. 
Moreover, quadratic equations can be used in a range of contexts, such as finding the 
area of rectangles or modelling the trajectory of a ball thrown into the air, which can be 
helpful in supporting students to use and apply their knowledge of the topic. These 
contexts can also provide a motivation to solve quadratic equations. Connections can 
also be made between this and other topics within mathematics, such as linear equations 
or quadratic functions. This can support the development of a rich network of 
mathematical knowledge. 

In the TALIS Video Study, explicit connections are defined as relationships or 
associations that are clearly stated clearly (verbally or in written form) by a teacher or 
student. These connections can be between and among ideas, equations, 
representations, perspectives or procedures, and they can be within the topic of 
quadratic equations or between quadratic equations and other mathematical topics or 
real-world settings. Representations can include graphs, tables, diagrams, equations or 
physical objects. Some representations illustrate mathematical structures that can 
support students’ understanding. 

 
 

13 Nunes et al. (2009) 
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The following case studies illustrate the variety of ways that participating teachers in 
England made connections when teaching quadratic equations. We present five 
examples of explicit connections in the remainder of this chapter: connections between 
equations and graphs; connections between areas of rectangles and factorising; 
connections within contexts; connections with prior or future knowledge; and connections 
between methods for solving quadratic equations. 

2.1 Connections between equations and graphs 
In the lessons from England, the most common connections made were between 
equations and graphs, and between quadratic equations and quadratic functions. The 
examples in this section focus on the connections between each of the coefficients or 
terms within different representations of a quadratic equation and the different features of 
a graph of an associated quadratic function. In this first example (2.1a) 𝑥𝑥2 − 2𝑥𝑥 − 35 is 
factorised to (𝑥𝑥 + 5)(𝑥𝑥 − 7) and the solutions of the equation have been identified as − 5 
and +7 using the rationale that “we are making each of these brackets equal to zero 
because zero times anything will give me zero". 

The teacher shifts the focus to the graph: 

Teacher:  So okay, what does that tell me about the graph? James? 
James:  That it will cross the x-axis at −5 and 7. 
Teacher:  Okay so, my x-intercepts, where it is going to cross my graph are going to be 

at 7 and negative 5. 
 

The teacher then sketches a pair of axes on the whiteboard, marking in and labelling the 
two points that have been identified as the x-intercepts, as in Figure 1. 
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Figure 1: Sketch of a pair of axes with x -intercepts marked 

 

Whilst working on this one quadratic equation, the teacher has described the two values 
of −5 and +7 as solutions, roots, and x-intercepts. The class then continue by identifying 
the y-intercept from the constant term in the original equation before the teacher 
summarises: 

“So, to see where it is going to cross my x-axis, I did 𝑦𝑦 = 0, to see where it is going to 
cross my y-axis I am going to do 𝑥𝑥 = 0". 

By the end of this discussion, the class has identified the roots from the factorised form of 
the equation and has made the connection that these roots are the same as the x-
intercepts on the graph. The students have then made the connection between the 
constant term in the original equation and the y-intercept. 

[Taken from Lesson 2 with a Year 10 class] 

The connections between the equations and the graph can also be made in the opposite 
direction. In this second example (2.1b), the teacher has sketched a parabola on the 
board and has marked 3 and −2 as the x-intercepts (see Figure 2). The teacher then 
asks, “what equation would that graph represent?” The student gives the expression (𝑥𝑥 +
2)(𝑥𝑥 − 3), which is in factorised form. The teacher then highlights the differences 
between the expression given and the equation of the quadratic curve, explaining: “that 
expression goes with that quadratic curve. The curve, if we were looking at the curve, it 
would be 𝑦𝑦 =. If we are looking at the equation, it would be = 0.” 
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Figure 2: Sketch of a parabola with 3 and −𝟐𝟐 marked as the x-intercepts14 

 

This connection between a quadratic equation and the graph of the related quadratic 
curve becomes particularly useful when considering repeated roots or cases where the 
equation has no real solutions. In this example, the student focuses on a quadratic 
function with a positive 𝑥𝑥2 coefficient. 

Teacher: What would one repeated root look like? 
Ariel: Would it not go below the x-axis? 
Teacher:  It wouldn’t go below the x-axis. It would just touch the x-axis at one point [as in 

Figure 3]. So, Kristine, I wonder what happens when there’s no solutions? 
Kristine: It doesn’t touch the x-axis at all. 
Teacher: It doesn’t touch the x-axis at all [as in Figure 4]. 

Figure 3: Sketch of a parabola that touches the x-axis 

 

 
 

14 There are several quadratic equations whose graph could be represented by the diagram in Figure 2 but 
the teacher focused on one particular equation where the coefficient of the quadratic term was 1. 
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Figure 4: Sketch of a parabola that does not cross or touch the x-axis. 

 

 [Taken from Lesson 1 with a Year 10 class] 

When equations are given in completed square form, a connection can also be made to 
the turning point of the parabola. In the third example (2.1c), the class have been drawing 
the graph of an equation from a table of values. They have subsequently rearranged the 
equation 𝑦𝑦 = 𝑥𝑥2 + 2𝑥𝑥 − 3 into completed square form, 𝑦𝑦 = (𝑥𝑥 + 1)2 − 4. The teacher then 
helps students to make the connection between the turning point of the graph they have 
drawn and the completed square form of the equation of that same graph (as detailed 
below). 

Figure 5: Teacher pointing to the turning point of the function 

 

Teacher: What does x have to be to make (𝑥𝑥 + 1) equal to zero? 
Students: Minus one. 
Teacher:  Minus one. What’s the x-coordinate of the turning point here [pointing to the 

graph as in Figure 5]? Minus one… 
Ash: Minus 4. 
Teacher:  Look, minus 1 minus 4 [pointing to the expression as in Figure 6]. 
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Figure 6: Teacher pointing to the two numbers in the expression 

 

The class working together go on to identify the turning points of another equation for 
which they have already drawn the graph, and found the completed square form of: 𝑦𝑦 =
(𝑥𝑥 − 2.5)2 − 0.25. 

 [Taken from Lesson 2 with a Year 10 class] 

2.2 Connections between areas of rectangles and 
factorising 
Another connection that is frequently made in the teaching of quadratic equations is 
between the areas of rectangles and the process of factorising. In the task (example 
2.2a) presented in Figure 7, the teacher initially asks the students to discuss (in pairs) the 
two questions at the bottom of the slide. In the discussion that follows, the sides of the 
rectangle are labelled and the teacher emphasises that the square must have sides t and 
t (because it is a square, not a rectangle, meaning its length and width must be the 
same). The conclusion is reached that the two algebraic expressions represent the area 
of the large rectangle. The teacher then asks students why 𝑡𝑡2 + 6𝑡𝑡 + 4𝑡𝑡 + 24 and 𝑡𝑡2 +
10𝑡𝑡 + 24 are also expressions for the area of the large rectangle, as in the discussion 
below. 
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Figure 7: Task connecting the area of rectangles to quadratic equations 

 

Teacher:  Okay then, I've got slightly different looking expressions now, but for the same 
thing. Where is this first one going to come from, 𝑡𝑡2 + 6𝑡𝑡 + 4𝑡𝑡 + 24? Go on, 
Sam? 

Sam:  𝑡𝑡 times 𝑡𝑡 is 𝑡𝑡2. t times 4 equals 4t. 6 times t equals 6t and 4 times 6 is 24. 
Teacher:  Exactly. So, I am multiplying together, because I’m thinking about area – that’s 

why I am multiplying my length by my width. And, as Sam said, I've got these 
four regions in there. 

Teacher:  Ashley, I heard you kind of very succinctly say why the second one is the 
same as the first one. 

Ashley:  Because it is just simplified. 
Teacher:  Exactly, it is just a simplified version. 
 
Throughout, the teacher has emphasised the relationship between the area of the 
rectangle and the algebraic expressions. This continues as she asks the students to 
make the connections in the other direction, starting with the expression 𝑤𝑤2 + 5𝑤𝑤 + 8𝑤𝑤 +
40, and stating that this is the area of the rectangle before asking the students to identify 
the length and the width. The students do this by identifying that the square must have 
area 𝑤𝑤2, and therefore the lengths of the sides of that square must therefore be w. The 
students then identify which rectangle must have an area of 40 (“because it can’t be 
where the w is”). They go on to identify the lengths of this rectangle as 5 and 8 because 
of the coefficients of the w terms in the expression. The teacher moves on to an 
expression that has already been simplified, 𝑤𝑤2 + 10𝑤𝑤 + 21, and asks the students to 
work out which lengths of the rectangle with an area of 21 would result in 10 as the 
coefficient of the w term. 

[Taken from Lesson 1 with a Year 10 class] 

Similarly, the connection between the area of squares and factorising can be used to 
help students build towards completing the square. In the activity discussed in this 
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example (2.2b), shown in Figure 8, the teacher begins by asking students to write an 
expression for the area of the large square on their mini-whiteboards. 

Figure 8: Task asking students to write an expression for the area of a square 

 

Initially, all the students give an answer of (2 + 𝑥𝑥)(2 + 𝑥𝑥). The teacher then asks the 
class to expand this, and after some discussion, the students reach the expressions 𝑥𝑥2 +
4𝑥𝑥 + 4 or 4 + 4𝑥𝑥 + 𝑥𝑥2. The discussion continues as follows: 

Teacher:  But going back to my original question, what is a nicer way of writing that? 
Nicky? 

Nicky:  Just […] put a square around the first bracket. 
Teacher:  Good, so I can do (𝑥𝑥 + 2)2, can’t I? So, this is what we call a perfect square. 

Write that in your books please. Expressions such as (𝑥𝑥 + 2)2 are known as a 
perfect square. 

The class then continues to work on finding the area of a variety of squares. 

[Taken from Lesson 1 with a Year 9 class] 

These examples of connections between areas of rectangles and factorising also 
illustrate the use of cognitively demanding tasks in mathematics teaching, discussed 
further in section 4.1. 

2.3 Connections within contexts 
Connections can also be made between problems set in different contexts, and the 
quadratic equations that might be used to solve these problems. These contexts could be 
mathematics-based, such as problems involving areas and perimeters of rectangles, or 
could be from real-world situations, such as solving problems involving a ball being 
thrown. 

In this first example (2.3a), the teacher has posed the following problem (see Figure 9): 
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Figure 9: Problem about the area of a rectangle 

 

The students work on this problem on their mini whiteboards, and the following 
discussion takes place:  

Teacher: It says: “the length is 8cm more than the width,” so what could I name these 
sides? 

