Contents

Summary.. 3
Vaccine effectiveness ... 3
Population impact ... 3
Vaccine effectiveness .. 4
Effectiveness against symptomatic disease ... 4
Effectiveness against hospitalisation .. 5
Effectiveness against mortality ... 5
Effectiveness against infection ... 5
Effectiveness against transmission ... 6
Vaccine effectiveness against the Delta variant ... 7
Population impact .. 8
Vaccine coverage ... 8
Vaccine impact on proportion of population with antibodies to COVID-19 11
Direct impact on hospitalisations .. 16
Direct and indirect impact on infection and mortality .. 18
References... 22
Summary

Four coronavirus (COVID-19) vaccines have now been approved for use in the UK. Rigorous clinical trials have been undertaken to understand the immune response, safety profile and efficacy of these vaccines as part of the regulatory process. Ongoing monitoring of the vaccines as they are rolled out in the population is important to continually ensure that clinical and public health guidance on the vaccination programme is built upon the best available evidence.

Public Health England (PHE) works closely with the Medicines and Healthcare Regulatory Agency (MHRA), NHS England, and other government, devolved administration and academic partners to monitor the COVID-19 vaccination programme. Details of the vaccine surveillance strategy are set on the Public Health England page COVID-19: vaccine surveillance strategy (1). As with all vaccines, the safety of COVID-19 vaccines is continuously being monitored by the MHRA. They conclude that overall, the benefits of COVID-19 vaccines outweigh any potential risks (2).

Vaccine effectiveness

Several studies of vaccine effectiveness have been conducted in the UK which indicate that a single dose of either vaccine is between 55 and 70% effective against symptomatic disease, with higher levels of protection against severe disease including hospitalisation and death. Additional protection is seen after a second dose. There is now also evidence from a number of studies that the vaccines are effective at protecting against infection and transmission.

Population impact

The impact of the vaccination programme on the population is assessed by taking into account vaccine coverage, evidence on vaccine effectiveness and the latest COVID-19 disease surveillance indicators. Vaccine coverage tells us about the proportion of the population that have received 1 and 2 doses of COVID-19 vaccines. By 25 July 2021, the overall vaccine uptake in England for dose 1 was 62.7% and 50.0% for dose 2. In line with the programme rollout, coverage is highest in the oldest age groups.

Based on antibody testing of blood donors, 95.5% of the adult population now have antibodies to COVID-19 from either infection or vaccination compared to 17.1% that have antibodies from infection alone. Over 95% of adults aged 30 or older have antibodies from either infection or vaccination. Seropositivity among those aged 17 to 29 has begun to rise over the last few weeks. The latest estimates indicate that the vaccination programme has directly averted over 52,600 hospitalisations. Analysis on the direct and indirect impact of the vaccination programme on infections and mortality,
suggests the vaccination programme has prevented between 21.3 and 22.9 million infections and between 57,500 and 62,700 deaths.

Vaccine effectiveness

Large clinical trials have been undertaken for each of the COVID-19 vaccines approved in the UK which found that they are highly efficacious at preventing symptomatic disease in the populations that were studied. It is important to continue to evaluate the effectiveness of vaccines in the 'real world', as this may differ to clinical trial efficacy. The clinical trials are also performed in order to be able to assess the efficacy of the vaccine against laboratory confirmed symptomatic disease with a relatively short follow up period so that effective vaccines can be introduced as rapidly as possible. Nevertheless, understanding the effectiveness against different outcomes (such as severe disease and onwards transmission), effectiveness in different subgroups of the population and understanding the duration of protection are equally important in decision making around which vaccines should be implemented as the programme evolves, who they should be offered to and whether booster doses are required.

Vaccine effectiveness is estimated by comparing rates of disease in vaccinated individuals to rates in unvaccinated individuals. Below we outline the latest real-world evidence on vaccine effectiveness from studies in UK populations. The majority of this data relates to a period when the main circulating virus was the Alpha variant, emerging data on effectiveness against symptomatic disease with the Delta variant is also summarised below. The findings are also summarised in Tables 1 to 3.