Peter:  a and b 
Teacher:  I'm not going to name them a and b, and I’ll come back to that in a second. 

Alex. 
Alex:  x 
Teacher:  Good. If I have x and I have 𝑥𝑥 + 8, that means that my width is x and my length 

is my width plus 8. And it says that my length is 8 more than my width, so that 
is right, yeah? 

Teacher: Peter suggested that we call them a and b. Why do I not want to call them a 
and b? Sara? 

Sara:  Because you want x to be the same value and a and b will be separate values. 
Teacher:  Good! Because how many unknowns can I have in one equation? I can only 

solve a singular equation if I have one unknown. If I have two unknowns, what 
do I need to do? What kind of equations can I solve if I've got two unknowns? 
Avery? 

Avery:  Simultaneous. 
Teacher:  Yeah, simultaneous, good. But I am not doing that right now. So, I’ve got x and 

𝑥𝑥 + 8. How do I find the area? What do I do to those two sides? Parker? 
 
Here, the teacher has sketched an image of the rectangle, and the students have 
labelled the sides 𝑥𝑥 and 𝑥𝑥 + 8. The teacher also makes a brief connection here to 
simultaneous equations, highlighting that two simultaneous equations are needed to 
calculate the value of two unknowns. This is a connection with prior knowledge (see 
section below). As the class generates an equation for the quadratic equation, the 
teacher continues to make connections between the area of the rectangle and the 
quadratic equation formed. 

The context becomes important again once the students have identified the two solutions 
of the quadratic equation they have formed. The teacher continued the discussion as 
follows: 

Teacher:  At this point, I have two solutions: I’ve got 𝑥𝑥 = 2 and 𝑥𝑥 = −10. What can I 
immediately decide? What should go through your mind? I am doing this 
problem and I’ve got 𝑥𝑥 = 2 and 𝑥𝑥 = −10. Jordan? 

Jordan:  Hmm, that the answer is 2 because you can’t have a –10 length. 
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Teacher: Perfect. So, my two solutions are 𝑥𝑥 = 2 and 𝑥𝑥 = −10 but my only possible 
solution is 𝑥𝑥 = 2, because I can’t have a length here of –10, can I? 2 is my 
only option. So, my length is 2. 

 
As indicated above, in the context of the areas and lengths of rectangles, it is not 
possible to have a negative length. The students identify this feature of the context in 
order to conclude that the final solution is 𝑥𝑥 = 2. 

 [Taken from Lesson 2 with a Year 10 class] 

2.4 Connections with prior or future knowledge 
Connections can also be made between quadratic and linear equations, and in this study, 
the most common connection made was between linear graphs and quadratic graphs. In 
one videoed lesson (example 2.4a), the teacher uses the transition from working with 
linear graphs to quadratic graphs to address a question raised by one of the students: 

Riley:  I don’t understand why you would want two solutions. 
Teacher:  Why do I want two solutions? 
Riley: Yeah, like why does the formula give you two solutions instead of one? 
Teacher:  Well, there are two questions there. ‘Why does the quadratic give me two 

solutions?’ is one question. If I think about the linear graph, what does the 
linear graph look like? A straight-line graph, linear graph. 

Riley:  Yeah, straight line. 
Teacher:  So, if I have a linear graph, I am just going to have a straight line like this 

[sketches a linear graph the board as in Figure 10]. 
If I am looking at a quadratic graph, what does a quadratic look like? Yes there 
we go, Elliott has just done it… this or this [sketches a parabola first in the air 
and then on the board as in Figure 10]. How many times does this quadratic 
cross my x-axis? 

Students:  Two. 
Teacher:  So why would we have two solutions? Because this is what we are going to 

find when we come on to doing quadratic graphs, this [points at the two x-
intercepts on the sketch of a parabola] is what we are going to find. That is 
why it gives you two solutions, that is the first question.  
The second question is why does the formula give us two solutions? And that 
is because we have + or – in our formula. And therefore, we have one value 
where we are using the positive sign and one where we are using the 
negative. 
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Figure 10: Sketches of a linear function and a quadratic function 

 

Here, the teacher has made a connection between the equations (𝑦𝑦 = 𝑥𝑥2 + 5𝑥𝑥 + 4 and 

(𝑥𝑥 + 1)(𝑥𝑥 + 4) = 0), the graph, and the formula 𝑥𝑥 = −5±√52−16
2

 

[Taken from Lesson 1 with a Year 10 class] 

At GCSE level, most students are taught that quadratic equations have two solutions, 
one solution or no solutions. Some teachers use students’ encounters with quadratic 
equations with different numbers of solutions to introduce the idea of repeated roots and 
no real solutions, meaning that there are solutions, but these solutions involve complex 
numbers and consequently have imaginary roots. This is made explicit by a teacher in 
the example below (2.4b). 

Teacher: So, [for] quadratics you can have two solutions. And these solutions are 
sometimes called ‘roots’. ‘Roots’ is the word we tend to use at A-level. 
Sometimes they have one repeated root, sometimes they have no solutions. 
Right, well there are solutions, but they are called imaginary numbers. If you 
want to do A-level Maths and if you want to do Further Maths, you learn about 
imaginary numbers. 

[Taken from Lesson 1 with a Year 10 class] 

2.5 Connections between methods for solving 
quadratic equations 
There are many methods and approaches students can use when working with quadratic 
equations. Many of these are illustrated later in the section on student engagement in 
cognitively demanding subject matter, in the case studies on using multiple approaches 
to and perspectives on reasoning. Typically, three particular methods are taught in 
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England: factorising, using the quadratic formula, and completing the square. Another 
way in which teachers make explicit connections is by making connections between 
these methods. 

In the example which follows (2.5a), the students are working with the general form for a 
quadratic equation and are completing the square. 

Figure 11: The first three steps used to derive the quadratic formula. 

 

The class work through the first three steps together (see Figure 11), before working 
individually. The students are given the option of working on a sheet on which the steps 
are shown, but on which the student needs to explain the steps taken. At the end of the 
process, the students reach the quadratic formula. The teacher has thus enabled the 
students to experience the connection between completing the square and the quadratic 
formula, by working through a ‘proof of the quadratic formula’. 

[Taken from Lesson 2 with a Year 10 class] 

2.6 Summary 
Explicit connections between mathematical concepts, process and procedures were not 
commonly used in the lessons from England within the unit that included quadratic 
equations. Connections to other mathematical topics such as linear equations, were also 
rare. In contrast, connections between different representations of the quadratic 
equations were common, particularly connections between the equations of quadratic 
functions and their graphs. 

All students need access to the key mathematical concepts and big ideas within the 
National Curriculum,15 and to the rich connections between them. Mathematics is a 
coherent discipline and it is by examining and unfolding the connections within and 

 
 

15 DfE (2014a) 
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between concepts that students come to understand mathematical ideas. Interestingly, in 
the analysis of the lesson videos from the TALIS Video Study16, there was a significant 
relationship between the average socio-economic status of students in a given classroom 
and the quality and quantity of explicit connections that teachers used. Classes with 
higher average levels socio-economic status experienced lessons where explicit 
connections were made more frequently than classes with lower average levels. 

Connections between representations also help expose the mathematical structure being 
taught. Making connections between different approaches, processes or procedures, and 
examining the similarities and differences between them, can also support students in 
identifying the underlying structures within the mathematics. In the case of quadratic 
equations, there are different algebraic representations of the same structure – for 
example, 30𝑥𝑥2 − 28𝑥𝑥 + 6 is equivalent to (5𝑥𝑥 − 3)(6𝑥𝑥 − 2) – which offer “different 
interpretations of the same structure”.17 Making connections between different contexts 
can also help students to see the similar mathematics in these different contexts. By 
paying attention to the underlying mathematical structures shared between concepts, 
process and representations, teachers help students to make connections between them. 

 
 

16 Ingram and Lindorff (2020) 
17 Hoch and Dreyfus (2004). p51. 
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3. Teachers and students using explicit patterns and 
generalisations 

Problem-solving in mathematics involves finding and using patterns to make conjectures 
that lead to generalisations. Key aspects of mathematical reasoning include recognising 
and analysing patterns, and articulating structures that lead to these mathematical 
generalisations. Processes and procedures themselves involve patterns of actions such 
as rearranging equations, factorising, or equating, and it is these patterns that reveal the 
underlying mathematical structures that support students’ understanding. 

Patterns and generalisations underpin many mathematical concepts, procedures and 
processes, and the case studies which follow illustrate how teachers or students looked 
for or identified patterns, or generalised from the mathematics under consideration. For 
the purposes of the study, a pattern was defined as “an ordered set of mathematical 
objects”, such as numbers, equations, graphs or problems, or “a recurring sequence”. 
For generalisation, the definition was taken from the work of Kaput who describes 
generalisation as follows: 

 “Generalization [sic.] involves deliberately extending the range of 
reasoning or communication beyond the case or cases considered, 

explicitly identifying and exposing commonality across cases, or lifting 
the reasoning or communication to a level where the focus is no longer 

on the cases or situations themselves, but rather on the patterns, 
procedures, structures, and the relations across and among them (which, 

in turn, become new, higher level objects of reasoning or 
communication).”18 

When analysing the data for the study, to count as an example of using patterns and 
generalisations there needed to be at least two instances referred to or investigated 
during the lesson from which a generalisation or pattern was developed. The study also 
makes a distinction between whether it is the teacher who is looking for patterns, 
identifying patterns, or is making explicit generalisations, or whether it is the students 
who are doing this. In many of the examples included here, the students themselves are 
working with patterns and generalisations in some way. In the sections that follow, a 
distinction is made between examples where the students are working directly with the 
patterns in some way, but it is the teacher that makes the generalisation, and examples 
where the students make the generalisation themselves from these patterns. 

 
 

18 Kaput (1999). p136.  
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The case studies on explicit patterns and generalisation are divided into three categories 
that focus on the tasks, questions and tools teachers used to offer opportunities to see or 
use patterns or generalisation in their learning of quadratic equations. These are: looking 
for and identifying patterns through the sequencing of tasks; looking for and identifying 
patterns through the questioning around tasks; and using digital technology to generalise 
from the mathematics under consideration. 

3.1 Looking for and identifying patterns through the 
sequencing of tasks 
One way of supporting students to work explicitly with patterns is to sequence a series of 
tasks that will enable them to look for patterns within the sequence. In this first example 
(3.1a), shown in Figure 12, the teacher uses a carefully constructed sequence of four 
quadratic expressions, which allows students to look for patterns without being instructed 
as to which patterns to look for. 

Figure 12: Sequencing a series of tasks19 

 

After the students have spent some time working individually on this sequence, 
discussing their patterns within the group around their table, the teacher brings the class 
together to discuss the questions: 

Teacher:  But really, we are more interested in these patterns. So, there is really no silly 
answers to this at all, any patterns that you can see going on there? Ali? 

Ali:  It looks a bit like 𝑥𝑥2 and then in the next x added by itself is the middle number, 
so like 1 and 1 is 2, and then the last number is the number squared. 

Teacher:  The number squared, okay. So, that middle column, those coefficients of x, 
tend to be, if I’d not simplified it, tends to be like 𝑥𝑥 +  𝑥𝑥 or 2𝑥𝑥 +  2𝑥𝑥, so I’ve got 
two lots of them. Brook, go on. 

 
 

19 Reprinted from integralmaths.org with permission from MEI 
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Brook:  So if you’ve like got x for the first thing and +1 or +2 for the second thing, you 
would power the first thing and then the second thing you would [inaudible] 
and then 2 times the first thing times the second thing. 

Teacher:  Okay, right, you pretty much summed it all up together there. Let’s have a 
look. We’ve got the square of whatever this number is. Okay? We’ve got the 
square at the end there, all the square numbers? That would carry on forever, 
wouldn’t it? And that coefficient of this x there, that linear term, okay, we can 
see, is always two times as big as each of the numbers at the end of my 
bracket. 

 
In this example, the open nature of the original task allows the students to notice both the 
relationship between the numbers inside the bracket and the constant term of the 
expanded form, as well as the relationship between the numbers inside the bracket and 
the coefficient of the x term in the expanded form. The teacher then invites some 
students to share the patterns they have noticed before summarising the relationships for 
the whole class. 

[Taken from Lesson 2 with a Year 10 class] 

A similar example is given in Figure 13, in which the sequence of tasks draws students’ 
attention to the pattern relating the numbers in the factorised and expanded form of 
quadratic expression (example 3.1b). 

Figure 13: Sequencing questions on factorising and expanding quadratic 
expressions 

 

[Taken from Lesson 1 with a Year 10 class] 

The four questions in the section on expanding brackets vary only the sign of the 
numbers inside the brackets. This offers students the opportunity to see the impact this 
has on the coefficient of the x term and on the constant term. Similarly, keeping the 
magnitude of the constant term the same in the sequence of questions about factorising 
offers students the opportunity to focus on which factors of the constant term sum to form 
the x coefficient, and therefore the features of these factors which affect the x coefficient. 
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3.2 Looking for and identifying patterns through the 
questioning around tasks 
Another way to use a sequence of tasks is where the pattern is not visible through the 
sequence itself, but becomes apparent through the teacher’s questioning around the 
sequence. In this next example (3.2a), the students have been given the sum and 
product of two numbers, and need to work out what the two numbers were, as in Figure 
14. Initially, the questions only involve the natural numbers, but after a few examples, the 
teacher introduces negative products or sums. 

Figure 14: Finding two numbers when given the sum and product 

 

The teacher then introduces the equation 𝑥𝑥2 + 15𝑥𝑥 + 44 = 0 on the whiteboard and asks: 

Teacher:  Which one is the product, which one is the sum? Which one? Think back to 
your generic formula of 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐. Which one represents the product of the 
two numbers, which one represents the sum of the two numbers when I 
expand the brackets? 

 

The class works through this specific example to identify the sum as 15 and the product 
as 44, leading to (𝑥𝑥 + 11)(𝑥𝑥 + 4). The teacher writes up the general form of a quadratic 
expression and labels the coefficient of 𝑥𝑥 as the sum and the constant term as the 
product (see Figure 15 – note this ‘rule’ is only true when 𝑎𝑎 = 1). 
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Figure 15: A general rule for interpreting the quadratic expressions 

 

[Taken from Lesson 1 with a Year 9 class] 

This strategy is also used by teachers to connect algebraic and graphical representations 
of quadratic equations. In this next example (3.2b), the students are given two equations 
which are presented in three different representations – expanded form, factorised form, 
and in a graphical form – and are asked to find a link between the factors in the 
factorised form and the graphs (see Figure 16). 

Figure 16: Linking factors to parabolas 

 

Initially, a couple of students focus on the relationship between the expanded form and 
the graph: 
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Teacher:  Alright Corey, you guide me through what you think. Guys, have a listen then. 
Corey:  I think the last number in the bracket, in the second bracket. 
Teacher:  The last number in the second bracket. That one? And that one? [points on 

board] 
Corey:  Yes, that’s where it crosses through the y-axis. 
Teacher:  Ahh, okay, I see that. So, the +2 is the +2 and the –4 is the –4 [points on 

board]. I hadn’t noticed that, but you spotted it, well done. That wasn’t actually 
the link but very clever. Maybe I should have done two different examples. It 
does work, but it is not the link I was looking for. 

 
Later, the discussion shifts to the factorised form: 

Toni:  Oh, it cuts on the x before it cuts on the y. 
Teacher:  Hang on, here? 
Toni:  Yeah on that one? On the right. It cuts on the 4 and the 1. 
Teacher:  Alright, it does cut through at 4. What does that have to do with my factorised 

brackets? 
Toni:  Well you got – 4 and on the left you got – 1, which … 
Teacher:  Alright, so what’s wrong with the numbers in here? 
Wynne:  They are the wrong way. 
Teacher:  It is not so much the wrong way. Keep going Toni? 
Toni:  They are like the opposite sign. 
Teacher:  They are the opposite signs. So, let’s just see if that works. If I was to swap 

the sign to make this a positive 4, it creates one of what we call the solutions. 
So, by swapping that to a positive 4, it cuts here. By swapping that sign, I am 
going to get a negative 1 and it cuts here. Let’s see if it works on the red. If I 
swap a +2 by changing the sign, that would be a? 

Students:  −2. 
Teacher:  −2. Does it cut at – 2? 
Students:  Yes. 
Teacher:  Aha. And that one? 
Harper: It would make – 1. 
Teacher:  And does it cut at – 1? 
Students:  Yes. 
Teacher:  Right, so that is a very strong pattern and we are going to write that up in just 

a second. 
 
In this example, the students have worked on two specific examples to identify a 
relationship between the algebraic representation and the graphical representation, 
which the teacher then summarises as ‘rules’ (using the language of the students), as 
shown in Figure 17. These two rules summarise the patterns that the students noticed 
and offer the opportunity for these patterns to be refined and challenged as the class 
consider more examples and counterexamples. 
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Figure 17: Rules connecting factors to plotted parabolas 

 

[Taken from Lesson 2 with a Year 8 class] 

3.3 Using digital technology to generalise from the 
mathematics under consideration 
Another way in which teachers can support students in noticing and identifying patterns is 
through the use of digital technology, for example, by using dynamic geometry software. 

In the next example (3.3a), the class have been working together on the specific equation 
of 𝑦𝑦 = 𝑥𝑥2 + 4𝑥𝑥 + 4, which they have factorised and solved to find the repeated root, which 
is then connected to the x-intercept on the graph of the equation. The class moves on to 
working with 𝑦𝑦 = 𝑥𝑥2 + 7𝑥𝑥 + 10 in the same way. The teacher then asks “what does 
completing the square do for us?”, before introducing a graph with the equation in 
completed square form (𝑦𝑦 = (𝑥𝑥 − 𝑎𝑎)2 + 𝑏𝑏), where the values of a and b can be altered 
using sliders (as shown in Figure 18). 

Teacher:  So, this is our completed square form and this is quite interesting, we’ll look at 
this a little more when we start transforming graphs, but if we take the number 
on the end, the +𝑏𝑏, if we change that, we get that movement in the y-direction, 
and if we change the a, our curve moves left and right [shows on screen]. And 
if I leave it there, when 𝑏𝑏 = 1 and 𝑎𝑎 = 2, you can see where it sits. Now, were 
does the 1 and the 2 come in? If I were to write that out as an equation, that 
would be 𝑦𝑦 = (𝑥𝑥 − 2)2 + 1 
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Figure 18: Using dynamic graphing software to see the effect of changing the 

values of the variables 

 

Teacher:  Now, so what do you think the significance of those numbers is? Because 
when we think about factorising quadratics, that helps us see where the line 
cuts the x-axis, what is the significance of these two numbers for this graph? 
Can anyone spot anything there?  
What if I change the a to 3? [changes value of a using the slider]? What if I 
change it to maybe – 1? So, what is the significance of this number in the 
bracket? Can anyone spot where it might have come from? 

 
Over the next few minutes, a range of students make suggestions about the effects of 
changing a and b, finally concluding that the values related to the coordinates of ‘the 
lowest point’, which the teacher names as ‘the minimum point’. 

[Taken from Lesson 2 with a Year 10 class] 

Digital technology allows teachers and students to work with a large number of examples 
in a short period of time. In particular, by keeping some parts of the equation the same 
whilst varying others, patterns and structures within the examples can emerge that 
expose the relationship between the algebraic representations of the quadratic equations 
and the graphs of the quadratic functions. Newer technologies are now widely available 
for supporting the teaching and learning of algebra, such as graph-plotters, dynamic 
geometry apps and spreadsheets.20 

  

 
 

20 Godwin and Sutherland (2007) 
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3.4 Summary 
The use of explicit patterns and generalisations within the unit that included quadratic 
equations was not very common in the lessons in England. In the majority of cases, 
where patterns and generalisations were used, it was the teacher who used the pattern 
to reach a generalisation, rather than the students. 

One way in which students come to understand mathematics as a coherent discipline is 
by considering small connected steps or representations that can then lead to a 
generalisation of a concept. Consequently, they will be more able to apply concepts in a 
range of contexts, or know when not to apply a concept.21 Teachers can use carefully 
constructed sequences of patterned examples to highlight a generalisation, or they can 
use unsequenced examples and draw attention to the patterns through questioning and 
then make generalisations. Students need opportunities to describe generalisations 
based on mathematical structures and inductive reasoning from sequences of examples 
or approaches.22 Teachers can also use digital technology to expose patterns and invite 
students to draw generalisations. 

Algebra in particular expresses generalisations and relationships between different 
representations, such as symbols and graphs.23 The topic of quadratic equations 
involves several types of transformational activities24 (rule-based activities), such as 
factorising, expanding brackets, simplifying expressions and solving equations. 
Generational activities25 (generating expressions and equations that are the objects of 
algebra, expressions of generality and rules) that can arise through the use of patterns or 
sequences of examples were less common in the lessons in the TALIS Video Study. 