Effectiveness against symptomatic disease

Vaccine effectiveness against symptomatic COVID-19 has been assessed in England based on community testing data linked to vaccination data from the NIMS and from the COVID Infection Survey. Current evidence is primarily from older adults, who were among the earliest group vaccinated. Estimates of vaccine effectiveness range from around 55 to 70% after 1 dose, with little evidence of variation by vaccine or age group (3, 4, 5). Data on 2 doses is indicates effectiveness of around 65 to 90% (3, 6).

Offer of the Pfizer and Moderna mRNA vaccines to adults aged under 40 years began on 10 May 2021. Early estimates of effectiveness of a single dose of either vaccine indicate a vaccine effectiveness of around 60% after 1 dose of the Pfizer vaccine and around 70% (95% CI: 46 to 86%) after 1 dose of the Moderna vaccine (week 26 Vaccine Surveillance Report).

Data suggest that in most clinical risk groups, immune response to vaccination is maintained and high levels of VE are seen with both the Pfizer and AstraZeneca vaccines. Reduced antibody response and vaccine effectiveness were seen after 1 dose
of vaccine among the immunosuppressed group, however, after a second dose the
reduction in vaccine effectiveness is smaller (7).

Analyses by dosing interval suggest that immune response to vaccination and vaccine
effectiveness against symptomatic disease improves with a longer (greater than 6 week
interval) compared to a shorter interval of 3 to 4 weeks (8).

Effectiveness against hospitalisation

Several studies have estimated the effectiveness against hospitalisation in older adults,
all of which indicate higher levels of protection against hospitalisation after a single dose
than that seen against symptomatic disease, around 75 to 85% after 1 dose of the
Pfizer-BioNTech or Oxford-AstraZeneca vaccine (3, 9, 10, 11). Data on VE against
hospitalisation with 2 doses for all ages with the Alpha variant is shown in the week 26
Vaccine Surveillance Report.

Effectiveness against mortality

Data is also emerging which suggests high levels of protection against mortality. Studies
linking community COVID-19 testing data, vaccination data and mortality data indicate
that both the Pfizer-BioNTech and Oxford-AstraZeneca vaccines are around 70 to 85%
effective at preventing death with COVID-19 after a single dose (3, 12). Vaccine
effectiveness against mortality with 2 doses of the Pfizer vaccine is around 95 to 99%
and with 2 doses of the AstraZeneca vaccine around 75 to 99% (week 26 Vaccine

Effectiveness against infection

Although individuals may not develop symptoms of COVID-19 after vaccination, it is
possible that they could still be infected with the virus and could transmit to others.
Understanding how effective vaccines are at preventing infection is therefore important
to predict the likely impact of the vaccination programme on the wider population. In
order to estimate vaccine effectiveness against infection, repeat asymptomatic testing of
a defined cohort of individuals is required. Studies have now reported on vaccine
effectiveness against infection in healthcare workers, care home residents and the
general population. With the Pfizer-BioNTech, estimates of effectiveness against
infection range from around 55 to 70%, with the Oxford-AstraZeneca vaccine they range
from around 60 to 70% (5, 13, 14, 15). With 2 of 2 doses of either vaccine effectiveness
against infection is estimated at around 65 to 90% (5, 13).
Effectiveness against transmission

As described above, several studies have provided evidence that vaccines are effective at preventing infection. Uninfected individuals cannot transmit; therefore, the vaccines are also effective at preventing transmission. Data from Scotland has also shown that household contacts of vaccinated healthcare workers are at reduced risk of becoming a case, which is in line with the studies on infection (16). There may be additional benefit, beyond that due to prevention of infection, if some of those individuals who become infected despite vaccination are also at a reduced risk of transmitting (for example, because of reduced duration or level of viral shedding). A household transmission study in England found that household contacts of cases vaccinated with a single dose had approximately 35 to 50% reduced risk of becoming a confirmed case of COVID-19. This study used routine testing data so would only include household contacts that developed symptoms and went on to request a test via pillar 2. It cannot exclude asymptomatic secondary cases or mildly symptomatic cases who chose not to request a COVID-19 test (17).