 
 

21 Mason (2008) 
22 Nunes, Bryant and Watson (2009) 
23 Kieren (2004) 
24 Kieren (2004) 
25 Kieren (2004) 
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4. Ways of offering opportunities for students to 
engage in cognitively demanding subject matter 

A topic like quadratic equations involves students working extensively with procedures 
and practicing algebraic manipulation. Many teachers also include tasks or activities 
which offer students opportunities to engage in cognitively demanding subject matter, 
such as analysing, creating or evaluating work that is cognitively rich and requires 
thoughtfulness. Examples include detailed examinations or explorations of the features 
and relationships among mathematical procedures, processes or ideas, formulating or 
inventing a way to solve a problem, and determining the significance or conditions of a 
mathematical idea, topic, representation or process. These tasks and activities go 
beyond recall or the rote application of procedures. The cognitive demand of the subject 
matter is based on how students are being asked to engage with the mathematics, rather 
than the difficulty of the mathematics itself. 

The case studies focus particularly on the tasks teachers use to offer students these 
opportunities and illustrate the ways in which teachers can work with these tasks. The 
first section, on cognitively demanding tasks, focuses on those tasks in which students 
engaged in analytical and creative processes as they worked on the task. The second 
section, on tasks involving multiple approaches, focuses more on tasks in which students 
used different approaches to the same problem and these approaches are shared and 
discussed with the class as a whole. 

4.1 Cognitively demanding tasks 
The first example (4.1a) is of a task in which students need to create equivalent 
expressions, emphasising the equivalence of different algebraic representations. This is 
shown in Figure 19. 

Figure 19: An example of a cognitively demanding task 

 

After a few minutes of students writing a range of equivalent expressions on their mini 
whiteboards, the teacher draws the class together to discuss the equivalency of these 
expressions: 
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Teacher:  Okay, Daniela, can I have your board please? Any of these expressions, 
please have a look, where she has got −3𝑥𝑥 − 9𝑥𝑥, they are equivalent. They 
have not been simplified but they are equivalent. [Returns board]. 

 
Figure 20: Daniela’s board of equivalent expressions 

 
 
Teacher:  Can I have a look at these two? [Picks them up.] Okay, so I got these two 

here. This one is yours Liz? What did you do to get that? 
 

Figure 21: Liz's board with an equivalent expression 

 
 
Liz:  I factorised. 
Teacher:  Lovely, so she’s factorised this expression and she ended up with this. (2𝑥𝑥 −

3)(2𝑥𝑥 − 3). And Peter ended up with this one. Are they the same? How come? 
 

Figure 22: Peter's board with an equivalent expression 

 
 
John: This is just times together, which is the same. 
Teacher:  Exactly, we could write – this is important, pay attention to this – we could 

write (2𝑥𝑥 − 3)(2𝑥𝑥 − 3) as (2𝑥𝑥 − 3)2 Yeah? So, these things are the same, fab. 
 

 [Taken from Lesson 2 with a Year 10 class] 
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In this example (4.1a), the equivalence between the factorised form and the expanded 
form is being emphasised, rather than the process of factorising. The students have 
created equivalent expressions, which involves some thoughtfulness. 

In this second example (4.1b), the class have been completing the square on 
expressions of the form 𝑥𝑥2 + 𝑎𝑎𝑥𝑥, using images of rectangles and squares to support them 
(as shown in Figure 23). 

Figure 23: Using areas of rectangles to learn about completing the square 

 

The teacher then invites the student to consider the case of 𝑥𝑥2 + 6𝑥𝑥 − 120, where the 
expression has three terms, instead of the two that the class has been working with so 
far. Students are therefore formulating their own method for completing the square for 
expressions of this type. One student begins by suggesting that the expression will need 
to include (𝑥𝑥 + 3)2. The teacher then asks another student to expand this expression to 
get 𝑥𝑥2 + 6𝑥𝑥 + 9. The teacher highlights that they are looking for 𝑥𝑥2 + 6𝑥𝑥 − 120 and have 
𝑥𝑥2 + 6𝑥𝑥 + 9. Another student suggests that 129 needs to be subtracted to get (𝑥𝑥 + 3)2 −
129. 

[Taken from Lesson 2 with a Year 10 class] 

Returning to example 3.3a, as it can also demonstrate how students are given 
opportunities to engage cognitively with the mathematical ideas and relationships. In this 
example, students explore the features and relationships between the different methods 
for solving quadratic equations and the graphical representation of the quadratic equation 
they are working on. To this point, the students have been identifying the roots of 
quadratic equations by factorising the equations and making connections to the graph. 
The teacher then asks: 

Teacher:  Okay, so it is going to go through –2 and –5. So here solving helps us work 
out where our graph cuts the 𝑥𝑥-axis. Which leaves the question: What does 
completing the square do for us? How does that help us do anything? 
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The teacher then uses dynamic graphing software (see Figure 24) to vary the numbers of 
an equation in completed square form, 𝑦𝑦 = (𝑥𝑥 − 𝑎𝑎)2 + 𝑏𝑏. She begins by varying the 
number of the end (the constant term), the +b, and shows how the graph translates (“if 
we change that, we get that movement in the y direction”), by varying it across both 
positive and negative values of 𝑏𝑏. She then fixes the value of 𝑏𝑏 to be 1 and varies the 
value of 𝑎𝑎 and shows the curve translating left and right. She then fixes the value of 𝑎𝑎 as 
2. 

Figure 24: Using dynamic graphing software to vary the numbers of an equation in 
completed square form (repeat of Figure 18) 

 

 

She leaves the equation in the form 𝑦𝑦 = (𝑥𝑥 − 2)2 + 1 before asking: 

Teacher: Now where does the 1 and the 2 come in if I were to write that out as an 
equation?  
 

[She writes 𝑦𝑦 = (𝑥𝑥 − 2)2 + 1 on the whiteboard.] 

Teacher: Now, so what do you think the significance of those numbers is? Because 
when we think about factorising quadratics, that helps us see where the line 
cuts the x-axis. So that is the significance of these two numbers for this graph. 
Can anyone spot anything there? 
 

The teacher builds on this use of explicit patterns and generalisation to offer further 
opportunities for her students to engage in cognitively demanding subject matter. She 
goes on to vary the value of 𝑎𝑎, first to 3 and then to −1. At this point, the students identify 
the values as connecting to the lowest point or minimum point. The teacher then varies 
the value of 𝑎𝑎 again to illustrate how the value of 𝑎𝑎 relates to the 𝑥𝑥-coordinate of the 
turning point. The students have been analysing the different features of the equation in 
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completed square form and the relationship to the graphical representation, and in doing 
so, they have determined the significance of the completed square representations. This 
task has thus enabled students to explore a range of features of and relationships 
between different representations, which go beyond recall or the rote application of 
procedures. 

[Taken from Lesson 2 with a Year 10 class] 

Another way in which some teachers helped their students to see the relationship 
between the turning point and the values in the completed square form of a quadratic 
equation was by beginning with the graph and using the line of symmetry to identify the 
turning point. 

For example, for a graph with x-intercepts of −5 and 7, one teacher asks her students to 
identify the lowest point (minimum) of the graph (example 4.1d). The first student to 
answer identifies 𝑥𝑥 = 1 as halfway between −5 and 7, and therefore as the line of 
symmetry for the parabola. Another student finds 𝑥𝑥 = 1 by finding the average of −5 and 
7. The teacher then asks for the y-coordinate, which a student conjectures to be −35. 
The teacher identifies this as the y-intercept and asks how students know it does not ‘dip 
down a bit lower.’ Another student suggests that they substitute 𝑥𝑥 = 1 into the original 
quadratic equation, which results in the answer of −36. Here, different approaches have 
been taken to identify the minimum point of the graph and the students have used the 
relationships between the different representations and the features of the graphical 
representation in combination to develop different ways of identifying the minimum point. 

[Taken from Lesson 2 with a Year 10 class] 

4.2 Task involving multiple approaches 
In this final example (4.2a), students take different approaches to working on a problem 
in context. The students are given a compound rectilinear shape and the total area of the 
shape, and are asked to calculate the perimeter (as in Figure 25). 
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Figure 25: Finding the perimeter of a rectilinear shape when given the area 

 

To begin with, the students are given some time to think about the question and what 
method they will use to find the perimeter. 

Teacher: Have a think about it, and think about what you know and what you don’t 
know, and how you’re going to tackle the question. 
 

After a few minutes, the teacher then invites the students to share what they would do 
next: 

Teacher:  So, what is your gut instinct as to how to start the question? Sam? 
Sam:  Label the missing things. 
Teacher:  Label the missing sides? Are you going to work out an expression I can put on 

them? What are you going to go for then? 
Sam:  So, the top one would be 𝑥𝑥 + 4 take away 𝑥𝑥. 
Teacher:  Can you tidy that up a little bit? 
Sam:  4 
Teacher:  Okay, nice description though. Well explained. The top line is going to be 𝑥𝑥 + 4 

take away 𝑥𝑥 so 4. What is this one going to be? Ashley? 
Ashley:  𝑥𝑥 + 2 − 5 
Teacher:  Which is? 
Jo:  𝑥𝑥 − 3 
Teacher:  Nice, well done. So 𝑥𝑥 + 2 [points at left side], but I am subtracting the 5, gives 

me 𝑥𝑥 take away 3. 
 

The teacher then indicates that there are different ways in which the task could be 
approached, but without telling them what she would have done: 

Teacher: Now what I find interesting is that you guys are not approaching the question 
as I did. Now that definitely is not a wrong thing and it is nice to know that 
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there are different approaches and all of them are valid, but you have got to 
think about how you would do it. It is a problem-solving question, so you don’t 
have to do it the way that I teach you it, okay? 

 What do you think next? What other information have I got? 
Taylor:  The area? 
Teacher:  The area! So how am I going to use that? 

 
One student suggests splitting the shape into two rectangles as shown in Figure 26. The 
class first works out the expression for the area of shape A, and then the area of shape 
B, before forming an equation for the area of the whole shape. 

Figure 26: Dividing the shape into two rectangles 

 

Some other students have worked it out a different way, by adding in a missing rectangle, 
as illustrated in Figure 27, working out the area of the larger rectangle, and taking away 
the missing rectangle. This approach is shared with the class, who then discuss how this 
leads to the same equation, and consequently the same solution for the value of 𝑥𝑥. 

Figure 27: Adding a missing rectangle 

 

Here, the students have developed and shared different ways of solving a problem, 
working together with the teacher to determine that these different ways of finding the 
perimeter lead to the same solution. 

[Taken from Lesson 1 with a Year 10 class] 

4.3 Summary 
The majority of videoed lessons in the TALIS Video Study included a task or activity 
which offered students opportunities to engage in cognitively demanding subject matter, 
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such as analysing, creating or evaluating work that is cognitively rich and requires 
thoughtfulness. It was, however, rare for lessons to offer students more than one or two 
opportunities to engage in cognitively demanding subject matter. Classes with higher 
average attainment had more opportunities to engage in cognitively demanding subject 
matter than classes with lower average attainment, even though there are a range of 
cognitively demanding tasks and activities that are accessible to all students.26 Classes 
that reported higher average levels of students’ interest in mathematics also had more 
such opportunities than their counterparts with lower average levels of interest. 

Mathematical ideas need to be thought about, reasoned with and discussed with others. 
Analysing these ideas and creating examples of quadratic equations for which a 
particular method would be more efficient than another, or where a particular method 
would not work, offers students opportunities to cognitively engage in mathematics. 

 
 

26 Watson, De Geest & Prestage, (2003) 
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5. Using multiple approaches to solve problems 
There are several approaches to working with and solving quadratic equations. These 
include working with different representations of quadratic expressions, equations and 
functions, as well as different processes for solving the equations. The most common 
approaches for solving quadratic equations taught in classrooms in England include 
factorising, using the quadratic formula, completing the square or using graphical 
methods. Different approaches may be more efficient with some types of quadratic 
equations than others, but the different approaches also emphasise different properties 
of quadratic equations and quadratic functions which students can draw upon in their 
reasoning within broader areas of mathematics. The following case studies illustrate the 
different ways in which teachers in the study supported students to use multiple solution 
strategies and reasoning approaches. 

The case studies involve students using two or more procedures or reasoning 
approaches to solve a problem or type of problem. The focus is on the processes 
involved in solving the problems, rather than the solutions to the problems. Importantly, it 
is the students who are using the multiple approaches, not just the teacher. 

The examples of multiple approaches to and perspectives on reasoning are divided into 
three sections: using two methods for one question; all students working with multiple 
methods; and students choosing the method. 

5.1 Using two methods for one question – and bringing 
them together 
One way in which teachers can support students in using multiple approaches to solving 
quadratic equations is by explicitly asking the students to solve the same quadratic 
equation using two different approaches. 

In this first example (5.1a), the students are split into pairs. One student in the pair is 
asked to solve the equation using factorisation and the other is asked to solve the 
equation using the quadratic formula, as shown in Figure 28. Several of the pairs are 
working on whiteboards that are on the walls of the classroom whilst the rest are working 
at their desks. 
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Figure 28: Tasks for solving quadratic equations using two different methods 

 

After the students have worked on this problem in their pairs, the teacher asks the 
students to check with their partner that they got the same answer. She then brings the 
class together, asking them whether they think they should get the same answer or 
different depending on the method used, before asking them to check whether they do 
indeed have the same answer as their partner. The class goes on to work through the 
question using the factorising method: 

Finley:  Times to get 4 and add to get 5. 
Teacher: So, times them to get 4 and add them to get 5. So, what could those factors 

be? I have two numbers that when I multiply them together give me 4 but 
when I add them together give me 5. That could be... 

Ari:  4 and 1. 
Teacher: How could I rewrite this using the fact that I know you that you are going to 

factorise with 4 and 1. Drew, what did you do at this point? 
Drew:  2𝑥𝑥2 + 4𝑥𝑥 + 𝑥𝑥 + 2 = 0 and then… 
Teacher:  Good. Does that make sense? So, we rewrote this with our 4x and our x, they 

are still going to add together and make 5x, so we rewrote our equation with 4x 
and x, and then what do we do from here? Carry on then now Drew. 

Drew:  So, we split it into two parts, so you’d have your 2𝑥𝑥2 + 4𝑥𝑥 and you find the 
highest common factor. 

Teacher: Lovely, the highest common factor of that would be… 
Drew: 2𝑥𝑥 
Teacher: And if I factorised it would be… 
Drew: 𝑥𝑥 + 2 
Teacher: And then what would the second part be Fran? To factorise this bit? 

[Underlines 𝑥𝑥 + 2 from the equation 2𝑥𝑥2 + 4𝑥𝑥 + 𝑥𝑥 + 2 = 0]. What would be the 
highest common factor of x and 2? 

Fran: 1 
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Teacher: Absolutely right. So, I’d have my 1 here with 𝑥𝑥 + 2. 
 
[At this point, 2𝑥𝑥(𝑥𝑥 + 2) + 1(𝑥𝑥 + 2) is written on the board.] 
Teacher: So, then we can finish off. I have 2𝑥𝑥 + 1 multiplied by 𝑥𝑥 + 2 if I used the 

factorising method. And if I used the quadratic formula? So, I would be getting 
the same answer both ways? What would my two answers be? Bob, Sam, 
which answers did you get? x is equal to… 

Sam:  𝑥𝑥 = −2 and 𝑥𝑥 = −0.5 
Teacher: So, we have 𝑥𝑥 = −2 and 𝑥𝑥 = −0.5. Who else got the same answers? 

 
In this example, the class has worked together through factorising the quadratic equation 
in order to find the two solutions. The teacher then asks students who have used the 
formula to find the solutions and what their final values for x are. The teacher asks 
students to raise their hands to show if they got the same solutions, before drawing the 
conclusion that the answers are the same whether students solved the equation by 
factorising or whether they solved it using the quadratic formula. 

[Taken from Lesson 1 with a Year 10 class] 

In this second example (5.1b), the students are again split into pairs and are working on 
the same quadratic equations, but with one person solving each equation and the other 
sketching a graph of the equation. The class work on the task (see Figure 29) for around 
20 minutes before the teacher invites three students up to the board to share their 
sketches of the graphs for each of the equations. 

Figure 29: Solving quadratic equations in pairs 

 

The class comes together to talk through the three graphs that have been sketched by 
half the class (shown in Figure 30). The teacher then leads a discussion about the 
similarities and differences between the three graphs: 

Teacher:  We know what is the same about these three graphs. We know they are all 
parabolas, so they have all got a quadratic function. 
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 What I am interested in is, what is different about those graphs? Can you tell 
the person next to you, what is different about those three graphs, how are 
they different? 
 

Figure 30: Three sketches of quadratic functions 

 

Initially, the students discuss the differences in pairs before the teacher collects 
suggestions from the whole class. The discussion initially focuses solely on the sketches, 
including the differences between the turning points and y-intercepts of the graphs: 

Teacher: Anybody else have anything that is different? Jessie? 
Jessie:  Whereabout they turn. 
Teacher: So, they are in different places and we got the idea that the turning point is in a 

different spot. 
 

After a short period of time, the teacher shifts the attention of the class to the equation 
forms: 

Teacher: When you did the first equation, Henley, how many solutions did you get for 
that first equation? How many different answers were there? So, this one 
had... 

Henley:  One. 
Teacher: One solution. When you did the second equation, Sage or Henley, I am not 

sure which one you were doing, how many solutions did you get for the 
second equation? 

Henley: Two. 
Teacher: So, this one had two solutions. And lots of people had a problem with this last 

one. Blair, what happened when you tried this last one? 
Blair:  There was no answer, because … 
Teacher: How can I look at the graph? How does the graph connect up to how many 

solutions they’ve have got? Again, person next to you, a few seconds. 
 

Again, the students are invited to discuss the connections between the graphs and the 
number of solutions in pairs before they work on it as a class. 

Teacher:  Okay, alright, so this is the other thing that is different about these three 
graphs. Reese or Skylar, how does the graph connect up to how many 
solutions I have got? What is the connection? 

Skylar:  How many points there are … 
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Teacher:  How many points there are. What do you mean, how many points there are? 
So, there is a point here, there is a point here, there is a point here, there are 
infinite points. [Points at different parts of the graph on the board.] 

Skylar:  No, like, where they cross the y-axis. 
Teacher:  Cross the... So, this one crosses the y-axis there [points at graph 2], this 

crosses it there [points at graph 1], that crosses the y-axis there [points at 
graph 3]. Is that what you mean? 

Skylar: Not sure. 
Teacher:  Okay, somebody I haven’t heard from yet, really. Spencer. 
Spencer:  How many intercepts there are. 
Teacher:  How many. What type of intercepts? 
Spencer:  x 
Teacher:  How many x-intercepts. Skylar, is that what you meant? 
Skylar:  Yes. 
Teacher:  Okay. Remember that language. x-intercepts. That got two [points at graph 2], 

that got one [points at graph 1], and that got none [points at graph 3]. 
Teacher:  So, the number of solutions an equation has tells us about the graph. And 

some equations have no solution. Look at that graph of that last one, that has 
no solution and some people were a bit bothered by that on their calculators. 
 

The lesson moves on and the teacher describes what the discriminant is and how this 
connects to the quadratic formula. Subsequently the class work in pairs to discuss why, 
by just looking at the quadratic formula, they can deduce whether there can be two 
solutions, one repeated solution, or no real solutions. 

[Taken from Lesson 2 with a Year 10 class] 

5.2 All students working with multiple methods – and 
bringing them together 
In this next example (5.2a), students were asked to complete a task in which they were 
given three equations, for which they had to factorise, complete the square, find the y-
intercept, the roots of the x-intercept, the turning point and line of symmetry, and then 
sketch a graph (as shown in Figure 31).  
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Figure 31: Task bringing together multiple methods 

 

Initially, the teacher asks the students to complete the first three rows of the table where 
the equation is given. After some time working on this individually, the class come 
together to complete the rows on the interactive whiteboard (except for the graph in the 
final column) for the first three equations (see Figure 32).  

Figure 32: The table in Figure 31 partially completed on the whiteboard 
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The teacher then uses this final column as a way of bringing together all of the 
information the students have worked out in the other columns of the table, drawing from 
different methods and approaches that can be used to find out the different 
representations, coordinates or values. 

Teacher:  Once you’ve completed those three lines, I want you to try and find how I can 
find the turning point. I’ve not graphed them, I’ve not put the sketches on 
there. Try and find a connection between the turning point and something else 
on the line. 
 

The teacher gives the students some time to think about this individually, before adding: 

Teacher:  I’m not drawing the sketches; I don’t need them to find the turning point 
. 

The students are then asked to discuss how to find the turning points in pairs. Finally, the 
teacher asks students to share their thoughts in a whole class discussion: 

Teacher: Keep your hand up if you’ve got an idea, how I can find the turning point? 
Kelly: Completing the square. 
Teacher: You’re on the right lines, this is why we complete the square. 
Kelly: Um… 
Teacher: It’s something to do with when we complete the square. Francis? 
Francis: Is it like the number you square but the opposite of it. 
Teacher: Yes, because think about that minimum value, I know that the lowest number 

here [circling (𝑥𝑥 − 2)2], I need that bracket to be zero. Zero squared is going to 
give me zero. It’s going to give me the smallest number. 
 