Table 1. Summary of evidence on vaccine effectiveness against different outcomes (data relate to period when the Alpha variant dominated)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Vaccine effectiveness</th>
<th>Pfizer-BioNTech</th>
<th>Oxford-AstraZeneca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 dose</td>
<td>2 doses</td>
<td>1 dose</td>
</tr>
<tr>
<td>Symptomatic disease</td>
<td>55 to 70%</td>
<td>85 to 95%</td>
<td>55 to 70%</td>
</tr>
<tr>
<td>Hospitalisation</td>
<td>75 to 85%</td>
<td>90 to 99%</td>
<td>75 to 85%</td>
</tr>
<tr>
<td>Mortality</td>
<td>70 to 85%</td>
<td>95 to 99%</td>
<td>75 to 85%</td>
</tr>
<tr>
<td>Infection</td>
<td>55 to 70%</td>
<td>70 to 90%</td>
<td>55 to 70%</td>
</tr>
<tr>
<td>Transmission (secondary cases)*</td>
<td>45 to 50%</td>
<td>No data</td>
<td>35 to 50%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High Confidence</th>
<th>Evidence from multiple studies which is consistent and comprehensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Confidence</td>
<td>Evidence is emerging from a limited number of studies or with a moderately level of uncertainty</td>
</tr>
<tr>
<td>Low Confidence</td>
<td>Little evidence is available at present and results are inconclusive</td>
</tr>
</tbody>
</table>

*effectiveness in reducing symptomatic secondary cases in households of a symptomatic index case
Vaccine effectiveness against the Delta variant

Analysis of routine testing data up to 13 June 2021, linked to sequencing and S-gene target status has been used to estimate vaccine effectiveness against symptomatic disease using a test negative case control design. Methods and detailed results are available in Effectiveness of COVID-19 vaccines against the B.1.617.2 (Delta) variant (18). After a single dose there was an 14% absolute reduction in vaccine effectiveness against symptomatic disease with Delta compared to Alpha, and a smaller 10% reduction in effectiveness after 2 doses (Table 2).

Table 2. Vaccine effectiveness against symptomatic disease for Alpha and Delta variants

<table>
<thead>
<tr>
<th>Vaccine Status</th>
<th>Vaccine Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alpha</td>
</tr>
<tr>
<td>Dose 1</td>
<td>49 (46 to 52)</td>
</tr>
<tr>
<td>Dose 2</td>
<td>89 (87 to 90)</td>
</tr>
</tbody>
</table>

Vaccine effectiveness against hospitalisation was estimated by evaluating hospitalisation rates via emergency care among symptomatic confirmed cases using survival analysis. This analysis used available data from linkage of symptomatic cases, 12 April to the 10 June 2021 (updated from the previous analysis to 4 June 2021). Hazard ratios for hospitalisation are combined with odds ratios against symptomatic disease from the test negative case control analysis described above to estimate vaccine effectiveness against hospitalisation. Methods and detailed results are available here (19). Similar vaccine effectiveness against hospitalisation was seen with the Alpha and Delta variants (Table 3).

Table 3. Vaccine effectiveness against hospitalisation for Alpha and Delta variants

<table>
<thead>
<tr>
<th>Vaccine Status</th>
<th>Vaccine Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alpha</td>
</tr>
<tr>
<td>Dose 1</td>
<td>78 (64 to 87)</td>
</tr>
<tr>
<td>Dose 2</td>
<td>93 (80 to 97)</td>
</tr>
</tbody>
</table>
Population impact

Vaccines typically have both direct effects on those who are vaccinated and indirect effects on the wider population due to a reduced probability that people will come into contact with an infected individual. The overall impact of the vaccination programme may therefore extend beyond that estimated through vaccine effectiveness analysis.