The teacher goes on to explain the relationship between the expressions in the 
completed square form of the equation and the x and y coordinates of the turning point, 
before bringing all the information together to sketch the graphs in the final column. 

[Taken from Lesson 2 with a Year 10 class] 

While the discussion shared above here for this task focused on which method is most 
useful for identifying the coordinates of a turning point, the students also factorised to find 
the roots of the equations, and have used the completed square form to identify the line 
of symmetry. Tasks like these offer students and teachers the opportunity to see when 
and why particular approaches to solving or working with quadratic equations might be 
used. 

5.3 Students choosing the method 
Another way in which teachers offer students the opportunity to use two or more 
procedures or reasoning approaches, is by providing them with questions where they can 
choose which method to use. This can be particularly useful where there is the 
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opportunity to discuss or deduce why one particular method for a particular type of 
quadratic equation might be used, or why one method may be more efficient than 
another. 

In this next example (5.3a), the class has been working on finding the area of rectangles 
where the sides are given in algebraic expressions, as in Figure 33. 

Figure 33: Finding the area of a rectangle 

 

The students have been given several rectangles like this, from which they have been 
constructing an algebraic expression to represent the area of the rectangle. The teacher 
has not specified how students should find the area. Some students have broken the 
rectangle down into smaller rectangles, others have worked solely with the algebraic 
expressions. Some students have solutions which are quadratic expressions in expanded 
form, whilst others have them in factorised form. Towards the end of the lesson, the 
teacher asks: 

Teacher:  Do you think, that if we have to do this for exams, let’s say, is this an efficient 
way to do it? To draw rectangles? 

Students: Yes … no. 
Teacher:  Why not, Alex? 
Alex:  Because it is going to take a really long time. 
Teacher:  Excellent. So, it is a good way, but it is not the most efficient way. Because we 

will not have squared paper with us, we can’t do it. 
 
The teacher then goes on to ask the students to “try and find the relationships” between 
the numbers in the linear expressions that denote the lengths of the sides of the 
rectangles, and the numbers in the quadratic equation that the students have found as 
representing the area of the same rectangles. 

[Taken from Lesson 1 with a Year 10 class] 
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5.4 Summary 
In England, the majority of the teachers and students participating in the TALIS Video 
Study said that teachers frequently compared different ways of solving problems, but only 
around 10% of the lessons videoed also included opportunities for students to use two or 
more procedures or reasoning approaches to solve a particular problem or type of 
problem. In the majority of lessons, students generally used a single procedure or 
reasoning approach at a time. Classes with higher average prior attainment experienced 
more opportunities to use two or more procedures or reasoning approaches compared to 
classes with lower average prior attainment. 

To be fluent in solving quadratic equations, students need to know when to use a 
particular process or procedure. This involves understanding the relationships and 
connections between the different solution strategies,27 as well as recognising the 
different features of quadratic equations.28 Using more than one means of representing 
concepts in teaching draws attention to critical aspects, which can contribute to a deep 
and holistic understanding of those concepts. By paying attention to what is kept the 
same and what changes - whether that is comparing different representations or different 
solution methods – the teacher draws attention to mathematical relationships and 
structure. Students should be supported to compare different methods and to make 
choices about which method or strategy to use. Recognising the different features of 
quadratic equations is an important part of identifying which methods to use to find 
solutions in effective ways. Similarly, students can be supported to appreciate the 
underlying structure of the equations by helping them to recognise that all quadratic 
graphs can be transformed to look like ±𝑥𝑥2 by translating and scaling, alongside 
developing an understanding of what the different terms in different representations of a 
quadratic equation can tell us about these graphs (and about the translating and scaling 
that has taken place).29 

 
 

27 Nunes et al., (2009) 
28 Block (2015) 
29 Mason et al. (2009) 
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6. Students engaging in opportunities to understand 
the rationale for processes and procedures 

Understanding of subject matter procedures and processes describes activities where 
students engage in opportunities to understand the rationale for procedures or 
processes. This includes describing the goals or properties of a procedure, stating why a 
procedure or a solution is the way it is, or visually designating the elements or steps in a 
process or procedure. For example, students might explain why they would use a 
factorisation approach for a particular problem, rather than completing the square. 
Students might also compare and contrast the different methods for solving a quadratic 
equation to identify where one method might be more advantageous than another. Other 
activities could involve students identifying why a particular method might not work for the 
problem they are currently working on. Most importantly, it is the students that are 
engaging in understanding the rationale, rather than the teacher explaining or describing 
it. 

In this section, the examples of understanding of subject matter procedures and 
processes are grouped into three sections: identifying errors and explaining the issue; 
visually designating the elements or steps in a process or procedure; and students 
asking questions. 

6.1 Identifying errors 
In this example (6.1a), the teacher has projected a solution to an equation on the 
whiteboard (see Figure 34). The solution contains an error, and the teacher asks the 
students to identify the error that has been made: 

Teacher:  If any of you want a challenge, try and see if you can spot the mistake that this 
Year 11 student has made. [Points at board.] What has he done wrong? 

Sawyer:  He swapped it around. So, it should have been add 7 and not take 7. 
Teacher:  Yeah, no, so he still has to take 7 because that was the thing, but you are 

saying that he added 9. What should he have done? 
Sawyer:  Take away 9. 
Teacher:  Take away 9, yeah. Because the 9 is that extra bit that we need to complete 

the square on to make it right. So, he should have taken 9 away. 
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Figure 34: Screenshot for an example where a student has made an error 

 
 

The students then continue to work through the problem once the +9 has been changed 
to −9. The teacher then directs the students to identify another mistake within the same 
solution: 

Teacher:  What is his other mistake? 
Blake:  He put the square in the bracket. 
Teacher:  He’s put the square in here but where should it be? 
Students:  Outside. 
Teacher:  Exactly, it should only be on the outside. So as a teacher, what you should be 

able to spot there is he almost got the idea, he has the basic concept 
somewhere in his head, but he has a lot of misconceptions going on. And if 
you can spot misconceptions from other people, it means you fully understand 
it. 

 
In this example, the students have identified two errors and identified what the 
corrections would be. For the first error, the students gave a brief explanation for why the 
error may have occurred. The explanations offered by the teacher and the students focus 
on the procedure for completing the square and how the mistakes have arisen from 
deviations from this procedure. 

[Taken from Lesson 1 with a Year 10 class] 
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6.2 Visually designating the elements or steps in a 
process or procedure 
This next example (6.2a) returns to an earlier example (4.2a) in which students have 
been asked to find the perimeter of a compound rectilinear shape given only some 
measurements and the area of the shape. As well as enabling the students to engage in 
cognitively demanding subject matter, the students are also making connections between 
visual representation and the steps being taken to solve the problem. 

Figure 35: Finding the perimeter of a rectilinear shape when given the area (see 
also Figure 25) 

 

At this point, the class have labelled the two missing side lengths in terms of x. 

Teacher:  What do you think next? What other information have I got? 
Taylor:  The area? 
Teacher:  The area! So how am I going to use that? I heard a light bulb in Hayden’s 

head. Go on Hayden. 
Hayden:  Work out the area of the square and then work out the area of the rectangle. 

Well, it is not a square, it’s also a rectangle. 
Teacher:  Well corrected! So you want to split it? There? So, Hayden is going to split it 

there because it is a compound shape. We don’t know of a formula to do the 
area of that shape, there isn’t a standard one. So, we are going to split it into 
shapes we know. [See Figure 36.] 
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Figure 36: Dividing the shape into two rectangles (see also Figure 26) 

 

 

Teacher:  We have a little rectangle on the top, which has an area of …? 
Rowan:  20 cm2. 
Teacher:  20 cm2. I am going to label them A and B just because it is easier for the way I 

marked it down. So, area for A, we are saying is 4 × 5 = 20𝑐𝑐𝑐𝑐2, okay? Please 
make sure you put your units on. 

Teacher:  How am I going to do the area of part B? Alexis? 
Alexis:  You do the brackets, (𝑥𝑥 − 3)(𝑥𝑥 + 4). 
Teacher:  Why? Why did you times those two things together? 
Alexis:  Because that is the height and the width. 
Teacher:  Yes, thank you. I was just making sure that everyone knew why you used 𝑥𝑥 −

3 and not 𝑥𝑥 + 2 [points at left side]. Right? So, I am using that rectangle at the 
bottom, which has a height of 𝑥𝑥 − 3 and a width of 𝑥𝑥 + 4. So, they are my two 
measurements. 
 

The students calculate the area of the two rectangles and then, through the teacher’s 
questioning, the connection between the expressions and the lengths of the sides is 
made explicit. The students continue to work through the problem until they reach the 
point where they have an equation for the area of the compound shape. They then work 
through simplifying the equation into a form that they can factorise: 

Teacher:  Okay, so my total area is 𝑥𝑥2 + 𝑥𝑥 − 12 + 20 and I know that is going to be equal 
to 80. 

 So, at this point, I am not putting my units on because they are both in terms 
of the same unit and I am interested in solving to find 𝑥𝑥. When we get to the 
end of the question, we are expected to have that unit in, but for now, while we 
are solving the equation, it actually makes it more challenging if you leave it on 
both sides. 

 Right, so what am I going to do now? Charlie? 
Charlie:  Could you do 𝑥𝑥2 + 𝑥𝑥 + 8 = 80? 
Teacher:  𝑥𝑥2 + 𝑥𝑥 + 8 = 80, did you say? 
Charlie:  Yes. 
Teacher:  Yeah, really good, well done. Anyone see what is going to happen next? 

Emerson? 
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Emerson: Can I factorise it? 
Teacher:  Can I factorise it now? 
Emerson:  Ah no. We have to do – 80. 
Teacher:  Why? 
Emerson:  So it is equal 0. 
Teacher:  Yeah, well done. I need it to be = 0 because the process we know. We need 

the two things that multiply together to be 0 and we know one of them is 0. So, 
I am going to subtract 80 from both sides. What will I get? 

Emerson:  𝑥𝑥2 + 𝑥𝑥 − 72 
Teacher:  Take away 72, okay. Can you try and factorise that for me and solve it like you 

have been just doing? So you can do that last bit? 
 

The students then work individually while the teacher circulates, until the teacher brings 
the class together and asks a student to share their solution: 

Teacher:  Have you got it, Morgan? Go on then please. 
Morgan:  (𝑥𝑥 + 9)(𝑥𝑥 − 8) 
Teacher:  Very nice. What would x be? 
Student:  −9 or +8. 
Teacher:  𝑥𝑥 = −9 or 𝑥𝑥 = +8. Can both of these things be the answer? Elliot, what do you 

think? 
Elliot:  Only one of them. 
Teacher:  Why? 
Elliot:  Because the shape cannot come from a negative. 
Teacher:  If x is negative 9, how long is this bit of the line? 
Elliot:  −9. 
Teacher:  Can you have a length of −9? Right? So, we know for this particular question, 

although there are two solutions to the equation, there is only one solution to 
the problem. Alright? 
 

Here, the teacher has prompted the student to explain why the solution to quadratic 
equation they formed together as a class does not work for the problem they are 
currently working on. In this situation, the context of the problem, perimeter and lengths 
of sides, means that one of the solutions, 𝑥𝑥 = −9 needs to be ignored as lengths cannot 
have a negative length. In this lesson, the students have generated an equation that 
represents the area of the shape, before using this equation to calculate the lengths of 
the different sides and subsequently to calculate the perimeter of the shape. Throughout 
the lesson, the connections between the visual representation of the shape and the 
algebraic representations have been made by both the teacher and the students. Many 
of these examples could also illustrate the use of explicit connections in the teaching of 
mathematics. 

[Taken from Lesson 1 with a Year 10 class] 
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6.3 Students asking questions 
Another way in which teachers can check that students are engaging in understanding 
the mathematics involved in solving quadratic equations is through attending to the 
questions that they ask. In this example (6.3a), the students are asked to answer the 
problem in Figure 37. 

Figure 37: Task involving factorisation into completed square form 

 

The teacher talks the class through the manipulations, expressing it as −2𝑥𝑥2 − 4𝑥𝑥 + 2 
and then as −2(𝑥𝑥2 + 2𝑥𝑥 − 1), before asking the students to complete the square on their 
own. The teacher, in turn, shows that −2[(𝑥𝑥 + 1)2 − 1 − 1] = −2[(𝑥𝑥 + 1)2 − 2] =
−2(𝑥𝑥 + 1)2 + 4. 

At this point, a student asks a question about the mathematics: 

Jaylen:  Where did the extra −1 come from? 
Teacher:  From the coefficient of the middle term. So, it becomes −1 outside, so if you 

have a −1 and a −1, it becomes −2. Half the coefficient of that. 
Jaylen:  No, no, how did you go from that equation, 1 –1, to the next one with the 2? 
Teacher: The 2? Because you have −1 and −1. 
Jaylen:  Yes, I know that but where did the other −1 come from? 
Teacher: Ah because remember… 
Jaylen:  Ah… because it was another −1 squared? 
Teacher: We have 1 squared, when you take away −1 squared. 
Jaylen:  Ah and then the existing −1 and after you opened that up you have another 

−1. 
Teacher: Yeah and you get −2. So, you have that −1 and that −1, which is equal to −2. 

Yeah? Do you get it? 
Jaylen:  Yes. 
Teacher: Okay. 

 
Here, the teacher takes the time to answer the student’s question and to persevere with 
this until the student is happy that their question has been answered. In this example, the 
fact that value −1 appears in more than one place has created a sense of ambiguity, but 
through a combination of the teacher’s support and the student being given the time to 
re-ask their question, the student comes to understand where each of the terms has 
come from. 

[Taken from Lesson 2 with a Year 9 class] 

In this next example (6.3b), the class have been working on 𝑥𝑥2 + 5𝑥𝑥 − 4 = 32 and 
rearranging this equation into completing the square form. The class has talked through 
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subtracting 32 first, then halving the coefficient of the x term to get 2.5, resulting in the 
expression (𝑥𝑥 + 2.5)2. They then calculate 2.5 squared to get 6.25, which they then 
subtract from 36 to get −42.25. 

Teacher:  Yeah, Ari? 
Ari:  Could you put 36 as 6 squared? 
Teacher:  Yes 
Ari:  And then work it out like that? 
Teacher:  What do you mean? Would you do 2.5 take away 6 and then square it? 
Ari:  Yeah. 
Teacher: Ah no, it doesn’t quite work like that. 
 
The student’s question here focuses on the step of the solution that moves from 𝑥𝑥2 +
5𝑥𝑥 − 36 = 0 to (𝑥𝑥 + 2.5)2 − 6.25 − 36 = 0. This would involve expressing 𝑥𝑥2 + 5𝑥𝑥 − 36 =
0 as 𝑥𝑥2 + 5𝑥𝑥 − 62 = 0, which is an equivalent equation, but then treating the expression 
(𝑥𝑥 + 2.5)2 − 62 as equivalent to (𝑥𝑥 + 2.5 − 6)2. This is a common error that arises when 
students treat squaring as linear. 

[Taken from Lesson 1 with a Year 9 class] 

6.4 Summary 
The majority of videoed lessons in England included some activities in which students 
engaged in opportunities to understand the rationale for procedures or processes. 
Students would ask questions about why a procedure is the way it is, or would describe 
the goals or properties of these procedures and processes. Yet for much of the time, 
students engaged with procedures or processes without attending to the rationale behind 
them. Students were given plenty of opportunities in their lessons to practice procedures 
and different methods for solving quadratic equations, and plenty of opportunities to 
develop their fluency with individual methods. What was less common was giving them 
the opportunity to consider why a procedure is the way it is, or why they might choose 
one method over another. Classes with higher prior attainment experienced more 
opportunities to understand the rationale for processes or procedures than classes with 
lower prior attainment. 

Students can develop their understanding of mathematics by being prompted to identify 
and explain errors; relating the steps in a process or procedure to a visualisation or 
representation, or by asking questions. Knowing how to solve a quadratic equation 
fluently is important, but it is not sufficient. Students also need to understand when and 
why a particular solution strategy works. Analysing examples of common errors or 
misconceptions is one way of supporting students to understand why a particular solution 
strategy is the way it is. Asking students to make the connections between a visualisation 
or representation and a process or procedure is another way. 
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7. Teacher and student explanations 
Explaining is a common practice in mathematics classrooms. Explanations can come 
from the teacher or the students, or can be co-constructed by teachers and students, and 
can be used with the whole class, small groups or with individuals. The explanations from 
the study which are explored in this chapter include descriptions of why ideas or 
processes are the way they are. They were defined as statements that clarify, rationalise 
or justify mathematical ideas, procedures or processes. 

This section illustrates two types of explanations of why ideas or processes are the way 
they are. The first of these considers explanations given by the teachers in the study. The 
second focuses on those explanations given by the students. 

7.1 Teacher explanations 
Explanations can vary considerably in length but explaining why something is the way it 
is does not necessarily have to take much time. 

The first example below (7.1a) involves a quick explanation of why, when solving the 
equation 𝑥𝑥2 − 16 = 0, it is important that one side of the equation is equal to zero. The 
teacher does this by making connections to the graph of the quadratic function. 

Teacher:  So, If I am solving it, I want it to be equal to 0, because the solution is where it 
crosses the x-axis, and the x-axis is when y is equal to 0. 
 

[Taken from Lesson 1 with a Year 10 class] 

In the second example (7.1b), the students have been working through a sequence of 
equations starting with equations like 7𝑥𝑥 = 0, before building to equations like 5(𝑥𝑥 + 1) =
0, and then finally to quadratic equations in the form (𝑥𝑥 + 2)(𝑥𝑥 − 3) = 0. They are doing 
so in order to focus on the zero product property (if 𝑎𝑎 × 𝑏𝑏 = 0, then either 𝑎𝑎 = 0 or 𝑏𝑏 = 0, 
or both). The teacher summarises the discussions as follows: 

Teacher: Because we said before that two things multiplied to make 0, then one of them 
must be 0. So, either this 5 times, exactly like George said, the brackets, so 
either the 5 is 0, which it’s not, or the brackets are 0. And if the brackets are 0 
then (𝑥𝑥 + 1) is 0, and exactly like Jordan has just said, that means x is −1. 
 

Here, the teacher has drawn upon the students’ earlier brief explanations for different 
tasks and combined them in this explanation. 

[Taken from Lesson 1 with a Year 10 class] 
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7.2 Students explaining reasoning 
Students can be invited by their teachers to offer explanations using the prompt ‘why?’. In 
this first example (7.2a), the lesson is focusing on getting from a quadratic equation “to 
knowing what the two values possibly are that make the function equal to zero, that solve 
this equation”. The teacher begins by asking: 

Teacher:  Will there always be two? Who thinks yes? 
Students:  [some raise their hands] 
Teacher:  Who thinks no? [no hands raised] 
Teacher:  Who is not sure? 
Students:  [some raise their hands] 
 
The interaction then continues with the teacher asking some students to explain why they 
think there will always be two values, or not. 

Teacher:  Why do people who think that it is always going to be two, think it has to have 
two answers? Don’t let Sam do everything, but go on, Sam, you do this one. 

Sam:  Because even when it ends up as [inaudible] and there’s just the square left, 
there will always be a + and a −. 

Teacher:  So, Sam has remembered that when I have a square root, when I’ve got a 
squared number, can have a + and a − answer. Okay, nice, so there is two 
responses there. What about the graph? When you think about the graph, 
when I draw that sort of shape, will it always cross the x-axis twice? Ashley? 

Ashley:  No, because [inaudible] when it crosses the x-axis right at the bottom of the 
curve, there’d only be one. 

Teacher:  So, if my curve perhaps sat at the number 3, something like that [draws the 
blue graph in Figure 38 on the board]. Convinced? So two or one then? Is that 
it? Could it never touch it? 

Nicky: Yeah. 
Teacher:  What would that mean, Nicky? 
Nicky:  That would mean like a [inaudible]. 
Teacher:  Yeah, so actually, it could be up there and never touch it at all [draws the 

green graph in Figure 38 on the board]. So, there are three options. Even 
though you know that the maximum it can have is two, and a lot of them will 
have two solutions, some of them will have one and sometimes there won’t be 
any. So, don’t panic if you solve an equation and you find that there isn’t an 
answer. Because some of them don’t cross. 
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Figure 38: Three nested parabolas illustrating the different number of roots 
possible 

 
 

In this short extract, there have been three explanations from students beginning with 
why there are usually two roots to a quadratic equation, followed by Ashley giving an 
example of when there might be one repeated root, and Nicky explaining why there could 
be no roots. Each of the students’ justifications for why there could be just one repeated 
root or why there could be no roots includes a general example of a quadratic curve, like 
the one given to illustrate the case where there are two roots, which the teacher draws on 
the board for the whole class to see. 