Estimating the impact of a vaccination programme is challenging as there is no completely unaffected control group. Furthermore, the effects of the vaccination programme need to be differentiated from that of other interventions (for example, lockdowns or outbreak control measures), changes in behaviour and any seasonal variation in COVID-19 activity.

PHE and other government and academic partners monitor the impact of the vaccination programme on levels of COVID-19 antibodies in the population and different disease indicators, including hospitalisations and mortality. This is done through population-based testing and through modelling which combines vaccine coverage rates in different populations, estimates of vaccine effectiveness and disease surveillance indicators.

Vaccine coverage

The data in this week’s report covers the period from 8 December 2020 to 25 July 2021 (week 29) (Figure 1). It shows the provisional number and percentage of people in England who have had received 1 dose or 2 doses of a COVID-19 vaccination by age group and week since the start of the programme.

Up to 18 July 2021 51,724 women of child-bearing age in England (under 50) who reported that they were pregnant or could be pregnant at the time, received a COVID-19 vaccination. This is response to the pre-screening question “Are you or could you be pregnant?”. This figure will be updated monthly.
Figure 1. Cumulative weekly vaccine uptake by age

a) Dose 1

- Over 80
- 75 to under 80
- 70 to under 75
- 65 to under 70
- 60 to under 65
- 55 to under 60
- 50 to under 55
- 45 to under 50
- 40 to under 45
- 35 to under 40
- 30 to under 35
- 25 to under 30
- 18 to under 25
- Under 18

% vaccine uptake vs. Week number
b) Dose 2

% vaccine uptake vs. Week number for different age groups:

- Over 80
- 55 to under 60
- 30 to under 35
- 75 to under 80
- 70 to under 75
- 65 to under 70
- 60 to under 65
- 55 to under 60
- 50 to under 55
- 45 to under 50
- 40 to under 45
- 25 to under 30
- 18 to under 25
- Under 18

Week numbers range from 50 to 29.
Vaccine impact on proportion of population with antibodies to COVID-19

PHE monitors the proportion of the population with antibodies to COVID-19 by testing samples provided by healthy adult blood donors aged 17 years and older, supplied by the NHS Blood and Transplant (NHS BT collection). This is important in helping to understand the extent of spread of COVID-19 infection (including asymptomatic infection) in the population and the impact of the vaccine programme. 250 samples from every geographic region in England are tested each week using 2 different laboratory tests, the Roche nucleoprotein (N) and Roche spike (S) antibody assays. This dual testing helps to distinguish between antibodies that are produced following natural COVID-19 infection and those that develop after vaccination. Nucleoprotein (Roche N) assays only detect post-infection antibodies, whereas spike (Roche S) assays will detect both post-infection antibodies and vaccine-induced antibodies. Thus, changes in the proportion of samples testing positive on the Roche N assay will reflect the effect of natural infection and spread of COVID-19 in the population. Increases in the proportion positive as measured by S antibody will reflect both infection and vaccination. Antibody responses reflect infection or vaccination occurring at least 2 to 3 weeks previously given the time taken to generate an antibody response.

In this report, we present the results using a 4-weekly average, of testing samples up to 16 July 2021, which takes account of the age and geographical distribution of the English population. Overall, the proportion of the population with antibodies using the Roche N and Roche S assays respectively were 17.1% and 95.5% for the period 14 June to 16 July (weeks 25 to 28) (Figure 2). This compares with 14.9% Roche N seropositivity and 84.2% Roche S seropositivity for the period of 24 May to 20 June (weeks 21 to 24). During this period seropositivity using the Roche N assay has remained stable suggesting there hasn’t been significant ongoing spread of infection in the population and the continuing increase in seropositivity using the Roche S assay reflects the growing proportion of adults who have developed antibodies following vaccination.