 [Taken from Lesson 1 with a Year 10 class] 

Another way in which teachers prompt students to offer explanations is to invite them to 
explain why a problem or equation does not fall within a particular category. In this next 
case (7.2b), the class have been working on recognising different arrangements of 
quadratic equations, as well as different cases that depend upon the coefficients within 
the equation. The task shown in Figure 39 involves students identifying which of the 
equations are perfect squares, and which are the differences of two squares. 
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Figure 39: Task designed for students to identify perfect squares of the difference 
of two squares 

 

Teacher:  Which ones of these are perfect square questions, can you tell? Go on then, 
Alex. 

Alex:  The ones where the front numbers have a squared number in them. 
T:  So, this one because it has a square number [circles example: 𝑥𝑥2 + 6𝑥𝑥 + 9 =

0]. This has got a square number as well though [points at 𝑥𝑥2 − 49 = 0], so is 
that a perfect square? 

Alex: No. 
Teacher:  Why not? 
Alex:  Because it hasn’t got like a +6 … 
Teacher:  Right, it hasn’t got that x-term, coefficient, number of x. Alright, so what I need 

is this number here, Alex said is a square number, and how does it link to this 
one [the x-coefficient] then? 

Alex:  The square root is 3 and 3 + 3 is 6. 
 
They then go on to check this relationship between the constant term and the x-
coefficient across more of the examples on the whiteboard, before generalising to 
quadratic equations. 

[Taken from Lesson 1 with a Year 10 class] 
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7.3 Summary 
In the TALIS Video Study, around three quarters of the participating teachers and 
students reported that there were frequent opportunities for students to explain their 
ideas in class. The majority of lesson videos also included explanations of why ideas or 
processes are the way they are, though in many cases, these explanations were brief or 
focused on superficial features of the mathematics. Higher attaining classes were more 
likely to experience lengthier explanations focused on deeper features of the 
mathematics compared to classes with lower average attainment. 

Explanations are one of the most prevalent discursive practices in mathematics 
classrooms. Learning mathematics is about knowing ‘why’ as well as knowing ‘that’ and 
knowing ‘how’. Explanations by teachers and students that focus on ‘why’ support 
students in understanding the mathematics they are learning. Student explanations not 
only demonstrate what they understand but can also help them to clarify their own 
thinking and become aware of misunderstandings or a lack of understanding.30 

 
 

30 Ingram et al. (2019) 
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8. Teacher feedback through conversations 
Feedback has been shown to have large positive effects on learning in mathematics31 
and there are a variety of ways in which teachers can give their students feedback. 
Verbal feedback in particular can be given immediately after a student answers a 
question, when they have identified something they do not understand or when they ask 
a question. This section focuses on feedback that occurred as part of a conversation 
between a teacher and a student or students – that is, in feedback loops rather than 
feedback in the form of a single response from the teacher. 

Examples in the TALIS Video Study highlight the teacher’s responses to students’ 
thinking, and focus on particular interactions between the teacher and a student or 
students, which examine why the students’ thinking is correct or incorrect, or why ideas 
or procedures are the way they are. The mathematics discussed by the teacher and 
student also needs to be addressed in a detailed or complete way. 

This definition of teacher feedback relates to three distinct situations: where students 
make a mistake or reveal that they have a misconception, which the teacher then 
responds to; where students have correctly answered a question and the teacher 
responds by exploring why their thinking is correct; and where a student asks a question 
that suggests that they do not understand something or are not following. 

8.1 Working with individual students 
One common situation in which teachers respond to student thinking is when the 
students are working independently and request help. In this first example (8.1a), the 
teacher is walking around the classroom checking on individual students and stops to 
work with one particular student who appears to be struggling. 

Teacher: Alright, where did this 5 come from? 
Alex:  I don’t know. 
Teacher: Okay, so what are you trying to make it equal to? 
Alex:  0 
Teacher: Right, I reckon, how am I going to eliminate this? 
Alex:  Minus 9. 
Teacher: Alright, so if I take 9 away from here, what is left? 
Alex:  6 
Teacher: Okay, So I reckon if... 
Alex:  I’m not sure. 
Teacher: No, I’m not sure either. If I subtract 9 from both sides, that is what I am going 

to have, right? 

 
 

31 Hodgen et al. (2018) 
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Alex:  Yeah. 
Teacher: Now, look at the equation. What do you notice about all the numbers? 
Alex:  3 goes into them all. 
Teacher: 3 goes into them all. So you can either, bring 3 out as a factor, because as you 

said, it goes into them all, you mean it is a factor of everything, so you could 
bring it out front. Or there is something else you could do, which might make 
the question a bit more straightforward. […] If you want to divide everything on 
the left-hand side by 3. 

Alex:  Send this over. 
Teacher:  Yeah, actually you would be dividing anyways because I want to do the same 

to both sides but it would still be 0, so I could actually share the whole 
equation by 3, make my numbers a bit smaller, which actually ultimately is 
probably more straight forward than bringing it out in the front. Because it is 
equal to something you can do it to both and know it is going to match, right? 
 

The teacher has supported Alex in working step-by-step through the procedure for 
solving a quadratic equation where the equation is being rearranged before being solved. 
The interaction ends with the teacher sharing two possible strategies for dealing with the 
fact that 3 is a common factor of each term in the equation, before justifying why one 
strategy may be better than the other – or at least more straightforward, in this case. 
Whilst the student’s method of dividing both sides by 3 is appropriate and correct, the 
teacher has introduced a different strategy in their feedback. 

[Taken from Lesson 1 with a Year 10] 

In this second example (8.1b), the students are again working individually, while the 
teacher circles the classroom supporting students in turn. The following discussion 
focuses on the first of the three questions shown in Figure 40. 

Figure 40: Task involving solving simultaneous equations 

 

Teacher: So, in this step here, you are trying to make it all equal to 0. So, to make it all 
equal to 0, you have to take this to the other side, so you’ve got to take away 
3x. Do you want to change that to take away 3x? 

Sara:  Yeah. 
Teacher: So, you take away 3x, you can’t just take away that x by the way, to make it 

just 3. You’ve got to take away 3x all in one. So, you get 𝑥𝑥2 − 3𝑥𝑥 − 4. Yeah, 
you’ve got to put the −3𝑥𝑥 on this side now. So, you get 𝑥𝑥2 − 3𝑥𝑥 − 4 and 0 on 
this side. 

Sara:  Could you repeat that please? 
Teacher: So, to get this equal to zero, you have to take this 3x away. 
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Sara:  Oh yeah, that makes sense. 
Teacher: Yeah, you can’t just take away the x, because it is actually a multiplication. It 

would go straight to 0 if you took away the 3x. 
Sara:  So, is this step not [inaudible] and I could have used it anyway? 
Teacher:  No, this is incorrect because you can’t take away the x from 3x. This is a 

multiplication. The only way you could get rid of the x in 3x is to divide away 
the x and that creates more problems than it solves really. It doesn’t simplify 
the equation. 

 So, if you take away 3x on both sides that is the way to make it equal to 0, but 
you end up with 𝑥𝑥2 − 4 − 3𝑥𝑥. I’ll write it out for you. So, you end up with 𝑥𝑥2 −
3𝑥𝑥 − 4. So that is what happens if you take away 3x from both sides and then 
you see if that factorises. Because now it is equal to 0. 
 

Again, the teacher is supporting the student to work step-by-step through the question. 
Initially, the teacher states that the student can’t just take away the x, but has to take 
away the 3x, the whole term. The second time that this is stated, the teacher gives a 
reason why, “because it is actually a multiplication”. When the student questions this, the 
teacher repeats the reason before expanding the explanation further to include what 
could be done, dividing by x, before explaining why, in this particular question, this would 
not help. 

[Taken from Lesson 2 with a Year 10 class.] 

In the final example (8.1c), the teacher is supporting a student who is struggling to 
factorise a quadratic expression where the coefficient of the 𝑥𝑥2 term is negative. In this 
feedback loop, the teacher leads the student through finding factors of 9 that sum to 8 but 
explains why in this particular case the pairs the student identifies will not work. 

Teacher: You’ve gone for that one there. So, we’ve got a negative 𝑥𝑥2, so what do we do 
there? What do you think we do? 

Riley:  That one is going to be −𝑥𝑥 and that one just x. 
Teacher: Yeah, a negative x multiplied by that x will give you that negative 𝑥𝑥2. But you 

need to be careful because when you multiply negative x by that number here, 
you will get that. Do you see what I mean? 

Riley:  Yeah. 
Teacher: So, then you think, okay, what two numbers will multiply together to get 9? 
Riley:  3 and 3. 
Teacher: 3 and 3? But add together to get 8? 
Riley:  4 and 2. 
Teacher: Add together, not multiply. So you need to think about two numbers that 

multiply together to make 9 and add together to make 8. 
Riley:  Oh, 9 and –1. 
Teacher: Right, okay. But 9 times −1 is going to be −9. So how do you get around that? 

[…] Hmm see, −9 times −𝑥𝑥 will give you 9𝑥𝑥, okay? And then what? 
Riley:  Uhh. 
Teacher: And then +1, if you had +1, then you would get 10𝑥𝑥, wouldn’t you? Because 

that would be 9𝑥𝑥 and then add and x that would be 10𝑥𝑥. So, can you think of 
another way? 
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Riley:  Hmm… 
Teacher: I don’t want to give you the answer because you need to think about it 

yourself. 
 

The teacher leaves the student to work out for themself which pair of factors will work, 
and then the student goes on to complete the factorisation independently. 

[Taken from Lesson 1 with a Year 10 class] 

8.2 Summary 
The majority of lessons from England included interactions between the teacher and the 
students which focused on why students’ thinking is correct or incorrect, or why ideas or 
procedures are the way they are. What was rarer were interactions that addressed the 
mathematics in a detailed and more complete manner. 

As highlighted above, learning mathematics is about knowing ‘why’, as well as knowing 
‘that’ and knowing ‘how’. The feedback loops described above emphasise why something 
works, as well as why alternative potential strategies either do not work, or may not be 
the most appropriate strategy in a given situation. As teachers’ practices shift towards 
providing more verbal feedback that focuses on students’ learning,32 examples like the 
loops considered in this chapter will become more common. Giving students specific 
feedback on why their thinking is correct or incorrect is known to be an effective means of 
supporting students’ learning,33 and feedback loops are a means of doing this in a way 
that is responsive to students’ thinking. 

 
 

32 Elliott et al. (2020) 
33 Higgins et al., (2016) 
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