Figure 3a and 3b show the proportion of the population with antibodies by age group. Roche N seropositivity has continued to plateau across the older age groups and this was first observed in the 70 to 84 age group. A small increase in Roche N seropositivity is seen in the 17 to 29 year olds from 20.9% in weeks 21 to 24 to 24.4% in weeks 25 to 28. This increase is consistent with recent increases in transmission seen from other surveillance data. An increase in Roche N seropositivity was observed in those aged 70 to 84 from 5.2% in weeks 21 to 24 to 9.2% in weeks 25 to 28. Similar fluctuations in this age group have been seen before and due to the small number of individuals in this age group estimates are less accurate and more prone to variation. The absence of Roche N
increases in most other age groups likely reflects the additional role vaccination is having in reducing viral infection in those already vaccinated.

The pattern of increases in Roche S seropositivity which are observed follow the roll out of the vaccination programme with the oldest age groups offered vaccine first. (Figure 3b). Roche S seropositivity increased first in donors aged 70 to 84 and has plateaued since week 13, reaching 99.4% in weeks 25 to 28. Seropositivity has also plateaued since week 16 for those aged 60 to 69 reaching 99.2% in weeks 25 to 28. Plateauing in Roche S seropositivity has been observed since week 19 in those aged 50 to 59 reaching 98.3% in weeks 25 to 28 2021. A plateauing in seropositivity has recently been observed in the 40 to 49 year olds reaching 96.5% in weeks 25 to 28. Large increases continue to be seen in the 30 to 39 year olds, from 76.5% in weeks 21 to 24 to 95.2% in weeks 25 to 28. Currently the greatest increase observed is in those aged 17 to 29, increasing from 51.0% in weeks 21 to 24 2021 to 87.4% in weeks 25 to 28 2021.

The impact of the vaccination programme is clearly evident from the increases in the proportion of the adult population with antibodies based on Roche S testing. This was evident initially amongst individuals aged 50 years and above who were prioritised for vaccination as part of the phase 1 programme and since week 15 in adults aged 49 and below as part of phase 2 of the vaccination programme. This is further supported by the plateauing in the proportion testing positive using the Roche N assay, in older age groups and likely reflects the additional role of vaccination is having in reducing infection ahead of reductions seen from national restrictions alone in younger age groups.
Figure 2. Overall population weighted 4-weekly rolling SARS-CoV-2 antibody seroprevalence (% seropositive) in blood donors from the Roche S and Roche N assays.
Figure 3. Population weighted 4-weekly rolling SARS-CoV-2 antibody seroprevalence (% seropositive) in blood donors from the Roche S and Roche N assays by a) age groups 17 to 29, 30 to 39 and 40 to 49, b) age group 50 to 59, 60 to 69 and 70 to 84.
Direct impact on hospitalisations

The number of hospitalisations averted by vaccination, can be estimated by considering vaccine effectiveness against hospitalisation, vaccine coverage and observed hospitalisations and through modelling using a range of parameters.

PHE estimates to 11 July 2021 based on the direct effect of vaccination and vaccine coverage rates, are that around 52,600 hospitalisations have been prevented in those aged 65 years and over in England (approximately 8,800 admissions in those aged 65 to 74, 20,300 in those aged 75 to 84, and 23,500 in those aged 85 and over) as a result of the vaccination programme (Figure 4). There is increasing evidence that vaccines prevent infection and transmission. The indirect effects of the vaccination programme will not be incorporated in this analysis, therefore the figure of 52,600 hospitalisations averted is likely to be an underestimate.

Please note this analysis will be updated every 2 weeks. Next update will be in the week 31 report.
Figure 4. Plot of daily observed and expected COVID-19 hospitalisations in adults aged 65 and over.
Direct and indirect impact on infection and mortality

The PHE and Cambridge real-time model has been used to track the COVID-19 infection throughout the pandemic, providing key epidemic insights, including estimation of the reproduction number, R, to the Scientific Pandemic Influenza subgroup on Modelling (SPI-M) and to the Scientific Advisory Group on Emergencies (SAGE). The application to data from the first wave has been published in Real-time nowcasting and forecasting of COVID-19 dynamics in England: the first wave (20). Since the first wave, the model has been constantly improved to capture the pandemic activity as it develops, in particular to account for the impacts, both direct and indirect, of the vaccination programme. The direct impact of vaccination is the number of deaths saved in those that get infected, whereas the indirect effect incorporates the additional prevention of infections. The history of real-time modelling outputs can be found at Nowcasting and Forecasting of the COVID-19 Pandemic (21), with the most recent results on which the figures here are based is currently available at COVID-19: nowcast and forecast (22).

Vaccination rates in the model are based on the actual number of doses administered, and the vaccine is assumed to reduce susceptibility to COVID-19 as well as mortality once infected. Estimates for vaccine efficacy are based on the best available published results (23). To infer the impact of vaccination, the model was fitted to both ONS prevalence and daily COVID-19 mortality data in England, resulting in posterior samples for a range of epidemiological parameters. The posterior samples were then used to simulate the number of infections and deaths that would have occurred without vaccination (Figure 5). Finally, the total impact was calculated by comparing the infection and mortality estimates with vaccination versus the simulated outcomes without vaccination (Figure 6; Table 4). The figures in Table 4 are expected to continue to grow rapidly as the number of deaths in the no-vaccination scenario is still showing exponential growth.

The no-vaccination scenario assumes that no other interventions are implemented to reduce incidence and mortality. Therefore, the findings presented here should be interpreted as the impact of the vaccination programme on infection and mortality assuming no additional non-pharmaceutical interventions were implemented. In practice it is impossible to predict what interventions would have been implemented in the absence of vaccination, although it is reasonable to assume that lockdown measures would have remained in place for substantially longer.

The work presented in this section is joint work completed by PHE and Cambridge University’s MRC Biostatistics Unit.

Estimates suggest that 60,000 deaths and 22,057,000 infections have been prevented as a result of the COVID-19 vaccination programme, up to 9 July.
Figure 5. Inferred and predicted incidence, mortality and prevalence with and without vaccination in England. This is presented on a log scale.
Figure 6. Averted number of infections (left) and deaths (right) due to vaccination (cumulatively)
Table 4. Inferred reduction in infections and mortality as the result of vaccination up to 23 July 2021. (Infections are rounded to the nearest 1,000, deaths to the nearest 100.)

<table>
<thead>
<tr>
<th>Model</th>
<th>Outcome</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONS/Death</td>
<td>Infection</td>
<td>22057000 [21266000 , 22899000]</td>
</tr>
<tr>
<td>ONS/Death</td>
<td>Mortality</td>
<td>60000 [57500 , 62700]</td>
</tr>
</tbody>
</table>
References

22
21. MRC Biostatistics Unit. 'Nowcasting and Forecasting of the COVID-19 Pandemic'
About Public Health England

Public Health England exists to protect and improve the nation’s health and wellbeing, and reduce health inequalities. We do this through world-leading science, research, knowledge and intelligence, advocacy, partnerships and the delivery of specialist public health services. We are an executive agency of the Department of Health and Social Care, and a distinct delivery organisation with operational autonomy. We provide government, local government, the NHS, Parliament, industry and the public with evidence-based professional, scientific and delivery expertise and support.

Public Health England
Wellington House
133-155 Waterloo Road
London SE1 8UG
Tel: 020 7654 8000

Website: www.gov.uk/phe
Twitter: @PHE_uk
Facebook: www.facebook.com/PublicHealthEngland

© Crown copyright 2021

You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

Published: 29 July 2021
PHE gateway number: GOV-9196

PHE supports the UN Sustainable Development Goals